

Kambala School c/- Carmichael Tompkins Property Group

Detailed Site Investigation

Kambala School Sports Precinct 794 New South Head Road Rose Bay, NSW

> 25 June 2020 58081/129431 (Rev A) JBS&G Australia Pty Ltd

Kambala School c/- Carmichael Tompkins Property Group Detailed Site Investigation

Kambala School Sports Precinct

794 New South Head Road Rose Bay, NSW

25 June 2020

58081/129431 (Rev A) JBS&G Australia Pty Ltd

Table of Contents

Abbre	eviatio	nsv
Execu	itive Su	ımmary1
1.	Introd	luction4
	1.1	Background and Objectives4
	1.2	Objective4
	1.3	Scope of Works4
2.	Site C	onditions and Surrounding Environment6
	2.1	Site Identification6
	2.2	Site Description6
	2.3	Surrounding Land Use6
	2.4	Topography7
	2.5	Geology7
	2.6	Acid Sulfate Soils8
	2.7	Hydrology8
	2.8	Hydrogeology8
3.	Site H	istory9
	3.1	Aerial Photographs9
	3.2	Planning Certificates9
	3.3	EPA Records
	3.4	Australian and NSW Heritage Register10
	3.5	Dangerous Goods Search
	3.6	Integrity Assessment
4.	Previo	ous Reports11
	4.1	Contamination Assessment Letter – Kambala Sports Precinct (JBS&G 2019)11
	4.2	Preliminary Site Investigation (JBS&G 2020a)12
	4.3	Hazardous Building Material Survey – Kambala Sports Precinct (JBS&G 2020b)13
5.	Conce	eptual Site Model15
	5.1	Potential Areas of Environmental Concern15
	5.2	Potentially Contaminated Media and Migration15
6.	Samp	ling and Analysis Plan17
7.	Asses	sment Criteria23
8.	Qualit	ty Assurance Quality Control25
9.		ts26
٥.	9.1	Field Observations

	9.3	Contaminant Leachability29	
	9.4	Preliminary Waste Classification	
10. Site Characterisation		Characterisation31	
	10.1	Have soils been characterised to an extent where suitable conclusions can be drawn regarding the suitability of the site in accordance with SEPP 55 Guidelines?31	
	10.2	Has comprehensive inspection of fill materials been conducted?31	
	10.3	Based on the works completed are there any unacceptable risks to likely future onsite receptors from impacted soils during development?31	
	10.4	Are there any aesthetic concerns in fill soils present at the site?32	
	10.5	Is there any evidence of, or potential for, migration of contaminants off-site?	
	10.6	Is the site suitable for the proposed use?32	
11.	Conc	lusions34	
12.	Limit	ations35	
Figure	es	36	
Table	S	37	
List	of Ta	bles	
Table	2.1: S	ite Details6	
Table	2.2: R	egistered Groundwater Bore Search8	
Table	5.1 Aı	reas of Environmental Concern and Associated Contaminants of Potential	
		Concern	
List	of Fig	gures	
Figure	Figure 1 Site Location		
Figure		ite Layout	
-	Figure 3 Sample Locations Figure 4 Health Based Exceedances		
~hh	endi	LC3	
Anne	ndix A	Borelogs	
	ndix B	<u> </u>	
	ndix C		

Statistical Analysis

Appendix D Appendix E Laboratory Reports and Chain of Custody

Abbreviations

Term	Definition	
ACM	Asbestos Containing Material	
ACD	Asbestos Containing Dust	
AEC	Areas of Environmental Concern	
AF/FA	Asbestos Fines / Fibrous Asbestos	
B(a)P	Benzo(a)pyrene	
B(a)P TEQ	Carcinogenic PAHs as benzo(a)pyrene toxicity equivalent quotient	
Bgs	Below Ground Surface	
ВТЕХ	Benzene Toluene Ethylbenzene and Xylenes	
CLM Act	Contaminated Land Management Act	
СОРС	Contaminants of Potential Concern	
CSM	Conceptual Site Model	
DP	Deposited Plan	
DQI	Data Quality Indicator	
DQO	Data Quality Objective	
DSI	Detailed Site Investigation	
EIL/ESL	ecological investigation/screening level	
EPA	NSW Environment Protection Authority	
GSW	General Solid Waste	
HIL/HSL	Health-based investigation/screening level	
HMBS	Hazardous Material Building Survey	
JBS&G	JBS&G Australia Pty Ltd	
LAA	Licensed Asbestos Assessor	
LCD	Lead Containing Dust	
LP	Lead containing Paint	
LEP	Local Environmental Plan	
LPI	NSW Land Property Information	
NEPC	National Environment Protection Council	
NEPM	National Environment Protection Measure	
OCPs	Organochlorine Pesticides	
OEH	NSW Office of Environment and Heritage (includes EPA)	
PAHs	Polycyclic aromatic Hydrocarbons	
PARCCS	Precision, accuracy, representativeness, comparability, completeness and sensitivity	
PCBs	Polychlorinated biphenyls	
PID	Photoionization detector	
PSI	Preliminary Site Investigation	
QA/QC	Quality Assurance / Quality Control	
RAP	Remedial Action Plan	

Term	Definition	
RPD	Relative Percentage Difference	
RSW	Restricted Solid Waste	
SEARs	Secretary's Environmental Assessment Requirements	
SEPP	State Environmental Planning Policy	
SMF	Synthetic Mineral Fibre	
TCLP	Total Characteristic Leaching Procedure	
TEQ	Toxicity Equivalent Quotient	
TPH/TRH	Total Petroleum/Recoverable Hydrocarbons	
UCL	Upper Confidence Limit	
VENM	Virgin Excavated Natural Material	
VOC	Volatile organic compound	

Executive Summary

JBS&G Australia (JBS&G) was engaged by Kambala School (the client) via Carmichael Tomkins Property Group Pty Ltd (CTPG) to conduct a Detailed Site Investigation (DSI) at the proposed Sports Precinct redevelopment at Kambala School, 794 New South Head Road, Rose Bay, NSW (the site). The site comprised the proposed Sports Precinct redevelopment in the north-eastern portion of the school and is legally defined as part Lot 67 in Deposited Plan (DP) 2538 and Lots 1 to 7 and 9 to 12 in DP1116858. The site has an area of approximately 9000 m². The site location is shown in **Figure 1** and the site layout is shown in **Figure 2**.

The site currently comprises a grass sports field, hardcourt tennis courts, concrete and garden embankments adjacent to New South Head Road and a number of structures, the most significant of those being the Hawthorn Building. It is understood that the proposed development will comprise a Sports Precinct which includes synthetic playing fields below which will be two levels comprising general and common learning areas, staff areas, indoor sports courts and change rooms.

JBS&G have previously conducted a preliminary contamination assessment 'Contamination Assessment Letter' in February 2019 (JBS&G 2019¹) and a 'Preliminary Site Investigation' (PSI) in March 2020 (JBS&G 2020a²) at the site.

Based on the previous works conducted, which included desktop background study and limited soil investigation and sampling, potential health risk associated with elevated polycyclic aromatic hydrocarbons (PAHs) in soils were identified. Other potential ecological risk associated with total recoverable hydrocarbons (TRH) and heavy metals is soils were also identified. Based on the investigation completed, additional investigation works were required to verify the preliminary findings and also to better characterise other areas of the site including comprehensive investigation of soils for inclusions of ash, asbestos containing materials (ACM) and other aesthetic issues.

As such, this DSI was commissioned to complete the recommendations of the PSI (JBS&G 2020a) and to address Secretary's Environmental Assessment Requirements (SEARs) for contamination assessment in accordance with State Environmental Planning Policy (SEPP) 55 guidelines.

JBS&G conducted the DSI field works on 7th, 20th and 21st of April 2020, which included soil sampling from 21 intrusive investigation locations using hand methods and mechanical excavation methods to observe and sample soils. Comprehensive inspection of fill soils including for the presence or absence of visible ACM or aesthetically impacted materials was also conducted.

Based on observation made from the DSI works and from the PSI (JBS&G 2020a), fill materials were observed as brown to brown-yellow and grey sands and silty sands with occasional inclusions of grass and rootlets within the sports field. Inclusions of coarse gravels, glass and plastic were observed in deeper areas of the sports field. Depth of fill within the sports field was observed as varying between 0.5 m and 5.2 m below ground surface (bgs). Fill within the embankments was observed to comprise sandy soils blended with organic materials such as foliage and planting soil mixes with inclusions of geofabric and rootlets varying in depth between 0.2 m and 1.0 m bgs.

Fill soils were underlain by natural materials comprised of yellow-brown sands and clayey sands or yellow/red/orange sandstone.

Contamination Assessment Letter – Kambala Sports Precinct, New South Head Road, Rose Bay, NSW (Rev 0) JBS&G Australia Pty Ltd 13 February 2019 (JBS&G 2019)

² Preliminary Site Investigation – Kambala School Sports Precinct 794 New South Head Road, Rose Bay, NSW (Rev A) JBS&G Australia Pty Ltd 17 March 2020 (JBS&G 2020a)

Fill soils and site surfaces were observed to be free of any staining or odorous soils and also free of and significant amount of inclusions such as building rubble. Two isolated fragments of ACM were identified at locations HA11 and HA12 within a narrow garden strip north of the tennis courts and on the north-western boundary of the site as shown on **Figure 4**. The fragments potentially were discarded into the garden over the site fence, the fragments were collected and submitted for laboratory confirmation analysis. No further fragments including no ACM observed in fill material was identified at the site.

Samples collected from the investigation were subsequently analysed for a range of contaminants of potential concern including heavy metals, TRH/benzene toluene ethylbenzene and xylenes (BTEX), PAHs, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and asbestos. Soil analytical results were compared against National Environmental Protection Measure (NEPC 2013) health and ecological criteria for residential with gardens/accessible soils land use which includes child care centres, preschools and primary schools.

Based on soil analytical results reported, elevated lead, carcinogenic PAHs as benzo(a)pyrene (B(a)P) toxicity equivalent quotient (TEQ) and Total PAHs were identified to exceed the adopted health-based criteria. The elevated concentrations were reported at the locations shown on **Figure 4**, and were generally limited to the following areas:

- The eastern garden embankment adjacent with the sites eastern boundary adjacent to the bend on New South Head Road; and
- The south-eastern portion of the sports field within locations BH07, BH12 and TP2 as shown on **Figure 4**. It is further noted that impact within the sports field was identified at a depth of 1.5 m or more from the surface.

Contaminant concentrations that could present a potential ecological risk were also identified. However, noting there are no ecological receptors at or nearby the site such as creeks or habitats for native flora and fauna species, protection of ecological receptors was not considered relevant for the site.

Total Characteristic Leaching Procedure (TCLP) was conducted on the highest reported concentrations of lead and PAHs. The reported results demonstrated that the lead would leach at insignificant concentrations and all TCLP PAHs concentrations were reported below the laboratory limit of reporting. The results suggest that migration of elevated PAHs and lead is not occurring. Based on the findings of this investigation and subject to the limitations in **Section 12**, the following findings are presented:

- A comprehensive DSI has been completed to satisfy EPA endorsed guidelines and SEPP 55 planning guidelines;
- Contamination issues associated with Total PAHs and B(a)P TEQ were identified within the
 eastern garden embankment at locations HA01 to HA03 and HA06 to HA08. Elevated
 concentrations of B(a)P TEQ and lead were identified at depth within the south-eastern
 portion of the sports field at locations BH07, BH12 and TP2 also;
- Given no areas of ecological significance are located at or nearby the site, and the
 proposed redevelopment protection of ecology is not considered relevant to the site.
 Reported TRH concentrations within embankment areas are considered related to natural
 organic material in mulch/vegetation and not petroleum impact and does not pose an
 unacceptable risk; and
- Two fragments on non-friable ACM at locations HA11 and HA12 were identified and removed for testing. No other asbestos as AF/FA or visible ACM was identified at the site, however there is potential for ACM to be present in fill and other areas of the site.

Despite the contamination issues identified, it is noted that there is no unacceptable risk
to users of the playing field areas as the contamination in this area was at depth where
there is no existing pathway whereby site users come into contact with these soils under
normal surface usage. Impacted soils within the embankments are not considered to be
regularly occupied by site users other than gardeners and/or maintenance works, and
COPC concentrations in this area do not pose a risk under a commercial worker scenario.

Based on the conclusions present, it is considered that the site can be made suitable for the proposed redevelopment in accordance with SEPP 55 subject to preparation and implementation of a Remedial Action Plan (RAP) including an unexpected finds protocol.

1. Introduction

1.1 Background and Objectives

JBS&G Australia (JBS&G) was engaged by Kambala School (the client) via Carmichael Tomkins Property Group Pty Ltd (CTPG) to conduct a Detailed Site Investigation (DSI) at the proposed Sports Precinct redevelopment at Kambala School, 794 New South Head Road, Rose Bay, NSW (the site). The site comprised the proposed Sports Precinct redevelopment in the north-eastern portion of the school and is legally defined as part Lot 67 in Deposited Plan (DP) 2538 and Lots 1 to 7 and 9 to 12 in DP1116858. The site has an area of approximately 9000 m². The site location is shown in **Figure 1** and the site layout is shown in **Figure 2**.

The site currently comprises a grass sports field, hardcourt tennis courts, concrete and garden embankments adjacent to New South Head Road and a number of structures, the most significant of those being the Hawthorn Building. It is understood that the proposed development will comprise a Sports Precinct which includes synthetic playing fields below which will be two levels comprising general and common learning areas, staff areas, indoor sports courts and change rooms.

JBS&G have previously conducted works at the site as documented in Preliminary Site Investigation (PSI) JBS&G (2020a). The works included background review and intrusive soil sampling at 13 investigation locations. The investigation identified potential contamination risks associated with Benzo(a)pyrene (B(a)P) TEQ and Total PAHs which exceeded the adopted health based criteria. As such, the PSI recommended further investigation be conducted to characterise the site within areas not accessible during the PSI works and verify the findings of the PSI including delineating the extent of impacted areas where possible. As such this DSI was required to further investigate the site based on the PSI recommendations and to fulfill SEPP 55 Guidelines regarding site suitability.

The DSI has been completed in general accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA) and relevant Australian Standards.

1.2 Objective

The objective of this DSI is to verify the extent of impacted soils at the site. An additional objective is to complete a comprehensive characterisation of soils within areas not previously investigated and through more comprehensive inspection methodologies such as using a backhoe to excavate testpits. Upon completion of the investigation conclusions regarding site suitability can be made including recommendations if required.

1.3 Scope of Works

The scope of works for the assessment included;

- Completion of an additional 21 locations to the PSI. locations were targeted to areas not characterised in the PSI (JBS&G 2020a) and were divided between, boreholes, testpits and handauger locations;
- Completion of comprehensive inspection and characterisation of fill materials including visual identification for the presence/absence of ash and asbestos containing materials (ACM);
- Laboratory analysis of soil samples from each location for a range of contaminants of
 potential concern (COPC); including, heavy metals, total recoverable hydrocarbons
 (TRH)/benzene toluene ethylbenzene and xylenes (BTEX), polycyclic aromatic
 hydrocarbons (PAHs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs)
 and asbestos; and

•	Preparation of a DSI report in accordance with SEPP 55 guidelines to documenting the findings.		

2. Site Conditions and Surrounding Environment

2.1 Site Identification

The location of the site is shown in **Figure 1**, and the current layout is shown in **Figure 2**. The site details are summarised in **Table 2.1**.

Table 2.1: Site Details

Lat / DD Nombon	Part Lot 67 DP 2538
Lot / DP Number	Lots 1 to 7 and 9 to 12 DP1116858
Street Address	794 New South Head Road, Rose Bay, NSW
Local Government Authority	Woollahra Municipal Council
Site Area	Approximately 0.9 ha
Current Zoning	SP2 Infrastructure (Educational Establishment) Woollahra Local Environmental Plan (LEP) 2014
Geographic Coordinates	E: 340202.464 (GDA94-MGA56)
	N: 6251480.779 (GDA94-MGA56)
Previous Land Use	School since 1913
Current Land Use	School

2.2 Site Description

A detailed site inspection was undertaken on 7th, 20th and 21st April 2020 by an experienced JBS&G environmental. The layout of the site was observed to be consistent with that described in the PSI (JBS&G 2020a). Site features observed during site inspections are shown on **Figure 2**.

The site was observed to comprise a well maintained grass sports field, with hardcourt tennis courts to the north-west. An embankment was observed on the north-eastern and eastern boundary of the site adjacent New South Head Road. The embankment comprised of sealed concrete in the north-eastern portion and of well-maintained gardens on the eastern boundary. The embankment was observed as over 5 m in height at its highest point. Use of garden products such as fertilisers and mulch was apparent in the garden embankment.

Additionally, a sports equipment store was located on the eastern end of the grass sports field and a hydrant booster and associated shed was observed in the southern corner of the site. The sports equipment store was surrounded by garden areas comprising trees, plants and rock.

The northern portion of the Hawthorn Building and the adjacent toilet block were also understood to be part of the proposed redevelopment works. The structures were still present at the time of inspection and as such investigation of surfaces and soil beneath the structures was not possible at this time. A Hazardous Building Material Survey (HMBS) was conducted on the structures and reported in JBS&G (2020b).

No staining, odours or ACM was observed on accessible site surfaces at the time of inspections. It is noted that ACM was observed within near surface soils at locations HA11 and HA12 north of the tennis courts and near the School boundary with Bayview Road. This is discussed further in **Section 9**.

2.3 Surrounding Land Use

The surrounding land uses have been identified as follows:

- North Immediately north of the site is Bayview Hill road, followed by low-density residential properties and two schools, Kincoppal-Rose Bay School and Kincoppal-Rose Bay Junior School.
- East Immediately east of the site is New South Head Road, followed by low-density residential properties.
- South The majority of Kambala School buildings are located immediately south of the site.
 A UST was identified south of the site and adjacent to a school entrance on New South Head
 Road. New South Head Road and low-density residential properties were located further
 South.
- West Immediately west of the site is occupied by residential housing. This is followed by Rose Bay/Sydney Harbour.

Based on the general observations of surrounding properties, it was considered the potential for contamination to be migrating onto the site from surrounding areas is low. Impact to the site associated with the UST is considered unlikely as surrounding topography and the anticipated flow of groundwater direction is anticipated to be away from the site. It is further noted that the tank is understood to be empty based on information provided by the school.

2.4 Topography

A review of the regional topographic maps using SIX maps³ indicated that the site has an elevation of approximately 30 to 40 m Australian Height Datum (AHD). The site and surrounding area generally slopes to the south-west and towards Sydney Harbour.

The site itself is relatively level, the sports field, tennis courts and buildings have been levelled flat through historical construction. The concrete and garden embankment adjacent to New South Head Road on the sites north-eastern and eastern boundaries consist of steep slopes with New South Head Road located up to 5 m higher than the sports field in some areas.

2.5 Geology

Based on the Sydney 1:100 000 Geological Map⁴, the site was located in an area underlain by Hawkesbury sandstone of the Wianamatta Group. This is typically formed in middle Triassic period and characterised by medium to coarse-grained quartz sandstone with very minor shale and laminate lenses.

Based upon the Sydney 1:100 000 Soil Landscape series⁵ the site is located within the Hawkesbury soil landscape group. The landscape is generally characterised by rugged, rolling to very steep hills on Hawkesbury Sandstone with local relief between 40 - 200m.

Soils are characteristically (>50 cm), discontinuous lithosols/siliceous sands associated with rock outcrops, earthy sands, yellow earths and some yellow podzolic soils along joints and fractures, localised yellow and red podzolic soils associated with shale lenses and siliceous sands and secondary yellow earths along drainage lines.

Limitations of the Hawkesbury group include extreme soil erosion hazards, steep slopes, rock outcrops, shallow, stony, highly permeable soil and low soil fertility.

SIX Maps http://maps.six.nsw.gov.au/ (accessed 22 March 2017)

Sydney 1:100 000 Geological sheet 9130, 1st Edition (1991)

Sydney 1:100 000 Soil Landscapes Series Sheet 9130, Soil Conservation Service of NSW (1990)

2.6 Acid Sulfate Soils

Based on review of Department of Land and water Conservation map of Sydney Heads (DLWC 1997) there are no known occurrences of acid sulfate soils at the site.

Review of the Acid Sulfate Soils Maps in Woollahra LEP (2014) indicate the site is located within a Class 5 area for acid sulfate soils. Based on this class, any works within 500 m of adjacent Class 1, 2, 3 or 4 land that is below 5 m Australian height datum required development consent.

The site is located well above 5 m AHD and development works are not anticipated to involve working down to this depth.

Given the sites elevation and based on review of acid sulfate soils maps, acid sulfate soils are considered highly unlikely to be encountered at the site.

2.7 Hydrology

No surface water bodies are located on the site. The nearest surface water body to the site is Rose Bay to the west of the site. This bay is directly part of the greater Sydney Harbour.

Rainfall that falls onto the site is likely to infiltrate into vegetated or unsealed surfaces. Rainfall which falls onto buildings or paved surfaces is anticipated to be captured in stormwater infrastructure within or adjacent to Kambala School. Surface water flow is anticipated to be to the southwest following the local topography of the area.

2.8 Hydrogeology

Registered groundwater monitoring well data was obtained from the NSW Office of Water groundwater database⁶ and is provided in JBS&G (2020a).

Review of the NSW Office of Water's Groundwater database revealed there are six registered groundwater wells within 500m of the site. All wells were located southwest and downgradient of the site. Groundwater Bore information is summarised in **Table 2.2** below.

Table 2.2: Registered Groundwater Bore Search

Bore ID	Use	Property	Standing Water Level (mbgs)	Well Depth (m)	Distance from Site
GW106127	Domestic	-	2.0	4.0	168.474m
GW106407	Domestic	Collier 8 Dumaresq Road, Rose Bay	2.0	4.0	195.591m
GW107663	Domestic	-	7.625	11.59	210.332m
GW107986	Domestic	-	1.83	6.33	225.376
GW108824	Domestic	Haralambis 3 Collins Avenue, Rose Bay	2.745	6.10	398.444m
GW110857	Domestic	-	2.0	4.0	472.71m

Based on the reported geology, topography and depth to groundwater, groundwater migration is expected to be to the southwest and towards Sydney Harbour. Based on the groundwater bore search it is considered that depth of groundwater increases with distance from the Harbour. Based on this assumption and noting observation from the investigation works, the depth of groundwater at the site is anticipated to be between 7 to 10 m at the site and flow to the south-west.

Office of Water's Groundwater Monitoring Overview Map http://allwaterdata.water.nsw.gov.au/water.stm (accessed 22 March 2017)

3. Site History

3.1 Aerial Photographs

Historical aerial photographs were obtained from NSW Land Property Information (LPI) and Six Maps imagery, and are provided in JBS&G (2020a). Summary of aerial photographs obtained of the site is included below:

- 1930 The site appeared to comprise of an unsealed plot, potentially including a park or
 playing field. Two bare areas could be observed in the western portion of the site, the areas
 may have potentially been tennis courts. The area currently occupied by the Hawthorn
 building comprised of trees and a potential access road. Areas surrounding the site
 comprised New South Head Road to the east, buildings and fields of Kambala School to the
 west, and residential housing and associated infrastructure.
- 1943 The site layout appeared similar to the previous image, additional structures appear
 to have been constructed within the school grounds including the Hawthorn Building. The
 density of residential housing seemed to increase in areas surrounding the site.
- 1951 The site and surrounding areas appeared similar to the previous image.
- 1965 The site and surrounding areas appeared similar to the previous image.
- 1979 The site appeared similar to the previous image, the addition of a small building east of the tennis courts in the northern part of the site was observed. Surrounding areas to the site generally appeared similar to the previous image.
- **1994** The site appeared to include two temporary buildings on the grass sports field. Remaining areas of the site and surrounding areas appeared similar to the previous image.
- 2009 The two temporary buildings observed on the previous image had been removed. The western most tennis court appeared to have changed compared to the previous image. Installation of the rooms below the tennis courts may have occurred during this period. Buildings within the school grounds and to the east of the site had been constructed.
- **2014** The site and surrounding areas appeared similar to the previous image.
- **2020** The site and surrounding areas appeared similar to the previous image and as described in **Section 2.2**.

3.2 Planning Certificates

A copy of the Section 10.7 (2) & (5) Planning Certificates for part Lot 4 in DP1116858, a representative lot within the site, was obtained from the Woollahra Municipal Council. The planning certificate is provided in JBS&G (2020a) and relevant details regarding the certificate are summarised below.

- The land is subject to the requirements under the Woollahra Local Environmental Plan 2014;
- The land is zoned SP2 Infrastructure;
- The land does not comprise a critical habitat;
- The land has been identified as containing an item of environmental heritage significance;
 - o Kambala School is identified as an item of General Heritage in Woollahra LEP (2014).
- The land is not affected by the Coastal Protection code under the Coastal Protection Act 1979;

- The land is not affected by Section 15 of the *Mine Subsidence Compensation Act 1961* proclaiming land to be a Mine Subsidence District.
- The land is not considered significantly contaminated or subject to a management order under the *Contaminated Land Management Act 1997* (CLM Act);
- The land is not subject to an approved voluntary management proposal under the CLM Act;
- The land is not the subject of a site audit statement within the meaning of the CLM Act;
- The site is not included on the loose-fill asbestos insulation register maintained under the Home Building Act 1989;
- The land is not bushfire prone land;
- The land is identified as "may require an assessment of acid sulfate soils", with reference to Clause 6.1 of Woollahra LEP 2014;
- The land is considered by Council to be above the 1 in 100-year mainstream flood level and is subject to flood related development controls.

3.3 EPA Records

Search of the NSW EPA's public register under the *Protection of the Environment Operations Act* 1997 (POEO Act) was undertaken. The search for the site identified there were:

- No prevention, clean-up or prohibition notices;
- No transfer, variation, suspension, surrender or revocation of an environmental protection licence.

A search was also conducted through the EPA's public contaminated land register (JBS&G 2020a). The search did not identify any current or previous records of notices by the EPA, or notification to the EPA under Section 60 of the CLM Act, in relation to the site or immediately surrounding land.

3.4 Australian and NSW Heritage Register

A search of the Australian and NSW Heritage database was undertaken, and records are included in JBS&G (2020a). The search did not identify the presence of any items of state or national heritage in the vicinity of the site.

The Kambala School is noted as being an item of General Heritage as included on the Woollahra LEP (2014).

3.5 Dangerous Goods Search

A dangerous goods search was not conducted as part of the investigation and it is considered that USTs or chemical storage within the site is unlikely. It is noted that a UST has been identified as located to the south of the south-eastern portion of the site. Given the down gradient location of the UST, it is not considered an area of environmental concern for the site.

3.6 Integrity Assessment

The information obtained from the historical sources reviewed has been found to be in general agreement. It is therefore considered that the information provided in this historical assessment has an acceptable level of accuracy.

4. Previous Reports

4.1 Contamination Assessment Letter – Kambala Sports Precinct (JBS&G 2019)

JBS&G conducted a contamination assessment within the Kambala Sports Precinct in January and February 2019. The assessment was limited in nature and included soils sampling from 8 borehole locations conducted for a Geotechnical assessment. A further 5 sample locations were conducted using a hand auger. The objective of the assessments was to assess the site for potential contamination whilst also characterising materials encountered for potential offsite disposal in accordance with NSW EPA Waste Classification Guidelines (EPA 2014).

The site inspection and soil sampling were conducted on the 8th and 9th February 2019. The site was observed to comprise a well maintained sports field and surrounding gardens and embankments. No staining, odours or ACM was observed on the surface. Collected soil samples were analysed for a range of potential contaminants of concern including heavy metals TRH, BTEX, PAHs, OCPs, PCBs and asbestos.

Based on the results of the investigation, soils analytical concentrations were generally reported at concentrations within the criteria adopted. Elevated PAH concentrations associated with B(a)P TEQ and Total PAHs that exceeded the adopted health based criteria was identified at location HA01-0-0.1. Elevated B(a)P TEQ concentrations that exceeded the adopted health based criteria was identified at locations HA01_0.9-1.0, HA02_0-0.1 and BH07_1.5-1.6.

The concentrations were reported to present a potentially unacceptable health risk to site users through dermal contact and/or ingestion if soils are reused within the school grounds or within the sports fields and other open space areas such as gardens, particularly if they are used at or near the surface.

The concentrations were not considered to represent a potential health risk to workers (i.e. excavation and working within the impacted soils). As reduced exposure times in this scenario and added safety measures including personal protective equipment and safe working practices mean that risk to worker exposure to soils is mitigated during excavation and redevelopment works.

Potential ecological risk (to plant growth) was identified at locations HA01, HA02, HA03 and HA07, due to elevated, zinc, TRH and B(a)P. Consideration of depth and surrounding plants would need to be considered if reusing these materials.

Waste classification of site materials identified that fill materials fall within the General Solid Waste (non-putrescible) (GSW) category with the exceptions of soils at locations BH07_1.4-1.5 and HA01_0-0.1 which fall within Restricted Solid Waste (RSW) without the use of any EPA immobilisations.

It was noted that the EPA general immobilisation approval for ash may be able to be implemented, in particular at BH07_1.4-1.5 and HA01_0-0.1 subject to confirmation of ash in fill. This would allow these soils to be classified as GSW based on current non-detected TCLP results.

Natural materials were encountered beneath fill materials and consisted of yellow/orange/red sand and sandstone consistent with Virgin Excavated Natural Material (VENM).

It was recommended that further assessment should be conducted prior to development works proceeding to confirm the assessment and waste classification results and aid appropriate onsite and offsite management of fill and natural soils. These further assessments are considered in the conclusions of this report.

4.2 Preliminary Site Investigation (JBS&G 2020a)

JBS&G was engaged by the client to conduct a PSI at the proposed Sports Precinct redevelopment at Kambala School, 794 New South Head Road, Rose Bay, NSW.

The PSI was a requirement to address SEARs regarding soil and groundwater contamination and used data obtained from JBS&G (2019) discussed in **Section 4.1**. It is further noted that contamination assessment in accordance with SEPP 55 guidelines was required to demonstrate that the site is suitable or can be made suitable for the proposed use.

As such, comprehensive review of the site history and available records was completed and the data and assessment compiled in JBS&G (2019) was utilised for preparation of the PSI in accordance with SEPP 55.

Based on the desktop review including Council records, aerial photographs and EPA registers, the site was understood to have been used as a school since 1913. Kambala school was also noted to be an item of general heritage under Woollahra Local Environmental Plan (LEP 2014).

Areas of environmental concern (AECs) identified at the site were mostly associated with significant filling to create the current levels and the garden embankment. Additionally, potential for inclusions of anthropogenic waste and ACM were also considered. Lower risk AECs identified included building footprints, a UST located south of the site and the pumping station and shed located in the southern portion of the site.

The detailed site inspection was undertaken on 8th and 9th January 2019 by an experienced JBS&G environmental consultant, with additional observations made during a Hazardous Material Survey conducted on 11th February 2019. No staining, odours or ACM was observed on the surface. Intrusive works and associated soil sampling were completed from 8 borehole locations and 5 handauger location from accessible areas within the site. Selected soil samples collected from the sampling locations conducted were analysed for a range of potential contaminants of concern including Heavy metals, TRH, BTEX, PAHs, OCPs, PCBs and asbestos.

Based on the soil analytical results reported, concentrations were generally reported at concentrations within the criteria adopted. Elevated PAH concentrations associated with B(a)P TEQ and Total PAHs that exceeded the adopted health based criteria were identified at locations HA01-0-0.1, HA01_0.9-1.0, HA02_0-0.1 and BH07_1.5-1.6. Additionally, potential ecological risk (to plant growth) was identified at locations HA01, HA02, HA03 and HA07, due to elevated lead, zinc, TRH and B(a)P.

Reported soil analytical concentrations including TCLP analysis, suggested that fill materials fall within the GSW (non-putrescible) category with the exceptions of soils at locations BH07_1.4-1.5 and HA01_0-0.1 which fall within RSW without the use of any EPA immobilisations. EPA immobilisation for BH07_1.4-1.5 and HA01_0-0.1 may be possible subject to confirmation of ash in fill materials.

Based on the findings of the PSI it was considered that the site can be made suitable for the proposed redevelopment in accordance with SEPP 55 subject to the following actions:

- A DSI is conducted, including soil sampling and investigation beneath current building/structures following demolition and additional works to verify the extent of potential PAHs impact identified including identifying whether ash is present within fill materials;
- The additional works should be conducted via the testpit method using an excavator to complete comprehensive inspection and characterisation of fill materials including visual identification for the presence/absence of ash and ACM;

- Assessment of soils within the south-eastern corner of the site to identify if any impact from the nearby UST has occurred will also be included; and
- Following completion of the DSI, a Remedial Action Plan (RAP) can be prepared based on the findings, if required. The RAP will also detail any management requirements based on assessment results to ensure potential health and ecological risks identified are appropriately removed or managed. The additional works will also allow Waste Classification of soils to be confirmed.

4.3 Hazardous Building Material Survey – Kambala Sports Precinct (JBS&G 2020b)

JBS&G conducted a hazardous building materials survey (HBMS) at the site.

The scope of the HBMS was limited to the northern portion of the Hawthorne Building and the structures on the sports field, that are proposed to be demolished to facilitate the Sports Precinct redevelopment. No other areas of Kambala School were surveyed as part of this HBMS.

The structures were inspected for the following hazardous materials:

- ACMs;
- Asbestos containing dust (ACD);
- Lead based paints (LP);
- Lead containing dust (LCD)
- Synthetic mineral fibres (SMF); and
- PCB.

Based on the assessment completed the following conclusions were made:

Asbestos Containing Materials

Suspected non-friable ACM were identified at the site. Prior to the demolition of the structures it was recommended that the following work are undertaken:

- A Class A or B licensed asbestos removalist shall be engaged to remove all asbestos
 containing materials as identified in the Hazardous Materials Register included in JBS&G
 (2020b). Removal and disposal of non-friable asbestos materials shall be undertaken in
 accordance with the Work Health and Safety Act (2011), Work Health and Safety
 Regulation (2017) and SafeWork NSW How to Safety Remove asbestos (2019).
- While not mandatory during the removal of non-friable ACM, it is considered best practice
 and recommended that asbestos air monitoring is undertaken during any non-friable
 asbestos removal works.

Following removal works, a clearance inspection shall be completed by a competent person or Licensed Asbestos Assessor (LAA) to ensure that the asbestos materials identified at the site have been removed to a satisfactory standard. Following the completion of the clearance inspection, a clearance certificate shall be issued by the competent person or LAA to confirm that the ACM has been successfully removed and that the site is suitable for planned demolition works to commence.

Lead Containing Dust

Levels of lead in dust were identified slightly above the adopted site criteria within the roof void of the Hawthorne Building. A conservative approach was recommended to be implemented to manage this identified hazard during demolition and refurbishment works.

A suitably experienced hazardous materials removal contractor should be engaged to remove the lead containing dust prior to demolition. Lead dust waste removed from education facilities is preclassified as GSW (non-putrescible) in accordance with the EPA (2014) *Waste Classification Guidelines – Part 1: Classifying Waste.*

The roof void should remain restricted from general access until the lead dust hazard is removed.

Should the lead containing dust remain on site for an extended period of time, a lead management plan or similar should be prepared detailing the procedures and requirements to reduce the potential for lead dust exposure if site workers are required to access the hazardous area.

Lead Based Paints

Lead based paints identified in the Hazardous Materials Register should be managed in accordance with the AS4361.2-2017. If peeling or deteriorated they should be removed under controlled conditions by an experienced contractor prior to demolition. Stable lead based paints adhered to building fabric can be removed as GSW provided care is taken to minimise any potential for paint flakes to be dispersed onto ground surfaces.

Any lead paint waste removed from an education facility is pre-classified as GSW (non-putrescible) (EPA 2014).

Polychlorinated Biphenyls

No PCB materials were identified at the time of inspection.

Synthetic Mineral Fibres

SMF encountered during the inspection were generally contained and deemed to be low risk, and can be removed with the building and demolition waste with care taken not to generate fibres. Appropriate PPE was recommended including the use of P2 respirator as minimum and appropriate removal methodology as outlined in [NOHSC: 1004(1990)] and [NOHSC: 2006(1990)].

Inaccessible Areas

Areas inaccessible during the HBMS should be inspected by a suitably qualified competent person prior to any works commencing. Suspected ACM should be sampled by a suitably qualified competent person prior to any works commencing.

Unexpected Finds

Any materials deemed to be consistent with those detailed in the Hazardous Materials Register that have not been previously identified should be assumed to have the same content and be treated accordingly.

Should any additional suspected hazardous materials be observed during or prior to demolition works, works should cease until a suitably qualified occupational hygienist can assess the suspected hazardous material and provide appropriate recommendations for management and/or removal.

5. Conceptual Site Model

Based on the desktop review and observations from the site inspection, the following conceptual site model (CSM) has been developed for the site.

5.1 Potential Areas of Environmental Concern

Based on the objectives of the assessment, desktop review and observations made during the site inspection, AECs and COPCs have been identified and are presented in **Table 5.1**.

Table 5.1 Areas of Environmental Concern and Associated Contaminants of Potential Concern

Area of Environmental Concern (AEC)	Contaminants of Potential Concern (COPCs)	
In situ Fill materials within the sports field	Heavy metals, TRH/BTEX, PAHs, OCPs, PCBs and Asbestos	
Building Footprints	Heavy metals, TRH/BTEX, PAHs, OCPs, PCBs and Asbestos	
Garden embankment landscaped materials	Heavy metals, TRH/BTEX, PAHs, OCPs, PCBs and Asbestos	
Pumping station and associated storage of chemicals	Heavy metals, TRH/BTEX, PAHs, OCPs, PCBs and Asbestos	
for ground maintenance equipment		

5.2 Potentially Contaminated Media and Migration

Each of the AECs and corresponding COPCs identified in **Table 5.1** have the potential to impact soil, groundwater and/or soil vapour underlying the site.

The highest contamination risk at the site are considered to be within fill materials of unknown origin historically used to construct the sports field and surrounding embankments. Fill materials were identified as variable in depth. Fill was considerately deeper on the south-western side of the sports field where it was encountered at a depth of up to 5.2 m below the surface. The depth of fill within the embankment was generally observed from the surface to between 0.2 and 0.9 m bgs.

Fill materials have been identified as impacted with B(a)P TEQ, heavy metals and TRH. Impacts identified within fill materials in the eastern embankment are considered to be associated with gardening blends. Impacted fill materials within the south-eastern end of the sports field, were generally encountered at depths between 1.5 and 3.5 m below the surface.

Fill materials within the remaining areas of the site were generally free of chemical contamination based on the investigations completed. Two fragments of non-friable ACM were observed on the surface at the north-western site boundary and in the vicinity of HA11 and HA12.

Natural materials underlying fill materials were observed to comprise sandstone and silty sand soils at depths varying between 0.9 m and more than 5.2 m bgs. Sampling of natural materials did not identify any contamination. Additionally, leachate testing suggests that contaminants within fill soil are unlikely to be leachable and therefore migration of contaminants from fill soils and into other media is considered unlikely. Natural materials underlying the site are not considered a contaminated media and can potentially be characterised as VENM subject to confirmation inspection and sampling by an environmental consultant during earthworks,

Groundwater was not encountered during the investigations conducted. Based on the anticipated depth to groundwater at the site, between 7 and 10 m bgs, and noting the non-mobile and non-leachable contaminant concentrations identified within fill soils, groundwater is not considered to be a contaminated media at the site. It is further noted that given the urban setting of the site, groundwater is unlikely to be used as a resource anyway.

Potential groundwater impact from the UST identified south of the site has been ruled out given its distance from the site and given its downgradient position from the site.

5.3 Potential for Migration from Site

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (stockpiled materials, surface soils around the site or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants of concern identified from the investigation works are mostly limited to solids and non-mobile contaminants including asbestos (non-friable), anthropogenic materials, heavy metals, and B(a)P. Further to this leachability of heavy metals and B(a)P were confirmed to be non-leachable through TCLP analysis. As such, contaminants within fill soils are considered unlikely to migrate offsite.

The ground surface of the site is well vegetated and/or maintained or covered in handstand. As such, there is a low potential for windblown contaminants to migrate from the site.

5.4 Receptors

Potential receptors of environmental impact present within the site include:

- Future commercial/industrial workers and school students and staff who may potentially be exposed to COPCs through direct contact with impacted soils and/or ingestion and/or inhalation of dusts / fibres associated with impacted soils; and/or
- Excavation / construction / maintenance workers conducting activities at or in the vicinity of
 the site, who may potentially be exposed to COPCs through direct contact with impacted
 soils present within excavations and/or inhalation of dusts / fibres associated with impacted
 soils.

5.5 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that results in the preferential migration of COPCs as either liquids or gases.

Man-made preferential pathways may be present at the site, generally associated with fill materials at near surface depths. Fill materials are anticipated to have a higher permeability than the underlying natural soil and/or bedrock.

6. Sampling and Analysis Plan

6.1 Data Quality Objectives

Data quality objectives (DQOs) are statements that define the confidence required in conclusions drawn for data produced for a project, and which must be set to realistically define and measure the quality of data needed.

DQOs were developed for the investigation, as discussed in the following sections.

6.1.1 State the Problem

Due to potential contamination issues identified in the PSI (JBS&G 2020a), a detailed assessment of the site including sampling and analytical program is required to confirm the extent of the preliminary findings. The DSI will draw conclusions regarding the suitability of the site for the proposed use, and make recommendation for required management procedures if necessary.

6.1.2 Identify the Decision

Based on the decision-making process for assessing urban redevelopment sites detailed in EPA (2017), modified to meet the specific project objectives, the following decisions must be made:

- Have soils been characterised to an extent where suitable conclusions can be drawn regarding the suitability of the site in accordance with SEPP 55 Guidelines?
- Has comprehensive inspection of fill materials been conducted including within areas not characterised in the PSI (JBS&G 2020a)?
- Based on the works completed are there any unacceptable risks to likely future onsite receptors from impacted soils during development?
- Are there any aesthetic concerns in fill soils present at the site?
- Is there any evidence of, or potential for, migration of contaminants off-site?
- Is the site suitable for the proposed use?

6.1.3 Identify Inputs to the Decision

Inputs to the decisions are:

- Review of previous reports;
- Historical site aerials showing detail to any activities occurring on site;
- Environmental data and site observations compiled during the investigation;
- Assessment criteria to be achieved on the site as based on the intended land use and project
 objectives, as defined by assessment criteria nominated in Section 7; and
- Confirmation that data generated by sampling and analysis are of an acceptable quality to allow reliable comparison to assessment criteria as undertaken by assessment of quality assurance / quality control (QA/QC) as per the data quality indicators (DQIs) established in Section 6.1.6.

6.1.4 Define the Study Boundaries

The approximate study boundaries are limited to the boundary as shown on **Figure 2**. The sports precinct redevelopment is understood to include the current tennis courts, sports fields and the northern portion of the Hawthorn building.

The vertical extent of the investigation was up to 5.2 m below the ground surface and into natural soils where possible.

Due to the project objectives, seasonality will not be assessed as part of this investigation. Data will therefore be representative of the timing and duration of the current investigation.

6.1.5 Develop a Decision Rule

Laboratory analytical data will be assessed against EPA endorsed criteria as identified in **Section 7**.

The decision rules adopted to answer the decisions identified in **Section 6.1.2** are summarised in **Table 6.1**.

Table 6.1 Summary of Decision Rules

De	cision Required to be made	Decision Rule
1.	Have soils been characterised to an extent where suitable conclusions can be drawn regarding the suitability of the site in accordance with SEPP 55 Guidelines?	Has sufficient investigation occurred to satisfy NSW EPA Sampling Design Guidelines for the site? Has characterisation sampling been conducted throughout the site including delineation of the depth of fill soils and targeting of potential areas of environmental concern identified in the PSI? If the answer to any of the questions above is No the decision is No. otherwise the answer is Yes
2.	Has comprehensive inspection of fill materials been conducted including within areas not characterised in the PSI (JBS&G 2020a)?	Have locations been targeted towards areas not previously characterised? And, have fill soils within the sports field been thoroughly inspected via the testpit method? If the answer to any of the questions above is No the decision is No. otherwise the answer is Yes
3.	Based on the works completed are there any unacceptable risks to likely future onsite receptors from impacted soils during development?	The nature and extent of soil impacts will be assessed, and soil analytical data will be compared against EPA endorsed criteria. Statistical analyses of the data in accordance with relevant guidance documents will be undertaken, if appropriate, to facilitate the decisions. The following statistical criteria will be adopted with respect to soils: Either: the reported concentrations are all below the site criteria; Or: the average site concentration for each analyte must be below the adopted site criterion; no single analyte concentration exceeds 250% of the adopted site criterion; and the standard deviation of the results must be less than 50% of the site criteria. And: the 95% upper confidence limit (UCL ⁷) of the average concentration for each analyte must be below the adopted site criterion. If the statistical criteria stated above are satisfied, and an assessment of risk indicates no unacceptable risks, the decision is No. Otherwise, the decision is Yes.
4.	Are there any aesthetics issues in fill soils at the site?	If there are any unacceptable odours, anthropogenic materials or staining the answer to the decision is Yes. Otherwise, the answer to the decision is No.
5.	Is there any evidence of, or potential for, migration of contaminants off-site?	Are contaminants present within natural soils at concentrations exceeding EPA endorsed criteria, or do leachable concentrations within fill soils suggest migration is occurring? If yes, and the constituents are further found to be leachable by an assessment of physical properties the answer to the decision is Yes. Otherwise, the answer to the decision is No.
6.	Is the site suitable for the proposed use?	Is the answer to any of the above decisions Yes? If yes, recommendations for management requirements and/or a remedial action plan (RAP) will be provided in order to make the site suitable. If no, the site will be declared suitable.

Statistical analyses of the data will be undertaken, if required, in accordance with relevant guidance documents. The following statistical criteria shall be adopted:

• The 95% upper confidence limit (UCL) on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;

_

⁷ Sampling Design Guidelines (NSW EPA, 1995).

- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results must be less than 50% of the criterion.

6.1.6 Specify Limits of Decision Error

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, NEPC (2013), appropriate data quality indicators (DQIs) used to assess QA/QC, and standard JBS&G's procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for completeness, comparability, representativeness, precision and accuracy. The acceptable limit on decision error is 95% compliance with DQIs.

The pre-determined DQIs established for the project are discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters), and are shown in **Table 6.2**.

- Precision measures the reproducibility of measurements under a given set of conditions.
 The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data
 that are generated during this study is a measure of the closeness of the analytical results
 obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical
 results of laboratory control samples, laboratory spikes and analyses against reference
 standards.
- Representativeness expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition.
 Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- **Sensitivity** is the ability for laboratory methods to reliably measure and detect concentrations in the analytical process.

If any of the DQIs are not met, further assessment will be necessary to determine whether the non-conformance will significantly affect the usefulness of the data. Corrective actions may include requesting further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of the data.

Table 6.2 Summary of Quality Assurance / Quality Control Program

Table 6.2 Summary of Quality Assurance / Quality Cont		
Data Quality Objective	Frequency	Data Quality Indicator
Precision		
Blind duplicates (intra laboratory)	1 / 20 samples	<50% RPD1
Blind duplicates (inter laboratory)	1 / 20 samples	<50% RPD1
Accuracy		
Surrogate spikes	All organic samples	70-130%
Laboratory control samples	1 per lab batch	70-130%
Matrix spikes	1 per lab batch	70-130%
Representativeness		
Sampling appropriate for media and analytes		-
Samples extracted and analysed within holding times.	-	organics (14 days),
		inorganics (6 months)
Trip spike (for volatiles)	1 per sampling	70-130% recovery
	event when	·
	sampling for volatile	
	or semi-volatile	
	COPC	
Trip blank	1 per sampling	<lor< td=""></lor<>
'	event for ambient	
	air sampling	
Rinsate	1 per sampling	<lor< td=""></lor<>
	event where	
	reusable sampling	
	equipment used	
Comparability	equipment used	
Standard operating procedures for sample collection & handling	All Samples	All samples
Standard analytical methods used for all analyses	All Samples	All samples
Consistent field conditions, sampling staff and laboratory analysis	All Samples	All samples
Limits of reporting appropriate and consistent	All Samples	All samples
Completeness	All Salliples	All samples
Sample description and COCs completed and appropriate	All Samples	All samples
	All Samples	All samples
Appropriate documentation	•	All samples
Satisfactory frequency and result for QC samples	All QA/QC samples	Critical camples velid
Data from critical samples is considered valid	-	Critical samples valid
Sensitivity	All some	All samuels
Satisfactory laboratory detection limits to identify potential	All samples	All samples
contaminants of concern within the criteria values adopted		

^{1.} Relative per cent difference

6.1.7 Optimise the Design for Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in EPA (1995⁸), including judgemental, random, systematic and stratified sampling patterns. Random sampling is not appropriate based on the areas of environmental concern identified in previous investigation and the site inspection.

A soil sampling program targeting areas not characterised in the PSI was completed. This including characterising additional areas as follows:

- Additional characterisation of embankment areas at seven locations using hand tools;
- Delineation of the depth of fill at 5 additional locations within the sports field using a drill rig;
 and
- Completion of comprehensive inspection of fill soils using a backhoe at an additional 8 locations within the sports field.

⁸ Sampling Design Guidelines. NSW EPA. September 1995. (EPA 1995)

The total locations completed inclusive of this assessments and the previous assessment (JBS&G 2020a) have met the minimum number of samples suggested consistent with the guidance in EPA (1995) sampling design guidelines.

6.2 Sampling Plan

6.2.1 Soil Investigation

A total of twenty targeted and systematic soil sampling locations were conducted throughout accessible portions of the site, (BH11 to BH16, HA06 to HA12 and TP1 to TP8). Of these locations, six (BH11 to BH16) were conducted using a drill rig to recover soils via boreholes, seven (HA06 to HA12) were conducted using hand tools and eight (TP1 to TP8) were conducted using a backhoe. The soil sampling locations are provided on **Figure 3**.

Soil samples (1 x 250 mL jar and 500 mL asbestos bags where required) were collected from each location at regular intervals throughout the soil profile consisting of a location from the surface (0-0.1 m) and approximate 0.5 m depth intervals throughout the profile and into underlying natural soils or prior refusal.

During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indicators of contamination were noted if observed. Inspection of the material for visible ACM was also conducted. Identification of fill materials and underlying natural soils where encountered, including associated depths, was also recorded. Soil descriptions and observations are presented on logs provided in **Appendix A**.

Soil samples were screened on site during works using a PID to assess the potential presence of VOCs. Samples obtained for PID screening were placed in a sealed plastic bag for a period of approximately 5 minutes to equilibrate, prior to the PID being attached to the bag. Readings were then monitored for a period of approximately 1 minute or until values stabilised and the stabilised/highest reading was recorded on the test pit logs. Calibration records for the PID are provided in **Appendix B**. PID readings included on the borehole logs provided in **Appendix B**.

Collected samples were immediately transferred to laboratory supplied sample jars. The sample jars were then transferred to a chilled ice box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Samples were analysed as per **Table 6.3** below.

6.3 Duplicate and Triplicate Sample Preparation

Duplicate and triplicate samples were obtained during the field works. The collected samples were divided laterally into three samples with minimal disturbance to reduce the potential for loss of volatiles and placed in three clean glass jars and sample bags as appropriate. Each sample was then labelled with a primary, duplicate or triplicate sample identification before being placed in the same chilled esky for laboratory transport.

6.4 Laboratory Analysis

JBS&G contracted Eurofins MGT as the primary laboratory and Envirolab Services as the secondary laboratory, both laboratories are NATA accredited for the required analyses. In addition, the laboratories were required to meet JBS&G's internal Quality Assurance requirements. The analytical schedule completed is provided in **Table 6.3** below.

Table 6.3 - Sampling and Analytical Program

Item	No. of sampling Locations	Analyses (excl QA/QC)
Boreholes	5 sampling locations	Heavy metals – 22 Samples
		TRH/BTEX – 18 Samples
		PAH – 15 samples
		PCBs – 2 Samples
		OCPs – 2 Samples
		Asbestos – 13 samples (500 mL per NEPC 2013)
		TCLP PAHs – 1 sample
		TCLP lead - 1 samples
Handaugers	7 sampling locations	Heavy metals – 17 Samples
		TRH/BTEX – 15 Samples
		PAH – 12 samples
		PCBs – 3 Samples
		OCPs –3 Samples
		Asbestos – 12 samples (500 mL per NEPC 2013)
		Asbestos ID – 2 samples
		Silica gel TRH – 1 sample
		TCLP lead - 2 samples
		TCLP PAHs – 3 sample
Testpits	8 sampling locations	Heavy metals – 11 Samples
		TRH/BTEX – 8 Samples
		PAH – 9 samples
		PCBs – 1 Samples
		OCPs –1 Samples
		Asbestos – 8 samples (500 mL per NEPC 2013)
		Silica gel TRH – 1 sample
		TCLP PAHs – 1 sample
		EC, pH and Clay % - 2 samples

7. Assessment Criteria

7.1 Regulatory Technical Guidelines

The investigation was undertaken with consideration to aspects of the following guidelines and technical documents, as relevant:

- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995);
- Waste Classification Guidelines, NSW EPA, November 2014 (EPA 2014).
- Guidelines for the Assessment Remediation and Management of Asbestos-Contaminated Sites in Western Australia, May 2009. Western Australia Department of Health 2009 (WA DOH 2009);
- Managing Land Contamination Planning Guidelines SEPP 55 Remediation of Land, NSW EPA and Department of Urban Affairs and Planning (DUAP 1998)
- Contaminated Land Management: Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 2020 (EPA 2020);
- National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council, 2013 (NEPC 2013); and
- Contaminated Land Management Guidelines for the NSW Site Auditor Scheme (3rd Edition) October 2017 NSW EPA 2017.

7.2 Soil Criteria

While the site subject to investigation herein currently includes grass playing fields, the proposed development will include synthetic playing fields over indoor courts, general and common learning areas and staff area consistent with a school. The sporting facilities will be utilised by both primary and secondary school children. NEPC (2013) indicates that investigation levels for the more sensitive land use on a site should be adopted. Under NEPC (2013) guidance, primary school is a more sensitive land use than secondary school and playing fields.

Based on the proposed ongoing use of the site as a Primary and Secondary School, concentrations of contaminants were compared against NEPC (2013) health based investigation (HILs), health screening levels (HSLs), ecological investigation levels (EILs, generic) and ecological screening levels (ESLs) for the most sensitive land use scenario of residential with gardens/accessible soils, which includes child care centres, preschools and primary schools.

This land use scenario has been chosen under the notion that the school grounds include primary school students who will use the sporting fields. Detail on the adopted criteria is provided below:

- HIL/ HSL A residential with garden/accessible soil which includes childcare centres, preschools and primary schools; and
- EILs/ESLs urban residential/public open space.

Site derived ecological criteria was calculated using ecological parameters for electrical conductivity, pH and clay % from samples TP4_1.0-1.5 and TP7_0.6-0.7. Ecological parameters reported were very low in terms of pH, EC and Clay %, as such the most conservative of the NEPC (2013) EILs have been adopted. Site derived EILs are provided in **Table A**.

The results of asbestos observations and analysis was assessed in general accordance with NEPC (2013) and WA DOH (2009) guidance.

Adopted soil criteria for the site are included on **Table A** and **Table B**.

7.3 Off-site Waste Disposal Criteria

Based on the understanding that materials may be excavated and disposed of offsite to facilitate the proposed development works, concentrations of reported chemicals and other attributes were compared against criteria in NSW EPA (2014) Waste Classification Guidelines (EPA 2014) to provide an indication of the waste type for fill materials for offsite disposal.

Natural Materials underlying fill were assessed for VENM as defined in EPA (2014) guidelines.

The criteria adopted for the assessment are shown in the summary results tables presented as **Table C**, Waste Classification (EPA 2014) leachable concentrations are provided on **Table D**.

8. Quality Assurance Quality Control

A single set of field duplicate and triplicate samples were collected and analysed for heavy metals, TRH/BTEX, PAHs, PCBs, OCPs and asbestos during the investigation. The reported concentrations were found to be in agreement with the primary sample result. Furthermore, appropriate indicators of data quality and standard JBS&G procedures for field sampling and handling were undertaken. Full QA/QC results are provided in **Appendix C**.

9. Results

9.1 Field Observations

JBS&G conducted a detailed inspection and soil sampling on 7th, 20th and 21st of April 2020 in addition to site inspection works conducted as part of the PSI (JBS&G 2020a). During sampling works, fill materials were identified from the surface to depths varying between 0.5 m and 5.2 m bgs. Depths of fill were generally observed to be deepest in the south and south-eastern end of the sports field where a maximum fill depth of 5.2 m bgs was reported at BH07. Fill was not as deep within the embankments, fill in these areas was reported between 0.6 and 1.0 m bgs. Logs for intrusive investigation locations conducted are provided in **Appendix A**.

Fill materials were observed as slightly different between the sports field and the embankment. Fill within the sports field area comprised of brown, brown-yellow and grey sands and silty sands with occasional inclusions of grass and rootlets. Fill was observed from the surface to depths of between 0.5 m at TP8 to at least 5.2 m below the surface at BH07. Fill towards the surface of the sports field mostly comprised consistent sand with few inclusions. In deeper fill areas to the south-east darker coloured material with inclusions of coarse gravels, glass and plastic was observed. No staining or odours were observed in fill materials.

Fill within the embankments of the northern and eastern boundaries was observed to comprise sandy soils blended with organic materials such as foliage and potting mixes. Fill within these areas was also observed to include inclusions of geofabric and rootlets. No staining or odours were observed in fill materials.

Natural materials were observed to comprise brown/yellow sand and sandstone beneath fill materials within the embankment and beneath fill within the sports field.

Two isolated fragments of ACM were identified at locations HA11 and HA12 within a narrow garden strip north of the tennis courts and on the north-western boundary of the site as shown on **Figure 4**. The fragments potentially were discarded into the garden over the site fence, the fragments were collected and submitted for laboratory confirmation analysis. No further fragments including no ACM observed in fill material was identified at the site.

9.2 Analytical Results

Summary soil analytical results for soil analysis, is provided in **Table A** and **Table B**. Laboratory reports and chain of custody documentation is provided in **Appendix D**. Locations where reported concentrations exceed health-based assessment criteria are shown on **Figure 4**.

9.2.1 Heavy metals

Heavy metals concentrations were all reported at concentrations below the adopted health health-based criteria adopted with the following exception:

• Lead at location BH12 3.0-3.5 with a reported concentration of 600 mg/kg which exceeds the human health criteria adopted.

The majority of heavy metal concentrations were also reported below the ecological based criteria adopted with the following exceptions:

- Zinc at locations HA01 to HA03, HA06 to HA12 including QA20200407-1 and BH04_0-0.1, BH12 3.0-3.5 and TP2_1.5-2.0 with reported concentrations between 67 and 1000 mg/kg; and
- Copper at locations HA07 0.2-0.3 and QA20200407-1 with reported concentrations of 65 and 60 mg/kg respectively.

9.2.2 PAHs

PAHs concentrations were reported below the adopted human health based criteria with the following exceptions:

- B(a)P TEQ and Total PAHs at location HA01_0-0.1 with reported concentrations of 32.97 mg/kg and 402 mg/kg respectively;
- B(a)P TEQ at location HA01_0.9-1.0 with a reported concentration of 13.45 mg/kg;
- B(a)P TEQ at location HA02_0-0.1 with a reported concentration of 5.81 mg/kg;
- B(a)P TEQ at location BH07_1.5-1.6 with a reported concentration of 24.67 mg/kg;
- B(a)P TEQ at location BH12_2.5-3.0 and BH12_3.0-3.5 with reported concentrations of 18.51 and 4.522 mg/kg respectively;
- B(a)P TEQ at location HA06 0-0.1 including QA20200407-1 and QC 20200407-1 with reported concentrations of 19.28 mg/kg, <12.1 and 4.398 respectively;
- B(a)P TEQ at location HA07 0.2-0.3 with a reported concentration of 3.298 mg/kg;
- B(a)P TEQ at location HA08 0.2-0.3 with a reported concentration of 8.848 mg/kg; and
- B(a)P TEQ at location TP2 1.5-2.0 with a reported concentration of 16.6 mg/kg;

Concentrations of PAHs were reported at concentrations below the adopted ecological based criteria adopted with the following exceptions:

- B(a)P at location HA01, including HA01_0-0.1, QC-01, QA-01, and HA01_0.9-1.0 with reported concentrations of 23.0 mg/kg 4.8 mg/kg, 4.8 mg/kg and 9.0 mg/kg respectively;
- B(a)P at location HA02_0-0.1 with a reported concentration of 3.9 mg/kg;
- B(a)P at location HA03 0-0.1 with a reported concentration of 0.8 mg/kg;
- B(a)P at locations BH07_1.5-1.6 and BH07_4.0-4.1 with reported concentrations of 18.0 and 0.8 mg/kg respectively;
- B(a)P at location BH12_2.5-3.0 and BH12_3.0-3.5 with reported concentrations of 12.0 and 3.0 mg/kg respectively;
- B(a)P at location HA06 0-0.1 including QA20200407-1 and QC20200407-1 with reported concentrations of 13.0, <5 and 3.2 mg/kg respectively;
- B(a)P at location HA07 0.2-0.3 with a reported concentration of 2.3 mg/kg;
- B(a)P at location HA08 0.2-0.3 with a reported concentration of 5.6 mg/kg;
- B(a)P at location HA09 0-0.1 with a reported concentration of 0.7 mg/kg;
- B(a)P at location HA11 0.4-0.5 with a reported concentration of 0.7 mg/kg;
- B(a)P at location HA12 0-0.1 with a reported concentration of 0.7 mg/kg; and
- B(a)P at location TP2 1.5-2.0 with a reported concentration of 11.0 mg/kg;

The reported concentrations were noted mostly within the garden embankment and may be associated with landscaped garden mixes.

Elevated B(a)P concentrations reported in the southern portion of the sports field are generally at depth (e.g. BH07 1.5-1.6m, BH12 2.5-3.5m, TP2 1.5-2m).

9.2.3 TRH/BTEX

Concentrations of TRH and BTEX were reported at concentrations below the adopted health based and ecological based criteria adopted with the following exceptions where TRH C_{16} - C_{34} exceeded the adopted ecological criterion of 300 mg/kg:

- TRH C₁₆-C₃₄ in sample HA01_0-0.1 including QC01 and QA01 with reported concentrations
 of 1700 mg/kg, 510 mg/kg and 420 mg/kg respectively;
- TRH C₁₆-C₃₄ (460 mg/kg) in sample HA02_0.4-0.5;
- TRH C₁₆-C₃₄ (500 mg/kg) in sample HA03_0-0.1;
- TRH C₁₆-C₃₄ (1000 mg/kg) in sample HA06 0-0.1;
- TRH C_{16} - C_{34} (460 mg/kg) in sample HA07 0.2-0.3;
- TRH C₁₆-C₃₄ (580 mg/kg) in sample HA08 0.2-0.3;
- TRH C₁₆-C₃₄ (360 mg/kg) in sample HA09 0-0.1; and
- TRH C_{16} - C_{34} (460 mg/kg) in sample TP2_1.5-2.0;

It is noted that detectable concentrations of TRH fractions C_{34} - C_{40} and C_{16} - C_{34} were reported at concentrations below the health and ecological criteria adopted. Detectable concentrations of BTEX as Ethylbenzene and Total Xylenes were also identified within a number of samples analysed, albeit at concentrations below the health and ecological criteria adopted.

The identified TRH and BTEX concentrations are considered likely to be associated with organic material in garden mixes, fertilizers etc, which have been used. It is noted, TRH and BTEX was not detected within the sports field area with the exception of location TP2 1.5-2.0.

9.2.3.1 TRH Silica Gel

Based on the reported TRH concentrations identified in **Section 9.2.3**, TRH analysis following Silica gel 'clean-up' was run on samples TP2 1.5-2.0, BH12 3.0-3.5 and HA06 0-0.1.

All TRH silica gel samples analysed reported concentrations below the laboratory limits of reporting with the exception of location TP2_1.5-2.0 which reported TRH C_{16} - C_{34} at a concentration of 250 mg/kg.

TRH concentrations including concentrations following silica gel 'clean up' suggests soils at BH12_3.0-3.5 were entirely organic. Soils at location TP2_1.5-2.0 may have been associated with some minor petroleum hydrocarbons in fill, but at low concentrations and at a depth unlikely to impact ecological receptors.

TRH concentrations at HA06_0-0.1 are also considered to be organic and associated with mulches and decomposing vegetations. It is further noted that the result of HA06 is considered to be representative of all eastern embankment areas which reported elevated TRH concentrations and were observed to include vegetation and mulches.

9.2.4 OCPs/PCBs

OCPs and PCBs concentrations were reported below the laboratory limit of reporting in all samples analysed.

9.2.5 Asbestos

Asbestos analytical results for soil samples and material samples analysed during the investigation is provided in **Table B**.

No asbestos in the form of Asbestos Fines (AF)/Fibrous Asbestos (FA) was detected in soil samples analysed.

As noted in **Section 9.1,** two isolated fragments of ACM were identified within surface soils at locations HA11 and HA12 in the north-western boundary of the site. Both fragments were collected and sent to the laboratory for confirmation analysis. Both samples, FRAG-01 and FRAG-02 were reported as containing chrysotile and amosite asbestos within a fibre cement sheet fragment.

9.3 Contaminant Leachability

The highest concentrations of PAHs, B(a)P and Lead were submitted for additional TCLP testing. The testing was primarily conducted to allow preliminary assessment of waste classification, but can also be used to assess the potential for the identified contamination concentrations to leach through the soil profile and potentially migrate into other media such as groundwater below. The soil leachate analytical results are provided in **Table D**.

TCLP was conducted on samples BH12 3.0-3.5, HA01 0-0.1 and HA02 0-0.1 for lead. The reported results demonstrated that the lead would leach at minor concentrations under conservative acidic TCLP leaching conditions. The reported concentrations were 0.13 mg/L, 0.07 mg/L and 0.03 mg/L respectively.

TCLP was conducted on samples BH07 4.0-4.1, HA01 0-0.1, HA06 0-0.1, HA08 0.2-0.3 and TP2 1.5-2.0 for PAHs. The reported leachable concentrations were all below the laboratory limit of reporting suggesting that leaching of PAHs was not likely to occur at the site, consistent with the PAHs being associated with ash in fill, in which PAHs are bound into the ash through the combustion process.

9.4 Preliminary Waste Classification

A summary of waste classification of soils characterised at the site including comparison with *Waste Classification Guidelines* (EPA 2014), adoption of TCLP leachate testing is provided below. Comparison of soil analytical results with NSW EPA (2014) Waste classification guideline is provided on **Table C** and **Table D**.

- Concentrations of lead were reported above the NSW EPA 2014 General Solid Waste contaminant threshold (CT1) (without TCLP) at a number of locations. As such TCLP analysis was conducted on samples HA01_0-0.1, HA02_0-0.1 and BH12_3.0-3.5. Following TCLP analyses, low leachable concentrations of Lead, 0.07 mg/L in HA01_0-0.1, 0.03 mg/L in HA02_0-0.1 and 0.13 mg/L in BH12_3.0-3.5, were reported below NSW EPA (2014) allowable TCLP leachable concentrations for General Solid Waste (TCLP1). All lead concentrations in soil were below the Specific Contaminant concentration for General Solid Waste (SCC) for comparison when TCLP is undertaken. TCLP analyte concentrations are provided on Table D. As such total and leachable lead concentrations are below General Solid Waste criteria SCC1 and TCLP1 respectively.
- Concentrations of PAHs including B(a)P and total PAHs were identified above NSW EPA 2014 General Solid Waste contaminant thresholds (CT1) (without TCLP tests) at a number of locations. TCLP analysis for PAHs was conducted on samples BH07_4.0-4.1, TP2_1.5-2.0, HA06 0-0.1, HA08_0.2-0.3 and HA01_0-0.1 to confirm if leachable concentrations are within the allowable limits for GSW. The TCLP leachable concentrations reported were all below the laboratory limits of reporting and within the allowable concentrations for GSW. As such, with the exception of HA01_0-0.1, BH07_1.5-1.6, BH12_2.5-3.0, HA06 0-0.1 and TP2_1.5-2.0 which contained B(a)P contaminant concentrations above the specific contaminant concentration for GSW (SCC1), soils fall within the allowable concentrations for General Solid waste for PAHs. TCLP analyte concentrations are provided on Table D.

Statistical analysis on B(a)P concentrations within each of the fill types, the sports field and the embankment, was calculated including 95% upper confidence limit (UCL) as recommended in EPA (2014). Following statistical analysis it was confirmed that the

average concentrations and 95% UCL of B(a)P within each of the fill types is below the SCC1 value for GSW. Results of statistical analysis are provided in **Appendix E** and discussed below:

Sports field

- Mean 1.916, maximum concentration 18 mg/kg, standard deviation 4.492, 95% UCL 3.421.
- Mean and 95% UCL for these materials are within the SCC1 contaminant threshold for GSW.

Embankments

- Mean 4.222, maximum concentration 23 mg/kg, standard deviation 2.815, 95% UCL
 6.607
- Mean and 95% UCL for these materials are within the SCC1 contaminant threshold for GSW.

Based on comparison of soil analytical results with NSW EPA (2014) waste classification guidelines, soils either fall within the CT1 thresholds or fall within the TCLP1 and SCC1 thresholds following confirmation of TCLP testing and following calculation of mean and 95% UCL.

Based on the sample results from natural materials, it is considered that natural sand soils
and sandstone materials encountered beneath the fill are consist with the classification of
VENM as defined in the NSW EPA (2014).

Based on the results of the assessment including TCLP analysis and 95% UCLs, it is considered that fill materials within the sports field and within the embankment are likely to fall within the General Solid Waste (non-putrescible) category.

Should asbestos be encountered material would also require classification as Special (Asbestos) Waste.

Waste classification should be confirmed prior to offsite disposal if required.

10. Site Characterisation

10.1 Have soils been characterised to an extent where suitable conclusions can be drawn regarding the suitability of the site in accordance with SEPP 55 Guidelines?

The additional works completed in this DSI has characterised the site with an appropriate sampling density to meet the requirements of the NSW EPA Sampling Design Guidelines (EPA 1994). Additionally, sampling has been completed within additional areas not characterised in the PSI, including delineation of the depth of fill materials and underlying natural materials.

Based on the works conducted the site has been suitably characterised to make decisions regarding site suitability in accordance with SEPP 55 Guidelines.

10.2 Has comprehensive inspection of fill materials been conducted?

The investigation completed included comprehensive surface inspection and comprehensive inspection of soils recovered through borehole, hand tools and testpit methods. Of particular note, characterisation of soils within the sports field using testpits allowed for thorough inspection of soils at each investigation location.

Based on the inspections conducted, soils have generally been observed to be free of significant anthropogenic impacts such as inclusions of large amounts of rubble, and free of aesthetic issues such as stained of odorous soils. It was noted that two fragments of ACM were identified at locations HA11 and HA12 on the north-western boundary of the site.

Based on the assessment completed and limitations associated with investigation of subsurface environments, comprehensive inspection of fill materials and delineation of fill depth has occurred at the majority of investigation locations completed.

10.3 Based on the works completed are there any unacceptable risks to likely future onsite receptors from impacted soils during development?

Based on the results reported in **Section 9**, elevated lead, and PAH concentrations associated with B(a)P TEQ and Total PAHs, have been identified to exceed the adopted health-based criteria. Elevated lead was also encountered within location BH12 3.0-3.5 only.

The elevated concentrations have been delineated to the following areas:

- The eastern garden embankment adjacent with the site's eastern boundary adjacent to the bend on New South Head Road; and
- The south-eastern portion of the sports field within locations BH07, BH12 and TP2 as shown on **Figure 4**. It is further noted that impact within the sports field has been identified at a depth of 1.5 m or more from the surface.

While contaminant concentrations within these areas have been reported to present a potential health risk, it is noted that these areas are associated with minimal if any direct contact with site users as the impacted areas are located at depth below the sports field and within steep garden embankments. Further to this and with respect to the proposed redevelopment works, the following is noted:

- Concentrations present a potentially unacceptable health risk to site users through dermal
 contact and/or ingestion if soils are reused within the school grounds or within the sports
 fields and other open space areas such as gardens, particularly if they are used at or near
 the surface;
- The concentrations do not represent a potential health risk to workers (i.e. excavation and working within the impacted soils). Reduced exposure times in this scenario and added

safety measures including personal protective equipment and safe working practices mean that risk to worker exposure to soils is mitigated during excavation and redevelopment works.

While not identified in soil samples analysed, non-friable ACM was identified within surface soils at locations HA11 and HA12 within a landscaped strip behind the tennis courts and on the sites boundary with Bayview Hill Road as shown on **Figure 4**.

Potential ecological risk (to plant growth) associated with elevated lead, zinc, copper, TRH and B(a)P was identified at locations HA01 to HA03 and HA06 to HA12 within the embankment areas. Potential ecological risk was also identified within the sports field at locations BH04, BH07, BH12 and TP02. However, noting there are no ecological receptors at or nearby the site such as creeks or habitats for native flora and fauna species, protection of ecological receptors was not considered relevant for the site. Further to this, vegetation observed at the site did not appear to be stressed.

Based on the assessment conducted, no significant or gross contamination has been identified which would prevent the site from being used for its current or proposed use. However, the elevated concentrations of B(a)P TEQ, Total PAHs and lead at the locations within the eastern embankment and south-eastern sports field as shown on **Figure 4** will require management during redevelopment works. ACM identified within the north-western strip behind the tennis courts was collected and removed for laboratory testing. No further ACM was identified during the investigation, although the potential for further ACM findings in fill at the site exists.

The proposed development will result in replacement of existing playing fields with a multi-storey structure topped with synthetic playing field, effectively eliminating areas of potential soil exposure except the stone-faced and landscaped embankment areas.

10.4 Are there any aesthetic concerns in fill soils present at the site?

Based on observations made during the site inspection and during the intrusive soil sampling conducted, no staining or odours were identified. Additionally, no significant amounts of anthropogenic materials such as building rubble was observed on the surface or within fill materials.

As noted, ACM was identified at locations HA11 and HA12 as shown on **Figure 4**. The fragments were collected and removed for laboratory testing. No further ACM was identified during the investigation.

Noting removal of ACM observed, there are no aesthetic concerns within fill soils encountered at the site. However, it is recommended that an unexpected finds protocol is adopted during development works in case any visible ACM or aesthetically impacted materials are identified during earthworks.

10.5 Is there any evidence of, or potential for, migration of contaminants off-site?

Based on the investigation works conducted, migration of contaminants off-site is considered unlikely. Contaminants of concern identified at the site including lead and PAHs were confirmed as being below Waste Classification Guidelines (EPA 2014) leachable concentrations following TCLP analysis.

Additionally, TRH and PAHs identified in garden embankment areas and are considered to be sourced from organic material in garden mixes, fertilizers etc, which have low migration potential.

10.6 Is the site suitable for the proposed use?

Based on the investigation conducted no gross or significant contaminant has been identified which would prevent the site being developed for the proposed Kambala School Sports Precinct.

Identified elevated lead, B(a)P TEQ, and Total PAH concentrations identified present a potential health risk and will require management during the proposed redevelopment. Additionally, an unexpected finds protocol should be put in place during development works if any unexpected ACM or other signs of contamination are identified during works.

In order to manage the potential health risks, a remedial action plan (RAP) including unexpected find protocol is required to be prepared to make the site suitable for the proposed use.

11. Conclusions

Based on the findings of this investigation and subject to the limitations in **Section 12**, the following findings are presented:

- A comprehensive DSI has been completed to satisfy EPA endorsed guidelines and SEPP 55 planning guidelines;
- Contamination issues associated with Total PAHs and B(a)P TEQ were identified within the
 eastern garden embankment at locations HA01 to HA03 and HA06 to HA08. Elevated
 concentrations of B(a)P TEQ and lead were identified at depth within the south-eastern
 portion of the sports field at locations BH07, BH12 and TP2 also;
- Given no areas of ecological significance are located at or nearby the site, and the
 proposed redevelopment protection of ecology is not considered relevant to the site.
 Reported TRH concentrations within embankment areas are considered related to natural
 organic material in mulch/vegetation and not petroleum impact and does not pose an
 unacceptable risk; and
- Two fragments on non-friable ACM at locations HA11 and HA12 were identified and removed for testing. No other asbestos as AF/FA or visible ACM was identified at the site, however there is potential for ACM to be present in fill and other areas of the site.
- Despite the contamination issues identified, it is noted that there is no unacceptable risk
 to users of the playing field areas as the contamination in this area was at depth where
 there is no existing pathway whereby site users come into contact with these soils under
 normal surface usage. Impacted soils within the embankments are not considered to be
 regularly occupied by site users other than gardeners and/or maintenance works, and
 COPC concentrations in this area do not pose a risk under a commercial worker scenario.

Based on the conclusions present, it is considered that the site can be made suitable for the proposed redevelopment in accordance with SEPP 55 subject to preparation and implementation of a Remedial Action Plan (RAP) including an unexpected finds protocol.

12. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquiries.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.

Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.

Figures

Tables

				Heav	y Metal																	OCP													
JBS&G	inic (Total)	mium	omium (Total)	per		cury (Inorganic)	la		achlorobenzene	DDE	ų.	in + Dieldrin (Sum of Total)	a-BHC	BHC	a-Chlordane	rdane			drin	+DDE+DDD (Sum of Total)	а-ВИС	osulfan alpha	osulfan beta	osulfan sulphate	in	ma-Chlordane	rin aldehyde	rin ketone	tachlor	tachlor Epoxide	ane	hoxychlor	phene	anochlorine Pesticides EPAVic	er Organochlorine Pesticides EPAVic
	Arse	Cad	l e	9	Lead	Me .	Nick	Zinc	Ĕ	4,	Ad	Aldri	l de	beta	ab h	울		100	Diek	100	delta	Ende	End	E g	End	gam	E de	直	Hept	l e	Ë	Met	Toxa	Orga	di G
	mg/kg	g mg/k	g mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg/k	kg mg/	/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	2	0.4		5	5	0.1	5	5	0.05	0.05				0.05		0.1	0.05	0.05	0.05	0.05	0.05		0.05					0.05			0.05	0.05		0.1	
NEPM 2013 Table 1A(1) HILs Res A Soil	100	20	100	6000	300	40	400	7400	10			6				50				240					10				6			300	20		
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand																																			
0-1m																																			
1-2m	-																																		
2-4m																																			
>4m																																			
NEPM 2013 Table 1B(1-5) Generic EIL - Urban Residential and Public Open Space*	100		190	60	1100		30	70										180																	
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil 0-2 m																																			

NEPM 2013 Tab	le 1B(6) ESLs for Urban Re	s, Coarse Soil 0-2 m																																				
Field_ID	Sampled_Date-Time	Matrix_Description	Lab_Report_Number																																			
Preliminary Site	Investigation																																					
BH03_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	5.2	10	9	<0.1	<5	8.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	- '	- '	- '	-	-	-	
BH03_2.5-2.6	09-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	<5	7.4	<0.1	<5	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	[- '	- '	- '	- '	-	-	-	Т
BH04_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	6.5	5.3	<0.1	<5	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· '	-	-	-	-	-	-	\top
BH04_1.0-1.1	08-Jan-19	Borehole within Sportsfield	635079	60	<0.4	17	37	74	0.2	29	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	[- '	-	- '	- '	-	-	-	
BH06_0.3-0.4	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	8.5	30	<0.1	<5	18	I -	T -	-	-	Τ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(- '	- '	- '	- '	-	-	-	Т
BH06_3.0-3.1	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	<5	7.2	<0.1	<5	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- T	- '	-	-	-	1 -	\top
BH07_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	<5	7.2	<0.1	<5	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-	-	-	T- '	-	-	-	-	T-	-	\top
BH07_1.5-1.6	09-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	18	47	<0.1	<5	54	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	-	-	-	-	-	\top
BH07-1.5-1.6	08-Jan-19	Borehole within Sportsfield	636837		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	-	-	-	-	-	\top
BH07 4.0-4.1	09-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	<5	<5	<0.1	<5	<5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.1	1 <(
BH08_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	<5	8.8	<0.1	<5	8.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_ ·		-	-	-	-	-	\top
BH08_3.5-3.6	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	7	5.2	18	<0.1	<5	19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_ ·	-	-	-	-	-	-	\top
BH09 0-0.1	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	<5	17	9.7	<0.1	<5	25		-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-	-	-	T- '	-	-	T-	-	T -	1 -	\top
BH09 1.5-1.6	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	6.2	<5	<5	<0.1	<5	5.4		-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-	-	-	T- '	- T	-	T-	-	T -	1 -	\top
BH09 4.0-4.1	08-Jan-19	Borehole within Sportsfield	635079	<2	<0.4	14	<5	9.7	<0.1	<5	5.4		-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-	-	-	T- '	- T	-	T-	-	T -	1 -	\top
BH10_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	2.3	<0.4	<5	<5	8.5	<0.1	<5	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_ ·	-	-	-	-	-	-	\top
BH10 1.0-1.1	09-Jan-19	Borehole within Sportsfield	635079	10	<0.4	15	<5	18	<0.1	<5	8.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	\top
HA01 0-0.1	08-Jan-19	Handauger within Embankment	635079	2.3	<0.4	8.3	43	220	<0.1	<5	390	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.1	1 <(
QC-01	08-Jan-19	Duplicate sample of HA01 0-0.1	635079	2.2	<0.4	10	41	230	<0.1	<5	430	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.1	1 <(
QA-01	08-Jan-19	Triplicate sample of HA01_0-0.1	209223	<4	<0.4	8	59	290	0.1	4	550	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	_ ·	<0.1	<0.1	<0.1	<0.1	-	-	\top
HA01 0.9-1.0	08-Jan-19	Handauger within Embankment	635079	2.2	<0.4	6.4	39	170	0.1	<5	180		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	T-	\top
HA01 0.9-1.0	08-Jan-19	Handauger within Embankment	636837		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	\top
HA02 0-0.1	08-Jan-19	Handauger within Embankment	635079	3.1	<0.4	8.4	50	180	<0.1	<5	290	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	\top
HA02 0.4-0.5	08-Jan-19	Handauger within Embankment	635079	2.3	<0.4	5.6	44	130	<0.1	<5	360		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- T	-	-	-	-	1 -	+
HA03 0-0.1	08-Jan-19	Handauger within Embankment	635079	2.1	<0.4	6.7	32	120	_	<5			-	1 -	1 -	1 -	1 -	-	-	-	1 -	-	-	-	-	-	- 1	-	-	-	$\overline{}$	-	<u> </u>	T-	T-	T-	T-	\top
HA03 0.9-1.0	08-Jan-19	Handauger within Embankment	635079	<2	<0.4	5.9	14	39	<0.1	<5	55		-	-	-	1 -	1 -	-	-	-	-	-	-	-	-	-	- 1	-	-	-		-	_	T-	T-	1	-	\top
HA04 0-0.1	08-Jan-19	Handauger within Embankment	635079	3.1	<0.4	7.8	6	17	<0.1	<5	20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			<u> </u>	T-	-	1	1 -	\top
HA04 1.4-1.5	08-Jan-19	Handauger within Embankment	635079	<2	<0.4	<5	<5	9.1	<0.1	<5	<5		-	-	1 -	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		T-	-	T-	T-	\top
HA05_0-0.1	08-Jan-19	Handauger within Embankment	635079	<2	<0.4	6.9	8.6	10	<0.1	<5	24		1 -	-	-	1 -	-	-	1 -	-	-	-	-	-	-	-	-	-	-	-			<u> </u>	T-	T-	T-	T-	+
HA05_1.0-1.1	08-lan-19	Handauger within Embankment	635079	2.1				9.8			9.8	T .	+ -	.	.	+ -	+ .	١.	+ -	+	+	 	.	<u> </u>						-		$\overline{}$		T-		+-	+-	+

Field_ID	Sampled_Date-Time	Matrix_Description	Lab_Report_Number																																			
Detailed Site Inv	estigation																																					
BH11_0.5-1.0	20-Apr-20	Borehole within Sportsfield	714933	4.9	<0.4	8.8	<5	<5	<0.1	<5	<5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.2	<0.2
BH12_2.5-3.0	20-Apr-20	Borehole within Sportsfield	716335		-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-		-
BH12_3.0-3.5	20-Apr-20	Borehole within Sportsfield	714933	<2	<0.4	<5	14	600	<0.1	<5	75	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	- 1	-
BH12_3.0-3.5	20-Apr-20	Borehole within Sportsfield	716335	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	- 1	-
BH13_0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	<2	<0.4	<5	<5	8.1	<0.1	<5	6.8	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-
BH14_0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	2.7	<0.4	6.3	<5	14	<0.1	<5	15	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	-
BH15_0.5-1.0	20-Apr-20	Borehole within Sportsfield	714933	<2	<0.4	6.5	<5	<5	<0.1	<5	<5	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	-
BH16_0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	7.9	<0.4	10	11	21	<0.1	<5	21	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	- 1	- 7	-
HA06 0-0.1	07-Apr-20	Handauger within Embankment	713049	5.2	<0.4	9.5	43	170	0.1	<5	240	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1
HA06 0-0.1	07-Apr-20	Handauger within Embankment	716335		-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-
QA20200407-1	07-Apr-20	Duplicate sample of HA06_0-0.1	713049	3.2	<0.4	7.6	60	220	0.1	<5	400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1
QC 20200407-1	07-Apr-20	Triplicate sample of HA06_0-0.1	240785	<4	<0.4	8	46	120	<0.1	5	320	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	- 1	-
HA07 0.2-0.3	07-Apr-20	Handauger within Embankment	713049	3.6	<0.4	7.3	65	140	0.1	<5	860	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-
HA08 0.2-0.3	07-Apr-20	Handauger within Embankment	713049	2.8	<0.4	7.4	30	95	<0.1	<5	300	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-
HA09 0-0.1	07-Apr-20	Handauger within Embankment	713049	2.7	0.5	9.1	48	80	0.2	<5	1000	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	- 1		-
HA10 0-0.1	07-Apr-20	Handauger within Embankment	713049	2.7	<0.4	5.4	5.8	17	<0.1	<5	120	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-		-
HA11 0.4-0.5	07-Apr-20	Handauger within Embankment	713049	<2	0.4	6.4	<5	50	<0.1	6.5	210	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-
HA12 0-0.1	07-Apr-20	Handauger within Embankment	713049	<2	<0.4	<5	5.2	35	<0.1	<5	67	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.2	<0.2
TP1_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	5.5	<0.4	7.2	24	49	<0.1	<5	49	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.2	<0.2
TP1_1.0-1.5	21-Apr-20	Testpit within Sportsfield	714933	2	<0.4	<5	5.1	6	<0.1	<5	11	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-		-
TP2_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933		-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	-
TP2_1.5-2.0	21-Apr-20	Testpit within Sportsfield	714933	3.5	<0.4	13	40	59	0.1	<5	110	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	-
TP2_1.5-2.0	21-Apr-20	Testpit within Sportsfield	716335		-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-
TP3_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	5.9	<0.4	6.1	5.2	13	<0.1	<5	18	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-		-
TP4_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	8.2	<0.4	6.4	<5	17	<0.1	<5	12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.2	<0.2
QC20200421	21-Apr-20	Triplicate sample of TP4_0-0.1	241327	5	<0.4	5	4	16	<0.1	2	12	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	- 1	<0.1	<0.1	<0.1
QA20200421	21-Apr-20	Duplicate sample of TP4_0-0.1	714933	8.7	<0.4	6.3	<5	13	<0.1	<5	15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.2	<0.2
TP4_1.0-1.5	21-Apr-20	Testpit within Sportsfield	716335	<2	<0.4	<5	<5	<5	<0.1	<5	<5	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-
TP5_0.5-1.0	21-Apr-20	Testpit within Sportsfield	714933	5.6	<0.4	13	<5	14	<0.1	<5	6.6	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	-	-
TP6_1.0-1.5	21-Apr-20	Testpit within Sportsfield	714933	<2	<0.4	<5	<5	8.5	<0.1	<5	<5	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-
TP7_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	6	<0.4	12	10	25	<0.1	5.6	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
TP7_0.6-0.7	21-Apr-20	Testpit within Sportsfield	714933	<2	<0.4	5.6	<5	<5	<0.1	<5	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-
TP8_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	2.6	<0.4	<5	7	13	<0.1	<5	19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
TP8_0.5-0.6	21-Apr-20	Testpit within Sportsfield	714933		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	- 1	-	-
	• •		<u> </u>																																	$\overline{}$		

Statistical Summary																																			
Number of Results	5	6 56	56	56	56	56	56	56	13	13	13	12	13	13	-	10	13	13	13	13	13	13	13	13	13	-	13	10	13	12	12	12	11	11	11
Number of Detects	3	30 2	37	34	50	9	6	46	0	0	0	2	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
Minimum Concentration		2 <0.	4 <5	4	<5	<0.1	. 2	<5	<0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	-	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1
Minimum Detect		2 0.4	1 5	4	5.3	0.1	2	5.4	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	6	0.5	17	65	600	0.2	29	1000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1
Maximum Detect	6	0.5	17	65	600	0.2	29	1000	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration	3	.7 0.2	1 6.3	3 16	63	0.062	2 3.2	121	0.065	5 0.065	0.065	0.07	0.065	0.065	-	0.14	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	-	0.065	0.07	0.065	0.067	0.067	0.098	0.46	0.15	0.15
Median Concentration	2	.1 0.2	6.3	5.9	17	0.05	2.5	19	0.025	5 0.025	0.025	0.025	0.025	0.025	-	0.05	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	-	0.025	0.025	0.025	0.025	0.025	0.1	0.5	0.1	0.1
Standard Deviation		8 0.04	18 3.6	5 19	102	0.03	2 3.6	208	0.083	3 0.083	0.083	0.095	0.083	0.083	-	0.19	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	-	0.083	0.095	0.083	0.086	0.086	0.078	0.14	0.17	0.17
Number of Guideline Exceedances		0 0	0	2	1	0	0	18	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
Number of Cuideline Fuseedeness(Datests Only)		0 0	0	1 2	1	1 0	0	10	0	1 0	0	0	0	0		0	0	0	0	0	0	0	0	_	0		0		0	0	0			0	

 $[\]ensuremath{^*}$ Based on site derived ecological data including clay % CEC and pH

																																													_
				P	СВ									TRH					_			BTEX											PAH								_		Inorgan	nic	\blacksquare
JBS&G	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCBs (Total)	C6-C9 Frac	>C10-C16	>C16-C34 Fraction	>C34-C40	>C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction	CG-C10 less BTEX (F1)	>C10-C16 Fraction (Silica Ge	>C16-C34 Fraction (Silica Gel)	>C34-C40 Fraction (Silica Gel)	Benzene	בחול וספוי בפו פ	Louising Market	yytene (m & p)	Xylene (Total)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Carcinogenic PAHs as B(a)P TEQ	Benzo(b,j)fluoranthene	Benzo(g,h,i)perylene	benzo(k/muoran mene	a Dibenz(a hlanthracene	Fluoranthene	Fluorene		Naphthalene	Phenanthrene	Pyrene	PAHS (Total)	EC 1:5 soll:water	Cation Exchange Capacity	ph 1:5 soil:water	% % Clay
	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	20	50	100	100	100	50	20	20	50	100	100	0.1 (.1 0	.1 0	.1 0.2	2 0.3	0.5	0.5	0.5	0.5	0.5		0.5	0.5	.5 0.	5 0.	5 0.5	5 0.5	0.5	0.5	0.5	0.5	0.5	10	0.05	0.1	1
Table 1A(1) HILs Res A Soil								1																						3											300				
Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand																																													
														110		45				0.5	5 1	60		40														3						7	
														240		70				0.5	IL 2:	20		60														NL							
														440	1	110				0.5		10		95														NL							
														NI	- 1	200				0.5	11 5	40		170														NI							
Table 1B(1-5) Generic EIL - Urban Residential and Public Open Space*																																						170							
Table 1B(6) ESLs for Urban Res, Coarse Soil 0-2 m											300	2800		120	1	180		300	2800	50	0 8	5		105	;				0.7																

Field_ID	Sampled_Date-Time	Matrix_Description	Lab_Report_Number																																_			 _
Preliminary Site			606000		1		_				400	400	100											_							4	_		_	4	\leftarrow		
BH03_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	<u> </u>	<u> </u>	1 - 1 -	-	 - 	_	20 <50				<50 <2				_	.1 <0.1	_	_	0.2 <0.3						-	-			-	-		-		استسا	
BH03_2.5-2.6	09-Jan-19	Borehole within Sportsfield	635079	 	-		-	<u> </u>	_	20 <50				<50 <2				<0.	_			0.2 <0.3		-		0.5 <1.2				0.5 <0.					0.5 <0		لننا	
BH04_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	<u> </u>	<u> </u>	1 - 1 -	-	 - 	- <	20 <50	<100	<100	<100	<50 <2	0 <20			$\overline{}$	_	_	<0.1 <	0.2 <0.3	<0.5 <0.		<0.5 <).5 <1.2	1 <0.5	<0.5	<0.5	0.5 <0.		<0.5	<0.5 <	J.5 <0	_		استسا	
BH04_1.0-1.1	08-Jan-19	Borehole within Sportsfield	635079	· ·	-		-		-		-	-	-		-			-		-	-		1 : :		-		-	-	-			-					لسنسا	
BH06_0.3-0.4	08-Jan-19	Borehole within Sportsfield	635079	<u> </u>	-		-		_	20 <50			1200	<50 <2				_	.1 <0.1	<0.1	_	0.2 <0.3		5 <0.5	<0.5 <	0.5 <1.2	1 <0.5	<0.5	<0.5 <	0.5 <0.	0.5 < 0.5	<0.5	<0.5 <	<0.5 <0	0.5 <0	0.5 <0.5	لسنسا	
BH06_3.0-3.1	08-Jan-19	Borehole within Sportsfield	635079		-		-	-	_	20 <50				<50 <2				<0.		_	_	0.2 <0.3			-		-	-	-			-	-				لسنسا	
BH07_0-0.1	09-Jan-19	Borehole within Sportsfield	635079		-		-	-	- <	20 <50	<100	<100	<100	<50 <2	0 <20	-		<0.	.1 <0.1	<0.1	<0.1 <	0.2 <0.3	<0.5 <0.	5 <0.5	<0.5 <0	0.5 <1.2	1 <0.5	<0.5	<0.5 <	0.5 <0.	.5 <0.5	<0.5	<0.5	J.5 <0	/.5 <0	0.5 <0.5	استسا	
BH07_1.5-1.6	09-Jan-19	Borehole within Sportsfield	635079		-		-	-	•		-	-	-		-	-		-	-	-	-			-	-		-	-	-		_	-					استسا	
BH07-1.5-1.6	08-Jan-19	Borehole within Sportsfield	636837		-		-	-	-		-	-	-		-	-		-		-	-		<0.5 <0.			.8 24.6			23	17 1	_		-			33 173.7	لسنسا	
BH07_4.0-4.1	09-Jan-19	Borehole within Sportsfield	635079	<0.1 <0.1	<0.1		l <0.1	<0.1 <		20 <50				<50 <2				<0.		<0.1		0.2 <0.3			<0.5	.8 1.20				0.6 <0.		<0.5		0.5 0.		1.1 4.7	لسنسا	
BH08_0-0.1	08-Jan-19	Borehole within Sportsfield	635079		-		-	-	_	20 <50		<100		<50 <2	-		- -		.1 <0.1				<0.5 <0.	5 <0.5	<0.5 <	0.5 <1.2	1 <0.5	<0.5	<0.5	:0.5 <0.	.5 <0.5	<0.5	<0.5 <	J.5 <0	/.5 <0	0.5 <0.5		
BH08_3.5-3.6	08-Jan-19	Borehole within Sportsfield	635079		-		-	-	-	20 <50					0 <20			_	.1 <0.1	_	_	0.2 <0.3		_	-		-	-	-			-		- -			لسنسا	
BH09_0-0.1	08-Jan-19	Borehole within Sportsfield	635079		-		-	-	_	20 <50	1200	1200	1200	<50 <2				<0.		_	_	0.2 <0.3			-		-	-	-					- -	_		لسنسا	
BH09_1.5-1.6	08-Jan-19	Borehole within Sportsfield	635079		-		-	-	-	20 <50		<100		<50 <2					.1 <0.1		_	0.2 <0.3		5 <0.5	<0.5 <	0.5 <1.2	1 <0.5	<0.5	<0.5	0.5 <0.).5 <0.5	<0.5	<0.5 <	<0.5 <0	0.5 <0	0.5 <0.5		
BH09_4.0-4.1	08-Jan-19	Borehole within Sportsfield	635079		-		-	-	_	20 <50		<100			0 <20				.1 <0.1		<0.1 <			-	-		-	-	-		<u> </u>	-				- -		
BH10_0-0.1	09-Jan-19	Borehole within Sportsfield	635079		-		-	-	- <	20 <50	<100	<100	<100	<50 <2	0 <20	-		<0.	.1 <0.1	<0.1	<0.1 <	0.2 <0.3	<0.5 <0.	5 <0.5	<0.5 <	0.5 <1.2	1 <0.5	<0.5	<0.5	0.5 <0.).5 <0.5	<0.5	<0.5 <	<0.5 <0	0.5 <0	0.5 <0.5		
BH10_1.0-1.1	09-Jan-19	Borehole within Sportsfield	635079		-		-	-	-		-	-	-		-	-		-		-	-				-		-	-	-						_			
HA01_0-0.1	08-Jan-19	Handauger within Embankment	635079	<0.1 <0.1	_	-	_	10.12	_	20 <50				<50 <2				<0.	_	<0.1	0.0	1.4 2.1	4.5 <0.		26 2	32.9		7.8	24	29 1.	.6 100		_	(0.5 48		90 402		
QC-01	08-Jan-19	Duplicate sample of HA01_0-0.1	635079	<0.1 <0.1						20 <50				<50 <2	_			_	.1 <0.1	_		0.6			9.2	.8 6.49	9.2	2.6	_	3.6 <0.			-		_	3.2 41.8		
QA-01	08-Jan-19	Triplicate sample of HA01_0-0.1	209223	<0.1 <0.1	<0.1	<0.1 <0.1	l <0.1	<0.1 <	0.1 <	25 <50	420	220	640	<50 <2	25 <25	-		<0.	.2 <1	<0.5	<1 •	<2 <1	0.1 0.5	0.7	3.5 4	.8 6.15	7.5	3		3.5 0.	.7 4.7	<0.1	2.4 C	0.1 1.	1.9 4.	1.9 38		
HA01_0.9-1.0	08-Jan-19	Handauger within Embankment	635079		-		-	-	-		-	-	-		-	-		-	-	-	-			-	-		-	-	-			-		- -		- - '		
HA01_0.9-1.0	08-Jan-19	Handauger within Embankment	636837		-		-	-	-		-	-	-		-	-		-		-	-		<0.5 <0.	5 2	8.9	9 13.4	6.3	3.6	7.8	8.2 1.	.5 17	<0.5	5.3 <	(0.5 8.	.2 1	17 94.8		
HA02_0-0.1	08-Jan-19	Handauger within Embankment	635079		-		-	-	-	20 <50			_		0 <20			_	.1 0.5	_		3.3 4.5			-		-	-	-			-		- -	_		استسا	
HA02_0.4-0.5	08-Jan-19	Handauger within Embankment	635079		-		-	-	-	20 <50					0 <20			_	.1 0.2	<0.1	0.8	2 2.8		0.7	3.4	.9 5.80	2.8	2.3	3.5	3.3 0.	.7 6.3	<0.5	1.8 <	<0.5 2	2 6.	5.2 37.5	الستسا	
HA03_0-0.1	08-Jan-19	Handauger within Embankment	635079		-		-	-	-	20 <50				<50 <2				_	.1 <0.1	_	_	0.2 <0.3		-	-		-	-	-			-		- -		- - '	استسا	
HA03_0.9-1.0	08-Jan-19	Handauger within Embankment	635079		-		-	-	-	20 <50					0 <20			_	.1 <0.1	_		0.2 <0.3			0.7	.8 1.26			0.0	0.8 <0.				0.5 0.		1.6 6.9	الستسا	
HA04_0-0.1	08-Jan-19	Handauger within Embankment	635079		-		-	-	-	20 <50					0 <20		- -	_	.1 <0.1	_	_	0.2 <0.3		5 <0.5	<0.5 <	0.5 <1.2	1 <0.5	<0.5	<0.5 <	:0.5 <0.).5 <0.5	<0.5	<0.5 <	<0.5 <0	0.5 <0	0.5 <0.5	استسا	
HA04_1.4-1.5	08-Jan-19	Handauger within Embankment	635079		-		-	-	- <	20 <50	<100	<100	<100	<50 <2	0 <20	-	- -	<0.	.1 <0.1	<0.1	<0.1 <	0.2 <0.3		-	-		-	-	-			-	-	- -	<u>. .</u>		'	
HA05_0-0.1	08-Jan-19	Handauger within Embankment	635079		-		-	-	-		-	-	-			-	- -			-	-			-	-	- -	-	-	-			-	-	- -	<u>·</u>	<u>- - '</u>		
HA05_1.0-1.1	08-Jan-19	Handauger within Embankment	635079		-		-	-	- <	20 <50	<100	<100	<100	<50 <2	0 <20	-		<0.	.1 <0.1	<0.1	<0.1 <	0.2 <0.3	<0.5 <0.	5 <0.5	<0.5 <).5 <1.2	1 <0.5	<0.5	<0.5	:0.5 <0.	.5 <0.5	<0.5	<0.5 <	.0.5 <0	J.5 <0	0.5 <0.5		

				P	СВ								TRH								BTEX											PAI	Н									Inc	organic	
JBS&G	Aroclor 1016	Aroclor 1221	kroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	oCBs (Total) Se.Co Fraction	-C10-C16 Fraction	-C16-C34 Fraction	-C34-C40 Fraction	·C10-C40 Fraction (Total)	·C10-C16 less Naphthalene (F2)	56-C10 Fraction	:6-C10 less BTEX (F1)	-C10-C16 Fraction (Silica Gel)	·C16-C34 Fraction (Silica Gel)	•C34-C40 Fraction (Silica Gel)	Senzene	thylbenzene	oluene		yene (Total)	λcenaphthene	\tenaphthylene	Anthracene	Зепz(a) an thracene	senzo(a)pyrene	arcinogenic PAHs as B(a)P TEQ	Senzo(b,j)fluoranthene	senzo(g,h,i)perylene	Senzo(k)fluoranthene	chrysene	Jibenz(a,h)anthracene	iluoranthene	luorene	ndeno(1,2,3-c,d)pyrene	Vap hth alene	henanthrene	Vrene	nis (10tar) C. 1:5 soli:water	ation Exchange Capacity	oH 1:5 soil:water	
	mg/l	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg mg	g/kg mg	/kg mg/l	g mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg n	ng/kg r	mg/kg n	ng/kg n	ng/kg n	mg/kg n	mg/kg m	ng/kg mg	/kg mg	/kg mg/k	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg r	mg/kg n	ng/kg mg	/kg μS/	cm neq/1	100 _i ph Un	iits
		0.1		0.1	0.1	0.1	0.1 0	0.1 2	50	100	100	100	50	20				100			0.1	.1 0	.2 0.3	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5					0.5 0			05 0.1	
PM 2013 Table 1A(1) HILs Res A Soil								1																					3											30	00			
PM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand																																												
0-1m													110		45				0.5	55 :	160		40															3						
-2m													240		70				0.5	NL 2	220		60	Т														NL						
2-4m													440		110				0.5	NL 3	310		95															NL						
-4m													NL		200				0.5	NL 5	540		170															NL						
PM 2013 Table 1B(1-5) Generic EIL - Urban Residential and Public Open Space*																								Т														170						
EPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil 0-2 m										300	2800		120		180		300 2	2800	50	70	85		105					0.7																

Field_ID	Sampled_Date-Time	Matrix_Description	Lab_Report_Number																																						
Detailed Site In	estigation																																								
BH11_0.5-1.0	20-Apr-20	Borehole within Sportsfield	714933	<0.5	<0.1	<0.5	<0.5 <0.	5 <0.5	<0.5	<0.5	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	l <0.1	<0.1	<0.1	(0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	-	T - T	
BH12_2.5-3.0	20-Apr-20	Borehole within Sportsfield	716335	-	-	-		-	-	-		-	-	-		-	-		-	-	- 1	-		- <0.5	<0.5	0.7 7	.3 12	18.51	8.8	11	9 8	3.1 3	12	<0.5	8.1	<0.5	2.6 14	96.6	-	- 1	
BH12_3.0-3.5	20-Apr-20	Borehole within Sportsfield	714933	-	- 1	-		-	-	-	<20 <50	160	<100	160	<50 <20	<20	-	- -	<0.1	<0.1	<0.1	<0.1	:0.2 <0	0.3 <0.5	<0.5	<0.5 1	.8 3	4.522	2.4	2.2	2.9	2 0.6	2.7	<0.5	1.7	<0.5	0.6 3.1	1 23	-	-	
BH12_3.0-3.5	20-Apr-20	Borehole within Sportsfield	716335	-	- 1	-		-	-	-		-	-	-		-	<50 <	100 <1	00 -	-	-	-			T - T		- -	-	-	-	-		-	- 1	-	-		Τ-	-	-	
BH13_0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	-	-	-		-	-	-	<20 <50	<100	<100	<100	<50 <20	<20	-	- -	<0.1	<0.1	<0.1	<0.1	(0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5 <	<0.5 <0.5	.5 <0.5	-	-	
BH14_0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	-	-	-		-	-	-	<20 <50	<100	<100	<100	<50 <20	<20	-	- -	<0.1	<0.1	<0.1	<0.1	:0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	-	-	
BH15_0.5-1.0	20-Apr-20	Borehole within Sportsfield	714933	-	-	-		-	-	-	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	l <0.1	<0.1	<0.1	:0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	-	-	
BH16_0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	-	-	-		-	-	-		-	-	-		-	-	- -	-	-	-	-		- <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	<u> </u>	-	
HA06 0-0.1	07-Apr-20	Handauger within Embankment	713049	-	-	-		-	-	-	<20 <50	1000	290	1290	<50 <20	<20	-	- -	<0.1	l <0.1	<0.1	<0.1	:0.2 <0).3 <5	<5	<5 8	.4 13	19.28	11	<10	12	9 <5	9.6	<5	<10	<5	<5 11	L 74	<u> </u>	-	
HA06 0-0.1	07-Apr-20	Handauger within Embankment	716335	-	-	-		-	-	-		-	-	-		-	<50 <	100 <1	00 -	-	-	-			-		- -	-	-	-	-		-	-	-	-		-	<u> </u>	-	
QA20200407-1	07-Apr-20	Duplicate sample of HA06_0-0.1	713049	-	-	-		-	-	-	<20 <50	570	190	760	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	:0.2 <0).3 <5	<5	<5 <	5 <5	<12.1	<5	<5	<5 •	<5 <5	7	<5	<5	<5	<5 7.7	/ 14.7	<u> </u>	-	
QC 20200407-1	07-Apr-20	Triplicate sample of HA06_0-0.1	240785	-	-	-		-	-	-	<25 <50		370	830	<50 <25	<25	-		<0.2	2 <1	<0.5	<1	<2 <	3 <0.1	<0.1	0.2 2	.7 3.2	4.398	5.1	2	1	1.8 0.7	3.8	<0.1	1.9	<0.1	1 3.8	8 26	<u> </u>	-	
HA07 0.2-0.3	07-Apr-20	Handauger within Embankment	713049	-	-	-		-	-	-	<20 <50	460	190	650	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	:0.2 <0	0.3 < 0.5	<0.5	<0.5 2	.1 2.:	3.298	2.4	1.1	1.6 1	L.7 <0.	5 3.2	<0.5	1.1	<0.5	1.1 3.1	1 19.7	<u> </u>	-	
HA08 0.2-0.3	07-Apr-20	Handauger within Embankment	713049	-	-	-		-	-	-	<20 <50	_	190	770	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	:0.2 <0	0.3 < 0.5	0.6	1.1 5	.6 5.6	8.848	5.5	3.3	3.5 4	1.5 1.4	9.1	<0.5	3.1	<0.5	4.3 9	56.6	<u> </u>	-	
HA09 0-0.1	07-Apr-20	Handauger within Embankment	713049	<u> </u>	-	-		-	-	-	<20 <50		170	530	<50 <20	_	-		<0.1	_	1412	<0.1	0.2 <0		10.00	<0.5 0		1.132			-	0.6 <0.		_	10.0		<0.5 1	4.9	<u> </u>	-	
HA10 0-0.1	07-Apr-20	Handauger within Embankment	713049	-	-	-		-	-	-	<20 <50	_	<100	110	<50 <20	<20	-		<0.1	_	1412	<0.1	(0.2 <0	0.3 < 0.5	<0.5).5 <0.	5 <1.21		<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	<u>-</u>	-	
HA11 0.4-0.5	07-Apr-20	Handauger within Embankment	713049	-	-	-		-	-	-	<20 <50		<100	110	<50 <20	<20	-		<0.1	_	1412	<0.1	(0.2 <0	0.3 < 0.5	<0.5	<0.5 0	.8 0.:	1.184	_	<0.5	0.5	0.6 <0.	5 1.5	<0.5	<0.5	<0.5	1.4 1.4	4 7.6	<u>-</u>	-	
HA12 0-0.1	07-Apr-20	Handauger within Embankment	713049	-	-	-		-	-	-	<20 <50	130	<100	130	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	(0.2 <0	0.3 <0.5	<0.5	<0.5 0	.8 0.	1.482	0.6	<1 (0.8).7 <1	1.8	<0.5	<1 <	<0.5	1.4 1.6	6 8.4	<u> </u>	-	
TP1_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	(0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 0.6	6 0.6	<u> </u>	-	
TP1_1.0-1.5	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-		-	-	-		-	-		-	-	-	-		- <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	-	-	
TP2_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-		-	-	-		-	-		-	-	-	-			-			-	-	-	-		-	-	-	-			<u> </u>	-	
TP2_1.5-2.0	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-	<20 <50	580	140	720	<50 <20	<20	-		_	<0.1	<0.1	<0.1	:0.2 <0	0.3 < 0.5	<0.5	0.7 8	.4 11	16.6	9.1	6.6	8.2 7	7.9 2.3	12	<0.5	5.8	<0.5	2.7 14	1 88.7	<u> </u>	-	
TP2_1.5-2.0	21-Apr-20	Testpit within Sportsfield	716335	-	-	-		-	-	-		-	-	-		-	<50 2	250 <10		-	-	-			-			-	-	-	-		-	-	-	-			<u> </u>	-	
TP3_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	-	-	-			-	-	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	(0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	<u> </u>	-	
TP4_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.1	<0.5 <	<0.5 <0.	5 <0.5	<0.5	<0.5	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	l <0.1	<0.1	<0.1	(0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	<u> </u>	-	
QC20200421	21-Apr-20	Triplicate sample of TP4_0-0.1	241327	<0.1	<0.1	<0.1 <	<0.1 <0.	1 <0.1	<0.1	<0.1	<25 <50	<100	<100	<50	<50 <25	<25	-		<0.2	2 <1	<0.5	<1	<2 <	3 <0.1	<0.1	<0.1 <0).1 <0.0	05 <0.172	<0.2	<0.1	<	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	.1 <0.05	<u> </u>	-	
QA20200421	21-Apr-20	Duplicate sample of TP4_0-0.1	714933	<0.5	<0.1	<0.5 <	<0.5 <0.	5 <0.5	<0.5	<0.5	<20 <50	<100	<100	<100	<50 <20	<20	-	- -	<0.1	l <0.1	<0.1	<0.1	:0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	5 <0.5	<u> </u>	-	
TP4_1.0-1.5	21-Apr-20	Testpit within Sportsfield	716335	-	-	-		-	-	-		-	-	-		-	-	- -	-	-	-	-			-		- -	-	-	-	-		-	-	-	-		-	22	1.4	3.4 <1
TP5_0.5-1.0	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	l <0.1	<0.1	<0.1	:0.2 <0	0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	<u> </u>	-	
TP6_1.0-1.5	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-	<20 <50	<100	<100	<100	<50 <20	<20	-	- -	<0.1	l <0.1	<0.1	<0.1	:0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	.5 <0.5	-	-	
TP7_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	- 1	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	:0.2 <0	0.3 < 0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	5 <0.5	<u> </u>	-	
TP7_0.6-0.7	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-		-	-	-		-	-		-	-	-	-			-	-		-	-	-	-		-	-	-	-		-	35	1.3	4.3 5.7
TP8_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-	<20 <50	<100	<100	<100	<50 <20	<20	-		<0.1	<0.1	<0.1	<0.1	:0.2 <0	0.3 <0.5	<0.5	<0.5 <0).5 <0.	5 <1.21	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	5 <0.5	-	-	
TP8_0.5-0.6	21-Apr-20	Testpit within Sportsfield	714933	-	-	-		-	-	-		-	-	- 1		-	-		-	-	-	-			-	-	- -	-	-	-	- T		-	-	-	-			-	-	

Statistical Summary																																											
Number of Results	8	8	8	8	8	8	8 8	47	47	47	47	47	47	47	47	3	3	3	47 47	47	47	47	47	44	44 4	4 4	1 44	-	44	44	41	44	44	44	44	44 44	44	1 44	44	2	2	2	2
Number of Detects	0	0	0	0	0	0	0 0	0	0	17	13	17	0	0	0	0	1	0	0 2	0	4	4	4	2	3 9	17	7 18	-	16	13	14	18	10	19	1	13 1	16	5 20	20	2	2	2	2
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	(0.1	0.1 <	0.1 <0	1 <2	0 <50	<100	<100	<50	<50	<20	<20	<50 <	100 <	<100	<0.1 <0.	1 <0.:	l <1	<0.2	<0.3	<0.1	<0.1 <0	.1 <0	1 <0.0	5 -	<0.2	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.1	1 <0.05	22	1.3	3.4	<1
Minimum Detect	ND	ND	ND	ND	ND N	I DI	ND NI) NI) ND	110	130	110	ND	ND	ND	ND :	250	ND	ND 0.:	2 ND	0.3	0.2	0.6	0.1	0.5 0.	2 0.	5 0.7	-	0.6	0.6	0.5	0.6	0.6	0.8	3.1	0.7 0.3	0.5	5 0.6	0.6	22	1.3	3.4	<1
Maximum Concentration	<0.5	<0.5	<0.5	<0.5	:0.5 <	0.5 <	0.5 <0	.5 <2	5 <50	1700	450	2150	<50	<20	<20	<50	250 <	<100 ←	<0.2 0.5	<0.5	1.2	3.3	4.5	<5	<5 1	5 26	23	-	15	11	24	29	<5	100	<5	15 <5	48	90	402	35	1.4	4.3	5.7
Maximum Detect	ND	ND	ND	ND	ND N	I DI	ND NI) NI) ND	1700	450	2150	ND	ND	ND	ND :	250	ND ·	<0.2 <1	<0.	5 <1	<2	<3	4.5	0.6 1	5 26	5 23	-	15	11	24	29	3	100	3.1	15 0.:	48	90	402	35	1.4	4.3	5.7
Average Concentration	ND	ND	ND	ND	ND N	ND I	ND NI) 10	25	211	100	274	25	ND	ND	25	117	50		-	-	-	- 1	0.44	0.36 0.8	31 2.	4 2.9	-	2.3	1.6	2.5	2.5	0.61	5.4	0.4	1.8 0.3	4 2.3	3 -	28	28.5	1.35	3.85	-
Median Concentration	ND	ND	ND	ND	ND N	I DI	ND NI) 10	25	50	50	50	25	ND	ND	25	50	50		-	-	-	- 1	0.25	0.25 0.3	25 0.2	5 0.25	-	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25 0.2	5 0.2	5 -	0.25	28.5	1.35	3.85	-
Standard Deviation	ND	ND	ND	ND	ND N	I DI	ND NI	0.6	2 0	312	96	419	0	ND	ND	0	115	0		-	-	-	- 1	0.79	0.48 2.	3 4.	7 5.1	-	3.8	2.6	4.9	5.3	0.73	16	0.63	3.2 0.4	8 7.3	3 -	68	I -	-	- 1	-
Number of Guideline Exceedances	0	0	0	0	0	0	0 0	0	0	12	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 (0	19	-	0	0	0	0	0	0	0	0 2	0	0	1	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0 0	0	0	12	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 () 0	18	-	0	0	0	0	0	0	0	0 0	0	0	1	0	0	0	0

 $^{^{\}ast}$ Based on site derived ecological data including clay % CEC and pH

Table B: Asbestos in Soil Results

Project Number: 58081

Project Name: Kambala Sports Precinct

EQL
NEPM 2013 Soil HSL A Bonded ACM
NEPM 2013 Soil HSL Friable Asbestos and Asbestos Fines

			Asbestos		
Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Asbestos Reported Result	Asbestos Sample Dimensions	Asbestos Field Observation
g	%w/w	%w/w	Comment	Comment	Comment
	0.01%				
		0.001%			

Field_ID	LocCode	Sampled_Date-Time	Matrix_Description	Lab_Report_Numb	er					
reliminary Site	Investigation									
3H03_2.5-2.6	BH03_2.5-2.6	09-Jan-19	Borehole within Sportsfield	635079	749	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH04_0-0.1	BH04_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	677	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH06_0.3-0.4	BH06_0.3-0.4	08-Jan-19	Borehole within Sportsfield	635079	757	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH07_0-0.1	BH07_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	775	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH07_4.0-4.1	BH07_4.0-4.1	09-Jan-19	Borehole within Sportsfield	635079	917	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH08_0-0.1	BH08_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	525	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH09_1.5-1.6	BH09_1.5-1.6	08-Jan-19	Borehole within Sportsfield	635079	726	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH10_0-0.1	BH10_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	798	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	=	No visible ACM observed
HA01_0-0.1	HA01_0-0.1	08-Jan-19	Handauger within Embankment	635079	365	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
QC-01	HA01_0-0.1	08-Jan-19	Duplicate sample of HA01_0-0.1	635079	366	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
QA-01	QA-01	08-Jan-19	Triplicate sample of HA01_0-0.1	209223	347	-	<0.001	No Asbestos detected at the Reporting Limit of 0.1 g/kg. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
HA02_0.4-0.5	HA02_0.4-0.5	08-Jan-19	Handauger within Embankment	635079	679	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
HA03_0.9-1.0	HA03_0.9-1.0	08-Jan-19	Handauger within Embankment	635079	515	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
HA04_0-0.1	HA04_0-0.1	08-Jan-19	Handauger within Embankment	635079	680	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
HA05_1.0-1.1	HA05_1.0-1.1	08-Jan-19	Handauger within Embankment	635079	609	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
Detailed Site In	vestigation									
BH11_0.5-1.0	BH11_0.5-1.0	20-Apr-20	Borehole within Sportsfield	714933	745	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
BH12_3.0-3.5	BH12_3.0-3.5	20-Apr-20	Borehole within Sportsfield	714933	933	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed

Table B: Asbestos in Soil Results

EQL NEPM 2013 Soil HSL A Bonded ACM

Project Number: 58081

Project Name: Kambala Sports Precinct

			Asbestos		
Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Asbestos Reported Result	Asbestos Sample Dimensions	Asbestos Field Observation
g	%w/w	%w/w	Comment	Comment	Comment
	0.01%				
·		0.001%			

NEPM 2013 Soil H	HSL A Bonded ACM					0.01%				
NEPM 2013 Soil F	HSL Friable Asbesto	s and Asbestos Fines					0.001%			
Field_ID	LocCode	Sampled_Date-Time	Matrix_Description	Lab_Report_Numbe	r					
BH13 0.0-0.1	BH13 0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	766	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible
_	_		·					w/w. Organic Fibre detected. No trace asbestos detected.		ACM
										observed
BH14_0.0-0.1	BH14_0.0-0.1	20-Apr-20	Borehole within Sportsfield	714933	628	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible
								w/w. Organic Fibre detected. No trace asbestos detected.		ACM observed
BH15 0.5-1.0	BH15 0.5-1.0	20-Apr-20	Borehole within Sportsfield	714933	738	0	0	No Asbestos detected at the Reporting Limit of 0.001%	_	No visible
5.125_0.5 2.0	51.15_0.5 1.0	20 7.0. 20	sorenote wating operation	71.555	750			w/w. Organic Fibre detected. No trace asbestos detected.		ACM
										observed
BH16_0.0-0.01	BH16_0.0-0.01	20-Apr-20	Borehole within Sportsfield	714933	676	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible
								w/w. Organic Fibre detected. No trace asbestos detected.		ACM
FRAG-01	FRAG-01	07-Apr-20	ACM fragment identified at north western houndary	712040	13	0	0	Charactile and amonite ashestes datested	45×40×4 mm	observed
FRAG-UI	FRAG-U1	07-Apr-20	ACM fragment identified at north-western boundary	713049	13	U		Chrysotile and amosite asbestos detected.	45x40x4 mm	No visible ACM
										observed
FRAG-02	FRAG-02	07-Apr-20	ACM fragment identified at north-western boundary	713049	10	0	0	Chrysotile and amosite asbestos detected.	50x35x4 mm	No visible
										ACM
										observed
HA06 0-0.1	HA06 0-0.1	07-Apr-20	Handauger within Embankment	713049	636	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible ACM
								w/w. Organic Fibre detected. No trace asbestos detected.		observed
QA20200407-1	HA06 0-0.1	07-Apr-20	Duplicate sample of HA06 0-0.1	713049	521	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible
								w/w. Organic Fibre detected. No trace asbestos detected.		ACM
										observed
QC 20200407-1	QC 20200407-1	07-Apr-20	Triplicate sample of HA06_0-0.1	240785	529	-	<0.001	No Asbestos detected at the Reporting Limit of 0.1 g/kg.	-	No visible
								Organic Fibre detected. No trace asbestos detected.		ACM observed
HA07 0.2-0.3	HA07 0.2-0.3	07-Apr-20	Handauger within Embankment	713049	489	0	0	No Asbestos detected at the Reporting Limit of 0.001%	_	No visible
11/407 0.2 0.3	11/407 0.2 0.3	07 Apr 20	Handauger within Embankment	713043	403			w/w. Organic Fibre detected. No trace asbestos detected.		ACM
										observed
HA08 0.2-0.3	HA08 0.2-0.3	07-Apr-20	Handauger within Embankment	713049	547	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible
								w/w. Organic Fibre detected. No trace asbestos detected.		ACM
HA09 0-0.1	HA09 0-0.1	07-Apr-20	Handauger within Embankment	713049	280	0	0	No Asbestos detected at the Reporting Limit of 0.001%	_	observed No visible
HAU9 U-U.1	HA09 0-0.1	07-Apr-20	Halidauger within Embankment	713049	200	U	0	w/w. Organic Fibre detected. No trace asbestos detected.		ACM
								.,,		observed
HA10 0-0.1	HA10 0-0.1	07-Apr-20	Handauger within Embankment	713049	577	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible
								w/w. Organic Fibre detected. No trace asbestos detected.		ACM
		07.4 20	N. 1. 201. 6 1. 1. 1.	742040	205			N. A. L. A.		observed
HA11 0.4-0.5	HA11 0.4-0.5	07-Apr-20	Handauger within Embankment	713049	895	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	Single ACM fragment
								w/w. organic ribre detected. No trace assestes detected.		observed
										(FRAG 01)
HA12 0-0.1	HA12 0-0.1	07-Apr-20	Handauger within Embankment	713049	778	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	Single ACM
								w/w. Organic Fibre detected. No trace asbestos detected.		fragment
										observed
TP1_0.0-0.1	TP1_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	689	0	0	No Asbestos detected at the Reporting Limit of 0.001%	_	(FRAG 02) No visible
1_0.0 0.1	1.1 1_0.0-0.1	21 Abi 20	restpre within sportsheld	717333	003			w/w. Organic Fibre detected. No trace asbestos detected.		ACM
	<u> </u>	<u> </u>								observed
TP2_0.0-0.1	TP2_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	647	0	0	No Asbestos detected at the Reporting Limit of 0.001%	-	No visible
	1							w/w. Organic Fibre detected. No trace asbestos detected.		ACM
	-	1	Ī.			1	1		Ĩ	observed
TD2 1 E 2 O	TD2 1 E 2 O	21 Apr 20	Tostnit within Sportsfield	714022	C24	^	^	No Ashastas datastad at the Departing Limit of C 0010/		No wisible
TP2_1.5-2.0	TP2_1.5-2.0	21-Apr-20	Testpit within Sportsfield	714933	624	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM

Table B: Asbestos in Soil Results

EQL NEPM 2013 Soil HSL A Bonded ACM

NEPM 2013 Soil HSL Friable Asbestos and Asbestos Fines

Project Number: 58081

Project Name: Kambala Sports Precinct

			Asbestos		
Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Asbestos Reported Result	Asbestos Sample Dimensions	Asbestos Field Observation
g	%w/w	%w/w	Comment	Comment	Comment
	0.01%				
		0.001%			

Field_ID	LocCode	Sampled_Date-Time	Matrix_Description	Lab_Report_Numbe	r					
TP3_0.0-0.1	TP3_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	634	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
TP4_0.0-0.1	TP4_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	778	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	5	No visible ACM observed
QA20200421	TP4_0.0-0.1	21-Apr-20	Triplicate sample of TP4_0-0.1	714933	795	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
QC20200421	QC20200421	21-Apr-20	Duplicate sample of TP4_0-0.1	241327	684	-	<0.001	No Asbestos detected at the Reporting Limit of 0.1 g/kg. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
TP5_0.5-1.0	TP5_0.5-1.0	21-Apr-20	Testpit within Sportsfield	714933	778	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
TP6_1.0-1.5	TP6_1.0-1.5	21-Apr-20	Testpit within Sportsfield	714933	886	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
TP7_0.0-0.1	TP7_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	751	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed
TP8_0.5-0.6	TP8_0.5-0.6	21-Apr-20	Testpit within Sportsfield	714933	849	0	0	No Asbestos detected at the Reporting Limit of 0.001% w/w. Organic Fibre detected. No trace asbestos detected.	-	No visible ACM observed

				Heavy	Metal																	OCP													
JBS&G	Arsenic (Total)	Cadmium	Chromium (Total)	Copper	read	Mercury (Inorganic)	Nickel	Zinc	Hexachlorobenzene	4,4-DDE	Aldrin	Aldrin + Dieldrin (Sum of Total)	alpha-BHC	beta-BHC	alpha-Chlordane	Chlordane	ممم	рот	Dieldrin	DDT+DDE+DDD (Sum of Total)	delta-BHC	Endosulfan alpha	Endosulfan beta	Endosulfan sulphate	Endrin	gamma-Chlordane	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor Epoxide	Lindane	Methoxychlor	Тохарћепе	Organochlorine Pesticides EPAVic	Other Organochlorine Pesticides EPAVic
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	2	0.4	5	5	5	0.1	5	5	0.05	0.05	0.05	0.05	0.05	0.05		0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05	1	0.1	0.1
2014 General Solid Waste CT1 (without TCLP)	100	20	100		100	4	40																												
2014 General Solid Waste SCC1 (with TCLP)	500	100	1900		1500	50	1050																												

EQL			2	0.4	5	5	5	0.1	5	5	0.05	0.05	0.05	0.05 0.0	5	0.1	0.05	0.05	0.05 0.05	0.05	0.05	0.05	0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05 1	0.1	0.1
NSW 2014 General Solid	d Waste CT1 (without TCLP)		100	20	100		100	4	40																								
NSW 2014 General Solid	d Waste SCC1 (with TCLP)		500	100	1900		1500	50	1050																								
•																															•		
Field_ID	Sampled_Dat Matrix_Description	Lab_Report_Number																															
Preliminary Site Investig	gation																																
BH03_0-0.1	09-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	5.2	10	9	< 0.1	<5	8.4	-	-			-	-	-	-		-	-	-	-	-	-	-	- 1	-	-	-		-	-
BH03_2.5-2.6	09-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	<5	7.4	<0.1	<5	<5	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH04_0-0.1	08-Jan-19 Borehole within Sportsfield	635079	<2	< 0.4	<5	6.5	5.3	<0.1	<5	11	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	_
BH04_1.0-1.1	08-Jan-19 Borehole within Sportsfield	635079	60	<0.4	17	37	74	0.2	29	200	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH06_0.3-0.4	08-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	8.5	30	<0.1	<5	18	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH06_3.0-3.1	08-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	<5	7.2	<0.1	<5	<5	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH07_0-0.1	09-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	<5	7.2	<0.1	<5	<5	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH07_1.5-1.6	09-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	18	47	<0.1	<5	54	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH07-1.5-1.6	08-Jan-19 Borehole within Sportsfield	636837	-	-	-	-	-	-		-	i	-	-		-	-	-			-	-	-	-	-	-	-	-	-	-	-		-	-
BH07_4.0-4.1	09-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	<5	<5	<0.1	<5	<5	<0.05	<0.05 <	0.05 < 0.05	<0.05 <0.	05 -	<0.1	<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <1	<0.1 <	0.1
BH08_0-0.1	08-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	<5	8.8	<0.1	<5	8.8	-	-		- -	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH08_3.5-3.6	08-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	7	5.2	18	<0.1	<5	19	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH09_0-0.1	08-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	<5	17	9.7	<0.1	<5	25	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
BH09_1.5-1.6	08-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	6.2	<5	<5	<0.1	<5	5.4	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	
BH09_4.0-4.1	08-Jan-19 Borehole within Sportsfield	635079	<2	<0.4	14	<5	9.7	<0.1	<5	5.4	-	-		- -	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-			
BH10_0-0.1	09-Jan-19 Borehole within Sportsfield	635079	2.3	<0.4	<5	<5	8.5	<0.1	<5	12	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	
BH10_1.0-1.1	09-Jan-19 Borehole within Sportsfield	635079	10	<0.4	15	<5	18	<0.1	<5	8.6		-			-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	
HA01_0-0.1	08-Jan-19 Handauger within Embankment	635079	2.3	<0.4	8.3	43	220	<0.1	<5	390	<0.05		0.05 <0.05	<0.05 <0.		<0.1	<0.05		<0.05 <0.05		<0.05	<0.05		<0.05						<0.05	<0.05 <1		0.1
QC-01	08-Jan-19 Duplicate sample of HA01_0-0.1		2.2	<0.4	10	41	230	<0.1	<5	430	<0.05		0.05 <0.05	<0.05 <0.		<0.1	<0.05		<0.05 <0.05		<0.05	<0.05		<0.05	-		<0.05	<0.05		<0.05	<0.05 <1	<0.1 <	0.1
QA-01	08-Jan-19 Triplicate sample of HA01_0-0.1		<4	<0.4	8	59	290	0.1	4	550	<0.1	<0.1	0.1 -	<0.1 <0	1 <0.1	-	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1 -	-	
HA01_0.9-1.0	08-Jan-19 Handauger within Embankment		2.2	<0.4	6.4	39	170	0.1	<5	180	-	-		- -	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-			-
HA01_0.9-1.0	08-Jan-19 Handauger within Embankment		- 2.1		- 0.4	-	100		-	- 200	-	-		- -	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-			
HA02_0-0.1 HA02_0.4-0.5	08-Jan-19 Handauger within Embankment 08-Jan-19 Handauger within Embankment		3.1 2.3	<0.4	8.4	50 44	180 130	<0.1	<5 <5	290 360						-	-	-		-	-	-		-	-	-	-	-	-	-		- -	-
HA02_0.4-0.5 HA03_0-0.1	08-Jan-19 Handauger within Embankment 08-Jan-19 Handauger within Embankment		2.3	<0.4	5.6 6.7	32	120	0.1	<5 <5	170	-					-	-	-		-	-	-		-	-	-	-	-	-	-		- -	
HA03_0.9-1.0	08-Jan-19 Handauger within Embankment		<2	<0.4	5.9	14	39	<0.1	<5	55		-			-	-	-	-		+ -	-	-	-	-	-	-	-	-	-	-			-
HA04_0-0.1	08-Jan-19 Handauger within Embankment		3.1	<0.4	7.8	6	17	<0.1	<5	20		 	-	 	_	<u> </u>				1		-										- - - - - - - - - - 	-
HA04_1.4-1.5	08-Jan-19 Handauger within Embankment		<2	<0.4	<5	<5	9.1	<0.1	<5	<5	_	 _ 	_	 			_	_	_	-	-		_	_		_				_		+ - +	
HA05_0-0.1	08-Jan-19 Handauger within Embankment		<2	<0.4	6.9	8.6	10	<0.1	<5	24		- -		 	-	-	_	_		+	_	-	-	_	_	_	-	-		-		 	
					_		_								_						_				-								
		635079	2.1	< 0.4	< 5		9.8	< 0.1	<5	9.8	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-				-
HA05_1.0-1.1 Detailed Site Investigati	·	635079	2.1	<0.4	<5	<5	9.8	<0.1	<5	9.8	-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	-				-
Detailed Site Investigati	ion										<0.05	<0.05		<0.05		<0.1	<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2 <1	<0.2	- :0.2
Detailed Site Investigati BH11_0.5-1.0	ion 20-Apr-20 Borehole within Sportsfield	714933	4.9		8.8	<5		<0.1		9.8 <5	<0.05	<0.05 <	0.05 < 0.05	<0.05 <0.	05 -	<0.1	<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.2 <1	<0.2 <	:0.2
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield	714933 716335	4.9	<0.4	8.8	<5 -	<5 -	<0.1	<5 -	<5 -	<0.05	<0.05 <	0.05 < 0.05	<0.05 <0.	05 -	<0.1	<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	- -	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2 <1	<0.2 <	:0.2
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5	ion 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield	714933 716335 714933		<0.4							<0.05	<0.05 <	0.05 <0.05	<0.05 <0.	05 -	<0.1	<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	- - -	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2 <1	<0.2 <	:0.2
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5	ion 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield	714933 716335 714933 716335	4.9 - <2 -	<0.4 - <0.4 -	8.8 - <5 -	<5 - 14 -	<5 - 600	<0.1 - <0.1	<5 - <5 -	<5 - 75 -	<0.05 - - -	<0.05 <	0.05 < 0.05	<0.05 <0.	05 -	<0.1	<0.05 - - -	<0.05 - - -	<0.05 <0.05	<0.05 - - -	<0.05 - - -	<0.05 - - -	<0.05 - - -	<0.05	- - - -	<0.05 - - -	<0.05	<0.05 - - -	<0.05 - - -	<0.05	<0.2 <1 	<0.2 <	:0.2 - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1	ion 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Borehole within Sportsfield	714933 716335 714933	4.9	<0.4 - <0.4 - <0.4	8.8 - <5 - <5	<5 - 14 - <5	<5 -	<0.1 - <0.1 - <0.1	<5 -	<5 - 75 - 6.8	<0.05 - - - -	<0.05 <-		<0.05 <0.05		<0.1	<0.05 - - - -	<0.05	<0.05 <0.05 	<0.05 - - - -	<0.05 - - - -	<0.05 - - - -	<0.05	<0.05		<0.05	<0.05	<0.05 - - - -	<0.05	<0.05	<0.2 <1	<0.2 <1	
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1	20-Apr-20 Borehole within Sportsfield	714933 716335 714933 716335 714933	4.9 - <2 - <2	<0.4 - <0.4 -	8.8 - <5 - <5 6.3	<5 - 14 - <5 <5	<5 - 600 - 8.1	<0.1 - <0.1 - <0.1 <0.1	<5 - <5 - <5	<5 - 75 - 6.8 15	<0.05 - - - - -	<0.05 <		<0.05 <0.05		<0.1	<0.05 - - - -	<0.05	<0.05 <0.05	<0.05 - - - -	<0.05 - - - - -	<0.05 - - - - -	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05 - - - - -	<0.2 <1	<0.2 <	
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1	20-Apr-20 Borehole within Sportsfield	714933 716335 714933 716335 714933 714933	4.9 - <2 - <2 2.7	<0.4 - <0.4 - <0.4 <0.4	8.8 - <5 - <5	<5 - 14 - <5	<5 - 600 - 8.1 14	<0.1 - <0.1 - <0.1	<5 - <5 - <5 <5	<5 - 75 - 6.8	- <0.05 - - - - -	<0.05 <		<0.05 <0.05		<0.1	<0.05 - - - - - -	<0.05 - - - - - -	<0.05 <0.05 	- <0.05 	- <0.05 - - - - - -	<0.05	<0.05	<0.05		<0.05	<0.05	- <0.05 	<0.05	<0.05	<0.2 <1	<0.2 <	
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0	20-Apr-20 Borehole within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 714933	4.9 - <2 - <2 2.7 <2	<0.4 - <0.4 - <0.4 <0.4 <0.4	8.8 - <5 - <5 6.3 6.5	<5 - 14 - <5 <5 <5	<5 - 600 - 8.1 14 <5	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 <0.1 <0.1	<5 - <5 - <5 <5 <5	<5 - 75 - 6.8 15 <5	- - - - - - - - - - - - - - - - - - -		0.05 <0.05 	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - -	<0.1		- - - - -	<0.05 <0.05	- - - - -	<0.05	<0.05	- - - - -	<0.05		- - - - -	<0.05	<0.05	- - - - -	<0.05	<0.2 <1		(0.2 - - - - - - - - - - - - - - - - - - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1	ion 20-Apr-20 Borehole within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049	4.9 - <2 - <2 2.7 <2 7.9	<0.4 - <0.4 - <0.4 - <0.4 <0.4 <0.4 <0.4	8.8 - <5 - <5 6.3 6.5 10	<5 - 14 - <5 <5 <5 11	<5 - 600 - 8.1 14 <5 21	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<5 - <5 - <5 <5 <5 <5 <5	<5 - 75 - 6.8 15 <5					- - - - -	- - - - -		- - - - -		- - - - -	- - - - -	- - - - -	- - - - -			- - - - -		- - - - -	- - - - -	- - - - -			- - - - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1	ion 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335	4.9 - <2 - <2 2.7 <2 7.9	<0.4 <0.4 <0.4 - <0.4 <0.4 <0.4 <0.4	8.8 - <5 - <5 6.3 6.5 10	<5 - 14 - <5 <5 <5 11	<5 - 600 - 8.1 14 <5 21	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<5 - <5 - <5 <5 <5 <5 <5	<5 - 75 - 6.8 15 <5		- - - - - - - - - - - - - - - - - - -			- - - - - - 5	- - - - -				- - - - -	- - - - -	- - - - -	- - - - - - - - <0.5			- - - - - - - - - - - - -		- - - - -	- - - - -	- - - - -			- - - - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335 713049	4.9 - <2 - <2 2.7 <2 7.9 5.2	<0.4	8.8 - <5 - <5 6.3 6.5 10 9.5	<5	<5 - 600 - 8.1 14 <5 21 170	<0.1	<5 - <5 - <5 <5 <5 <5 <5 <5	<5 - 75 - 6.8 15 <5 21 240	- - - - - - <0.5				- - - - - - 5 - 5		- - - - - - - <0.5			- - - - - - <0.5	- - - - - - - <0.5	- - - - - - - - - - - - -	- - - - - - - <0.5			- - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - <0.5	- - - - - - - - - - - -	- - - - - - - - <0.5			- - - - - - - - - - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 UA20200407-1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Duplicate sample of HA06_0-0.1	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049 240785	4.9	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4	8.8 - <5 - <5 6.3 6.5 10 9.5 - 7.6	<5 14 <5 <5 <5 11 43 60	<pre></pre>	<0.1 - <0.1 - <0.1 - <0.1 <0.1 <0.1 <0.1 - 0.1 - 0.1	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5 - 75 - 6.8 15 <5 21 240 - 400	- - - - - - <0.5				- - - - - - 5 - 5		- - - - - - - - - - - - - - - - - - -			- - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5				- - - - - - - - - - - - -	- - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5			- - - - - - - - - - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC 20200407-1 HA07_0.2-0.3 HA08_0.2-0.3	ion 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Duplicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049 240785 713049	4.9	<0.4 <0.4 <0.4 - <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 - <0.4 - <0.4 - <0.4 - <0.4	8.8 - <5 - <5 6.3 6.5 10 9.5 - 7.6	<5 - 14 - <5 <5 <5 <5 <11 43 - <60 46	<5 600 - 8.1 14 <5 21 170 - 220 120	<0.1	<5 - <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5 - 75 - 6.8 15 <5 21 240 - 400 320 860 300	- - - - - - <0.5				- - - - - - 5 - 5		- - - - - - - - - - - - - - - - - - -			- - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5				- - - - - - - - - - - - -	- - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5			- - - - - - - - - - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1	ion 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Upulicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 240785 713049 713049 713049 713049	4.9 <2 <2 2.7 <2 7.9 5.2 3.2 <4 3.6 2.8	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5	8.8 <5 -	<5	<5 600 8.1 14 <5 21 170 220 120 140 95 80	<0.1	<5 <5 - <5 - <5 - <5 - <5 - <5 - <5	<5 - 75 - 6 6.8 15 <5 21 240 - 400 320 860 300 1000	- - - - - - <0.5				- - - - - - 5 - 5		- - - - - - - - - - - - - - - - - - -			- - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5				- - - - - - - - - - - - -	- - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5			- - - - - - - - - - -
Detailed Site Investigati BH11_0.5:1.0 BH12_2.5:3.0 BH12_3.0:3.5 BH12_3.0:3.5 BH13_0.0:0.1 BH14_0.0:0.1 BH15_0.5:1.0 BH16_0.0:0.1 HA06 0:0.1 HA06 0:0.1 QA20200407-1 QC 20200407-1 HA07 0.2:0.3 HA08 0.2:0.3 HA08 0.2:0.3 HA09 0:0.1 HA10 0:0.1	20-Apr-20 Borehole within Sportsfield 07-Apr-20 Handauger within Embankment 07-Apr-20 Duplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335 713049 240785 713049 713049 713049	4.9 <2 <2 2.7 <2 7.9 5.2 3.2 <4 3.6 2.8	<0.4 <0.4 <0.4 - <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 - <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	8.8 - <5 - <5 6.3 6.5 10 9.5 - 7.6 8 7.3 7.4	<5 14 <5 <5 <5 11 4 43 <60 46 65 30	<5 600 8.1 14 <5 21 170 220 120 140 95	<0.1 <0.1 <0.1 <0.1	<5 - < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	<5 - 75 - 6.8 15 <5 21 240 - 400 320 860 300	- - - - - - <0.5				- - - - - - 5 - 5		- - - - - - - - - - - - - - - - - - -			- - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5				- - - - - - - - - - - - -	- - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5			- - - - - - - - - - - -
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1	ion 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Upulicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335 713049 713049 713049 713049 713049 713049 713049 713049 713049	4.9 <2 <2 2.7 <2 7.9 5.2 3.2 <4 3.6 2.8	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5	8.8 <5 -	<5 14 <5 <5 <5 11 43 - 60 46 65 30 48 5.8	<5 600 8.1 14 <5 21 170 220 120 140 95 80	<0.1	<5 <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <-	<5 - 75 - 6 6.8 15 <5 21 240 - 400 320 860 300 1000	- - - - - - <0.5				- - - - - - 5 - 5		- - - - - - - - - - - - - - - - - - -			- - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5				- - - - - - - - - - - - -	- - - - - - - <0.5	- - - - - - - - <0.5	- - - - - - - <0.5			
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Duplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049	4.9	<0.4 <0.4 <0.4 - <0.4 - <0.4 - <0.4 <0.4	8.8 - <5 - <5 6.3 6.5 10 9.5 - 7.6 8 7.3 7.4 9.1 5.4 6.4	<5	<pre><5</pre>	<0.1	<5	<5 - 75 - 6.8 15 - <5 21 240 - 400 320 860 300 1000 120 210 67	- - - - - - - - - - - - - - - - - - -				5 - 5 - 5 - 1 <0.1		- - - - - - - - - - - - - - - - - - -								-								
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Upilicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 240785 713049	4.9	<0.4	8.8 - <- - <-	<5 1 14 1 <5 <5 <5 <5 = - 1 14 3 60 46 5 30 48 5.8 <5 5.2 24	<5	<0.1	<5	<5 75 6.8 15 21 240 400 320 1000 1200 210 67 49	- - - - - - - - - - - - - - - - - - -			 	5 - 5 - 5 - 1 <0.1										-								
Detailed Site Investigati BH11_0.5:1.0 BH12_2.5:3.0 BH12_3.0:3.5 BH12_3.0:3.5 BH12_3.0:3.5 BH13_0.0:0.1 BH14_0.0:0.1 BH15_0.5:1.0 BH16_0.0:0.1 HA06 0:0.1 HA06 0:0.1 HA06 0:0.1 HA07 0:2:0.3 HA08 0:2:0.3 HA08 0:0.1 HA10 0:0.1 HA10 0:0.1 HA10 0:0.1 HA10 0:0.1 HA11 0:0.1 HA11 0:0.1 TP1_0.0:0.1	100 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049	4.9	<0.4 <0.4 <0.4 - <0.4 - <0.4 - <0.4 <0.4	8.8 - <5 - <5 6.3 6.5 10 9.5 - 7.6 8 7.3 7.4 9.1 5.4 6.4	<5	<pre><5</pre>	<0.1	<5	<5 - 75 - 6.8 15 - <5 21 240 - 400 320 860 300 1000 120 210 67	- - - - - - - - - - - - - - - - - - -				5 - 5 - 5 - 1 <0.1		- - - - - - - - - - - - - - - - - - -								-								
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 TP1_0.0-0.1 TP1_0.0-0.1 TP1_0.0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049 714933	4.9	<0.4	8.8 	<5	<5 -	<0.1 -(0.1 -	<5	<5	- - - - - - - - - - - - - - - - - - -				5 - 5 - 5 - 1 <0.1		- - - - - - - - - - - - - - - - - - -								-								
Detailed Site Investigati BH11_0.5:1.0 BH12_2.5:3.0 BH12_3.0:3.5 BH12_3.0:3.5 BH12_3.0:3.5 BH13_0.0:0.1 BH14_0.0:0.1 BH15_0.5:1.0 BH16_0.0:0.1 HA06 0:0.1 HA06 0:0.1 HA06 0:0.1 HA07 0:2:0.3 HA08 0:2:0.3 HA08 0:0.1 HA10 0:0.1 HA10 0:0.1 HA10 0:0.1 HA10 0:0.1 HA11 0:0.1 HA11 0:0.1 TP1_0.0:0.1	100 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049	4.9	<0.4	8.8 - <- - <-	<5 1 14 1 <5 <5 <5 <5 = - 1 14 3 60 46 5 30 48 5.8 <5 5.2 24	<5	<0.1	<5	<5 75 6.8 15 21 240 400 320 1000 1200 210 67 49	- - - - - - - - - - - - - - - - - - -				5 - 5 - 5 - 1 <0.1		- - - - - - - - - - - - - - - - - - -								-								
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1 HA10_0-0.1 TP1_10-1.5 TP2_0.0-0.1 TP1_1.0-1.5 TP2_1.5-2.0 TP2_1.5-2.0	100 20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 107-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 716335 714933 716335 714933 714933 714933 714933 713049 240785 713049 240785 713049 714933 714933 714933 714933 716335	4.9	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	8.8 	<5 14 <5 <5 <5 11 43 <60 46 65 30 48 5.8 <5 5.2 24 5.1 40	<5	<pre><0.1</pre>	<5 - <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5	- - - - - - - - - - - - - - - - - - -				5 - 5 - 5 - 1 <0.1		- - - - - - - - - - - - - - - - - - -								-								
Detailed Site Investigati BH11_0.5:1.0 BH12_2.5:3.0 BH12_3.0:3.5 BH12_3.0:3.5 BH12_3.0:3.5 BH13_0.0:0.1 BH14_0.0:0.1 BH15_0.5:1.0 BH16_0.0:0.1 HA06 0:0.1 HA06 0:0.1 HA06 0:0.1 HA07 0:2:0.3 HA08 0:2:0.3 HA08 0:0.1 HA10 0:0.1 HA10 0:0.1 HA11 0:0.1 HA11 0:0.5 HA12 0:0.1 TP1_0.0:0.1 TP1_1.0:1.5 TP2_0.0:0.1 TP2_1.5:2.0 TP3_0.0:0.1	20-Apr-20 Borehole within Sportsfield 07-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 716335 714933 716335 714933 714933 714933 713049 714933 714933 714933 714933	4.9	<0.4	8.8	<5 14 <5 <- 5 <- 5 <- 5 <- 11	<5 -	<0.1 <0.1 <0.1 <0.1	<5 . <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5																							
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-0.1 BH14_0.0-0.1 BH14_0.0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 TP1_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 TP4_0.0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Duplicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 21-Apr-20 Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 714933 714933 714933 714933 714933	4.9	<0.4	8.8 	<5 14 - <5 <5 <5 11 43 - 60 46 63 48 5.8 <5 5.2 24 5.1 - 40 - 5.2 <40 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <6 <5 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <7 <7 <6 <7 <6 <6 <7 <7 <6 <7 <7 <6 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <8 <7 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 </td <td> <5 </td> <td><0.1 -(0.1 -(0.1) -(0.1</td> <td><5 <5 <-5 <-5 <-5 <-5 <-5 <-5 <-5 <-5</td> <td><pre><5</pre></td> <td></td> <td></td> <td></td> <td></td> <td>5 - - - 5 - - 1 <0.1 - - - - - - - - - - - - - - - - - - -</td> <td></td>	<5	<0.1 -(0.1 -(0.1) -(0.1	<5 <5 <-5 <-5 <-5 <-5 <-5 <-5 <-5 <-5	<pre><5</pre>					5 - - - 5 - - 1 <0.1 - - - - - - - - - - - - - - - - - - -																		
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 QA20200407-1 QC 20200407-1 HA07_0-2-0.3 HA08_0-2-0.3 HA09_0-0.1 HA11_0-0.0 HA11_0-0.0 TP1_1_0-0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP4_0.0-0.1 QC20200421	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Unplicate sample of HA06_0-0.1 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 716335 714933 716335 714933 714933 714933 714933 713049 240785 713049 714933 714933 714933 714933 714933 716335 714933 714933 714933 714933 714933 714933 714933 714933 714933 714933	4.9	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	8.8 	<5 14 <5 <5 <5 <5 11 43 <5 <5 <5 <5 11 43 <60 46 65 30 48 5.8 <5.2 24 5.1 40 <5 <5 <4 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6	<5	<pre><0.1 <0.1</pre>	<5 <5 <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <-	<pre><5</pre>					5																		
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 QA20200407-1 QC 20200407-1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA11_0.4-0.5 HA12_0-0.1 TP1_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 TQ20200421 QA20200421	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 716335 714933 716335 714933 714933 714933 713049 716335 713049 240785 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933	4.9	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 -	8.8 <5 <5 <5	<5 -14	<5	<pre><0.1</pre>	<5 - <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5					5																		
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP4_0.0-0.1 QC20200421 QA20200421 QA20200421 TP4_1.0-1.5	20-Apr-20 Borehole within Sportsfield 07-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 714933	4.9	<0.4	8.8 - <5 - 6.3 6.5 10 9.5 - 7.6 8 7.3 7.4 9.1 5.4 6.4 <5 	<5 14 - <5 <5 <5 <5 11 43 - 60 46 65 30 48 5.8 <5 5.2 24 5.1 5.2 <5 4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5	<0.1 -(0.1 -(0.1 -(0.1)	<5	<pre><5</pre>					5																		
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 QA20200407-1 QC 20200407-1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 TP1_0.0-0.1 TP1_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 QC20200421 QA20200421 QA20200421 QA20200421 TP4_1.0-1.5 TP5_0.5-1.0	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 714933	4.9	<0.4(0.4 -(0.	8.8 	<5 14 - <5 <5 <5 <11 43 - 60 46 65 30 48 5.8 <5 5.2 24 5.1 - 5.2 40 - <5 <4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5	<0.1	<5 <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <-	<pre><5</pre>					5																		
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 QA20200407-1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA11_0.0-0.1 HA11_0.0-0.1 TP1_1.0-1.5 TP2_1.5-2.0 TP2_0.0-0.1 TP2_1.5-2.0 TP2_0.0-0.1 TP4_0.0-0.1 QC20200421 QA20200421 QA20200421 TP4_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within Sportsfield	714933 716335 716335 714933 716335 714933 714933 714933 714933 714933 713049 240785 713049 714933	4.9	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	8.8	<pre><5</pre>	<5	<pre><0.1</pre>	<5 <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <-	<pre><5</pre>					5																		
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 CA20200407-1 CA20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1 HA11_0.4-0.5 HA12_0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 TP4_0.0-0.1 TP4_1.0-1.5 TP4_0.0-0.1 TP4_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5 TP7_0.0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within	714933 716335 716335 714933 716335 714933 714933 714933 713049 714933	4.9	<0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	8.8	<5 -14	<5	<pre><0.1</pre>	<5 <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <- <5 <-	<5					5																		
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA07_0.2-0.3 HA09_0-0.1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 TP1_0.0-0.1 TP1_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 Q220200421 QA20200421 TP4_1.0-1.5 TP5_0.5-1.0 TP5_0.5-1.0 TP5_0.0-0.1 TP5_0.0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Duplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within	714933 716335 714933 716335 714933 714933 714933 714933 713049 714933	4.9	<0.4	8.8 	<5 14 - <5 <5 <5 <5 11 43 - 60 46 65 30 48 5.8 <5 5.2 24 5.1 - 40 - <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <6 <6 <6 <6 <6 <7 <6 <6 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7	<5	<pre><0.1 </pre> <0.1 <pre><0.1 </pre> <pre><0.1 </pre> <pre><0.1 </pre> <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<5 <5 <- 5 <- 5 <- 5 <- 5 <- 5 <- 5	<pre><5</pre>					5			<pre></pre>															
Detailed Site Investigati BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 CA20200407-1 CA20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1 HA11_0.4-0.5 HA12_0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 TP4_0.0-0.1 TP4_1.0-1.5 TP4_0.0-0.1 TP4_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5 TP7_0.0-0.1	20-Apr-20 Borehole within Sportsfield 20-Apr-20 Handauger within Embankment 07-Apr-20 Handauger within Embankment 07-Apr-20 Triplicate sample of HA06_0-0.1 07-Apr-20 Handauger within Embankment 07-Apr-20 Testpit within Sportsfield 21-Apr-20 Testpit within	714933 716335 716335 714933 716335 714933 714933 714933 713049 714933	4.9	<0.4	8.8	<5 -14	<5	<pre><0.1</pre>	<5 <5 <- 5 <- 5 <- 5 <- 5 <- 5 <- 5	<5					5																		

i																			-						
				PC	.в									TRH								ВТ	ĿΧ		
	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCBs (Total)	C6-C9 Fraction	>C10-C16 Fraction	>C16-C34 Fraction	>C34-C40 Fraction	>C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction	C6-C10 less BTEX (F1)	>C10-C16 Fraction (Silica Gel)	>C16-C34 Fraction (Silica Gel)	>C34-C40 Fraction (Silica Gel)	Вепzene	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p)	Xylene (Total)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg								
	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	20	50	100	100	100	50	20	20	50	100	100	0.1	0.1	0.1	0.1	0.2	0.3
								<50	650	, and the second			10,000		, and the second		, and the second		,	10	600	288			1000
								<50	650				10,000							18	1080	518			1800

EOI				0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	20	50	100	100	100	50	20	20	50	100	100	0.1	0.1	0.1	0.1	0.2	0.3
NSW 2014 General Solid	Wasto CT1 (wi	ithout TCLB)		0.1	0.1	0.1	0.1	0.1	0.1	0.1	<50	650	30	100	100	10,000	30	20	2.0	50	100	100	10	600	288	0.1	0.2	1000
NSW 2014 General Solid		,									<50	650				10,000							18	1080	518			1800
NSW 2014 General Solid	waste acci (v	VIIII ICLP)									\ 30	030				10,000							10	1000	210			1000
Field_ID		t Matrix_Description	Lab_Report_Number																									
Preliminary Site Investig			_												,													
BH03_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH03_2.5-2.6	09-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH04_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-		<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH04_1.0-1.1	08-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06_0.3-0.4	08-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-		-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	< 0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH06_3.0-3.1	08-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	< 0.3
BH07_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	< 0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH07_1.5-1.6	09-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07-1.5-1.6	08-Jan-19	Borehole within Sportsfield	636837	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07 4.0-4.1	09-Jan-19	Borehole within Sportsfield	635079	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	< 0.3
BH08 0-0.1	08-Jan-19	Borehole within Sportsfield	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH08_3.5-3.6	08-Jan-19	Borehole within Sportsfield	635079	_	-	-	-	-	-	_		<20	<50	<100	<100	<100	<50	<20	<20	-	_	_	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH09 0-0.1	08-Jan-19	Borehole within Sportsfield	635079	_	_	_	_	_	-	_		<20	<50	<100	<100	<100	<50	<20	<20	-	_	_	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH09_1.5-1.6	08-Jan-19	Borehole within Sportsfield	635079	_	_	-		_	-	_	_	<20	<50	<100	<100	<100	<50	<20	<20	-	_	_	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH09 4.0-4.1	08-Jan-19	Borehole within Sportsfield	635079	-	_	_		_	-	_	_	<20	<50	<100	<100	<100	<50	<20	<20				<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH10_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	-	-	-			-	-		<20	<50	<100	<100	<100	<50	<20	<20				<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH10_0-0.1 BH10 1.0-1.1	09-Jan-19	Borehole within Sportsfield	635079			-		H :-			-	-20	-30	-100	-100	-100	-30	-20	-20				-0.1	-0.1			-0.2	-0.3
HA01_0-0.1	08-Jan-19	Handauger within Embankment	635079	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<20	<50	1700	450	2150	<50	<20	<20				<0.1	<0.1	<0.1	0.8	1.4	2.1
													_	_														
QC-01	08-Jan-19	Duplicate sample of HA01_0-0.1	635079	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<20	<50	510	310	820	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	0.3	0.2	0.6
QA-01	08-Jan-19	Triplicate sample of HA01_0-0.1	209223	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	420	220	640	<50	<25	<25	-	-	-	<0.2	<1	<0.5	<1	<2	<1
HA01_0.9-1.0	08-Jan-19	Handauger within Embankment	635079		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
HA01_0.9-1.0	08-Jan-19	Handauger within Embankment	636837	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-
HA02_0-0.1	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	<20	<50	290	180	470	<50	<20	<20	-	-	-	<0.1	0.5	<0.1	1.2	3.3	4.5
HA02_0.4-0.5	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	<20	<50	460	190	650	<50	<20	<20	-	-	-	<0.1	0.2	<0.1	0.8	2	2.8
HA03_0-0.1	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	<20	<50	500	130	630	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
HA03_0.9-1.0	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
HA04_0-0.1	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
HA04_1.4-1.5	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
HA05_0-0.1	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HA05_1.0-1.1	00 1 10	11 1 201 E 1 1 1																								,	<0.2	<0.3
HAU5_1.0-1.1	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-		<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.5
Detailed Site Investigation		Handauger within Embankment	635079	-	-	-	-	-	-	-	-	<20	<50	<100	<100	<100	<50	<20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	CU.2	VO. 3
		Borehole within Sportsfield	714933	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20 <20	<50 <50	<100	<100	<100	<50 <50	<20 <20	<20	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0	on 20-Apr-20	Borehole within Sportsfield		<0.5	<0.1			<0.5	<0.5	- <0.5 -	<0.5									- - -	- - -	-						
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0	20-Apr-20 20-Apr-20	Borehole within Sportsfield Borehole within Sportsfield	714933 716335	<0.5	<0.1			- <0.5 -	- <0.5 -	- <0.5 -	- <0.5 -	<20	<50 -	<100	<100	<100	<50 -	<20	<20	- - -	- - -	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5	20-Apr-20 20-Apr-20 20-Apr-20	Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield	714933 716335 714933	<0.5	<0.1			- <0.5 - -	- <0.5 - -	- <0.5 - -	- <0.5 - -									- - - - <50	- - - <100	- - - <100						
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20	Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield	714933 716335 714933 716335	<0.5	<0.1			<0.5 - - -	<0.5	- <0.5 - - -	<0.5 - - -	<20 - <20 -	<50 - <50 -	<100 - 160 -	<100 - <100 -	<100 - 160 -	<50 - <50 -	<20 - <20 -	<20 - <20 -	- - - - <50	- - - <100	- - - - <100	<0.1 - <0.1	<0.1 - <0.1 -	<0.1 - <0.1	<0.1 - <0.1 -	<0.2 - <0.2 -	<0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20	Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield	714933 716335 714933 716335 714933	<0.5 - - -	<0.1			<0.5 - - - -	<0.5 - - -	<0.5 - - - -	<0.5 - - -	<20 - <20 - <20	<50 - <50 - <50	<100 - 160 - <100	<100 - <100 - <100	<100 - 160 - <100	<50 - <50 - <50	<20 - <20 - <20	<20 - <20 - <20	- - - - <50	- - - <100	- - - <100	<0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1	<0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20	Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield Borehole within Sportsfield	714933 716335 714933 716335 714933 714933	<0.5 - - - - -	<0.1 - - - -			<0.5 - - - -	<0.5 - - - -	<0.5 - - - - -	<0.5 - - - - -	<20 - <20 - <20 <20	<50 - <50 - <50 <50 <50	<100 - 160 - <100 <100	<100 - <100 - <100 <100	<100 - 160 - <100 <100	<50 - <50 - <50 <50	<20 - <20 - <20 <20	<20 - <20 - <20 - <20 <20	- - - - <50 -	- - - <100 - -	- - - <100 - -	<0.1 - <0.1 - <0.1 <0.1	<0.1 - <0.1 - <0.1 <0.1	<0.1 - <0.1 - <0.1 <0.1	<0.1 - <0.1 - <0.1 <0.1	<0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20	Borehole within Sportsfield	714933 716335 714933 716335 714933 714933 714933	- <0.5 	<0.1			<0.5 - - - - -	<0.5 - - - - -	<0.5 - - - - -	<0.5 - - - - -	<20 - <20 - <20	<50 - <50 - <50	<100 - 160 - <100	<100 - <100 - <100	<100 - 160 - <100	<50 - <50 - <50	<20 - <20 - <20	<20 - <20 - <20	- - - <50 - -	- - - <100 - -	- - - <100 - -	<0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1	<0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH11_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20	Borehole within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933	- <0.5 	<0.1 - - - - -			<0.5	<0.5	<0.5	<0.5 - - - - -	<20 - <20 - <20 - <20 <20 <20 <20 -	<50 - <50 - <50 - <50 - <50 <50 - <50 - <50 - <	<100 - 160 - <100 <100 <100 - 100	<100 - <100 - <100 - <100 <100 <100 - <100 -	<100 - 160 - <100 - <100 <100	<50 - <50 - <50 <50 <50 -	<20 - <20 - <20 <20 <20 -	<20 - <20 - <20 - <20 - <20 - <20 <20 - <20	- - - <50 - - -	- - - <100 - - -	- - - <100 - - -	<0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1	<0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1	<0.2 <0.2 <0.2 <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049	- <0.5 	- <0.1 			- <0.5 	- - - - - - -	- - - - - - -	<0.5	<20 - <20 - <20 <20	<50 - <50 - <50 <50 <50	<100 - 160 - <100 <100	<100 - <100 - <100 <100	<100 - 160 - <100 <100	<50 - <50 - <50 <50	<20 - <20 - <20 <20	<20 - <20 - <20 - <20 <20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 <0.1	<0.1 - <0.1 - <0.1 <0.1	<0.1 - <0.1 - <0.1 <0.1	<0.1 - <0.1 - <0.1 <0.1	<0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Sportsfield Handauger within Embankment Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335	<0.5	<0.1			- <0.5 	<0.5	<0.5	<0.5	<20 - <20 - <20 - <20 <20 <20 - <20 - <20	<50 - <50 - <50 - <50 <50 <50 - <50	<100 - 160 - <100 <100 <100 - 1000	<100 - <100 - <100 - <100 <100 - 290 -	<100 - 160 - <100 <100 <100 - 1290 -	<50 - <50 - <50 <50 <50 - <50 -	<20 - <20 - <20 - <20 <20 <20 <20 - <20	<20 <20 - <20 - <20 - <20 <20 - <20 - <20 <20 -	- - - - <50 - - - - - - -	- - - <100 - - - - - <100		<0.1	<0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 <0.1 - <0.1 <0.1	<0.1	<0.2 <0.2 - <0.2 - <0.2 <0.2 - <0.2 - <0.2 <0.2	<0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049	- <0.5 	<0.1			<0.5	<0.5	<0.5	<0.5	<20 <20 <20 <20 <20 <20 <20 <20 - <20 - <20	<50 <50 <50 <50 <50 <50 <50	<100	<100 - <100 - <100 - <100 <100 - <100	<100 - 160 - <100 <100 <100 - 1290 - 760	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<20 <20 <20 <20 <20 <20 <20 <20 <20	<20 <20 <20 - <20 <20 - <20 - <20 - <20 - <20 - <20 - <20 -	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 <0.1 <0.1 - <0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<0.1 <0.1 <0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 <0.1 <0.1 - <0.1 - <0.1 - <0.1	<0.2	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 QA20200407-1 QC 20200407-1	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 70-Apr-20 20-Apr-20 20-Apr-20	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335 713049 240785	- <0.5 	<0.1			<0.5	<0.5	<0.5	<0.5	<20 <20 <20 <20	<50 <50 <50 <50 - <50	<100 - 160 - <100 <100 <100 - 1000 - 1000 - 460	<100 - <100 - <100 - <100 <100 <100 - <100 100 - 290 - 190 370	<100 - 160 - <100 <100 <100 - 1290 - 760 830	<50 - <50 - <50 - <50 <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <5	<20	<20	- - - -	- - - -	- - - -	<0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1 - <1.1	<0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<0.1	<0.2 - <0.2 - <0.2 - <0.2 - <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 HA07_0.2-0.3	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Handauger within Embankment Triplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335 713049 240785 713049	- <0.5 	- <0.1 			- <0.5 	- <0.5 	- <0.5 	<0.5	<20 <20 <20 <20	<50 <50 <50 <50 - <50	<100 - 160 - <100 <100 <100 - 1000 - 1000 - 460 460	<100 - <100 - <100 <100 <100 <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <	<100 - 160 - <100 <100 <100 - 1290 - 760 830 650	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<20	<20 - <20 - <20 - <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<0.2 - <0.2 - <0.2 - <0.2 - <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 QA20200407-1 QC 20200407-1 HA07 0.2-0.3 HA08 0.2-0.3	20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1 Handauger within Embankment Handauger within Embankment Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 716335 713049 713049 713049 713049	- <0.5 	- <0.1			- <0.5 	<0.5	- <0.5 	- <0.5 	<20	<50 <50 <50 <50	<100 - 160 - <100 <100 <100 - 1000 - 1000 - 570 460 460 580	<100 - <100 - <100 <100 <100 <100	<100 - 160 - <100 <100 <100 - 1290 - 760 830 650 770	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<20	<20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 <1 <0.1	<0.1	<0.1 <0.1 <0.1	<0.2 - <0.2 - <0.2 - <0.2 - <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_3.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1	0n 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Handauger within Embankment Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049	- <0.5 				- <0.5 	- <0.5 	- <0.5 	- <0.5 	<20	<50 <50 <50 <50	<100 - 160 <100 <100 <100 - 1000 - 570 460 460 580 360	<100	<100 - 160 - <100 <100 <100 - 1290 - 760 8330 650 770 530	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<20 <20 <20 <20 <20	<20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0	<0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 <1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1	<0.1	<0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 - <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 QA20200407-1 QC 20200407-1 HA07 0.2-0.3 HA08 0.2-0.3 HA09 0-0.1 HA10 0-0.1	0n 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 714933 713049 713049 240785 713049 713049 713049 713049 713049	- <0.5 	- <0.1 			- <0.5 	- <0.5 	<0.5	- <0.5	<20	<50 <50 <50 <50	<100 - 160 - <100 <100 <100 - 1000 - 570 460 580 360 110	<100 <100 <100 <100	<100 - 160 - <100 <100 <100 <100 - 1290 - 760 830 650 770 530 110	<50	<20	<20	- - - -	- - - -	- - - -	<0.1	<0.1	<0.1	<0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3
Detailed Site Investigation BH12_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 QC 20200407-1 QC 20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0.0.1 HA11_0.4-0.5	00 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-	Borehole within Sportsfield Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049	- CO.5	- <0.1 			- <0.5 	- <0.5 	- <0.5 	- <0.5 	<20	<50 <50 <50 <50 - <50	<100	<100 - <100 - <100 <100 <100 - <100 - <100	<100 - 160 - <100 <100 <100 - 1290 - 760 830 650 770 530 110 110	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<20	<20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0	<0.1	<0.1	<0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_3.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA08_0.7-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1	0n 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049	- <0.5	- <0.1			- <0.5	<0.5	<0.5	- <0.5 	<20	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<100 - 160 - <100 <100 <100 - 1000 - 1000 - 570 460 460 580 360 360 110 110 130	<100 - <100 - <100 - <100 <100 - <100 190 - 100 - 100 - 100 - 100	<100 - 160 - <100 <100 <100 - 1290 - 760 830 650 770 530 110 110 130	<50	<20	<20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0	<0.1	<0.1	<0.1	<0.2 - <0.2 - <0.2 <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 QC_20200407-1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA11_0.4-0.5 HA12_0-0.1 TP1_0.0-0.1	00 20-Apr-20 07-Apr-20 07-	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049	- (0.5	- <0.1			- <0.5	<0.5	<0.5	- <0.5 	<20	<50 <50 <50 <50 - <50	<100	<100 - <100 - <100 <100 <100 - <100 - <100	<100 - 160 - <100 <100 <100 - 1290 - 760 830 650 770 530 110 110	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<20	<20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0	<0.1	<0.1	<0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 QC 20200407-1 HA07 0.2-0.3 HA08 0.2-0.3 HA08 0.2-0.3 HA09 0-0.1 HA10 0-0.1 HA10 0-0.1 H71_0.0-0.1 H71_0.0-0.1	0n 20-Apr-20 07-Apr-20 107-Apr-20	Borehole within Sportsfield Handauger within Embankment Testpit within Sportsfield Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 240785 713049	- <0.5	- <0.1			- <0.5	<0.5	<0.5	- <0.5	<20	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<100 - 160 - <100 <100 <100 - 1000 - 1000 - 570 460 460 580 360 360 110 110 130	<100 - <100 - <100 - <100 <100 - <100 190 - 100 - 100 - 100 - 100	<100 - 160 - <100 <100 <100 - 1290 - 760 830 650 770 530 110 110 130	<50	<20	<20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0	<0.1	<0.1	<0.1	<0.2 - <0.2 - <0.2 <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3
Detailed Site Investigation BH12_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 QC 20200407-1 QC 20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0.0.1 HA11_0.4-0.5 HA12_0.0.1 TP1_0.0-0.1 TP1_0.0-0.1 TP1_0.0-0.1	00 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Handauger within Sportsfield Testpit within Sportsfield Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 714933 714933	- <0.5	- <0.1			- <0.5	-0.5	<0.5	- <0.5	<20	<50	<100	<100 <100 - <100 - <100 <100	<100	<50	<20	<20	- - - -	- - - -	- - - -	<0.1	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 <0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 QC 20200407-1 HA07 0.2-0.3 HA08 0.2-0.3 HA08 0.2-0.3 HA09 0-0.1 HA10 0-0.1 HA10 0-0.1 H71_0.0-0.1 H71_0.0-0.1	0n 20-Apr-20 07-Apr-20 107-Apr-20	Borehole within Sportsfield Handauger within Embankment Testpit within Sportsfield Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 240785 713049	- (0.5	- <0.1			- <0.5	- <0.5 	<0.5	- <0.5	<20	<50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 -	<100 - 160 - <100 <100 <100 - 1000 - 1000 - 570 460 460 580 360 360 110 110 130	<100 - <100 - <100 - <100 <100 - <100 190 - 100 - 100 - 100 - 100	<100 - 160 - <100 <100 <100 - 1290 - 760 830 650 770 530 110 110 130	<50	<20	<20	- - - -	- - - -	- - - -	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0	<0.1	<0.1	<0.1	<0.2 - <0.2 - <0.2 <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2 - <0.2	<0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3 - <0.3 - <0.3 - <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 HA06 0-0.1 HA07 0.2-0.3 HA08 0.2-0.3 HA08 0.2-0.3 HA10 0-0.1 HA10 0-0.1 HA10 1-0.5 HA11_0.0-0.1 IP1_0.0-0.1 IP1_1.0-1.5 IP2_0.0-0.1 IP2_1.5-2.0 IP2_1.5-2.0	00 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049 240785 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933 714933 714933 714933 714933 714933					- <0.5	-0.5	-0.5	- <0.5	<20	<50	<100	<100 <100 <100	<100	<50	<20	<20	- - - -	- - - -	- - - -	<0.1	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 <0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 HA11_0-0.5 HA12_0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0	0n 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 20-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield Testpit within Sportsfield Testpit within Sportsfield Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 714933 714933 714933	- (0.5	- <0.1			- <0.5	-0.5	- 0.5 	- <0.5	<20	<50	<100	<100 <100 - <100 - <100 <100	<100	<50	<20	<20				<0.1	<0.1 - <0.1 - <0.1 - <0.1 - <0.1 <0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 HA06 0-0.1 HA07 0.2-0.3 HA08 0.2-0.3 HA08 0.2-0.3 HA10 0-0.1 HA10 0-0.1 HA10 1-0.5 HA11_0.0-0.1 IP1_0.0-0.1 IP1_1.0-1.5 IP2_0.0-0.1 IP2_1.5-2.0 IP2_1.5-2.0	00 20-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 07-Apr-20 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049 240785 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933 714933 714933 714933 714933 714933	- (0.5	- <0.1			- <0.5 	-0.5			<20	<50 <50	<100	<100 <100 <100	<100	<50	<20	<20				<0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 HA06 0-0.1 HA06 0-0.1 HA06 0-0.1 HA06 0-0.1 HA00 0-0.1 HA10 0-0.1 HA10 0-0.1 HA10 0-0.1 HA10 0-0.1 HA10 0-0.1 IP2_1.5-2.0 IP2_1.5-2.0 IP3_0.0-0.1	00 20-Apr-20 21-Apr-20 21-	Borehole within Sportsfield Handauger within Embankment Handauger within Sportsfield Testpit within Sportsfield Testpit within Sportsfield Testpit within Sportsfield Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 240785 713049 71305 714933 714933 714933 714933 714933 714933			<0.5	<0.5					<20	<50	<100	<100 <100 <100 <100	<100	<50	<20	<20				<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 TP1_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1	00 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 714933 714933 714933 714933 714933 714933			<0.5	<0.5				- - - - - - - - - - - - - - - - - - -	<20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -	<50	<100 -160 -100 <100 -100 -100 -1000 -1000 -570 -460 -580 -360 -110 -130 -100 -100 -100 -100 -100 -10	<100 -1 -100 -100 -100 -100 -100 -100 -1	<100	<50	<20	<20				<0.1	<0.1	<0.1 -(0.1 -(0.1) -(0.1	<0.1 -(0.1 -(0.1) -(0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 C20200407-1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA11_0.4-0.5 HA12_0-0.1 TP1_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 TP4_0.0-0.1 TP4_0.0-0.1 TP4_0.0-0.1 TP4_0.0-0.1	00 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933			<0.5	<0.5				- - - - - - - - - - - - - - - - - - -	<20	<50	<100 -160 -160 -100 <100 -1000	<100	<100	<50	<20	<20				<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA06 0-0.1 HA06 0-0.1 HA07 0.2-0.3 HA08 0.2-0.3 HA08 0.2-0.3 HA09 0-0.1 HA10 0-0.1 F1_1.0-1.5 F12_0.0-0.1 F12_1.5-2.0 F13_0.0-0.1 F14_0.0-0.1	00 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 716335 713049 240785 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 71305 714933			<0.5	<0.5				- - - - - - - - - - - - - - - - - - -	<20	<50	<100 -160 -160 -100 <100 -1000	<100	<100	<50	<20	<20				<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06 0-0.1 HA00 0-0.1 HA10 0-0.1 HA10 0-0.1 HA10 0-0.1 HA10 0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1	00 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933			<0.5	<0.5				- - - - - - - - - - - - - - - - - - -	<20	<50	<100	<100 <100 <100	<100	<50 <	<20	<20 <				<pre><0.1</pre>	<0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 QA20200407-1 HA07_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1 HA10_0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP4_0.0-0.1 QC20200421 QA20200421 TP4_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5	00 20-Apr-20 21-Apr-20 21-	Borehole within Sportsfield Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933			<0.5	<0.5				- - - - - - - - - - - - - - - - - - -	<20	<50	<100 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<100 -100 -100 -100 -100 -100 -100 -190 -19	<100	<50	<20	<20				<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH16_0.0-0.1 HA06_0.0.1 HA08_0.0.0.3 HA08_0.0.0.3 HA08_0.0.0.1 HA10_0.0.1 HA10_0.0.1 IP1_1.0-1.5 IP2_0.0-0.1 IP2_1.5-2.0 IP3_0.0-0.1 IP4_0.0-0.1 IP4_1.0-1.5 IP5_0.5-1.0 IP5_0.5-1.0 IP6_1.0-1.5 IP5_0.5-1.0 IP6_1.0-1.5 IP7_0.0-0.1	07-Apr-20 20-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testplit within Sportsfield Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933			<0.5	<0.5				- - - - - - - - - - - - - - - - - - -	<20	<50	<100	<100	<100	<50	<20	<20 <				<0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2	<0.3
Detailed Site Investigation BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-0.1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA07_0.2-0.3 HA09_0-0.1 HA07_0.2-0.3 HA09_0-0.1 HA10_0-0.1 HA10_0-0.1 HA10_0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP2_1.5-2.0 TP2_1.5-2.0 TP2_0.0-0.1 TP4_0.0-0.1 QC20200421 QA20200421 QA20200421 TP4_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5 TP7_0.0-0.1 TP6_1.0-1.5 TP7_0.0-0.1	00 20-Apr-20 20-	Borehole within Sportsfield Handauger within Embankment Handauger within Embankment Louplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933			<0.5	<0.5					<20	<50	<100 -160 -100 <100 -100 -1000 -1000 -1000 -570 -460 -580 -360 -110 -130 -100 -100 -100 -100 -100 -10	<100 -100 -100 -100 -100 -100 -100 -100	<100	<50	<20	<20 <				<0.1	<0.1	<0.1 -(0.1 -(0.1) -(0.1	<0.1 -(0.1 -(0.1) -(0.1	<0.2	<0.3
Detailed Site Investigative BH11_0.5-1.0 BH12_2.5-3.0 BH12_3.0-3.5 BH12_3.0-3.5 BH12_3.0-3.5 BH13_0.0-0.1 BH14_0.0-0.1 BH15_0.5-1.0 BH16_0.0-1 HA06_0-0.1 HA06_0-0.1 HA06_0-0.1 HA07_0.2-0.3 HA08_0.2-0.3 HA08_0.2-0.3 HA08_0.2-0.3 HA09_0-0.1 HA10_0-0.1 TP1_0.0-0.1 TP1_1.0-1.5 TP2_0.0-0.1 TP2_1.5-2.0 TP3_0.0-0.1 TP4_0.0-0.1 TP4_1.0-1.5 TP5_0.5-1.0 TP5_0.5-1.0 TP6_1.0-1.5 TP5_0.5-1.0 TP6_1.0-1.5 TP5_0.0-0.1	07-Apr-20 20-Apr-20 07-Apr-20	Borehole within Sportsfield Handauger within Embankment Duplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Triplicate sample of HA06_0-0.1 Handauger within Embankment Testplit within Sportsfield Testpit within Sportsfield	714933 716335 714933 716335 714933 714933 714933 714933 713049 713049 240785 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 713049 714933			<0.5	<0.5					<20	<50	<100	<100	<100	<50 . <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<20	<20 <				<0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2	<0.3

								P/	λH										Inorgani	С	
Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Carcinogenic PAHs as B(a)P TEQ	Benzo(b,j}fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	PAHs (Total)	EC 1:5 soil:water	Catic	pH 1:5 soil:water	% Clay
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μS/cm	meq/100g ph	Units	%
0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	10	0.05	0.1	1
				0.8													200				
				10													200				

NSW 2014 General Solid	Waste CT1 (w	ithout TCLP)						0.8						4	4/		السب				200				
NSW 2014 General Solid	Waste SCC1 (v	with TCLP)						10													200				
Field_ID	Sampled_Da	at Matrix_Description	Lab_Report_Number																						
Preliminary Site Investig	gation																								
BH03_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	<u> </u>	[- '			- '		(- J		['	[- '		1 - '	1 - 1	1 - 1			-	-	-	-	-	-
BH03_2.5-2.6	09-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<u> </u>		-	
BH04_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			-	
BH04_1.0-1.1	08-Jan-19	Borehole within Sportsfield	635079	=			'				·=='						1				-			-	-
BH06_0.3-0.4	08-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			-	-
BH06_3.0-3.1	08-Jan-19	Borehole within Sportsfield	635079	=			'				·=='						1				-			-	
BH07_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			-	
BH07_1.5-1.6	09-Jan-19	Borehole within Sportsfield	635079		<u> </u>	[·	<u> </u>	<u> </u>			<u>(='</u>														-
BH07-1.5-1.6	08-Jan-19	Borehole within Sportsfield	636837	<0.5	<0.5	1.5	12	18	24.67	13	10	15	17	1.2	31	<0.5	12	<0.5	10	33	173.7			-	
BH07_4.0-4.1	09-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	0.8	1.204	<0.5	<0.5	<0.5	0.6	<0.5	1	<0.5	0.7	<0.5	0.5	1.1	4.7				-
BH08_0-0.1	08-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			-	
BH08_3.5-3.6	08-Jan-19	Borehole within Sportsfield	635079		<u> </u>	<u> </u>	<u> </u>			-	ı <u> </u>	-	<u> </u>		<u> </u>			<u> </u>		<u> </u>					-
BH09_0-0.1	08-Jan-19	Borehole within Sportsfield	635079				<u> </u>		-		(<u> </u>									<u> </u>	<u> </u>			-	
BH09_1.5-1.6	08-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
BH09_4.0-4.1	08-Jan-19	Borehole within Sportsfield	635079				<u> </u>		-		(<u> </u>									<u> </u>	<u> </u>				
BH10_0-0.1	09-Jan-19	Borehole within Sportsfield	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				-
BH10_1.0-1.1	09-Jan-19	Borehole within Sportsfield	635079				<u> </u>		-		(<u> </u>									<u> </u>	<u> </u>			-	
HA01_0-0.1	08-Jan-19	Handauger within Embankment	635079	4.5	<0.5	15	26	23	32.97	15	7.8	24	29	1.6	100	3.1	15	<0.5	48	90	402		-	-]	-
QC-01	08-Jan-19	Duplicate sample of HA01_0-0.1	635079	<0.5	<0.5	<0.5	3.1	4.8	6.492	3.1	2.6	4.1	3.6	<0.5	7.2	<0.5	3.5	<0.5	1.6	8.2	41.8	-]		-	<u> </u>
QA-01	08-Jan-19	Triplicate sample of HA01_0-0.1	209223	0.1	0.5	0.7	3.5	4.8	6.155	7.5	3		3.5	0.7	4.7	<0.1	2.4	0.1	1.9	4.9	38	- 1	-	-	-
HA01_0.9-1.0	08-Jan-19	Handauger within Embankment	635079	- '	- '	-	- '	- '	-	- '	1 - '	- '	- '	- '	- 1	- 1	- 1	- '	_ ·	-	- 1	- 1	-	-	-
HA01_0.9-1.0	08-Jan-19	Handauger within Embankment	636837	<0.5	<0.5	2	8.9	9	13.45	6.3	3.6	7.8	8.2	1.5	17	<0.5	5.3	<0.5	8.2	17	94.8	- 1	-	-	-
HA02_0-0.1	08-Jan-19	Handauger within Embankment	635079	- '	- '	-	- '	- '	-	- '	1 - '	- '	- '	- '	- 1	- 1	- 1	- '	_ ·	-	- 1	- 1	-	-	-
HA02_0.4-0.5	08-Jan-19	Handauger within Embankment	635079	<0.5	0.6	0.7	3.4	3.9	5.806	2.8	2.3	3.5	3.3	0.7	6.3	<0.5	1.8	<0.5	2	6.2	37.5	- 1	-	-	-
HA03_0-0.1	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	-	-	-	-		1 - 1	-		-	- 1	- 1	-	-	-
HA03_0.9-1.0	08-Jan-19	Handauger within Embankment	635079	<0.5	<0.5	<0.5	0.7	0.8	1.261	<0.5	<0.5	0.8	0.8	<0.5	1.7	<0.5	<0.5	<0.5	0.5	1.6	6.9	- 1	-	-	- 1
HA04_0-0.1	08-Jan-19	Handauger within Embankment	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	- 1	-	-	- 1
HA04_1.4-1.5	08-Jan-19	Handauger within Embankment	635079	-	-	-	-	-	-	-	-	-	-	-	-		1 - 1	-		-	- 1	- 1	-	-	- 1
HA05_0-0.1	08-Jan-19	Handauger within Embankment	635079	(- ·	-	_ ·	-	<u> </u>	-	-	-	-	-	- T	-			-		-	- 1	- 1	-	-	-
HA05_1.0-1.1	08-Jan-19	Handauger within Embankment	635079	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	- 1	-	-	-
Detailed Site Investigation							4																		
BH11 0.5-1.0	20-Apr-20	Borehole within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		-	-	
BH12 2.5-3.0	20-Apr-20 20-Apr-20	Borehole within Sportsfield	716335	<0.5	<0.5	0.7	7.3	12	18.51	8.8	11	9	8.1	3	12	<0.5	8.1	<0.5	2.6	14	96.6	 	- 1		-
BH12_2.5-3.0 BH12_3.0-3.5	20-Apr-20 20-Apr-20	Borehole within Sportsfield	714933	<0.5	<0.5	<0.5	1.8	3	4.522	2.4	2.2	2.9	2	0.6	2.7	<0.5	1.7	<0.5	0.6	3.1	23	- 	- 1		-
BH12_3.0-3.5	20-Apr-20 20-Apr-20	Borehole within Sportsfield	716335				+	-	1 -			- 2.9			-		-			3.1		 	- 1		-
BH13 0.0-0.1	20-Apr-20 20-Apr-20	Borehole within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	 	-	-	-
BH14 0.0-0.1	20-Apr-20 20-Apr-20	Borehole within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	 	- 1		-
BH15 0.5-1.0	20-Apr-20 20-Apr-20	Borehole within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	 	-	-	-
BH16 0.0-0.1	20-Apr-20 20-Apr-20	Borehole within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	 	- 1		-
HA06 0-0.1	07-Apr-20	Handauger within Embankment	713049	<0.5 <5	<5	<5	8.4	13	19.28	11	<10.5	12	9	<5	9.6	<5	<10	<0.5 <5	<5	11	74	 	-	-	-
HA06 0-0.1	07-Apr-20 07-Apr-20	Handauger within Embankment	716335	<u> </u>	<u> </u>	<u> </u>	+ 0.7	- 13	15.20			- 12	-		3.0	-	(T	ب	<u> </u>	-	- '-	- 	 1	 	-
QA20200407-1	07-Apr-20 07-Apr-20	Duplicate sample of HA06_0-0.1	713049	- <5	- <5	- <5	- <5	- <5	<12.1	- <5	- <5	- <5	- <5	- <5	7	- <5	- <5	- <5	- <5	7.7	14.7	 	 +	-	-
QC 20200407-1	07-Apr-20 07-Apr-20	Triplicate sample of HA06_0-0.1	713049 240785	<0.1	<0.1	0.2	2.7	3.2	4.398	5.1	2	- √	1.8	0.7	3.8	<0.1	1.9	<0.1	1	3.8	26	 	-	-	-
QC 20200407-1 HA07 0.2-0.3	07-Apr-20 07-Apr-20	Handauger within Embankment	713049	<0.1	<0.1	<0.5	2.7	2.3	3.298	2.4	1.1	1.6	1.8	<0.5	3.8	<0.1	1.9	<0.1	1.1	3.8	19.7	 	-	-	-
HA07 0.2-0.3 HA08 0.2-0.3	07-Apr-20 07-Apr-20		713049	<0.5	0.6	1.1	5.6	5.6	3.298 8.848	5.5	3.3	3.5	4.5	1.4	9.1	<0.5	3.1	<0.5	4.3	3.1 9	56.6	 	 +	 	-
HA08 0.2-0.3 HA09 0-0.1	07-Apr-20 07-Apr-20	Handauger within Embankment Handauger within Embankment	713049 713049	<0.5 <0.5	<0.5	1.1 <0.5	0.6	0.7	1.132	0.6	0.6	3.5 <0.5	4.5 0.6	1.4 <0.5	9.1 0.8	<0.5	3.1 <0.5	<0.5 <0.5	4.3 <0.5	1	56.6 4.9	 	-	-	-
HA09 0-0.1 HA10 0-0.1	07-Apr-20 07-Apr-20	Handauger within Embankment Handauger within Embankment	713049 713049	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<1.132	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	4.9 <0.5	 	 +		-
HA10 0-0.1 HA11 0.4-0.5	-	Handauger within Embankment Handauger within Embankment	713049 713049	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 0.8	<0.5 0.7	1.184	<0.5 0.7	<0.5 <0.5	<0.5 0.5	_	<0.5	<0.5 1.5	<0.5	<0.5	<0.5 <0.5	_	<0.5 1.4	_	 	 +	-	-
	07-Apr-20	· · · · · · · · · · · · · · · · · · ·			_								0.6						1.4		7.6	 	-	-	-
HA12 0-0.1	07-Apr-20	Handauger within Embankment	713049	<0.5	<0.5	<0.5	0.8	0.7	1.482	0.6	<1	0.8	0.7	<1	1.8	<0.5	<1	<0.5	1.4	1.6	8.4		-	-	
TP1_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.6	 	 +	-	-
TP1_1.0-1.5	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	 	-	-	-
TP2_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	4-35	+	 '	+		1		لت ت	+	+	+	+-:-	<u> </u>				-		 	-	-	-
TP2_1.5-2.0	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	0.7	8.4	11	16.6	9.1	6.6	8.2	7.9	2.3	12	<0.5	5.8	<0.5	2.7	14	88.7	└	-		-
TP2_1.5-2.0	21-Apr-20	Testpit within Sportsfield	716335		4	 '	 - '	+ '	1 -		<u> </u>	4	4	4	4	← -	←	ل	- 40.5	<u> </u>	1	└	-	-	└
TP3_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<u> </u>	-		لـنــا
TP4_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<u> </u>	-	-	الــــــــا
QC20200421	21-Apr-20	Triplicate sample of TP4_0-0.1	241327	<0.1	<0.1	<0.1	<0.1	<0.05	<0.172	<0.2	<0.1	ليب	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	-	-	-	-
QA20200421	21-Apr-20	Duplicate sample of TP4_0-0.1	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		-	-	-
TP4_1.0-1.5	21-Apr-20	Testpit within Sportsfield	716335	-	'ـــــــــــــــــــــــــــــــــــــ	— —'	-	 _'	 '	-	-	-	'ـــــــــــــــــــــــــــــــــــــ	-	-	الستسه	-	<u> </u>	ــــــــــــــــــــــــــــــــــــــ		- 1	22	1.4	3.4	<1
TP5_0.5-1.0	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-
TP6_1.0-1.5	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-
TP7_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	
TP7_0.6-0.7	21-Apr-20	Testpit within Sportsfield	714933	-	'ـــــــــــــــــــــــــــــــــــــ	⊥ —'	<u>↓</u> '	-	اـــــــــــــــــــــــــــــــــــــ	-	'ـــــــــــــــــــــــــــــــــــــ	-	اـــــــــــــــــــــــــــــــــــــ	-	-	-	النب	'ـــــــــــــــــــــــــــــــــــــ	لــنـــــــــــــــــــــــــــــــــــ		- 1	35	1.3	4.3	5.7
TP8_0.0-0.1	21-Apr-20	Testpit within Sportsfield	714933	<0.5	<0.5	<0.5	<0.5	<0.5	<1.21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-
TP8_0.5-0.6	21-Apr-20	Testpit within Sportsfield	714933	-	1 - '	-	-	-	-	-	-	-	-	-	-	-	-	-	1 - '	-	-	4 - 1	-	-	-

Table D: Soil TCLP Analytical Results

Project Number: 58081

Project Name: Kambala Sports Precinct

		ASLP		Heavy Metal										PAH									TCL	.Р	
JBS&G	pH (TCLP - initial)	pH (TCLP - off)	pH (Leachate fluid)	Lead	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b,j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	PAHs (Total)	Pyrene	pH (TCLP - HCl addition)	pH (TCLP - initial)	pH (TCLP - off)	pH (Leachate fluid)
	ph Units	ph Units	ph Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ph Units	ph Units	ph Units	ph Units
	0.1	0.1	0.1	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.1	0.1	0.1	0.1
2014 General Solid Waste TCLP1				5					0.04																

Field_ID	LocCode	Sampled_Date-Time																									
BH07_4.0-4.1	BH07_4.0-4.1	08-Jan-19	-	-	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1.6	6.1	4.8	5
BH12_3.0-3.5	BH12_3.0-3.5	20-Apr-20	-	-	-	0.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.6	3.7	5.1	-
HA01_0-0.1	HA01_0-0.1	08-Jan-19	-	-	-	0.07	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1.6	5.7	4.9	5
HA02_0-0.1	HA02_0-0.1	08-Jan-19	-	-	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	4.8	5
HA06 0-0.1	HA06 0-0.1	07-Apr-20	4.8	5.1	5	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 - 0.004	<0.001	<0.001 - 0.001	<0.001 - 0.005	<0.001	1.7	4.8	5.1	-
HA08 0.2-0.3	HA08 0.2-0.3	07-Apr-20	5.5	5.3	5	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1.7	5.5	5	-
TP2 15-20	TP2 1 5-2 0	21-Anr-20	-	-	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	1.6	3.6	5.1	-

Statistical Summary																									
Number of Results	2	2	2	3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	7	7	3
Number of Detects	2	2	2	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	6	7	7	3
Minimum Concentration	4.8	5.1	5	0.03	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1.6	3.6	4.8	5
Minimum Detect	4.8	5.1	5	0.03	ND	ND	ND	ND	ND	1.6	3.6	4.8	5												
Maximum Concentration	5.5	5.3	5	0.13	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001	0.001	0.005	<0.001	1.7	6.1	5.1	5
Maximum Detect	5.5	5.3	5	0.13	ND	0.004	ND	0.001	0.005	ND	1.7	6.1	5.1	5											
Average Concentration				0.077	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.00085	0.0005	0.00055	0.00095	0.0005	1.6	4.9	5	5
Median Concentration	5.15	5.2	5	0.07	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	1.6	5	5	5
Standard Deviation				0.05	0	0	0	0	0	0	0	0	0	0	0	0	0.00078	0	0.00011	0.001	0	0.052	0.97	0.14	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix A Borelogs

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date: 08-Jan-19 Eastings (GDA 94): 340240.19
Logged By: J Cranson Northings (GDA 94): 6251433.232
Contractor: PG Dilling Tone (Pormitti

Contractor: BG Dilling
Total Hole Depth (mbgs): 1.1

Bore Diameter (mm): 130

Zone/Area/Permit#:

Reference Level: AHD
Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Brown silty sand, dry, loose and heterogeneous. Inclusions of grass and rootlets.	HA01 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining. (QA/QC)
	0.5	0.40		Fill	Brown sand. Dry/damp, loose and heterogeneous.	HA01 0.3-0.4 PID = 0 ppm	No asbestos, odours or staining.
	1.0	0.90		SW	Brown/yellow sand. Damp. Loose, coarse and heterogeneous.	HA01 0.9-1.0 PID = 0 ppm	No asbestos, odours or staining.
	1.5	1.10			Borehole HA01 terminated at 1.1m		Hole incision.

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date: 08-Jan-19
Logged By: J Cranson
Contractor: BG Dilling
Total Hole Depth (mbgs): 0.7

Bore Diameter (mm): 130

Eastings (GDA 94): 340251.949 **Northings (GDA 94):** 6251442.447

Zone/Area/Permit#: Reference Level: AHD Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_			Fill	Brown silty sand. Dry, loose, heterogeneous. Inclusiuon of geofabric and rootlets.	HA02 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
	_						
	_	0.30		Fill	Brown sand. Dry/damp, loose and heterogeneous. Inclusions of rootlets.		
	0.5					HA02 0.4-0.5 PID = 0 ppm	No asbestos, odours or staining.
	_						
		0.70			Borehole HA02 terminated at 0.7m		Refusal on tree root.
	_						
	1.0						
	_						
6	_						
3DT 11-2-19	_						
JSTRALIA.C	_						
SINT STD A	1 <u>.5</u>						
2017.GPJ C	_						
BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19	_						
BSG BO	_						
BOREHOLI	2.0						

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

 Date:
 08-Jan-19
 Eastings (GDA 94):
 340255.081

 Logged By:
 J Cranson
 Northings (GDA 94):
 6251462.882

| Contractor: BG Dilling | Zone/Area/Permit#: | Total Hole Depth (mbgs): 1.6 | Reference Level: AHD | Bore Diameter (mm): 130 | Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Brown silty sand. Dry, loose, medium grained, heterogeneous and low plasticity. Inclusions of grass, geofabric and rootlets.	HA03 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
	0.5	0.50		Fill	Yellow/brown silty sand. Damp, firm, medium grained, low plasticity	HA03 0.4-0.5 PID = 0 ppm	No asbestos, odours or staining.
	-						
	1.0					HA03 0.9-1.0 PID = 0 ppm	No asbestos, odours or staining.
	_						
	_ 1 <u>.5</u>					HA03 1.5-1.6 PID = 0 ppm	
	_	1.60			Borehole HA03 terminated at 1.6m		No asbestos, odours or staining. Refusal/hole incision.
	_						

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date:08-Jan-19Eastings (GDA 94):340204.989Logged By:J CransonNorthings (GDA 94):6251475.01Contractor:BG DillingZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 Reference Level: AHD Bore Diameter (mm): 130 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_			Fill	Brown silty sand. Dry, heterogeneous, low plastcitiy, medium grained, firm. Inclusions of grass and rootlets.	HA04 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
	_						
		0.30		Fill	Grey/brown sand. Dry/damp, medium grained and heterogeneous.		
	0.5					HA04 0.4-0.5 PID = 0 ppm	No asbestos, odours or staining.
	_						
	_						
	_						
	1.0						
	_					HA04 1.0-1.1 PID = 0 ppm	No asbestos, odours or staining.
	_	1.20		Fill	Brown/black silty sand. Damp, medium grained, low plasticity, firm-stiff and		
iDT 11-2-19	_				heterogeneous.		
RALIA.GE	_						
STD AUST	1.5	1.50			Borehole HA04 terminated at 1.5m	HA04 1.4-1.5 PID = 0 ppm	No asbestos, odours or staining. Hole incision.
PJ GINT	_	1.50			Soletion 19704 Chilinated at 1.5iii		
_E - 2017.G							
BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.G							
OLE JBSG	_						
вокенс	2.0						

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date:08-Jan-19Eastings (GDA 94):340190.579Logged By:J CransonNorthings (GDA 94):6251490.579Contractor:BG DillingZone/Area/Permit#:Total Hole Depth (mbgs):1.25Reference Level:AHD

Bore Diameter (mm): 130

Reference Level: AHD Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Brown/black silty sand. Dry/damp, coarse grained, low plasticity and heterogeneous. Inclusions of grass.	HA05 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
	0.5	0.30		Fill	Brown/yellow grey silty sand. Damp, coarse grained, low plasticity and heterogeneous.	HA05 0.3-0.4 PID = 0 ppm	No asbestos, odours or staining.
	1.0	0.70		Fill	Black/yellow sand. Damp, coarse grained and heterogeneous. Slightly silty.		
	-					HA05 1.0-1.1 PID = 0 ppm	No asbestos, odours or staining.
	1.5	1.25			Borehole HA05 terminated at 1.25m		Hole incision.
	-						
	-						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Kambala

Date: 7/4/2020 Logged By: Nicholas Maricic Contractor: JBS&G Total Hole Depth (mbgs): 0.9 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observation
Hand Auger	-			Fill	Fill - Silty SAND - Brown, Heterogeneous, Damp, Fine-grained Sand with inclusions of Plastic Wrapping, Metal, Leaf Litter and Organic Material	HA06 0.0-0.1 PID = 1.4 ppm	No odours, stains or ACN noted.
	+	0.20		Fill	Fill - Silty SAND - Brown, Heterogeneous, Damp, Fine-grained Sand with inclusions of Roots	HA06 0.2-0.3 PID = 1.6 ppm	No odours, stains or ACM noted.
	0.5	0.40		SC	Clayey SAND - Brown, Homogeneous, Damp, Soft, Low Plasticity, Medium to Fine Grained	HA06 0.4-0.5 PID = 1.2 ppm	No odours, stains or ACN noted.
	1.0	0.90			Test Pit HA06 terminated at 0.9m		Refusal on Sandstone

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Kambala

Date: 7/4/2020 Logged By: Nicholas Maricic Contractor: JBS&G Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.9

Reference Level: Ground Surface

Pit Dimension (m3):

Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observation
Hand Auger	_			Fill	Fill - Silty SAND - Brown, Heterogeneous, Damp, Fine-grained Sand, Non-Plastic with inclusions of Plastic Wrapping, Metal, Organic Material and Rootlets	HA07 0.0-0.1 PID = 1.8 ppm	No odours, stains or ACM noted.
	-	0.20		Fill	Fill - Silty SAND - Brown, Heterogeneous, Damp, Fine-grained Sand, Non-Plastic with inclusions of Organic Material and Rootlets	HA07 0.2-0.3 PID = 1.9 ppm	No odours, stains or ACN noted.
	0.5	0.40		SC	Clayey SAND - Brown, Homogeneous, Damp, Soft, Low Plasticity, Medium to Fine Grained	HA07 0.4-0.5 PID = 2.1 ppm	No odours, stains or ACN noted.
	1 <u>.0</u>	0.90			Test Pit HA07 terminated at 0.9m		Refusal on Sandstone

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 7/4/2020 Logged By: Nicholas Maricic Contractor: JBS&G Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.4

Reference Level: Ground Surface

Pit Dimension (m3):

Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	(Topsoil) - Fill - Silty SAND - Brown, Heterogeneous, Fine-grained, Non-Plastic, Loose with inclusions of Plastic Wrapping, Metal Fencing, Organic Material	HA08 0.0-0.1 PID = 1.9 ppm	No odours, stains or ACM noted.
	-	0.20		SM	Silty SAND - Brown, Heterogeneous, Fine-grained, Non-Plastic, Loose with inclusions of Roots	HA08 0.2-0.3 PID = 1.6 ppm	No odours, stains or ACM noted.
	0.5	0.40			Test Pit HA08 terminated at 0.4m		Refusal on Tree Roots
	-						
	-						
	1.0						
	-						
	1.5						
	<u></u>						
	_						
	-						
	2.0						

Project Number: 58081

Client: Kambala School c/- CTPG Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 7/4/2020 Logged By: Nicholas Maricic Contractor: JBS&G Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.8

Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_			Fill	(Topsoil) - Fill - Silty SAND - Brown, Heterogeneous, Fine-grained, Non-Plastic, Loose with inclusions of Plastic Wrapping, Metal Fencing	HA09 0.0-0.1 PID = 1.5 ppm	No odours, stains or ACM noted.
	_	0.20		SM	Silty SAND - Brown, Heterogeneous, Fine-grained, Non-Plastic, Loose with inclusions of Roots and Rootlets	HA09 0.2-0.3 PID = 1.3 ppm	No odours, stains or ACM noted.
	0 <u>.5</u>	0.40		SC	Clayey SAND - Brown, Homogeneous, Damp, Soft, Low Plasticity, Fine Grained, Loose	HA09 0.4-0.5 PID = 1.7 ppm	No odours, stains or ACM noted.
	_	0.80			Test Pit HA09 terminated at 0.8m		Refusal on Sandstone
	1.0						
	-						
	_ 1 <u>.5</u>						
DT 5/21/20	-						
TD AUSTRALIA.G	-						
017.GPJ GINT S	2 <u>.0</u>						
TEST PIT JBSG TEST PIT - 2017.GPJ GINT STD AUSTRALIA.GDT	-						
TEST PIT JI	2 <u>.5</u>						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 7/4/2020 Logged By: Nicholas Maricic Contractor: JBS&G Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.8

Reference Level: Ground Surface

							T
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_			Fill	(Topsoil) - Fill - Silty SAND - Brown, Heterogeneous, Dry, Fine Grained, Loose with inclusions of Gravels, Rootlets, organic material	HA10 0.0-0.1 PID = 1.8 ppm	No odours, stains or ACM noted.
	-	0.20	XXX-	SM	Silty SAND - Brown, Heterogeneous, Fine-grained, Non-Plastic, Loose with inclusions of Gravels, Rootlets and Organic Material	HA10 0.2-0.3 PID = 2.1 ppm	No odours, stains or ACM noted.
	0.5	0.40		SM	Silty SAND - Brown, Heterogeneous, Fine-grained, Non-Plastic, Loose with inclusions of Gravels, Rootlets, Organic Material and Clay Clasts	HA10 0.4-0.5 PID = 2 ppm	No odours, stains or ACM noted.
	1.5	0.80			Test Pit HA10 terminated at 0.8m		Refusal on Sandstone

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:7/4/2020Eastings (GDA 94):Logged By:Nicholas MaricicNorthings (GDA 94):Contractor:JBS&GZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Fill - SAND - Grey, Heterogeneous, Moist, Medium Density, Fine - Medium Grained with inclusions of Bricks, ACM, Metal, Tennis Ball, Trace Gravels and Rootlets	HA11 0.0-0.1 PID = 2.1 ppm	No odours or stains noted. ACM Fragmented Identifie (Frag_01) at HA11 0.0-0.1
	-	0.20		SW	SAND - Grey, Heterogeneous, Moist, Medium Density, Fine - Medium Grained	HA11 0.2-0.3 PID = 1.8 ppm	No odours, stains or ACM noted.
	0.5	0.40		SW	SAND - Grey, Heterogeneous, Moist, Medium Density, Fine - Medium Grained	HA11 0.4-0.5 PID = 1.9 ppm	No odours, stains or ACM noted.
	1.0	0.80		SW	SAND - Yellow - Brown, Heterogeneous, Moist, Medium Density, Fine - Medium Grained	HA11 0.9-1.0 PID = 0.9 ppm	No odours, stains or ACN noted.
	1.5						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 7/4/2020 Logged By: Nicholas Maricic Contractor: JBS&G Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.6

Reference Level: Ground Surface

Pit Dimension (m3):

Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Fill - SAND - Grey, Heterogeneous, Moist, Medium Density, Fine - Medium Grained with inclusions of Bricks, ACM, Metal, Tennis Ball, Trace Gravels and Rootlets	HA12 0.0-0.1 PID = 1.8 ppm	No odours or stains noted. ACM Fragmented Identifie (Frag_02) at HA12 0.0-0.1
	-	0.20		SW	SAND - Grey, Heterogeneous, Moist, Medium Density, Fine - Medium Grained	HA12 0.2-0.3 PID = 1.4 ppm	No odours, stains or ACM noted.
	0.5	0.60			Test Pit HA12 terminated at 0.6m		Refusal on Sandstone
	1.0						
	_						
	1.5						
	-						
	2.0						
	_						
	-						

TP1

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:4/21/2020Eastings (GDA 94):Logged By:Lillian BeevorsNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill - SAND - Brown, Heterogeneous, Damp, Coarse Gravels with inclusions of Gravels, Glass, Rootlets and Grass	TP1 0.0-0.1	No odours, stains or ACM noted.
	_						
	0.5						
	-						
	_	0.80		SW	SAND - Dark Brown, Heterogeneous, Damp, Coarse Gravels with inclusions of Black Sand and Sandstone Cobbles	TP1 0.5-1.0	No odours, stains or ACN noted.
	1.0						
	_					TP1 1.0-1.5	No odours, stains or ACN noted.
	-						noted.
	1 <u>.5</u>						
	- -					TP1 1.5-2.0	No odours, stains or ACN noted.
	2.0	2.00			Test Pit TP1 terminated at 2m		
	_	2.00			rest Fit TFT terminated at 2m		
	_						
	-						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:4/21/2020Eastings (GDA 94):Logged By:Lillian BeevorsNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observation
Test Pit	-			Fill	Fill - SAND - Brown, Heterogeneous, Damp, Loose, Medium Density, Coarse Gravels with inclusions of Grass, Rootlets and White Clay	TP2 0.0-0.1	No odours, stains or ACM noted.
	0.5	0.50		Fill	Fill - SAND - Yellow, Homogeneous, Damp, Loose, Medium Density, Coarse Gravels		
	1.0	0.70		Fill	Fill - SAND - Brown - Orange, Homogeneous, Damp, Loose, Medium Density, Coarse Gravels with Potential Charcoal and Roots	TP2 0.5-1.0	No odours, stains or ACM noted.
	1.5	1.30		SC	Clayey SAND - Grey, Homogeneous, Damp, Soft, High Plasticity	TP2 1.0-1.5	No odours, stains or ACN noted.
	-					TP2 1.5-2.0	No odours, stains or ACI noted.
	2.0 - -	2.00			Test Pit TP2 terminated at 2m		

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:4/21/2020Eastings (GDA 94):Logged By:Lillian BeevorsNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

							Г
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill - Silty SAND - Brown, Heterogneous, Damp, Loose, Medium Density, Fine Grained with inclusions of Gravels, Rootlets, Grass, Slate and Glass	TP3 0.0-0.1	No odours, stains or ACM noted.
	_						
	_						
	-						
	0.5						
	_					TP3 0.5-1.0	No odours, stains or ACN noted.
	_						
	1.0	1.00		Fill	Fill - SAND - Yellow, Homogeneous, Damp, Loose, Medium Density with inclusions of Pink Sandstone Gravels		
	_						
						TP3 1.0-1.5	No odours, stains or ACN noted.
	_						
	1.5	1.50		Fill	Fill - SAND - Grey, Heterogeneous, Damp, Loose, Medium - Coarse Gravels with inclusions of Slate and Glass		
	_						
	_					TP3 1.5-2.0	No odours, stains or ACN noted.
	_						
	2.0	2.00			Test Pit TP3 terminated at 2m		
	2.5						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:4/21/2020Eastings (GDA 94):Logged By:Lillian BeevorsNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observation
l est Pit	_			Fill	Fill - SAND - Brown, Heterogeneous, Damp, Loose, Medium Gravels with inclusions of Rootlets, Grass, Gravels, Pebbels, PVC Pipe Frag	TP4 0.0-0.1	No odours, stains or ACM noted. QA/QC 20200421_
	_						
	_						
	0.5						
	_						
	+	0.80		SW	SAND - Grey - Black, Homogeneous, Damp, Loose, Coarse Gravels	TP4 0.5-1.0	No odours, stains or ACN noted.
	1.0						
	_						
						TP4 1.0-1.5	No odours, stains or ACI noted.
	_						Tiolog.
	1.5						
	_						
	_					TP4 1.5-2.0	No odours, stains or ACI noted.
	2.0						
	-	2.00			Test Pit TP4 terminated at 2m		
	_						
	2.5						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 4/21/2020
Logged By: Lillian Beevors
Contractor: Ken Coles
Total Hole Depth (mbgs): 1.5

Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 **Reference Level:** Ground Surface

Pit Dimension (m3): Elevation (m):

			n (m3)	•	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Fill - SAND - Brown, Heterogeneous, Damp, Loose, Medium - Coarse Gravels with inclusions of Rootlets and Grass	TP5 0.0-0.1	No odours, stains or ACM noted.
	_						
	_						
	0 <u>.5</u>						
	_	0.60		SW	SAND - Yellow - Orange, Homogeneous, Damp, Loose, Medium Density, Coarse Gravels		
	_					TP5 0.5-1.0	No odours, stains or ACM noted.
	1.0	1.00		SC	Clayey SAND - White - Grey - Orange, Homogeneous, Damp, Soft, Medium Plasticity, Coarse Gravels with inclusions of Red Sandstone Rock		
	_				Coarse Gravels with inclusions of Red Sandstone Rock		
	_					TP5 1.0-1.5	No odours, stains or ACM noted.
	1.5						
	_	1.50			Test Pit TP5 terminated at 1.5m		Refusal on Rock
	_						
	_						
	2 <u>.0</u>						
	-						
	2 <u>.5</u>						

TEST PIT JBSG TEST PIT - 2017.GPJ GINT STD AUSTRALIA.GDT 5/21/20

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 4/21/2020Eastings (GDA 94):Logged By: Lillian BeevorsNorthings (GDA 94):Contractor: Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_ _ _			Fill	Fill - SAND - Brown, Heterogeneous, Damp, Loose, Medium - Coarse Gravels with inclusions of Roots, Rootlets, Grass and Gravels	TP6 0.0-0.1	No odours, stains or ACM noted.
	0.5	0.60		Fill	Fill - SAND - Grey, Heterogeneous, Damp, Loose, Coarse Gravels with inclusions of Plastic Pipe (With depth, colour becomes lighter and matrix is homogeneous)		_
	1.0					TP6 0.5-1.0	No odours, stains or ACM noted.
	_					TP6 1.0-1.5	No odours, stains or ACN noted. QA/QC 20200421
	1.5					TP6 1.5-2.0	No odours, stains or ACN noted.
	2.0	2.00			Test Pit TP6 terminated at 2m		Test Pit Collapsed

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 4/21/2020 Logged By: Lillian Beevors Contractor: Ken Coles Total Hole Depth (mbgs): 0.7 Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

e Depth (mbgs): 0.7 Reference Level: Ground Surface

							Г
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observation
Test Pit	_			Fill	Fill - SAND - Brown, Heterogeneous, Damp, Loose, Coarse Gravels with inclusions of Gravels, Rootlets and Grass	TP7 0.0-0.1	No odours, stains or ACM noted.
	-						
	-						
	-						
	0.5						
	-	0.60		SW	SAND - Orange, Homogeneous, Damp, Medium Gravels	TP7 0.6-0.7	No odours, stains or ACI noted. Refusal on Sandstone
		0.70			Test Pit TP7 terminated at 0.7m		Refusal on Sandstone
	-						
	1.0						
	-						
	-						
	-						
	1 <u>.5</u>						
	-						
	-						
	-						
	2.0						
	2.5						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 4/21/2020 Logged By: Lillian Beevors Contractor: Ken Coles Total Hole Depth (mbgs): 0.6

Pit Dimension (m3):

Eastings (GDA 94): Northings (GDA 94): Zone/Area/Permit#:

Reference Level: Ground Surface

Elevation (m):

	(s)	(sb	_			Samples	
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
lest Pit	_			Fill	Fill - Silty SAND - Brown - Grey, Heterogeneous, Damp, Loose, Medium Density, Coarse Gravels with inclusions of Grass and Rootlets	TP8 0.0-0.1	No odours, stains or ACM noted.
	_						
	0.5	0.50		SW	SAND - Yellow - Orange - Brown, Homogeneous, Damp, Medium Plasticty, Medium - Coarse Gravels		
		0.60	*****		Coarse Gravels Test Pit TP8 terminated at 0.6m	TP8 0.5-0.6	No odours, stains or ACN noted. Refusal on Sandstone
	-						
	-						
	1.0						
	1.0						
	-						
	-						
	1.5						
	_						
	2.0						
	-						
	-						
	-						
	-						

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date:09-Jan-19Eastings (GDA 94):340237Logged By:J CransonNorthings (GDA 94):6251473Contractor:BG DillingZone/Area/Permit#:

Total Hole Depth (mbgs): 3.2 Bore Diameter (mm): 130 Reference Level: AHD Elevation (m):

Melilod	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
	_			Fill	Brown silty sand. Damp, loose, low plasticity and soft. Medium grained and heterogeneous with inclusions of grass.	BH03 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
	-	0.40		SW	Yellow/grey sand. Damp, non-plastic, medium grained and heterogeneous.	BH03 0.3-0.4 PID = 0 ppm	No asbestos, odours or staining.
	1					BH03 1.0-1.1 PID = 0 ppm	No asbestos, odours or staining.
	-	1.40		SC	Brown clayey sand. Damp, low plasticity, soft and medium dense. heterogeneous and medium grained.	BH03 1.5-1.6 PID = 0 ppm	No asbestos, odours or staining.
	_	2.00		SC	Brown/yellow clayey sand. Damp, medium grained, low plasticity, soft and medium dense.	BH03 2.0-2.1 PID = 0 ppm	No asbestos, odours or staining.
	-	2.70		SANDSTONE	Rock - Sandstone, dry.	BH03 2.5-2.6 PID = 0 ppm	No asbestos, odours or staining.
	3	20		,		BH03 3.0-3.1 PID = 0 ppm	No asbestos, odours or staining.
	-	3.20			Borehole BH03 terminated at 3.2m		End of environmental screen.
	4						
	_						
	_						
	5						
	-						
	-						

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19

BH04

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

 Date:
 08-Jan-19
 Eastings (GDA 94):
 340249

 Logged By:
 J Cranson
 Northings (GDA 94):
 6251450

Contractor: BG Dilling Zone/Area/Permit#:
Total Hole Depth (mbgs): 3 Reference Level: AHD

Bore Diameter (mm): 130 Elevation (m): Contact (mbgs Samples Graphic Log Lithological Class Lithological Description Tests Additional Observations Method Remarks BH04 0.0-0.1 PID = 0 ppm Brown silty sand. Dry, loose, low plasticity and soft. Inclusions of grass. No asbestos, odours or staining. Solid Flight Auger BH04 0.3-0.4 PID = 0 ppm No asbestos, odours or staining. 0.70 Fill Brown/grey sand. Dry/damp, medium grained, soft and heterogeneous. BH04 1.0-1.1 PID = 0 ppm No asbestos, odours or staining. Yellow clayey sand. Firm, damp, soft and medium plasticity. heterogeneous and medium grained. 1.30 SC BH04 1.5-1.6 No asbestos, odours or staining, 1.90 SANDSTONE Sandstone - orange/red. 2 Refusal on sandstone. 3.00 Borehole BH04 terminated at 3m 4 5

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date:08-Jan-19Eastings (GDA 94):340204Logged By:J CransonNorthings (GDA 94):6251459Contractor:BG DillingZone/Area/Permit#:

Total Hole Depth (mbgs): 4 Bore Diameter (mm): 130 Reference Level: AHD Elevation (m):

Contact (mbgs Samples Graphic Log Lithological Class Lithological Description Tests Additional Observations Method Remarks BH06 0.0-0.1 PID = 0 ppm Brown silty sand. Dry, loose and soft. Slightly sandy. No asbestos, odours or staining. Solid Flight Auger BH06 0.3-0.4 PID = 0 ppm 0.30 Fill Grey silty sand. Coarse, damp, loose and heterogeneous. No asbestos, odours or staining. BH06 1.5-1.6 1.50 Fill Dark grey/brown sand. Damp, loose and heterogeneous. Low plasticity. No asbestos, odours or staining, 2 BH06 2.0-2.1 No asbestos, odours or staining. PID = 0 ppm BH06 2.5-2.6 No asbestos, odours or staining. PID = 0 ppm 3 BH06 3.0-3.1 PID = 0 ppm No asbestos, odours or staining. 3.50 SW Yellow/brown sand. Coarse grained, wet and heterogeneous. BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19 End of environmental screen. Refusal on bedrock. 4.00 Borehole BH06 terminated at 4m 5

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date: 09-Jan-19 Eastings (GDA 94): 340227
Logged By: J Cranson Northings (GDA 94): 6251463
Contractor: PG Dilling Zone/Area/Permitti

Contractor: BG Dilling Zone/Area/Permit#:

Total Hole Depth (mbgs): 4.2 Reference Level: AHD

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description		Samples Tests Remarks	Additional Observations
Auger				Fill	Brown silty sand. Damp, loose, medium grained, soft and heterogeneous. Inclusions of grass.	of	BH07 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
Solid Flight Auger	_						BH07 0.3-0.4 PID = 0 ppm	No asbestos, odours or staining.
	1						BH07 1.0-1.1 PID = 0 ppm	No asbestos, odours or staining.
	- -	4.00		E:			BH07 1.5-1.6 PID = 0 ppm	No asbestos, odours or staining.
		1.80		Fill	Yellow/brown sand. Dry/damp, loose and medium grained, heterogeneous.		BH07 2.0-2.1 PID = 0 ppm	No asbestos, odours or staining.
	_						BH07 2.5-2.6 PID = 0 ppm	No asbestos, odours or staining.
	<u>3</u> _						BH07 3.0-3.1 PID = 0 ppm	No asbestos, odours or staining.
	- - -	3.90		SM	Brown silty sand. Wet, non plastic, loose. heterogeneous and medium grained.			
	4	0.00		OW	Drown only state. Wet, non-plastic, rosse, noticing director and median grained.		BH07 4.0-4.1 PID = 0 ppm	No asbestos, odours or staining.
	5	4.20			Borehole BH07 terminated at 4.2m			Refusal on bedrock.

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date:08-Jan-19Eastings (GDA 94):340212Logged By:J CransonNorthings (GDA 94):6251447Contractor:BG DillingZone/Area/Permit#:

Total Hole Depth (mbgs): 5.2 Reference Level: AHD Bore Diameter (mm): 130 Elevation (m):

Contact (mbgs Samples Graphic Log Lithological Class Lithological Description Tests Additional Observations Method Remarks Light brown silty sand. Dry, loose, low plasticity and heterogeneous. Inclusions of No asbestos, odours or staining. Solid Flight Auger PID = 0 ppm BH08 0.3-0.4 No asbestos, odours or staining. PID = 0 ppm0.50 Fill Grey/brown sand. Dry/damp, medium grained and heterogeneous. Slightly silty. BH08 1.0-1.1 PID = 0 ppm No asbestos, odours or staining. BH08 1.5-1.6 No asbestos, odours or staining. 2 2.00 BH08 2.0-2.1 Yellow/brown sand. Dry, firm, coarse grained and heterogeneous. No asbestos, odours or staining, PID = 0 ppm BH08 2.5-2.6 No asbestos, odours or staining. PID = 0 ppm 3 BH08 3.0-3.1 No asbestos, odours or staining. PID = 0 ppmBH08 3.5-3.6 PID = 0 ppm No asbestos, odours or staining. Water observed. 3.50 Fill Brown silty sand. Saturated, loose, heterogeneous and coarse grained. BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 11-2-19 4 BH08 4.0-4.1 No asbestos, odours or staining. PID = 0 ppm BH08 4.5-4.6 No asbestos, odours or staining. PID = 0 ppm 5 Refusal on bedrock. 5.20 Borehole BH08 terminated at 5.2m

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date: 08-Jan-19
Logged By: J Cranson
Contractor: BG Dilling
Total Hole Depth (mbgs): 4.1

Eastings (GDA 94): 340232 **Northings (GDA 94):** 6251434

Zone/Area/Permit#: Reference Level: AHD

		•					
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
t Auger				Fill	Silty sand. Dry, loose, soft, low plasticity with inclusions of grass.	BH09 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
Solid Flight Auger	_	0.40		Fill	Brown/yellow sand. Dry, coarse grained and loose.	BH09 0.3-0.4 PID = 0 ppm	No asbestos, odours or staining.
	-						
	1					DU004044	
	_					BH09 1.0-1.1 PID = 0 ppm	No asbestos, odours or staining.
	-					BH09 1.5-1.6	
						BH09 1.5-1.6 PID = 0 ppm	No asbestos, odours or staining.
	2					BH09 2.0-2.1	No asbestos, odours or staining.
	_					PID = 0 ppm	
	_			- :::			
	_	2.60		Fill	Grey sand. Dry/damp, medium grained and loose.		
	3					BH09 3.0-3.1 PID = 0 ppm	No asbestos, odours or staining.
	_						
	4	3.80		SM	Yellow/brown silty sand. Stiff, with inclusion of sandstone gravels.	_	
		4.10			Borehole BH09 terminated at 4.1m	BH09 4.0-4.1 PID = 0 ppm	No asbestos, odours or staining. Refusal on bedrock.
	-						
	-						
	5						
	-						
	6						

Project Number: 55769 Client: Pells Sullivan Meynink

Project Name: Kambala Material Characterisation

Site Address: 794 New South Head Road, New South Wales

Date: 09-Jan-19
Logged By: J Cranson
Contractor: BG Dilling

Eastings (GDA 94): 340226 **Northings (GDA 94):** 6251481

Contractor: BG Dilling

Total Hole Depth (mbgs): 1.3

Bore Diameter (mm): 130

Zone/Area/Permit#:

Reference Level: AHD

Elevation (m):

	Т		I	
Method Depth (mbgs) Contact (mbgs)	Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
nt Auger	Fill	Brown silty sand. Damp, loose and soft. Medium grained and heterogeneous with inclusions of grass.	BH10 0.0-0.1 PID = 0 ppm	No asbestos, odours or staining.
Solid Flight Auger	Fill	Grey/brown sand. heterogeneous and medium grained. Slightly silty.	BH10 0.3-0.4 PID = 0 ppm	No asbestos, odours or staining.
1.00	Fill	Red/brown sand. heterogeneous, medium grained and low plasticity.	BH10 1.0-1.1 PID = 0 ppm	No asbestos, odours or staining.
1.30		Borehole BH10 terminated at 1.3m		Auger TC bit Refusal.

Project Number: 58081

Client: Kambla School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:4/20/2020Eastings (GDA 94):Logged By:Lillian BeevorsNorthings (GDA 94):Contractor:TerratestZone/Area/Permit#:

Total Hole Depth (mbgs): 1.7 Reference Level: Ground Surface

	ie Di	amete	r (min	1):	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Push Tube	-			Fill	Fill - SAND - Brown, Heterogeneous, Damp, Loose, Medium Density, Medium Gravels with inclusions of Grass and Rootlets	BH11 0.0-0.1	No odours, stains or ACM noted.
Push	0.5	0.20		Fill	Fill - Clayey Gravelly SAND - Light - Medium Brown - Black, Heterogeneous, Damp, Hard, Medium Density with inclusions of Gravels		
	- - 1 <u>.0</u>	1.00		Fill	Fill - Gravelly SAND - Brown - Orange, Heterogeneous, Damp, Loose, Medium Density	BH11 0.5-1.0	No odours, stains or ACM noted.
	- - - 1 <u>.5</u>				Fill - Gravelly SAND - Brown - Orange, Heterogeneous, Damp, Loose, Medium Density with inclusions of Gravels	BH11 1.0-1.5	No odours, stains or ACM noted.
	_	1.60		SC	Clayey SAND - Orange - Brown, Homogeneous, Soft, Dry - Damp		
	2.0						
	4.0 - - 4.5 - - - - - - - - - - - - - - - - - - -						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:4/20/2020Eastings (GDA 94):Logged By:Lillian BeevorsNorthings (GDA 94):Contractor:TerratestZone/Area/Permit#:

Total Hole Depth (mbgs): 4.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Push Tube	- - - 0.5			Fill	Fill - SAND - Brown - Grey, Damp, Loose, Medium Density with inclusions of Grass and Rootlets	BH12 0.0-0.1	No odours, stains or ACM noted.
	1.0	1.00		Fill	Fill - Clayey SAND - Dark Brown, Heterogeneous, Damp, Medium Plasticity Fill - SAND - Brown - Grey, Damp, Loose, Medium Density with inclusions of Gravels	BH12 0.5-1.0	No odours, stains or ACM noted.
	- - - 1 <u>.5</u>	1.55		• "	The Grant Cloy, Bullip, 2000, median Bolloty wat mouse, in Clays.	BH12 1.0-1.5	No odours, stains or ACM noted.
	2.0	1.70		Fill	Fill - Clayey SAND - Grey - Black, Heterogeneous, Damp, Loose, Medium Gravels with inclusions of Gravels		
	3.0					BH12 2.5-3.0 BH12 3.0-3.5	No odours, stains or ACM noted. No odours, stains or ACM noted. No odours, stains or ACM noted.
	3.5 - - - - 4.0						
	- - - 4.5	4.00		Fill	Fill - Clayey SAND - Dark Brown - Black, Heterogeneous, Wet, Loose, Medium Gravels	BH12 4.0-4.5	No odours, stains or ACM noted.
	-	4.50			Borehole BH12 terminated at 4.5m		Refusal on Sandstone

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 4/20/2020Eastings (GDA 94):Logged By: Lillian BeevorsNorthings (GDA 94):Contractor: TerratestZone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

	ie Die	amete	er (mn	1).	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Push Tube	- - - 0.5			Fill	Fill - SAND, Grey - Brown, Heterogeneous, Damp, Loose, Medium Density with inclusions of Gravels, Grass and Rootlets	BH13 0.0-0.1	No odours, stains or ACM noted.
	- - - 1 <u>.0</u>	0.50		Fill	Fill - Clayey SAND - Brown, Heterogeneous, Damp, Loose, Medium Density with inclusions of increased Gravels, Grass and Rootlets	BH13 0.5-1.0	No odours, stains or ACM noted.
	_ _ _ _ 1 <u>.5</u>	1.20		Fill	Fill - SAND, Grey - Brown, Heterogeneous, Damp, Loose, Medium Density with inclusions of Gravels, Grass and Rootlets	BH13 1.0-1.5	No odours, stains or ACM noted.
		1.70		SC	Clayey SAND - Red - Orange - Brown, Homogeneous, Dry - Damp, Soft	_	
	2.0 - - - - 2.5	1.80			Borehole BH13 terminated at 1.8m		Refusal Encountered
	3 <u>.0</u> - - - - 3 <u>.5</u>						
	4 <u>.0</u> 4.5						

Project Number: 58081

Client: Kambala School c/- CTPG Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 4/20/2020 Eastings (GDA 94): Logged By: Lillian Beevors Northings (GDA 94): Contractor: Terratest Total Hole Depth (mbgs): 1.4

Zone/Area/Permit#: Reference Level: Ground Surface

Bore Diameter (mm):

Elevation (m):

Method Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Push Tube	_ _ _ _ 5		Fill	Fill - SAND - Brown - Black, Heterogeneous, Damp, Loose, Medium Plasticity, Fine Gravels with inclusions of Plastic	BH14 0.0-0.1	No odours, stains or ACM noted.
1 <u>.(</u>	0.60		Fill	Fill - SAND - Brown - Orange, Heterogeneous, Wet, Loose, Medium Plasticity, Fine Gravels with inclusions of Gravels	BH14 0.5-1.0	No odours, stains or ACM noted.
	1.20		SC	Clayey SAND - Grey - Red - Orange, Homogeneous, Dry, Loose, Hard		
	1.30		SW	SAND - Red - Brown, Homogeneous, Damp, Loose	BH14 1.4-1.4	No odours, stains or ACM noted.
2.4 3.4 4.6						

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date: 4/20/2020Eastings (GDA 94):Logged By: Lillian BeevorsNorthings (GDA 94):Contractor: TerratestZone/Area/Permit#:

Total Hole Depth (mbgs): 2.1 Reference Level: Ground Surface

			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Tube	_			Fill	Fill - SAND - Brown - Black, Heterogeneous, Damp, Loose, Medium Density, Coarse Gravels with inclusions of Grass and Rootlets	BH15 0.0-0.1	No odours, stains or ACM noted.
Push Tube	0.5 - - - - 1.0					BH15 0.5-1.0	No odours, stains or ACM noted.
		1.20		SC SW	Clayey SAND - Orange - Grey, Homogeneous, Damp - Wet, Loose, High Plasticity, Medium Density, Coarse Gravels SAND - Light Brown - Brown, Soft, Loose		
	2.0					BH15 1.5-2.0	No odours, stains or ACM noted.
	2.5 - - 3.0 - 3.5 - 4.0 - 4.5 - - - - - - - - - - - - - - - - - - -	2.10	· • • • • • • • • • • • • • • • • • • •		Borehole BH15 terminated at 2.1m		Natural/Refusal Encountered

Project Number: 58081

Client: Kambala School c/- CTPG
Project Name: Kambala School ESA

Site Address: Rose Bay

Date:4/20/2020Eastings (GDA 94):Logged By:Lillian BeevorsNorthings (GDA 94):Contractor:TerratestZone/Area/Permit#:

Total Hole Depth (mbgs): 1.6 Reference Level: Ground Surface

БО	Te Dia	amete	r (mn	1):	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Push Tube				Fill	Fill - SAND - Brown - Grey - Black, Heterogeneous, Damp, loose, Medium Density with inclusions of Gravels, Grass and Rootlets		No odours, stains or ACM noted.
	1 <u>.0</u>	1.40		90	Clausy SAND, Orango, Light Proug, Hamaganagua, Dama, Lagga, Nan Digatia, Safe	BH16 0.5-1.0	No odours, stains or ACM noted.
	1 <u>.5</u>	1.40		SC	Clayey SAND - Orange - Light Brown, Homogeneous, Damp, Loose, Non-Plastic, Soft		Refusal on Rock
	2.0 	1.60			Borehole BH16 terminated at 1.6m		
	4.5 - - - - - - 5.0						

Appendix B Calibration Certificates

Field Equipment Calibration and Decontamination

PROJECT NAME: KAMBACA PROJECT NO: 55 769

FIELD DATES: 8.01.2019 FIELD STAFF: 5.C.

CALIBRATION SUM	MARY					
EQUIPMENT:	PID	/	DECON	90		
CALIBRATION STAN	DARD:		150 BUTT	LENE	100 PPM	

DATE	TIME	READING (ppm _v)	COMMENTS
2.01.19		O PPM	Cal successful
		100 PPM	Cal successful

DECONTAMINATION SUMMARY			
EQUIPMENT: Handayger - washed + Decontaminated instrucen	each		
sample location.			
1. Was the equipment decontaminated appropriately prior to sampling at each location?	(D)	N	NA
2. Was excess soil removed by scraping, brushing or wiping with disposable towels?	0	N	NA
3. Was the equipment contaminated with grease, tar or similar material? If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?	Y Y	N N	(AIA)
4. Was phosphate-free detergent used to wash the equipment?	0	N	NA
5. Was the equipment rinsed with clean water?	\mathfrak{O}	N	NA
6. Was the equipment then rinsed with deionised water?	Ø	N	NA
7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?	(Y)	N	NA
WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.			
A fresh pair of nitrile gloves were worn for each	Scaple	co ile	ched.

Appendix C Quality Assurance / Quality Control

The QA/QC results for soil samples collected at the site are summarised in **Table C1** and discussed in **Section C1** below. Laboratory reports are included in **Appendix C**.

Table C1 Summary of Quality Assurance / Quality Control Program

Data Quality Indicator	Frequency	Results	DQI met?
Precision			
Soil Blind duplicates (intra	>1 / 16 samples	0-187 % RPD (soil chemical analysis)	Partial ¹
laboratory)		All primary and duplicate samples	Yes
		analyzing asbestos were in agreement.	
		Intra laboratory samples were analysed	Yes
		at a rate of 1 in 16 samples for chemical	
		analysis.	_
Soil Blind triplicates (inter	>1 / 16 samples	0-187 % RPD (soil chemical analysis)	Partial ¹
laboratory)		The primary and duplicate samples	Yes
		analyzing asbestos were in agreement.	
		Intra laboratory samples were analysed	Yes
Laboratory Dunlicatos	>1/lab batch	at a rate of 1 in 16 samples 0-95% RPD	Partial ¹
Laboratory Duplicates Accuracy	>1/IdD Datcii	0-95% RPD	Partial
Surrogate spikes	All organic Analysis	50-143 % Recovery	Partial ¹
Laboratory Control Samples	>1/lab batch	70-129 % Recovery	Yes
Matrix spikes	>1/lab batch	70-130 % Recovery	Yes
Representativeness	- 1/100 batem	70 130 % Necovery	103
Sampling appropriate for media	All media/Analytes	All sampling conducted in accordance	Yes
and analytes	All media/Analytes	with JBS&G procedures	163
Laboratory blanks	>1/lab batch	<lor< td=""><td>Yes</td></lor<>	Yes
Samples extracted and analysed	N/A	All samples were extracted and analysed	Yes
within holding times.	IV/A	within holding times.	103
Trip spikes	1/lab batch	74-110 % Recovery	Yes
The spinor	-,	,	
Trip blanks	1/lab batch	<lor< td=""><td>Yes</td></lor<>	Yes
Rinsate blank	1/sampling event	<lor equipment="" reusable="" td="" used<="" was="" when=""><td>Yes</td></lor>	Yes
Comparability			
Standard operating procedures	All samples	Field staff used same standard operating	Yes
used for sample collection &		procedures throughout works	
handling			
Standard analytical methods used	All samples	Standard analytical methods in	Yes
		accordance with JBS&G procedures	
Consistent field conditions,	All samples	Sampling was conducted by the same	Yes
sampling staff and laboratory		field staff members using standard	
analysis		operating procedures in the same	
		conditions throughout the works. The laboratory remained consistent	
		throughout the investigation.	
Limits of reporting appropriate and	All samples	Limits of reporting were consistent and	Yes
consistent			
		appropriate.	
Completeness	All samples	appropriate.	Yes
	All samples		Yes
Completeness Soil description & COCs completed	All samples All samples	appropriate. All bore testpit logs and COCs were	Yes
Completeness Soil description & COCs completed	·	appropriate. All bore testpit logs and COCs were completed appropriately.	
Completeness Soil description & COCs completed Appropriate documentation	·	All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is	
Completeness Soil description & COCs completed Appropriate documentation	All samples	All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is included in the Appendices.	Yes
Completeness Soil description & COCs completed Appropriate documentation Satisfactory frequency/result for	All samples	All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is included in the Appendices. The QC results are considered adequate	Yes
Completeness Soil description & COCs completed Appropriate documentation Satisfactory frequency/result for QA/QC samples	All samples All samples	All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is included in the Appendices. The QC results are considered adequate for the purposes of the investigation.	Yes Yes
Completeness Soil description & COCs completed Appropriate documentation Satisfactory frequency/result for QA/QC samples Data from critical samples is considered valid Sensitivity	All samples All samples All samples	appropriate. All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is included in the Appendices. The QC results are considered adequate for the purposes of the investigation. Data from critical samples is considered valid.	Yes Yes
Completeness Soil description & COCs completed Appropriate documentation Satisfactory frequency/result for QA/QC samples Data from critical samples is considered valid Sensitivity Analytical methods and limits of	All samples All samples	appropriate. All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is included in the Appendices. The QC results are considered adequate for the purposes of the investigation. Data from critical samples is considered valid. Appropriate laboratory analysis methods	Yes Yes
Completeness Soil description & COCs completed Appropriate documentation Satisfactory frequency/result for QA/QC samples Data from critical samples is considered valid Sensitivity Analytical methods and limits of recovery appropriate for media	All samples All samples All samples	All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is included in the Appendices. The QC results are considered adequate for the purposes of the investigation. Data from critical samples is considered valid. Appropriate laboratory analysis methods and detection limits were considered to	Yes Yes Yes
Completeness Soil description & COCs completed Appropriate documentation Satisfactory frequency/result for QA/QC samples Data from critical samples is considered valid Sensitivity Analytical methods and limits of	All samples All samples All samples	appropriate. All bore testpit logs and COCs were completed appropriately. All appropriate field documentation is included in the Appendices. The QC results are considered adequate for the purposes of the investigation. Data from critical samples is considered valid. Appropriate laboratory analysis methods	Yes Yes Yes

C1 QA/QC Discussion

Precision

Blind (intra-laboratory) Duplicates

Soil field split (inter-laboratory) duplicates were analysed at a rate of 1 per 16 primary samples which is within the required 1/20 DQI frequency (for split duplicates).

All field Split duplicates had relative percentage differences (RPDs) within the acceptable range of less than 50% with the following exceptions:

- TRH C15-C28, TRH C29-C36, TRHC16-C34, TRHC10-C40, Xylene Total. Acenaphthene,
 Anthracene, Benz(a)anthracene, Benzo(a)pyrene, Benzo(a)pyrene TEQ,
 Benzo(b,j)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene,
 Dibenz(a,h)anthracene, Fluoranthene, Fluorene, Indeno (1,2,3-c,d)pyrene, Phenanthrene,
 PAHs (Total) and Pyrene in duplicate pair HA01_0-0.1 and QC01 with RPDs ranging
 between 50 and 187%; and
- Arsenic, Zinc, TRH C15-C28, TRH C29-C36, TRHC16-C34, TRHC10-C40, Benz(a)anthracene, Benzo(a)pyrene, Benzo(a)pyrene TEQ, Benzo(b,j)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene and PAHs (Total) in duplicate pair HA06_0-0.1 and QA20200407-1 with RPDs ranging between 50 and 134%;

The high RPDs are attributed to the heterogeneity of the material both sampled from mixed soils within the garden embankment observed to include fertilizer and other matter mixed into surface soils.

Split (inter-laboratory) Duplicates

Soil field blind (intra-laboratory) duplicates were analysed at a rate of 1 per 16 primary samples which is within the required 1/20 DQI frequency.

Field blind duplicates had relative percentage differences (RPDs) within the acceptable range of less than 50% with the following exceptions:

- TRH C29-C36, TRHC16-C34, TRHC34-C40, TRHC10-C40, Acenaphthene, Anthracene, Benz(a)anthracene, Benzo(a)pyrene, Benzo(a)pyrene TEQ, Benzo(b,j)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, Fluorene, Indeno (1,2,3-c,d)pyrene, Phenanthrene and Pyrene in triplicate pair HA01_0-0.1 and QC01 with RPDs ranging between 65 and 191%; and
- TRH C10-C36, TRH C29-C36, TRHC16-C34, Benz(a)anthracene, Benzo(a)pyrene, Benzo(a)pyrene TEQ, Chrysene, Fluoranthene and pyrene in triplicate pair HA06_0-0.1 and QA20200407-1 with RPDs ranging between 50 and 134%;

The high RPDs are attributed to the heterogeneity of the material both sampled from mixed soils within the garden embankment observed to include fertilizer and other matter mixed into surface soils.

Laboratory duplicates

Laboratory duplicates analysed were generally reported with RPDs within the acceptable range of less than 50% with the following exceptions:

- Benz(a)anthracene, B(a)P, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Chrysene,
 Pyrene, TRH C16-C34, TRH C15-C28 and TRH C29-C36 at location HA06 0-0.1 with RPDs ranging between 51 and 89%; and
- Arsenic and Chromium at TP5_0.5-1.0 with RPDs of 95 and 89% respectively

The elevated laboratory duplicate RPDs are associated with the heterogeneity of fill materials within the samples analysed. The RPDs of the majority of elevated concentrations are noted to pass Eurofins Environmental Testing's QC Acceptance Criteria.

Accuracy

Surrogate spikes

Surrogate spike recoveries were reported between 50% and 143%. All surrogate recoveries were within the NATA accredited laboratory acceptable ranges of 50-150%.

Laboratory Control Samples

Laboratory control samples were conducted for each laboratory batch submitted and were all within JBS&G's acceptance criteria of 70-130%.

Matrix Spikes

Matrix spike samples were conducted for each laboratory batch submitted and were all within JBS&G's acceptance criteria of 70-130%.

Representativeness

Sampling appropriate for media and analytes

The sampling methods were considered appropriate for soil media and the analytes targeted.

Laboratory Blanks

At least one laboratory blank was analysed for each analyte with each batch of samples. All levels of analytes in laboratory blanks were below detection limits.

Trip Spikes

Trip spike recoveries were between 74-110% and were all within the acceptable range.

Trip blanks

A trip blank was provided with each batch of samples. All levels of analytes in the trip blanks were below detection limits.

Rinsate Samples

Rinsate samples were collected on 7th April when handauger samples were collected using reusable tools. All rinsate sample results were reported below the laboratory LOR.

Holding times

All analyses have been extracted within holding times.

Comparability

Common and consistent JBS&G Field Personnel were used to collect samples throughout the project. Field works have been undertaken in accordance with JBS&G field operating procedures. All required field forms and sampling logs have been appropriately completed by sampling personnel.

Completeness

Documentation

All documentation was completed to the required standard. Chain of custody forms are provided with laboratory documentation included in **Appendix D**.

Frequency for QA/QC Samples

The frequency of QA/QC samples is considered to be sufficient and meets the project DQI's.

Sensitivity

Appropriate laboratory analysis methods and detection limits were provided by the primary and secondary laboratories used. Field screening and sampling methods were also considered appropriate.

Soil QA/QC Conclusions

The results of the field and laboratory QA/QC program indicates that the data obtained from this investigation generally met the predetermined DQIs or, where the DQIs were exceeded, did not indicate systematic sampling or analytical errors. As such the data is considered to be of adequate quality to be relied on for the purposes of assessing the environmental condition at the site.

ESDAT QA Checker

Project:58081

Filter: SDG in('716335','714933','714502','713049','635079','636837')

Overview Summary

Count of Samples

Summary By Compound

Count of Results

Holding Times

Holding Time Errors (524)

Blanks

Field Blanks

Detects in Lab Blanks (0)

SDG's without Storage Blanks (6)

SDG's without Method Blanks (0)

Duplicates

Field and Interlab Duplicates

Lab Duplicates with high RPDs (12)

Duplicate Samples with incorrect or missing Parent Samples (0)

Samples at the same Location/Depth/Time not specified as duplicates (7)

Surrogates

Surrogate Variation > 30% or outside lab LCL or UCL (49)

Lab Control Samples

SDG's without a Laboratory Control Sample (0)

Laboratory Control Samples, Error > 30% (0)

Certified and Standard Reference Materials

Certified Reference Materials - Error > 10% (0)

Matrix Spikes

SDG's without a Matrix Spike (0)

Trip Spikes with invalid Control Sample (0)

Less than 1 matrix spike in 20 samples (0)

Matrix Spike Recoveries less than 70% or greater than 130% or outside lab LCL or UCL (0)

Trip Spike Recoveries (70% - 130% is acceptable) (0)

Inorganic

Na + CL > TDS(0)

BOD > COD(0)

BOD > COD(0)

Other

Unit Conversion Problems (1)

OriginalChemNames Requiring Validation (1)

Samples with no Results (0)

Samples associated with Wells which are not specified in the Well Table (94)

Aborted Analysis (4)

				Num Results	Ho	olding Time	es (days)		Lab Con	trol Samples		Method and Storage Blanks	Laboratory Duplicat	es	Surrogates	Matrix, Trip and Com	pound Spi	kes	Field,Rinsate a	nd Trip Blanks	Field I	Duplicates
					d p	T				9		P.	ر الا		9		· ·		·	9	₹	
				ŧ +	Gro-	2 5		e e	%	orte	e e	oorte	> Ec	e e	/%	%	orte	e		oorte ole	<u>~</u>	orte
				Q.A mal posi	iji.	ple t	ple t ysis	ptak	very	Rep	ptab	Rep Ptab	RPD	ptab	Rep ptak	very	Re .	ptak	92	Rep ptab	GA.	Rep ptab
Matrix_Type I	ilter	Method_Type ChemName	Range	Nor	/olat	amp extra	amp	Acce	Seco	Ē	4cce	tang Vum	Mum	Acce	ycce wmw	Seco	Ē	Acce	gue	Acce.	.1 Jax	A Lum
	sbestos	Asbestos ACM - Comment	Ü	37	Other		7 to 10			0	,	0	0	N	0	<u>.</u>	0	_	<u></u>	0	- ^	3 Y
	sbestos	AF - Comment		37 37	Other		7 to 10 7 to 10			0		0	0	N	0		0			0		3 Y
	sbestos sbestos	Approx. Sample Mass Asbestos from ACM in Soil		37	Other Other		7 to 10			0		0	0	N N	0		0			0		3 Y
SOIL	sbestos	Asbestos from FA & AF in Soil		37	Other	0 to 7				0		0	0	N	0		0			0		3 Y
	sbestos sbestos	Asbestos Reported Result Asbestos Sample Dimensions		37 2	Other SVOC	0 to 7		Y		0		0	0	N N	0		0			0		3 Y 0 N
	sbestos	FA - Comment		37	Other		7 to 10			0		0	0	N	0		0			0		3 Y
	sbestos	Mass ACM		37	Other		7 to 10	+		0		0	0	N	0		0			0		3 Y
	sbestos sbestos	Mass AF Mass Ashestos in ACM		37 37	Other Other		7 to 10 7 to 10	Y		0		0	0	N N	0		0			0		3 Y
	sbestos	Mass Asbestos in AF		37	Other		7 to 10			Ö		0	0	N	0		0			0		3 Y
	sbestos	Mass Asbestos in FA Mass Asbestos in FA & AF		37 37	Other Other		7 to 10 7 to 10			0		0 0	0	N N	0 0		0			0		3 Y
	sbestos sbestos	Mass FA		37	Other		7 to 10		1	0		0	0	N	0		0			0		3 Y
SOIL	sbestos	Organic Fibres - Comment		37	Other		7 to 10			0		0	0	N	0		0			0		3 Y
	sbestos sbestos	Respirable Fibres - Comment Synthetic Fibres - Comment		37 37	Other Other		7 to 10 7 to 10			0		0	0	N N	0		0			0		3 Y
SOIL	sbestos				5 3.10.															-		
	SLP SLP	ASLP Leachate Fluid pH (Leachate fluid)	0.1 PH UNITS	2	other SVOC	15 15				0		0	0	N N	0 0		0			0		0 N N
	SLP	pH (TCLP - initial)	0.1 ph Units	2	other	15		Y	1	0		0	0	N	0		0			0		0 N
	SLP	pH (TCLP - off)	0.1 ph Units	2	other	15	20	Υ		0		0	0	N	0		0			0		0 N
	SLP leavy Metal	Heavy Metal Arsenic (Total)	2 mg/kg	50	Other	6 to 11	7 to 15	Y	90 to 108	4	Υ	ND 4 Y	95 8	N	0	94 to 118	5	Y		0	48	3 N
SOIL I	leavy Metal	Cadmium	0.4 mg/kg	50	Other	6 to 11	7 to 15	Y	90 to 110	4	Y	ND 4 Y	8	Υ	0		5	Y		0		3 Y
	leavy Metal leavy Metal	Cation Exchange Capacity Chromium (Total)	0.05 meq/100g	2 50	Other Other		7 to 15		83 to 109	0 4	٧	ND 2 Y ND 4 Y	0 89 8	N N	0	86 to 119	5	Υ		0	22	0 N 3 Y
	leavy Metal	Copper Copper	5 mg/kg 5 mg/kg	50	Other		7 to 15		85 to 109	4	Y	ND 4 Y	22 8	Y	0	81 to 125	5	Y		0	33	3 Y
SOIL	eavy Metal	Lead	5 mg/kg	53	Other		7 to 21		91 to 107	5	Y	ND 6 Y	59 9	N	0	87 to 117	7	Y		0	27	3 Y
	leavy Metal leavy Metal	Mercury (Inorganic) Nickel	0.1 mg/kg 5 mg/kg	50 50	Other Other		7 to 15 7 to 15		90 to 107 86 to 105	4	Y	ND 4 Y ND 4 Y	8 31 8	Y	0 0	96 to 120 80 to 116	5	Y		0	0	3 Y 3 Y
SOIL	eavy Metal	Zinc	5 mg/kg	50	Other	6 to 11			84 to 103	4	Y	ND 4 Y	24 8	Y	0	85 to 118	5	Y		0	50	3 N
	leavy Metal	Inorganic % Clay	1 %	2	Other	6 to 14	7 to 15	· ·	75 to 75	1	٧	ND 1 Y	0 1	V	0		0			0		0 N
	norganic norganic	% Moisture 103oC	1%	56	Other		7 to 15 7 to 29		75 to 75	0	T	ND 1 Y	10 6	Y	0		0			0	60	3 N
SOIL I	norganic	EC 1:5 soil:water	10 μS/cm	2	Other	7 to 14	7 to 15	Υ		0		ND 2 Y	20 2	Y	0		0			0		0 N
	norganic norganic	pH 1:5 soil:water	0.1 ph Units	2	Other	6 to 11	7 to 15	Y		0		0	2 2	Y	0		0			0		0 N
SOIL	CP	OCP 4,4-DDE	0.05 mg/kg	7	SVOC		7 to 10		98 to 108	3	Υ	ND 3 Y	2	Υ	0	86 to 96	3	Υ		0		3 Y
	ICP ICP	Aldrin Aldrin + Dieldrin (Sum of Total)	0.05 mg/kg	7	SVOC		7 to 10	N Y	86 to 104	3	Υ	ND 3 Y	2 0	Y N	0	86 to 102	0	Υ		0		3 Y
	ICP ICP	alpha-BHC	0.05 mg/kg 0.05 mg/kg	7	SVOC		7 to 10		93 to 108	3	Υ	ND 3 Y	2	Y	0	90 to 101	3	Υ		0		3 Y
SOIL	CP	beta-BHC	0.05 mg/kg	7	SVOC		7 to 10		82 to 99	3	Υ	ND 3 Y	2	Υ	0	74 to 95	3	Υ		0		3 Y
	ICP ICP	Chlordane DDD	0.1 mg/kg 0.05 mg/kg	7	SVOC		7 to 10 7 to 10		79 to 98 88 to 103	3	Y	ND 3 Y ND 3 Y	2 2	Y	0 0	74 to 112 72 to 119	3	Y		0		3 Y 3 Y
	CP	DDT	0.05 mg/kg	7	SVOC		7 to 10	N	84 to 107	3	Y	ND 3 Y	2	Y	0	72 to 130	2	N		0		3 Y
	ICP ICP	DDT+DDE+DDD (Sum of Total) delta-BHC	0.05 mg/kg	7	SVOC		7 to 10 7 to 10	Y N	95 to 117	0	v	0 ND 3 Y	0	N Y	0 0	96 to 107	0	Υ		0		3 Y 3 Y
	ICP ICP	Dieldrin	0.05 mg/kg 0.05 mg/kg	7	SVOC		7 to 10		98 to 111	3	Y	ND 3 Y	2	Y	0		3	Y		0		3 Y
SOIL	CP	Endosulfan alpha	0.05 mg/kg	7	SVOC		7 to 10		71 to 104	3	Υ	ND 3 Y	2	Υ	0		3	Υ		0		3 Y
	ICP ICP	Endosulfan beta Endosulfan sulphate	0.05 mg/kg 0.05 mg/kg	7	SVOC		7 to 10 7 to 10		104 to 106 94 to 116	3	Y	ND 3 Y ND 3 Y	2	Y	0		3	Y		0		3 Y
	ICP	Endrin	0.05 mg/kg	7	SVOC		7 to 10		91 to 112	3	Y	ND 3 Y	2	Y	0	85 to 99	2	Y		0		3 Y
	ICP ICP	Endrin aldehyde	0.05 mg/kg	7	SVOC		7 to 10		87 to 124	3	Y	ND 3 Y	2	Y	0	70 to 105	3	N		0		3 Y
	ICP ICP	Endrin ketone Heptachlor	0.05 mg/kg 0.05 mg/kg	7	SVOC		7 to 10 7 to 10		81 to 91 99 to 110	3	Y	ND 3 Y ND 3 Y	2	Y	0	72 to 78 90 to 119	2	Y		0		3 Y 3 Y
	CP	Heptachlor Epoxide	0.05 mg/kg	7	SVOC		7 to 10		95 to 100	3	Υ	ND 3 Y	2	Υ	0	90 to 97	2	Υ		0		3 Y
	ICP ICP	Hexachlorobenzene Lindane	0.05 mg/kg 0.05 mg/kg	7	SVOC		7 to 10 7 to 10		96 to 124 79 to 98	3	Y	ND 3 Y ND 3 Y	2	Y	0	88 to 124 75 to 94	3	Y		0		3 Y 3 Y
SOIL	CP	Methoxychlor	0.05 to 0.2 mg/kg	7	SVOC	6 to 8	7 to 10	N	98 to 117	3	Υ	ND 3 Y	2	Y	0	79 to 122	2	Y		0		3 Y
	ICP ICP	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic	0.1 mg/kg 0.1 mg/kg	7	SVOC		7 to 10 7 to 10		1	0		0	0	N N	0		0			0		3 Y 3 Y
	ICP	Surrogate Dibutylchlorendate	0.1 mg/kg	0	SVOC	0102	7 10 10	Y		0		0	0	N	to 143 *2Not Determ 9 N		0			0		0 N
SOIL	CP	Surrogate TCMX		0	SVOC			Υ		0		0	0	N	80 to 137 10 N		0			0		0 N
	ICP ICP	Toxaphene	1 mg/kg	7	SVOC	6 to 8	7 to 10	N	90 to 90	1	Υ	ND 3 Y	1	Y	0		0			0		3 Y
SOIL	rganic	Organic >C10-C16 Fraction	50 mg/kg	41	SVOC		7 to 10		76 to 95	3	Υ	ND 3 Y	3	Υ	0	83 to 128	3	Υ		0		3 Y
	rganic rganic	>C10-C16 Fraction (SG)	50 mg/kg	3	SVOC		5 15 to 29	N Y	83 to 83	1	Υ	ND 1 Y	0	N N	0		0			0		0 N
	Irganic Irganic	>C10-C16 less Naphthalene (F2) >C10-C40 Fraction (Total)	50 mg/kg 100 mg/kg	41	SVOC		7 to 10 7 to 10			0		0	0	N N	0 0		0			0	90	3 Y 3 N
SOIL	rganic	>C16-C34 Fraction >C16-C34 Fraction (SG)	100 mg/kg	41	SVOC	6 to 8	7 to 10	N		0		ND 3 Y	61 3	N	0		0			0	108	3 N
	Irganic Irganic	>C16-C34 Fraction (SG) >C34-C40 Fraction	100 mg/kg 100 mg/kg	3 41	SVOC		5 15 to 29 7 to 10			0		ND 1 Y ND 3 Y	47 0 3	N Y	0		0			0	42	0 N 3 N
SOIL	rganic	>C34-C40 Fraction (SG)	100 mg/kg	3	SVOC		5 15 to 29	N		0		ND 1 Y	0	N	0		0			0		0 N
	Irganic Irganic	Acenaphthene Acenaphthylene		0	SVOC	-	+	Y		0		0 0	1	Y	0 0		0			0	-	0 N N
SOIL	rganic	Anthracene		0	SVOC			Y		0		0	1	Y	0		0			0		0 N
	rganic	Aroclor 1016 Aroclor 1221		0	SVOC SVOC		4	Y		0		ND 1 Y ND 1 Y	0	N N	0		0			0	1	0 N O N
	rganic Irganic	Aroclor 1221 Aroclor 1232		0	SVOC	+	+	Y		0		ND 1 Y	0	N N	0		0			0		0 N
SOIL	rganic	Aroclor 1242		0	SVOC			Y		0		ND 1 Y	0	N	0		0			0		0 N
	rganic Irganic	Aroclor 1248 Aroclor 1254		0	SVOC	-	-	Y	1	0		ND 1 Y ND 1 Y	0	N N	0		0			0		0 N O N
SOIL	rganic	Aroclor 1260		0	SVOC			Υ		0		ND 1 Y	0	N	0		0			0		0 N
SOIL	rganic	Benz(a)anthracene		0	SVOC		4	Y	1	0		0	1	Y	0		0			0		0 N
	Irganic Irganic	Benzo(a)pyrene Benzo(b,j)fluoranthene		0	SVOC	1	+	Y		0		0	1 1	Y	0 0		0			0	-	0 N O N
SOIL	rganic	Benzo(g,h,i)perylene		0	SVOC			Y		0		0	1	Υ	0		0			0		0 N
	Irganic Irganic	Benzo(k)fluoranthene C10-C14 Fraction (SG)		0	SVOC	-	+	Y	87 to 87	0	γ	0 ND 1 Y	1 0	Y N	0		0			0		0 N N
SOIL	rganic Irganic	C15-C28 Fraction (SG)		0	SVOC			Y	5/100/	0		ND 1 Y	0	N	0		0			0		0 N
SOIL	rganic	C29-C36 Fraction (SG)	20 ma/!	0 41	SVOC	C+- C	74: 40	Y N	02 to 112	0	Ţ	ND 1 Y ND 3 Y	0 4	N Y	0	94 to 103	0			0		0 N 3 Y
	Irganic Irganic	C6-C10 Fraction C6-C10 less BTEX (F1)	20 mg/kg 20 mg/kg	41 41	VOC		7 to 10 7 to 10		93 to 112	0	Υ	ND 3 Y	0	N N	0	0.10.00	0	Y		0		3 Y
SOIL	rganic	C6-C9 Fraction	20 mg/kg	41	VOC		7 to 10	N	96 to 107	3	Υ	ND 3 Y	4	Υ	0	80 to 99	4	Υ		0		3 Y
	rganic Irganic	Chrysene Dibenz(a,h)anthracene		0	SVOC		+	Y		0		0	1 1	Y	0 0		0			0	-	0 N N
SOIL	rganic	Fluoranthene		0	SVOC			Y		0		0	1	Υ	0		0			0		0 N
	rganic	Fluorene Indeno(1,2,3-c,d)pyrene		0	SVOC SVOC	-	+	Y		0		0	1 1	Y	0 0		0			0		0 N 0 N
	Irganic Irganic	Naphthalene	0.5 mg/kg	41	VOC	6 to 8	7 to 10		119 to 124	3	Υ	ND 3 Y	1	Y	0	86 to 114	4	Y		0	-	3 Y
SOIL	rganic	PCBs (Total)		0	SVOC			Υ		0		ND 1 Y	0	N	0		0			0		0 N
	Irganic Irganic	Phenanthrene Pyrene		0	SVOC	-	+	Y		0		0 0	7 1	Y	0		0			0	-	0 N O N
	3	j. j		· · · · · · · · · · · · · · · · · · ·	3.00									•	<u> </u>		- 1			-	I	

Organic			1																								
PAH		4-Terphenyl-d14		0	SVOC			Y		0			0			0	N	50 to 142 48	N		0			0			0 N
PAH PAH		Acenaphthene Acenaphthylene	0.5 mg/kg 0.5 mg/kg	45 45	SVOC SVOC	6 to 15	7 to 21 7 to 21	N N	92 to 120 81 to 117	6	Y	ND ND	6	Y		5 5	Y	0		71 to 124 76 to 126	6	Y		0		160	3 N
PAH		Anthracene	0.5 mg/kg	45	SVOC		7 to 21	N	81 to 123	6	Y	ND ND	6	Y		5	Y	0		76 to 106	6	Y		0		187	3 N
PAH		Benz(a)anthracene	0.5 mg/kg	45	SVOC		7 to 21	N	81 to 114	6	Y	ND	6	Y	51	5	N	0		78 to 109	6	Y		0		157	3 N
PAH		Benzo(a)pyrene	0.5 mg/kg	45	SVOC		7 to 21	N	76 to 127	6	Υ	ND	6	Υ	89	5	N	0		76 to 108	6	Υ		0		131	3 N
PAH		Benzo(a)pyrene TEQ (lower bound)*	0.5 mg/kg	38	SVOC	0 to 14		N		0			0			0	N	0	-		0			0		137	3 N
PAH PAH		Benzo(a)pyrene TEQ (medium bound)* Benzo(a)pyrene TEQ (upper bound)*	0.5 mg/kg 0.5 mg/kg	38 38	SVOC SVOC	0 to 14 0 to 14		N N		0			0			0	N N	0			0			0		134 132	3 N
PAH		Benzo(b,j)fluoranthene	0.5 mg/kg	45	SVOC	6 to 15		N	79 to 129	6	Y	ND	6	Y	75	5	N	0		75 to 100	6	Y		0		131	3 N
PAH		Benzo(g,h,i)perylene	0.5 mg/kg	45	SVOC	6 to 15		N	78 to 110	6	Y	ND	6	Y	.,,	5	Y	0		76 to 118	6	Y		0		100	3 N
PAH		Benzo(k)fluoranthene	0.5 mg/kg	45	SVOC	6 to 15		N	80 to 120	6	Y	ND	6	Υ	82	5	N	0		77 to 116	6	Y		0		142	3 N
PAH PAH		Chrysene Dibenz(a,h)anthracene	0.5 mg/kg 0.5 mg/kg	45 45	SVOC	6 to 15	7 to 21 7 to 21	N N	102 to 121 77 to 111	6	Y	ND ND	6	Y	57	5	N Y	0		74 to 124 73 to 124	6	Y		0		156 105	3 N 3 N
PAH		Fluoranthene	0.5 mg/kg	45	SVOC	6 to 15		N	76 to 111	6	Y	ND ND	6	Y	46	5	Y	0		71 to 112	6	Y		0		173	3 N
PAH		Fluorene	0.5 mg/kg	45	SVOC		7 to 21	N	89 to 124	6	Υ	ND	6	Υ		5	Υ	0		74 to 109	6	Y		0		144	3 N
PAH PAH		Indeno(1,2,3-c,d)pyrene Naphthalene	0.5 mg/kg 0.5 mg/kg	45 45	SVOC VOC		7 to 21 7 to 21	N N	78 to 113 97 to 121	6	Y	ND ND	6	Y		5 5	Y	0		75 to 101 70 to 121	6	Y N		0		124	3 N 3 Y
PAH		PAHs (Total)	0.5 mg/kg	45	SVOC		7 to 21	N	97 (0 121	0		ND	0	- 1		0	N	0		70 (0 121	0	IN .		0		162	3 N
PAH		Phenanthrene	0.5 mg/kg	45	SVOC	6 to 15	7 to 21	N	91 to 123	6	Υ	ND	6	Y		5	Υ	0		74 to 110	6	Y		0		187	3 N
PAH PAH		Pyrene	0.5 mg/kg	45	SVOC	6 to 15	7 to 21	N	85 to 122	6	Υ	ND	6	Υ	53	5	N	0		80 to 116	6	Υ		0		167	3 N
PAH		Surrogate 2-fluorobiphenyl		0	SVOC		1	Y		0			0			0	N	50 to 140 48	N		0			0			0 N
PCB	PCB	Aroclor 1016	0.1 to 0.5 mg/kg	4	SVOC	6 to 7	7 to 8	Υ	90 to 90	1	Υ	ND	1	Y		1	Υ	0			0			0			2 Y
PCB		Aroclor 1221	0.1 mg/kg	4	SVOC	6 to 7		Y		0		ND	1	Y		1	Y	0			0			0			2 Y
PCB PCB		Aroclor 1232 Aroclor 1242	0.1 to 0.5 mg/kg 0.1 to 0.5 mg/kg	4	SVOC SVOC	6 to 7	7 to 8	Y		0		ND ND	1	Y		1	Y	0			0			0			2 Y
PCB		Aroclor 1248	0.1 to 0.5 mg/kg	4	SVOC	6 to 7	7 to 8	Y		0		ND	1	Y		1	Y	0			0			0			2 Y
PCB		Aroclor 1254	0.1 to 0.5 mg/kg	4	SVOC	6 to 7	7 to 8	Y		0		ND	1	Y		1	Y	0			0			0			2 Y
PCB PCB		Aroclor 1260 PCBs (Total)	0.1 to 0.5 mg/kg 0.1 to 0.5 mg/kg	4	SVOC SVOC	6 to 7	7 to 8	Y	80 to 80	0	Y	ND ND	1	Y		0	Y N	0	+		0			0	-+		2 Y 2 Y
PCB		Surrogate Dibutylchlorendate	0.1 to 0.5 mg/ kg	0	SVOC	0107	7 10 0	Y		0			0	·		0	N	104 to 104 1	Y		0			0			0 N
PCB	TCLD	all /I asshate fluid\	0.1 011 111170		6,100		34																	+		Ţ	0 1
TCLP TCLP		pH (Leachate fluid) pH (TCLP - HCl addition)	0.1 PH UNITS 0.1 ph Units	7	SVOC	14 11 to 15		N Y	1	0	1		0			0	N N	0	+		0			0	$\overline{}$	+	0 N N
TCLP		pH (TCLP - initial)	0.1 ph Units	7	other	11 to 15	15 to 21	Y		0			0			0	N	0			0			0			0 N
TCLP		pH (TCLP - off)	0.1 ph Units	7	other	11 to 15	15 to 21	Υ		0		· · · · ·	0			0	N	0			0		· · · · · ·	0			0 N
TCLP TPH	TPH	C10 - C36 Fraction (Total) (SG)	100 mg/kg	3	SVOC	8 to 22	15 to 29	N	-	0			0			0	N	0	-		0			0	-+	+	0 N
TPH		C10-C36 Fraction (Total) (SG)	50 mg/kg	3	SVOC		15 to 29	N		0			0			0	N	0			0			0			0 N
TPH		C10-C14 Fraction	20 mg/kg	41	SVOC	6 to 8		N	76 to 98	3	Y	ND	3	Y	26	3	Y	0		80 to 124	3	Y	· · · · · ·	0		40	3 N
TPH TPH		C10-C36 Fraction (Total) C15-C28 Fraction (SG)	50 mg/kg 100 mg/kg	41	SVOC SVOC	0 to 2	7 to 10 15 to 29	Y N	-	0			0			0	N N	0			0			0		101	3 N N
TPH		C15-C28 Fraction	50 mg/kg	41	SVOC	6 to 8		N		0		ND	3	Υ	63	3	N	0			0			0		135	3 N
TPH		C29-C36 Fraction (SG)	100 mg/kg	3	SVOC	11 to 25		N		0		110	0			0	N	0			0			0			0 N
TPH TPH		C29-C36 Fraction	50 mg/kg	41	SVOC	6 to 8	7 to 10	N		0		ND	3	Y	63	3	N	0			0			0		57	3 N
Volatile	Volatile	Benzene	0.1 mg/kg	41	VOC	6 to 8	7 to 10	N	89 to 109	3	Υ	ND	3	Y		4	Υ	0		73 to 113	4	Y		0			3 Y
Volatile		Ethylbenzene	0.1 mg/kg	41 0	VOC	6 to 8	7 to 10	N Y	110 to 120	3	Y	ND	3	Υ	22	4	Y	0	N	89 to 118	4 0	Y		0			3 Y
Volatile Volatile		Surrogate 4-BFB Toluene	0.1 mg/kg	41	VOC	6 to 8	7 to 10	N N	106 to 109	3	Y	ND	3	Y		0 4	N Y	81 to 142 44	N	84 to 114	4	Y		0			0 N 3 Y
Volatile		Xylene (m & p)	0.2 mg/kg	41	VOC	6 to 8	7 to 10	N	111 to 125	3	Y	ND	3	Y	10	4	Y	0		92 to 122	4	Y		0		150	3 N
Volatile		Xylene (o)	0.1 mg/kg	41	VOC	6 to 8			110 to 127	2	Y	ND	3	Y	9	4	Y	0		88 to 124	4	Y		0		91	3 N
Volatile Volatile		Xylene (Total)	0.3 mg/kg	41	VOC	6 to 8	7 to 10	N	111 to 124	3	Y	ND	3	Y	12	4	Y	0	-	90 to 123	4	Y		0		111	3 N
Heavy Metal		Arsenic (Total)		0	Other		7 to 10	Υ	92 to 93	2	Υ	ND	2	Υ	0	1	Υ	0		101 to 101	1	Υ	ND		Υ		0 N
Heavy Metal	,	Cadmium		0	Other	1 to 7	7 to 10	Y	93 to 96	2	Y	ND	2	Y	•	1	Y	0		100 to 100	1	Y	ND	2	Y		0 N
	,						7 to 10 7 to 10								0 0 0									2 2	•		
Heavy Metal Heavy Metal Heavy Metal Heavy Metal	,	Cadmium Chromium (Total) Copper Lead		0 0 0	Other Other Other Other	1 to 7 1 to 7 1 to 7 1 to 7	7 to 10 7 to 10 7 to 10 7 to 10		93 to 96 96 to 96 96 to 97 97 to 99	2 2 2 2	Y Y Y Y	ND ND ND ND	2	Y	0	1 1 1	Y Y Y Y	0 0 0		100 to 100 96 to 96 95 to 95 95 to 95	1 1 1 1	Y Y Y Y	ND ND ND ND	2 2	Y Y		0 N 0 N 0 N 0 N
Heavy Metal Heavy Metal Heavy Metal		Cadmium Chromium (Total) Copper		0	Other Other Other	1 to 7 1 to 7 1 to 7	7 to 10 7 to 10 7 to 10 7 to 10 7 to 10 7 to 10		93 to 96 96 to 96 96 to 97	2	Y Y Y	ND ND ND	2	Y	0	1	Y Y	0 0		100 to 100 96 to 96 95 to 95	1 1 1	Y Y Y	ND ND ND	2 2 2 2 2	Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal		Cadmium Chromium (Total) Copper Lead Mercury (Inorganic)		0 0 0 0	Other Other Other Other Other	1 to 7 1 to 7 1 to 7 1 to 7 1 to 7	7 to 10 7 to 10 7 to 10 7 to 10 7 to 10 7 to 10 7 to 10	Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105	2 2 2 2 2	Y Y Y Y	ND ND ND ND	2 2 2 2 2 2	Y Y Y Y	0 0	1 1 1 1	Y Y Y Y Y	0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101	1 1 1 1	Y Y Y Y Y	ND ND ND ND	2 2 2 2 2 2 2	Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal		Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc		0 0 0 0 0 0	Other Other Other Other Other Other Other Other Other	1 to 7 1 to 7 1 to 7 1 to 7 1 to 7 1 to 7 1 to 7	7 to 10 7 to 10	Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96	2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y	ND ND ND ND ND ND ND	2 2 2 2 2 2 2	Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1	Y Y Y Y Y	0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1	Y Y Y Y Y	ND ND ND ND ND ND	2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel		0 0 0 0 0	Other Other Other Other Other Other Other	1 to 7 1 to 7 1 to 7 1 to 7 1 to 7 1 to 7	7 to 10 7 to 10	Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 127 to 127	2 2 2 2 2 2 2	Y Y Y Y Y	ND ND ND ND ND ND	2 2 2 2 2 2 2	Y Y Y Y Y	0 0 0	1 1 1 1 1	Y Y Y Y Y	0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1	Y Y Y Y Y	ND ND ND ND ND ND	2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal OCP OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total)		0 0 0 0 0 0 0 0	Other Other Other Other Other Other Other Other SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96	2 2 2 2 2 2 2 2 2 2 1 1	Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1	Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 0 0	Y Y Y Y Y Y Y Y N N N	0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal OCP OCP OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-BHC		0 0 0 0 0 0 0 0	Other Other Other Other Other Other Other Other Other SVOC SVOC SVOC SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 127 to 127 119 to 119	2 2 2 2 2 2 2 2 2 2 1 1 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 1 1 0	Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 0 0 0	Y Y Y Y Y Y Y Y Y N N N N	0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal OCP OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total)		0 0 0 0 0 0 0 0	Other Other Other Other Other Other Other Other SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96	2 2 2 2 2 2 2 2 2 2 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1	Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 0 0	Y Y Y Y Y Y Y Y N N N	0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal OCP OCP OCP OCP OCP OCP OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin - Dieldrin (Sum of Total) alpha-BHC beta-BHC Chlordane DDD		0 0 0 0 0 0 0 0 0 0 0 0	Other SVOC SVOC SVOC SVOC SVOC SVOC SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123	2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1 0 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 0 0 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-BHC Deta-BHC Chlordane DDD		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other SVOC SVOC SVOC SVOC SVOC SVOC SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124	2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1 0 0 1 1 1	Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal Heavy Metal OCP OCP OCP OCP OCP OCP OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin - Dieldrin (Sum of Total) alpha-BHC beta-BHC Chlordane DDD		0 0 0 0 0 0 0 0 0 0 0 0	Other SVOC SVOC SVOC SVOC SVOC SVOC SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123	2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1 0 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 0 0 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc A4-DDE Aldrin Ald		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110	2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-BHC beta-BHC Chlordane DDD DDT DDT+DDE+DDD (Sum of Total) delta-BHC Dieldrin Endosulfan alpha		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other SVOC SVOC SVOC SVOC SVOC SVOC SVOC SVOC	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123 73 to 73	2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc A.4-DDE Aldrin - Dieldrin (Sum of Total) alpha-BHC Beta-BHC Chlordane DDD DDT-DDE+DDD (Sum of Total) delta-BHC Deltane DDT DT+DDE+DDD (Sum of Total) edeta-BHC Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan sulphate		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 9124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 117 to 117 101 to 107	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 1 1 1 0 0 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-BHC beta-BHC DDD DDT DDT+DDE+DDD (Sum of Total) Dieldrin Eindosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan beta Endosulfan sulphate Endosulfan beta Endosulfan sulphate Endosulfan sulphate Endorin		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other SVOC SVOC SVOC SVOC SVOC SVOC SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 107 to 107	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc A.4-DDE Aldrin - Dieldrin (Sum of Total) alpha-BHC Beta-BHC Chlordane DDD DDT-DDE+DDD (Sum of Total) delta-BHC Deltane DDT DT+DDE+DDD (Sum of Total) edeta-BHC Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan sulphate		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 117 to 107 107 to 107 77 to 107 72 to 72	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 1 1 1 0 0 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) ajpha-8HC beta-8HC DDD DDT+DDE+DDD (Sum of Total) DDT+DDE+DDD (Sum of Total) DDT+DDE+DDD (Sum of Total) delta-8HC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan sulphate Endofin Endrin detone Endrin Endrin detone Endrin lendrin ketone		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 107 to 107	2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin - Dieldrin (Sum of Total) alpha-BHC beta-BHC Chlordane DDD DDT DDT+DDE+DDD (Sum of Total) delra-BHC Dieldrin Endosulfan Jalpha Endosulfan Jalpha Endosulfan Jalpha Endosulfan Jalpha Endosulfan Jalpha Endosulfan Jalpha Endrin aldehyde Endrin letone Heptachlor Epoxide		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 96 to 105 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 107 to 107 72 to 72 94 to 94 117 to 117	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N			100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) ajpha-8HC beta-8HC DDD DDT+DDE+DDD (Sum of Total) DDT+DDE+DDD (Sum of Total) DDT+DDE+DDD (Sum of Total) delta-8HC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan sulphate Endofin Endrin detone Endrin Endrin detone Endrin lendrin ketone		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 117 to 117 101 to 107 107 to 107 72 to 72 94 to 94	2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-BHC beta-BHC Chlordane DDD DDT DDT+DDE+DDD (Sum of Total) delta-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan sulphate Endrin Endrin ketone Heptachlor Epoxide Hexachlorobenzene Lindane		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other SVOC SVOC SVOC SVOC SVOC SVOC SVOC SVOC	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 98 to 105 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 107 to 107 72 to 72 94 to 94	2 2 2 2 2 2 2 2 2 2 1 1 0 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y N N N N N N N N N N N N N			100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-8HC beta-8HC Deta-8HC Deta-8HC DDD DDT DDT+DDE+DDD (Sum of Total) delta-8HC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan in beta Endosulfan beta Endosulfan beta Endrin Endrin Endrin Hettachlor Heptachlor Epoxide Heptachlor Epoxide Heptachlor Epoxide Hexachlorobenzene Lindane Methoxychlor Organochlorine Pesticides EPAVic		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 97 to 97 99 to 99	2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N			100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Dieldrin (Sum of Total) Aldrin Dieldrin		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 97 to 97 99 to 99	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 0 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N		N	100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-BHC beta-BHC DDD DDT-DDE+DDD (Sum of Total) DDT-DDE+DDD (Sum of Total) delta-BHC Deldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan beta Endrin delta-BHC Deldrin Endosulfan beta Endrin Aldrin Endrin Beta Endrin Bet		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 97 to 97 99 to 99	2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N		N N	100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) DDT-DDE+DDD (Sum of Total) DDT-DDE+DDD (Sum of Total) DDT-DDE+DDD (Sum of Total) Aldrin + Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan beta Endrin ketone Heptachlor Heptachlor Epoxide Heptachlor Fexicides EPAVic Organochlorine Pesticides EPAVic Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 97 to 97 99 to 99	2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 0 0 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) DDT DDT DDT DDT DDT DDT DDT DDT DDT DD		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 98 to 105 95 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 92 to 92 77 to 77	2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) DD DDT DDT+DDE+DDD (Sum of Total) Deldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan sulphate Endrin ketone Heptachlor Epoxide Hexachlorobenzene Lindane Methoxychlor Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Surrogate TCMX Toxaphene Sc10-C16 (Ess Naphthalene (F2)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 97 to 97 99 to 99	2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 1 0 0 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4.4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) alpha-BHC beta-BHC DDD DDT DDT+DDE+DDD (Sum of Total) alpha-BHC Deta-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta End		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 98 to 105 95 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 92 to 92 77 to 77	2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) DD DDT DDT+DDE+DDD (Sum of Total) Deldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan sulphate Endrin ketone Heptachlor Epoxide Hexachlorobenzene Lindane Methoxychlor Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Surrogate TCMX Toxaphene Sc10-C16 (Ess Naphthalene (F2)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 98 to 105 95 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 92 to 92 77 to 77	2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 1 0 0 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin - Dieldrin (Sum of Total) alpha-BHC Deta-BHC Chlordane DDD DDT DDT+DDE+DDD (Sum of Total) alpha-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan alpha Endosulfan beta Endosulfan beta Endosulfan beta Endrin Aldrin Endosulfan beta Endrin Endosulfan beta Endrin Endosulfan beta Endrin Endosulfan beta Endrin Endosulfan Endrin Endosulfan Endrin E			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 98 to 105 95 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 92 to 92 77 to 77	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 101 to 101 95 to 95	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) Aldrin + Dieldrin (Sum of Total) Algrin + Dieldrin (Sum of Total) Algrin + Dieldrin (Sum of Total) DD DDT DDT+DDE+DDD (Sum of Total) Deldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan sulphate Endrin ketone Heptachlor Epoxide Hexachlorobenzene Lindane Methoxychlor Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Surrogate TOMX Surrogate TOMX Coxaphene CC10-C16 Fraction CC10-C16 Fraction CC10-C16 Fraction CC16-C10 less Naphthalene (F2) CC10-C16 Fraction CC3-C40 Fraction CC3-C40 Fraction CC3-C40 Fraction CC3-C40 Fraction CC3-C40 Fraction CC3-C40 Fraction CC5-C10 less Naphthalene (F2) CC10-C16 Fraction CC3-C40 Fraction CC5-C10 less Naphthalene (F2) CC10-C16 Fraction CC3-C40 Fraction CC-C10 Fraction CC-C10 Fraction CC-C10 Fraction			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 97 to 97 92 to 92 77 to 77 91 to 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 1 1 1 0 0 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 101 to 101 95 to 95 96 to 96	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin - Dieldrin (Sum of Total) alpha-BHC Deta-BHC Chlordane DDD DDT DDT+DDE+DDD (Sum of Total) alpha-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan alpha Endosulfan beta Endosulfan beta Endosulfan beta Endrin Aldrin Endosulfan beta Endrin Endosulfan beta Endrin Endosulfan beta Endrin Endosulfan beta Endrin Endosulfan Endrin Endosulfan Endrin E			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 105 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 92 to 92 77 to 77	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 101 to 101 95 to 95 96 to 96	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) DDT-DDE+DDD (Sum of Total) DDT-DDE+DDD (Sum of Total) DDT-DDE+DDD (Sum of Total) Deldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan beta Endosulfan beta Endosulfan beta Endrin ketone Heptachlor Heptachlor Epoxide Heptachlor (Pesticides EPAVic Other Organochlorine Pesticides EPAVic Surrogate Diutykholrorendate Surrogate Diutykholrorendate Surrogate TCMX Toxaphene C10-C16 Fraction CC3-4-C40 Fraction CC3-4-C40 Fraction CC6-C10 Fraction CG-C10 Fraction CG-C10 Fraction Naphthalene			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 105 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 72 to 72 94 to 94 110 to 101 107 to 107 77 to 79 97 to 99 109 109 110 to 100 117 to 117 110 to 107 117 to 107 119 to 107 119 to 107 119 to 107 119 to 109 119 to 119 to 119 119 to 119	2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 910 to 101 95 to 95 96 to 96 72 to 125 72 to 125	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin - Dieldrin (Sum of Total) BDD DDT DDT-DDE+DDD (Sum of Total) delta-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endrin Aldrin Endrin Aldrin Endrin E			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 127 to 127 119 to 119 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 117 to 117 107 to 107 108 to 109 117 to 117 119 to 119 110 to 101 111 to 111 111 to 111 99 to 99	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 910 to 101 95 to 95 96 to 96 72 to 125 72 to 125	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		O N O N O N O N O N O N O N O N O N O N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) Aldrin + Dieldrin DDD DDT DDT+DDE+DDD (Sum of Total) delta-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan sulphate Endrin ketone Heptachlor Heptachlor Epoxide Hexachlor oberachlor Epoxide Hexachlor E			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 105 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123 73 to 73 94 to 94 110 to 101 107 to 107 72 to 72 94 to 94 110 to 101 107 to 107 77 to 79 97 to 99 109 109 110 to 100 117 to 117 110 to 107 117 to 107 119 to 107 119 to 107 119 to 107 119 to 109 119 to 119 to 119 119 to 119	2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 1 1 1 0 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 910 to 101 95 to 95 96 to 96 72 to 125 72 to 125	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) Aldrin + Dieldrin DDD DDT DDT+DDE+DDD (Sum of Total) delta-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endrin ketone Heptachlor Endrin Heptachlor Epoxide Hexachlorobenzene Lindane Methoxychlor Organochlorine Pesticides EPAVic Surrogate Dibutylchlorendate Surrogate TCMX Toxaphene >C10-C16 Fraction CC10-C16 Fraction CC10-C16 Fraction CC3-C40 Fraction CC3-C40 Fraction CC3-C40 Fraction CC5-C10 Fraction CC5-C10 Fraction CC5-C10 Fraction CC6-C10 Fraction			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 117 to 117 101 to 101 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 91 to 91 114 to 114 97 to 97 92 to 92 77 to 77 91 to 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 910 to 101 95 to 95 96 to 96 72 to 125 72 to 125	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) Deta-BHC Deta-BHC Deta-BHC Deta-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endosulfan beta Endosulfan beta Endosulfan beta Endosulfan beta Endosulfan beta Endrin ketone Heptachlor Heptachlor Epoxide Heptachlor (Feracion) Grganochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Surrogate Distylchlorendate Surrogate TCMX Toxaphene <			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 97 to 99 98 to 105 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 107 to 107 72 to 72 94 to 94 117 to 117 107 to 107 72 to 72 94 to 94 117 to 117 107 to 107 107 to 107 72 to 72 94 to 94 117 to 117 107 to 107 109 to 90 111 to 111 111 to 111 97 to 97 92 to 92 77 to 77 111 to 111 111 to 111 99 to 99 11 to 91 114 to 114 115 to 115 116 to 106 117 to 107 118 to 90 119 to 90 119 to 90 110 to 90 11	2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	Y Y Y Y Y Y Y Y Y Y Y N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 910 to 101 95 to 95 96 to 96 72 to 125 72 to 125	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin + Dieldrin (Sum of Total) Aldrin + Dieldrin DDD DDT DDT+DDE+DDD (Sum of Total) delta-BHC Dieldrin Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan alpha Endosulfan beta Endrin ketone Heptachlor Endrin Heptachlor Epoxide Hexachlorobenzene Lindane Methoxychlor Organochlorine Pesticides EPAVic Surrogate Dibutylchlorendate Surrogate TCMX Toxaphene >C10-C16 Fraction CC10-C16 Fraction CC10-C16 Fraction CC3-C40 Fraction CC3-C40 Fraction CC3-C40 Fraction CC5-C10 Fraction CC5-C10 Fraction CC5-C10 Fraction CC6-C10 Fraction			Other	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 95 to 96 95 to 96 95 to 96 127 to 127 119 to 119 79 to 79 99 to 99 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 117 to 117 101 to 101 107 to 107 72 to 72 94 to 94 117 to 117 97 to 79 91 to 91 114 to 114 97 to 97 92 to 92 77 to 77 91 to 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	Y Y Y Y Y Y Y Y N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 910 to 101 95 to 95 96 to 96 72 to 125 72 to 125	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N
Heavy Metal OCP	OCP	Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin Aldrin - Dieldrin (Sum of Total) Aldrin - Endosulfan sulphae Endrin aldehyde Endrin Aldrin - Endrin Aldrin (Sum of Total) Aldrin - Endrin Aldrin (Sum of Total) Aldrin - Endrin Aldrin (Sum of Total) Aldrin - Dieldrin (Sum of Total) Aldrin - Dield			Other SYOC	1 to 7 1	7 to 10	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	93 to 96 96 to 96 96 to 97 97 to 99 96 to 105 95 to 96 127 to 127 119 to 119 124 to 124 123 to 123 73 to 73 94 to 94 110 to 110 117 to 117 101 to 107 107 to 107 108 4 to 94 117 to 117 119 to 119 119 to 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 to 100 96 to 96 95 to 95 95 to 95 95 to 95 910 to 101 95 to 95 96 to 96 72 to 125 72 to 125	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N

INSERT TABLE NAME
Project Number: [Project_ID]
Project Name: [Project_Name]

WATER	PAH		Chrysene	0	SVOC	1 to 7	7 to 10	Υ	88 to 88	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Dibenz(a,h)anthracene	0	SVOC	1 to 7	7 to 10	Υ	83 to 83	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Fluoranthene	0	SVOC	1 to 7	7 to 10	Υ	70 to 70	1	N	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Fluorene	0	SVOC	1 to 7	7 to 10	Υ	74 to 74	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Indeno(1,2,3-c,d)pyrene	0	SVOC	1 to 7	7 to 10	Υ	86 to 86	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Naphthalene	0	VOC	1 to 7	7 to 10	Υ	76 to 76	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		PAHs (Total)	0	SVOC	1 to 2	7 to 10	Υ		0			0		0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Phenanthrene	0	SVOC	1 to 7	7 to 10	Υ	87 to 87	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Pyrene	0	SVOC	1 to 7	7 to 10	Υ	72 to 72	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	PAH		Surrogate 2-fluorobiphenyl	0	SVOC			Υ		0			0		0	N	80 to 87	2	Υ		0			0		0	N
WATER	PAH																										
WATER	PCB	PCB	Aroclor 1016	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB		Aroclor 1221	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB		Aroclor 1232	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB		Aroclor 1242	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB		Aroclor 1248	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB		Aroclor 1254	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB		Aroclor 1260	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB		PCBs (Total)	0	SVOC	1	7	Υ		0			0		0	N		0			0		ND	1	Υ	0	N
WATER	PCB																										
WATER	TPH	TPH	C10-C14 Fraction	0	SVOC	1 to 7	7 to 10	Υ	94 to 94	1	Υ	ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	TPH		C10-C36 Fraction (Total)	0	SVOC	1 to 2	7 to 10	Υ		0			0		0	N		0			0		ND	2	Υ	0	N
WATER	TPH		C15-C28 Fraction	0	SVOC	1 to 7	7 to 10	Υ		0		ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	TPH		C29-C36 Fraction	0	SVOC	1 to 7	7 to 10	Υ		0		ND	1	Υ	0	N		0			0		ND	2	Υ	0	N
WATER	TPH																										
WATER	Volatile	Volatile	Benzene	0	VOC	1 to 7	7 to 10	Υ	120 to 120	1	Υ	ND	2	Y	1	Υ		0		100 to 117	3	Υ	ND	4	Υ	0	N
WATER	Volatile		Ethylbenzene	0	VOC	1 to 7	7 to 10	Υ	108 to 108	1	Υ	ND	2	Υ	1	Υ		0		100 to 114	3	Υ	ND	4	Υ	0	N
WATER	Volatile		Surrogate 4-BFB	0	VOC		1 1	Υ		0			0	1	0	N	52 to 125	6	N		0			0		0	N
WATER	Volatile		Toluene	0	VOC	1 to 7	7 to 10	Υ	112 to 112	1	Υ	ND	2	Υ	1	Υ		0		100 to 114	3	Υ	ND	4	Υ	0	N
WATER	Volatile		Xylene (m & p)	0	VOC	1 to 7	7 to 10	Υ	105 to 105	1	Υ	ND	2	Υ	1	Υ		0		95 to 112	3	Υ	ND	4	Υ	0	N
WATER	Volatile		Xylene (o)	0	VOC	1 to 7	7 to 10	Υ	108 to 108	1	Υ	ND	2	Υ	1	Υ		0		110 to 114	3	Υ	ND	4	Υ	0	N
WATER	Volatile		Xylene (Total)	0	VOC	1 to 7	7 to 10	Υ	106 to 106	1	Y	ND	2	Y	1	Y		0		99 to 112	3	Υ	ND	4	Υ	0	N

Field Duplica Filter: SDG in	ates (SOIL) n('716335','714933','714502','713049		SDG Field ID Sampled Date/Time	635079 HA01_0-0.1 08-01-19	635079 QC-01 08-01-19	RPD	714933 TP4_0.0-0.1 21-04-20	714933 QA20200421 21-04-20	RPD	713049 HA06 0-0.1 07-04-20	713049 QA20200407-1 07-04-20	RPD	635079 HA01_0-0.1 08-01-19	ENVIROLAB 2019-01-10T00:00:00 QA-01 08-01-19	RPD
Method_Ty	ChemName Arsenic (Total)	Units mg/kg	EQL 2 (Primary): 4 (Interlab)	2.3	2.2	4	8.2	8.7	6	5.2	3.2	48	2.3	<4.0	0
neavy ivieta	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium (Total) Copper	mg/kg mg/kg	5 (Primary): 1 (Interlab) 5 (Primary): 1 (Interlab)	8.3 43.0	10.0 41.0	19 5	6.4 <5.0	6.3 <5.0	0	9.5 43.0	7.6 60.0	22 33	8.3 43.0	8.0 59.0	4 31
	Lead Mercury (Inorganic)	mg/kg mg/kg	5 (Primary): 1 (Interlab) 0.1	220.0 <0.1	230.0 <0.1	4	17.0 <0.1	13.0 <0.1	27 0	170.0 0.1	220.0 0.1	26 0	220.0 <0.1	290.0 0.1	27 0
	Nickel	mg/kg	5 (Primary): 1 (Interlab)	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	<5.0	0	<5.0	4.0	0
	Zinc	mg/kg	5 (Primary): 1 (Interlab)	390.0	430.0	10	12.0	15.0	22	240.0	400.0	50	390.0	550.0	34
Organic	C6-C9 Fraction	mg/kg	20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<20.0	0	<20.0	<20.0	0	<20.0	<25.0	0
TPH	C10-C14 Fraction	mg/kg	20 (Primary): 50 (Interlab)	<20.0	<20.0	0	<20.0	<20.0	0	30.0	<20.0	40	<20.0	<50.0	0
	C15-C28 Fraction C29-C36 Fraction	mg/kg mg/kg	50 (Primary): 100 (Interlab 50 (Primary): 100 (Interlab	1300.0 670.0	250.0 400.0	135 50	<50.0 <50.0	<50.0 <50.0	0	650.0 540.0	360.0 300.0	57 57	1300.0 670.0	170.0 340.0	154 65
	C10-C36 Fraction (Total)	mg/kg	50	1970.0	650.0	101	<50.0	<50.0	0	1220.0	660.0	60	1970.0		
Organic	>C10-C16 Fraction	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0
	>C16-C34 Fraction >C34-C40 Fraction	mg/kg mg/kg	100 100	1700.0 450.0	510.0 310.0	108 37	<100.0 <100.0	<100.0 <100.0	0	1000.0 290.0	570.0 190.0	55 42	1700.0 450.0	420.0 220.0	121 69
	>C10-C40 Fraction (Total) >C10-C16 less Naphthalene (F2)	mg/kg mg/kg	100 (Primary): 50 (Interlab 50	2150.0 <50.0	820.0 <50.0	90	<100.0 <50.0	<100.0 <50.0	0	1290.0 <50.0	760.0 <50.0	52	2150.0 <50.0	640.0 <50.0	108
	C6-C10 Fraction	mg/kg	20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<20.0	0	<20.0	<20.0	0	<20.0	<25.0	0
	C6-C10 less BTEX (F1) Naphthalene	mg/kg mg/kg	20 (Primary): 25 (Interlab) 0.5 (Primary): 1 (Interlab)	<20.0 <0.5	<20.0 <0.5	0	<20.0 <0.5	<20.0 <0.5	0	<20.0 <0.5	<20.0 <0.5	0	<20.0 <0.5	<25.0 <1.0 - 0.1	0
PAH	Naphthalene	mg/kg	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.5	0	<5.0	<5.0	0	<0.5	<1.0 - 0.1	0
	•		, , , , , ,												
Volatile	Benzene Ethylbenzene	mg/kg mg/kg	0.1 (Primary): 0.2 (Interlab 0.1 (Primary): 1 (Interlab)	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.2 <1.0	0
	Toluene Xylene (o)	mg/kg mg/kg	0.1 (Primary): 0.5 (Interlab 0.1 (Primary): 1 (Interlab)	<0.1 0.8	<0.1 0.3	0 91	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0	<0.1 0.8	<0.5 <1.0	0
	Xylene (m & p)	mg/kg	0.2 (Primary): 2 (Interlab)	1.4	0.3	150	<0.2	<0.2	0	<0.2	<0.2	0	1.4	<1.0 <2.0	0
	Xylene (Total) Xylene (Total)	mg/kg mg/kg	0.3 (Primary): 3 (Interlab) 0.3 (Primary): 1 (Interlab)	2.1	0.6	111	<0.3	<0.3	0	<0.3	<0.3	0	2.1	<1.0	71
PAH	, ,		, , , , ,	4.5	<0.5	160	<0.5	<0.5	0	√5.0°	<5.0	0		0.1	191
r Arl	Acenaphthene Acenaphthylene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.5 (Primary): 0.1 (Interlab	<0.5	<0.5	0	<0.5	<0.5	0	<5.0 <5.0	<5.0	0	4.5 <0.5	0.5	0
	Anthracene Benz(a)anthracene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.5 (Primary): 0.1 (Interlab	15.0 26.0	<0.5 3.1	187 157	<0.5 <0.5	<0.5 <0.5	0	<5.0 8.4	<5.0 <5.0	0 51	15.0 26.0	0.7 3.5	182 153
	Benzo(a)pyrene	mg/kg	0.5 (Primary): 0.05 (Interla	23.0	4.8	131	<0.5	<0.5	0	13.0	<5.0	89	23.0	4.8	131
	Benzo(a)pyrene TEQ (lower bound)* Benzo(a)pyrene TEQ (medium bound	mg/kg mg/kg	0.5 0.5	33.0 33.0	6.2 6.5	137 134	<0.5 0.6	<0.5 0.6	0	16.0 19.0	<5.0 6.1	105 103	33.0 33.0	6.9 6.9	131 131
	Benzo(a)pyrene TEQ (upper bound)* Benzo(b,j)fluoranthene	mg/kg mg/kg	0.5 0.5	33.0 15.0	6.7 3.1	132 131	1.2 <0.5	1.2 <0.5	0	22.0 11.0	12.0 <5.0	59 75	33.0 15.0	6.9	131
	Benzo(g,h,i)perylene	mg/kg	0.5 (Primary): 0.1 (Interlab	7.8	2.6	100	<0.5	<0.5	0	<10.0	<5.0	0	7.8	3.0	89
	Benzo(k)fluoranthene Chrysene	mg/kg mg/kg	0.5 0.5 (Primary): 0.1 (Interlab	24.0 29.0	4.1 3.6	142 156	<0.5 <0.5	<0.5 <0.5	0	9.0	<5.0 <5.0	82 57	24.0 29.0	3.5	157
	Dibenz(a,h)anthracene Fluoranthene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.5 (Primary): 0.1 (Interlab	1.6 100.0	<0.5 7.2	105 173	<0.5 <0.5	<0.5 <0.5	0	<5.0 9.6	<5.0 7.0	0 31	1.6 100.0	0.7 4.7	78 182
	Fluorene	mg/kg	0.5 (Primary): 0.1 (Interlab	3.1	<0.5	144	<0.5	<0.5	0	<5.0	<5.0	0	3.1	<0.1	188
	Indeno(1,2,3-c,d)pyrene Phenanthrene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.5 (Primary): 0.1 (Interlab	15.0 48.0	3.5 1.6	124 187	<0.5 <0.5	<0.5 <0.5	0	<10.0 <5.0	<5.0 <5.0	0	15.0 48.0	2.4 1.9	145 185
	PAHs (Total) Pyrene	mg/kg mg/kg	0.5 0.5 (Primary): 0.1 (Interlab	402.0 90.0	41.8 8.2	162 167	<0.5 <0.5	<0.5 <0.5	0	74.0 11.0	14.7 7.7	134 35	402.0 90.0	4.9	179
OCP	4,4-DDE Aldrin	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.5 <0.5	<0.5 <0.5	0	<0.05 <0.05	<0.1 <0.1	0
	Aldrin + Dieldrin (Sum of Total) alpha-BHC	mg/kg mg/kg	0.05 0.05 (Primary): 0.1 (Interla	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.5 <0.5	<0.5 <0.5	0	<0.05 <0.05	<0.1	0
	beta-BHC	mg/kg	0.05 (Primary): 0.1 (Interla	<0.05	<0.05	0	<0.05	<0.05	0	<0.5	<0.5	0	<0.05	<0.1	0
	Chlordane DDD	mg/kg mg/kg	0.1 0.05 (Primary): 0.1 (Interla	<0.1 <0.05	<0.1 <0.05	0	<0.1 <0.05	<0.1 <0.05	0	<1.0 <0.5	<1.0 <0.5	0	<0.1 <0.05	<0.1	0
	DDT Dieldrin	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.5 <0.5	<0.5 <0.5	0	<0.05 <0.05	<0.1 <0.1	0
	DDT+DDE+DDD (Sum of Total)	mg/kg	0.05 (Primary): 0.1 (Interla	<0.05	<0.05	0	<0.05	<0.05	0	<0.5	<0.5	0	<0.05	<0.1	0
	delta-BHC Endosulfan alpha	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.5 <0.5	<0.5 <0.5	0	<0.05 <0.05	<0.1 <0.1	0
	Endosulfan beta Endosulfan sulphate	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.5 <0.5	<0.5 <0.5	0	<0.05 <0.05	<0.1 <0.1	0
	Endrin	mg/kg	0.05 (Primary): 0.1 (Interla	<0.05	<0.05	0	<0.05	<0.05	0	<0.5	<0.5	0	<0.05	<0.1	0
	Endrin aldehyde Endrin ketone	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.5 <0.5	<0.5 <0.5	0	<0.05 <0.05	<0.1	0
	Heptachlor	mg/kg	0.05 (Primary): 0.1 (Interla	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.5 <0.5	<0.5 <0.5	0	<0.05 <0.05	<0.1 <0.1	0
	Heptachlor Epoxide Lindane	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.05	<0.05	0	<0.05	<0.05	0	<0.5	<0.5	0	<0.05	<0.1	0
	Methoxychlor Methoxychlor	mg/kg mg/kg	0.2 (Primary): 0.1 (Interlab 0.05 (Primary): 0.1 (Interla) <0.05	<0.05	0	<0.2	<0.2	0	<0.5	<0.5	0	<0.05	<0.1	0
	Toxaphene	mg/kg	1	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	•	Ě
PCB	Aroclor 1016	mg/kg	0.5 (Primary): 0.1 (Interlab				<0.5	<0.5	0						E
	Aroclor 1016 Aroclor 1221	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	0	<0.1	<0.1	0				<0.1 <0.1	<0.1 <0.1	0
	Aroclor 1232	mg/kg	0.5 (Primary): 0.1 (Interlab)			<0.5	<0.5	0						
	Aroclor 1232 Aroclor 1242	mg/kg mg/kg	0.1 0.5 (Primary): 0.1 (Interlab		<0.1	0	<0.5	<0.5	0				<0.1	<0.1	0
	Aroclor 1242 Aroclor 1248	mg/kg mg/kg	0.1 0.5 (Primary): 0.1 (Interlab	<0.1	<0.1	0	<0.5	<0.5	0			 	<0.1	<0.1	0
	Aroclor 1248	mg/kg	0.1 0.5 (Primary): 0.1 (Interlab	<0.1	<0.1	0	<0.5	<0.5	0				<0.1	<0.1	0
	Aroclor 1254 Aroclor 1254	mg/kg	0.1	<0.1	<0.1	0							<0.1	<0.1	0
	Aroclor 1260 Aroclor 1260	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.1) <0.1	<0.1	0	<0.5	<0.5	0			\vdash	<0.1	<0.1	0
	PCBs (Total)	mg/kg	0.5 (Primary): 0.1 (Interlab)		0	<0.5	<0.5	0				<0.1	<0.1	
	PCBs (Total)	mg/kg	0.1	<0.1	<0.1										0
OCP	Hexachlorobenzene	mg/kg	0.05 (Primary): 0.1 (Interla	<0.05	<0.05	0	<0.05	<0.05	0	<0.5	<0.5	0	<0.05	<0.1	0
Asbestos	Approx. Sample Mass Asbestos from ACM in Soil	G %w/w		365.0 0.0	366.0 0.0	0	778.0 0.0	795.0 0.0	2	636.0 0.0	521.0 0.0	20 0	365.0 0.0		
	Asbestos from FA & AF in Soil	%w/w		0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0		
	Asbestos Reported Result Mass ACM	COMMENT G		1.0 0.0	1.0	0	1.0 0.0	1.0 0.0	0	1.0 0.0	1.0 0.0	0	1.0 0.0		+
	Mass Asbestos in ACM	G G		0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0		1
	Mass FA	G G		0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0		L
	Mass Asbestos in FA			0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0		
	Mass Asbestos in FA Mass AF	G G		0.0				0.0	0				0.0		
	Mass Asbestos in FA Mass AF Mass Asbestos in AF Mass Asbestos in FA & AF	G		0.0	0.0	0	0.0	0.0		0.0	0.0	0	0.0		
	Mass Asbestos in FA Mass AF Mass Asbestos in AF	G G G COMMENT COMMENT				0 0	0.0 1.0 1.0	0.0 1.0 1.0	0	0.0 1.0 1.0	0.0 1.0 1.0	0 0	0.0 1.0 1.0		
	Mass Asbestos in FA Mass AF Mass AF Mass Absestos in AF Mass Asbestos in FA & AF ACM - Comment AF - Comment FA - Comment	G COMMENT COMMENT COMMENT		0.0 1.0 1.0 1.0	0.0 1.0 1.0 1.0	0 0	1.0 1.0 1.0	1.0 1.0 1.0	0 0	1.0 1.0 1.0	1.0 1.0 1.0	0 0	1.0 1.0 1.0		
	Mass Asbestos in FA Mass AF Mass Asbestos in AF Mass Asbestos in FA & AF ACM - Comment AF - Comment FA - Comment FOR - Comment Respirable Fibres - Comment	G COMMENT COMMENT COMMENT COMMENT COMMENT		0.0 1.0 1.0 1.0 1.0	0.0 1.0 1.0 1.0 1.0	0 0 0 0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0 0 0 0	1.0 1.0 1.0 1.0 0.0	1.0 1.0 1.0 1.0 1.0	0 0 0 0 200	1.0 1.0 1.0 1.0 1.0		
	Mass Asbestos in FA Mass AF Mass Asbestos in AF Mass Asbestos in FA & AF ACM - Comment AF - Comment FA - Comment Organic Fibres - Comment	G COMMENT COMMENT COMMENT COMMENT		0.0 1.0 1.0 1.0 1.0	0.0 1.0 1.0 1.0 1.0	0 0 0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	0 0 0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	0 0 0	1.0 1.0 1.0 1.0		
Inorganic	Mass Asbestos in FA Mass AF Mass Asbestos in AF Mass Asbestos in FA & AF ACM - Comment AF - Comment FA - Comment FOR - Comment Respirable Fibres - Comment	G COMMENT COMMENT COMMENT COMMENT COMMENT	1	0.0 1.0 1.0 1.0 1.0	0.0 1.0 1.0 1.0 1.0	0 0 0 0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0 0 0 0	1.0 1.0 1.0 1.0 0.0	1.0 1.0 1.0 1.0 1.0	0 0 0 0 200	1.0 1.0 1.0 1.0 1.0		
Inorganic	Mass Asbestos in FA Mass AF Mass Asbestos in AF Mass Asbestos in FA & AF ACM - Comment AF - Comment FA - Comment Organic Fibres - Comment Respirable Fibres - Comment Synthetic Fibres - Comment	G G COMMENT COMMENT COMMENT COMMENT COMMENT COMMENT COMMENT W mg/kg	1 0.1 0.1	0.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 1.0 1.0 1.0 1.0 1.0 1.0	0 0 0 0 0	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0 0 0 0 0	1.0 1.0 1.0 1.0 0.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0	0 0 0 0 200 0	1.0 1.0 1.0 1.0 1.0 1.0		

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (1-10 x EQL); 30 (10-30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Field Duplica Filter: SDG i	ates (SOIL) in('716335','714933','714502','713049	·	SDG Field ID Sampled Date/Time	713049 HA06 0-0.1 07-04-20	ENVIROLAB 2020-04-14T00:00:00 QC 20200407-1 07-04-20	RPD	714933 TP4_0.0-0.1 21-04-20	ENVIROLAB 2020-04-22T00:00:00 QC20200421 21-04-20	RPD
	ChemName Arsenic (Total)	Units mg/kg	EQL 2 (Primary): 4 (Interlab)	5.2	<4.0	26	8.2	5.0	48
, , , , , , , ,	Cadmium	mg/kg	0.4 5 (Primary): 1 (Interlab)	<0.4 9.5	<0.4 8.0	0	<0.4	<0.4 5.0	0 25
	Chromium (Total) Copper	mg/kg mg/kg	5 (Primary): 1 (Interlab)	43.0	46.0	7	<5.0	4.0	0
	Lead Mercury (Inorganic)	mg/kg mg/kg	5 (Primary): 1 (Interlab) 0.1	0.1	120.0 <0.1	34	17.0 <0.1	16.0 <0.1	6
	Nickel Zinc	mg/kg mg/kg	5 (Primary): 1 (Interlab) 5 (Primary): 1 (Interlab)	<5.0 240.0	5.0 320.0	0 29	<5.0 12.0	2.0 12.0	0
Organic		mg/kg	20 (Primary): 25 (Interlab)	<20.0	<25.0	0	<20.0	<25.0	0
						0			
TPH	C10-C14 Fraction C15-C28 Fraction	mg/kg mg/kg	20 (Primary): 50 (Interlab) 50 (Primary): 100 (Interlab	30.0 650.0	<50.0 210.0	102	<20.0 <50.0	<50.0 <100.0	0
	C29-C36 Fraction C10-C36 Fraction (Total)	mg/kg mg/kg	50 (Primary): 100 (Interlated) 50	540.0 1220.0	390.0	32	<50.0 <50.0	<100.0	0
Organic	>C10-C16 Fraction	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
	>C16-C34 Fraction >C34-C40 Fraction	mg/kg mg/kg	100 100	1000.0 290.0	460.0 370.0	74 24	<100.0 <100.0	<100.0 <100.0	0
	>C10-C40 Fraction (Total) >C10-C16 less Naphthalene (F2)	mg/kg	100 (Primary): 50 (Interlab	1290.0	830.0	43	<100.0	<50.0 <50.0	0
	C6-C10 Fraction	mg/kg mg/kg	20 (Primary): 25 (Interlab)	<50.0 <20.0	<50.0 <25.0	0	<50.0 <20.0	<25.0	0
	C6-C10 less BTEX (F1) Naphthalene	mg/kg mg/kg	20 (Primary): 25 (Interlab) 0.5 (Primary): 1 (Interlab)	<20.0 <0.5	<25.0 <0.1	0	<20.0 <0.5	<25.0 <0.1	0
PAH	Naphthalene	mg/kg	0.5 (Primary): 1 (Interlab)	<5.0	<0.1	0	<0.5	<0.1	0
Volatile	Benzene Ethylbenzene	mg/kg mg/kg	0.1 (Primary): 0.2 (Interlab 0.1 (Primary): 1 (Interlab)	<0.1 <0.1	<0.2 <1.0	0	<0.1 <0.1	<0.2 <1.0	0
	Toluene Xylene (o)	mg/kg mg/kg	0.1 (Primary): 0.5 (Interlab 0.1 (Primary): 1 (Interlab)	<0.1 <0.1	<0.5 <1.0	0	<0.1 <0.1	<0.5 <1.0	0
	Xylene (m & p) Xylene (Total)	mg/kg mg/kg	0.2 (Primary): 2 (Interlab) 0.3 (Primary): 3 (Interlab)	<0.2	<2.0 <3.0	0	<0.2 <0.3	<2.0 <3.0	0
	Xylene (Total)	mg/kg	0.3 (Primary): 1 (Interlab)	.0.5	5.0	Ť	,0.5		Ĕ
PAH	Acenaphthene	mg/kg	0.5 (Primary): 0.1 (Interlab	<5.0	<0.1	0	<0.5	<0.1	0
	Acenaphthylene Anthracene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlation 0.5 (Primary): 0.1 (Interlation)	<5.0 <5.0	<0.1 0.2	0	<0.5 <0.5	<0.1 <0.1	0
	Benz(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.5 (Primary): 0.05 (Interla	8.4 13.0	2.7 3.2	103 121	<0.5 <0.5	<0.1 <0.05	0
	Benzo(a)pyrene TEQ (lower bound)*	mg/kg	0.5	16.0	4.9 4.9	106 118	<0.5	<0.05 <0.5 <0.5	0
	Benzo(a)pyrene TEQ (medium bound Benzo(a)pyrene TEQ (upper bound)*	mg/kg mg/kg	0.5 0.5	19.0 22.0	4.9	118	0.6 1.2	<0.5 <0.5	82
	Benzo(b,j)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg	0.5 0.5 (Primary): 0.1 (Interlab	11.0 <10.0	2.0	0	<0.5 <0.5	<0.1	0
	Benzo(k)fluoranthene Chrysene	mg/kg mg/kg	0.5 0.5 (Primary): 0.1 (Interlab	12.0 9.0	1.8	133	<0.5 <0.5	<0.1	0
	Dibenz(a,h)anthracene	mg/kg	0.5 (Primary): 0.1 (Interlab	<5.0	0.7	0	<0.5	<0.1	0
	Fluoranthene Fluorene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.5 (Primary): 0.1 (Interlab	9.6 <5.0	3.8 <0.1	87	<0.5 <0.5	<0.1 <0.1	0
	Indeno(1,2,3-c,d)pyrene Phenanthrene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlate 0.5 (Primary): 0.1 (Primary)	<10.0 <5.0	1.9 1.0	0	<0.5 <0.5	<0.1 <0.1	0
	PAHs (Total) Pyrene	mg/kg mg/kg	0.5 0.5 (Primary): 0.1 (Interlab	74.0 11.0	3.8	97	<0.5 <0.5	<0.1	0
0.60			, , , , ,						
OCP	4,4-DDE Aldrin	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1 <0.1	0	<0.05 <0.05	<0.1 <0.1	0
	Aldrin + Dieldrin (Sum of Total) alpha-BHC	mg/kg mg/kg	0.05 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1	0	<0.05 <0.05	<0.1	0
	beta-BHC Chlordane	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.1	<0.5 <1.0	<0.1	0	<0.05 <0.1	<0.1	0
	DDD	mg/kg	0.05 (Primary): 0.1 (Interla	<0.5	<0.1	0	<0.05	<0.1	0
	DDT Dieldrin	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1 <0.1	0	<0.05 <0.05	<0.1 <0.1	0
	DDT+DDE+DDD (Sum of Total) delta-BHC	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1 <0.1	0	<0.05 <0.05	<0.1 <0.1	0
	Endosulfan alpha Endosulfan beta	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1 <0.1	0	<0.05 <0.05	<0.1 <0.1	0
	Endosulfan sulphate	mg/kg	0.05 (Primary): 0.1 (Interla	<0.5	<0.1	0	<0.05	<0.1	0
	Endrin Endrin aldehyde	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1 <0.1	0	<0.05 <0.05	<0.1 <0.1	0
	Endrin ketone Heptachlor	mg/kg mg/kg	0.05 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1	0	<0.05 <0.05	<0.1	0
	Heptachlor Epoxide Lindane	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 0.05 (Primary): 0.1 (Interla	<0.5 <0.5	<0.1 <0.1	0	<0.05 <0.05	<0.1 <0.1	0
	Methoxychlor	mg/kg	0.2 (Primary): 0.1 (Interlab		<0.1	0	<0.2	<0.1	0
	Methoxychlor Toxaphene	mg/kg mg/kg	0.05 (Primary): 0.1 (Interla 1	<1.0			<1.0		
PCB	Aroclor 1016	mg/kg	0.5 (Primary): 0.1 (Interlab				<0.5	<0.1	0
	Aroclor 1016 Aroclor 1221	mg/kg mg/kg	0.1				<0.1	<0.1	0
	Aroclor 1232	mg/kg	0.5 (Primary): 0.1 (Interlab	1			<0.5	<0.1	0
	Aroclor 1232 Aroclor 1242	mg/kg mg/kg	0.1 0.5 (Primary): 0.1 (Interlab	l L			<0.5	<0.1	0
	Aroclor 1242 Aroclor 1248	mg/kg mg/kg	0.1 0.5 (Primary): 0.1 (Interlab	<u> </u>		H	<0.5	<0.1	0
	Aroclor 1248 Aroclor 1254	mg/kg mg/kg	0.1 0.5 (Primary): 0.1 (Interlab				<0.5	<0.1	0
	Aroclor 1254	mg/kg	0.1						
	Aroclor 1260 Aroclor 1260	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab 0.1				<0.5	<0.1	0
	PCBs (Total) PCBs (Total)	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlate 0.1	<u></u>		L	<0.5	<0.1	0
OCP	Hexachlorobenzene	mg/kg	0.05 (Primary): 0.1 (Interla	<0.5	<0.1	0	<0.05	<0.1	0
		o	,		- Julian	Ě			Ť
Asbestos	Approx. Sample Mass Asbestos from ACM in Soil	G %w/w		636.0 0.0			778.0 0.0		
	Asbestos from FA & AF in Soil Asbestos Reported Result	%w/w COMMENT		0.0 1.0		L	0.0 1.0		$oldsymbol{oldsymbol{oldsymbol{eta}}}$
	Mass ACM	G G		0.0			0.0		
	Mass FA	G		0.0			0.0		
	Mass Asbestos in FA Mass AF	G G		0.0			0.0		
	Mass Asbestos in AF Mass Asbestos in FA & AF	G G		0.0			0.0		
	ACM - Comment AF - Comment	COMMENT		1.0			1.0		
	FA - Comment	COMMENT		1.0			1.0		
	Organic Fibres - Comment Respirable Fibres - Comment	COMMENT COMMENT		1.0 0.0			1.0		
	Synthetic Fibres - Comment	COMMENT		1.0			1.0		
Inorganic	% Moisture 103oC	%	1	15.0		H	8.5		F
ОСР	Organochlorine Pesticides EPAVic	mg/kg	0.1	<1.0			<0.2		
	Other Organochlorine Pesticides EPA		0.1 eater than 1 times the EQL.	<1.0			<0.2	[<u> </u>

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.
**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (1-10 x EC

***Interlab Duplicates are matched on a per compound basis as methods vary between It

Appendix D Laboratory Reports and Chain of Custody

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: George Black **KAMBALA** Project name: Project ID: 55769 COC number: Not provided

Turn around time: 5 Day

Jan 9, 2019 1:58 PM Date/Time received:

Eurofins | mgt reference: 635079

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 11.8 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \mathbf{V} Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

QA01 sent to Envirolab for analysis.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to George Black - gblack@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Environmental Laboratory Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report635079-SProject nameKAMBALAProject ID55769Received DateJan 09, 2019

Client Sample ID			BH04_0-0.1	BH04_1.0-1.1	BH06_0.3-0.4	BH06_3.0-3.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Ja02892	S19-Ja02893	S19-Ja02894	S19-Ja02895
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	-	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	< 50
BTEX	1					
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	81	-	86	83
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	-	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-

Report Number: 635079-S

Client Sample ID Sample Matrix			BH04_0-0.1 Soil	BH04_1.0-1.1 Soil	BH06_0.3-0.4 Soil	BH06_3.0-3.1 Soil
Eurofins mgt Sample No.			S19-Ja02892	S19-Ja02893	S19-Ja02894	S19-Ja02895
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	109	-	118	-
p-Terphenyl-d14 (surr.)	1	%	142	-	128	-
Heavy Metals						
Arsenic	2	mg/kg	< 2	60	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	17	< 5	< 5
Copper	5	mg/kg	6.5	37	8.5	< 5
Lead	5	mg/kg	5.3	74	30	7.2
Mercury	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	29	< 5	< 5
Zinc	5	mg/kg	11	200	18	< 5
% Moisture	1	%	5.4	11	7.7	17

Client Sample ID			BH08_0-0.1 Soil	BH08_3.5-3.6 Soil	BH09_0-0.1 Soil	BH09_1.5-1.6 Soil
Sample Matrix						100.11
Eurofins mgt Sample No.			S19-Ja02896	S19-Ja02897	S19-Ja02898	S19-Ja02899
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	100	87	103
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			BH08_0-0.1	BH08_3.5-3.6	BH09_0-0.1	BH09_1.5-1.6	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S19-Ja02896	S19-Ja02897	S19-Ja02898	S19-Ja02899	
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions	1					
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100	
Polycyclic Aromatic Hydrocarbons	•						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	-	-	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	112	-	-	91	
p-Terphenyl-d14 (surr.)	1	%	125	-	-	68	
Heavy Metals							
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	< 5	7.0	< 5	6.2	
Copper	5	mg/kg	< 5	5.2	17	< 5	
Lead	5	mg/kg	8.8	18	9.7	< 5	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	< 5	< 5	< 5	< 5	
Zinc	5	mg/kg	8.8	19	25	5.4	
% Moisture	1	%	9.8	18	6.9	7.8	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH09_4.0-4.1 Soil S19-Ja02900 Jan 08, 2019	HA01_0-0.1 Soil S19-Ja02901 Jan 08, 2019	QC-01 Soil S19-Ja02902 Jan 08, 2019	HA01_0.9-1.0 Soil S19-Ja02903 Jan 08, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	1300	250	-
TRH C29-C36	50	mg/kg	< 50	670	400	-
TRH C10-36 (Total)	50	mg/kg	< 50	1970	650	-

Olivert Occurred ID						
Client Sample ID			BH09_4.0-4.1	HA01_0-0.1	QC-01	HA01_0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Ja02900	S19-Ja02901	S19-Ja02902	S19-Ja02903
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit				
ВТЕХ	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	1.4	0.2	-
o-Xylene	0.1	mg/kg	< 0.1	0.8	0.3	-
Xylenes - Total	0.3	mg/kg	< 0.3	2.1	0.6	-
4-Bromofluorobenzene (surr.)	1	%	97	90	95	-
Total Recoverable Hydrocarbons - 2013 NEPN	I Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	1700	510	-
TRH >C34-C40	100	mg/kg	< 100	450	310	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	2150	820	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	33	6.2	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	33	6.5	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	33	6.7	-
Acenaphthene	0.5	mg/kg	-	4.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	-	15	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	26	3.1	-
Benzo(a)pyrene	0.5	mg/kg	-	23	4.8	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	15	3.1	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	7.8	2.6	-
Benzo(k)fluoranthene	0.5	mg/kg	-	24	4.1	-
Chrysene	0.5	mg/kg	-	29	3.6	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	1.6	< 0.5	-
Fluoranthene	0.5	mg/kg	-	100	7.2	-
Fluorene	0.5	mg/kg	-	3.1	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	15	3.5	-
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	-	48	1.6	-
Pyrene	0.5	mg/kg	-	90	8.2	-
Total PAH*	0.5	mg/kg	-	402	41.8	-
2-Fluorobiphenyl (surr.)	1	%	-	101	112	-
p-Terphenyl-d14 (surr.)	1	%	-	63	93	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	-
а-ВНС	0.05	mg/kg	-	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	-

	1		BH09_4.0-4.1	HA01_0-0.1	QC-01	HA01_0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Ja02900	S19-Ja02901	S19-Ja02902	S19-Ja02903
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides	'	-				
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin .	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	-
Methoxychlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Toxaphene	1	mg/kg	-	< 1	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	int	104	-
Tetrachloro-m-xylene (surr.)	1	%	-	109	137	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	< 0.1	-
Total PCB*	0.1	mg/kg	-	< 0.1	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	int	104	-
Tetrachloro-m-xylene (surr.)	1	%	-	109	137	-
Heavy Metals						
Arsenic	2	mg/kg	< 2	2.3	2.2	2.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	14	8.3	10	6.4
Copper	5	mg/kg	< 5	43	41	39
Lead	5	mg/kg	9.7	220	230	170
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	5.4	390	430	180
% Moisture	1	%	13	23	20	11

					1	
		1			HA03_0.9-1.0	
		Soil	Soil		Soil S19-Ja02907	
		S19-Ja02904	S19-Ja02905	S19-Ja02906		
		Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	
LOR	Unit					
ctions						
20	mg/kg	< 20	< 20	< 20	< 20	
20		< 20	< 20	< 20	< 20	
50		180	250	320	< 50	
50		200	280	220	< 50	
50		380	530	540	< 50	
0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1	
					< 0.1	
					< 0.1	
	- 0 0				< 0.2	
0.1	- 0 0				< 0.1	
					< 0.3	
					117	
	,,,	- 55				
	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
					< 20	
					< 20	
					< 50	
					< 50	
					< 100	
					< 100	
					< 100	
100	IIIg/Rg	470	030	030	100	
0.5	ma/ka		5.9		1.0	
		-			1.3	
		-			1.6	
					< 0.5	
					< 0.5	
					< 0.5	
					0.7	
					0.8	
					< 0.5	
					< 0.5	
					0.8	
		-			0.8	
					< 0.5	
					1.7	
					< 0.5	
					< 0.5	
					< 0.5	
					0.5	
					1.6	
					6.9	
1 1	%	-	51	-	51 59	
	20 20 50 50 50 0.1 0.1 0.1 0.2	20	LOR	LOR Unit S19-Ja02904 Jan 08, 2019 S19-Ja02905 S19-Ja0	LOR	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			HA02_0-0.1 Soil S19-Ja02904 Jan 08, 2019	HA02_0.4-0.5 Soil S19-Ja02905 Jan 08, 2019	HA03_0-0.1 Soil S19-Ja02906 Jan 08, 2019	HA03_0.9-1.0 Soil S19-Ja02907 Jan 08, 2019
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	3.1	2.3	2.1	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.4	5.6	6.7	5.9
Copper	5	mg/kg	50	44	32	14
Lead	5	mg/kg	180	130	120	39
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	290	360	170	55
% Moisture	1	%	31	17	13	8.3

Client Sample ID			11404 0 0 4	11004 4 4 4 5	11405 0 0 4	11405 4044	
Sample Matrix			HA04_0-0.1 Soil	HA04_1.4-1.5 Soil	HA05_0-0.1 Soil	HA05_1.0-1.1 Soil	
Eurofins mgt Sample No.			S19-Ja02908	S19-Ja02909	S19-Ja02910	S19-Ja02911	
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	
•			Jan 06, 2019 Jan 06, 2019		Jan 06, 2019	Jan 06, 2019	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM							
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50	
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50	
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	< 50	
BTEX		_					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	101	112	-	100	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	-	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	< 100	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	_	< 0.5	

Client Sample ID			HA04_0-0.1	HA04_1.4-1.5	HA05_0-0.1	HA05_1.0-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Ja02908	9-Ja02908 S19-Ja02909 S		S19-Ja02911
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	<u>'</u>	1				
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	59	-	-	68
p-Terphenyl-d14 (surr.)	1	%	71	-	-	84
Heavy Metals						
Arsenic	2	mg/kg	3.1	< 2	< 2	2.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.8	< 5	6.9	< 5
Copper	5	mg/kg	6.0	< 5	8.6	< 5
Lead	5	mg/kg	17	9.1	10	9.8
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	20	< 5	24	9.8
% Moisture	1	%	10.0	7.0	17	10

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH03_0-0.1 Soil S19-Ja02912 Jan 09, 2019	BH03_2.5-2.6 Soil S19-Ja02913 Jan 09, 2019	BH10_0-0.1 Soil S19-Ja02914 Jan 09, 2019	BH10_1.0-1.1 Soil S19-Ja02915 Jan 09, 2019
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	109	106	106	-

LOR		BH03_0-0.1 Soil S19-Ja02912	BH03_2.5-2.6 Soil	BH10_0-0.1 Soil	BH10_1.0-1.1 Soil	
		S19-Ja02912	C40 1-00040		ł	
			S19-Ja02913	S19-Ja02914	S19-Ja02915	
		Jan 09, 2019	Jan 09, 2019	Jan 09, 2019	Jan 09, 2019	
	Unit					
actions						
	ma/ka	< 0.5	< 0.5	< 0.5	-	
					-	
					-	
					-	
					-	
					-	
					-	
					-	
1 .00	, ···ə' ··ə	1.00	1.00	1.00		
0.5	ma/ka	_	< 0.5	< 0.5	<u> </u>	
					_	
					<u> </u>	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
					_	
		_			_	
		_			_	
2	ma/ka	- 2	-2	23	10.0	
					< 0.4	
					15	
					< 5	
					18	
					< 0.1	
					< 5	
					8.6	
J	i ilig/kg	0.4		12	0.0	
4	0/	0.7	42	44	15	
	0.5 20 20 50 100 100 100 100 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	20 mg/kg 20 mg/kg 50 mg/kg 50 mg/kg 50 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 0.5 mg/kg 0.1 mg/kg 5 mg/kg	20 mg/kg < 20	20 mg/kg < 20	20 mg/kg < 20	

Client Sample ID			BH07 0-0.1	BH07 1.5-1.6	BH07_4.0-4.1
Sample Matrix			Soil	Soil	Soil
•					
Eurofins mgt Sample No.			S19-Ja02916	S19-Ja02917	S19-Ja02918
Date Sampled			Jan 09, 2019	Jan 09, 2019	Jan 09, 2019
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	20	mg/kg	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50
ВТЕХ					
Benzene	0.1	mg/kg	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	114	-	110
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	_	< 0.5
TRH C6-C10	20	mg/kg	< 20	_	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	_	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100
Polycyclic Aromatic Hydrocarbons		1 5 5			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	_	0.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	_	1.2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.5
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	0.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	0.6
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	_	1.0
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	0.7
Naphthalene	0.5	mg/kg	< 0.5	_	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	_	0.5
Pyrene	0.5	mg/kg	< 0.5	_	1.1
Total PAH*	0.5	mg/kg	< 0.5	-	4.7
2-Fluorobiphenyl (surr.)	1	%	50	-	66
p-Terphenyl-d14 (surr.)	1	%	55	-	66

Client Sample ID			BH07_0-0.1	BH07_1.5-1.6	BH07_4.0-4.1
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Ja02916	S19-Ja02917	S19-Ja02918
Date Sampled			Jan 09, 2019	Jan 09, 2019	Jan 09, 2019
Test/Reference	LOR	Unit			
Organochlorine Pesticides	•	•			
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	< 0.05
a-BHC	0.05	mg/kg	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05
Methoxychlor	0.05	mg/kg	-	-	< 0.05
Toxaphene	1	mg/kg	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	69
Tetrachloro-m-xylene (surr.)	1	%	-	-	83
Polychlorinated Biphenyls					
Aroclor-1016	0.1	mg/kg	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	-	< 0.1
Total PCB*	0.1	mg/kg	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	69
Tetrachloro-m-xylene (surr.)	1	%	-	-	83
Heavy Metals		"			
Arsenic	2	mg/kg	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Conner	5	mg/kg	< 5	< 5	< 5
Copper	5	mg/kg	< 5	18	< 5
Lead	5	mg/kg	7.2	47	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel Zing	5	mg/kg	< 5	< 5	< 5
Zinc		mg/kg	< 5	54	< 5
% Moisture	1	%	4.3	11	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jan 15, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Jan 15, 2019	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 15, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 15, 2019	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 15, 2019	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Jan 15, 2019	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Jan 15, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Melbourne	Jan 15, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Jan 09, 2019	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 **Order No.: Received:** Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Χ	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х				Χ		Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794											
Pert	h Laboratory - N	NATA Site # 237	36											
Exte	rnal Laboratory	,												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	TS	Jan 08, 2019		Water	S19-Ja02890				Х					
2	ТВ	Jan 08, 2019		Water	S19-Ja02891				Х					
3	BH04_0-0.1	Jan 08, 2019		Soil	S19-Ja02892	Х					Х	Х		
4	BH04_1.0-1.1	Jan 08, 2019		Soil	S19-Ja02893			Х			Х			
5	BH06_0.3-0.4	Jan 08, 2019		Soil	S19-Ja02894	Х					Х	Х		
6	BH06_3.0-3.1	Jan 08, 2019		Soil	S19-Ja02895			Х			Х		Х	
7	BH08_0-0.1	Jan 08, 2019		Soil	S19-Ja02896	Х					Х	Х		
8	BH08_3.5-3.6	Jan 08, 2019		Soil	S19-Ja02897			Х			Х		Х	
9	BH09_0-0.1	Jan 08, 2019		Soil	S19-Ja02898			Х			Х		Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 13 of 27 Report Number: 635079-S

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 Order No.: Received: Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: George Black

		San	iple Detail		Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site #	1254 & 14271			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	217		Х				Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 2	0794										
Pert	h Laboratory - N	IATA Site # 2373	6										
10	BH09_1.5-1.6	Jan 08, 2019	Soil	S19-Ja02899	Х					Х	Х		
11	BH09_4.0-4.1	Jan 08, 2019	Soil	S19-Ja02900			Х			Х		Х	
12	HA01_0-0.1	Jan 08, 2019	Soil	S19-Ja02901	Х				Х	Х	Х		
13	QC-01	Jan 08, 2019	Soil	S19-Ja02902	Х				Х	Х	Х		
14	HA01_0.9-1.0	Jan 08, 2019	Soil	S19-Ja02903			Х			Х			
15	HA02_0-0.1	Jan 08, 2019	Soil	S19-Ja02904			Х			Х		Х	
16	HA02_0.4-0.5	Jan 08, 2019	Soil	S19-Ja02905	Х					Х	Х		
17	HA03_0-0.1	Jan 08, 2019	Soil	S19-Ja02906			Х			Х		Х	
18	HA03_0.9-1.0	Jan 08, 2019	Soil	S19-Ja02907	Х					Х	Х		
19	HA04_0-0.1	Jan 08, 2019	Soil	S19-Ja02908	Х					Х	Х		
20	HA04_1.4-1.5	Jan 08, 2019	Soil	S19-Ja02909			Х			Х		Х	
21	HA05_0-0.1	Jan 08, 2019	Soil	S19-Ja02910			Х			Х			

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769
 Order No.:
 Received:
 Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

635079 **Due:** Jan 16, 2019 02 8245 0300 **Priority:** 5 Day

 Phone:
 02 8245 0300
 Priority:
 5 Day

 Fax:
 Contact Name:
 George Black

		Sampl	e Detail		Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mel	bourne Laborato	ory - NATA Site # 1	254 & 14271			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1821	7		Х				Х		Х	Х	Х
Bris	risbane Laboratory - NATA Site # 20794												
Pert	h Laboratory - N	IATA Site # 23736											
22	HA05_1.0-1.1	Jan 08, 2019	Soil	S19-Ja02911	Х					Х	Х		
23	BH03_0-0.1	Jan 09, 2019	Soil	S19-Ja02912			Х			Х		Х	
24	BH03_2.5-2.6	Jan 09, 2019	Soil	S19-Ja02913	Х					Х	Х		
25	BH10_0-0.1	Jan 09, 2019	Soil	S19-Ja02914	Х					Х	Х		
26	BH10_1.0-1.1	Jan 09, 2019	Soil	S19-Ja02915			Х			Х			
27	BH07_0-0.1	Jan 09, 2019	Soil	S19-Ja02916	Х					Х	Х		
28	BH07_1.5-1.6	Jan 09, 2019	Soil	S19-Ja02917			Х			Х			
29	BH07_4.0-4.1	Jan 09, 2019	Soil	S19-Ja02918	Х				Х	Х	Х		
30	RIN	Jan 09, 2019	Water	S19-Ja02919									Х
31	BH04_0.3-0.4	Jan 08, 2019	Soil	S19-Ja02933		Х							
32	BH04_1.5-1.6	Jan 08, 2019	Soil	S19-Ja02934		Х							
33	BH06_0-0.1	Jan 08, 2019	Soil	S19-Ja02935		Х							

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 Order No.: Received: Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

		San	iple Detail			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	bourne Laborato	ory - NATA Site #	1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	217			Х				Х		Х	Х	Х
Bris	bane Laborator	y - NATA Site # 2	0794											
Pert	h Laboratory - N	IATA Site # 2373	6											
34	BH06_1.5-1.6	Jan 08, 2019	Soi	l	S19-Ja02936		Х							
35	BH06_2.0-2.1	Jan 08, 2019	Soi	l	S19-Ja02937		Х							
36	BH06_2.5-2.6	Jan 08, 2019	Soi	l	S19-Ja02938		Х							
37	BH08_0.3-0.4	Jan 08, 2019	Soi	l	S19-Ja02939		Х							
38	BH08_1.0-1.1	Jan 08, 2019	Soi	l	S19-Ja02940		Х							
39	BH08_1.5-1.6	Jan 08, 2019	Soi	I	S19-Ja02941		Х							
40	BH08_2.0-2.1	Jan 08, 2019	Soi	I	S19-Ja02942		Х							
41	BH08_2.5-2.6	Jan 08, 2019	Soil	I	S19-Ja02943		Х							
42	BH08_3.0-3.1	Jan 08, 2019	Soil	I	S19-Ja02944		Х							
43	BH08_4.0-4.1	Jan 08, 2019	Soil	I	S19-Ja02945		Х							
44	BH08_4.5-4.6	Jan 08, 2019	Soil	l	S19-Ja02946		Х							
45	BH09_0.3-0.4	Jan 08, 2019	Soi	l	S19-Ja02947		Х							

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 Order No.: Received: Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

		Samı	ole Detail		Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	oourne Laborato	ory - NATA Site #	1254 & 14271			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 182	17		Х				Х		Х	Х	Х
		y - NATA Site # 20											
Pert	h Laboratory - N	IATA Site # 23736)	-									
46	BH09_1.0-1.1	Jan 08, 2019	Soil	S19-Ja02948		Х							
47	BH09_2.0-2.1	Jan 08, 2019	Soil	S19-Ja02949		Х							
48	BH09_3.0-3.1	Jan 08, 2019	Soil	S19-Ja02950		Х							
49	HA01_0.3-0.4	Jan 08, 2019	Soil	S19-Ja02951		Х							
50	HA03_0.4-0.5	Jan 08, 2019	Soil	S19-Ja02952		Х							
51	HA03_1.5-1.6	Jan 08, 2019	Soil	S19-Ja02953		Х							
52	HA04_0.4-0.5	Jan 08, 2019	Soil	S19-Ja02954		Х							
53	HA04_1.0-1.1	Jan 08, 2019	Soil	S19-Ja02955		Х							
54	HA05_0.3-0.4	Jan 08, 2019	Soil	S19-Ja02956		Х							
55	BH03_0.3-0.4	Jan 09, 2019	Soil	S19-Ja02957		Х							
56	BH03_1.0-1.1	Jan 09, 2019	Soil	S19-Ja02958		Х							
57	BH03_1.5-1.6	Jan 09, 2019	Soil	S19-Ja02959		Х							

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 Order No.: Received: Jan 9, 2019 1:58 PM

635079 **Due:** Jan 16, 2019

02 8245 0300 **Priority:** 5 Day

Contact Name: George Black

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х	Х
	ney Laboratory					Х				Х		Х	Х	Х
	bane Laboratory													
	h Laboratory - N		36	I										
58	BH03_2.0-2.1	Jan 09, 2019		Soil	S19-Ja02960		Х							
59	BH03_3.0-3.1	Jan 09, 2019		Soil	S19-Ja02961		Х							
60	BH10_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02962		Х							
61	BH07_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02963		Х							
62	BH07_1.0-1.1	Jan 09, 2019		Soil	S19-Ja02964		Х							
63	BH07_2.0-2.1	Jan 09, 2019		Soil	S19-Ja02965		Х							
64	BH07_2.5-2.6	Jan 09, 2019		Soil	S19-Ja02966		Х							
65	BH07_3.0-3.1	Jan 09, 2019		Soil	S19-Ja02967		Х							
Test	Counts					14	35	13	2	3	27	14	8	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u> </u>	•	'		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Rg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluorene Fluorene	mg/kg	1			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
\	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	ı mg/kg	~ 1	<u> </u>	1 455	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1016 Aroclor-1221					
	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	1 3 3				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	100	70-130	Pass	
TRH C10-C14	%	93	70-130	Pass	
LCS - % Recovery		00	70 100	1 455	
BTEX					
Benzene	%	89	70-130	Pass	
		1			
Toluene	%	108	70-130	Pass	
Ethylbenzene	%	120	70-130	Pass	
m&p-Xylenes	%	125	70-130	Pass	
Xylenes - Total	%	124	70-130	Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	119	70-130	Pass	
TRH C6-C10	%	98	70-130	Pass	
TRH >C10-C16	%	94	70-130	Pass	
LCS - % Recovery	70	J -	1 70-130	1 433	
Polycyclic Aromatic Hydrocarbons			T		
	%	120	70.420	Doca	
Acenaphthylass		120	70-130	Pass	
Acenaphthylene	%	117	70-130	Pass	
Anthracene	%	118	70-130	Pass	
Benz(a)anthracene	%	92	70-130	Pass	
Benzo(a)pyrene	%	92	70-130	Pass	
Benzo(b&j)fluoranthene	%	97	70-130	Pass	

т	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene			%	78	70-130	Pass	
Benzo(k)fluoranthene			%	102	70-130	Pass	
Chrysene			%	121	70-130	Pass	
Dibenz(a.h)anthracene			%	84	70-130	Pass	
Fluoranthene			%	103	70-130	Pass	
Fluorene			%	124	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	88	70-130	Pass	
Naphthalene			%	120	70-130	Pass	
Phenanthrene			%	120	70-130	Pass	
Pyrene			%	122	70-130	Pass	
LCS - % Recovery							
Organochlorine Pesticides							
Chlordanes - Total			%	79	70-130	Pass	
4.4'-DDD			%	88	70-130	Pass	
4.4'-DDE			%	108	70-130	Pass	
4.4'-DDT			%	84	70-130	Pass	
a-BHC			%	93	70-130	Pass	
Aldrin			%	86	70-130	Pass	
b-BHC			%	82	70-130	Pass	
d-BHC			%	106	70-130	Pass	
Dieldrin			%	98	70-130	Pass	
Endosulfan I			%	71	70-130	Pass	
Endosulfan II			%	106	70-130	Pass	
Endosulfan sulphate			%	116	70-130	Pass	
Endrin			%	112	70-130	Pass	
Endrin aldehyde			%	124	70-130	Pass	
Endrin ketone			%	81	70-130	Pass	
g-BHC (Lindane)			%	79	70-130	Pass	
Heptachlor			%	110	70-130	Pass	
Heptachlor epoxide			%	95	70-130	Pass	
Hexachlorobenzene			%	124	70-130	Pass	
Methoxychlor			%	117	70-130	Pass	
•			70	117	70-130	Fass	
LCS - % Recovery							
Heavy Metals			0/	404	00.400	Dana	
Arsenic			%	101	80-120	Pass	
Characteristic			%	110	80-120	Pass	
Chromium			%	109	80-120	Pass	
Copper			%	106	80-120	Pass	
Lead			%	107	80-120	Pass	
Mercury			%	107	75-125	Pass	
Nickel			%	105	80-120	Pass	
Zinc			%	103	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarb				Result 1			
TRH C6-C9	S19-Ja02894	CP	%	87	70-130	Pass	
TRH C10-C14	S19-Ja02894	CP	%	124	70-130	Pass	
Spike - % Recovery							
BTEX		1	1	Result 1			
Benzene	S19-Ja02894	CP	%	75	70-130	Pass	
Toluene	S19-Ja02894	CP	%	84	70-130	Pass	
Ethylbenzene	S19-Ja02894	CP	%	89	70-130	Pass	
m&p-Xylenes	S19-Ja02894	CP	%	92	70-130	Pass	
o-Xylene	S19-Ja02894	CP	%	88	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total	S19-Ja02894	CP	%	90	70-130	Pass	
Spike - % Recovery				·			
Total Recoverable Hydrocarbon	ns - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S19-Ja02894	CP	%	86	70-130	Pass	
TRH C6-C10	S19-Ja02894	CP	%	84	70-130	Pass	
TRH >C10-C16	S19-Ja02894	CP	%	128	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarb	ons			Result 1			
Acenaphthene	S19-Ja02894	CP	%	71	70-130	Pass	
Acenaphthylene	S19-Ja02894	CP	%	76	70-130	Pass	
Anthracene	S19-Ja02894	CP	%	95	70-130	Pass	
Benz(a)anthracene	S19-Ja02894	CP	%	78	70-130	Pass	
Benzo(a)pyrene	S19-Ja02894	CP	%	76	70-130	Pass	
Benzo(b&j)fluoranthene	S19-Ja02894	CP	%	75	70-130	Pass	
Benzo(g.h.i)perylene	S19-Ja02894	CP	%	76	70-130	Pass	
Benzo(k)fluoranthene	S19-Ja02894	CP	%	77	70-130	Pass	
Chrysene	S19-Ja02894	CP	%	86	70-130	Pass	
Dibenz(a.h)anthracene	S19-Ja02894	CP	%	73	70-130	Pass	
Fluoranthene	S19-Ja02894	CP	%	112	70-130	Pass	
Fluorene	S19-Ja02894	CP	%	74	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Ja02894	CP	%	75	70-130	Pass	
Naphthalene	S19-Ja02894	CP	%	70	70-130	Pass	
Phenanthrene	S19-Ja02894	CP	%	74	70-130	Pass	
Pyrene	S19-Ja02894	CP	%	109	70-130	Pass	
Spike - % Recovery				Ι = Ι			
Heavy Metals	T			Result 1		_	
Arsenic	S19-Ja02898	CP	%	109	75-125	Pass	
Cadmium	S19-Ja02898	CP	%	109	75-125	Pass	
Chromium	S19-Ja02898	CP	%	119	75-125	Pass	
Copper	S19-Ja02898	CP	%	115	75-125	Pass	
Lead	S19-Ja02898	CP	%	116	75-125	Pass	
Mercury	S19-Ja02898	CP	%	120	70-130	Pass	
Nickel	S19-Ja02898	CP	%	116	75-125	Pass	
Zinc	S19-Ja02898	CP	%	110	75-125	Pass	
Spike - % Recovery				I 5 11 1			
Organochlorine Pesticides	1440 1 07747	NOD		Result 1	70.400		
4.4'-DDD	M19-Ja07747	NCP	%	119	70-130	Pass	
4.4'-DDE	M19-Ja07747	NCP	%	96	70-130	Pass	
4.4'-DDT	M19-Ja07747	NCP	%	130	70-130	Pass	
a-BHC	M19-Ja07747	NCP	%	97	70-130	Pass	
Aldrin	M19-Ja06264	NCP	%	102	70-130	Pass	
b-BHC	M19-Ja07747	NCP	%	74	70-130	Pass	
d-BHC	M19-Ja07747	NCP	%	96	70-130	Pass	
Dieldrin Endaculfon I	M19-Ja06264	NCP	%	112	70-130	Pass	
Endosulfan I	M19-Ja07747	NCP	%	75	70-130	Pass	
Endosulfan II	M19-Ja07747	NCP	%	101	70-130	Pass	
Endosulfan sulphate Endrin	M19-Ja07747 M19-Ja07747	NCP NCP	<u>%</u> %	95 99	70-130 70-130	Pass Pass	
	M19-Ja07747 M19-Ja07747	NCP	<u>%</u> %	105	70-130	Pass	
Endrin aldehyde				1			
g-BHC (Lindane)	M19-Ja07747 M19-Ja07747	NCP NCP	<u>%</u> %	75 75	70-130 70-130	Pass Pass	
Heptachlor	M19-Ja07747 M19-Ja07747	NCP	<u>%</u> %	119	70-130	Pass	
Heptachlor epoxide	M19-Ja07747 M19-Ja07747	NCP	<u>%</u> %	97	70-130	Pass	
Hexachlorobenzene	M19-Ja07747 M19-Ja07747	NCP	<u>%</u> %	124	70-130	Pass	

		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Methoxychlor	M19-Ja07747	NCP	%	122			70-130	Pass	
Spike - % Recovery				T	1				
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract			Result 1					
TRH C6-C9	S19-Ja02905	CP	%	92			70-130	Pass	
TRH C10-C14	S19-Ja02905	CP	%	102			70-130	Pass	
Spike - % Recovery				T	1				
BTEX				Result 1					
Benzene	S19-Ja02905	CP	%	73			70-130	Pass	
Toluene	S19-Ja02905	CP	%	96			70-130	Pass	
Ethylbenzene	S19-Ja02905	CP	%	110			70-130	Pass	
m&p-Xylenes	S19-Ja02905	CP	%	114			70-130	Pass	
o-Xylene	S19-Ja02905	CP	%	111			70-130	Pass	
Xylenes - Total	S19-Ja02905	CP	%	113			70-130	Pass	
Spike - % Recovery				<u> </u>	1				
Total Recoverable Hydrocarbon				Result 1					
Naphthalene	S19-Ja02905	CP	%	102			70-130	Pass	
TRH C6-C10	S19-Ja02905	CP	%	94			70-130	Pass	
TRH >C10-C16	S19-Ja02905	CP	%	106			70-130	Pass	
Spike - % Recovery				1	1				
Heavy Metals				Result 1					
Arsenic	S19-Ja02908	CP	%	113			75-125	Pass	
Cadmium	S19-Ja02908	CP	%	102			75-125	Pass	
Chromium	S19-Ja02908	CP	%	116			75-125	Pass	
Copper	S19-Ja02908	CP	%	115			75-125	Pass	
Lead	S19-Ja02908	CP	%	117			75-125	Pass	
Mercury	S19-Ja02908	CP	%	104			70-130	Pass	
Nickel	S19-Ja02908	CP	%	113			75-125	Pass	
Zinc	S19-Ja02908	CP	%	118			75-125	Pass	
Spike - % Recovery				T	1		1		
Organochlorine Pesticides				Result 1					
Chlordanes - Total	M19-Ja06348	NCP	%	112			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Ja02892	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-Ja02892	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-Ja02892	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Ja02892	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Ja02892	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Ja02892	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Ja02892	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Ja02892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Ja02892	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Ja02892	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Ja02892	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-Ja02892	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-Ja02892	CP	mg/kg	< 100	< 100	<1	30%	Pass	1
TRH >C34-C40	S19-Ja02892	CP	mg/kg	<u> </u>	\ 100		3070	1 433	

Duplicate									
Polycyclic Aromatic Hydrocarbons	1			Result 1	Result 2	RPD			
Acenaphthene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S19-Ja02892	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S19-Ja02892	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S19-Ja02892	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S19-Ja02892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Ja02897	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S19-Ja02897	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Ja02897	CP	mg/kg	7.0	6.4	9.0	30%	Pass	
Copper	S19-Ja02897	CP	mg/kg	5.2	5.1	2.0	30%	Pass	
Lead	S19-Ja02897	CP	mg/kg	18	18	<1	30%	Pass	
Mercury	S19-Ja02897	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Ja02897	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S19-Ja02897	CP	mg/kg	19	17	12	30%	Pass	
Duplicate	010 0002001	<u> </u>	ı mg/ng	10		12	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Ja02898	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S19-Ja02898	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Ja02898	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S19-Ja02898	CP	mg/kg	17	17	3.0	30%	Pass	
Lead	S19-Ja02898	CP	mg/kg	9.7	9.9	2.0	30%	Pass	
Mercury	S19-Ja02898	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Ja02898	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S19-Ja02898	CP	mg/kg	25	25	2.0	30%	Pass	
Duplicate	010 0002000	01	l mg/kg	20	20	2.0	0070	1 455	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M19-Ja07746	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M19-Ja07746	NCP		0.49	0.49	<1	30%	Pass	
b-BHC	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M19-Ja07746 M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
			mg/kg	i					
Dieldrin Endoculfon I	M19-Ja07746	NCP	mg/kg	0.82	0.80	3.0	30%	Pass	
Endosulfan I	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan aulahata	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Dunlicato									
Organicate				Dog::lt.d	Result 2	DDD			
Organochlorine Pesticides	M40 1-07740	NOD		Result 1		RPD	000/	D	
Heptachlor Heptachlor epoxide	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
-1	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M19-Ja07746	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				D 11.4	T D	DDD			
~	0/0 / 0000/			Result 1	Result 2	RPD	222/	+	
% Moisture	S19-Ja02901	CP	%	23	23	2.0	30%	Pass	
Duplicate				l	I . I				
Total Recoverable Hydrocarbon			1	Result 1	Result 2	RPD			
TRH C6-C9	S19-Ja02904	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				1	1				
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Ja02904	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Ja02904	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Ja02904	CP	mg/kg	0.5	0.4	14	30%	Pass	
m&p-Xylenes	S19-Ja02904	CP	mg/kg	3.3	3.0	11	30%	Pass	
o-Xylene	S19-Ja02904	CP	mg/kg	1.2	1.1	12	30%	Pass	
Xylenes - Total	S19-Ja02904	CP	mg/kg	4.5	4.0	11	30%	Pass	
Duplicate									_
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S19-Ja02904	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Ja02904	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Ja02907	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S19-Ja02907	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Ja02907	СР	mg/kg	5.9	5.3	12	30%	Pass	
Copper	S19-Ja02907	СР	mg/kg	14	12	11	30%	Pass	
Lead	S19-Ja02907	CP	mg/kg	39	33	17	30%	Pass	
Mercury	S19-Ja02907	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Ja02907	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S19-Ja02907	CP	mg/kg	55	54	3.0	30%	Pass	
Duplicate	010 0002001	<u> </u>	ı mg/ng			0.0	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Ja02908	СР	mg/kg	3.1	3.4	7.0	30%	Pass	
Cadmium	S19-Ja02908	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Ja02908	CP	mg/kg	7.8	8.0	2.0	30%	Pass	
Copper	S19-Ja02908	CP CP	mg/kg	6.0	6.2	2.0 1.0	30%	Pass	
Lead	S19-Ja02908		mg/kg	17	17		30%	Pass	
Mercury	S19-Ja02908	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Ja02908	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S19-Ja02908	CP	mg/kg	20	20	1.0	30%	Pass	
Duplicate				D :::	D	DDC			
0.00	0/0 / 0	1 0=	2.	Result 1	Result 2	RPD	222	+	
% Moisture	S19-Ja02911	CP	%	10	11	5.0	30%	Pass	
Duplicate				T _					
Polychlorinated Biphenyls		Ι.	I	Result 1	Result 2	RPD		 	
Aroclor-1016	M18-De30880	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M18-De30880	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M18-De30880	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M18-De30880	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M18-De30880	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M18-De30880	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Aroclor-1260	M18-De30880	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Total PCB*	M18-De30880	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

escription)

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

General Manager Final report - this Report replaces any previously issued Report

- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | Ingl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for infaliative to meet deadlines and lost production arising from this report. This document shall be reported evec except in full and retales only to the interns tested. Unliess indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention:George BlackReport635079-AIDProject NameKAMBALAProject ID55769

Received Date Jan 09, 2019 **Date Reported** Jan 16, 2019

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name KAMBALA Project ID 55769

Date Sampled Jan 08, 2019 to Jan 09, 2019

Report 635079-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH04_0-0.1	19-Ja02892	Jan 08, 2019	Approximate Sample 677g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH06_0.3-0.4	4 19-Ja02894 Jan 08, 2019 Approximate Sample 757g Sample consisted of: Brown fine-grained sandy soil and rocks			No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH08_0-0.1	19-Ja02896	Jan 08, 2019	Approximate Sample 525g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH09_1.5-1.6	19-Ja02899	Jan 08, 2019	Approximate Sample 726g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
HA01_0-0.1	19-Ja02901	Jan 08, 2019	Approximate Sample 365g Sample consisted of: Dark brown fine-grained sandy soil and organic debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
QC-01	19-Ja02902	Jan 08, 2019	Approximate Sample 366g Sample consisted of: Dark brown fine-grained sandy soil and organic debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
HA02_0.4-0.5	19-Ja02905	Jan 08, 2019 Approximate Sample 679g Sample consisted of: Brown fine-grained sandy soil and rocks		No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
HA03_0.9-1.0	19-Ja02907	Jan 08, 2019	Approximate Sample 515g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
HA04_0-0.1	19-Ja02908	Jan 08, 2019	Approximate Sample 680g Sample consisted of: Brown fine-grained sandy soil and rocks	No respirable fibres detected. No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
HA05_1.0-1.1	19-Ja02911	Jan 08, 2019	Approximate Sample 609g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH03_2.5-2.6	19-Ja02913	Jan 09, 2019	Approximate Sample 749g Sample consisted of: Beige coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH10_0-0.1	19-Ja02914	Jan 09, 2019	Approximate Sample 798g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH07_0-0.1	19-Ja02916	Jan 09, 2019	Approximate Sample 775g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH07_4.0-4.1	19-Ja02918	Jan 09, 2019	Approximate Sample 917g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJan 09, 2019Indefinite

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne

Site # 1254 & 14271

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 55769 Order No.:

Report #: 635079

Phone: 02 8245 0300

Fax:

Received: Due: Jan 9, 2019 1:58 PM

Due: Jan 16, 2019 **Priority:** 5 Day

Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х				Х		Х	Х	Х
Bris	oane Laborator	y - NATA Site #	20794											
Pert	n Laboratory - N	NATA Site # 237	36											
Exte	rnal Laboratory			1										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	TS	Jan 08, 2019		Water	S19-Ja02890				Х					
2	ТВ	Jan 08, 2019		Water	S19-Ja02891				Х					
3	BH04_0-0.1	Jan 08, 2019		Soil	S19-Ja02892	Х					Х	Х		
4	BH04_1.0-1.1	Jan 08, 2019		Soil	S19-Ja02893			Х			Х			
5	BH06_0.3-0.4 Jan 08, 2019 Soil S19-Ja02894										Х	Х		
6	BH06_3.0-3.1	Jan 08, 2019		Soil	S19-Ja02895			Х			Х		Х	
7	BH08_0-0.1	Jan 08, 2019		Soil	S19-Ja02896	Х					Х	Х		
8	BH08_3.5-3.6	Jan 08, 2019		Soil	S19-Ja02897			Х			Х		Х	
9	BH09_0-0.1	Jan 08, 2019	S19-Ja02898			Х			Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

16 Mars Road

Brisbane

Received:

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 9, 2019 1:58 PM

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 55769

Order No.:

635079

Report #: 02 8245 0300

Phone: Fax:

Due: Jan 16, 2019

Priority: 5 Day

Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site # 1	254 & 14271			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 182	17		Х				Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 20	794										
Pert	h Laboratory - N	IATA Site # 23736											
10	BH09_1.5-1.6	Jan 08, 2019	Soil	S19-Ja02899	Х					Х	Х		
11	BH09_4.0-4.1	Jan 08, 2019	Soil	S19-Ja02900			Х			Х		Х	
12	HA01_0-0.1	Jan 08, 2019	Soil	S19-Ja02901	Х				Х	Х	Х		
13	QC-01	Jan 08, 2019	Soil	S19-Ja02902	Х				Х	Х	Х		
14	HA01_0.9-1.0	Jan 08, 2019	Soil	S19-Ja02903			Х			Х			
15	HA02_0-0.1	Jan 08, 2019	Soil	S19-Ja02904			Х			Х		Х	
16	HA02_0.4-0.5	Jan 08, 2019	Soil	S19-Ja02905	Х					Х	Х		
17	HA03_0-0.1	Jan 08, 2019	Soil	S19-Ja02906			Х			Х		Х	
18	HA03_0.9-1.0	Jan 08, 2019	Soil	S19-Ja02907	Х					Х	Х		
19	HA04_0-0.1	Jan 08, 2019	Soil	S19-Ja02908	Х					Х	Х		
20	HA04_1.4-1.5	Jan 08, 2019	Soil	S19-Ja02909			Х			Х		Х	
21	HA05_0-0.1	Jan 08, 2019	Soil	S19-Ja02910			Х			Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F Brisbane

16 Mars Road

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Perth

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Jan 9, 2019 1:58 PM Address:

Level 1, 50 Margaret St Report #: 635079 Due: Jan 16, 2019

Sydney Phone: 02 8245 0300 Priority: 5 Day NSW 2000 Fax: **Contact Name:** George Black

Project Name: KAMBALA

Project ID: 55769 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	oourne Laborato			Х	Х	Х	Х	Х	Х	Х	Х		
Syd	ney Laboratory	- NATA Site # 1821	7		Х				Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 207	94										
Pert	h Laboratory - N	IATA Site # 23736											
22	HA05_1.0-1.1	Jan 08, 2019	Soil	S19-Ja02911	Х					Х	Х		
23	BH03_0-0.1	Jan 09, 2019	Soil	S19-Ja02912			Х			Х		Х	
24	BH03_2.5-2.6	Jan 09, 2019	Soil	S19-Ja02913	Х					Х	Х		
25	BH10_0-0.1	Jan 09, 2019	Soil	S19-Ja02914	Х					Х	Х		
26	BH10_1.0-1.1	Jan 09, 2019	Soil	S19-Ja02915			Х			Х			
27	BH07_0-0.1	Jan 09, 2019	Soil	S19-Ja02916	Х					Х	Х		
28	BH07_1.5-1.6	Jan 09, 2019	Soil	S19-Ja02917			Х			Х			
29	BH07_4.0-4.1	Jan 09, 2019	Soil	S19-Ja02918	Х				Х	Х	Х		
30	RIN	Jan 09, 2019	Water	S19-Ja02919									Х
31	BH04_0.3-0.4	Jan 08, 2019	Soil	S19-Ja02933		Х							
32	BH04_1.5-1.6	Jan 08, 2019	Soil	S19-Ja02934		Х							
33	BH06_0-0.1	Jan 08, 2019	Soil	S19-Ja02935		Х							

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne

Site # 1254 & 14271

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

Received:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jan 9, 2019 1:58 PM

JBS & G Australia (NSW) P/L

Address:

Company Name:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 55769 Order No.:

Report #: 635079

Phone: 02 8245 0300

Fax:

Due: Jan 16, 2019 **Priority:** 5 Day

Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	pourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	217			Х				Х		Х	Х	Х
Bris	bane Laborator	y - NATA Site # 2	0794											
Pert	h Laboratory - N	IATA Site # 2373	6											
34	BH06_1.5-1.6	Jan 08, 2019	Soi	l	S19-Ja02936		Х							
35	BH06_2.0-2.1	Jan 08, 2019	Soi	l	S19-Ja02937		Х							
36	BH06_2.5-2.6	Jan 08, 2019	Soi	l	S19-Ja02938		Х							
37	BH08_0.3-0.4	Jan 08, 2019	Soi	l	S19-Ja02939		Х							
38	BH08_1.0-1.1	Jan 08, 2019	Soi	l	S19-Ja02940		Х							
39	BH08_1.5-1.6	Jan 08, 2019	Soi	I	S19-Ja02941		Х							
40	BH08_2.0-2.1	Jan 08, 2019	Soi	I	S19-Ja02942		Х							
41	BH08_2.5-2.6	Jan 08, 2019	Soil	I	S19-Ja02943		Х							
42	BH08_3.0-3.1	Jan 08, 2019	Soil	I	S19-Ja02944		Х							
43	BH08_4.0-4.1	Jan 08, 2019	Soil	I	S19-Ja02945		Х							
44	BH08_4.5-4.6	Jan 08, 2019	Soil	l	S19-Ja02946		Х							
45	BH09_0.3-0.4	Jan 08, 2019	Soi	l	S19-Ja02947		Х							

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

Site # 1254 & 14271

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 55769

Order No.:

Report #: 635079

Phone:

02 8245 0300

Fax:

Received: Jan 9, 2019 1:58 PM Due: Jan 16, 2019

Priority: 5 Day

Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Χ	Χ	Χ	Х	Х	Х	Χ
Sydr	ney Laboratory	- NATA Site # 1	8217			Х				Χ		Х	Х	Х
Brisl	oane Laboratory	y - NATA Site #	20794											
Pertl	Laboratory - N	ATA Site # 237	36											
46	BH09_1.0-1.1	Jan 08, 2019		Soil	S19-Ja02948		Х							
47	BH09_2.0-2.1	Jan 08, 2019		Soil	S19-Ja02949		Х							
48	BH09_3.0-3.1	Jan 08, 2019		Soil	S19-Ja02950		Х							
49	HA01_0.3-0.4	Jan 08, 2019		Soil	S19-Ja02951		Х							
50	HA03_0.4-0.5	Jan 08, 2019		Soil	S19-Ja02952		Х							
51	HA03_1.5-1.6	Jan 08, 2019		Soil	S19-Ja02953		Х							
52	HA04_0.4-0.5	Jan 08, 2019		Soil	S19-Ja02954		Х							
53	HA04_1.0-1.1	Jan 08, 2019		Soil	S19-Ja02955		Х							
54	HA05_0.3-0.4	Jan 08, 2019		Soil	S19-Ja02956		Х							
55	BH03_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02957		Х							
56	BH03_1.0-1.1	Jan 09, 2019		Soil	S19-Ja02958		Х							
57	BH03_1.5-1.6	Jan 09, 2019		Soil	S19-Ja02959		Х							

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Perth

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID: KAMBALA 55769 Order No.: Report #:

635079

Phone: 02 8245 0300

Fax:

Received: Jan 9, 2019 1:58 PM

Due: Jan 16, 2019 **Priority:** 5 Day

Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail						HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Χ	Х
	ney Laboratory					Х				Х		Х	Χ	Х
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - N	NATA Site # 237	36	ı										
58	BH03_2.0-2.1	Jan 09, 2019		Soil	S19-Ja02960		Х							
59	BH03_3.0-3.1	Jan 09, 2019		Soil	S19-Ja02961		Х							
60	BH10_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02962		Х							
61	BH07_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02963		Х							
62														
63	BH07_2.0-2.1	Jan 09, 2019		Soil	S19-Ja02965		Х							
64	BH07_2.5-2.6	Jan 09, 2019		Soil	S19-Ja02966		Х							
65	BH07_3.0-3.1	Jan 09, 2019		Soil	S19-Ja02967		Х							
Test	Counts							13	2	3	27	14	8	1

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Comments

Ja02901, Ja02902: Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity

, , ,	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Authorised by:

Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 12 of 12

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report635079-WProject nameKAMBALAProject ID55769Received DateJan 09, 2019

Client Sample ID			R20 TS	тв	RIN
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S19-Ja02890	S19-Ja02891	S19-Ja02919
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 09, 2019
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM		J 01t			
TRH C6-C9	0.02	mg/L	-	-	< 0.02
TRH C10-C14	0.05	mg/L	-	-	< 0.05
TRH C15-C28	0.1	mg/L	-	-	< 0.1
TRH C29-C36	0.1	mg/L	-	-	< 0.1
TRH C10-36 (Total)	0.1	mg/L	-	-	< 0.1
BTEX	'				
Benzene	0.001	mg/L	100	< 0.001	< 0.001
Toluene	0.001	mg/L	100	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	110	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	100	< 0.002	< 0.002
o-Xylene	0.001	mg/L	110	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	110	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	52	125	60
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•			
Naphthalene ^{N02}	0.01	mg/L	-	-	< 0.01
TRH C6-C10	0.02	mg/L	-	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	-	< 0.02
TRH >C10-C16	0.05	mg/L	-	-	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	-	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	-	-	< 0.1
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	-	-	< 0.001
Acenaphthylene	0.001	mg/L	-	-	< 0.001
Anthracene	0.001	mg/L	-	-	< 0.001
Benz(a)anthracene	0.001	mg/L	-	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	-	-	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	-	-	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	-	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	-	-	< 0.001
Chrysene	0.001	mg/L	-	-	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	-	-	< 0.001
Fluoranthene	0.001	mg/L	-	-	< 0.001
Fluorene	0.001	mg/L	-	-	< 0.001

mgt

Client Sample ID			R20 TS	тв	RIN
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S19-Ja02890	S19-Ja02891	S19-Ja02919
Date Sampled			Jan 08, 2019		Jan 09, 2019
•	100	1.1-20	Jan 00, 2019	Jan 08, 2019	Jan 09, 2019
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	-	< 0.001
Naphthalene	0.001	mg/L	-	-	< 0.001
Phenanthrene	0.001	mg/L	-	-	< 0.001
Pyrene	0.001	mg/L	-	-	< 0.001
Total PAH*	0.001	mg/L	-	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	-	-	80
p-Terphenyl-d14 (surr.)	1	%	-	-	95
Organochlorine Pesticides		<u> </u>			
Chlordanes - Total	0.001	mg/L	-	-	< 0.001
4.4'-DDD	0.0001	mg/L	-	-	< 0.0001
4.4'-DDE	0.0001	mg/L	-	-	< 0.0001
4.4'-DDT	0.0001	mg/L	-	-	< 0.0001
a-BHC	0.0001	mg/L	-	-	< 0.0001
Aldrin	0.0001	mg/L	-	-	< 0.0001
b-BHC	0.0001	mg/L	-	-	< 0.0001
d-BHC	0.0001	mg/L	-	-	< 0.0001
Dieldrin	0.0001	mg/L	-	-	< 0.0001
Endosulfan I	0.0001	mg/L	-	-	< 0.0001
Endosulfan II	0.0001	mg/L	-	-	< 0.0001
Endosulfan sulphate	0.0001	mg/L	-	-	< 0.0001
Endrin	0.0001	mg/L	-	-	< 0.0001
Endrin aldehyde	0.0001	mg/L	-	-	< 0.0001
Endrin ketone	0.0001	mg/L	-	-	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	-	-	< 0.0001
Heptachlor	0.0001	mg/L	-	-	< 0.0001
Heptachlor epoxide	0.0001	mg/L	-	-	< 0.0001
Hexachlorobenzene	0.0001	mg/L	-	-	< 0.0001
Methoxychlor	0.0001	mg/L	-	-	< 0.0001
Toxaphene	0.01	mg/L	-	-	< 0.01
Aldrin and Dieldrin (Total)*	0.0001	mg/L	-	-	< 0.0001
DDT + DDE + DDD (Total)*	0.0001	mg/L	-	-	< 0.0001
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	-	-	< 0.001
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	-	-	< 0.001
Dibutylchlorendate (surr.)	1	%	-	-	72
Tetrachloro-m-xylene (surr.)	1	%	-	-	INT
Polychlorinated Biphenyls	1	•			
Aroclor-1016	0.005	mg/L	-	-	< 0.005
Aroclor-1221	0.001	mg/L	-	-	< 0.001
Aroclor-1232	0.005	mg/L	_	_	< 0.005
Aroclor-1242	0.005	mg/L	_	_	< 0.005
Aroclor-1248	0.005	mg/L	_	_	< 0.005
Aroclor-1254	0.005	mg/L	-	_	< 0.005
Aroclor-1260	0.005	mg/L	-	-	< 0.005
Total PCB*	0.003	mg/L	-	-	< 0.003
Dibutylchlorendate (surr.)	1	%	-	-	72
Tetrachloro-m-xylene (surr.)	1	%	-	-	INT

Client Sample ID Sample Matrix			R20TS Water	TB Water	RIN Water
Eurofins mgt Sample No.			S19-Ja02890	S19-Ja02891	S19-Ja02919
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 09, 2019
Test/Reference	LOR	Unit			
Heavy Metals					
Arsenic	0.001	mg/L	-	-	< 0.001
Cadmium	0.0002	mg/L	-	-	< 0.0002
Chromium	0.001	mg/L	-	-	< 0.001
Copper	0.001	mg/L	-	-	< 0.001
Lead	0.001	mg/L	-	-	< 0.001
Mercury	0.0001	mg/L	-	-	< 0.0001
Nickel	0.001	mg/L	-	-	< 0.001
Zinc	0.005	mg/L	-	-	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 10, 2019	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Jan 12, 2019	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 10, 2019	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 10, 2019	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			-
Polycyclic Aromatic Hydrocarbons	Sydney	Jan 10, 2019	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			,
Organochlorine Pesticides	Sydney	Jan 10, 2019	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			•
Polychlorinated Biphenyls	Sydney	Jan 10, 2019	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water	, ,	•	·
Metals M8	Sydney	Jan 10, 2019	28 Day

⁻ Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 **Order No.: Received:** Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2			
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х				Х		Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - N	NATA Site # 237	36											
Exte	rnal Laboratory	1		1	1									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	TS	Jan 08, 2019		Water	S19-Ja02890				Х					
2	ТВ	Jan 08, 2019		Water	S19-Ja02891				Х					
3	BH04_0-0.1	Jan 08, 2019		Soil	S19-Ja02892	Х					Х	Х		
4	BH04_1.0-1.1	Jan 08, 2019		Soil	S19-Ja02893			Х			Х			
5	BH06_0.3-0.4	Jan 08, 2019		Soil	S19-Ja02894	Х					Х	Х		
6	BH06_3.0-3.1	Jan 08, 2019		Soil	S19-Ja02895			Х			Х		Х	
7	BH08_0-0.1	Jan 08, 2019		Soil	S19-Ja02896	Х					Х	Х		
8	BH08_3.5-3.6	Jan 08, 2019		Soil	S19-Ja02897			Х			Х		Х	
9	BH09_0-0.1	S19-Ja02898			Х			Х		Х				

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 5 of 13

Date Reported:Jan 17, 2019

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 Order No.: Received: Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

		Samp	le Detail		Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site # 1	254 & 14271			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 182	17		Х				Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 20	794										
Pert	h Laboratory - N	IATA Site # 23736											
10	BH09_1.5-1.6	Jan 08, 2019	Soil	S19-Ja02899	Х					Х	Х		
11	BH09_4.0-4.1	Jan 08, 2019	Soil	S19-Ja02900			Х			Х		Х	
12	HA01_0-0.1	Jan 08, 2019	Soil	S19-Ja02901	Х				Х	Х	Х		
13	QC-01	Jan 08, 2019	Soil	S19-Ja02902	Х				Х	Х	Х		
14	HA01_0.9-1.0	Jan 08, 2019	Soil	S19-Ja02903			Х			Х			
15	HA02_0-0.1	Jan 08, 2019	Soil	S19-Ja02904			Х			Х		Х	
16	HA02_0.4-0.5	Jan 08, 2019	Soil	S19-Ja02905	Х					Х	Х		
17	HA03_0-0.1	Jan 08, 2019	Soil	S19-Ja02906			Х			Х		Х	
18	HA03_0.9-1.0	Jan 08, 2019	Soil	S19-Ja02907	Х					Х	Х		
19	HA04_0-0.1	Jan 08, 2019	Soil	S19-Ja02908	Х					Х	Х		
20	HA04_1.4-1.5	Jan 08, 2019	Soil	S19-Ja02909			Х			Х		Х	
21	HA05_0-0.1	Jan 08, 2019	Soil	S19-Ja02910			Х			Х			

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 **Order No.:** Received: Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: George Black

		San	nple Detail			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site #	1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	217			Х				Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 2	0794											
Pert	h Laboratory - N	IATA Site # 2373	6											
22	HA05_1.0-1.1	Jan 08, 2019	So	oil	S19-Ja02911	Х					Х	Х		
23	BH03_0-0.1	Jan 09, 2019	So	oil	S19-Ja02912			Х			Х		Х	
24	BH03_2.5-2.6	Jan 09, 2019	So		S19-Ja02913	Х					Х	Х		
25	BH10_0-0.1	Jan 09, 2019	So	oil	S19-Ja02914	Х					Х	Х		
26	BH10_1.0-1.1	Jan 09, 2019	So	oil	S19-Ja02915			Х			Х			
27	BH07_0-0.1	Jan 09, 2019	So		S19-Ja02916	Х					Х	Х		
28	BH07_1.5-1.6	Jan 09, 2019	So	oil	S19-Ja02917			Х			Х			
29	BH07_4.0-4.1	Jan 09, 2019	So	oil	S19-Ja02918	Х				Х	Х	Х		
30	RIN	Jan 09, 2019		ater	S19-Ja02919									Х
31	BH04_0.3-0.4	Jan 08, 2019	So		S19-Ja02933		Х							
32	BH04_1.5-1.6	Jan 08, 2019	So	oil	S19-Ja02934		Х							
33	BH06_0-0.1	Jan 08, 2019	So	oil	S19-Ja02935		Х							

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 **Order No.:** Received: Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	oourne Laborato	ory - NATA Site	# 1254 & 1427	1			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х				Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794											
Pert	h Laboratory - N	ATA Site # 237	36		_									
34	BH06_1.5-1.6	Jan 08, 2019	S	Soil	S19-Ja02936		Х							
35	BH06_2.0-2.1	Jan 08, 2019		Soil	S19-Ja02937		Х							
36	BH06_2.5-2.6	Jan 08, 2019	S	Soil	S19-Ja02938		Х							
37	BH08_0.3-0.4	Jan 08, 2019	S	Soil	S19-Ja02939		Х							
38	BH08_1.0-1.1	Jan 08, 2019	S	Soil	S19-Ja02940		Х							
39	BH08_1.5-1.6	Jan 08, 2019	S	Soil	S19-Ja02941		Х							
40	BH08_2.0-2.1	Jan 08, 2019	S	Soil	S19-Ja02942		Х							
41	BH08_2.5-2.6	Jan 08, 2019	S	Soil	S19-Ja02943		Х							
42	BH08_3.0-3.1	Jan 08, 2019	S	Soil	S19-Ja02944		Х							
43	BH08_4.0-4.1	Jan 08, 2019	S	Soil	S19-Ja02945		Х							
44	BH08_4.5-4.6	Jan 08, 2019	S	Soil	S19-Ja02946		Х							
45	BH09_0.3-0.4	Jan 08, 2019	S	Soil	S19-Ja02947		Х							

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769
 Order No.:
 Received:
 Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

635079 **Due:** Jan 16, 2019 02 8245 0300 **Priority:** 5 Day

Contact Name: George Black

		Sar	nple Detail			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	ourne Laborato	ory - NATA Site	‡ 1254 & 1427	71			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	3217			Х				Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site # :	20794											
Pert	h Laboratory - N	IATA Site # 237	36											
46	BH09_1.0-1.1	Jan 08, 2019		Soil	S19-Ja02948		Х							
47	BH09_2.0-2.1	Jan 08, 2019	,	Soil	S19-Ja02949		Х							Ш
48	BH09_3.0-3.1	Jan 08, 2019	;	Soil	S19-Ja02950		Х							
49	HA01_0.3-0.4	Jan 08, 2019	;	Soil	S19-Ja02951		Х							
50	HA03_0.4-0.5	Jan 08, 2019	;	Soil	S19-Ja02952		Х							
51	HA03_1.5-1.6	Jan 08, 2019	;	Soil	S19-Ja02953		Х							
52	HA04_0.4-0.5	Jan 08, 2019	;	Soil	S19-Ja02954		Х							
53	HA04_1.0-1.1	Jan 08, 2019		Soil	S19-Ja02955		Х							Ш
54	HA05_0.3-0.4	Jan 08, 2019		Soil	S19-Ja02956		Х							Ш
55	BH03_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02957		Х							Ш
56	BH03_1.0-1.1	Jan 09, 2019	;	Soil	S19-Ja02958		Х							
57	BH03_1.5-1.6	Jan 09, 2019	:	Soil	S19-Ja02959		Х							

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 Order No.: Received: Jan 9, 2019 1:58 PM

 Report #:
 635079
 Due:
 Jan 16, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B1	JBS&G Suite 2
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х	Х
	ney Laboratory					Х				Х		Х	Х	Х
	bane Laboratory													
	<mark>h Laboratory - N</mark>		36	<u> </u>										
58	BH03_2.0-2.1	Jan 09, 2019		Soil	S19-Ja02960		Х							
59	BH03_3.0-3.1	Jan 09, 2019		Soil	S19-Ja02961		Х							
60	BH10_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02962		Х							
61	BH07_0.3-0.4	Jan 09, 2019		Soil	S19-Ja02963		Х							
62	BH07_1.0-1.1	Jan 09, 2019		Soil	S19-Ja02964		Х							
63	BH07_2.0-2.1	Jan 09, 2019		Soil	S19-Ja02965		Х							
64	BH07_2.5-2.6	Jan 09, 2019		Soil	S19-Ja02966		Х							
65	BH07_3.0-3.1	Jan 09, 2019		Soil	S19-Ja02967		Х							
Test	Counts					14	35	13	2	3	27	14	8	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Те	est		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Total Recoverable Hydrocarbo	ons - 1999 NEPM Frac	tions							
TRH C6-C9			mg/L	< 0.02			0.02	Pass	
Method Blank									
BTEX									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
Method Blank									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Frac	tions							
Naphthalene			mg/L	< 0.01			0.01	Pass	
TRH C6-C10			mg/L	< 0.02			0.02	Pass	
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.001			0.001	Pass	
Cadmium			mg/L	< 0.0002			0.0002	Pass	
Chromium			mg/L	< 0.001			0.001	Pass	
Copper			mg/L	< 0.001			0.001	Pass	
Lead			mg/L	< 0.001			0.001	Pass	
Mercury			mg/L	< 0.0001			0.0001	Pass	
Nickel			mg/L	< 0.001			0.001	Pass	
Zinc			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery				1 1 1 1 1 1				1 2.22	
Heavy Metals									
Arsenic			%	93			70-130	Pass	
Cadmium			%	93			70-130	Pass	
Chromium			%	96			70-130	Pass	
Copper			%	97			70-130	Pass	
Lead			%	97			70-130	Pass	
Mercury			%	96			70-130	Pass	
Nickel			%	96			70-130	Pass	
Zinc			%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits		Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Ja04205	NCP	mg/L	0.006	0.007	2.0	30%	Pass	
Cadmium	S19-Ja04205	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S19-Ja04205	NCP	mg/L	0.001	0.001	5.0	30%	Pass	
Copper	S19-Ja04205	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S19-Ja04205	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S19-Ja04205	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S19-Ja04205	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S19-Ja04205	NCP	mg/L	0.039	0.038	4.0	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity

Ά
es
)
9

Qualifier Codes/Comments

tion
Į

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

N02

Nibha Vaidva Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Harry Bacalis Senior Analyst-Volatile (VIC)

Final report - this Report replaces any previously issued Report

- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | Ingl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for indiative to meet deadlines and lost production arising from this report. This document shall be reported evecept in full and retales only to the interns tested. Unliess indicated otherwise, the tests were performed on the samples as received.

Eurotias	1/4

CHAIN OF CUSTODY

PROJECT NO. 35764	JECT NO. 33769									ватс	HNC	d								
PROJECT NAME: Kambula						-				/RG/I		В								
DATE NEEDED BY: Std						Q	CLEV	EL: N	VEPN	И (201	L3)									
PHONE: Sydney: 02 8245 0	300 Perth: 0	8 9488 01	LOO Brisl	oane: 07 3112 2688																
SEND REPORT & INVOICE TO:	(1) adminnsw@	jbsg.com.a	au; (2) gbla	ack@jbsg.com.au; (3) jcranson@jl	osg.com.au	1					_						1 1	Tages	ne or	
COMMENTS / SPECIAL HANDLING / ST	ORAGE OR DISPOSA	Li																AS	PE OF BESTOS	
							2											Aħ	VALYSIS	
						100	\$		(t)	2CB	So							Ş	<u> </u>	635099
						14	14	8	8	-	7							TA CIT	WA A	600
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	李珍多多	Heag Mes	PAH	TRH	0CP	ASSESTOS							NOTE	NEPM/WA	NOTES:
TS/TB	1329 Whoto	8/1/19		4x Vial						×										
BH04-0-0-1	Soil	1		J+B+Icx			×	×	×		×						\perp		-	
11 -03-04						_			\Box								1	-	_	
" 19-11						_	×		\perp		_			-			-		_	
11 -1.5-1.6	4						v								-		-	-	-	
BHO6-0-0-1						_			_				_				-	-	-	
20.3-0.4				TO TO		-	X	×	×		7		_		_		-	-	-	
1.5-1-6				Jan + Ecz		_	_				-		-				1		-	
-2.0-2.(3+B + Ecc		_													-	
-2.5-2.6						_					-								-	
73.0-3.1				*		_	x		Х	_	-						+		+	
BH08_0-0.1				5+B+ILL		-	×	×	*	_	×						+	-	+	
0.3-0.4						-					-				-		++		+	
1.0 -1.1					Y	-	-								-			-	+	
1.5-14						\vdash	-							++	-		-			
2.0-2.1						+	-				-				-		++		-1-	
2.5-2.6						\vdash	-				-				-		+	-	-	
3.0-3.1						-			200						_		+		-	
7 3.5-3.4	7	4		Y		_	×		X								D DECT	NUNIC	CLAP	USE ONLY:
RELINQUISHED	DBY:	001	ICICAIN 4EAT	METHOD OF SHIPMENT:		M	ΔME	El	RE	CEIVE	D BY:		-	OOLER	SEAL -	Yes	. No			Broken
NAME: DATE:	81.19	CON	ISIGNMENT	, ,		D	ATE:	द्रा	ing	Fin						118	3			
OF: JBS&G TRANSPORT CO.									L/a	Tin		ATT.							Intact	Broken
NAME: DATE:	NAME: DATE: CONSIGNMENT NOTE NO.					NAME: DATE: COOLER SEAL – Yes No Intact Broken OF: OF:										DIUNCII				
OF:		TRA	NSPORT CO			COOLER TEMP deg C drochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other														
Container & Preservative Codes: P	= Plastic; J = Soil Jar;	B = Glass Bot	tle; N = Nitric	Acid Prsvd.; C = Sod!um Hydroxide Prsvd; V	C = Hydrochlo	ric Aci	id Prsv	/d Vial	i; VS =	Sulfuri	c Acid F	rsvd Vial; S	= Sulfurio	Acid Pr	svd; Z =	Zinc Prsv	/d; E = E	DTA P	rsvd; S	I = Sterile Bottle; O = Other
IMSO FormsO13 - Chain of Custody	/ - Generic																			

Euro 2/4

CHAIN OF CUSTODY

PROJECT NO.: 55769							LABORATORY BATCH NO.: SAMPLERS: JC/RG/ML/GB																
PROJECT NAME: Kunbala												B-											
DATE NEEDED BY: Std						QC	LEVE	EL: N	EPM	2013	3)												
PHONE: Sydney: 02 8245 030	0 Perth: C	8 9488 01	00 Brisba	ane: 07 3112 2688																			
			u; (2) gblac	:k@jbsg.com.au; (3) jcranson@jbs	g.com.au	_					,			_				_					
COMMENTS / SPECIAL HANDLING / STORA	AGE OR DISPOSA	ıL:																			TYPE OF ASBEST		
				•	1.5				v										1 1	P	ANALYS	SIS	
						4			四世			: [[1 1		S S	-	635079
·						£.			BA	E									1 1		EAT :	₹	
SAMPLE ID	SAMPLE ID MATRIX DATE TIME TYPE & PRESERVATIVE p							PAH	TRH/BR	ASRENDI											IDENTIFICATION	NEPM/WA	NOTES:
BH08-40-41	Soil	8-1-19		3+B+I-K		188																1	
.1 _4.5-4.6	1	V		1																			
BHO4 _ 0-0.1	N.						×		x														
_0.3-0.9																							
-1.0-(.(1																			
-1.5-1.6							X	×	×	×													
-2,0-2.1																							
_3-0-3.1		y d																					
4.0-4.1							×		×														
HA01-0-0.1							X >	۷ ;	K >	×													
QA-01						Pla	2x	600	inceres	1 1	En	Dice	126										
QL-01							× >	ر ا	< ×	×													
HADI - 0.3-0.4																							
11 -0.9-1.0							X																
HA02-0-0.1							X	;	K														
11 -0.4-0.5							×	X ·	×	×													
HA03 _ 0-0.1							×		*														
-0.4-05																							
0.1-9.0	W	4					7	× /	×	X													
RELINQUISHED BY	:			METHOD OF SHIPMENT:					RECE	IVED	BY:												E ONLY:
NAME: DATE: 8	1-19	CONS	IGNMENT N	OTE NO.		NAI	ME: /	FILE	301											I	ntact	í	Broken
OF: JBS&G		TRAN	SPORT CO.			NAME: TV SV COOLER SEAL – Yes No Intact Broken																	
NAME: DATE:			IGNMENT N	OTE NO.		NAME: DATE: COOLER SEAL – Yes No Intact Broken									Broken								
OF:		TRAN	SPORT CO			OF:								٦	001 F	RITEN	/IP	dea	С				
Container & Preservative Codes: P = Pla	TRANSPORT CO COOLER TEMP deg C Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other																						

IMSO FormsO13 - Chain of Custody - Generic

Euro	3/4

CHAIN OF CUSTODY

PROJECT NO 55769								LABORATORY BATCH NO.: SAMPLERS: JC/RG/ML/GB											
PROJECT NAME: Kanbula																			
DATE NEEDED BY: 544						QC	LEV	EL: N	VEPN	A (201	3)								
PHONE: Sydney: 02 8245 030	00 Perth: 0	8 9488 01	00 Brisba	ne: 07 3112 2688															
SEND REPORT & INVOICE TO: (1)) adminnsw@	jbsg.com.a	u; (2) gblacl	k@jbsg.com.au; (3) jcranson@jb	sg.com.au														
COMMENTS / SPECIAL HANDLING / STOR.	AGE OR DISPOSA	L:												1 1		TYPE OF ASBEST			
							3		X							ANALYS	15		
						1	14		BIE	000				1 1		۶	105-00		
						6	1		a	37					1 1	IDENTIFICATION	635079		
						4	3	T	TRH	1						E S	NOTES:		
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	43/4	V	PAH	7	#SE TOC							NOTES:		
4403_1.5-(.6	Soil	8.1.19		5+ B+ICE															
	1	1					×		2	4									
HA04 0-0.1																			
2.0-4-0.5																			
1.0-1.1						Н	x		×	_									
-1.4-15	-						×		*	_				+		\neg			
HA05 - 0-0-1					_	\vdash		-	-				+						
_ 0.3-0.4						\vdash	9		~				-	-	-	+			
V -1.0-11	V	V		V			×	X	X	×				++	+-	-			
BH03_0-0.1		9.1.19					×		×			\square		++	-	-			
03-04								- 1	-4				\rightarrow		_				
-1-0 -1-1				<u>_</u>												-			
_1.5-1.6																			
-2.0-21																			
2.5-2.6							X	X	X	7	(
3.0-3.1		7																	
BH10 - 0-0.1							×	×	×	7	4								
1 -0.3-04																			
1.0-1.1	7	43		*			x												
	4																		
RELINQUISHED BY	Y:			METHOD OF SHIPMENT:					RE	CEIVE	D BY:						3 USE ONLY:		
NAME: ODATE: 8 1 19 CONSIGNMENT NOTE NO.						NA	ME:	EI	lia In	V	-					Intac	t Broken		
						DA OF	III.	111	itor	ne		COOLER	TEMP	deg C					
OF: JBS&G NAME: DATE:			SIGNMENT NO	OTE NO.		NA	ME:		7	15	DATE:					Intac	t Broken		
MAINIL. DATE.						OF							1						
OF:	OF: TRANSPORT CO COOLER TEMP deg C											ST = Sterile Bottle: O = Other							
OF: TRANSPORT CO Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other																			

IMSO FormsO13 - Chain of Custody - Generic

Fun	4/4
turo	T

CHAIN OF CUSTODY

PROJECT NO. 55749	LABORATORY BATCH NO.: SAMPLERS: JC/RG/ML/GB																			
PROJECT NAME: Kanbula		.t		Fi I							GB									
DATE NEEDED BY: 5 +d						QC	LEV	EL: N	IEPM	(2013)										
PHONE: Sydney: 02 8245 030	0 Perth: 0	8 9488 01	00 Brisl	bane: 07 3112 2688																
SEND REPORT & INVOICE TO: (1)	adminnsw@	jbsg.com.a	u; (2) gbla	ack@jbsg.com.au; (3) jcranson@jbsg.	com.au							_					1 11	THE	or I	
COMMENTS / SPECIAL HANDLING / STORA	GE OR DISPOSA	L:																TYPE C ASBES	STOS	
					ļ			v l	2					1				ANALY	YSIS	
					ŀ		- 50	BICX	PCB	7			Y					8		635079
							I		15					1				ICATI	§	600
						N T	M PAHS	TRHY	9									IDENTIFICATION	NEPM/WA	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	工	Ę	F	ASPERSON									후	ž	NOTES:
BHO7-0-0-1 Soil 9.1-19 J+B+In							1	K	1											
1 -0.3 -0.4	1	1		1																
-1.0 - 1.1																				
-1.5-1.6						X														
-20-2.1						Ì													П	
-5.5-5.8								\neg											\neg	
3,0-31	4	7		47		×	×	x	X >			1								
4.0-4.1	Water	11		22 V.41, 15amb, 1x HM + 5 = C		-	-	-	×		1			\top						
RIN	Water			The same of the sa	-	х		$\widehat{}$	\rightarrow		++	-		1-1			-		\neg	
				· -			-	+			+			+		+	+	\dashv	\dashv	
						\dashv	-	-			-	-		+	-	+	-			· · · · · · · · · · · · · · · · · · ·
						\dashv	-	+	-1-		++	-						\dashv		
						-	\neg	-	-1-		+			+	_				\neg	
						-	-	\dashv	-	+					-			\dashv	\neg	
		-				\dashv													\dashv	
						-	-	-				_		1			_		\neg	
						-		-	-						+	+	+		\neg	
					-	-	-	-		-				+	-	++		-	-	
				METHOD OF CHIDAGENT.					DEC	EIVED BY:						EOR P	ECEI//is	IG I /	AR II	SE ONLY:
RELINQUISHED BY		CONS	SIGNMENT	METHOD OF SHIPMENT:		NΑ	ME:	FI	VS	O BY:			COOL	ER SEA	L – Yes					Broken
NAME: ODATE: 9 1 (& CONSIGNMENT NOTE NO.						DA	TE:	711	117						MPILE					
OF: JBS&G TRANSPORT CO.							1	Lu	cotin	9	DATC:							ln+-	204	Broken
NAME: DATE:		CONS	SIGNMENT	NOTE NO.		NA OF	ME:		30, 2		DATE:		000	LEK SEA	vr – ves	IVC		ITTE	3UU	DEUKEH
OF:		TRAN	ISPORT CO			COOLER TEMP deg C														
Container & Preservative Codes: P = Pla	F: TRANSPORT CO COOLER, TEMP deg C Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other																			

IMSO FormsO13 - Chain of Custody - Generic

Melbourne

Sydney Unit F3, Building F

Brishane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: George Black **KAMBALA** Project name: Project ID: 55769 COC number: Not provided

Turn around time: 5 Day

Jan 21, 2019 3:49 PM Date/Time received:

Eurofins | mgt reference: 636837

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \mathbf{V} COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to George Black - gblack@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report636837-LProject nameKAMBALAProject ID55769Received DateJan 21, 2019

Client Sample ID			HA01_0-0.1	HA02_0-0.1	BH07_4.0-4.1
Sample Matrix			US Leachate	US Leachate	US Leachate
Eurofins mgt Sample No.			M19-Ja16438	M19-Ja16439	M19-Ja16440
Date Sampled			Jan 08, 2019	Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	-	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	-	< 0.001
Anthracene	0.001	mg/L	< 0.001	-	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	< 0.001
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	-	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	< 0.001
Chrysene	0.001	mg/L	< 0.001	-	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	-	< 0.001
Fluorene	0.001	mg/L	< 0.001	-	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	< 0.001
Naphthalene	0.001	mg/L	< 0.001	-	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	-	< 0.001
Pyrene	0.001	mg/L	< 0.001	-	< 0.001
Total PAH*	0.001	mg/L	< 0.001	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	52	-	57
p-Terphenyl-d14 (surr.)	1	%	82	-	72
Heavy Metals					
Lead	0.01	mg/L	0.07	0.03	-
USA Leaching Procedure					
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0
pH (initial)	0.1	pH Units	5.7	5.0	6.1
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0
pH (off)	0.1	pH Units	4.9	4.8	4.8
pH (USA HCI addition)	0.1	pH Units	1.6	n/a	1.6

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 23, 2019	7 Day
- Method:			
Heavy Metals	Melbourne	Jan 22, 2019	180 Day
- Method:			

Report Number: 636837-L

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769 **Order No.:** Received: Jan 21, 2019 3:49 PM

 Report #:
 636837
 Due:
 Jan 29, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Lead	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Moisture Set				
Melb	ourne Laborato	Х	Х	Х	Х				
Sydr	ney Laboratory	- NATA Site # 1	8217						
Brisl	bane Laborator	y - NATA Site #	20794						
Perti	h Laboratory - N	NATA Site # 237	36						
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	HA01_0.9-1.0	Jan 08, 2019		Soil	M19-Ja16436		Х		Х
2	BH07-1.5-1.6	Jan 08, 2019		Soil	M19-Ja16437		Х		Х
3	HA01_0-0.1	Jan 08, 2019		US Leachate	M19-Ja16438	Х	Х	Х	
4	HA02_0-0.1	Jan 08, 2019		US Leachate	M19-Ja16439	Х		Х	
5	BH07_4.0-4.1		Х	Х					
Test	Counts					2	4	3	2

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 636837-L

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 636837-L

Quality Control Results

Te	st		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	M19-Ja13191	NCP	%	92			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocark	oons			Result 1	Result 2	RPD			
Acenaphthene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M18-No38234	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	M19-Ja13191	NCP	mg/L	0.02	0.02	1.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Nibha Vaidya Analytical Services Manager Joseph Edouard Senior Analyst-Organic (VIC) Senior Analyst-Metal (VIC) Emily Rosenberg

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mgl be liable for consequential claims, but not limited to, lost profits, damages for sindicated otherwise, the tests were performed on the samples are gestioned.

Report Number: 636837-L

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report636837-SProject nameKAMBALAProject ID55769Received DateJan 21, 2019

Client Sample ID Sample Matrix			HA01_0.9-1.0 Soil	BH07-1.5-1.6 Soil
Eurofins mgt Sample No.			M19-Ja16436	M19-Ja16437
Date Sampled			Jan 08, 2019	Jan 08, 2019
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	13	25
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	13	25
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	13	25
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	2.0	1.5
Benz(a)anthracene	0.5	mg/kg	8.9	12
Benzo(a)pyrene	0.5	mg/kg	9.0	18
Benzo(b&j)fluorantheneN07	0.5	mg/kg	6.3	13
Benzo(g.h.i)perylene	0.5	mg/kg	3.6	10
Benzo(k)fluoranthene	0.5	mg/kg	7.8	15
Chrysene	0.5	mg/kg	8.2	17
Dibenz(a.h)anthracene	0.5	mg/kg	1.5	1.2
Fluoranthene	0.5	mg/kg	17	31
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	5.3	12
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	8.2	10
Pyrene	0.5	mg/kg	17	33
Total PAH*	0.5	mg/kg	94.8	173.7
2-Fluorobiphenyl (surr.)	1	%	98	89
p-Terphenyl-d14 (surr.)	1	%	131	78
% Moisture	1	%	14	10

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 22, 2019	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
% Moisture	Melbourne	Jan 22, 2019	14 Day

- Method: LTM-GEN-7080 Moisture

Report Number: 636837-S

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA Project ID: 55769

Date Reported:Jan 29, 2019

Order No.: Received: Jan 21, 2019 3:49 PM

 Report #:
 636837
 Due:
 Jan 29, 2019

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: George Black

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail						Lead	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Moisture Set
Melb	Melbourne Laboratory - NATA Site # 1254 & 14271						Х	Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217						
Brisl	oane Laboratory	y - NATA Site #	20794						
Perti	n Laboratory - N	IATA Site # 237	36						
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	HA01_0.9-1.0	Jan 08, 2019		Soil	M19-Ja16436		Х		Х
2	BH07-1.5-1.6	Jan 08, 2019		Soil	M19-Ja16437		Х		Х
3	HA01_0-0.1	Jan 08, 2019		US Leachate	M19-Ja16438	Х	Х	Х	
4	HA02_0-0.1	Jan 08, 2019		US Leachate	M19-Ja16439	Х		Х	
5	5 BH07_4.0-4.1 Jan 08, 2019 US Leachate M19-Ja16440						Х	Х	
Test	Fest Counts							3	2

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 636837-S

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							
Polycyclic Aromatic Hydrocarbo	ns						
Acenaphthene			mg/kg	< 0.5	0.5	Pass	
Acenaphthylene			mg/kg	< 0.5	0.5	Pass	
Anthracene	Anthracene			< 0.5	0.5	Pass	
Benz(a)anthracene			mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene			mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene			mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene			mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene			mg/kg	< 0.5	0.5	Pass	
Chrysene			mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene			mg/kg	< 0.5	0.5	Pass	
Fluoranthene			mg/kg	< 0.5	0.5	Pass	
Fluorene			mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene			mg/kg	< 0.5	0.5	Pass	
Naphthalene			mg/kg	< 0.5	0.5	Pass	
Phenanthrene			mg/kg	< 0.5	0.5	Pass	
Pyrene			mg/kg	< 0.5	0.5	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbo	ns						
Acenaphthene			%	92	70-130	Pass	
Acenaphthylene			%	81	70-130	Pass	
Anthracene			%	81	70-130	Pass	
Benz(a)anthracene			%	88	70-130	Pass	
Benzo(a)pyrene			%	76	70-130	Pass	
Benzo(b&j)fluoranthene			%	79	70-130	Pass	
Benzo(g.h.i)perylene			%	103	70-130	Pass	
Benzo(k)fluoranthene			%	80	70-130	Pass	
Chrysene			%	102	70-130	Pass	
Dibenz(a.h)anthracene			%	111	70-130	Pass	
Fluoranthene			%	76	70-130	Pass	
Fluorene			%	89	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	113	70-130	Pass	
Naphthalene			%	97	70-130	Pass	
Phenanthrene			%	91	70-130	Pass	
Pyrene			%	85	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbo	ns			Result 1			
Acenaphthene	M19-Ja10070	NCP	%	111	70-130	Pass	
Acenaphthylene	M19-Ja10070	NCP	%	101	70-130	Pass	
Anthracene	M19-Ja10070	NCP	%	76	70-130	Pass	
Benz(a)anthracene	M19-Ja10070	NCP	%	95	70-130	Pass	
Benzo(a)pyrene	M19-Ja10070	NCP	%	94	70-130	Pass	
Benzo(b&j)fluoranthene	M19-Ja10070	NCP	%	95	70-130	Pass	
Benzo(g.h.i)perylene	M19-Ja10070	NCP	%	118	70-130	Pass	
Benzo(k)fluoranthene	M19-Ja10070	NCP	%	91	70-130	Pass	
Chrysene	M19-Ja10070	NCP	%	124	70-130	Pass	
Dibenz(a.h)anthracene	M19-Ja10070	NCP	%	96	70-130	Pass	
Fluoranthene	M19-Ja10070	NCP	%	75	70-130	Pass	

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	M19-Ja10070	NCP	%	92			70-130	Pass	
Naphthalene	M19-Ja10070	NCP	%	121			70-130	Pass	
Phenanthrene	M19-Ja10070	NCP	%	91			70-130	Pass	
Pyrene	M19-Ja10070	NCP	%	80			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocark	ons			Result 1	Result 2	RPD			
Acenaphthene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M19-Ja10069	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M19-Ja16437	CP	%	10	11	5.0	30%	Pass	

Report Number: 636837-S

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya Analytical Services Manager Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins I mg/be liable for consequential damages including, but not limited to, lost profits, damages for refaultive to meet decidines and ols the production arising from this report. This document shall not be reproduced or expect in full and refates only to the times tested. Unlies indicated otherwise, the tests were performed on the samples as received.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	George Black, Joshua Cranson

Sample Login Details	
Your reference	55769, Kembla
Envirolab Reference	209223
Date Sample Received	10/01/2019
Date Instructions Received	10/01/2019
Date Results Expected to be Reported	17/01/2019

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.3
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst		
Phone: 02 9910 6200	Phone: 02 9910 6200		
Fax: 02 9910 6201	Fax: 02 9910 6201		
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au		

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001
QA-01	✓	✓	✓	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 209223

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	George Black, Joshua Cranson
Address	Level 1, 50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	55769, Kembla
Number of Samples	1 Soil
Date samples received	10/01/2019
Date completed instructions received	10/01/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	17/01/2019			
Date of Issue	16/01/2019			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals Lucy Zhu, Asbestos Analyst Steven Luong, Senior Chemist **Authorised By**

Jacinta Hurst, Laboratory Manager

TECHNICAL COMPETENCE

Client Reference: 55769, Kembla

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date extracted	-	11/01/2019
Date analysed	-	14/01/2019
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	74

Envirolab Reference: 209223 Revision No: R00

svTRH (C10-C40) in Soil		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date extracted	-	11/01/2019
Date analysed	-	11/01/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	170
TRH C ₂₉ - C ₃₆	mg/kg	340
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	420
TRH >C ₃₄ -C ₄₀	mg/kg	220
Total +ve TRH (>C10-C40)	mg/kg	640
Surrogate o-Terphenyl	%	74

PAHs in Soil		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date extracted	-	11/01/2019
Date analysed	-	14/01/2019
Naphthalene	mg/kg	0.1
Acenaphthylene	mg/kg	0.5
Acenaphthene	mg/kg	0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	1.9
Anthracene	mg/kg	0.7
Fluoranthene	mg/kg	4.7
Pyrene	mg/kg	4.9
Benzo(a)anthracene	mg/kg	3.5
Chrysene	mg/kg	3.5
Benzo(b,j+k)fluoranthene	mg/kg	7.5
Benzo(a)pyrene	mg/kg	4.8
Indeno(1,2,3-c,d)pyrene	mg/kg	2.4
Dibenzo(a,h)anthracene	mg/kg	0.7
Benzo(g,h,i)perylene	mg/kg	3.0
Total +ve PAH's	mg/kg	38
Benzo(a)pyrene TEQ calc (zero)	mg/kg	6.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	6.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	6.9
Surrogate p-Terphenyl-d14	%	99

Organochlorine Pesticides in soil		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date extracted	-	11/01/2019
Date analysed	-	11/01/2019
нсв	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	78

PCBs in Soil		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date extracted	-	11/01/2019
Date analysed	-	11/01/2019
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCLMX	%	78

Acid Extractable metals in soil		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date prepared	-	11/01/2019
Date analysed	-	11/01/2019
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	8
Copper	mg/kg	59
Lead	mg/kg	290
Mercury	mg/kg	0.1
Nickel	mg/kg	4
Zinc	mg/kg	550

Moisture		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date prepared	-	11/01/2019
Date analysed	-	14/01/2019
Moisture	%	30

Asbestos ID - soils NEPM - ASB-001		
Our Reference		209223-1
Your Reference	UNITS	QA-01
Date Sampled		08/01/2019
Type of sample		Soil
Date analysed	-	16/01/2019
Sample mass tested	g	346.57
Sample Description	-	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos#1	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected
ACM >7mm Estimation*	g	_
FA and AF Estimation*	g	_
ACM >7mm Estimation*	%(w/w)	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE *1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CON	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate Spike R				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
Date analysed	-			14/01/2019	[NT]		[NT]	[NT]	14/01/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	94	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	94	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	100	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	94	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	92	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	92	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	92	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	98	[NT]		[NT]	[NT]	79	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
Date analysed	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	84	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	111	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	92	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	84	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	111	
Surrogate o-Terphenyl	%		Org-003	74	[NT]		[NT]	[NT]	83	

QUA	LITY CONTRO	L: PAHs	in Soil			Duplicate Spike Re				Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]		
Date extracted	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019			
Date analysed	-			14/01/2019	[NT]		[NT]	[NT]	14/01/2019			
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	94			
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	91			
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	93			
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	96			
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	94			
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	109			
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]			
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	107			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate p-Terphenyl-d14	%		Org-012	102	[NT]		[NT]	[NT]	100			

QUALITY C	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]		
Date extracted	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019			
Date analysed	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019			
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	117			
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	96			
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	91			
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	87			
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	93			
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	99			
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	105			
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	91			
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	86			
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	88			
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate TCMX	%		Org-005	90	[NT]		[NT]	[NT]	108			

Envirolab Reference: 209223

Revision No: R00

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
Date analysed	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	104	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCLMX	%		Org-006	90	[NT]		[NT]	[NT]	90	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
Date analysed	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	106	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	106	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	110	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	87	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	107	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Cuidelines recommend that Thermetelerent Coliform, Faceal Enterposesi, 9 F. Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, sample 209223-1 was below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Reference: 209223 Page | 20 of 20 R00

Revision No:

Envirolati

CHAIN OF CUSTODY

		_																									
PROJECT NO.: 35769							LABORATORY BATCH NO.: SAMPLERS: JC /RG/ML/GB-																				
PROJECT NAME: Kanbula			٠.		/		Si	AMP	LER	S: JC	/RG	/ML/	GB-														
DATE NEEDED BY: 5+0							Q	C LE	VEL:	NEP	VI (20	013)															
PHONE: Sydney: 02 8245 03	00 Perth:	08 9488 01	LOO Brisl	bane <u>:</u> 07	3112 2688											_											
SEND REPORT & INVOICE TO: (1) adminnsw	@jbsg.com.	au; (2) gbla	ack@jbsg	.com.au; (3) jcranson@j	bsg.com.au	<u>.</u>							_													
COMMENTS / SPECIAL HANDLING / STO							Γ		Г										1	T^{-1}		TYPE OF ASBEST					
	è				•					1												ANALYS					
									>	PCBS	ĺ	اد						 	1		1	z					
							i		RICK	19	الر	2									1 1	NATIO	ا				
				,			ی ا∟	- 4	⅍	1,4	40/	SSI -		1					1		1	IDENTIFICATION	NEPM/WA				
SAMPLE ID	MATRIX	DATE	TIME		TYPE & PRESERVATIVE	рH	[;]	104 X	1	OC.P.	\odot	Asigesto			- -							100	NEP	NOTES:			
D QA-01	50:1	81.19		<u>5</u> +	B tIce		t_{x}	ᄾ	×	K		7				T				\top		\neg	十				
<u> </u>	10,1	5,11	<u> </u>	<u> </u>	3 1	-	† <u>``</u>	1	1					1		\top							\Box				
	 	 		 	•		╅			H	1	_		† †		╅	+			1		十	十				
		 	1	 	· · · · · · · · · · · · · · · · · · ·		╁	+	\vdash	1	十	_	1	+ -		+				+-		十	十				
			 			<u> </u>	╅	-	-	╁╶┼		-+-	+	1		╁	1	₹	-	╁╌┦	$\vdash \vdash$	\dashv	十				
			ļ			-	┼	-	-			-		+	(-	Ł	7	14	-	╁┈		\dashv	-+-				
<u> </u>							ــــــــــــــــــــــــــــــــــــــ	↓ _	<u> </u>			4	-	\sqcup		4	-		+	 	\vdash	\dashv					
								١,	27		<u> </u>	<u>> Y</u>			_	,		2	•	!	\square	\dashv					
						1			1	<u> </u>					118	D	ررب										
						,							ī	7	2.1.6						1	ľ					
	 		1				1				$\overline{}$		∀ ~							7		\leq	\neg	Envirola 1	b Serv	ices	
	 		 				╁╴		†	7	4	_	_	1 1		十	1			1-6		JUPB	í la	hatswood	d NSW	2067	
		 	<u>-ن-</u>	 			╁	+		1	\dashv	_		\vdash		+			_		I		一	Ph: (02) 9910 	6200	
<u> </u>			<u> </u>	<u> </u>	<u> </u>		╀		+-		-+	_	-	╂╌┤		+	+		+	 !	ob l	ᄥ	十	209	2552		
		 	<u> </u>	<u> </u>	<u> </u>		╁	+		╂╌┼	_	-		+ +		- -	+	\vdash	+	 	hate	Rece	aive	- 100	<u> 243</u>	<u></u>	
		J					╄		├-	-	_			╀┵	_	-		┡		— "	lime	Rec	elvec	: [0]	70 10	7	
							L	<u>,</u>			_		_ _	<u> · </u>		4_		\sqcup		 	Rece	iyad-	ру	177	<u>-25</u>		
	_						<u>.</u>		<u>L</u>	1			<u> </u>						_		Tem	(c)	МА	nbient	<u>43</u>		,
									1	1					'						Cool	ng: (<u> </u>	epack VBroken	- 01 -		_
_ · · · - · ·						t										\top					Secu	rity	mtac	nBloken	MOHE		
· ·									-		\neg							П					\Box				
RELINQUISHED B	Υ.				OD OF SHIPMENT:					RE	ÇEIV	ED BY:			-									E ONLY:			
NAME: DATE: S 1.19 CONSIGNMENT NOTE NO.			N	IAME	E	U) S	y										100050	Intac	:t	Broke	:n						
OF: JBS&G TRANSPORT CO.			AIL: E:	$\mathcal{I}^{()}$	66	, ,a_~					COOL	ER TE	мè	8 2	r C												
OF: JBS&G NAME: DATE:			SIGNMENT				 	IAME	~¥ : //	: - Ir	'}	7	DATE:	10/-	10	COOL	ER SE	AL-X	es)	No		(inta	ct	Brok	en		
White.		0	F:	all	4	700	n 70	(010	'(4).			à	es) deg	_		_										
										- Sulfre-	COOL	ERTE	MP	ne Pres	<u>, C</u>	EDTA	Decord.	. ST =	Sterile Ro	ttle: O =	Other						
	Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other																										

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Site # 18

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: George Black **KAMBALA** Project name: Project ID: 58081 COC number: Not provided

Turn around time: 5 Day

Date/Time received: Apr 8, 2020 5:48 PM

Eurofins reference: 713049

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 10.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- V Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

QC20200407-1 sent to Envirolab for analysis.

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to George Black - gblack@jbsg.com.au.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report713049-SProject nameKAMBALAProject ID58081Received DateApr 08, 2020

Client Sample ID			HA06 0-0.1	HA07 0.2-0.3	HA08 0.2-0.3	HA09 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13924	W20-Ap13925	W20-Ap13926	W20-Ap13927
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	30	< 20	38	< 20
TRH C15-C28	50	mg/kg	650	250	360	190
TRH C29-C36	50	mg/kg	540	300	310	240
TRH C10-C36 (Total)	50	mg/kg	1220	550	708	430
ВТЕХ	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	127	107	137	90
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Comments			G01			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	16	3.0	8.8	0.8
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	19	3.3	8.8	1.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	22	3.5	8.8	1.4
Acenaphthene	0.5	mg/kg	< 5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 5	< 0.5	0.6	< 0.5
Anthracene	0.5	mg/kg	< 5	< 0.5	1.1	< 0.5
Benz(a)anthracene	0.5	mg/kg	8.4	2.1	5.6	0.6
Benzo(a)pyrene	0.5	mg/kg	13	2.3	5.6	0.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	11	2.4	5.5	0.6
Benzo(g.h.i)perylene	0.5	mg/kg	< 10	1.1	3.3	0.6
Benzo(k)fluoranthene	0.5	mg/kg	12	1.6	3.5	< 0.5
Chrysene	0.5	mg/kg	9.0	1.7	4.5	0.6
Dibenz(a.h)anthracene	0.5	mg/kg	< 5	< 0.5	1.4	< 0.5
Fluoranthene	0.5	mg/kg	9.6	3.2	9.1	0.8
Fluorene	0.5	mg/kg	< 5	< 0.5	< 0.5	< 0.5

Client Sample ID			HA06 0-0.1	HA07 0.2-0.3	HA08 0.2-0.3	HA09 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13924	W20-Ap13925	W20-Ap13926	W20-Ap13927
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 10	1.1	3.1	< 0.5
Naphthalene	0.5	mg/kg	< 5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 5	1.1	4.3	< 0.5
Pyrene	0.5	mg/kg	11	3.1	9.0	1.0
Total PAH*	0.5	mg/kg	74	19.7	56.6	4.9
2-Fluorobiphenyl (surr.)	1	%	95	58	64	54
p-Terphenyl-d14 (surr.)	1	%	106	90	91	96
Organochlorine Pesticides						
Comments			G01			
Chlordanes - Total	0.1	mg/kg	< 1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.5	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.5	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.5	-	-	-
a-BHC	0.05	mg/kg	< 0.5	-	-	-
Aldrin	0.05	mg/kg	< 0.5	-	-	-
b-BHC	0.05	mg/kg	< 0.5	-	-	-
d-BHC	0.05	mg/kg	< 0.5	-	-	-
Dieldrin	0.05	mg/kg	< 0.5	-	-	-
Endosulfan I	0.05	mg/kg	< 0.5	-	-	-
Endosulfan II	0.05	mg/kg	< 0.5	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.5	-	-	-
Endrin	0.05	mg/kg	< 0.5	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.5	-	-	-
Endrin ketone	0.05	mg/kg	< 0.5	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.5	-	-	-
Heptachlor	0.05	mg/kg	< 0.5	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.5	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.5	-	-	-
Methoxychlor	0.2	mg/kg	< 0.5	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	-	-	-
Dibutylchlorendate (surr.)	1	%	143	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	114	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPN	I Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	1000	460	580	360
TRH >C34-C40	100	mg/kg	290	190	190	170
TRH >C10-C40 (total)*	100	mg/kg	1290	650	770	530
Metals M8						
Arsenic	2	mg/kg	5.2	3.6	2.8	2.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.5
Chromium	5	mg/kg	9.5	7.3	7.4	9.1
Copper	5	mg/kg	43	65	30	48
Lead	5	mg/kg	170	140	95	80
Mercury	0.1	mg/kg	0.1	0.1	< 0.1	0.2
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	240	860	300	1000

Report Number: 713049-S

Client Sample ID			HA06 0-0.1	HA07 0.2-0.3	HA08 0.2-0.3	HA09 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13924	W20-Ap13925	W20-Ap13926	W20-Ap13927
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	15	38	28	45

Client Sample ID			HA10 0-0.1	HA11 0.4-0.5	HA12 0-0.1	QA20200407-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13928	W20-Ap13929	W20-Ap13930	W20-Ap13934
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	72	65	92	360
TRH C29-C36	50	mg/kg	64	59	63	300
TRH C10-C36 (Total)	50	mg/kg	136	124	155	660
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	112	120	142	116
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Comments						G01
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	0.9	< 1	< 5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.2	1.5	6.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.5	2.0	12
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Benz(a)anthracene	0.5	mg/kg	< 0.5	0.8	0.8	< 5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.7	0.7	< 5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.7	0.6	< 5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 1	< 5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.5	0.8	< 5
Chrysene	0.5	mg/kg	< 0.5	0.6	0.7	< 5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 1	< 5
Fluoranthene	0.5	mg/kg	< 0.5	1.5	1.8	7.0
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 1	< 5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Phenanthrene	0.5	mg/kg	< 0.5	1.4	1.4	< 5
Pyrene	0.5	mg/kg	< 0.5	1.4	1.6	7.7
Total PAH*	0.5	mg/kg	< 0.5	7.6	8.4	14.7

Client Sample ID			HA10 0-0.1	HA11 0.4-0.5	HA12 0-0.1	QA20200407-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13928	W20-Ap13929	W20-Ap13930	W20-Ap13934
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
2-Fluorobiphenyl (surr.)	1	%	64	55	64	55
p-Terphenyl-d14 (surr.)	1	%	87	90	108	92
Organochlorine Pesticides		,,,	<u> </u>		1.00	<u> </u>
Comments						G01
Chlordanes - Total	0.1	mg/kg	_	_	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	_	_	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	_	_	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	_	_	< 0.05	< 0.5
a-BHC	0.05	mg/kg	_	_	< 0.05	< 0.5
Aldrin	0.05	mg/kg	_	_	< 0.05	< 0.5
b-BHC	0.05	mg/kg	_	-	< 0.05	< 0.5
d-BHC	0.05	mg/kg	-	-	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	_	_	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	_	_	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	_		< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	_		< 0.05	< 0.5
Endrin	0.05	mg/kg	_		< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	_		< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	_		< 0.05	< 0.5
g-BHC (Lindane)	0.05	mg/kg	_		< 0.05	< 0.5
Heptachlor	0.05	mg/kg	_		< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	_		< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	_		< 0.05	< 0.5
Methoxychlor	0.2	mg/kg	_	_	< 0.2	< 0.5
Toxaphene	1	mg/kg	_	_	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	_	< 0.05	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	_	< 0.05	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	_	_	< 0.2	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	_	_	< 0.2	< 1
Dibutylchlorendate (surr.)	1	%	_	_	130	INT
Tetrachloro-m-xylene (surr.)	1	%	_	_	123	120
Total Recoverable Hydrocarbons - 2013 NEPM		70			123	120
TRH >C10-C16	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C10-C16	100	mg/kg	110	110	130	570
TRH >C34-C40	100	mg/kg mg/kg	< 100	< 100	< 100	190
TRH >C10-C40 (total)*	100	mg/kg	110	110	130	760
Metals M8	100	Hig/kg	110	110	130	700
Arsenic	2	mg/kg	2.7	< 2	< 2	3.2
Cadmium	0.4	mg/kg	< 0.4	0.4	< 0.4	< 0.4
Chromium	5	mg/kg	5.4	6.4	< 5	7.6
Copper	5	mg/kg	5.8	< 5	5.2	60
Lead	5	mg/kg	17	50	35	220
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
Nickel	5	mg/kg	< 5	6.5	< 5	< 5
Zinc	5	mg/kg	120	210	67	400
LIIV	0	i ilig/kg	120	210	07	400
% Moisture	1	%	14	7.3	8.8	28
,				1.0		

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Apr 15, 2020	Holding Time 14 Days
- Method: LTM-ORG-2010 TRH C6-C40			·
BTEX	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 15, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Apr 15, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Apr 09, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 713049-S

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Australia

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049 02 8245 0300

Sydney Unit F3, Building F

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

16 Mars Road

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271											
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	36												
Exte	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	HA06 0-0.1	Apr 07, 2020		Soil	W20-Ap13924	Х			Х	Х	Х	Х	Х	Х	
2	HA07 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13925	Х			Х		Х	Х	Х	Х	
3	HA08 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13926	Х			Х		Х	Х	Х	Х	
4	HA09 0-0.1	Apr 07, 2020		Soil	W20-Ap13927	Х			Х		Х	Х	Х	Х	
5						Х			Х		Х	Х	Х	Х	
6	HA11 0.4-0.5 Apr 07, 2020 Soil W20-Ap13929				W20-Ap13929	Х			Х		Х	Х	Х	Х	
7	HA12 0-0.1	Apr 07, 2020		Soil	W20-Ap13930	Х			Х	Х	Х	Х	Х	Х	
8	FRAG-01	Apr 07, 2020		Building Materials	W20-Ap13931		Х								
9	FRAG-02	Apr 07, 2020		Building Materials	W20-Ap13932		х								

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA

Project ID:

58081

Order No.:

Report #: 713049 Phone: 02 8245 0300

Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
	Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217										\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \			
_						Х	X	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator h Laboratory - N														
10	RIN01	Apr 07, 2020	30	Water	W20-Ap13933				Х	Х	Х	Х		Х	
11	QA20200407-	Apr 07, 2020		Soil	W20-Ap13934	Х			Х	Х	Х	Х	Х	Х	
12	TS	Apr 07, 2020		Water	W20-Ap13935										Х
13	ТВ	Apr 07, 2020		Water	W20-Ap13936										Х
14	HA06 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13937			Х							
15	HA06 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13938			Х							
16	16 HA07 0-0.1 Apr 07, 2020 Soil W20-Ap13939				W20-Ap13939			Х							
17	7 HA07 0.4-0.5 Apr 07, 2020 Soil W20-Ap13940			W20-Ap13940			Х								
18	8 HA08 0-0.1 Apr 07, 2020 Soil W20-Ap13941				W20-Ap13941			Х							
19							Х								
20	20 HA10 0.2-0.3 Apr 07, 2020 Soil W20-Ap13943							Х							ш
21	HA10 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13944			Х							

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

IANZ # 1290

Company Name:

Project Name:

Project ID:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St Sydney

NSW 2000

KAMBALA 58081

Order No.: Report #:

713049

02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	71											
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	736												
22	HA11 0-0.1	Apr 07, 2020		Soil	W20-Ap13945			Х							
23	HA11 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13946			Х							
24	HA11 0.9-1.0	Apr 07, 2020		Soil	W20-Ap13947			Х							
25	25 HA12 0.2-0.3 Apr 07, 2020 Soil W20-Ap13948				W20-Ap13948			Х							
Test	Test Counts						2	12	9	4	9	9	8	9	2

Date Reported: Apr 17, 2020

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 713049-S

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
ВТЕХ	_					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank		120				
Polycyclic Aromatic Hydrocarbons				T		
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene		< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
	mg/kg	1				
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene Mathe d Plants	mg/kg	< 0.5		0.5	Pass	
Method Blank				1		
Organochlorine Pesticides		0.4	+	0.4	D	
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	1

Test	Units	Result 1	Acceptano Limits	e Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank		'		_	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	i iig/kg	100	100	1 400	
Metals M8		Т		T	
Arsenic	ma/ka	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
	mg/kg				
Conner	mg/kg	< 5	5	Pass	-
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	-
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	_				
TRH C6-C9	%	96	70-130	Pass	
TRH C10-C14	%	76	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	101	70-130	Pass	
Toluene	%	106	70-130	Pass	
Ethylbenzene	%	110	70-130	Pass	
m&p-Xylenes	%	111	70-130	Pass	
o-Xylene	%	110	70-130	Pass	
Xylenes - Total*	%	111	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	124	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
LCS - % Recovery			· · · · · · · · · · · · · · · · · · ·	_	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	108	70-130	Pass	
Acenaphthylene	%	112	70-130	Pass	
Anthracene	%	123	70-130	Pass	
Benz(a)anthracene	%	114	70-130	Pass	
Benzo(a)pyrene	%	127	70-130	Pass	
Benzo(b&j)fluoranthene	%	109	70-130	Pass	
Benzo(g.h.i)perylene	%	110	70-130	Pass	
	%	104	70-130	Pass	
Benzo(k)fluoranthene					
Chrysene	%	104	70-130	Pass	
Dibenz(a.h)anthracene	%	101	70-130	Pass	
Fluoranthene	%	104	70-130	Pass	
Fluorene	%	113	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	109	70-130	Pass	
Naphthalene	%	109	70-130	Pass	1

Tes	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene			%	111		70-130	Pass	
Pyrene			%	102		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
Chlordanes - Total			%	98		70-130	Pass	
4.4'-DDD			%	103		70-130	Pass	
4.4'-DDE			%	98		70-130	Pass	
4.4'-DDT			%	99		70-130	Pass	
a-BHC			%	108		70-130	Pass	
Aldrin			%	104		70-130	Pass	
b-BHC			%	99		70-130	Pass	
d-BHC			%	95		70-130	Pass	
Dieldrin			%	111		70-130	Pass	
Endosulfan I			%	104		70-130	Pass	
Endosulfan II			%	104		70-130	Pass	
Endosulfan sulphate			%	94		70-130	Pass	
Endrin			%	91		70-130	Pass	
Endrin aldehyde			%	103		70-130	Pass	
Endrin ketone			%	82		70-130	Pass	
g-BHC (Lindane)			%	98		70-130	Pass	
Heptachlor			%	99		70-130	Pass	
Heptachlor epoxide			%	100		70-130	Pass	
Hexachlorobenzene				97				
			%			70-130	Pass	
Methoxychlor			%	98		70-130	Pass	
LCS - % Recovery	2010 NEDM 5			1				
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions						
TRH >C10-C16			%	76		70-130	Pass	
LCS - % Recovery								
Metals M8			0/			70.100		
Arsenic			%	90		70-130	Pass	
Cadmium			%	90		70-130	Pass	
Chromium			%	83		70-130	Pass	
Copper			%	85		70-130	Pass	
Lead			%	91		70-130	Pass	
Mercury			%	90		70-130	Pass	
Nickel			%	86		70-130	Pass	
Zinc			%	84		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarb				Result 1				
Fluoranthene	S20-Ap14206	NCP	%	71		70-130	Pass	
Pyrene	W20-Ap17532	NCP	%	116		70-130	Pass	
Spike - % Recovery								
_ · <i>·</i>				Result 1				
Organochlorine Pesticides				Result I	ļ			
	S20-Ap14206	NCP	%	74		70-130	Pass	
Organochlorine Pesticides	S20-Ap14206 S20-Ap14206	NCP NCP	%	<u> </u>		70-130 70-130	Pass Pass	
Organochlorine Pesticides Chlordanes - Total	<u> </u>			74				
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	S20-Ap14206	NCP	%	74 72		70-130	Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	S20-Ap14206 S20-Ap14206	NCP NCP	% %	74 72 86		70-130 70-130	Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC	S20-Ap14206 S20-Ap14206 S20-Ap14206	NCP NCP NCP	% % %	74 72 86 101		70-130 70-130 70-130	Pass Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin	\$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206	NCP NCP NCP	% % %	74 72 86 101 86		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin b-BHC	\$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206	NCP NCP NCP NCP	% % % %	74 72 86 101 86 95		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin b-BHC d-BHC	\$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206	NCP NCP NCP NCP NCP	% % % % %	74 72 86 101 86 95 106		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin	S20-Ap14206	NCP	%	85	70-130	Pass	
Endrin aldehyde	S20-Ap14206	NCP	%	72	70-130	Pass	
Endrin ketone	S20-Ap14206	NCP	%	78	70-130	Pass	
g-BHC (Lindane)	S20-Ap14206	NCP	%	94	70-130	Pass	
Hexachlorobenzene	S20-Ap14206	NCP	%	103	70-130	Pass	
Spike - % Recovery					·		
Metals M8				Result 1			
Lead	S20-Ap18728	NCP	%	110	70-130	Pass	
Zinc	S20-Ap18728	NCP	%	88	70-130	Pass	
Spike - % Recovery	0207,010120		,,,		1 10 100		
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	ions		Result 1			
TRH C10-C14	W20-Ap13925	CP	%	104	70-130	Pass	
Spike - % Recovery	7 VVZO 7 (P 10020	<u> </u>	70	104	70 100	1 455	
Polycyclic Aromatic Hydrocarbor	ne			Result 1			1
Acenaphthene	W20-Ap13925	СР	%	97	70-130	Pass	
Acenaphthylene		CP					
	W20-Ap13925		%	94	70-130	Pass	
Anthracene	W20-Ap13925	CP	%	94	70-130	Pass	-
Benz(a)anthracene	W20-Ap13925	CP	%	84	70-130	Pass	
Benzo(a)pyrene	W20-Ap13925	CP	%	77	70-130	Pass	
Benzo(b&j)fluoranthene	W20-Ap13925	CP	%	81	70-130	Pass	
Benzo(g.h.i)perylene	W20-Ap13925	CP	%	77	70-130	Pass	
Benzo(k)fluoranthene	W20-Ap13925	CP	%	83	70-130	Pass	
Chrysene	W20-Ap13925	CP	%	74	70-130	Pass	
Dibenz(a.h)anthracene	W20-Ap13925	CP	%	124	70-130	Pass	
Fluorene	W20-Ap13925	CP	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene	W20-Ap13925	CP	%	101	70-130	Pass	
Naphthalene	W20-Ap13925	CP	%	85	70-130	Pass	
Phenanthrene	W20-Ap13925	CP	%	87	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	W20-Ap13925	CP	%	105	70-130	Pass	
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	W20-Ap13926	СР	%	118	70-130	Pass	
Cadmium	W20-Ap13926	СР	%	113	70-130	Pass	
Chromium	W20-Ap13926	СР	%	111	70-130	Pass	
Copper	W20-Ap13926	СР	%	125	70-130	Pass	
Mercury	W20-Ap13926	СР	%	118	70-130	Pass	
Nickel	W20-Ap13926	CP	%	111	70-130	Pass	
Spike - % Recovery	112074.0020	<u> </u>	,,,		1 .0 .00		
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	ions		Result 1			
TRH C6-C9	W20-Ap13934	CP	%	80	70-130	Pass	
Spike - % Recovery	1 1120 Ap 10004		/0		1 70 130	1 1 433	
BTEX				Result 1			<u> </u>
Benzene	W20-Ap13934	СР	%	93	70-130	Pass	
	W20-Ap13934	CP	%	98	70-130		
Toluene	· ·					Pass	
Ethylbenzene	W20-Ap13934	CP	%	102	70-130	Pass	
m&p-Xylenes	W20-Ap13934	CP	%	102	70-130	Pass	
o-Xylene	W20-Ap13934	CP	%	104	70-130	Pass	
Xylenes - Total*	W20-Ap13934	CP	%	102	70-130	Pass	
Spike - % Recovery	0040 ::====			T			
Total Recoverable Hydrocarbons				Result 1		 	-
Naphthalene	W20-Ap13934	CP	%	106	70-130	Pass	
TRH C6-C10	W20-Ap13934	CP	%	84	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	W20-Ap13924	CP	mg/kg	30	23	27	30%	Pass	
TRH C15-C28	W20-Ap13924	CP	mg/kg	650	340	63	30%	Fail	Q02
TRH C29-C36	W20-Ap13924	CP	mg/kg	540	280	63	30%	Fail	Q02
Duplicate									
Polycyclic Aromatic Hydrocarbon	ış			Result 1	Result 2	RPD			
Acenaphthene	W20-Ap13924	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Acenaphthylene	W20-Ap13924	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Anthracene	W20-Ap13924	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Benz(a)anthracene	W20-Ap13924	CP	mg/kg	8.4	< 5	<1	30%	Pass	
Benzo(a)pyrene	W20-Ap13924	CP	mg/kg	13	< 5	<1	30%	Pass	
Benzo(b&j)fluoranthene	W20-Ap13924	СР	mg/kg	11	< 5	<1	30%	Pass	
Benzo(g.h.i)perylene	W20-Ap13924	CP	mg/kg	< 10	< 5	<1	30%	Pass	
Benzo(k)fluoranthene	W20-Ap13924	CP	mg/kg	12	< 5	<1	30%	Pass	
Chrysene	W20-Ap13924	СР	mg/kg	9.0	< 5	<1	30%	Pass	
Dibenz(a.h)anthracene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Fluoranthene	W20-Ap13924	СР	mg/kg	9.6	6.0	46	30%	Fail	Q15
Fluorene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	W20-Ap13924	СР	mg/kg	< 10	< 5	<1	30%	Pass	
Naphthalene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Phenanthrene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Pyrene	W20-Ap13924	СР	mg/kg	11	6.4	56	30%	Fail	Q15
Duplicate	•	•	<u> </u>						
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	W20-Ap13924	СР	mg/kg	< 1	< 1	<1	30%	Pass	
4.4'-DDD	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDE	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDT	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
a-BHC	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aldrin	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
b-BHC	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
d-BHC	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dieldrin	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan I	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan II	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan sulphate	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin aldehyde	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin ketone	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
g-BHC (Lindane)	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor epoxide	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobenzene	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methoxychlor	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	112071010024	, Ji	mg/ng			- 1	3370	. 400	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	W20-Ap13924	CP	mg/kg	< 50	< 50	<1	30%	Pass	
	· ·							Fail	Q15
TRH >C16-C34	W20-Ap13924	CP	mg/kg	1000	530	65	30%		

Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S20-Ap18861	NCP	mg/kg	9.4	7.3	26	30%	Pass	
Cadmium	S20-Ap18861	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-Ap18861	NCP	mg/kg	22	15	37	30%	Fail	Q15
Copper	S20-Ap18861	NCP	mg/kg	35	28	24	30%	Pass	
Lead	S20-Ap18861	NCP	mg/kg	79	43	59	30%	Fail	Q15
Mercury	S20-Ap18861	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Ap18861	NCP	mg/kg	15	11	26	30%	Pass	
Zinc	S20-Ap18861	NCP	mg/kg	140	110	27	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	W20-Ap13925	CP	%	38	37	3.0	30%	Pass	
Duplicate									
Total Recoverable Hydroca	rbons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	W20-Ap13930	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	W20-Ap13930	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	W20-Ap13930	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydroca	rbons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	W20-Ap13930	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	W20-Ap13930	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

<u> </u>	
Code	Description

The LORs have been raised due to matrix interference G01

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to N07 the total of the two co-eluting PAHs The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Q02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Nibha Vaidva Senior Analyst-Asbestos (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to styr production arising from this report. This document shall not be reporteduced except in full and relates only to the letters tested. Unless indicated to therewise, the testes were performed on the samples as received.

Report Number: 713049-S

Certificate of Analysis

Environment Testing

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: George Black
Report 713049-AID
Project Name KAMBALA
Project ID 58081

Received Date Apr 08, 2020 Date Reported Apr 17, 2020

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Date Reported: Apr 17, 2020

Environment Testing

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 9

Report Number: 713049-AID

Project Name KAMBALA Project ID 58081

Date Sampled Apr 07, 2020 Report 713049-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
HA06 0-0.1	20-Ap13924	Apr 07, 2020	Approximate Sample 636g Sample consisted of: Brown fine-grained sandy soil, rocks and debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA07 0.2-0.3	20-Ap13925	Apr 07, 2020	Approximate Sample 489g Sample consisted of: Brown fine-grained sandy soil, brick and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA08 0.2-0.3	20-Ap13926	Apr 07, 2020	Approximate Sample 547g Sample consisted of: Brown fine-grained sandy soil, bitumen and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA09 0-0.1	20-Ap13927	Apr 07, 2020	Approximate Sample 280g Sample consisted of: Brown fine-grained sandy soil, rocks, glass and debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA10 0-0.1	20-Ap13928	Apr 07, 2020	Approximate Sample 577g Sample consisted of: Brown fine-grained sandy soil, bitumen, cement, brick and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA11 0.4-0.5	20-Ap13929	Apr 07, 2020	Approximate Sample 895g Sample consisted of: Brown fine-grained sandy soil, glass and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected. No trace asbestos detected.
HA12 0-0.1	20-Ap13930	Apr 07, 2020	Approximate Sample 778g Sample consisted of: Brown fine-grained sandy soil, rocks and debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
FRAG-01	20-Ap13931	Apr 07, 2020	Approximate Sample 13g / 45x40x4mm Sample consisted of: Grey fibre cement material	Chrysotile and amosite asbestos detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
FRAG-02	20-Ap13932	Apr 07, 2020	Approximate Sample 10g / 50x35x4mm Sample consisted of: Grey fibre cement material	Chrysotile and amosite asbestos detected.
QA20200407-1	20-Ap13934	Apr 07, 2020		No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Page 3 of 9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	Apr 09, 2020	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Apr 09, 2020	Indefinite

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049 02 8245 0300

Sydney

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271											
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794												
Pert	h Laboratory - I	NATA Site # 237	36												
Exte	rnal Laboratory	<i>'</i>													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	HA06 0-0.1	Apr 07, 2020		Soil	W20-Ap13924	Х			Х	Х	Х	Х	Х	Х	
2	HA07 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13925	Х			Х		Х	Х	Х	Х	
3	HA08 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13926	Х			Х		Х	Х	Х	Х	
4	HA09 0-0.1	Apr 07, 2020		Soil	W20-Ap13927	Х			Х		Х	Х	Х	Х	
5	HA10 0-0.1	Apr 07, 2020		Soil	W20-Ap13928	Х			Х		Х	Х	Х	Х	
6	HA11 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13929	Х			Х		Х	Х	Х	Х	
7	HA12 0-0.1	Apr 07, 2020		Soil	W20-Ap13930	Х			Х	Х	Х	Х	Х	Х	
8	FRAG-01	Apr 07, 2020		Building Materials	W20-Ap13931		х								
9	FRAG-02	Apr 07, 2020		Building Materials	W20-Ap13932		Х								

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Australia

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #: 713049 02 8245 0300

Sydney

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
				271			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
	ney Laboratory					Х	X	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator h Laboratory - N														
10	RIN01	Apr 07, 2020	30	Water	W20-Ap13933				Х	Х	Х	Х		Х	
11	QA20200407-	Apr 07, 2020		Soil	W20-Ap13934	Х			Х	Х	Х	Х	Х	Х	
12	TS	Apr 07, 2020		Water	W20-Ap13935										Х
13	ТВ	Apr 07, 2020		Water	W20-Ap13936										Х
14	HA06 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13937			Х							
15	HA06 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13938			Х							
16	HA07 0-0.1	Apr 07, 2020		Soil	W20-Ap13939			Х							
17	HA07 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13940			Х							
18	HA08 0-0.1	Apr 07, 2020		Soil	W20-Ap13941			Х							
19	HA09 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13942			Х							
20	HA10 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13943			Х							
21	HA10 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13944			Х							

Page 6 of 9

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #:

713049 02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Dav

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail					Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71											
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Bris	bane Laborator	y - NATA Site#	20794												
Pert	h Laboratory - N	NATA Site # 237	36												
22	HA11 0-0.1	Apr 07, 2020		Soil	W20-Ap13945			Х							
23	HA11 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13946			Х							
24	HA11 0.9-1.0	Apr 07, 2020		Soil	W20-Ap13947			Х							
25	HA12 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13948			Х							
Test	Counts					8	2	12	9	4	9	9	8	9	2

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

Date Reported: Apr 17, 2020

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Comments

W20-Ap13925 & W20-Ap13927: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to styroduction arising from this report. This document shall not be reported except in full and relates only to the learns tested. Unless indicated to therewise, the testes were performed on the samples as and relates only to the learns tested. Unless indicated to therewise, the testes were performed on the samples as the sample of the samples are samples.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report713049-WProject nameKAMBALAProject ID58081Received DateApr 08, 2020

Client Sample ID			RIN01	R20 TS	ТВ
Sample Matrix			Water	Water	Water
Eurofins Sample No.			W20-Ap13933	W20-Ap13935	W20-Ap13936
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit		, ,	,
NO.		T			
Naphthalene ^{N02}	0.01	mg/L	-	100	< 0.01
Total Recoverable Hydrocarbons - 1999 NEPM		T			
TRH C6-C9	0.02	mg/L	< 0.02	74	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	-	-
BTEX					
Benzene	0.001	mg/L	< 0.001	110	< 0.001
Toluene	0.001	mg/L	< 0.001	110	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	100	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	95	< 0.002
o-Xylene	0.001	mg/L	< 0.001	110	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	99	< 0.003
4-Bromofluorobenzene (surr.)	1	%	98	93	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	-	-
TRH C6-C10	0.02	mg/L	< 0.02	-	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-	-
Total Recoverable Hydrocarbons					
TRH C6-C10	0.02	mg/L	-	72	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	_	-	< 0.02
Polycyclic Aromatic Hydrocarbons	<u>'</u>				
Acenaphthene	0.001	mg/L	< 0.001	-	_
Acenaphthylene	0.001	mg/L	< 0.001	-	_
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	_	_

Client Comple ID			DINIGA	R20 TS	
Client Sample ID			RIN01	1	ТВ
Sample Matrix			Water	Water	Water
Eurofins Sample No.			W20-Ap13933	W20-Ap13935	W20-Ap13936
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Fluorene	0.001	mg/L	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	87	-	-
p-Terphenyl-d14 (surr.)	1	%	108	-	-
Organochlorine Pesticides					
Chlordanes - Total	0.001	mg/L	< 0.001	-	-
4.4'-DDD	0.0001	mg/L	< 0.0001	-	-
4.4'-DDE	0.0001	mg/L	< 0.0001	-	-
4.4'-DDT	0.0001	mg/L	< 0.0001	-	-
a-BHC	0.0001	mg/L	< 0.0001	-	-
Aldrin	0.0001	mg/L	< 0.0001	-	-
b-BHC	0.0001	mg/L	< 0.0001	-	-
d-BHC	0.0001	mg/L	< 0.0001	-	-
Dieldrin	0.0001	mg/L	< 0.0001	-	-
Endosulfan I	0.0001	mg/L	< 0.0001	-	-
Endosulfan II	0.0001	mg/L	< 0.0001	-	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	-	-
Endrin Endrin oldebyde	0.0001	mg/L	< 0.0001	-	-
Endrin aldehyde	0.0001	mg/L	< 0.0001 < 0.0001		-
g-BHC (Lindane)	0.0001	mg/L mg/L	< 0.0001		_
Heptachlor	0.0001	mg/L	< 0.0001		
Heptachlor epoxide	0.0001	mg/L	< 0.0001	_	_
Hexachlorobenzene	0.0001	mg/L	< 0.0001		_
Methoxychlor	0.0001	mg/L	< 0.0001	_	_
Toxaphene	0.01	mg/L	< 0.01	_	_
Aldrin and Dieldrin (Total)*	0.0001	mg/L	< 0.0001	_	_
DDT + DDE + DDD (Total)*	0.0001	mg/L	< 0.0001	_	_
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	< 0.001	-	_
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	< 0.001	-	-
Dibutylchlorendate (surr.)	1	%	138	-	-
Tetrachloro-m-xylene (surr.)	1	%	64	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions	,			
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	-	
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-	-
Metals M8					
Arsenic	0.001	mg/L	< 0.001	-	-
Cadmium	0.0002	mg/L	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	< 0.001	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001	mg/L	< 0.001	-	-
Zinc	0.005	mg/L	< 0.005	-	_

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Testing Site Sydney	Extracted Apr 14, 2020	Holding Time 7 Days
BTEX	Sydney	Apr 14, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 14, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons	Sydney	Apr 14, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 14, 2020	
- Method: LTM-ORG-2010 TRH C6-C40 Polycyclic Aromatic Hydrocarbons	Sydney	Apr 14, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water		,	•
Organochlorine Pesticides - Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Sydney	Apr 14, 2020	7 Days
Metals M8	Sydney	Apr 14, 2020	180 Days

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Australia

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049 02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail							Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271											
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	36												
Exte	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	HA06 0-0.1	Apr 07, 2020		Soil	W20-Ap13924	Х			Х	Х	Х	Х	Х	Х	
2	HA07 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13925	Х			Х		Х	Х	Х	Х	
3	HA08 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13926	Х			Х		Х	Х	Х	Х	
4	HA09 0-0.1	Apr 07, 2020		Soil	W20-Ap13927	Х			Х		Х	Х	Х	Х	
5	HA10 0-0.1	Apr 07, 2020		Soil	W20-Ap13928	Х			Х		Х	Х	Х	Х	
6	HA11 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13929	Х			Х		Х	Х	Х	Х	
7	HA12 0-0.1	Apr 07, 2020		Soil	W20-Ap13930	Х			Х	Х	Х	Х	Х	Х	
8	FRAG-01	Apr 07, 2020		Building Materials	W20-Ap13931		х								
9	FRAG-02	Apr 07, 2020		Building Materials	W20-Ap13932		х								

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Phone: +61 7 3902 4600 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049

02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM Due:

Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
				271				.,			.,				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		- NATA Site # 18				Х	Х	Х	Х	Х	Х	Х	Х	Х	X
		y - NATA Site # : NATA Site # 237:													
10	RIN01	Apr 07, 2020	00	Water	W20-Ap13933				Х	Х	Х	Х		Х	
11	QA20200407-	Apr 07, 2020		Soil	W20-Ap13934	Х			Х	Х	Х	Х	Х	Х	
12	TS	Apr 07, 2020		Water	W20-Ap13935										Х
13	ТВ	Apr 07, 2020		Water	W20-Ap13936										Х
14	HA06 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13937			Х							
15	HA06 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13938			Х							
16	HA07 0-0.1	Apr 07, 2020		Soil	W20-Ap13939			Х							
17	HA07 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13940			Х							
18	HA08 0-0.1	Apr 07, 2020		Soil	W20-Ap13941			Х							
19	HA09 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13942			Х							
20	HA10 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13943			Х							
21	HA10 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13944			Х							

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

ting

6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Melbourne

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081 Order No.:

Report #: Phone: 713049 02 8245 0300

Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	НОГД	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	71											
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	'36												
22	HA11 0-0.1	Apr 07, 2020		Soil	W20-Ap13945			Х							
23	HA11 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13946			Х							
24	HA11 0.9-1.0	Apr 07, 2020		Soil	W20-Ap13947			Х							
25	HA12 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13948			Х							
Test	Counts					8	2	12	9	4	9	9	8	9	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank	, J				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene		< 0.001	0.001	Pass	
	mg/L				
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T		l	
Organochlorine Pesticides		0.004	2.22	_	
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	Oode
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank		10.01	, , , , , , , , , , , , , , , , , , , ,		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank		V 0.1	0.1	1 433	
Metals M8				Ι	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.001	Pass	
Chromium	mg/L	< 0.0002	0.0002	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
		< 0.001	0.0001	Pass	
Mercury Nickel	mg/L	< 0.0001	0.0001	Pass	
	mg/L				
Zinc LCS - % Recovery	mg/L	< 0.005	0.005	Pass	
Naphthalene	%	99	70-130	Pass	
•	70] 99]	70-130	Fass	
LCS - % Recovery		T		I	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9	0/	111	70.420	Door	
	%	111	70-130	Pass	
TRH C10-C14	%	94	70-130	Pass	
LCS - % Recovery		T		Π	
BTEX	0/	100	70.400	Dana	
Benzene	%	120	70-130	Pass	
Toluene	%	112	70-130	Pass	
Ethylbenzene	%	108	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
o-Xylene	%	108	70-130	Pass	
Xylenes - Total*	%	106	70-130	Pass	
LCS - % Recovery		T		I	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				_	
TRH C6-C10	%	114	70-130	Pass	
LCS - % Recovery				I	
Polycyclic Aromatic Hydrocarbons		+		_	
Acenaphthene	%	84	70-130	Pass	
Acenaphthylene	%	95	70-130	Pass	
Anthracene	%	87	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	%	79	70-130	Pass	
Benzo(g.h.i)perylene	%	109	70-130	Pass	
Benzo(k)fluoranthene	%	85	70-130	Pass	
Chrysene	%	88	70-130	Pass	
Dibenz(a.h)anthracene	%	83	70-130	Pass	
Fluoranthene	%	70	70-130	Pass	
Fluorene	%	74	70-130	Pass	

	Test		Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene			%	86		70-130	Pass	
Naphthalene			%	76		70-130	Pass	
Phenanthrene			%	87		70-130	Pass	
Pyrene			%	72		70-130	Pass	
LCS - % Recovery				•				
Organochlorine Pesticides								
Chlordanes - Total			%	124		70-130	Pass	
4.4'-DDD			%	123		70-130	Pass	
4.4'-DDE			%	127		70-130	Pass	
4.4'-DDT			%	73		70-130	Pass	
a-BHC			%	79		70-130	Pass	
Aldrin			%	119		70-130	Pass	
b-BHC			%	99		70-130	Pass	
d-BHC			%	94		70-130	Pass	
Dieldrin			%	110		70-130	Pass	
Endosulfan I			%	117		70-130	Pass	
Endosulfan II			%	101		70-130	Pass	
Endosulfan sulphate			%	107		70-130	Pass	
Endrin			%	107		70-130	Pass	
Endrin aldehyde			%	72		70-130	Pass	
Endrin ketone			%	94		70-130	Pass	
g-BHC (Lindane)			%	92		70-130	Pass	
Heptachlor			%	117		70-130	Pass	
Hexachlorobenzene			%	97		70-130	Pass	
Methoxychlor			%	77		70-130	Pass	
LCS - % Recovery			70			70 100	1 400	
Total Recoverable Hydroca	rhons - 2013 NEPM Fract	ione						
TRH >C10-C16	100113 - 2013 1421 1411 1401		%	91		70-130	Pass	
LCS - % Recovery			,,,	01		70 100	1 400	
Metals M8								
Arsenic			%	92		70-130	Pass	
Cadmium			%	96		70-130	Pass	
Chromium			%	96		70-130	Pass	
Copper			%	96		70-130	Pass	
Lead			%	99		70-130	Pass	
Mercury			%	105		70-130	Pass	
Nickel			%	95		70-130	Pass	
Zinc			%	95		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								- /
				Result 1				
Naphthalene	W20-Ap13933	СР	%	105		70-130	Pass	
Spike - % Recovery	,, .,							
Total Recoverable Hydroca	rbons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S20-Ap16902	NCP	%	127		70-130	Pass	
Spike - % Recovery	, ==: .p.0002							
BTEX				Result 1				
Benzene	W20-Ap13933	СР	%	117		70-130	Pass	
Toluene	W20-Ap13933	CP	%	114		70-130	Pass	
Ethylbenzene	W20-Ap13933	CP	%	114		70-130	Pass	
		CP	%	112		70-130	Pass	
<u> </u>	W20-An13933	I (.P	√ /∩					i
m&p-Xylenes	W20-Ap13933 W20-Ap13933	†		1				
<u> </u>	W20-Ap13933 W20-Ap13933 W20-Ap13933	CP CP	% % %	114		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH C6-C10	S20-Ap16902	NCP	%	125			70-130	Pass	
Spike - % Recovery									
Metals M8				Result 1					
Arsenic	S20-Ap16992	NCP	%	101			70-130	Pass	
Cadmium	S20-Ap16992	NCP	%	100			70-130	Pass	
Chromium	S20-Ap16992	NCP	%	96			70-130	Pass	
Copper	S20-Ap16992	NCP	%	95			70-130	Pass	
Lead	S20-Ap16992	NCP	%	95			70-130	Pass	
Mercury	S20-Ap16992	NCP	%	101			70-130	Pass	
Nickel	S20-Ap16992	NCP	%	95			70-130	Pass	
Zinc	S20-Ap16992	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Naphthalene	S20-Ap16901	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Ap16901	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-Ap16901	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S20-Ap16901	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C10	S20-Ap16901	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S20-Ap13873	NCP	mg/L	0.002	0.002	27	30%	Pass	
Cadmium	S20-Ap13873	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S20-Ap13873	NCP	mg/L	0.028	0.028	<1	30%	Pass	
Copper	S20-Ap13873	NCP	mg/L	0.004	0.004	3.0	30%	Pass	
Lead	S20-Ap13873	NCP	mg/L	0.002	0.002	3.0	30%	Pass	
Mercury	S20-Ap13873	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S20-Ap13873	NCP	mg/L	0.004	0.004	7.0	30%	Pass	
Zinc	S20-Ap13873	NCP	mg/L	0.044	0.046	5.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

015968

CHAIN OF CUSTODY

PROJECT NO.: 580%					IA	ROI	RAT	ORV R	ATCH NO.:			
PROJECT NAME: Kambola								S: N/				
DATE NEEDED BY: STD TAT									A (2013)			
PHONE: Sydney: 02 8245 0300 Pe	erth: 08 948	8 0100 Brisl	bane: 07 3112 2688									
SEND REPORT & INVOICE TO: (1) ac	dminnsw@	jbsg.com.au; ((2) siplach @	ibsg.com.a	au: f	31	D)	mari	47	@ibsa.com au		
COMMENTS / SPECIAL HANDLING / STORAGE OR I	DISPOSAL:		· ·	,	3					@Josg.com.au	TYPE O	f
					Mehb			EX			ASBEST ANALY:	ros
					10 11		9	13	w I I		NO	
CANCELE					Harry	PAHS	. Ş	H	3		IDENTIFICATION	WA
SAMPLE ID MAT			TYPE & PRESERVATIVE	pH	Z	2	Asbertos	TRH/187	3		DEN	NOTES:
HA 06 0-01 Soi	7/4	4	Bog- Jar + Ice		X,	X	X	XX				X
0.2-03	1		0									103
D.4-05												
VA07 0-0.1												
0.2-0.3					X	X	X	X			5	<
0.4-0.5												1
HA08 04-0.1											+ + + + + + + + + + + + + + + + + + + 	
0.7-03					X	X	X	×				
HA09 0-01					X	X	X.	X			>	
0.2-03											++++	
4A10 0-0.1					X	×	K	×			+++++	1
0.2-0.3							1	-			1	
0.4-0.5					_		-	+				
MAI 0-0-1					\rightarrow		+	+				
0.2-0.3					94 V	XE.	+	-				
0.4-0.5					X			V			+	
0.4-1.0					7				-		++++	
NA12 0-01					V 1	V .	x	××				
1 02-03					1	A /	1				\perp	
RELINQUISHED BY:			METHOD OF SHIPMENT:		_	_	_	DECE	VED BY:			
NAME: NOTE: 814/2	0	ONSIGNMENT N	OTE NO.		NAI	ME:	E.	vis]		COOLER SEAL - Yes	FOR RECEIVING LAB	USE ONLY:
NAME: N. Menrit DATE: 8/4/2 OF: JBS&G	т	RANSPORT CO.			DAT	re: 8	141	20				monant bioreit mananan.
NAME: DATE:		ONSIGNMENT N	OTE NO.			VIE:	up	anif	DATE:	COOLER TEMP		
OF:					OF:				DATE	COULTR SEAL - Yes	No Intact	Broken
	Jar: B = Glace	RANSPORT CO	rid Provd + C = Sodium thedroute Dec. 1 146	_ Davids - C. C.		_				COOLER TEMP	deg C	
Container & Preservative Codes: P = Plastic; J = So MSO FormsO13 – Chain of Custody – Generic			od 1134d., C = 300ium nydroxide Prsvd; VC	= Hyarochionic	Acid	Prsvo	viai;	V S = Sul	furic Acid Prsvd \	Vial; S = Sulfuric Acid Prsvd; Z = Zin	c Prsvd; E = EDTA Prsvd;	ST = Sterile Bottle; O = Other

015969

CHAIN OF CUSTODY

PROJECT NO.: (KOK)	PROJECT NO.: 580%					114	\BOI	RAT	ORV	BATC	CH NO.:			_				
PROJECT NAME: Komboo	la					-			S: k		JI NO							
DATE NEEDED BY: STO	TAT										2013)							
PHONE: Sydney: 02 8245 03	00 Perth: 0	8 9488 0	LOO Bris	sbane: 07 3112 2688		14		V		141 (2	-015)			_				
SEND REPORT & INVOICE TO): (1) adminn	sw@ibsp	com an.	(2)	a com	311.	(3)	i Chic	~~	rrat	۵	ihea cor						
COMMENTS / SPECIAL HANDLING / STO	RAGE OR DISPOSA	L:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2)	g.com	LS.	(3).		1.3620.5	11/21/11/11		lnzg.co.	11.00	_	_	\top	TYPE OF	T
						Medel			ኢ								ASBESTOS ANALYSIS	<u> </u>
						3		ង	3							1		1
						18	5	3	1/6	ds							¥ Ğ	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	Heavy	822	Arbedos	TRH/BOEX	000							IDENTIFICATION NEPM/WA	NOTES:
R2NO1	70 Frey	7/4		Frag				X									×	
Frod - 02	Freg	1						×									×	
RZNOI	Water			ly Amber, ly metel, as viols. Bog + Jar + Ice 4.2 yriols		K	×		X	X					\Box	11		
QA 20200407-1	501)			Bout Jet Ice		X	×	X	X	X							X	
Qc 202004071	Soil			5		X	X		X	× _	- Please	o wor	d to	en	Nola	Ь	X	
TS	Water			4.2 xviols					X									
TB	Watel								X									
, -									-							++		
															+	+		
																++	\rightarrow	
									_	_		-	-1-1	_		-	_	
														-	+	+	_	
							П							-	++	+	+	
																+		
														7				
														_				
																\top		
									7									
															+	11		
RELINQUISHED BY	11110			METHOD OF SHIPMENT:			-	_	REC	EIVED	BY:	-			FOR R	ECEIVIN	G LAB (USE ONLY:
RELINQUISHED BY: METHOD OF SHIPMENT: NAME: NAC MONTCODATE: 8/9/10 CONSIGNMENT NOTE NO.					N/	AME:	E	vis ()		coc	LER SEA	L Ye				Broken	
OF: JBS&G	un;	TRAN	SPORT CO.			D/ OF	ATE: S	A K	vist 120 ofin	c		coc	LER TER	4D (O.	your -			
NAME: DATE:			IGNMENT			N/	AME:	- C-1	hin	>	DATE:	COC	LER SE	L – Yes	No		Intact .	Broken
OF:		TRAN	SPORT CO			OF	=:											
Container & Preservative Codes: P = Pla	astic; J = Soil Jar; B	= Glass Bottl	e; N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = H	ydrochlo	ric Aci	id Prsv	rd Vial	l: VS = !	Sulfurio	c Acid Prsvd Vial: S	= Sulfuric 4	LER TER	/12 : 7 = 7in	deg C c Prsvrl+1	F = FOTA	Proud- 5	T = Sterile Rottle: O = Other
TMSO FormsO13 - Chain of Custody - G	eneric						_							4.11				

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Site # 18

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

George Black Contact name:

ADDITIONAL - KAMBALA Project name:

Project ID: 58081

COC number: Not provided

Turn around time: 5 Day

Date/Time received: Apr 20, 2020 7:51 AM

Eurofins reference: 714502

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 10.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to George Black - gblack@jbsg.com.au.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report 714502-L

Project name ADDITIONAL - KAMBALA

Project ID 58081

Received Date Apr 20, 2020

Client Sample ID			HA06 0-0.1	HA06 0-0.1	HA08 0.2-0.3	HA08 0.2-0.3
Sample Matrix			US Leachate	AUS Leachate - Reagent Water	US Leachate	AUS Leachate - Reagent Water
Eurofins Sample No.			S20-Ap26672	S20-Ap26673	S20-Ap26674	S20-Ap26675
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
•	1.00	1.1-21	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	0.004		. 0.004	. 0.001	. 0.004	. 0.004
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	0.004	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	0.005	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	140	101	79	70
p-Terphenyl-d14 (surr.)	1	%	100	60	54	50
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	-	4.0	-	4.0
pH (initial)	0.1	pH Units	-	4.8	-	5.5
pH (Leachate fluid)	0.1	pH Units	-	5.0	-	5.0
pH (off)	0.1	pH Units	-	5.1	-	5.3
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	-	1.0	-
pH (initial)	0.1	pH Units	4.8	-	5.5	-
pH (off)	0.1	pH Units	5.1	-	5.0	-
pH (USA HCl addition)	0.1	pH Units	1.7	-	1.7	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 22, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
AUS Leaching Procedure	Sydney	Apr 22, 2020	7 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
USA Leaching Procedure	Sydney	Apr 22, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water AUS Leaching Procedure - Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes	Sydney	Apr 22, 2020	7 Days

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia Melbourne 6 Monterey Road

Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

ADDITIONAL - KAMBALA

Project ID: 58081 Order No.: Report #:

Phone:

Fax:

714502 02 8245 0300

Received: Apr 20, 2020 7:51 AM

Due: Apr 27, 2020 **Priority:** 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			Polycyclic Aromatic Hydrocarbons	AUS Leaching Procedure	USA Leaching Procedure
Melb	ourne Laborat	ory - NATA Site	# 1254 & 142	271				
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794					
Perti	h Laboratory -	NATA Site # 237	'36					
Exte	rnal Laborator	/						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	HA06 0-0.1	Apr 07, 2020		US Leachate	S20-Ap26672	Х		Х
2	HA06 0-0.1	Apr 07, 2020		AUS Leachate - Reagent Water	S20-Ap26673	Х	х	
3	HA08 0.2-0.3	Apr 07, 2020		US Leachate	S20-Ap26674	Х		Х
4	HA08 0.2-0.3	Apr 07, 2020		AUS Leachate - Reagent Water	S20-Ap26675	х	х	
Test	Counts					4	2	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							
Polycyclic Aromatic Hydrocarboi	ns						
Acenaphthene			mg/L	< 0.001	0.001	Pass	
Acenaphthylene			mg/L	< 0.001	0.001	Pass	
Anthracene			mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene			mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene			mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene			mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene			mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene			mg/L	< 0.001	0.001	Pass	
Chrysene			mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene			mg/L	< 0.001	0.001	Pass	
Fluoranthene			mg/L	< 0.001	0.001	Pass	
Fluorene			mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene			mg/L	< 0.001	0.001	Pass	
Naphthalene			mg/L	< 0.001	0.001	Pass	
Phenanthrene			mg/L	< 0.001	0.001	Pass	
Pyrene			mg/L	< 0.001	0.001	Pass	
LCS - % Recovery			, <u>g</u> , <u>_</u>	1 0.001	1 0.00		
Polycyclic Aromatic Hydrocarbon	ns				T		
Acenaphthene			%	119	70-130	Pass	
Acenaphthylene			%	116	70-130	Pass	
Anthracene			%	122	70-130	Pass	
Benz(a)anthracene			%	107	70-130	Pass	
Benzo(a)pyrene			%	110	70-130	Pass	
Benzo(b&j)fluoranthene			%	109	70-130	Pass	
Benzo(g.h.i)perylene			%	105	70-130	Pass	
Benzo(k)fluoranthene			%	120	70-130	Pass	
Chrysene			%	105	70-130	Pass	
Dibenz(a.h)anthracene			%	105	70-130	Pass	
Fluoranthene							
			%	118	70-130	Pass	
Fluorene			%	123	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	106	70-130	Pass	
Naphthalene			%	121	70-130	Pass	
Phenanthrene			%	123	70-130	Pass	
Pyrene		T	%	120	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					_		
Polycyclic Aromatic Hydrocarboi		Ι.		Result 1		_	
Acenaphthene	S20-Ap21558	NCP	%	124	70-130	Pass	
Acenaphthylene	S20-Ap21558	NCP	%	126	70-130	Pass	
Anthracene	S20-Ap23819	NCP	%	106	70-130	Pass	
Benz(a)anthracene	S20-Ap21558	NCP	%	109	70-130	Pass	
Benzo(a)pyrene	S20-Ap21558	NCP	%	101	70-130	Pass	
Benzo(b&j)fluoranthene	S20-Ap21558	NCP	%	96	70-130	Pass	
Benzo(g.h.i)perylene	S20-Ap21558	NCP	%	95	70-130	Pass	
Benzo(k)fluoranthene	S20-Ap21558	NCP	%	108	70-130	Pass	
Chrysene	S20-Ap21558	NCP	%	118	70-130	Pass	
Dibenz(a.h)anthracene	S20-Ap21558	NCP	%	101	70-130	Pass	
Fluoranthene	S20-Ap23819	NCP	%	100	70-130	Pass	
Fluorene	S20-Ap23819	NCP	%	109	70-130	Pass	

Report Number: 714502-L

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	S20-Ap21558	NCP	%	100			70-130	Pass	
Naphthalene	S20-Ap21558	NCP	%	115			70-130	Pass	
Phenanthrene	S20-Ap23819	NCP	%	109			70-130	Pass	
Pyrene	S20-Ap23819	NCP	%	101			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Acenaphthene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S20-Ap21556	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S20-Ap23809	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 714502-L

#AU04_Enviro_Sample_NSW

To: Asim Khan

Subject: RE: 5 DAY TAT Additional AnalysisFW: Eurofins Test Results - Report 713049 : Site KAMBALA

From: George Black < GBlack@jbsg.com.au > Sent: Monday, 20 April 2020 7:51 AM

To: Asim Khan < AsimKhan@eurofins.com > Cc: Nicholas Maricic < nmaricic@jbsg.com.au >

Subject: RE: Eurofins Test Results - Report 713049 : Site KAMBALA (58081)

EXTERNAL EMAIL*

Hi Asim,

Can I request the following additional analysis

- TCLP and ASLP PAHs on sample HA06-0-0.1 and HA08 0.2- 0.3

Standard TAT

Kind Regards

From: AsimKhan@eurofins.com < AsimKhan@eurofins.com >

Sent: Friday, April 17, 2020 9:03 PM **To:** George Black < GBlack@jbsg.com.au > **Cc:** Nicholas Maricic < nmaricic@jbsg.com.au >

Subject: Eurofins Test Results - Report 713049 : Site KAMBALA (58081)

Please find attached results for your project in the subject header.

Kind regards,

Asim Khan

1

Analytical Services Manager

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066

AUSTRALIA

Phone : +61 2 9900 8432 Phone : +61 429 051 456

Email: AsimKhan@eurofins.com

Website: www.eurofins.com.au/environmental-testing

EnviroNote 1098 - Melbourne PFAS Accreditation

EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click here to report this email as spam.

Scanned By Websense For Euro fins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unles content is safe!

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	George Black, N Maricic

Sample Login Details	
Your reference	58081, Kambala
Envirolab Reference	240785
Date Sample Received	14/04/2020
Date Instructions Received	14/04/2020
Date Results Expected to be Reported	21/04/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst	
Phone: 02 9910 6200	Phone: 02 9910 6200	
Fax: 02 9910 6201	Fax: 02 9910 6201	
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au	

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB-
QC 20200407-1	✓	✓	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 240785

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	George Black, N Maricic
Address	Level 1, 50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	58081, Kambala
Number of Samples	1 Soil
Date samples received	14/04/2020
Date completed instructions received	14/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	21/04/2020	
Date of Issue	20/04/2020	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Ridwan Wijaya, Lab Team Leader Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		240785-1
Your Reference	UNITS	QC 20200407-1
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	15/04/2020
Date analysed	-	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	95

svTRH (C10-C40) in Soil		
Our Reference		240785-1
Your Reference	UNITS	QC 20200407-1
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	15/04/2020
Date analysed	-	17/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	210
TRH C ₂₉ - C ₃₆	mg/kg	390
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	460
TRH >C ₃₄ -C ₄₀	mg/kg	370
Total +ve TRH (>C10-C40)	mg/kg	830
Surrogate o-Terphenyl	%	88

PAHs in Soil		
Our Reference		240785-1
Your Reference	UNITS	QC 20200407-1
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	15/04/2020
Date analysed	-	15/04/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	1.0
Anthracene	mg/kg	0.2
Fluoranthene	mg/kg	3.8
Pyrene	mg/kg	3.8
Benzo(a)anthracene	mg/kg	2.7
Chrysene	mg/kg	1.8
Benzo(b,j+k)fluoranthene	mg/kg	5.1
Benzo(a)pyrene	mg/kg	3.2
Indeno(1,2,3-c,d)pyrene	mg/kg	1.9
Dibenzo(a,h)anthracene	mg/kg	0.7
Benzo(g,h,i)perylene	mg/kg	2.0
Total +ve PAH's	mg/kg	26
Benzo(a)pyrene TEQ calc (zero)	mg/kg	4.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	4.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	4.9
Surrogate p-Terphenyl-d14	%	103

Organochlorine Pesticides in soil		
Our Reference		240785-1
Your Reference	UNITS	QC 20200407-1
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	15/04/2020
Date analysed	-	15/04/2020
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	122

Acid Extractable metals in soil		
Our Reference		240785-1
Your Reference	UNITS	QC 20200407-1
Date Sampled		07/04/2020
Type of sample		Soil
Date prepared	-	15/04/2020
Date analysed	-	16/04/2020
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	8
Copper	mg/kg	46
Lead	mg/kg	120
Mercury	mg/kg	<0.1
Nickel	mg/kg	5
Zinc	mg/kg	320

Moisture		
Our Reference		240785-1
Your Reference	UNITS	QC 20200407-1
Date Sampled		07/04/2020
Type of sample		Soil
Date prepared	-	15/04/2020
Date analysed	-	16/04/2020
Moisture	%	24

Asbestos ID - soils NEPM - ASB-001		
Our Reference		240785-1
Your Reference	UNITS	QC 20200407-1
Date Sampled		07/04/2020
Type of sample		Soil
Date analysed	-	17/04/2020
Sample mass tested	g	528.94
Sample Description	-	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected
ACM >7mm Estimation*	g	_
FA and AF Estimation*	g	_
ACM >7mm Estimation*	%(w/w)	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.

Envirolab Reference: 240785

Revision No: R00

Method ID	Methodology Summary
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Date analysed	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	90	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	90	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	82	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	88	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	96	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	92	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	88	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	108	[NT]		[NT]	[NT]	105	

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Date analysed	-			16/04/2020	[NT]		[NT]	[NT]	16/04/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	110	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	68	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	110	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	68	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-003	84	[NT]		[NT]	[NT]	94	

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Date analysed	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	84	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	86	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	86	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	90	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	90	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	83	[NT]		[NT]	[NT]	80	

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Date analysed	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	86	
НСВ	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	88	
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	74	
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	96	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	86	
Endrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	88	
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	84	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82	
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	103	[NT]		[NT]	[NT]	99	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Date analysed	-			16/04/2020	[NT]		[NT]	[NT]	16/04/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	102	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	96	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	87	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	103	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Reference: 240785 Page | 18 of 18

Revision No: R00

015969

CHAIN OF CUSTODY

PROJECT NO.: 5808)						LABORATORY BATCH NO.																						
PROJECT NAME: Kambook	a					SA	MPI	ERS	: N1	$\overline{\wedge}$																		\Box
DATE NEEDED BY: STO	TAT	_				QC	LE\	/EL:	NEPN	1 (20	13)																	
PHONE: Sydney: 02 8245 030																								_				
SEND REPORT & INVOICE TO:	: (1) adminn	sw@jbsg	.com.au;	(2) Ablach @jbsg	.com.a	au; (3)	.ຕກ	201()	6,	.		.@jl	osg.	com	ı.au												
COMMENTS / SPECIAL HANDLING / STOR	age or disposa	L:		9												T						TYPE OF						\neg
						Messy	ĺ		滋													ANALYS	15					- 1
			•				e_	ই	, B	2												NOI						
						Heory	PAYS	Ashesdas	12×1878×	<u>'</u>												IDENTIFICATION	NEPM/WA]
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	7	92		E C														1 4	NOTES				_
May Frag - 0)	Horay	7/4		Frag				X											_			X						
Frod - 02	Frog	1						×														×	\perp					
RINOI	Water			1x Amber, 1x metel, axvicts.			X	1	XX																			
QA 20200407-1	\$01)			BoutJart Ice		X	*	X	XX													\sim	रा					\Box
Qc 20200407-1	501)			Bog + Jar + Ice					$\times \times$		- 11	eese		5/W	12/2	10	to o	env	irol	طه		X	₹Ţ					
	Water			4.2 x iols				Ī	X														T					
TS TB	Watel								\times														T					\neg
3 1130							\neg								T			1					丁					\neg
									7				Ė	סווער	12 A	shle:	ces - v St			П			T		-			ヿ
										Er	VIRO	LÀB	Chat	swoo	od N	W 2	067	<u> </u>		\Box	\Box		┪					╗
		_				\dashv				1	1 1	1	F	h: (t)2) 9 !	910 6	_	\top	1	\Box	П		1					\neg
		·								1	00 N	10:		241	01	9	5	1	1				1					
						$\neg \uparrow$				Τ,	ate	Recei	ved:	\dashv	14	ul/	7		T		П		Ť			-		\dashv
						_				+	ime	Rece ived E	ived:	<u> </u>	`\\	th	5	-	+	+	\vdash	\dashv	十					一
						_			_	+	Rece	ved	3 y; √	nien	7	+	+	 	†-	\vdash	\vdash	\dashv	十					\dashv
							-			+	Tem	1000	6466	pac	K	+-	+-	╁	+	+	\Box	\dashv	+					-
								+		+	Sect	ing.	Haci	Bo	keh/	ndue	-	+	+-		\vdash		╁					\dashv
					\dashv			\dashv		+		1	+	+	+	+	+	╁	╁─	\vdash	\vdash	+	╁					\dashv
							1			+	\vdash		-+	\dashv	\dashv	+	+		+-	\vdash	\vdash		+					\dashv
RELINCUISHED BY:				METHOD OF SHIPMENT:		لـــــ	•		RECE	VED						٠.	ᆜ-		ÉOR		EIVIN	ÍGIËAD	20165	- ONLY		· * * * * * * * * * * * * * * * * * * *		긕
RELINQUISHED BY: METHOD OF SHIPMENT: NAME: WIC MORTCODATE: 814/W CONSIGNMENT NOTE NO.					NA	ME:	CW	HWF	₩.	<u> </u>			+	coo	LER S	SEAL	- Yes	-(0)	No	(Intact	Joe	Bro	en		<u> </u>	4.	
A /	12 -					DA	TE:	14	71115 4 75	• '''	12	A)		-			 	4.7	<u> </u>			ا ج	it. State	ering Silvar	en			î.,
OF: JBS&G NAME: DATE:	1		SPORT CO.	NOTE NO		OF	: ME:		1 '' [V-7	74(八 XTÈ:			COO	LER	EMI		deg	C. No	2), 73 Pr. 42	Intac	7 °	Arc	ken	5-32 5-32	2,1 1	
TATEL DATE		CONS	NINIVICINI I	WIL NO.		OF					UF	11 L.		- 1	-: A 2	100	1 - 3	- C 40 ()	7					1		- 4 -	. V 2	
OF:			SPORT CO										<u>. </u>		coo	LER	TEM	**************************************	deg	<u>c′</u> ,		<u>ر - حر</u> <u>بر - حر</u>		<u> </u>	. : : : : : : : : : : : : : : : : : : :			
Container & Preservative Codes: P = Plas	stic; J = Soil Jar; B	= Glass Bottle	e; N = Nitric A	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hy	drochlori	c Acid	1 Prsv	d Vial	VS = Su	Ifuric.	Acid P	rsvd Vi	al; S =	Sulfu	ıric A	id Pr	svd; Z	= Zino	: Prsv	a; E =	EDTA	Prsvd;	ST =	Sterile	ottle; C	=: Oth	er	

IMSO FormsO13 – Chain of Custody - Generic

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Site # 18

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: George Black **KAMBALA** Project name: Project ID: 58081 COC number: Not provided

Turn around time: 5 Day

Date/Time received: Apr 8, 2020 5:48 PM

Eurofins reference: 713049

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 10.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- V Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

QC20200407-1 sent to Envirolab for analysis.

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to George Black - gblack@jbsg.com.au.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report713049-SProject nameKAMBALAProject ID58081Received DateApr 08, 2020

Client Sample ID			HA06 0-0.1	HA07 0.2-0.3	HA08 0.2-0.3	HA09 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13924	W20-Ap13925	W20-Ap13926	W20-Ap13927
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	30	< 20	38	< 20
TRH C15-C28	50	mg/kg	650	250	360	190
TRH C29-C36	50	mg/kg	540	300	310	240
TRH C10-C36 (Total)	50	mg/kg	1220	550	708	430
ВТЕХ	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	127	107	137	90
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Comments			G01			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	16	3.0	8.8	0.8
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	19	3.3	8.8	1.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	22	3.5	8.8	1.4
Acenaphthene	0.5	mg/kg	< 5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 5	< 0.5	0.6	< 0.5
Anthracene	0.5	mg/kg	< 5	< 0.5	1.1	< 0.5
Benz(a)anthracene	0.5	mg/kg	8.4	2.1	5.6	0.6
Benzo(a)pyrene	0.5	mg/kg	13	2.3	5.6	0.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	11	2.4	5.5	0.6
Benzo(g.h.i)perylene	0.5	mg/kg	< 10	1.1	3.3	0.6
Benzo(k)fluoranthene	0.5	mg/kg	12	1.6	3.5	< 0.5
Chrysene	0.5	mg/kg	9.0	1.7	4.5	0.6
Dibenz(a.h)anthracene	0.5	mg/kg	< 5	< 0.5	1.4	< 0.5
Fluoranthene	0.5	mg/kg	9.6	3.2	9.1	0.8
Fluorene	0.5	mg/kg	< 5	< 0.5	< 0.5	< 0.5

Client Sample ID			HA06 0-0.1	HA07 0.2-0.3	HA08 0.2-0.3	HA09 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13924	W20-Ap13925	W20-Ap13926	W20-Ap13927
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 10	1.1	3.1	< 0.5
Naphthalene	0.5	mg/kg	< 5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 5	1.1	4.3	< 0.5
Pyrene	0.5	mg/kg	11	3.1	9.0	1.0
Total PAH*	0.5	mg/kg	74	19.7	56.6	4.9
2-Fluorobiphenyl (surr.)	1	%	95	58	64	54
p-Terphenyl-d14 (surr.)	1	%	106	90	91	96
Organochlorine Pesticides						
Comments			G01			
Chlordanes - Total	0.1	mg/kg	< 1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.5	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.5	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.5	-	-	-
a-BHC	0.05	mg/kg	< 0.5	-	-	-
Aldrin	0.05	mg/kg	< 0.5	-	-	-
b-BHC	0.05	mg/kg	< 0.5	-	-	-
d-BHC	0.05	mg/kg	< 0.5	-	-	-
Dieldrin	0.05	mg/kg	< 0.5	-	-	-
Endosulfan I	0.05	mg/kg	< 0.5	-	-	-
Endosulfan II	0.05	mg/kg	< 0.5	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.5	-	-	-
Endrin	0.05	mg/kg	< 0.5	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.5	-	-	-
Endrin ketone	0.05	mg/kg	< 0.5	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.5	-	-	-
Heptachlor	0.05	mg/kg	< 0.5	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.5	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.5	-	-	-
Methoxychlor	0.2	mg/kg	< 0.5	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	-	-	-
Dibutylchlorendate (surr.)	1	%	143	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	114	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPN	I Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	1000	460	580	360
TRH >C34-C40	100	mg/kg	290	190	190	170
TRH >C10-C40 (total)*	100	mg/kg	1290	650	770	530
Metals M8						
Arsenic	2	mg/kg	5.2	3.6	2.8	2.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.5
Chromium	5	mg/kg	9.5	7.3	7.4	9.1
Copper	5	mg/kg	43	65	30	48
Lead	5	mg/kg	170	140	95	80
Mercury	0.1	mg/kg	0.1	0.1	< 0.1	0.2
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	240	860	300	1000

Report Number: 713049-S

Client Sample ID			HA06 0-0.1	HA07 0.2-0.3	HA08 0.2-0.3	HA09 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13924	W20-Ap13925	W20-Ap13926	W20-Ap13927
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	15	38	28	45

Client Sample ID			HA10 0-0.1	HA11 0.4-0.5	HA12 0-0.1	QA20200407-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13928	W20-Ap13929	W20-Ap13930	W20-Ap13934
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	72	65	92	360
TRH C29-C36	50	mg/kg	64	59	63	300
TRH C10-C36 (Total)	50	mg/kg	136	124	155	660
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	112	120	142	116
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Comments						G01
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	0.9	< 1	< 5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.2	1.5	6.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.5	2.0	12
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Benz(a)anthracene	0.5	mg/kg	< 0.5	0.8	0.8	< 5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.7	0.7	< 5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.7	0.6	< 5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 1	< 5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.5	0.8	< 5
Chrysene	0.5	mg/kg	< 0.5	0.6	0.7	< 5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 1	< 5
Fluoranthene	0.5	mg/kg	< 0.5	1.5	1.8	7.0
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 1	< 5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
Phenanthrene	0.5	mg/kg	< 0.5	1.4	1.4	< 5
Pyrene	0.5	mg/kg	< 0.5	1.4	1.6	7.7
Total PAH*	0.5	mg/kg	< 0.5	7.6	8.4	14.7

Client Sample ID			HA10 0-0.1	HA11 0.4-0.5	HA12 0-0.1	QA20200407-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			W20-Ap13928	W20-Ap13929	W20-Ap13930	W20-Ap13934
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
2-Fluorobiphenyl (surr.)	1	%	64	55	64	55
p-Terphenyl-d14 (surr.)	1	%	87	90	108	92
Organochlorine Pesticides		,,,	<u> </u>		1.00	<u> </u>
Comments						G01
Chlordanes - Total	0.1	mg/kg	_	_	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	_	_	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	_	_	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	_	_	< 0.05	< 0.5
a-BHC	0.05	mg/kg	_	_	< 0.05	< 0.5
Aldrin	0.05	mg/kg	_	_	< 0.05	< 0.5
b-BHC	0.05	mg/kg	_	-	< 0.05	< 0.5
d-BHC	0.05	mg/kg	-	-	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	_	_	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	_	_	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	_		< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	_		< 0.05	< 0.5
Endrin	0.05	mg/kg	_		< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	_		< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	_		< 0.05	< 0.5
g-BHC (Lindane)	0.05	mg/kg	_		< 0.05	< 0.5
Heptachlor	0.05	mg/kg	_		< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	_		< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	_		< 0.05	< 0.5
Methoxychlor	0.2	mg/kg	_	_	< 0.2	< 0.5
Toxaphene	1	mg/kg	_	_	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	_	< 0.05	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	_	< 0.05	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	_	_	< 0.2	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	_	_	< 0.2	< 1
Dibutylchlorendate (surr.)	1	%	_	_	130	INT
Tetrachloro-m-xylene (surr.)	1	%	_	_	123	120
Total Recoverable Hydrocarbons - 2013 NEPM		70			123	120
TRH >C10-C16	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C10-C16	100	mg/kg	110	110	130	570
TRH >C34-C40	100	mg/kg mg/kg	< 100	< 100	< 100	190
TRH >C10-C40 (total)*	100	mg/kg	110	110	130	760
Metals M8	100	Hig/kg	110	110	130	700
Arsenic	2	mg/kg	2.7	< 2	< 2	3.2
Cadmium	0.4	mg/kg	< 0.4	0.4	< 0.4	< 0.4
Chromium	5	mg/kg	5.4	6.4	< 5	7.6
Copper	5	mg/kg	5.8	< 5	5.2	60
Lead	5	mg/kg	17	50	35	220
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
Nickel	5	mg/kg	< 5	6.5	< 5	< 5
Zinc	5	mg/kg	120	210	67	400
LIIV	0	i ilig/kg	120	210	07	400
% Moisture	1	%	14	7.3	8.8	28
,				1.0		

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Apr 15, 2020	Holding Time 14 Days
- Method: LTM-ORG-2010 TRH C6-C40			·
BTEX	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 15, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Apr 15, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Apr 15, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Apr 09, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 713049-S

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Australia

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049 02 8245 0300

Sydney Unit F3, Building F

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

16 Mars Road

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271											
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	36												
Exte	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	HA06 0-0.1	Apr 07, 2020		Soil	W20-Ap13924	Х			Х	Х	Х	Х	Х	Х	
2	HA07 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13925	Х			Х		Х	Х	Х	Х	
3	HA08 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13926	Х			Х		Х	Х	Х	Х	
4	HA09 0-0.1	Apr 07, 2020		Soil	W20-Ap13927	Х			Х		Х	Х	Х	Х	
5	HA10 0-0.1	Apr 07, 2020		Soil	W20-Ap13928	Х			Х		Х	Х	Х	Х	
6	HA11 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13929	Х			Х		Х	Х	Х	Х	
7	HA12 0-0.1	Apr 07, 2020		Soil	W20-Ap13930	Х			Х	Х	Х	Х	Х	Х	
8	FRAG-01	Apr 07, 2020		Building Materials	W20-Ap13931		Х								
9	FRAG-02	Apr 07, 2020		Building Materials	W20-Ap13932		х								

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA

Project ID:

58081

Order No.:

Report #: 713049 Phone: 02 8245 0300

Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
	•										\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \			
_	Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794							Х	Х	Х	Х	Х	Х	Х	X
	th Laboratory - N														
10	RIN01	Apr 07, 2020	30	Water	W20-Ap13933				Х	Х	Х	Х		Х	
11	QA20200407-	Apr 07, 2020		Soil	W20-Ap13934	Х			Х	Х	Х	Х	Х	Х	
12	TS	Apr 07, 2020		Water	W20-Ap13935										Х
13	ТВ	Apr 07, 2020		Water	W20-Ap13936										Х
14	HA06 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13937			Х							
15	HA06 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13938			Х							
16	HA07 0-0.1	Apr 07, 2020		Soil	W20-Ap13939			Х							
17	HA07 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13940			Х							
18	HA08 0-0.1	Apr 07, 2020		Soil	W20-Ap13941			Х							
19	HA09 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13942			Х							
20	HA10 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13943			Х							ш
21	HA10 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13944			Х							

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

IANZ # 1290

Company Name:

Project Name:

Project ID:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St Sydney

NSW 2000

KAMBALA 58081

Order No.: Report #:

713049

02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	71											
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	736												
22	HA11 0-0.1	Apr 07, 2020		Soil	W20-Ap13945			Х							
23	HA11 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13946			Х							
24	HA11 0.9-1.0	Apr 07, 2020		Soil	W20-Ap13947			Х							
25	HA12 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13948			Х							
Test	Test Counts							12	9	4	9	9	8	9	2

Date Reported: Apr 17, 2020

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 713049-S

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
ВТЕХ	_					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank		120				
Polycyclic Aromatic Hydrocarbons				T		
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene		< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
	mg/kg	1				
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene Mathe d Plants	mg/kg	< 0.5		0.5	Pass	
Method Blank				1		
Organochlorine Pesticides		0.4	+	0.4	D	
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	1

Test	Units	Result 1	Acceptano Limits	e Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank		'		_	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	i iig/kg	100	100	1 400	
Metals M8		Т		T	
Arsenic	ma/ka	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
	mg/kg				
Conner	mg/kg	< 5	5	Pass	-
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	-
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	_				
TRH C6-C9	%	96	70-130	Pass	
TRH C10-C14	%	76	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	101	70-130	Pass	
Toluene	%	106	70-130	Pass	
Ethylbenzene	%	110	70-130	Pass	
m&p-Xylenes	%	111	70-130	Pass	
o-Xylene	%	110	70-130	Pass	
Xylenes - Total*	%	111	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	124	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
LCS - % Recovery			· · · · · · · · · · · · · · · · · · ·	_	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	108	70-130	Pass	
Acenaphthylene	%	112	70-130	Pass	
Anthracene	%	123	70-130	Pass	
Benz(a)anthracene	%	114	70-130	Pass	
Benzo(a)pyrene	%	127	70-130	Pass	
Benzo(b&j)fluoranthene	%	109	70-130	Pass	
Benzo(g.h.i)perylene	%	110	70-130	Pass	
	%	104	70-130	Pass	
Benzo(k)fluoranthene					
Chrysene	%	104	70-130	Pass	
Dibenz(a.h)anthracene	%	101	70-130	Pass	
Fluoranthene	%	104	70-130	Pass	
Fluorene	%	113	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	109	70-130	Pass	
Naphthalene	%	109	70-130	Pass	1

Test				Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene				111		70-130	Pass	
Pyrene			%	102		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
Chlordanes - Total			%	98		70-130	Pass	
4.4'-DDD				103		70-130	Pass	
4.4'-DDE			%	98		70-130	Pass	
4.4'-DDT			%	99		70-130	Pass	
a-BHC			%	108		70-130	Pass	
Aldrin			%	104		70-130	Pass	
b-BHC			%	99		70-130	Pass	
d-BHC			%	95		70-130	Pass	
Dieldrin			%	111		70-130	Pass	
Endosulfan I			%	104		70-130	Pass	
Endosulfan II			%	104		70-130	Pass	
Endosulfan sulphate			%	94		70-130	Pass	
Endrin			%	91		70-130	Pass	
Endrin aldehyde			%	103		70-130	Pass	
Endrin ketone			%	82		70-130	Pass	
g-BHC (Lindane)			%	98		70-130	Pass	
Heptachlor			%	99		70-130	Pass	
Heptachlor epoxide			%	100		70-130	Pass	
Hexachlorobenzene				97				
			%			70-130	Pass	
Methoxychlor			%	98		70-130	Pass	
LCS - % Recovery	2010 NEDM 5			1				
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions						
TRH >C10-C16			%	76		70-130	Pass	
LCS - % Recovery								
Metals M8			0/			70.100		
Arsenic			%	90		70-130	Pass	
Cadmium			%	90		70-130	Pass	
Chromium			%	83		70-130	Pass	
Copper			%	85		70-130	Pass	
Lead			%	91		70-130	Pass	
Mercury			%	90		70-130	Pass	
Nickel			%	86		70-130	Pass	
Zinc			%	84		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarb				Result 1				
Fluoranthene	S20-Ap14206	NCP	%	71		70-130	Pass	
Pyrene	W20-Ap17532	NCP	%	116		70-130	Pass	
Spike - % Recovery								
_ · <i>·</i>				Result 1				
Organochlorine Pesticides				Result I	ļ			
	S20-Ap14206	NCP	%	74		70-130	Pass	
Organochlorine Pesticides	S20-Ap14206 S20-Ap14206	NCP NCP	%	 		70-130 70-130	Pass Pass	
Organochlorine Pesticides Chlordanes - Total	<u> </u>			74				
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	S20-Ap14206	NCP	%	74 72		70-130	Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	S20-Ap14206 S20-Ap14206	NCP NCP	% %	74 72 86		70-130 70-130	Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC	S20-Ap14206 S20-Ap14206 S20-Ap14206	NCP NCP NCP	% % %	74 72 86 101		70-130 70-130 70-130	Pass Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin	\$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206	NCP NCP NCP	% % %	74 72 86 101 86		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin b-BHC	\$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206	NCP NCP NCP NCP	% % % %	74 72 86 101 86 95		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin b-BHC d-BHC	\$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206 \$20-Ap14206	NCP NCP NCP NCP NCP	% % % % %	74 72 86 101 86 95 106		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin	S20-Ap14206	NCP	%	85	70-130	Pass	
Endrin aldehyde	S20-Ap14206	NCP	%	72	70-130	Pass	
Endrin ketone	S20-Ap14206	NCP	%	78	70-130	Pass	
g-BHC (Lindane)	S20-Ap14206	NCP	%	94	70-130	Pass	
Hexachlorobenzene	S20-Ap14206	NCP	%	103	70-130	Pass	
Spike - % Recovery					·		
Metals M8				Result 1			
Lead	S20-Ap18728	NCP	%	110	70-130	Pass	
Zinc	S20-Ap18728	NCP	%	88	70-130	Pass	
Spike - % Recovery	0207,010120		,,,		1 10 100		
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	ions		Result 1			
TRH C10-C14	W20-Ap13925	CP	%	104	70-130	Pass	
Spike - % Recovery	1 W20 / (p 10020	<u> </u>	70	104	70 100	1 455	
Polycyclic Aromatic Hydrocarbor	ne			Result 1			1
Acenaphthene	W20-Ap13925	СР	%	97	70-130	Pass	
Acenaphthylene		CP				1	
	W20-Ap13925		%	94	70-130	Pass	
Anthracene	W20-Ap13925	CP	%	94	70-130	Pass	-
Benz(a)anthracene	W20-Ap13925	CP	%	84	70-130	Pass	
Benzo(a)pyrene	W20-Ap13925	CP	%	77	70-130	Pass	
Benzo(b&j)fluoranthene	W20-Ap13925	CP	%	81	70-130	Pass	
Benzo(g.h.i)perylene	W20-Ap13925	CP	%	77	70-130	Pass	-
Benzo(k)fluoranthene	W20-Ap13925	CP	%	83	70-130	Pass	
Chrysene	W20-Ap13925	CP	%	74	70-130	Pass	
Dibenz(a.h)anthracene	W20-Ap13925	CP	%	124	70-130	Pass	
Fluorene	W20-Ap13925	CP	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene	W20-Ap13925	CP	%	101	70-130	Pass	
Naphthalene	W20-Ap13925	CP	%	85	70-130	Pass	
Phenanthrene	W20-Ap13925	CP	%	87	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	W20-Ap13925	CP	%	105	70-130	Pass	
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	W20-Ap13926	СР	%	118	70-130	Pass	
Cadmium	W20-Ap13926	СР	%	113	70-130	Pass	
Chromium	W20-Ap13926	СР	%	111	70-130	Pass	
Copper	W20-Ap13926	СР	%	125	70-130	Pass	
Mercury	W20-Ap13926	СР	%	118	70-130	Pass	
Nickel	W20-Ap13926	CP	%	111	70-130	Pass	
Spike - % Recovery	112074.0020	<u> </u>	,,,		1 .0 .00		
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	ions		Result 1			
TRH C6-C9	W20-Ap13934	CP	%	80	70-130	Pass	
Spike - % Recovery	1 1120 Ap 10004		/0		1 70 130	1 1 433	
BTEX				Result 1			<u> </u>
Benzene	W20-Ap13934	СР	%	93	70-130	Pass	
	W20-Ap13934	CP	%	98	70-130		
Toluene	· ·					Pass	
Ethylbenzene	W20-Ap13934	CP	%	102	70-130	Pass	
m&p-Xylenes	W20-Ap13934	CP	%	102	70-130	Pass	
o-Xylene	W20-Ap13934	CP	%	104	70-130	Pass	
Xylenes - Total*	W20-Ap13934	CP	%	102	70-130	Pass	
Spike - % Recovery	0040 ::====			T			
Total Recoverable Hydrocarbons				Result 1		 	-
Naphthalene	W20-Ap13934	CP	%	106	70-130	Pass	
TRH C6-C10	W20-Ap13934	CP	%	84	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	W20-Ap13924	CP	mg/kg	30	23	27	30%	Pass	
TRH C15-C28	W20-Ap13924	CP	mg/kg	650	340	63	30%	Fail	Q02
TRH C29-C36	W20-Ap13924	CP	mg/kg	540	280	63	30%	Fail	Q02
Duplicate									
Polycyclic Aromatic Hydrocarbon	ış			Result 1	Result 2	RPD			
Acenaphthene	W20-Ap13924	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Acenaphthylene	W20-Ap13924	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Anthracene	W20-Ap13924	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Benz(a)anthracene	W20-Ap13924	CP	mg/kg	8.4	< 5	<1	30%	Pass	
Benzo(a)pyrene	W20-Ap13924	CP	mg/kg	13	< 5	<1	30%	Pass	
Benzo(b&j)fluoranthene	W20-Ap13924	CP	mg/kg	11	< 5	<1	30%	Pass	
Benzo(g.h.i)perylene	W20-Ap13924	CP	mg/kg	< 10	< 5	<1	30%	Pass	
Benzo(k)fluoranthene	W20-Ap13924	CP	mg/kg	12	< 5	<1	30%	Pass	
Chrysene	W20-Ap13924	СР	mg/kg	9.0	< 5	<1	30%	Pass	
Dibenz(a.h)anthracene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Fluoranthene	W20-Ap13924	СР	mg/kg	9.6	6.0	46	30%	Fail	Q15
Fluorene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	W20-Ap13924	СР	mg/kg	< 10	< 5	<1	30%	Pass	
Naphthalene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Phenanthrene	W20-Ap13924	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Pyrene	W20-Ap13924	СР	mg/kg	11	6.4	56	30%	Fail	Q15
Duplicate	•	•	<u> </u>						
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	W20-Ap13924	СР	mg/kg	< 1	< 1	<1	30%	Pass	
4.4'-DDD	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDE	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDT	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
a-BHC	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aldrin	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
b-BHC	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
d-BHC	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dieldrin	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan I	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan II	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan sulphate	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin aldehyde	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin ketone	W20-Ap13924	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
g-BHC (Lindane)	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor epoxide	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobenzene	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methoxychlor	W20-Ap13924	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	112071010024	, Ji	mg/ng			- 1	3370	. 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Result 2 RPD									
TRH >C10-C16	W20-Ap13924	CP	mg/kg	< 50	< 50	<1	30%	Pass	
	· ·							Fail	Q15
TRH >C16-C34	W20-Ap13924	CP	mg/kg	1000	530	65	30%		

Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S20-Ap18861	NCP	mg/kg	9.4	7.3	26	30%	Pass	
Cadmium	S20-Ap18861	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-Ap18861	NCP	mg/kg	22	15	37	30%	Fail	Q15
Copper	S20-Ap18861	NCP	mg/kg	35	28	24	30%	Pass	
Lead	S20-Ap18861	NCP	mg/kg	79	43	59	30%	Fail	Q15
Mercury	S20-Ap18861	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Ap18861	NCP	mg/kg	15	11	26	30%	Pass	
Zinc	S20-Ap18861	NCP	mg/kg	140	110	27	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	W20-Ap13925	CP	%	38	37	3.0	30%	Pass	
Duplicate									
Total Recoverable Hydroca	rbons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	W20-Ap13930	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	W20-Ap13930	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	W20-Ap13930	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	W20-Ap13930	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydroca	rbons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	W20-Ap13930	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	W20-Ap13930	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

<u> </u>	
Code	Description

The LORs have been raised due to matrix interference G01

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to N07 the total of the two co-eluting PAHs The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Q02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Nibha Vaidva Senior Analyst-Asbestos (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to styr production arising from this report. This document shall not be reporteduced except in full and relates only to the letters tested. Unless indicated to therewise, the testes were performed on the samples as received.

Report Number: 713049-S

Certificate of Analysis

Environment Testing

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: George Black
Report 713049-AID
Project Name KAMBALA
Project ID 58081

Received Date Apr 08, 2020 Date Reported Apr 17, 2020

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Report Number: 713049-AID

Date Reported: Apr 17, 2020

Environment Testing

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 9

Report Number: 713049-AID

Project Name KAMBALA **Project ID** 58081

Date Sampled Apr 07, 2020 Report 713049-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
HA06 0-0.1	20-Ap13924	Apr 07, 2020	Approximate Sample 636g Sample consisted of: Brown fine-grained sandy soil, rocks and debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA07 0.2-0.3	20-Ap13925	Apr 07, 2020	Approximate Sample 489g Sample consisted of: Brown fine-grained sandy soil, brick and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA08 0.2-0.3	20-Ap13926	Apr 07, 2020	Approximate Sample 547g Sample consisted of: Brown fine-grained sandy soil, bitumen and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA09 0-0.1	20-Ap13927	Apr 07, 2020	Approximate Sample 280g Sample consisted of: Brown fine-grained sandy soil, rocks, glass and debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA10 0-0.1	20-Ap13928	Apr 07, 2020	Approximate Sample 577g Sample consisted of: Brown fine-grained sandy soil, bitumen, cement, brick and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
HA11 0.4-0.5	20-Ap13929	Apr 07, 2020	Approximate Sample 895g Sample consisted of: Brown fine-grained sandy soil, glass and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected. No trace asbestos detected.
HA12 0-0.1	20-Ap13930	Apr 07, 2020	Approximate Sample 778g Sample consisted of: Brown fine-grained sandy soil, rocks and debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
FRAG-01	20-Ap13931	Apr 07, 2020	Approximate Sample 13g / 45x40x4mm Sample consisted of: Grey fibre cement material	Chrysotile and amosite asbestos detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
FRAG-02	20-Ap13932	Apr 07, 2020	Approximate Sample 10g / 50x35x4mm Sample consisted of: Grey fibre cement material	Chrysotile and amosite asbestos detected.
QA20200407-1	20-Ap13934	Apr 07, 2020		No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Page 3 of 9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	Apr 09, 2020	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Apr 09, 2020	Indefinite

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049 02 8245 0300

Sydney

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271											
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794												
Pert	h Laboratory - I	NATA Site # 237	36												
Exte	rnal Laboratory	<i>'</i>													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	HA06 0-0.1	Apr 07, 2020		Soil	W20-Ap13924	Х			Х	Х	Х	Х	Х	Х	
2	HA07 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13925	Х			Х		Х	Х	Х	Х	
3	HA08 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13926	Х			Х		Х	Х	Х	Х	
4	HA09 0-0.1	Apr 07, 2020		Soil	W20-Ap13927	Х			Х		Х	Х	Х	Х	
5	HA10 0-0.1	Apr 07, 2020		Soil	W20-Ap13928	Х			Х		Х	Х	Х	Х	
6	HA11 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13929	Х			Х		Х	Х	Х	Х	
7	HA12 0-0.1	Apr 07, 2020		Soil	W20-Ap13930	Х			Х	Х	Х	Х	Х	Х	
8	FRAG-01	Apr 07, 2020		Building Materials	W20-Ap13931		х								
9	FRAG-02	Apr 07, 2020		Building Materials	W20-Ap13932		Х								

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Australia

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #: 713049 02 8245 0300

Sydney

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
				271			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator h Laboratory - N														
10	RIN01	Apr 07, 2020	30	Water	W20-Ap13933				Х	Х	Х	Х		Х	
11	QA20200407-	Apr 07, 2020		Soil	W20-Ap13934	Х			Х	Х	Х	Х	Х	Х	
12	TS	Apr 07, 2020		Water	W20-Ap13935										Х
13	ТВ	Apr 07, 2020		Water	W20-Ap13936										Х
14	HA06 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13937			Х							
15	HA06 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13938			Х							
16	HA07 0-0.1	Apr 07, 2020		Soil	W20-Ap13939			Х							
17	HA07 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13940			Х							
18	HA08 0-0.1	Apr 07, 2020		Soil	W20-Ap13941			Х							
19	HA09 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13942			Х							
20	HA10 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13943			Х							
21	HA10 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13944			Х							

Page 6 of 9

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #:

713049 02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Dav

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail					Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71											
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Bris	bane Laborator	y - NATA Site#	20794												
Pert	h Laboratory - N	NATA Site # 237	36												
22	HA11 0-0.1	Apr 07, 2020		Soil	W20-Ap13945			Х							
23	HA11 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13946			Х							
24	HA11 0.9-1.0	Apr 07, 2020		Soil	W20-Ap13947			Х							
25	HA12 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13948			Х							
Test	Counts					8	2	12	9	4	9	9	8	9	2

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

Date Reported: Apr 17, 2020

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Comments

W20-Ap13925 & W20-Ap13927: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to styroduction arising from this report. This document shall not be reported except in full and relates only to the learns tested. Unless indicated to therewise, the testes were performed on the samples as and relates only to the learns tested. Unless indicated to therewise, the testes were performed on the samples as the sample of the samples are samples.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report713049-WProject nameKAMBALAProject ID58081Received DateApr 08, 2020

Client Sample ID			RIN01	R20 TS	ТВ
Sample Matrix			Water	Water	Water
Eurofins Sample No.			W20-Ap13933	W20-Ap13935	W20-Ap13936
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit		, ,	,
NO.		T			
Naphthalene ^{N02}	0.01	mg/L	-	100	< 0.01
Total Recoverable Hydrocarbons - 1999 NEPM		T			
TRH C6-C9	0.02	mg/L	< 0.02	74	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	-	-
BTEX					
Benzene	0.001	mg/L	< 0.001	110	< 0.001
Toluene	0.001	mg/L	< 0.001	110	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	100	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	95	< 0.002
o-Xylene	0.001	mg/L	< 0.001	110	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	99	< 0.003
4-Bromofluorobenzene (surr.)	1	%	98	93	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	-	-
TRH C6-C10	0.02	mg/L	< 0.02	-	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-	-
Total Recoverable Hydrocarbons					
TRH C6-C10	0.02	mg/L	-	72	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	_	-	< 0.02
Polycyclic Aromatic Hydrocarbons	<u>'</u>				
Acenaphthene	0.001	mg/L	< 0.001	-	_
Acenaphthylene	0.001	mg/L	< 0.001	-	_
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	_	_

Client Comple ID			DINIGA	R20 TS	
Client Sample ID			RIN01	1	ТВ
Sample Matrix			Water	Water	Water
Eurofins Sample No.			W20-Ap13933	W20-Ap13935	W20-Ap13936
Date Sampled			Apr 07, 2020	Apr 07, 2020	Apr 07, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Fluorene	0.001	mg/L	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	87	-	-
p-Terphenyl-d14 (surr.)	1	%	108	-	-
Organochlorine Pesticides					
Chlordanes - Total	0.001	mg/L	< 0.001	-	-
4.4'-DDD	0.0001	mg/L	< 0.0001	-	-
4.4'-DDE	0.0001	mg/L	< 0.0001	-	-
4.4'-DDT	0.0001	mg/L	< 0.0001	-	-
a-BHC	0.0001	mg/L	< 0.0001	-	-
Aldrin	0.0001	mg/L	< 0.0001	-	-
b-BHC	0.0001	mg/L	< 0.0001	-	-
d-BHC	0.0001	mg/L	< 0.0001	-	-
Dieldrin	0.0001	mg/L	< 0.0001	-	-
Endosulfan I	0.0001	mg/L	< 0.0001	-	-
Endosulfan II	0.0001	mg/L	< 0.0001	-	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	-	-
Endrin Endrin oldebyde	0.0001	mg/L	< 0.0001	-	-
Endrin aldehyde	0.0001	mg/L	< 0.0001 < 0.0001		-
g-BHC (Lindane)	0.0001	mg/L mg/L	< 0.0001		_
Heptachlor	0.0001	mg/L	< 0.0001		
Heptachlor epoxide	0.0001	mg/L	< 0.0001		_
Hexachlorobenzene	0.0001	mg/L	< 0.0001		_
Methoxychlor	0.0001	mg/L	< 0.0001	_	_
Toxaphene	0.01	mg/L	< 0.01	_	_
Aldrin and Dieldrin (Total)*	0.0001	mg/L	< 0.0001	_	_
DDT + DDE + DDD (Total)*	0.0001	mg/L	< 0.0001	_	_
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	< 0.001	-	_
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	< 0.001	-	-
Dibutylchlorendate (surr.)	1	%	138	-	-
Tetrachloro-m-xylene (surr.)	1	%	64	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions	,			
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	-	
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-	-
Metals M8					
Arsenic	0.001	mg/L	< 0.001	-	-
Cadmium	0.0002	mg/L	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	< 0.001	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001	mg/L	< 0.001	-	-
Zinc	0.005	mg/L	< 0.005	-	_

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Testing Site Sydney	Extracted Apr 14, 2020	Holding Time 7 Days
BTEX	Sydney	Apr 14, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 14, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons	Sydney	Apr 14, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 14, 2020	
- Method: LTM-ORG-2010 TRH C6-C40 Polycyclic Aromatic Hydrocarbons	Sydney	Apr 14, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water		,	•
Organochlorine Pesticides - Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Sydney	Apr 14, 2020	7 Days
Metals M8	Sydney	Apr 14, 2020	180 Days

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Australia

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049 02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail							Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271											
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	36												
Exte	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	HA06 0-0.1	Apr 07, 2020		Soil	W20-Ap13924	Х			Х	Х	Х	Х	Х	Х	
2	HA07 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13925	Х			Х		Х	Х	Х	Х	
3	HA08 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13926	Х			Х		Х	Х	Х	Х	
4	HA09 0-0.1	Apr 07, 2020		Soil	W20-Ap13927	Х			Х		Х	Х	Х	Х	
5	HA10 0-0.1	Apr 07, 2020		Soil	W20-Ap13928	Х			Х		Х	Х	Х	Х	
6	HA11 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13929	Х			Х		Х	Х	Х	Х	
7	HA12 0-0.1	Apr 07, 2020		Soil	W20-Ap13930	Х			Х	Х	Х	Х	Х	Х	
8	FRAG-01	Apr 07, 2020		Building Materials	W20-Ap13931		х								
9	FRAG-02	Apr 07, 2020		Building Materials	W20-Ap13932		х								

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Phone: +61 7 3902 4600 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

713049

02 8245 0300

Phone: Fax:

Received: Apr 8, 2020 5:48 PM Due:

Apr 17, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
				271				.,			.,				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		- NATA Site # 18				Х	Х	Х	Х	Х	Х	Х	Х	Х	X
		y - NATA Site # : NATA Site # 237:													
10	RIN01	Apr 07, 2020	00	Water	W20-Ap13933				Х	Х	Х	Х		Х	
11	QA20200407-	Apr 07, 2020		Soil	W20-Ap13934	Х			Х	Х	Х	Х	Х	Х	
12	TS	Apr 07, 2020		Water	W20-Ap13935										Х
13	ТВ	Apr 07, 2020		Water	W20-Ap13936										Х
14	HA06 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13937			Х							
15	HA06 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13938			Х							
16	HA07 0-0.1	Apr 07, 2020		Soil	W20-Ap13939			Х							
17	HA07 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13940			Х							
18	HA08 0-0.1	Apr 07, 2020		Soil	W20-Ap13941			Х							
19	HA09 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13942			Х							
20	HA10 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13943			Х							
21	HA10 0.4-0.5	Apr 07, 2020		Soil	W20-Ap13944			Х							

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

ting

6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Melbourne

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081 Order No.:

Report #: Phone: 713049 02 8245 0300

Fax:

Received: Apr 8, 2020 5:48 PM

Due: Apr 17, 2020 **Priority:** 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	НОГД	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	71											
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	'36												
22	HA11 0-0.1	Apr 07, 2020		Soil	W20-Ap13945			Х							
23	HA11 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13946			Х							
24	HA11 0.9-1.0	Apr 07, 2020		Soil	W20-Ap13947			Х							
25	HA12 0.2-0.3	Apr 07, 2020		Soil	W20-Ap13948			Х							
Test	Counts					8	2	12	9	4	9	9	8	9	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Naphthalene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank	, J				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene		< 0.001	0.001	Pass	
	mg/L				
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T		l	
Organochlorine Pesticides		0.004	2.22	_	
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	Oode
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank		10.01	, , , , , , , , , , , , , , , , , , , ,		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank		V 0.1	0.1	1 433	
Metals M8				Ι	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.001	Pass	
Chromium	mg/L	< 0.0002	0.0002	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
		< 0.001	0.0001	Pass	
Mercury Nickel	mg/L	< 0.0001	0.0001	Pass	
	mg/L				
Zinc LCS - % Recovery	mg/L	< 0.005	0.005	Pass	
Naphthalene	%	99	70-130	Pass	
•	70] 99	70-130	Fass	
LCS - % Recovery		T		I	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9	0/	111	70.420	Door	
	%	111	70-130	Pass	
TRH C10-C14	%	94	70-130	Pass	
LCS - % Recovery		T		Π	
BTEX	0/	100	70.400	Dana	
Benzene	%	120	70-130	Pass	
Toluene	%	112	70-130	Pass	
Ethylbenzene	%	108	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
o-Xylene	%	108	70-130	Pass	
Xylenes - Total*	%	106	70-130	Pass	
LCS - % Recovery		T		I	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				_	
TRH C6-C10	%	114	70-130	Pass	
LCS - % Recovery				I	
Polycyclic Aromatic Hydrocarbons		+		_	
Acenaphthene	%	84	70-130	Pass	
Acenaphthylene	%	95	70-130	Pass	
Anthracene	%	87	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	%	79	70-130	Pass	
Benzo(g.h.i)perylene	%	109	70-130	Pass	
Benzo(k)fluoranthene	%	85	70-130	Pass	
Chrysene	%	88	70-130	Pass	
Dibenz(a.h)anthracene	%	83	70-130	Pass	
Fluoranthene	%	70	70-130	Pass	
Fluorene	%	74	70-130	Pass	

	Test		Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene			%	86		70-130	Pass	
Naphthalene			%	76		70-130	Pass	
Phenanthrene			%	87		70-130	Pass	
Pyrene			%	72		70-130	Pass	
LCS - % Recovery				•				
Organochlorine Pesticides								
Chlordanes - Total			%	124		70-130	Pass	
4.4'-DDD			%	123		70-130	Pass	
4.4'-DDE			%	127		70-130	Pass	
4.4'-DDT			%	73		70-130	Pass	
a-BHC			%	79		70-130	Pass	
Aldrin			%	119		70-130	Pass	
b-BHC			%	99		70-130	Pass	
d-BHC			%	94		70-130	Pass	
Dieldrin			%	110		70-130	Pass	
Endosulfan I			%	117		70-130	Pass	
Endosulfan II			%	101		70-130	Pass	
Endosulfan sulphate			%	107		70-130	Pass	
Endrin			%	107		70-130	Pass	
Endrin aldehyde			%	72		70-130	Pass	
Endrin ketone			%	94		70-130	Pass	
g-BHC (Lindane)			%	92		70-130	Pass	
Heptachlor			%	117		70-130	Pass	
Hexachlorobenzene			%	97		70-130	Pass	
Methoxychlor			%	77		70-130	Pass	
LCS - % Recovery			70			70 100	1 400	
Total Recoverable Hydroca	rhons - 2013 NEPM Fract	ione						
TRH >C10-C16	100113 - 2013 1421 1411 1401		%	91		70-130	Pass	
LCS - % Recovery			,,,	01		70 100	1 400	
Metals M8								
Arsenic			%	92		70-130	Pass	
Cadmium			%	96		70-130	Pass	
Chromium			%	96		70-130	Pass	
Copper			%	96		70-130	Pass	
Lead			%	99		70-130	Pass	
Mercury			%	105		70-130	Pass	
Nickel			%	95		70-130	Pass	
Zinc			%	95		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								- /
				Result 1				
Naphthalene	W20-Ap13933	СР	%	105		70-130	Pass	
Spike - % Recovery	,, .,							
Total Recoverable Hydroca	rbons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S20-Ap16902	NCP	%	127		70-130	Pass	
Spike - % Recovery	, ==: .p.0002							
BTEX				Result 1				
Benzene	W20-Ap13933	СР	%	117		70-130	Pass	
Toluene	W20-Ap13933	CP	%	114		70-130	Pass	
Ethylbenzene	W20-Ap13933	CP	%	114		70-130	Pass	
		CP	%	112		70-130	Pass	
<u> </u>	W20-An13933	I (.P	√ /∩					i
m&p-Xylenes	W20-Ap13933 W20-Ap13933	†		1				
<u> </u>	W20-Ap13933 W20-Ap13933 W20-Ap13933	CP CP	% % %	114		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH C6-C10	S20-Ap16902	NCP	%	125			70-130	Pass	
Spike - % Recovery									
Metals M8				Result 1					
Arsenic	S20-Ap16992	NCP	%	101			70-130	Pass	
Cadmium	S20-Ap16992	NCP	%	100			70-130	Pass	
Chromium	S20-Ap16992	NCP	%	96			70-130	Pass	
Copper	S20-Ap16992	NCP	%	95			70-130	Pass	
Lead	S20-Ap16992	NCP	%	95			70-130	Pass	
Mercury	S20-Ap16992	NCP	%	101			70-130	Pass	
Nickel	S20-Ap16992	NCP	%	95			70-130	Pass	
Zinc	S20-Ap16992	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Naphthalene	S20-Ap16901	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Ap16901	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-Ap16901	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S20-Ap16901	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S20-Ap16901	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C10	S20-Ap16901	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S20-Ap13873	NCP	mg/L	0.002	0.002	27	30%	Pass	
Cadmium	S20-Ap13873	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S20-Ap13873	NCP	mg/L	0.028	0.028	<1	30%	Pass	
Copper	S20-Ap13873	NCP	mg/L	0.004	0.004	3.0	30%	Pass	
Lead	S20-Ap13873	NCP	mg/L	0.002	0.002	3.0	30%	Pass	
Mercury	S20-Ap13873	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S20-Ap13873	NCP	mg/L	0.004	0.004	7.0	30%	Pass	
Zinc	S20-Ap13873	NCP	mg/L	0.044	0.046	5.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

015968

CHAIN OF CUSTODY

PROJECT NO.: 580%					IA	ROI	RAT	ORV R	ATCH NO.:			
PROJECT NAME: Kambola								S: N/				
DATE NEEDED BY: STD TAT									A (2013)			
PHONE: Sydney: 02 8245 0300 Pe	erth: 08 948	8 0100 Brisl	bane: 07 3112 2688									
SEND REPORT & INVOICE TO: (1) ac	dminnsw@	jbsg.com.au; ((2) siplach @	ibsg.com.a	au: f	31	D)	mari	47	@ibsa.com au		
COMMENTS / SPECIAL HANDLING / STORAGE OR I	DISPOSAL:		· ·	,	3					@Josg.com.au	TYPE O	f
					Mehb			EX			ASBEST ANALY:	ros
					10 11		9	13	w I I		NO	
CANCELE					Harry	PAHS	. Ş	H	3		IDENTIFICATION	WA
SAMPLE ID MAT			TYPE & PRESERVATIVE	pH	Z	2	Asbertos	TRH/187	3		DEN	NOTES:
HA 06 0-01 Soi	7/4	4	Bog- Jar + Ice		X,	X	X	XX				X
0.2-03	1		0									103
D.4-05												
VA07 0-0.1												
0.2-0.3					X	X	X	X			5	<
0.4-0.5												1
HA08 04-0.1											+ + + + + + + + + + + + + + + + + + + 	
0.7-03					X	X	X	×				
HA09 0-01					X	X	X.	X			>	
0.2-03											++++	
4A10 0-0.1					X	×	K	×			+++++	1
0.2-0.3							1	-			1	
0.4-0.5							-	+				
MAI 0-0-1					\rightarrow		+	+				
0.2-0.3					94 V	XE.	+	-				
0.4-0.5					X			V			+	
0.4-1.0					7				-		++++	
NA12 0-01					V 1	V .	x	××				
1 02-03					1	A /	1				\perp	
RELINQUISHED BY:			METHOD OF SHIPMENT:		_	_	_	DECE	VED BY:			
NAME: N. DATE: 8/4/2	0	ONSIGNMENT N	OTE NO.		NAI	ME:	E.	vis]		COOLER SEAL - Yes	FOR RECEIVING LAB	USE ONLY:
NAME: N. Menrit DATE: 8/4/2 OF: JBS&G	т	RANSPORT CO.			DAT	re: 8	141	20				monant bioreit mananan.
NAME: DATE:		ONSIGNMENT N	OTE NO.			VIE:	up	ins	DATE:	COOLER TEMP		
OF:					OF:				DATE	COULTR SEAL - Yes	No Intact	Broken
	Jar: B = Glace	RANSPORT CO	rid Provd + C = Sodium thedroute Dec. 1 146	_ Davids - C. C.		_				COOLER TEMP	deg C	
Container & Preservative Codes: P = Plastic; J = So MSO FormsO13 – Chain of Custody – Generic			od 1134d., C = 300ium nydroxide Prsvd; VC	= Hyarochionic	Acid	Prsvo	viai;	V S = Sul	furic Acid Prsvd \	Vial; S = Sulfuric Acid Prsvd; Z = Zin	c Prsvd; E = EDTA Prsvd;	ST = Sterile Bottle; O = Other

015969

CHAIN OF CUSTODY

PROJECT NO.: 5808)						114	\BOI	RAT	ORV	BATC	CH NO.:			_				
PROJECT NAME: Komboo	la					-			S: k		JI NO							
DATE NEEDED BY: STO	TAT										2013)							
PHONE: Sydney: 02 8245 03	00 Perth: 0	8 9488 0	LOO Bris	sbane: 07 3112 2688		14		V		141 (2	-015)			_				
SEND REPORT & INVOICE TO): (1) adminn	sw@ibsp	com an.	(2)	a com	311.	(3)	i Chic	~~	rrat	۵	ihea cor						
COMMENTS / SPECIAL HANDLING / STO	RAGE OR DISPOSA	L:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2)	g.com	LS.	(3).		1.3620.5	11/21/11/11		lnzg.co.	11.00	_	_	\top	TYPE OF	T
						Medel			ኢ								ASBESTOS ANALYSIS	<u> </u>
						3		ង	3							1		1
						18	5	3	1/6	ds							¥ Ğ	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	Heavy	822	Arbedos	TRMIBBEX	000							IDENTIFICATION NEPM/WA	NOTES:
R2NO1	70 Frey	7/4		Frag				X									×	
Frod - 02	Freg	1						×									×	
RZNOI	Water			ly Amber, ly metel, as viols. Bog + Jar + Ice 4.2 yriols		K	×		X	X						11		
QA 20200407-1	501)			Bout Jet Ice		X	×	X	X	X							X	
Qc 202004071	Soil			9		X	X		X	× _	- Please	o wor	d to	en	Nola	Ь	X	
TS	Water			4.2 xviols					X									
TB	Watel								X									
, -									-							++		
															+	+		
																++	\rightarrow	
									_	_		-	-1-1	_		-	_	
														-	+	+	_	
							П							-	++	+	+	
																+		
														7				
														_				
																\top		
									7									
															+	11		
NAME: NAME: WE MOTICOATE:	11110			METHOD OF SHIPMENT:			-	_	REC	EIVED	BY:	-			FOR R	ECEIVIN	G LAB (USE ONLY:
NAME: WIL MOTTLEDATE: 8	5/4/W	CONS	IGNMENT	NOTE NO.		N/	AME:	E	vis ()		coc	LER SEA	L Ye				Broken
OF: JBS&G	un;	TRAN	SPORT CO.			D/ OF	ATE: S	A K	vist 120 ofin	c		coc	LER TER	4D (O.	your -			
NAME: DATE:			IGNMENT			N/	AME:	- C-1	hin	>	DATE:	COC	LER SE	L – Yes	No		Intact .	Broken
OF:		TRAN	SPORT CO			OF	=:											
Container & Preservative Codes: P = Pla	astic; J = Soil Jar; B	= Glass Bottl	e; N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = H	ydrochlo	ric Aci	id Prsv	rd Vial	l: VS = !	Sulfurio	c Acid Prsvd Vial: S	= Sulfuric 4	LER TER	/12 : 7 = 7in	deg C c Prsvrl+1	F = FOTA	Proud- 5	T = Sterile Rottle: O = Other
TMSO FormsO13 - Chain of Custody - G	eneric						_							4.11				

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: George Black Project name: KAMBALA Project ID: 58081

COC number: 014662-3,014665

Turn around time: 5 Day

Apr 21, 2020 5:30 PM Date/Time received:

Eurofins reference: 714933

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 17.3 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Notes

QC20200420, QC20200421 and QC20200421-2 forwarded to Envirolab.

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to George Black - gblack@jbsg.com.au.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report714933-SProject nameKAMBALAProject ID58081Received DateApr 21, 2020

Client Sample ID			BH11_0.5-1.0	BH12_3.0-3.5	BH13_0.0-0.1	BH14_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30186	S20-Ap30187	S20-Ap30188	S20-Ap30189
Date Sampled			Apr 20, 2020	Apr 20, 2020	Apr 20, 2020	Apr 20, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	110	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	72	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	182	< 50	< 50
ВТЕХ	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	137	122	124	117
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	160	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	160	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	4.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	4.5	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	4.5	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	1.8	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	3.0	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	2.4	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	2.2	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	2.9	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	2.0	< 0.5	< 0.5

Client Sample ID			BH11_0.5-1.0	BH12_3.0-3.5	BH13_0.0-0.1	BH14_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30186	S20-Ap30187	S20-Ap30188	S20-Ap30189
Date Sampled			Apr 20, 2020	Apr 20, 2020	Apr 20, 2020	Apr 20, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	2.7	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.7	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	3.1	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	23	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	77	102	84	77
p-Terphenyl-d14 (surr.)	1	%	84	115	82	87
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	66	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	82	-	-	-
Polychlorinated Biphenyls		1				
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-	-
Total PCB*	0.5	mg/kg	< 0.5	-	-	-
Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.)	1	%	66 82	-	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	BH11_0.5-1.0 Soil S20-Ap30186 Apr 20, 2020	BH12_3.0-3.5 Soil S20-Ap30187 Apr 20, 2020	BH13_0.0-0.1 Soil S20-Ap30188 Apr 20, 2020	BH14_0.0-0.1 Soil S20-Ap30189 Apr 20, 2020
% Moisture	1	%	11	15	6.5	13
Heavy Metals						
Arsenic	2	mg/kg	4.9	< 2	< 2	2.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.8	< 5	< 5	6.3
Copper	5	mg/kg	< 5	14	< 5	< 5
Lead	5	mg/kg	< 5	600	8.1	14
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	< 5	75	6.8	15

Client Sample ID			BH15_0.5-1.0	BH16_0.0-0.01	TP1_0.0-0.1	TP1_1.0-1.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30190	S20-Ap30191	S20-Ap30192	S20-Ap30193
Date Sampled			Apr 20, 2020	Apr 20, 2020	Apr 21, 2020	Apr 21, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•				
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	-	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	86	-	103	=
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH15_0.5-1.0	BH16_0.0-0.01	TP1_0.0-0.1	TP1_1.0-1.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30190	S20-Ap30191	S20-Ap30192	S20-Ap30193
Date Sampled			Apr 20, 2020	Apr 20, 2020	Apr 21, 2020	Apr 21, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
2-Fluorobiphenyl (surr.)	1	%	81	88	82	94
p-Terphenyl-d14 (surr.)	1	%	83	88	85	89
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.2	mg/kg	-	-	< 0.2	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Dibutylchlorendate (surr.)	1	%	-	-	103	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	98	-
% Moisture	1	%	11	8.6	10	8.1
Heavy Metals		1				
Arsenic	2	mg/kg	< 2	7.9	5.5	2.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	6.5	10.0	7.2	< 5
Copper	5	mg/kg	< 5	11	24	5.1

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	BH15_0.5-1.0 Soil S20-Ap30190 Apr 20, 2020	BH16_0.0-0.01 Soil S20-Ap30191 Apr 20, 2020	TP1_0.0-0.1 Soil S20-Ap30192 Apr 21, 2020	TP1_1.0-1.5 Soil S20-Ap30193 Apr 21, 2020
Heavy Metals		'				
Lead	5	mg/kg	< 5	21	49	6.0
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	< 5	21	49	11

Client Sample ID			TP2_1.5-2.0	TP3_0.0-0.1	TP4_0.0-0.1	TP5_0.5-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30195	S20-Ap30196	S20-Ap30197	S20-Ap30198
Date Sampled			Apr 21, 2020	Apr 21, 2020	Apr 21, 2020	Apr 21, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	390	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	270	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	660	< 50	< 50	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	114	107	108
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	580	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	140	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	720	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	17	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	17	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	17	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	8.4	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	11	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	9.1	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	6.6	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	8.2	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	7.9	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	2.3	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	12	< 0.5	< 0.5	< 0.5

Client Sample ID			TP2_1.5-2.0	TP3_0.0-0.1	TP4_0.0-0.1	TP5_0.5-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30195	S20-Ap30196	S20-Ap30197	S20-Ap30198
Date Sampled			Apr 21, 2020	Apr 21, 2020	Apr 21, 2020	Apr 21, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	1 2011	Onne				
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	5.8	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	2.7	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	14	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	88.7	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	79	80	87	88
p-Terphenyl-d14 (surr.)	1	%	91	85	88	83
Organochlorine Pesticides		70	0.			
Chlordanes - Total	0.1	mg/kg	_	_	< 0.1	_
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	<u> </u>
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	<u> </u>
4.4'-DDT	0.05	mg/kg	_	_	< 0.05	_
a-BHC	0.05	mg/kg	_	_	< 0.05	_
Aldrin	0.05	mg/kg	_	_	< 0.05	_
b-BHC	0.05	mg/kg	_	_	< 0.05	_
d-BHC	0.05	mg/kg	_	_	< 0.05	_
Dieldrin	0.05	mg/kg	_	_	< 0.05	_
Endosulfan I	0.05	mg/kg	_	_	< 0.05	_
Endosulfan II	0.05	mg/kg	_	_	< 0.05	_
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	_
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	=	< 0.05	=
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.2	mg/kg	-	=	< 0.2	=
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Dibutylchlorendate (surr.)	1	%	-	-	67	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	83	-
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	-	< 0.5	
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1242	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1248	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1254	0.5	mg/kg	-	-	< 0.5	-
Aroclor-1260	0.5	mg/kg	-	-	< 0.5	-
Total PCB*	0.5	mg/kg	-	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	-	-	67	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	83	-
% Moisture	1	%	20	8.4	8.5	4.9

Client Sample ID Sample Matrix			TP2_1.5-2.0 Soil	TP3_0.0-0.1 Soil	TP4_0.0-0.1 Soil	TP5_0.5-1.0 Soil
Eurofins Sample No.			S20-Ap30195	S20-Ap30196	S20-Ap30197	S20-Ap30198
Date Sampled			Apr 21, 2020	Apr 21, 2020	Apr 21, 2020	Apr 21, 2020
Test/Reference	LOR	Unit				
Heavy Metals	•	•				
Arsenic	2	mg/kg	3.5	5.9	8.2	5.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	13	6.1	6.4	13
Copper	5	mg/kg	40	5.2	< 5	< 5
Lead	5	mg/kg	59	13	17	14
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	110	18	12	6.6

Client Sample ID			TP6_1.0-1.5	TP7_0.0-0.1	TP7_0.6-0.7	TP8_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30199	S20-Ap30200	S20-Ap30201	S20-Ap30202
Date Sampled			Apr 21, 2020	Apr 21, 2020	Apr 21, 2020	Apr 21, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•				
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	-	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92	92	-	96
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5

Client Sample ID			TP6_1.0-1.5	TP7_0.0-0.1	TP7_0.6-0.7	TP8_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap30199	S20-Ap30200	S20-Ap30201	S20-Ap30202
Date Sampled			Apr 21, 2020	Apr 21, 2020	Apr 21, 2020	Apr 21, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	83	83	-	89
p-Terphenyl-d14 (surr.)	1	%	92	93	-	95
% Clay	1	%	-	-	5.7	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	35	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	4.3	-
% Moisture	1	%	5.6	7.9	8.6	15
Heavy Metals						
Arsenic	2	mg/kg	< 2	6.0	< 2	2.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	12	5.6	< 5
Copper	5	mg/kg	< 5	10	< 5	7.0
Lead	5	mg/kg	8.5	25	< 5	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	5.6	< 5	< 5
Zinc	5	mg/kg	< 5	30	< 5	19
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	1.3	-

Client Sample ID Sample Matrix Eurofins Sample No.			QA20200421 Soil S20-Ap30203
Date Sampled Test/Reference	LOR	Unit	Apr 21, 2020
Total Recoverable Hydrocarbons - 1999 NEPM Fra		Onit	
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	99

Client Sample ID Sample Matrix			QA20200421 Soil
Eurofins Sample No.			S20-Ap30203
•			1
Date Sampled	1.00	11.7	Apr 21, 2020
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 2013 NEPM			0.5
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10 TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20 < 20
TRH >C10-C10 less BTEX (FT)	50	mg/kg mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons	1 .00	19,9	1.00
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	85
p-Terphenyl-d14 (surr.)	1	%	91
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05 0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg mg/kg	< 0.05 < 0.05

Client Sample ID			QA20200421
Sample Matrix			Soil
Eurofins Sample No.			S20-Ap30203
Date Sampled			Apr 21, 2020
Test/Reference	LOR	Unit	
Organochlorine Pesticides			
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2
Toxaphene	1	mg/kg	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2
Dibutylchlorendate (surr.)	1	%	66
Tetrachloro-m-xylene (surr.)	1	%	80
Polychlorinated Biphenyls			
Aroclor-1016	0.5	mg/kg	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5
Total PCB*	0.5	mg/kg	< 0.5
Dibutylchlorendate (surr.)	1	%	66
Tetrachloro-m-xylene (surr.)	1	%	80
% Moisture	1	%	10
Heavy Metals			
Arsenic	2	mg/kg	8.7
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	6.3
Copper	5	mg/kg	< 5
Lead	5	mg/kg	13
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	< 5
Zinc	5	mg/kg	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 27, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Apr 27, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Apr 27, 2020	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Clay	Brisbane	Apr 27, 2020	0 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Apr 27, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Apr 28, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Apr 28, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	Apr 21, 2020	14 Days

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Svdnev

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #: Phone:

714933 02 8245 0300

Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 Priority: 5 Dav

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Auckland

IANZ # 1327

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
Melb	Melbourne Laboratory - NATA Site # 1254 & 14271														Х	
Sydı	Sydney Laboratory - NATA Site # 18217							Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х										
Pert	h Laboratory - N	NATA Site # 237	'36													
Exte	rnal Laboratory				_											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH11_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30186		Х						Х	Х		Х
2	BH12_3.0-3.5	Apr 20, 2020		Soil	S20-Ap30187		Х							Х		Х
3	BH13_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30188		Х							Х		Х
4	BH14_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30189		Х							Х		Х
5	BH15_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30190		Х							Х		Х
6	BH16_0.0-0.01	Apr 20, 2020		Soil	S20-Ap30191		Х			Х		Х		Х		
7	TP1_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30192		Х				Х			Х		Х
8	TP1_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30193					Х		Х		Х		
9	TP2_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30194		Х							<u> </u>		
10	TP2_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30195		Х							Х		X

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #:

714933 02 8245 0300

Phone: Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 **Priority:** 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
	Melbourne Laboratory - NATA Site # 1254 & 14271														Х	
	Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator	•				X										
	h Laboratory - N		36	T												
11	TP3_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30196		Х							Х		Х
12	TP4_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30197		Х						Х	Х		Х
13	TP5_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30198		X							Х		Х
14	TP6_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30199		X							Х		Х
15	TP7_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30200		Х							Х		Х
16	TP7_0.6-0.7	Apr 21, 2020		Soil	S20-Ap30201	Х			Х			Х		Х	Х	
17	TP8_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30202		Х							Х		Х
18	QA20200421	Apr 21, 2020		Soil	S20-Ap30203		Х						Х	Х		Х
19	BH11_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30204			Х								
20	BH11_1.0-1.5	Apr 20, 2020		Soil	S20-Ap30205			Х								
21	BH12_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30206			Х								
22	BH12_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30207			Х								
23	BH12_1.0-1.5	Apr 20, 2020		Soil	S20-Ap30208			Х								

ABN - 50 005 085 521

Address:

Project ID:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

KAMBALA 58081

Order No.:

Report #: Phone:

714933 02 8245 0300

Sydney Unit F3, Building F

16 Mars Road

Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 **Priority:** 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
	oourne Laborate			271											Х	
	ney Laboratory						Х	Х	X	Х	Х	Х	Х	Х	Х	Х
	bane Laborator					Х										
	h Laboratory - N		36													
24	BH12_2.5-3.0			Soil	S20-Ap30209			Х								
25	BH12_4.0-4.5	Apr 20, 2020		Soil	S20-Ap30210			Х								
26	BH13_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30211			Х								
27	BH13_1.0-1.5	Apr 20, 2020		Soil	S20-Ap30212			Х								
28	BH14_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30213			Х								
29	BH14_1.4	Apr 20, 2020		Soil	S20-Ap30214			Х								
30	BH15_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30215			Х								
31	BH15_1.5-2.0	Apr 20, 2020		Soil	S20-Ap30216			Х								
32	BH16_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30217			Х								
33	QA20200420	Apr 20, 2020		Soil	S20-Ap30218			Х								
34	TP1_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30219			Х								
35	TP1_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30220			Х								
36	TP2_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30221			Х								

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

Project ID:

KAMBALA 58081

Order No.:

Report #: Phone:

714933 02 8245 0300

Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 **Priority:** 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

New Zealand

35 O'Rorke Road

Auckland

IANZ # 1327

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271											Х	
		- NATA Site # 1					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site #				Х										
	1	NATA Site # 237	36	T	T											
37	TP2_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30222			Х								
38	TP3_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30223			Х								
39	TP3_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30224			Х								
40	TP3_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30225			Х								
41	TP4_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30226			Х								
42	TP4_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30227			Х								
43	TP4_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30228			Х								
44	TP5_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30229			Х								
45	TP5_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30230			Х								
46	TP6_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30231			Х								
47	TP6_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30232			Х								
48	TP6_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30233			Х								
49	TP8_0.5-0.6	Apr 21, 2020		Soil	S20-Ap30234			Х								

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 7 3902 4600 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #:

714933 02 8245 0300

Phone: Fax:

Received: Apr 21, 2020 5:30 PM Due:

Apr 28, 2020 **Priority:** 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271											Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794			Χ										
Pert	h Laboratory - N	NATA Site # 237	36													
50	QA20200421- 2	Apr 21, 2020		Soil	S20-Ap30235			Х								
Test	Counts					1	16	32	1	2	1	3	3	17	1	14

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1 1111111	
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank	, , ,			•	
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank				•	
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	, , ,			•	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank				•	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	IIIg/Kg		1	1 433	
Polychlorinated Biphenyls				I	
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank		1	T	T	
% Clay	%	< 1	1	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank				1	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Cation Exchange Capacity					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery	1 - 1 3				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	107	70-130	Pass	
TRH C10-C14	%	98	70-130	Pass	
LCS - % Recovery	, ,,,		1 70-100	, , 433	
BTEX				1	
Benzene	%	109	70-130	Pass	
Toluene	%	109	70-130	Pass	
	%	116	70-130	Pass	
Ethylbenzene ms n Yvlenes					
m&p-Xylenes	%	123	70-130	Pass	
o-Xylene	%	127	70-130	Pass	
Xylenes - Total*	%	124	70-130	Pass	
LCS - % Recovery				I	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions		 		 	
	%	122	70-130	Pass	
Naphthalene				_	
Naphthalene TRH C6-C10 TRH >C10-C16	%	112 95	70-130 70-130	Pass Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	119	70-130	Pass	
Acenaphthylene	%	110	70-130	Pass	
Anthracene	%	115	70-130	Pass	
Benz(a)anthracene	%	107	70-130	Pass	
Benzo(a)pyrene	%	112	70-130	Pass	
Benzo(b&j)fluoranthene	%	129	70-130	Pass	
Benzo(g.h.i)perylene	%	80	70-130	Pass	
Benzo(k)fluoranthene	%	113	70-130	Pass	
Chrysene	%	110	70-130	Pass	
Dibenz(a.h)anthracene	%	95	70-130	Pass	
Fluoranthene	%	105	70-130	Pass	
Fluorene	%	107	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	78	70-130	Pass	
Naphthalene	%	106	70-130	Pass	
Phenanthrene	%	120	70-130	Pass	
Pyrene	%	107	70-130	Pass	
LCS - % Recovery		101	1 70-100	1 433	
Organochlorine Pesticides					
Chlordanes - Total	%	97	70-130	Pass	
4.4'-DDD	%	101	70-130	Pass	
4.4'-DDE	%	101	70-130	Pass	
4.4'-DDT	%	107	70-130	Pass	
a-BHC	%	98	70-130	Pass	
		1			
Aldrin b-BHC	%	99	70-130 70-130	Pass	
d-BHC	%	117	70-130	Pass	
	%			Pass	
Dieldrin	%	101	70-130	Pass	
Endosulfan I	%	100	70-130	Pass	
Endosulfan II	%	105	70-130	Pass	-
Endosulfan sulphate	%	109	70-130	Pass	
Endrin	%	111	70-130	Pass	
Endrin aldehyde	%	87	70-130	Pass	
Endrin ketone	%	91	70-130	Pass	
g-BHC (Lindane)	%	96	70-130	Pass	
Heptachlor	%	100	70-130	Pass	-
Heptachlor epoxide	%	100	70-130	Pass	
Hexachlorobenzene	%	96	70-130	Pass	
Methoxychlor	%	107	70-130	Pass	
Toxaphene	%	90	70-130	Pass	
LCS - % Recovery				T	
Polychlorinated Biphenyls					
Aroclor-1016	%	90	70-130	Pass	
Aroclor-1260	%	80	70-130	Pass	<u> </u>
LCS - % Recovery					
% Clay	%	75	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	108	70-130	Pass	
Cadmium	%	98	70-130	Pass	
Chromium	%	98	70-130	Pass	
Copper	%	92	70-130	Pass	
Lead	%	96	70-130	Pass	
Mercury	%	91	70-130	Pass	

Tes	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Nickel			%	96		70-130	Pass	
Zinc			%	94		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarboi	ns - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S20-Ap29035	NCP	%	99		70-130	Pass	
TRH C10-C14	S20-Ap29035	NCP	%	80		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S20-Ap29035	NCP	%	113		70-130	Pass	
Toluene	S20-Ap29035	NCP	%	114		70-130	Pass	
Ethylbenzene	S20-Ap29035	NCP	%	118		70-130	Pass	
m&p-Xylenes	S20-Ap29035	NCP	%	122		70-130	Pass	
o-Xylene	S20-Ap29035	NCP	%	124		70-130	Pass	
Xylenes - Total*	S20-Ap29035	NCP	%	123		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarboi	ns - 2013 NEPM Fract	ions		Result 1				
Naphthalene	S20-Ap29035	NCP	%	114		70-130	Pass	
TRH C6-C10	S20-Ap29035	NCP	%	102		70-130	Pass	
TRH >C10-C16	S20-Ap29035	NCP	%	83		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarb	ons			Result 1				
Acenaphthene	S20-Ap22726	NCP	%	112		70-130	Pass	
Acenaphthylene	S20-Ap22726	NCP	%	104		70-130	Pass	
Anthracene	S20-Ap22726	NCP	%	101		70-130	Pass	
Benz(a)anthracene	S20-Ap22726	NCP	%	108		70-130	Pass	
Benzo(a)pyrene	S20-Ap22726	NCP	%	108		70-130	Pass	
Benzo(b&j)fluoranthene	S20-Ap22726	NCP	%	100		70-130	Pass	
Benzo(g.h.i)perylene	S20-Ap22726	NCP	%	94		70-130	Pass	
Benzo(k)fluoranthene	S20-Ap22726	NCP	%	116		70-130	Pass	
Chrysene	S20-Ap22726	NCP	%	112		70-130	Pass	
Dibenz(a.h)anthracene	S20-Ap22726	NCP	%	103		70-130	Pass	
Fluoranthene	S20-Ap22726	NCP	%	100		70-130	Pass	
Fluorene	S20-Ap22726	NCP	%	101		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ap22726	NCP	%	95		70-130	Pass	
Naphthalene	S20-Ap22726	NCP	%	97		70-130	Pass	
Phenanthrene	S20-Ap22726	NCP	%	110		70-130	Pass	
Pyrene	S20-Ap22726	NCP	%	98		70-130	Pass	
Spike - % Recovery					•			
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S20-Ap29036	NCP	%	87		70-130	Pass	
4.4'-DDD	S20-Ap29036	NCP	%	102		70-130	Pass	
4.4'-DDE	S20-Ap29036	NCP	%	91		70-130	Pass	
4.4'-DDT	S20-Ap29036	NCP	%	72		70-130	Pass	
a-BHC	S20-Ap29036	NCP	%	90		70-130	Pass	
Aldrin	S20-Ap29036	NCP	%	90		70-130	Pass	
b-BHC	S20-Ap29036	NCP	%	84		70-130	Pass	
d-BHC	S20-Ap29036	NCP	%	107		70-130	Pass	
Dieldrin	S20-Ap29036	NCP	%	91		70-130	Pass	
Endosulfan I	S20-Ap29036	NCP	%	89		70-130	Pass	
Endosulfan II	S20-Ap29036	NCP	%	93		70-130	Pass	
Endosulfan sulphate	S20-Ap29036	NCP	%	96		70-130	Pass	
Endrin aldehyde	S20-Ap29036	NCP	%	70		70-130	Pass	
Endrin ketone	S20-Ap29036	NCP	%	72		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
g-BHC (Lindane)	S20-Ap29036	NCP	%	88			70-130	Pass	
Heptachlor	S20-Ap29036	NCP	%	90			70-130	Pass	
Heptachlor epoxide	S20-Ap29036	NCP	%	90			70-130	Pass	
Hexachlorobenzene	S20-Ap29036	NCP	%	88			70-130	Pass	
Methoxychlor	S20-Ap29036	NCP	%	79			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S20-Ap30199	CP	%	104			70-130	Pass	
Cadmium	S20-Ap30199	СР	%	92			70-130	Pass	
Chromium	S20-Ap30199	СР	%	95			70-130	Pass	
Copper	S20-Ap30199	СР	%	90			70-130	Pass	
Lead	S20-Ap30199	СР	%	87			70-130	Pass	
Mercury	S20-Ap30199	СР	%	96			70-130	Pass	
Nickel	S20-Ap30199	СР	%	93			70-130	Pass	
Zinc	S20-Ap30199	CP	%	85			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S20-Ap29035	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	· ·	NCP		< 0.05	< 0.05	<1	30%	Pass	
	S20-Ap29035 S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate Endrin		NCP	mg/kg	< 0.05	< 0.05	<1 <1	30%	Pass	
	S20-Ap29035		mg/kg						
Endrin aldehyde	\$20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	\$20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S20-Ap29035	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S20-Ap29035	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S20-Ap29035	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				D 11.4	D # 0	DDD	T	Г	
Polychlorinated Biphenyls	200 4 2000			Result 1	Result 2	RPD	000/		
Aroclor-1016	S20-Ap30039	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S20-Ap30039	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S20-Ap30039	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S20-Ap30039	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S20-Ap30039	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S20-Ap30039	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S20-Ap30039	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Result 1	Result 2	RPD			
% Moisture	S20-Ap30039	NCP	%	11	10	7.0	30%	Pass	
Duplicate Duplicate	, 3=1. p00000								
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Ap30187	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate									
BTEX		1		Result 1	Result 2	RPD			
Benzene	S20-Ap30187	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-Ap30187	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-Ap30187	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-Ap30187	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-Ap30187	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-Ap30187	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-Ap30187	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-Ap30187	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S20-Ap30188	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-Ap30188	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S20-Ap30188	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S20-Ap30188	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-Ap30188	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S20-Ap30188	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			, ,	•					
Polycyclic Aromatic Hydrocarbon	 S			Result 1	Result 2	RPD			
Acenaphthene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Ap30188	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	· ·	CP		< 0.5					
Pyrene Duplicate	S20-Ap30188	L OF	mg/kg	<u> </u>	< 0.5	<1	30%	Pass	
•				Popult 1	Result 2	RPD			
Heavy Metals	S20-Ap30192	СР	ma/ka	Result 1 5.5	5.9		300/	Pass	
Arsenic	· ·		mg/kg			6.0	30%		
Chromium	S20-Ap30192	CP	mg/kg	< 0.4	< 0.4	<1 15	30%	Pass	
Conner	S20-Ap30192	CP	mg/kg	7.2	8.4	15	30%	Pass	
Copper	S20-Ap30192	CP	mg/kg	24	28	14	30%	Pass	
Lead	S20-Ap30192	CP	mg/kg	49	51	4.0	30%	Pass	
Mercury	S20-Ap30192	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Ap30192	CP	mg/kg	< 5	6.2	32	30%	Fail	
Zinc	S20-Ap30192	CP	mg/kg	49	55	12	30%	Pass	
Duplicate				D	D. 11.5	DDC			
Heavy Metals	000 1 0000	25		Result 1	Result 2	RPD		+	
Arsenic	S20-Ap30198	CP	mg/kg	5.6	< 2	99	30%	Fail	Q02
Cadmium	S20-Ap30198	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-Ap30198	CP	mg/kg	13	< 5	120	30%	Fail	Q02
Copper	S20-Ap30198	CP	mg/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-Ap30198	CP	mg/kg	14	12	14	30%	Pass	
Mercury	S20-Ap30198	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Ap30198	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S20-Ap30198	CP	mg/kg	6.6	5.4	20	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Clay	P19-No36262	NCP	%	1.3	1.3	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	M20-Ap39814	NCP	uS/cm	460	560	20	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-Ap34133	NCP	pH Units	6.2	6.3	Pass	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Emily Rosenberg Senior Analyst-Metal (VIC) Gabriele Cordero Senior Analyst-Inorganic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Senior Analyst-Inorganic (QLD) Jonathon Angell Nibha Vaidya Senior Analyst-Asbestos (NSW) Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to six production arising from this report. This document in other personal or expensed.

Certificate of Analysis

Environment Testing

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: George Black
Report 714933-AID
Project Name KAMBALA
Project ID 58081

Received Date Apr 21, 2020 Date Reported Apr 28, 2020

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Report Number: 714933-AID

Date Reported: Apr 28, 2020

Environment Testing

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 11

Project Name KAMBALA **Project ID** 58081

Date Sampled Apr 20, 2020 to Apr 21, 2020

Report 714933-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH11_0.5-1.0	20-Ap30186	Apr 20, 2020	Approximate Sample 745g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH12_3.0-3.5	20-Ap30187	Apr 20, 2020	Approximate Sample 933g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH13_0.0-0.1	20-Ap30188	Apr 20, 2020	Approximate Sample 766g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH14_0.0-0.1	20-Ap30189	Apr 20, 2020	Approximate Sample 628g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH15_0.5-1.0	20-Ap30190	Apr 20, 2020	Approximate Sample 738g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH16_0.0-0.01	20-Ap30191	Apr 20, 2020	Approximate Sample 676g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP1_0.0-0.1	20-Ap30192	Apr 21, 2020	Approximate Sample 689g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP2_0.0-0.1	20-Ap30194	Apr 21, 2020	Approximate Sample 647g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Report Number: 714933-AID ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Date Reported: Apr 28, 2020

Environment Testing

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 3 of 11

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
TP2_1.5-2.0	20-Ap30195	Apr 21, 2020	Approximate Sample 624g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP3_0.0-0.1	20-Ap30196	Apr 21, 2020	Approximate Sample 634g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP4_0.0-0.1	20-Ap30197	Apr 21, 2020	Approximate Sample 778g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP5_0.5-1.0	20-Ap30198	Apr 21, 2020	Approximate Sample 778g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP6_1.0-1.5	20-Ap30199	Apr 21, 2020	Approximate Sample 886g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP7_0.0-0.1	20-Ap30200	Apr 21, 2020	Approximate Sample 751g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
QA20200421	20-Ap30203	Apr 21, 2020	Approximate Sample 795g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP8_0.5-0.6	20-Ap30234	Apr 21, 2020	Approximate Sample 849g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 714933-AID

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyApr 28, 2020Indefinite

Report Number: 714933-AID

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

714933 02 8245 0300

Phone: Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
Melb	ourne Laborato											Х				
	ydney Laboratory - NATA Site # 18217							Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	sbane Laboratory - NATA Site # 20794															
Pert	h Laboratory - N	NATA Site # 237	36													
	rnal Laboratory			ı	1											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH11_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30186		Х						Х	Х		Х
2	BH12_3.0-3.5	Apr 20, 2020		Soil	S20-Ap30187		Х							Х		Х
3	BH13_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30188		Х							Х		Х
4	BH14_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30189		Х							Х		Х
5	BH15_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30190		Х							Х		Х
6	BH16_0.0-0.01	Apr 20, 2020		Soil	S20-Ap30191		Х			Х		Х		Х		
7	TP1_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30192		Х				Х			Х		Х
8	TP1_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30193					Х		Х		Х		
9	TP2_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30194		Х									
10	TP2_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30195		Х							Х		Χ

Page 5 of 11

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #: Phone:

714933 02 8245 0300

Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

			mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
	ourne Laborato			271											Х	\vdash
Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Brisbane Laboratory - NATA Site # 20794					Х											
	h Laboratory - N		36	T												
11	TP3_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30196		Х							Х		Х
12	TP4_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30197		Х						Х	Х		Х
13	TP5_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30198		Х							Х		Х
14	TP6_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30199		Х							Х		Х
15	TP7_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30200		Х							Х		Х
16	TP7_0.6-0.7	Apr 21, 2020		Soil	S20-Ap30201	Х			Х			Х		Х	Х	
17	TP8_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30202									Х		Х
18	QA20200421	Apr 21, 2020		Soil	S20-Ap30203		Х						Х	Х		Х
19	BH11_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30204			Х								
20	BH11_1.0-1.5	Apr 20, 2020		Soil	S20-Ap30205			Х								
21	BH12_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30206			Х								
22	BH12_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30207			Х								
23	BH12_1.0-1.5	Apr 20, 2020		Soil	S20-Ap30208			Х								

Page 6 of 11

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: KAMBALA

Project ID: 58081 Order No.:

Report #: Phone:

714933 02 8245 0300

Fax:

Received: Apr 21, 2020 5:30 PM

New Zealand

Due: Apr 28, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

			mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
	Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217														Х	\vdash
							X	Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794					Х										\vdash	
	h Laboratory - N		36		1											\vdash
24				Soil	S20-Ap30209			Х								\vdash
25	BH12_4.0-4.5			Soil	S20-Ap30210			Х								\vdash
26	BH13_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30211			Х								
27	BH13_1.0-1.5	Apr 20, 2020		Soil	S20-Ap30212			Х								
28	BH14_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30213			Х								
29	BH14_1.4	Apr 20, 2020		Soil	S20-Ap30214			Х								
30	BH15_0.0-0.1	Apr 20, 2020		Soil	S20-Ap30215			Х								
31	BH15_1.5-2.0	Apr 20, 2020		Soil	S20-Ap30216			Х								
32	BH16_0.5-1.0	Apr 20, 2020		Soil	S20-Ap30217			Х								
33	QA20200420	Apr 20, 2020		Soil	S20-Ap30218			Х								
34	TP1_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30219			Х								
35	TP1_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30220			Х								
36	TP2_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30221			Х								

Page 7 of 11

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.:

Report #: Phone:

Sydney

714933 02 8245 0300

Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Auckland

IANZ # 1327

			mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
		ory - NATA Site		271											Х	\vdash
Sydney Laboratory - NATA Site # 18217							X	Х	X	X	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794					Х										\vdash	
		NATA Site # 237	736	1	1											
37	TP2_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30222			Х								
38	TP3_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30223			Х								
39	TP3_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30224			Х								
40	TP3_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30225			Х								
41	TP4_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30226			Х								
42	TP4_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30227			Х								
43	TP4_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30228			Х								
44	TP5_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30229			Х								
45	TP5_1.0-1.5	Apr 21, 2020		Soil	S20-Ap30230			Х								
46	TP6_0.0-0.1	Apr 21, 2020		Soil	S20-Ap30231			Х								
47	TP6_0.5-1.0	Apr 21, 2020		Soil	S20-Ap30232			Х								
48	TP6_1.5-2.0	Apr 21, 2020		Soil	S20-Ap30233			Х								
49	TP8_0.5-0.6	Apr 21, 2020		Soil	S20-Ap30234		Х									

Page 8 of 11

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

1/21 Smallwood Place

Murarrie QLD 4172

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 7 3902 4600 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

KAMBALA 58081

Order No.: Report #:

714933 02 8245 0300

Sydney

Phone: Fax:

Received: Apr 21, 2020 5:30 PM

Due: Apr 28, 2020 **Priority:** 5 Day

George Black **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7
Mell	bourne Laborate	ory - NATA Site	# 1254 & 142	271											Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794			Χ										
Pert	Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736															
50	QA20200421- 2	Apr 21, 2020		Soil	S20-Ap30235			Х								
Test	2 Test Counts						16	31	1	2	1	3	3	17	1	14

Page 9 of 11

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

Date Reported: Apr 28, 2020

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 10 of 11

Report Number: 714933-AID

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Authorised by:

Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 714933-AID

014662

EUROFINS

CHAIN OF CUSTODY

Pg 10 f 3

PROJECT NO .: CROST			LABORATORY BATCH NO: 714922	1922
2	Borangnes		SAMPLERS: US	Š
BHONE: Stylpov: 03 8345 0300 Borth: 09 0400 0100 Brigham: 07 3113 3680	orth: 00 0400 0100 Bric	220.07 2112 2688	CC LEACT: NELM (2012)	
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	adminnsw@jbsg.com.au;	2) GBLACK @jbs	com.au; (3) LBEEVORS @ibsg.com.au	ibse.com.au
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	R DISPOSAL:		avy metal	TYPEC ANALY ANALY
SAMPLE ID MA:	MATRIX DATE TIME	TYPE & PRESERVATIVE	He TR+ TR+ P,	IDENTIFIES:
(BH11-0-0.1 So:	:1 20/4/20	ar + bag + ice		
0.5-1.0		ر ل	× × × × × ×	
1.0-1.5				
BH12 - 0-0.1				
1 0.5-1.0				
1.0-1.5				
2.5-3.0				
3.0-3.5			у х х	
S.4-0.4 A				
BH13-0-0-1			× × ×	
0.5 -1.0				
1.0-1.5		O.		
BH14-0-0.1			x y y	
0.5-1.0		<		
4:4		jar		
BHIS - 0-0-1		iar + bag + ice		
0.5-1.0		٠ - ١	× × × > >	
1.5-2.0				
BH16-0-0-1 V	V	+	× × ×	
RELINQ		METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
OF: JBS&G Men DATE: 20/4/20	t/20 CONSIGNMENT NOTE NO.	IOTE NO.	NAME: CHA'N	COOLER SEAL – Yes No Intact Broken
NAME: DATE:	CONSIGNMENT NOTE NO	IOTE NO.	NAME: DATE:	COOLER SEAL – Yes No Intact Broken
OF:	TRANSPORT CO		C.	COOLER TEMP deg C
Container & Preservanive Codes: P = Plastic; J = SIMSO FormsO13 – Chain of Custody - Generic	Soll Jar; B = Glass Bottle; N = Nitric A	cia Prsva.; C = Soaium Hyaroxiae Prsva; VC = H	arochioric Acid Prsvd Vial; VS = Sulturic Acid Prsvd Vial; S	Container & Preservative Codes: P = Plastic; J = Solidar; B = Glass Bottle; N = Nitric Acid Prsvd; C = Socium Hydroxide Prsvd; V = Hydrochoric Acid Prsvd Vial; S = Sulturic Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; S = Steriel Bottle; O = Other SO FormsO13 - Chain of Custody - Generic

EUROFINS

P9 20 5

PROJECT NO.: \$8081			I ABORATORY BATCH NO : 7-11	7473
1				7955
Kai	ald Baranalas			
DATE NEEDED BY: STP		1	QC LEVEL: NEPM (2013)	
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	adminnsw@jbsg.com.au; (2) GBLACK @jb	sg.com.au; (3)LBEEVORS@ibsg.com.au	sg.com.au
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	OR DISPOSAL:		ETALLS.	TYPE OF ASSESTOS ANALYSIS
				IFICATION I/WA
SAMPLE ID M	MATRIX DATE TIME	TYPE & PRESERVATIVE	TRE TRE	IDENTI: NEPM. NOTES:
BH16-05-1.0 Soi	01/20/10	jartbagnice		
QA20200420			Hoco d	
QC20200420	♥	•	odense seno to enti	ENTIFICAS
TP1-0-0:1	21/4/20		× × × × × ×	
0.5-1.0				
8.1-0.1			×	
1.5-2.0				
TP2-0-0:1			×	
0.1-5.0				
1.5-2.0			× × ×	
8.1-0.1				
TP3-0-0.1			х х х	
0.5-1.0				
1.0-1.5				
1.5-2.0				
194-0-0.1			х х х х	
0.5-1.0				
1.01:5				
1.5-2.0	4	<		
RELINQUISHED BY:		METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
OF: JBS&GMM DATE: 20/4	20/4/20 CONSIGNMENT NOTE NO.	OTE NO.	NAME WIN	COOLER SEAL - Yes No Intact Broken
NAME: V DATE:	CONSIGNMENT NOTE NO	TE NO.	NAME: DATE:	COOLER SEAL - Yes No Intact Broken
OF:	TRANSPORT CO		9	COOLER TEMP deg C
Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd IMSO FormsO13 - Chain of Custody - Generic				

014665

EUROFINS

CHAIN OF CUSTODY

PROJECT NO:			I ABORATORY BATCH NO: 714922	177
Ē.			SAMPLERS: CP	
			NEPI	
PHONE: Sydney: 02 8245 0300 Perth: 08 9488 0100 Brisbane: 07 3112 2688	8 9488 0100 Br	sbane: 07 3112 2688		
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)	ısw@jbsg.com.au	;(2) GBLACK @jbs	(3) LBEEVORS	@jbsg.com.au
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	i.		H METALS 1/BTEX A (Silica Ls Rs Ss. cly%, cac	TYPEC ASBES ANALY ANALY
SAMPLE ID MATRIX	DATE TIME	TYPE & PRESERVATIVE	HEA TRI	IDENTII NEPM/
TPS-0-0-1 Soil	21/4/20	jar + bag tice		
0.5-1.0	1.1		×	
V 1.0-1.5				
P6-0-0:1				
0.1-2.0				
1.0-1.5			×	
V 1.5-2.0				
TP7_0-0-1			х у у	
1-0.6-0.7			×	
TP8-0-0-1			х у у	
C 0.5-06				
3A20200421			× × × × ×	
2(2020042)			PLEASE SEND TO EN	anvirocas.
2A2020421-2				
QC20200421-2 V		<	CI GNESS ESERON PO	Environts .
RELINQUISHED BY:		METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
OF: 1888 MM DATE: 21 4 70	O CONSIGNMENT NOTE NO. TRANSPORT CO.	NOTE NO.	NAME: BYAN OF: Breach	COOLER SEAL - Yes No Intact Broken
NAME: DATE:	CONSIGNMENT NOTE NO	NOTE NO.	NAME: DATE: OF:	COOLER SEAL – Yes No Intact Broken
OF: TRANSPORT CO Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial:	TRANSPORT CO B = Glass Bottle; N = Nitric	C Acid Prsvd.: C = Sodium Hvdroxide Prsvd: VC = I	vdrochloric Acid Prsvd Vial: VS = Sulfuric Acid Prsvd Vial: S = S	VS = Sulfuric Acid Prsvd Vial: S = Sulfuric Acid Prsvd: Z = Zinc Prsvd: E = EDTA Prsvd: ST = Sterile Bottle: O = Other

IMSO FormsO13 - Chain of Custody - Generic

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 18217 Site # 18

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

George Black Contact name:

ADDITIONAL - KAMBALA Project name:

Project ID: 58081

COC number: Not provided

Turn around time: 5 Day

Date/Time received: Apr 29, 2020 11:07 AM

Eurofins reference: 716335

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 17.3 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to George Black - gblack@jbsg.com.au.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report 716335-S

Project name ADDITIONAL - KAMBALA

Project ID 58081

Received Date Apr 29, 2020

Client Sample ID			TP4_1.0-1.5	TP2_1.5-2.0	BH12_3.0-3.5	BH12_2.5-3.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ap42641	S20-Ap42642	S20-Ap42643	S20-Ap42644
Date Sampled			Apr 21, 2020	Apr 21, 2020	Apr 20, 2020	Apr 20, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	19
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	19
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	19
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	0.7
Benz(a)anthracene	0.5	mg/kg	-	-	-	7.3
Benzo(a)pyrene	0.5	mg/kg	-	-	-	12
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	8.8
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	11
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	9.0
Chrysene	0.5	mg/kg	-	-	-	8.1
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	3.0
Fluoranthene	0.5	mg/kg	-	-	-	12
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	8.1
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	2.6
Pyrene	0.5	mg/kg	-	-	-	14
Total PAH*	0.5	mg/kg	-	-	-	96.6
2-Fluorobiphenyl (surr.)	1	%	-	-	-	129
p-Terphenyl-d14 (surr.)	1	%	-	-	-	137
TRH - 2013 NEPM Fractions (after silica gel clean-u	ıp)					
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	-	< 50	< 50	-
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	-	250	< 100	-
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	-	< 100	< 100	-
TRH - 1999 NEPM Fractions (after silica gel clean-u	ıp)					
TRH C10-C36 (Total) (after silica gel clean-up)	100	mg/kg	-	180	< 100	-
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	-	< 50	< 50	-
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	-	180	< 100	-
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	-	< 100	< 100	-
, 91/		, 53				
% Clay	1	%	< 1	-	-	_
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	22	-	-	_
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		-	-	-
% Moisture	1	%	5.1	19	15	16

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP4_1.0-1.5 Soil S20-Ap42641 Apr 21, 2020	TP2_1.5-2.0 Soil S20-Ap42642 Apr 21, 2020	BH12_3.0-3.5 Soil S20-Ap42643 Apr 20, 2020	BH12_2.5-3.0 Soil S20-Ap42644 Apr 20, 2020
Heavy Metals						
Arsenic	2	mg/kg	< 2	-	-	-
Cadmium	0.4	mg/kg	< 0.4	-	-	-
Chromium	5	mg/kg	< 5	-	-	-
Copper	5	mg/kg	< 5	-	-	-
Lead	5	mg/kg	< 5	-	-	-
Mercury	0.1	mg/kg	< 0.1	-	-	-
Nickel	5	mg/kg	< 5	-	-	-
Zinc	5	mg/kg	< 5	-	-	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	1.4	-	-	-

Client Sample ID			HA06 0-0.1
Sample Matrix			Soil
Eurofins Sample No.			S20-Ap42645
Date Sampled			Apr 07, 2020
Test/Reference	LOR	Unit	
TRH - 2013 NEPM Fractions (after silica gel clean	-up)		
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	< 100
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100
TRH - 1999 NEPM Fractions (after silica gel clean	-up)		
TRH C10-C36 (Total) (after silica gel clean-up)	100	mg/kg	< 100
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	< 50
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	< 100
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	< 100
% Moisture	1	%	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	May 02, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
% Clay	Brisbane	May 05, 2020	0 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 02, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals M8	Sydney	May 02, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
TRH - 2013 NEPM Fractions (after silica gel clean-up)	Sydney	May 02, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
TRH - 1999 NEPM Fractions (after silica gel clean-up)	Sydney	May 02, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	May 05, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	May 06, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	Apr 29, 2020	14 Days
ALCO LATA OFN TORONS A			

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name:

ADDITIONAL - KAMBALA

Project ID:

58081

Order No.:

Report #: Phone:

716335 02 8245 0300

Sydney

Fax:

Received: Apr 29, 2020 11:07 AM

Due: May 6, 2020 Priority: 5 Day

Contact Name: George Black

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						% Clay	Lead	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals M8	TRH (after Silica Gel cleanup)	Moisture Set	Cation Exchange Capacity
Melbourne Laboratory - NATA Site # 1254 & 14271													Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	
Bris	bane Laborator	y - NATA Site#	20794			Х								
Pert	h Laboratory - N	NATA Site # 237	36											
Exte	External Laboratory													
No	No Sample ID Sample Date Sampling Matrix LAB ID Time													
1	TP4_1.0-1.5	Apr 21, 2020		Soil	S20-Ap42641	Х		Х			Х		Х	Х
2	TP2_1.5-2.0									Х	Х			
3	BH12_3.0-3.5 Apr 20, 2020 Soil S20-Ap42643								Х	Х				
4	BH12_2.5-3.0						Χ				Х			
5	HA06 0-0.1	Apr 07, 2020		Soil S20-Ap42645								Х	Х	
6	TP2_1.5-2.0	2.0 Apr 21, 2020 US Leachate S20-Ap42646					Χ	Х						
7	7 BH12_3.0-3.5 Apr 20, 2020 US Leachate S20-Ap42647						Х			Х				
Test	est Counts							1	2	2	1	3	5	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Page 5 of 9

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	ı mg/ng	1 0.0	0.0	1 400	
TRH - 2013 NEPM Fractions (after silica gel clean-up)					
TRH >C10-C16 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
TRH >C16-C34 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
TRH >C34-C40 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
Method Blank	IIIg/kg	< 100	100	газэ	
TRH - 1999 NEPM Fractions (after silica gel clean-up)					
TRH C10-C14 (after silica gel clean-up)		< 50	50	Pass	
, , , , , , , , , , , , , , , , , , , ,	mg/kg		100		
TRH C15-C28 (after silica gel clean-up)	mg/kg	< 100		Pass	
TRH C29-C36 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
Method Blank		40	40	D	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Cation Exchange Capacity	į				
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons	į				
Acenaphthene	%	116	70-130	Pass	
Acenaphthylene	%	110	70-130	Pass	
Anthracene	%	113	70-130	Pass	
Benz(a)anthracene	%	81	70-130	Pass	
Benzo(a)pyrene	%	86	70-130	Pass	
Benzo(b&j)fluoranthene	%	81	70-130	Pass	
Benzo(g.h.i)perylene	%	95	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(k)fluoranthene				106		70-130	Pass	
Chrysene				113		70-130	Pass	
Dibenz(a.h)anthracene				77		70-130	Pass	
Fluoranthene				113		70-130	Pass	
Fluorene				116		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	91		70-130	Pass	
Naphthalene	%	119		70-130	Pass			
Phenanthrene			%	115		70-130	Pass	
Pyrene	%	117		70-130	Pass			
LCS - % Recovery			7.5					
TRH - 2013 NEPM Fractions (after	silica gel clean-up))						
TRH >C10-C16 (after silica gel clear		,	%	83		70-130	Pass	
LCS - % Recovery	чр)		,,,			70 100	1 400	
TRH - 1999 NEPM Fractions (after	silica gel clean-un	·)						
TRH C10-C14 (after silica gel clean-		,	%	87		70-130	Pass	
LCS - % Recovery	∽ Γ/		/0			10-100	1 433	
Heavy Metals								
Arsenic			%	106		70-130	Pass	
Cadmium			%	103		70-130	Pass	
Chromium			%	98		70-130	Pass	
Copper			%	94		70-130	Pass	
			%	99		70-130		
Lead			%	101			Pass	
Mercury						70-130	Pass	
Nickel	%	99		70-130 70-130	Pass Pass			
Zinc	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S20-Ap42722	NCP	%	94		70-130	Pass	
Cadmium	S20-Ap42722	NCP	%	86		70-130	Pass	
Chromium	S20-Ap42722	NCP	%	86		70-130	Pass	
Copper	S20-Ap42722	NCP	%	81		70-130	Pass	
Lead	S20-Ap44661	NCP	%	91		70-130	Pass	
Mercury	S20-Ap42722	NCP	%	100		70-130	Pass	
Nickel	S20-Ap42722	NCP	%	80		70-130	Pass	
Zinc	S20-Ap44661	NCP	%	102		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	s			Result 1				
Acenaphthene	S20-My00435	NCP	%	97		70-130	Pass	
Acenaphthylene	S20-My00435	NCP	%	96		70-130	Pass	
·	 	NCP	%	95		70-130	Pass	
Anthracene	S20-MV00435					10.00		
Anthracene Benz(a)anthracene	S20-My00435 S20-My00435			95	l l	70-130	Pass	
Benz(a)anthracene	S20-My00435	NCP	%	95 86		70-130 70-130	Pass Pass	
Benz(a)anthracene Benzo(a)pyrene	S20-My00435 S20-My00435	NCP NCP	% %	86		70-130	Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	\$20-My00435 \$20-My00435 \$20-My00435	NCP NCP NCP	% % %	86 100		70-130 70-130	Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	S20-My00435 S20-My00435 S20-My00435 S20-My00435	NCP NCP NCP	% % %	86 100 95		70-130 70-130 70-130	Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	\$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435	NCP NCP NCP NCP	% % % %	86 100 95 82		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	\$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435	NCP NCP NCP NCP NCP	% % % % %	86 100 95 82 93		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435	NCP NCP NCP NCP NCP NCP	% % % % %	86 100 95 82 93 97		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	\$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435	NCP NCP NCP NCP NCP NCP NCP	% % % % % %	86 100 95 82 93 97 97		70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	\$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	86 100 95 82 93 97 97		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	\$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435	NCP	% % % % % % % % % %	86 100 95 82 93 97 97 96		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	\$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435 \$20-My00435	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	86 100 95 82 93 97 97		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	M20-My03413	NCP	uS/cm	640	590	7.4	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-Ap42641	СР	pH Units	3.4	3.4	Pass	30%	Pass	
% Moisture	S20-Ap42500	NCP	%	4.8	4.7	2.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-Ap41862	NCP	mg/kg	13	14	8.0	30%	Pass	
Cadmium	S20-Ap41862	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-Ap41862	NCP	mg/kg	50	55	10	30%	Pass	
Copper	S20-Ap41862	NCP	mg/kg	7.5	8.1	9.0	30%	Pass	
Lead	S20-Ap41862	NCP	mg/kg	10	12	18	30%	Pass	
Mercury	S20-Ap41862	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Ap41862	NCP	mg/kg	9.2	10	11	30%	Pass	
Zinc	S20-Ap41862	NCP	mg/kg	20	20	3.0	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-Ap41953	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Emily Rosenberg Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (NSW) Gabriele Cordero Gabriele Cordero Senior Analyst-Metal (NSW) Jonathon Angell Senior Analyst-Inorganic (QLD) Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: George Black

Report 716335-L

Project name ADDITIONAL - KAMBALA

Project ID 58081

Received Date Apr 29, 2020

Client Sample ID			TP2_1.5-2.0	BH12_3.0-3.5
Sample Matrix			US Leachate	US Leachate
Eurofins Sample No.			S20-Ap42646	S20-Ap42647
Date Sampled			Apr 21, 2020	Apr 20, 2020
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons	•			
Acenaphthene	0.001	mg/L	< 0.001	-
Acenaphthylene	0.001	mg/L	< 0.001	-
Anthracene	0.001	mg/L	< 0.001	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	=
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	=
Chrysene	0.001	mg/L	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-
Fluoranthene	0.001	mg/L	< 0.001	=
Fluorene	0.001	mg/L	< 0.001	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-
Naphthalene	0.001	mg/L	< 0.001	=
Phenanthrene	0.001	mg/L	< 0.001	=
Pyrene	0.001	mg/L	< 0.001	=
Total PAH*	0.001	mg/L	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	102	=
p-Terphenyl-d14 (surr.)	1	%	59	=
Heavy Metals				
Lead	0.01	mg/L	-	0.13
USA Leaching Procedure				
Leachate Fluid ^{C01}		comment	1.0	1.0
pH (initial)	0.1	pH Units	3.6	3.7
pH (off)	0.1	pH Units	5.1	5.1
pH (USA HCl addition)	0.1	pH Units	1.6	1.6

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	May 02, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Heavy Metals	Sydney	May 05, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
USA Leaching Procedure	Sydney	May 02, 2020	14 Days

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261

Perth Phone: +61 8 9251 9600 Site # 23736

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name:

ADDITIONAL - KAMBALA

Project ID: 58081 Order No.: Report #:

Sydney

716335 02 8245 0300

Phone: Fax:

Received: Apr 29, 2020 11:07 AM

New Zealand

35 O'Rorke Road

Auckland

IANZ # 1327

Due: May 6, 2020

Priority: 5 Day **Contact Name:** George Black

Eurofins Analytical Services Manager: Ursula Long

Sample Detail						% Clay	Lead	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals M8	TRH (after Silica Gel cleanup)	Moisture Set	Cation Exchange Capacity
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271												Х	Х
Sydi	Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х	Х	Х	Х	
Bris	bane Laborator	y - NATA Site#	20794			Х								
Pert	Perth Laboratory - NATA Site # 23736													
Exte	rnal Laboratory	,												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	TP4_1.0-1.5	Apr 21, 2020		Soil	S20-Ap42641	Х		Х			Х		Х	Х
2	TP2_1.5-2.0	Apr 21, 2020		Soil	S20-Ap42642							Х	Х	
3	BH12_3.0-3.5	Apr 20, 2020		Soil	S20-Ap42643							Х	Х	
4	BH12_2.5-3.0	Apr 20, 2020		Soil	S20-Ap42644				Χ				Х	
5	HA06 0-0.1	Apr 07, 2020		Soil	S20-Ap42645							Х	Х	
6	TP2_1.5-2.0	Apr 21, 2020		US Leachate	S20-Ap42646				Χ	Х				
7	BH12_3.0-3.5	Apr 20, 2020		US Leachate	S20-Ap42647		Х			Х				
Test	est Counts						1	1	2	2	1	3	5	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 716335-L

Quality Control Results

Tes	st		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/L	< 0.01			0.01	Pass	
LCS - % Recovery									
Heavy Metals									
Lead			%	98			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	S20-Ap44666	NCP	%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarb	ons			Result 1	Result 2	RPD			
Acenaphthene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S20-My02054	NCP	mg/L	0.001	0.001	4.0	30%	Pass	
Pyrene	S20-My02054	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-Ap44650	NCP	mg/L	0.30	0.28	7.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In oc case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to sit production arising from this report. This document had not expended except in full and relates only to the tiens tested. Unless indicated to therewise, the tests were performed on the samples as received.

Report Number: 716335-L

#AU04_COCNSW

From: Asim Khan

₽. Sent: Wednesday, 29 April 2020 11:11 AM

#AU04_Enviro_Sample_NSW; #AU04_COCNSW

Ursula Long

S

Subject: 5 DAY TAT Additional analysis FW: Eurofins Test Results - Report 714933 : Site

KAMBALA (58081)

Additional analysis please on standard TAT

Thanks,

Kind regards,

Analytical Services Manager Asim Khan

Eurofins | Environment Testing

Phone: +61 2 9900 8432 Mobile: +61 429 051 456

: AsimKhan@eurofins.com

From: Ursula Long < Ursula Long@eurofins.com>

Sent: Wednesday, 29 April 2020 11:07 AM

To: Asim Khan < Asim Khan @eurofins.com >

Subject: FW: Eurofins Test Results - Report 714933 : Site KAMBALA (58081)

From: George Black

Sent: Wednesday, 29 April 2020 11:07:08 AM (UTC+10:00) Canberra, Melbourne, Sydney

To: Ursula Long

Cc: Lillian Beevors

Subject: RE: Eurofins Test Results - Report 714933 : Site KAMBALA (58081)

EXTERNAL EMAIL*

Thanks Ursula

Can I please request the following additional analysis on STD TAT:

- Heavy Metals, CEC, pH and Clay % on sample TP4 1.0-1.5
- Silica gel TRH and TCLP PAHs on TP2_1.5-2.0
- Silica gel TRH on sample HA06 0-0.1 (lab report 713049)
- Silica gel TRH and TCLP lead on BH12_3.0-3.5
- PAHs on BH12_2.5-3.0

Kind Regards

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	Lillian Beevors, George Black

Sample Login Details					
Your reference	58081, Kambala				
Envirolab Reference	241327				
Date Sample Received	22/04/2020				
Date Instructions Received	22/04/2020				
Date Results Expected to be Reported	29/04/2020				

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	3 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
QC20200420								✓
QC20200421	✓	✓	✓	✓	✓	✓	✓	
QC20200421-2								✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 241327

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	Lillian Beevors, George Black
Address	Level 1, 50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	58081, Kambala
Number of Samples	3 Soil
Date samples received	22/04/2020
Date completed instructions received	22/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	29/04/2020
Date of Issue	27/04/2020
NATA Accreditation Number 2901. This of	document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		241327-2		
Your Reference	UNITS	QC20200421		
Date Sampled		21/04/2020		
Type of sample		Soil		
Date extracted	-	23/04/2020		
Date analysed	-	23/04/2020		
TRH C ₆ - C ₉	mg/kg	<25		
TRH C ₆ - C ₁₀	mg/kg	<25		
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25		
Benzene	mg/kg	<0.2		
Toluene	mg/kg	<0.5		
Ethylbenzene	mg/kg	<1		
m+p-xylene	mg/kg	<2		
o-Xylene	mg/kg	<1		
naphthalene	mg/kg	<1		
Total +ve Xylenes	mg/kg	<3		
Surrogate aaa-Trifluorotoluene	%	115		

Envirolab Reference: 241327

svTRH (C10-C40) in Soil				
Our Reference		241327-2		
Your Reference	UNITS	QC20200421		
Date Sampled		21/04/2020		
Type of sample		Soil		
Date extracted	-	23/04/2020		
Date analysed	-	24/04/2020		
TRH C ₁₀ - C ₁₄	mg/kg	<50		
TRH C ₁₅ - C ₂₈	mg/kg	<100		
TRH C ₂₉ - C ₃₆	mg/kg	<100		
TRH >C ₁₀ -C ₁₆	mg/kg	<50		
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50		
TRH >C ₁₆ -C ₃₄	mg/kg	<100		
TRH >C ₃₄ -C ₄₀	mg/kg	<100		
Total +ve TRH (>C10-C40)	mg/kg	<50		
Surrogate o-Terphenyl	%	92		

Envirolab Reference: 241327

PAHs in Soil		
Our Reference		241327-2
Your Reference	UNITS	QC20200421
Date Sampled		21/04/2020
Type of sample		Soil
Date extracted	-	23/04/2020
Date analysed	-	23/04/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	108

Envirolab Reference: 241327

Organochlorine Pesticides in soil		
Our Reference		241327-2
Your Reference	UNITS	QC20200421
Date Sampled		21/04/2020
Type of sample		Soil
Date extracted	-	23/04/2020
Date analysed	-	23/04/2020
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	91

PCBs in Soil		
Our Reference		241327-2
Your Reference	UNITS	QC20200421
Date Sampled		21/04/2020
Type of sample		Soil
Date extracted	-	23/04/2020
Date analysed	-	23/04/2020
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	91

Envirolab Reference: 241327

Acid Extractable metals in soil		
Our Reference		241327-2
Your Reference	UNITS	QC20200421
Date Sampled		21/04/2020
Type of sample		Soil
Date prepared	-	23/04/2020
Date analysed	-	23/04/2020
Arsenic	mg/kg	5
Cadmium	mg/kg	<0.4
Chromium	mg/kg	5
Copper	mg/kg	4
Lead	mg/kg	16
Mercury	mg/kg	<0.1
Nickel	mg/kg	2
Zinc	mg/kg	12

Moisture		
Our Reference		241327-2
Your Reference	UNITS	QC20200421
Date Sampled		21/04/2020
Type of sample		Soil
Date prepared	-	23/04/2020
Date analysed	-	24/04/2020
Moisture	%	8.4

Envirolab Reference: 241327

Page | 8 of 20 Revision No: R00

Asbestos ID - soils NEPM - ASB-001		
Our Reference		241327-2
Your Reference	UNITS	QC20200421
Date Sampled		21/04/2020
Type of sample		Soil
Date analysed	-	23/04/2020
Sample mass tested	g	684.01
Sample Description	-	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected
ACM >7mm Estimation*	g	_
FA and AF Estimation*	g	_
ACM >7mm Estimation*	%(w/w)	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001

Envirolab Reference: 241327

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020	
Date analysed	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	113	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	113	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	100	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	111	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	119	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	118	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	111	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	109	[NT]		[NT]	[NT]	110	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020		
Date analysed	-			24/04/2020	[NT]		[NT]	[NT]	24/04/2020		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	102		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	105		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	91		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	102		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	105		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	91		
Surrogate o-Terphenyl	%		Org-020	98	[NT]		[NT]	[NT]	113		

QUA	ALITY CONTRO	L: PAHs	n Soil			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]		
Date extracted	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020			
Date analysed	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020			
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114			
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114			
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	126			
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118			
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118			
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	120			
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]			
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	100			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate p-Terphenyl-d14	%		Org-022/025	111	[NT]		[NT]	[NT]	106			

Envirolab Reference: 241327

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020	
Date analysed	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	95	[NT]		[NT]	[NT]	94	

Envirolab Reference: 241327

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020		
Date analysed	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020		
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]		
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]		
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]		
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]		
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]		
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	80		
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-021	95	[NT]		[NT]	[NT]	94		

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020		
Date analysed	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020		
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	106		
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	104		
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	110		
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107		
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111		
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	86		
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102		
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 241327

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Page | 19 of 20

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Reference: 241327 Page | 20 of 20

017983

CHAIN OF CUSTODY

PROJECT NO.: 58081							LABORATORY BATCH NO.:													
PROJECT NAME: KAN	ABACA					SAMPLERS: CARE CIB														
DATE NEEDED BY: 50	<i>D</i>					QC LEVEL: NEPM (2013)														
PHONE: Sydney: 02 8245 030	00 Perth: 0	08 9488 01	00 Brish	pane: 07 3112 2688														_		
SEND REPORT & INVOICE TO	: (1) adminr	nsw@jbsg.	com.au; (2) <u>g. Slack</u> @jt	osg.com.	au; (:	3)	166	evo	<u> </u>		@j	bsg.co	m.au						
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	AL:					37												TYPE OF ASBESTO	
	. ,					2	द्ध	TEH 1878											ANALYSIS	
						[3]	2	30	$\overline{}$	1									NOITI	
						585	25	Ŧ	2 S	PcBs									IDENTIFICATION NEPM/WA	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	ASBESTUS	일		≥ o	8									IDEN	NOTES:
Q £2020 8420	Soll	20/04/20		JOL + BAG																
QC 202019421	1	21/04/20				$\boldsymbol{\kappa}$	×	$\boldsymbol{\vee}$	XX	ς X						-			:	
QC 2020 0921-2		L	1	1																
					-															
				•					_	-)				
		 		·			\neg			1		1-1		h -	4	<u> </u>				
									_			++		V	†		+			
					-		-		+	-		+++	0	+ -		-	+-			
			-					-	+			┵╾			X	2	+-			
							+	+	+	+4	 			-	₹	=			LAB	Envirolab Services
		-				\vdash	-		1	P -	\vdash	++			+	+	8	INK.		12 Ashley St Chatswood NSW 2667
		 				\vdash		\rightarrow		7		+	47	<u> </u>	+		10	b N		Ph: (02) 9910 6200 241327
							_(\mathcal{X}		-		-	_ -		_	+-	+		
						lacksquare		10						<u> </u>	:	\perp	Dá	te R	eceive	12/4/2 d 10.25
													_	$\perp \perp$	ļ		Tir	ne R	eceive	d 10:33'
										₹ <u></u>							Re	ceiv	ed by: .	PC
																	Co	nip.e	O9IVAI ملاممان	n bient Evack
								-									Se	curity	rintac	Broken/None
																			T	
RELINQUISHED BY	: ,			METHOD OF SHIPMENT:					RECE	IVED I	3Y:			·						USE ONLY:
NAME: G GCACU DATE: 20		CONS	SIGNMENT N	NOTE NO.		1	ME:	14	e~~	1012	3		cc	OOLER S	EAL –	Yes	No		Intact	Broken
OF: JBS&G	•	TRAN	ISPORT CO.			OF				3/2			cc	OLER T	EMP.	deg	, C			
NAME: DATE:			SIGNMENT N	NOTE NO.		NA	ME:	_			DAT	E:	CC	OLER S	EAL –	Yes	No		Intact	Broken
05:		TDAN	CDORT CO			OF	:							OLER T	EVAD	dor				:
OF: Container & Preservative Codes: P = Pla	astic; J = Soil Jar;	B = Glass Bottl	ISPORT CO e; N = Nitric A	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hydrochlo	ric Acid	d Prsv	d Vial;	VS = St	ulfuric A	Acid Prs	d Vial; S	= Sulfurio	Acid Pre	vd; Z =	Zinc Prs	vd; E =	= EDT/	\ Prsvd;	ST = Sterile Bottle; O = Other

IMSO FormsO13 - Chain of Custody - Generic

Appendix E Statistical Analysis

sports field

BH03_0-0.1	•
BH03_2.5-2.6	<0.5
BH04_0-0.1	<0.5
BH04_1.0-1.1	-
BH06_0.3-0.4	<0.5
BH06_3.0-3.1	-
BH07_0-0.1	<0.5
BH07_1.5-1.6	•
BH07-1.5-1.6	18
BH07_4.0-4.1	0.8
BH08_0-0.1	<0.5
BH08_3.5-3.6	1
BH09_0-0.1	-
BH09_1.5-1.6	<0.5
BH09_4.0-4.1	-
BH10_0-0.1	<0.5
BH10_1.0-1.1	•
BH11_0.5-1.0	<0.5
BH12_2.5-3.0	12
BH12_3.0-3.5	3
BH12_3.0-3.5	-
BH13_0.0-0.1	<0.5
BH14_0.0-0.1	<0.5
BH15_0.5-1.0	<0.5
BH16_0.0-0.1	<0.5
TP1_1.0-1.5	<0.5
TP2_0.0-0.1	1
TP2_1.5-2.0	11
TP2_1.5-2.0	ı
TP3_0.0-0.1	<0.5
TP4_0.0-0.1	<0.5
QC20200421	<0.05
QA20200421	<0.5
TP4_1.0-1.5	ı
TP5_0.5-1.0	<0.5
TP6_1.0-1.5	<0.5
TP7_0.0-0.1	<0.5
TP7_0.6-0.7	-
TP8_0.0-0.1	<0.5
TP8_0.5-0.6	-

embankment

23
4.8
4.8
-
9
-
3.9
1
0.8
<0.5
-
-
<0.5
13
-
<5
3.2
2.3
5.6
0.7
<0.5
0.7
0.7
<0.5

Normal UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation 19-06-20 9:28
From File WorkSheet.xls
Full Precision OFF

Confidence Coefficient 95%

Sportsfield

O	04 - 4: -	
General	Statis	IICS

Total Number of Observations	26 Number of Distinct Observations	7
	Number of Missing Observations	15
Minimum	0.025 Mean	1.916
Maximum	18 Median	0.25
SD	4.492 SD of logged Data	1.465
Coefficient of Variation	2.344 Skewness	2.79

Normal GOF Test

Shapiro Wilk Test Statistic0.441Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.92Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.452Lilliefors GOF Test5% Lilliefors Critical Value0.174Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 3.421
 95% Adjusted-CLT UCL (Chen-1995)
 3.88

 95% Modified-t UCL (Johnson-1978)
 3.501

Suggested UCL to Use

Data do not follow a Discernible Distribution, May want to try Nonparametric UCLs

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Embankments

General	Statistics

Total Number of Observations	18 Number of Distinct Observations	12
	Number of Missing Observations	7
Minimum	0.25 Mean	4.222
Maximum	23 Median	2.4
SD	5.815 SD of logged Data	1.46
Coefficient of Variation	1.377 Skewness	2.347

Normal GOF Test

Shapiro Wilk Test Statistic 0.704 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value

0.897 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic

0.247 Lilliefors GOF Test

5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

0.209 Data Not Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 6.607
 95% Adjusted-CLT UCL (Chen-1995)
 7.287

 95% Modified-t UCL (Johnson-1978)
 6.733

Suggested UCL to Use

Data appear Gamma, May want to try Gamma Distribution

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date
А	, ,	Kambala School, c/- Sufian Supa'at — Carmichael Tompkins Property Group	25/06/2020

Document Status

		Reviewer	Approved for Issue		
Rev No. Author	Name	Name	Signature	Date	
А	George Black	Matthew Bennett	Matthew Bennett	Draft for Client Review	25/06/2020