

Flood Impact and Risk Assessment

State Significant Development Application SSD-72891212

57-61 Archer Street and34 Bertram Street, Chatswood

Chatswood Property Co. Pty Ltd 29/08/2025 24-1218

Commercial in Confidence

All intellectual property rights, including copyright, in designs developed and documents created by AT&L remain the property of this company. Any use made of such design or document without the prior written approval of AT&L will constitute an infringement of the rights of the company which reserves all legal rights and remedies in respect of any such infringement.

The information, including any intellectual property, contained in this proposal is confidential and proprietary to the Company. It may only be used by the person to whom it is provided for the stated purpose for which it is provided and must not be imparted to any third person without the prior written approval of the Company. The Company reserves all legal rights and remedies in relation to any infringement of its rights in respect of its confidential information.

This report has been prepared in accordance with the terms and conditions of appointment. AT&L cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

This report may be based upon information supplied by other consultants and contractors. To the extent that the report incorporates such material, AT&L takes no responsibility for any loss or damage caused by any error or omission arising from reliance on it.

Document Registration

Document Title	Flood Impact and Risk Assessment	
Document File Name	REP001-04-24-1218-Flood Assessment	
Section	Civil / Urban Water Management	
Document Author	IS	

Issue	Description	Date	Author	Checked	Approved
01	DRAFT	31/05/2024	AA / TM		
02	ISSUE FOR SSDA	19/09/2024	TM		
03	RESPONSE TO DPHI COMMENTS DATED 7 FEBRUARY 2025	18/07/2025	IS		
04	Response to comments	29/08/2025	JA		

Contents

1.	Introd	uction	1
	1.1.	Overview	1
	1.2.	Project Scope	4
	1.3.	Relevant Guidelines	5
2.	Site Ch	aracteristics and Overview	6
	2.1.	Location and Site Description	6
	2.2.	Topography	6
	2.3.	Current Land Use and Zoning	7
	2.4.	Catchment Characteristics	. 10
	2.5.	Available Flood Studies	. 10
	2.5.1.	Scotts Creek Flood Study (Lyall and Associates 2008)	. 10
	2.6.	Site Flood Mechanisms	. 11
	2.6.1.	Mainstream Flooding	. 11
	2.6.2.	Local Overland Flooding	. 11
	2.6.3.	Site Flooding	. 11
	2.7.	Existing Flood Maps	. 11
	2.8.	Proposed Development	. 11
3.	Hydro	ogy and Hydraulic Modelling	. 12
	3.1.	Overview	. 12
	3.2.	Scenarios	. 12
	3.2.1.	Catchment Conditions	. 12
	3.2.2.	Storm Events	. 12
	Pr	eliminary	. 12
	3.3.	Catchment Hydrology	. 12
	3.4.	Hydraulic Modelling	. 14
	3.4.1.	Terrain Data	. 14
	3.4.2.	TUFLOW Modelling Setup	. 14
	3.4.2.2	Existing Conditions	. 14
	3.4.2.2	Proposed Conditions	. 16
	3.4.3.	Preferred option	. 18
4.	TUFLC	W Modelling Results	. 20
	4.1.	Discussion	. 20
	4.1.1.	Existing Conditions	. 20
	4.1.2.	Proposed Conditions	. 20
	Ch	anges to flood hazard	. 20
	4.1.3.		. 20
5.	Summ	ary and Recommendations	. 22
Αp	pendix A	– Site Survey	. 23
Αp	pendix B	– Proposed Development	. 24

Appendix C – Willoughby DCP Requirements	25
Appendix D – Preferred Flood Diversion Option Civil Plans	26
Appendix E – Sewer Diversion Plans (Stamped)	27
Appendix F – Flood Results	28
Figures	
Figure 1: Site extent (source: ATL & Nearmap)	6
Figure 2: Site with respect to existing topography (source: AT&L and ELVIS)	7
Figure 3: Site with respect to location of a local gully that drains south to north through private properties bound by Archer Street and Bertram Street (source: AT&L and Sydney Water)	
Figure 4: Site extent with respect to the surrounding land use zones under Willoughby LEP 2012 (source: Mecone Mosaic)	9
Figure 5: Maximum height of building limits under Willoughby LEP 2012 (source: Mecone Mosaic)	9
Figure 6: Catchment used to estimate Down Stream Boundary Condition of the TUFLOW model (Image sou Google Satellite Hybrid)	
Figure 7: Catchment Used in DRAINS for Hydrology Purpose	13
Figure 8: Existing Council pit and pipe network layout (AT&L model)	15
Figure 9: Existing Site pit and pipe network layout (AT&L model)	16
Figure 10: Proposed Site pit and pipe network layout (AT&L model)	17
Figure 11: Stormwater design scenarios tested for flood mitigation purpose.	18
Figure 12: Preferred flood management option (AT&L)	19
Figure 13: Change to flood hazard in the PMF	21
Tables	
Table 1: CPHR Advice and AT&L Response	1
Table 2: Additional CPHR Advice and AT&L Response	2
Table 3: Zone MU1 objectives and land use regulations under Willoughby LEP 2012	8
Table 4: Critical Storm Duration Results	13
Table 5: Manning's Roughness Values from Scotts Creek Flood Study (source: Lyall and Associates 2008)	16
Table 6: Stormwater Design Iteration Summary	18

1. Introduction

1.1. Overview

This report has been prepared to accompany a detailed State Significant Development (SSD) development application (DA) for a proposed mixed use infill affordable housing development at 57-61 Archer St & 34 Albert Ave, Chatswood (SSD-72891212).

The Minister for Planning and Public Spaces, or their delegate, is the consent authority for the SSDA and this application is lodged with the NSW Department of Planning, housing and Infrastructure (NSW DPHI) for assessment.

This report has been prepared in response to the requirements contained within the Conservation Programs, Heritage and Regulation (CPHR) advice on the Environmental Impact Statement (EIS) for SSD-72891212, dated 7 February 2025. In this report, CPHR comments based on reviewing the AT&L Flood Impact and Risk Assessment report (REP001-02-24-1218) have been addressed within **Table 1**.

Table 1: CPHR Advice and AT&L Response

Issue and Assessment Requirement	Recommendation/Action	Section of this report which responds to the SEAR
The FIRA in section 3.1 indicates that separate hydrology and hydraulic models were used however in section 3.4.2.1 states that Rainfall on Grid was used.	Clarify the method used in the model.	TUFLOW direct rainfall model was used for the flood assessment. An assessment of critical duration and temporal pattern was undertaken using DRAINS. Refer to Section 3 Hydrology and Hydraulic modelling approach.
The FIRA provides an Intensity- Frequency-Duration (IFD) download from Australian Rainfall and Runoff 2019 (ARR2019) however it does not indicate if multiple temporal patterns were used.	Clarify if multiple temporal patterns were used in accordance with ARR recommendations. Multiple temporal patterns are generally required unless justification is provided.	This Flood Impact and Risk Assessment (FIRA) has been prepared in accordance with the latest 2019 ARR rainfall guidelines. Refer to section 3.3 for further details.
The FIRA did not include piped drainage for the modelling. The site location has significant council drainage and inter-allotment drainage. Excluding this pipework overestimates water depths and does not place water in easements in the correct locations.	Include stormwater drainage with appropriate pit and pipe blockage factors in model in accordance with ARR recommendations and Willoughby City Council guidelines.	Site and Council stormwater network have been included in the flood model with 50% blockage according to Council blockage requirements.
The IFDs used underestimate current condition flows and should be updated in accordance with latest ARR guidance regarding existing climate change.	Consider scale up of IFD results.	The IFD information was taken from BOM. This IFD information was scaled up to include the SSP2-4.5 in 2030.
The provided model indicates unacceptable offsite impacts in the 1% AEP event. Impacts of 300 to 700 mm increase in depth are shown on properties served by the easement together with a change	Modify design and demonstrate that offsite impacts are mitigated to 10 mm or less for the 1% AEP.	Additional scenarios were tested, refer to manage the potential for flood impacts. Refer to Section 3.4.2.2.

Civil & Structural Engineers | Project Managers | Water Servicing Coordinators

of hazard from H1/H2 to H3. There are also significant offsite areas shown on the afflux map which were dry and are now wet.		
Probable maximum flood (PMF) afflux mapping is not provided.	Provide PMF afflux mapping.	To be considered in future reporting.
The method of protection of the proposed multistorey basement is	Clarify protection of the basement.	A flood barrier will be required to be included in future design stages.
unclear. It is also not clear if all service entries/ducts are above the PMF.		A proposed flood barrier as a fully blocked obstruction at the driveway on Bertram Street is proposed to protect the basement from the flood water getting into the basement in flood events.
The plans show increase in H5 flooding to the rear of the heritage building which is being retained. It is likely that this will cause damage	Provide an amended design which protects the heritage building and pedestrian areas from H5 flooding.	Additional scenarios were tested, refer to manage the potential for flood impacts. Refer to Section 3.4.2.2.
to this structure, and it is not clear how water from the easement will be prevented from impacting the heritage building. It is also unclear how public safety in the high hazard pedestrian area is achieved.		Note this is a small area with shallow depths of flooding, so minimal structural loading. As much or the area will be paved, the potential for scour will also be minimal.

Following this, a subsequent round of comments was received form CPHR. These are documented in Table 2.

Table 2: Additional CPHR Advice and AT&L Response

Issue and Assessment Requirement	Recommendation/Action	Section of this report which responds to the SEAR
IFDs have been upscaled to current conditions only. No future climate change has been included. A development of this scale would generally apply future climate change to provide some resilience over the life span of the building. The upscale to 2030 is adequate to assess current risks however the upscaled results have not been used to prepare afflux maps. The upscaled results reflect current rainfall conditions and should not be labelled climate change. Flood afflux maps should be prepared using the 2030 values.	Prior to determination apply the 2030 results to generate the afflux maps and relabel the maps as current condition.	Modelling has been undertaken with and without climate change/ the results reported in Section 4, with mapping provided in Appendix F.
Probable Maximum Flood (PMF) afflux mapping has not been provided however the maps provided indicate that a change in the extent of H3 hazard on several sites to the south site occurs	Provide PMF afflux mapping.	Additional discussion on change in flood hazard during the PMF provided (refer Section 4), afflux mapping is included in Appendix F.

because of the development. This is not considered to be adequate.		
The FIRA indicates that the extent of H5 flooding around the heritage building is minor and that paving will protect surfaces. The FIRA does not provide the finished floor level of the heritage building and flood contours indicate that flood levels increase in this area.	Provide an amended design which protects the heritage building and pedestrian areas from H5 flooding.	Additional discussion on change in flood hazard during the PMF provided (refer Section 4)
The high hazard pedestrian areas have not been commented upon in the report. CPHR notes that the building is modelled as a blocked element however it is likely that the increase in flood level may result in entry of water into the heritage building		
The SSD appears to rely on development occurring as part of an SSD on 51-55 Archer Street (SSD-75116211). Each development must be able to mitigate its own impacts and cannot rely on work by others.	Redesign to ensure that the development does not rely on other developments.	No works are proposed on adjoining private land. Flood impacts are an artifact of initial the initial model, and removed once a refined TIN were included into the model However, Drainage works required in Bertram Street and are proposed as part of this development (Refer Appendix D)
Redesign the easement diversion and show evidence that it provides equivalent service with respect to piped and overland flow to the benefited properties. Show evidence of negotiation with adjacent properties and evidence of permission to change the easement location.	Confirmation of an agreement with adjoining land holders together with a demonstration of a viable design prior to determination.	No works are proposed on the neighbouring properties.
The plans show increase in H5 flooding to the rear of the heritage building which is being retained. It is likely that this will cause damage to this structure, and it is not clear how water from the easement will be prevented from impacting the heritage building. It is also unclear how public safety in the high hazard pedestrian area is achieved.	Provide an amended design which protects the heritage building and pedestrian areas from H5 flooding.	Additional discussion on change in flood hazard during the PMF provided (refer Section 4.1.3).
The mitigation methods include relocation of an easement serving other properties to allow for basement construction. There is no evidence that this is correctly designed. The impact offsite	Redesign the easement diversion and show evidence that it provides equivalent service with respect to piped and overland flow to the	Sewer diversion plans have been approved by Sydney Water. These are attached in Appendix E.

indicates that the relocated easement does not effectively drain the properties which currently benefit from the easement.	benefited properties. Show evidence of negotiation with adjacent properties and evidence of permission to change the easement location.	
The FIRA proposed to provide a Flood Emergency Response Plan (FERP) later.	A flood emergency response plan may not be required at this stage depending on assessed risk however the FIRA is required to carry out a risk assessment of the proposed development which should consider, but is not limited to, such items as hazard on site and on roadways, structural design, access and egress.	FERP has been drafted as a companion document.
	Table A in Flood impact and risk assessment, Flood risk management guideline LU01 which accompanies the NSW Flood Risk Management Manual 2023 provides guidance on preparation of FIRA.	

This report documents the findings of hydrologic and hydraulic modelling of the site under existing and proposed conditions. The assessment aims to understand flood behaviour, evaluate the impact of flooding on the proposed development, and assess the potential impact of the development on flood behaviour within and adjacent to the site.

The site is located within the Scotts Creek catchment area, where Council is finalising a Floodplain Risk Management Study and Plan (FRMS&P).

1.2. Project Scope

The project scope and objectives are:

- a) Liaise with Council to obtain existing stormwater asset data and any available flood information.
- b) Develop a TUFLOW model to simulate pre-development conditions.
- c) Develop a TUFLOW model to simulate post-development conditions, incorporating proposed changes to built form and ground levels associated with the development.
- d) Simulate the 1% Annual Exceedance Probability (AEP) with and without climate change, and Probable Maximum Flood (PMF) events under both pre- and post-development scenarios.
- e) Prepare detailed mapping for the critical storm duration, illustrating peak flood extents and depths, flood levels, hazard categories (AIDR H1-H6), and changes in flood level (1% AEP only).
- f) Compile a Flood Assessment report that documents the methodology and results of flood modelling and assesses the proposed development against Council's Technical Standard 2 (Floodplain Management) and the 2023 Flood Risk Management Manual.

1.3. Relevant Guidelines

This report has been prepared in accordance with the following guidelines and policies:

- Willoughby Development Control Plan 2023 (DCP)
- Willoughby Local Environment Plan 2012 (LEP)
- NSW Department of Planning and Environment, Flood Risk Management Manual (2023)
- Flood risk management guideline LU01

2. Site Characteristics and Overview

2.1. Location and Site Description

The Site Extent, approximately 0.266 hectares, is located at 57-61 Archer Street and 34 Albert Avenue, Chatswood, within the Willoughby Local Government Area (LGA) (see Figure 1). The site comprises of the following allotments:

- SP81015 (57-61 Archer Street Chatswood NSW 2067)
- SP101358 (34 Albert Avenue Chatswood NSW 2067)

Figure 1: Site extent (source: ATL & Nearmap)

2.2. Topography

The topography surrounding and within the Site Extent generally slopes in a north-easterly direction (see **Figure 2**) before reaching Scotts Creek. An initial review of elevation contours in the vicinity of the site shows a local gully that drains south to north through private properties bounded by Archer Street and Bertram Street (see **Figure 3**). This indicates that the site may be prone to inundation from local catchment flooding.

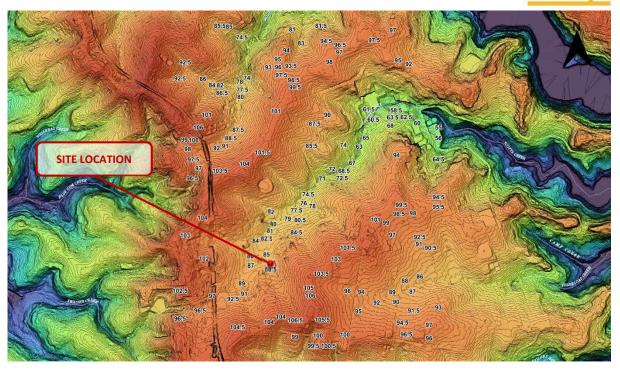


Figure 2: Site with respect to existing topography (source: AT&L and ELVIS)

Figure 3: Site with respect to location of a local gully that drains south to north through private properties bound by Archer Street and Bertram Street (source: AT&L and Sydney Water)

2.3. Current Land Use and Zoning

The Site is currently zoned as *MU1 Mixed Use* under Willoughby LEP 2012, as shown in **Figure 4**. The permitted development uses for this zoning are listed in **Table 3**. The Site is situated nearby to Chatswood Police Station and Chatswood Private Hospital.

Table 3: Zone MU1 objectives and land use regulations under Willoughby LEP 2012

Zone MU1 Mixed Use

1. Objectives of Zone

- To encourage a diversity of business, retail, office and light industrial land uses that generate employment opportunities.
- To ensure that new development provides diverse and active street frontages to attract pedestrian traffic and to contribute to vibrant, diverse and functional streets and public spaces.
- To minimise conflict between land uses within this zone and land uses within adjoining zones.
- To encourage business, retail, community and other non-residential land uses on the ground floor of buildings.
- To allow for city living on the edges of the city centre of Chatswood, which encourages public transport
 use, shopping and the use of businesses and recreational services that contribute to the vitality of the
 city, without undermining its commercial role.

2. Permitted without Consent

Nil

3. Permitted with Consent

Amusement centres; Boarding houses; Building identification signs; Business identification signs; Car parks; Centre-based child care facilities; Commercial premises; Community facilities; Entertainment facilities; Function centres; Information and education facilities; Light industries; Local distribution premises; Medical centres; Oyster aquaculture; Passenger transport facilities; Places of public worship; Recreation areas; Recreation facilities (indoor); Registered clubs; Respite day care centres; Restricted premises; Seniors housing; Shop top housing; Tank-based aquaculture; Tourist and visitor accommodation; Vehicle repair stations; Any other development not specified in item 2 or 4

4. Prohibited

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Electricity generating works; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads; Highway service centres; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Marinas; Mooring pens; Mortuaries; Open cut mining; Port facilities; Recreation facilities (major); Research stations; Residential accommodation; Resource recovery facilities; Rural industries; Service stations; Sewage treatment plants; Sex services premises; Signage; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Veterinary hospitals; Waste disposal facilities; Water recycling facilities; Water supply systems; Wharf or boating facilities; Wholesale supplies

As shown in **Figure 5**, the maximum building height for the western portion of the site is 90 metres. The eastern portion of the site, including the extent of the existing heritage building adjacent to Bertram Street and Archer Street, has a maximum building height limit of 23 metres. It is noted that the property immediately to the south of the site also has a maximum building height of 90 metres, and the western portion of the MU1 zoned land bound by Albert Avenue (to the north), Bertram Street (to the east), Johnson Street (to the south) and Archer Street (to the west) has a varying height limit from 90 metres, transitioning to 68 metres, 41 metres and then to 11 metres for the lot on the corner of Archer Street and Johnson Street. This maximum height of building limit suggests that the entirety of the MU1 zoned land described above will be redeveloped at some stage.

Figure 4: Site extent with respect to the surrounding land use zones under Willoughby LEP 2012 (source: Mecone Mosaic)

Figure 5: Maximum height of building limits under Willoughby LEP 2012 (source: Mecone Mosaic)

2.4. Catchment Characteristics

AT&L has used three catchments for different study purposes. The biggest catchment within the Scotts Creek Catchment has been shown in Figure 6) and has been used to estimate the tailwater level boundary condition in the TUFLOW hydraulic model. This catchment in Willoughby is highly urbanised, with a mix of natural channels and constructed drainage systems that influence runoff and flood behaviour. The catchment's topography, size, and land use contribute to potential flooding, especially during major storm events.

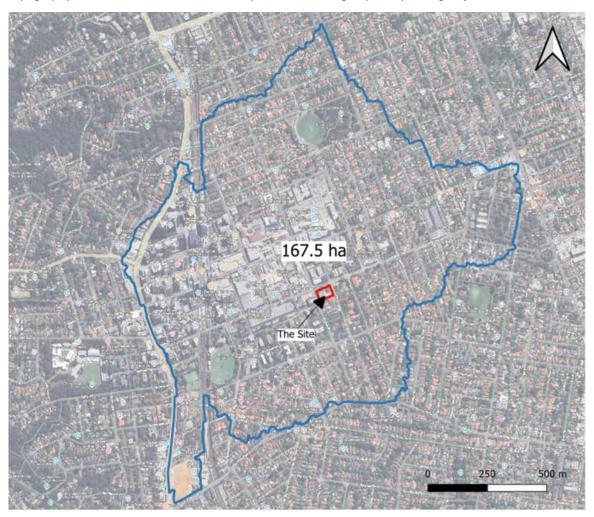


Figure 6: Catchment used to estimate Down Stream Boundary Condition of the TUFLOW model (Image source: Google Satellite Hybrid)

2.5. Available Flood Studies

2.5.1. Scotts Creek Flood Study (Lyall and Associates 2008)

A review of available flood studies yielded the following information:

- The Scotts Creek Flood Study (Lyall and Associates 2008) documents and details the extents of flooding within the Scotts Creek catchment for a range of design storm events being the 18.13% AEP, 5% AEP, 1% AEP and the PMF. The study is based on a HEC-RAS model and does not yield sufficient information regarding the local overland flood mechanisms at the Site.
- Upstream limit of flood mapping extent is at Chatswood Chase shopping centre (345 Victoria Avenue Chatswood) and does cover the Site Extent.
 - ▶ The flood study determined the critical duration for the 1% AEP was the 90 minutes for the Scotts Creek Catchment.
 - ▶ The flood study determined the peak PMF flow rate to be 4 x the 1% AEP peak flow.

Civil & Structural Engineers | Project Managers | Water Servicing Coordinators

2.6. Site Flood Mechanisms

Willoughby City Council experiences two main types of flooding, mainstream flooding and local overland flooding.

2.6.1. Mainstream Flooding

This happens when floodwaters from rivers or creeks overflow and impact properties. Structures in these flood paths can alter the water flow and potentially harm nearby properties.

2.6.2. Local Overland Flooding

This occurs when runoff flows over surfaces like grass and roads, heading towards the main drainage system. It's further divided into:

- Major Drainage Involves deeper and potentially more dangerous water flow.
- Local Drainage Involves shallower water flow, generally not hazardous.

Both types of flooding can redirect water to other properties if obstructed by structures, requiring careful design in new developments. Flooding can reach depths of up to 2 metres and speeds of up to 4 m/s during major storms.

2.6.3. Site Flooding

Willoughby Council has advised that the Site is affected by overland flow. At the time of this assessment Council are currently in the process of finalising a Floodplain Risk Management Study and Plan (FRMS&P) for the Scotts Creek catchment, and detailed information on flood levels was unavailable. Therefore, to inform a site-specific flood assessment for 57-61 Archer Street, results were compared to Scotts Creek Flood Study (Lyall and Associates 2008).

AT&L has requested preliminary details of the Scotts Creek Flood Study as they pertain to flood risk at the site, however Council was unable to provide any further information.

2.7. Existing Flood Maps

Investigations of the publicly available flood map data is limited. This is because the maps within the Scotts Creek Flood Study (Lyall and Associates 2008) have an upstream limit of flood mapping at Chatswood Chase shopping centre (345 Victoria Avenue Chatswood) and exclude the Site Extent.

2.8. Proposed Development

A proposed site development layout is provided in Appendix B. It will be a 32-storey development comprising 150 residential dwellings, including one, two, and three-bedroom apartments and penthouses. Additionally, there will be 0.28 hectares of retail and commercial space.

3. Hydrology and Hydraulic Modelling

3.1. Overview

The hydrological and hydraulic modelling approaches used to assess the Site under both existing (predevelopment) and post-development conditions are as below:

- Drains model to assess the critical storm.
- TUFLOW to assess the flood conditions on the Site (Rain on Grid).

3.2. Scenarios

3.2.1. Catchment Conditions

The hydraulic model was setup to represent the following flood condition scenarios:

- E01: Existing conditions, the catchment in its current state as described in Section 2.4
- P01: Proposed conditions, the catchment in its current state as described in Section 2.4 and the site as describes in Section 2.8

3.2.2. Storm Events

The hydrological modelling storm events adopted for this assessment include:

- 1% AEP
- 1% AEP with climate change (SSP2-4.5 in 2030)
- Probable Maximum Flood (PMF)

3.3. Preliminary Catchment Hydrology

Catchment hydrology has been modelled using an IL-CL DRAINS model. An ensemble of storms durations and temporal patterns was run in DRAINS to determine the critical storm duration for the site in the storm events ranging between (and including) the 5 minute and 180-minute durations. To model 1% AEP with climate change, related rainfall data have been adopted in accordance with updated ARR guidelines.

Refer to Figure 8 below for the catchment used in DRAINS model to get the critical storm events.

Sensitivity testing was undertaken on the critical events using model to test other durations TUFLOW.

Figure 7: Catchment Used in DRAINS for Hydrology Purpose.

Modelling assumptions are as below:

- Intensity Frequency Duration (IFD) data were derived from the Bureau of Meteorology Datahub in accordance with ARR2019
 - ▶ Longitude: 151.187 Latitude: -33.797
- Continuing Losse of 0.72 mm and Probability Neutral Burst Initial Loss of 6.6 mm have been used for 1% AEP in accordance with the ARR Data Hub.
- Continuing Losse of 0.756 mm and Probability Neutral Burst Initial Loss of 6.732 mm have been used for 1% AEP with climate change in accordance with the updated ARR guidelines.
- The Probable Maximum Precipitation (PMP) intensities and temporal distribution were determined using the Bureau of Meteorology Generalised Short Duration Method (1994)
- The critical durations selected with respect to the Site are provided in Table 4.

Table 4: Critical Storm Duration Results

Storm Event	Duration (min)	Temporal Pattern
1% AEP	30 minutes	TP09
1% AEP with Climate Change (SSP2-4.5 in 2030)	30 minutes	TP09
PMF	15 minutes	-

3.4. Hydraulic Modelling

A two-dimensional TUFLOW hydraulic model was developed to assess flood behaviour in the vicinity of the Study Area.

3.4.1. Terrain Data

The 3D surface for existing and conditions was generated from a combination of:

- LIDAR Data of the existing topography surrounding the site and catchment area from the ELVIS Elevation and Depth Foundation Spatial Data (https://elevation.fsdf.org.au/)
- Survey of the site and surrounding roads by Stuart de Nett Land Surveyors Pty Ltd surveyors (2017)

3.4.2. TUFLOW Modelling Setup

3.4.2.1. Existing Conditions

The existing conditions model construction consisted of:

- a) Creating a 1m x 1m topographic grid based on the available LiDAR and survey information outlined in Section 3.4.1.
- b) Establishment of model boundary extents which generally align with upstream catchment of Bertram Street Victoria Avenue intersection, on Bertram Street.
- c) Establishment of boundary conditions and extents downstream of the site on Albert Avenue. The downstream boundary extent slope has been calculated to be 0.01.
- d) Establishment of the tailwater condition (based on the catchment described in section 2.4) at the most downstream locations of the Council pipe network in the TUFLOW study area.
- e) Incorporating critical storm rainfall intensities (outlined in section 3.3) onto rainfall on grid.
- f) Initial and continuing losses for pervious and impervious areas were incorporated within the 2d_mat layer and the materials database as nominated in
- g) Inclusion of 2d_zsh polygons to represent existing building in the study area.
- h) Assigning a water depth filter of 0.1m to remove water that is not considered flood flows
- Assigning existing site Manning's roughness coefficients based on Google Street Maps and Nearmap aerial imagery. Manning's Roughness values are summaries in Table 5 and are derived from the Scotts Creek Flood Study (Lyall and Associates 2008)
- j) Inclusion of the majority of Council's pit and pipe network (50% Blocked), refer to Figure 8.
- k) Inclusion of Site-specific pit and pipe network based on the servery (50% Blocked). Refer to figure 9 below for the Existing pit and pipe network layout used in the existing condition.

Figure 8: Existing Council pit and pipe network layout (AT&L model)



Figure 9: Existing Site pit and pipe network layout (AT&L model)

Table 5: Manning's Roughness Values from Scotts Creek Flood Study (source: Lyall and Associates 2008)

Material	Manning's Roughness Value
Asphalt / Paved Areas	0.020
Grassed	0.035
Landscape Areas (e.g., shrubs / long native grasses)	0.050
Residential Areas	0.100

3.4.2.2. Proposed Conditions

All elements and parameters described in Section 3.4.2.1 were used in the proposed scenario with the following additions and modifications:

- a) Updating the surface to represent the proposed design surface.
- b) Assigning Manning's roughness coefficients and Initial and Continuing losses based on **Table 5** to reflect the proposed development.
- c) Updating the 2d_zs polygons to reflect the proposed buildings on the Site.
- d) Incorporating a proposed flood barrier as a fully blocked z-shape obstruction at the driveway on Bertram Street.

e) Inclusion of the proposed stormwater pit and pipe network as 4.8 x 0.5 m culvert between the sag point at the back of the property to Bertram Street and then followed by a 1.3 m pipe on Bertram Street to meet the existing Council pipe at the corner of Bertram Street – Albert Avenue, refer to Figure 10.

Figure 10: Proposed Site pit and pipe network layout (AT&L model)

It should be mentioned for the proposed stormwater network; AT&L has tested more 4 design scenarios summarised in Figure 11 and Table 6 below.

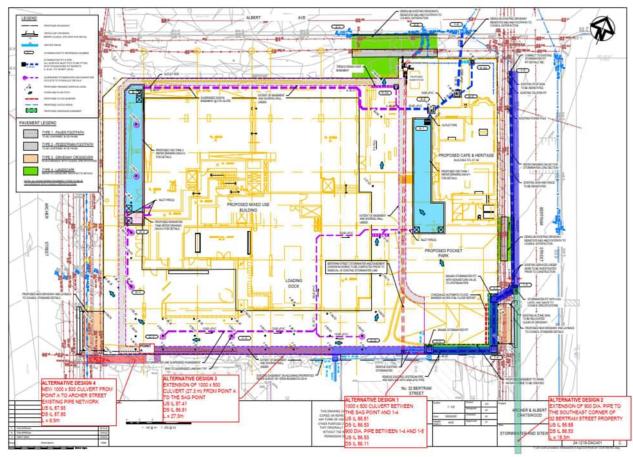


Figure 11: Stormwater design scenarios tested for flood mitigation purpose.

Table 6: Stormwater Design Iteration Summary

Stormwater Design Iteration	Description of Flood Mitigation Measures
Alternative Design 1 (most preferred)	New 900mm dia. stormwater line along Bertram Street New culvert along southern boundary between sag point and Bertram Street (1000 x 500)
Alternative Design 2	Same as Alternative design 1Plus extension of 900mm line south along Bertram Street to intercept more flow draining from the south
Alternative Design 3	Same as Alternative design 1 Plus extension of culvert (1000 x 500) from southwest corner of the Site close to Archer Street to Bertram Street to drain water to proposed stormwater line along Bertram Street and ultimately connect to the existing pit near the Albert Avenue Bertram Street intersection.
Alternative Design 4	Same as Alternative design 1Plus new culvert (1000x500) from southwest corner of the site (outside site boundary) to Archer Street existing pipe line to intercept more flow draining from Archer Street to the Site.

3.4.3. Preferred option

Following the review the options discussed above, a 5th option was developed as a derivative of Alternative Option 1 (refer Figure 12). This option has bene refined to reflect:

- Existing utilities constraints.
- Structural design.
- Architectural and carpark access.
- Available precast culvert sizes.
- Ensuring that no works are required on the neighbouring properties.

Civil Drawings for this option are attached in Appendix D. This option has been designed to avoid utilities running parallel to Albert Avenue as well as some of the stormwater network capacity constraints by reproducing the overland flows that travel over Albert Avenue. Results for this scenario are presented in Appendix F.

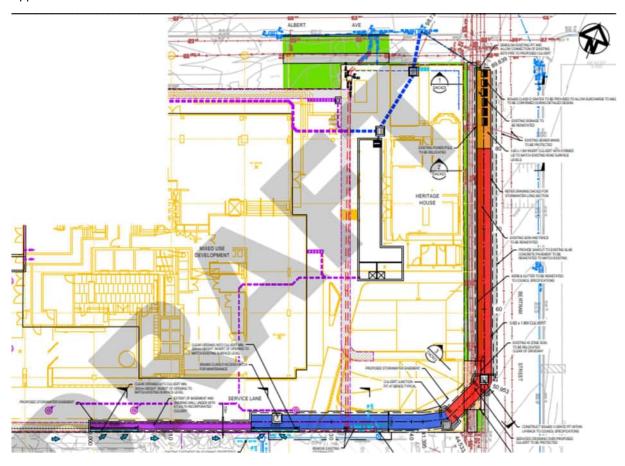


Figure 12: Preferred flood management option (AT&L)

This option has been developed to

4. TUFLOW Modelling Results

Mapping of TUFLOW model results showing peak flood extents and depths, level, hazard category (AIDR H1-H6) and change in flood level for the 1% AEP, 1% AEP with Climate Change and PMF events are provided in **Appendix D**.

4.1. Discussion

We note the following regarding the modelled flood behaviour:

4.1.1. Existing Conditions

- The primary source of site flooding is overland flows from the upstream catchments south and east of the site. These flows travel overland through residential properties and roadways to the west, south and east of the site, eventually overtopping Archer and Bertram Street onto the site.
- The site is not affected by mainstream flooding from Scotts Creek.
- Overland flows from within and surrounding the site overtop Archer Street and flow in a northerly direction towards Victoria Avenue.
- The TUFLOW model results indicate a portion of the site experiences flood detention due to the existing basement driveway off Albert Avenue. The basement driveway would drain to a local stormwater system within the basement, which discharges to the local stormwater network within Albert Avenue.
- Archer Street (west of the site) experiences high flood hazard in the PMF event. This hazard is associated with the upstream catchment to the north.

4.1.2. Proposed Conditions

- The flood model results for the proposed diversion culvert at the southern boundary.
- Flood levels are reduced to the rear of 32A Bertram Street and 55 Archer Street.
- Some localised afflux is noted as a result of the changes to the grade along the property boundary between 55 Archer Street and the site. This will be addressed through the use of localise grading to ensure that stormwater can drain freely in this area.
- There is some afflux as a result of the discharge of the system in Bertram Street.

It is noted that in both the existing case and the developed case that the flood hazard is characterised by relatively shallow depth flows travelling along the streets. While this may represent a significant objective hazard in rare to extreme events, these conditions are typical of many urban areas during such events.

4.1.3. Changes to flood hazard

Changes to the PMF conditions are noted in some of the surrounding areas. There are limited areas where the flood hazard has increased from H1 to H2 in the rear yard of 55 Archer Street. Noting that under existing conditions the hazard is up to H3 in the rear of this property, this is a minor change in the hazard extent.

An increase in hydraulic hazard is also noted adjacent to the heritage building facing Albert Avenue. This is in the context of shallow depth flow (less than 0.25 m), and as such is unlikely to compromise the building safety in the context of a maintained passageway. The residual hazard to residents would be managed by advising people to avoid travelling outdoors.

Other areas of flood hazard change are minor in extent. Noting that hydraulic hazards may be extensive, these represent no change in the hazard the public is exposed to.

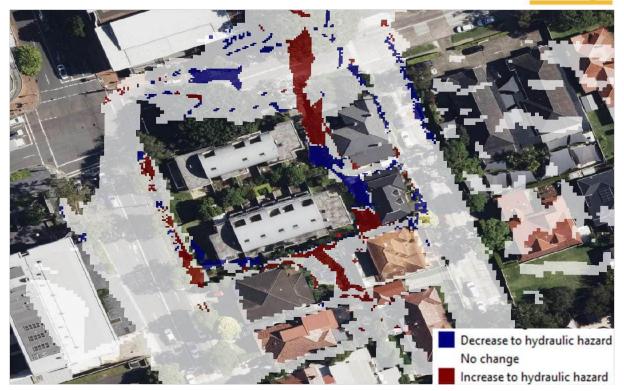
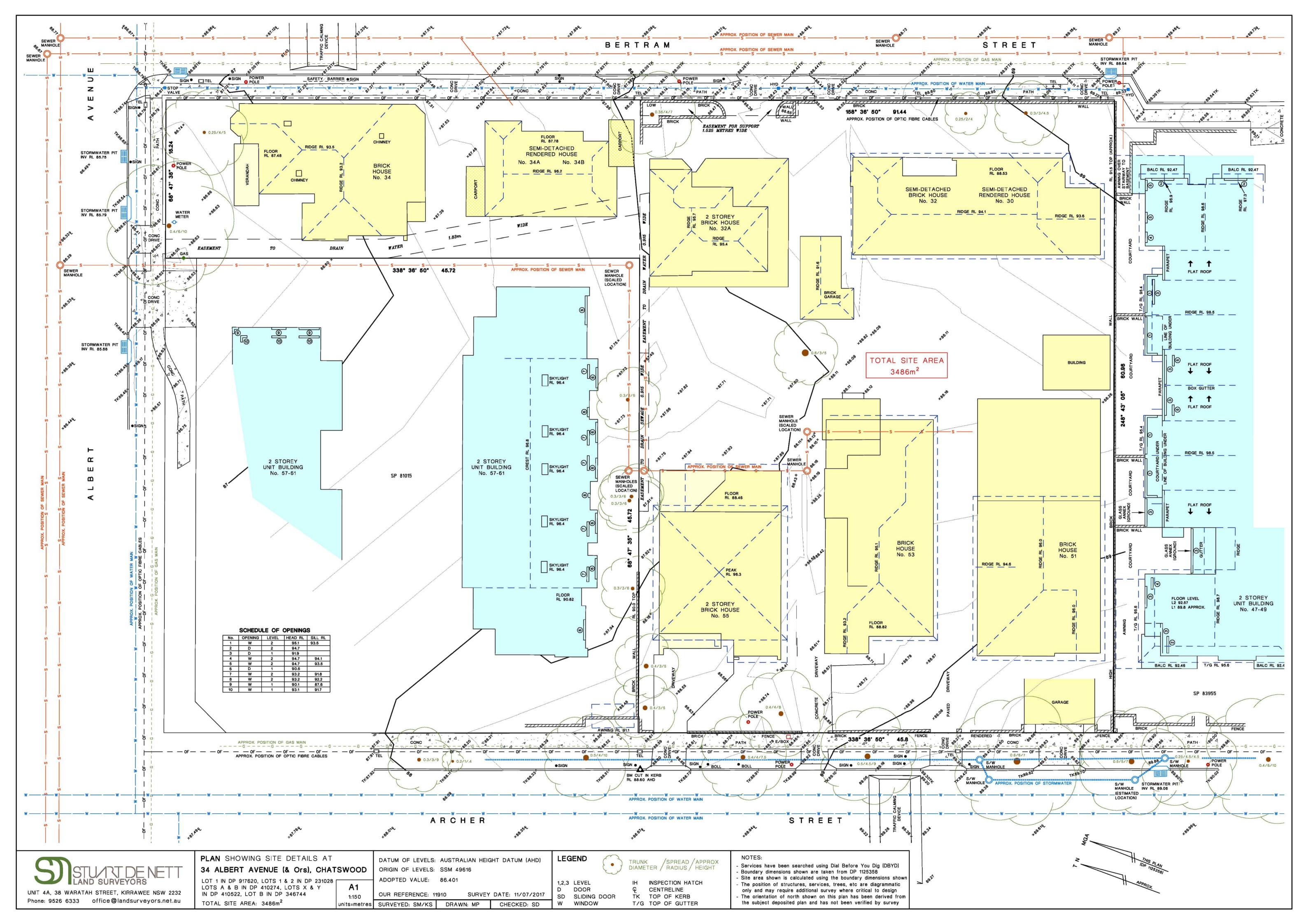


Figure 13: Change to flood hazard in the PMF

5. Summary and Recommendations


The flood assessment for 57-61 Archer Street, Chatswood indicates that the primary source of site flooding is from overland flows originating upstream (south) of the site. Based on the TUFLOW model results, the proposed development would have acceptable impact upstream adjacent properties with the proposed diversion scheme, though some changes and localised afflux is noted as a result of the earthworks and changes. In particular, the scheme has altered the way that flooding crosses Albert Avenue (which is flooded under existing conditions.

Flood protection to the development is otherwise provided by raising the ground level of the site to be above the 1% AEP flood level (+0.5 m), and by installing a flood barrier on the carpark entrance. With these measures in place, the risk to the building and its occupants is relatively minimal. The heritage constraints associated with heritage building restrict the options available to manage this risk, and as such this component will implement flood resistant construction (where feasible), or otherwise manage the risk through the implementation of a Flood Emergency Response Plan (FERP).

Refinements to the scheme to reflect utilities, secondary approvals and other constraints are expected to be ongoing. However, the functionality of the scheme will seek to reproduce the existing overland flooding arrangements, and as such has minimal impact on the nearby dwellings of the community.

Appendix A – Site Survey

Appendix B – Proposed Development

ARCHER & ALBERT

DEVELOPMENT APPLICATION DA 1000 DA-1000 COVER SHEET: DA-1101 LOCATION PLAN: DA-1102 SITE PLAN: DA-1201 SHADOW DIAGRAMS - JUNE 21ST : WINTER SOLSTICE DA-1202 SHADOW DIAGRAMS - SUNS EYE VIEWS : WINTER SOLSTICE DA 2000 DA-2201 BASEMENT 5: DA-2202 BASEMENT 4: DA-2203 BASEMENT 3: DA-2204 BASEMENT 2: DA-2205 BASEMENT 1: DA-2210 GROUND FLOOR PLAN: DA-2211 LEVEL 1 : DA-2212 LEVEL 2 : DA-2213 LEVEL 3 : LOWRISE - PODIUM DA-2214 LEVEL 4 : LOWRISE - TYPICAL DA-2215 LEVEL 5 : LOWRISE - TYPICAL DA-2216 LEVEL 6 : DA-2217 LEVEL 7-8 : DA-2219 LEVEL 9-29 : DA-2230 LEVEL 30 : SUB-PENTHOUSES DA-2231 LEVEL 31 : DA-2232 ROOF PLAN: DA 3000 DA-3201 ELEVATION 01: DA-3202 ELEVATION 02 : DA-3301 SECTION 01 : SITE SECTION DA-3302 SECTION 02 : SITE SECTION DA 4000 DA-4101 APARTMENT TYPE_AFFORDABLE : RESIDENTIAL TOWER DA-4102 APARTMENT TYPES_LOWRISE : RESIDENTIAL TOWER DA-4103 APARTMENT TYPES_TYPICAL : SUB-PENTHOUSES DA-4104 APARTMENT TYPES_SUB-PENTHOUSE : SUB-PENTHOUSES DA-4105 APARTMENT TYPE_PENTHOUSE : PENTHOUSES DA-4201 POST ADAPTIVE TYPES - 2BED TYPE T4 : DA-4202 POST ADAPTIVE TYPES - 3BED TYPE T5 : DA-4205 POST ADAPTIVE TYPES- 2BED TYPE T2 : DA-4206 POST ADAPTIVE TYPES- 2BED TYPE T1 : DA 6000 DA-6001 LANDSCAPING AREA: DA 7000 DA-7001 FACADE PACK PG1 : DA-7002 FACADE PACK PG2 : DA-7003 FACADE PACK PG3 : DA-7004 FACADE PACK PG4 : DA-7005 FACADE PACK PG 5 :

DA-7006 FACADE PACK PG6 : DA-7007 FACADE PACK PG7 :

ADG - CROSS VENT & SOLAR ACCESS :

ADG - STORAGE 2 :

DA-8201 GFA AREA SCHEDULE :

Recent revision history

Status Description

1 ISSUE FOR DA

Notes
Copyright © Woods Bagot 2018
All Rights Reserved
No material may be reproduced without prior permission

work or preparing shop drawings.

Contractor must verify all dimensions on site before commencing

Do not scale drawings.

Project
ARCHER & ALBERT

CORONATION PROPERTY

WOODS BAGOT

oject number 21876

Size check
25mm

Approved Sheet size Scale

Sheet title

Sheet number **DA-1000**

COVER SHEET

Revision **1**

FOR DEVELOPMENT APPLICATION

cent revision history
Status Description
ISSUE FOR DA

Notes
Copyright © Woods Bagot 2018
All Rights Reserved
No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

Project
ARCHER & ALBERT

CORONATION PROPERTY

Project number 121876

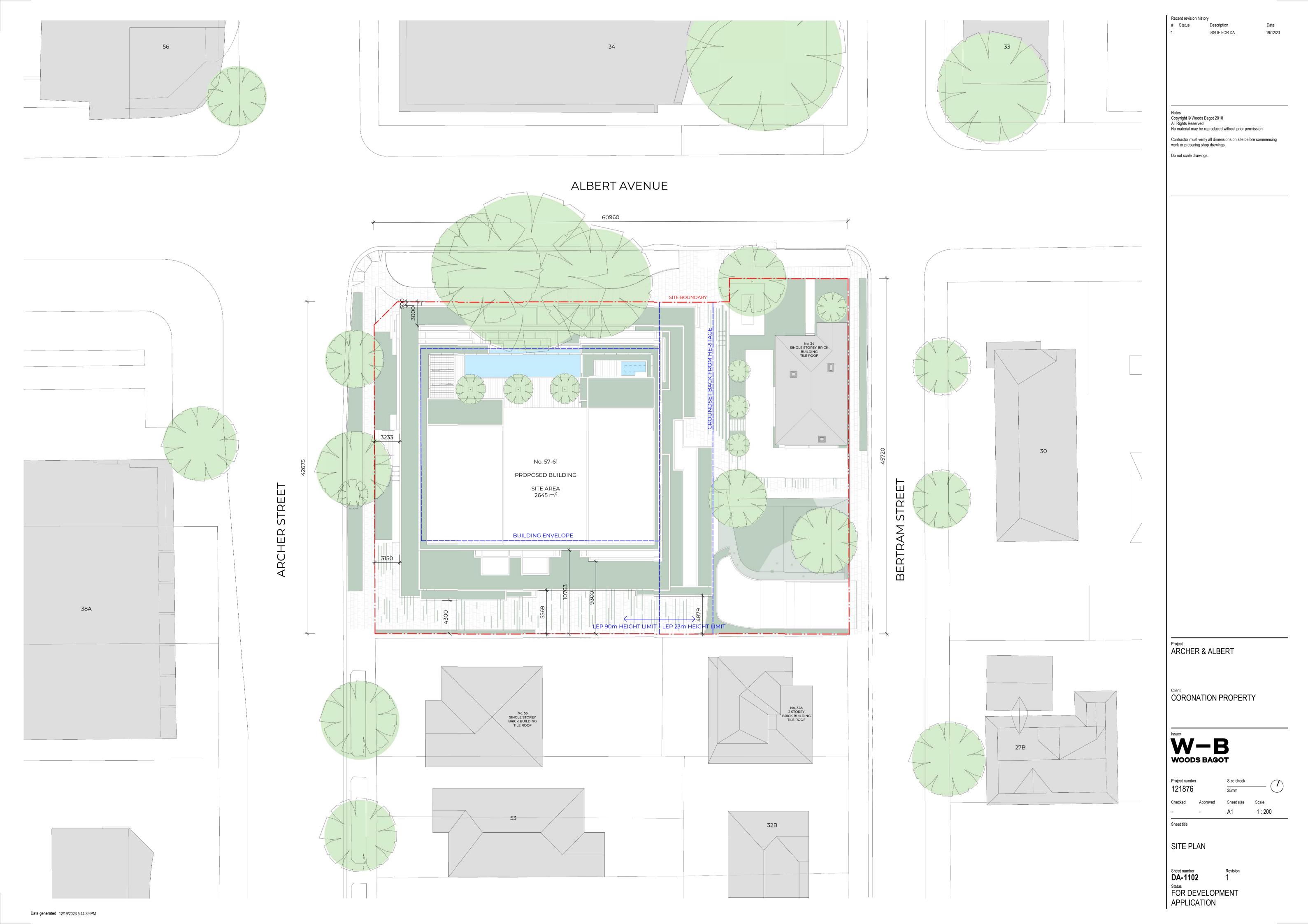
25mm

Sheet size Scale

necked Approved Sheet size Scale
- A1 1:75

Sheet title

LOCATION PLAN


Sheet number Revision

DA-1101

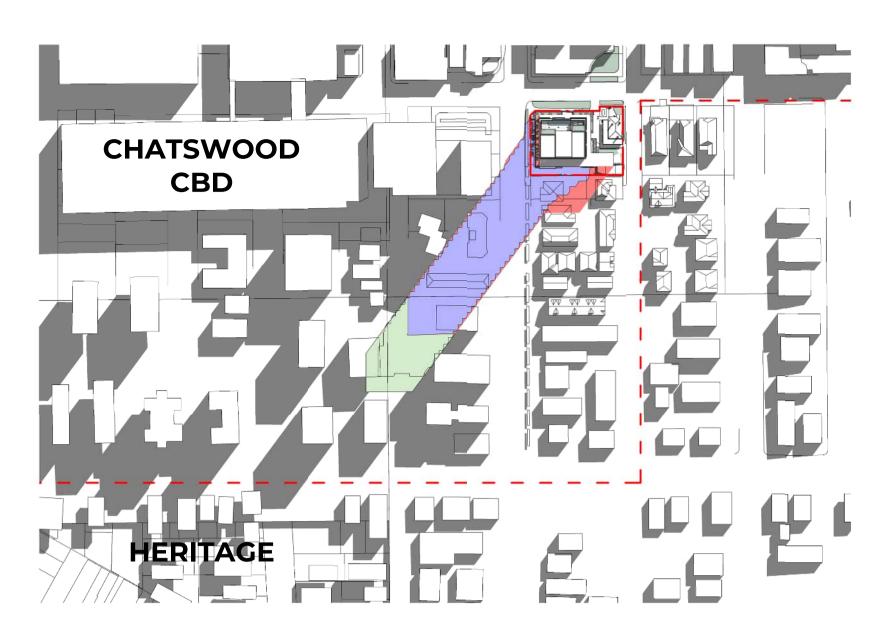
Status

FOR DEVELOPMENT

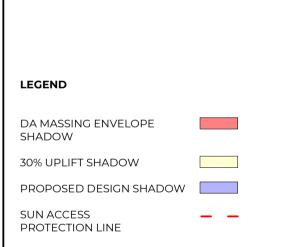
APPLICATION

1. SHADOW DIAGRAM - WINTER SOLSTICE - 9AM

4. SHADOW DIAGRAM - WINTER SOLSTICE - 12 MIDDAY


7. SHADOW DIAGRAM - WINTER SOLSTICE - 3PM

2. SHADOW DIAGRAM - WINTER SOLSTICE - 10AM


5. SHADOW DIAGRAM - WINTER SOLSTICE - 1 PM

3. SHADOW DIAGRAM - WINTER SOLSTICE - 11AM

6. SHADOW DIAGRAM - WINTER SOLSTICE - 2 PM

ISSUE FOR DA

Notes Copyright © Woods Bagot 2018 All Rights Reserved

work or preparing shop drawings.

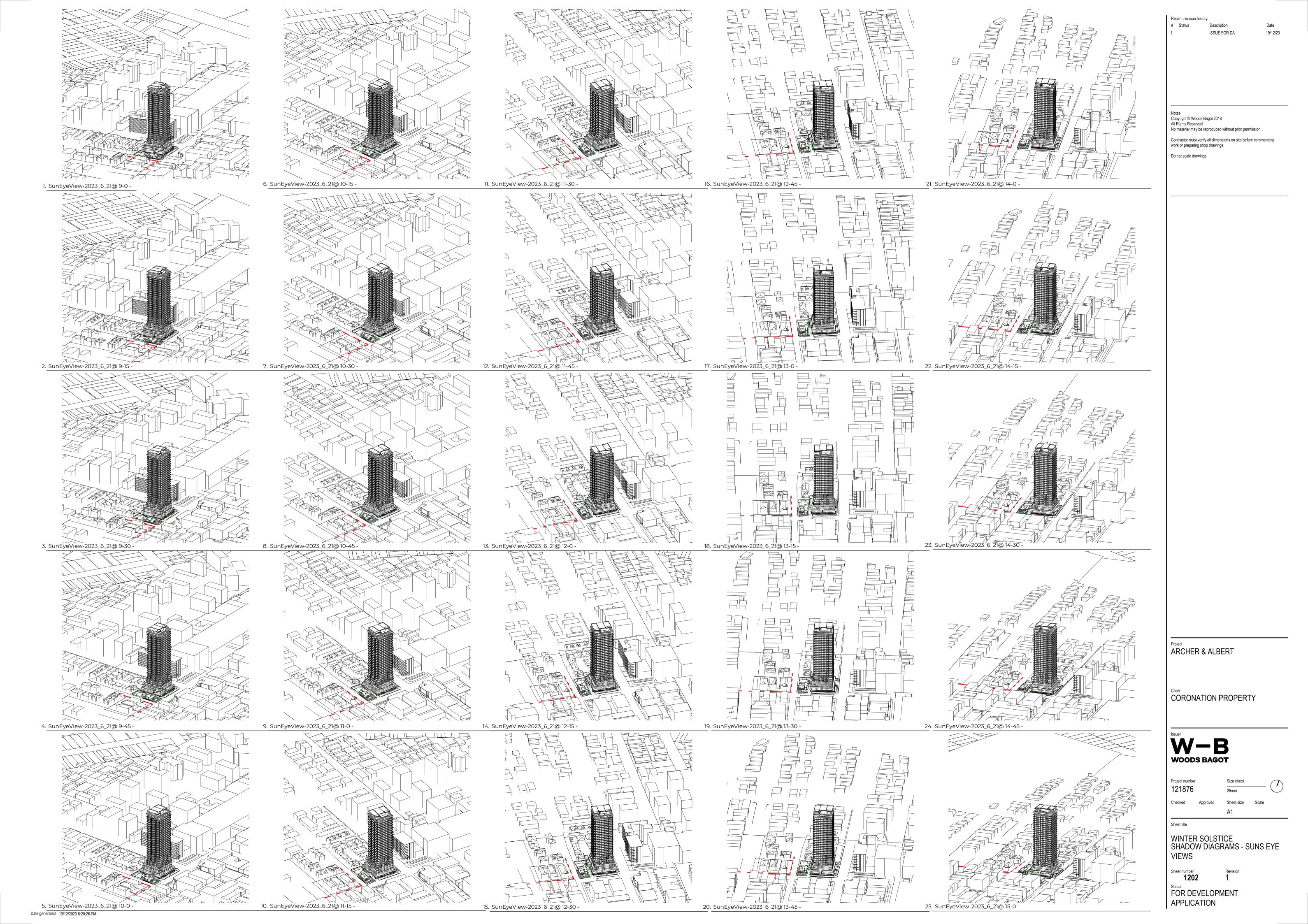
Do not scale drawings.

No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing

ARCHER & ALBERT

CORONATION PROPERTY


Project number 121876

Checked Approved Sheet size Scale
- - A1 As indicated

Sheet title

WINTER SOLSTICE SHADOW DIAGRAMS - JUNE 21ST

DA-1201 1
Status
FOR DEVELOPMENT
APPLICATION

Recent revision history # Status ISSUE FOR DA

19/12/23

Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility

MP Motorcycle Parking Space

VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat HB Hydrant Booster LP Power and Light Pole SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard E Electrical Cupboard
F High Pressure Fire Pipes Riser

GT Gate GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room BL Balustrade

CL Commercial Lift FCR Fire Control Room
GBC Garbage Chute LTR Lockable Storage R1-R3 Residential Lift ST Storage

ST Stone Paving STT Stone Tile Paving TD Timber Deck TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

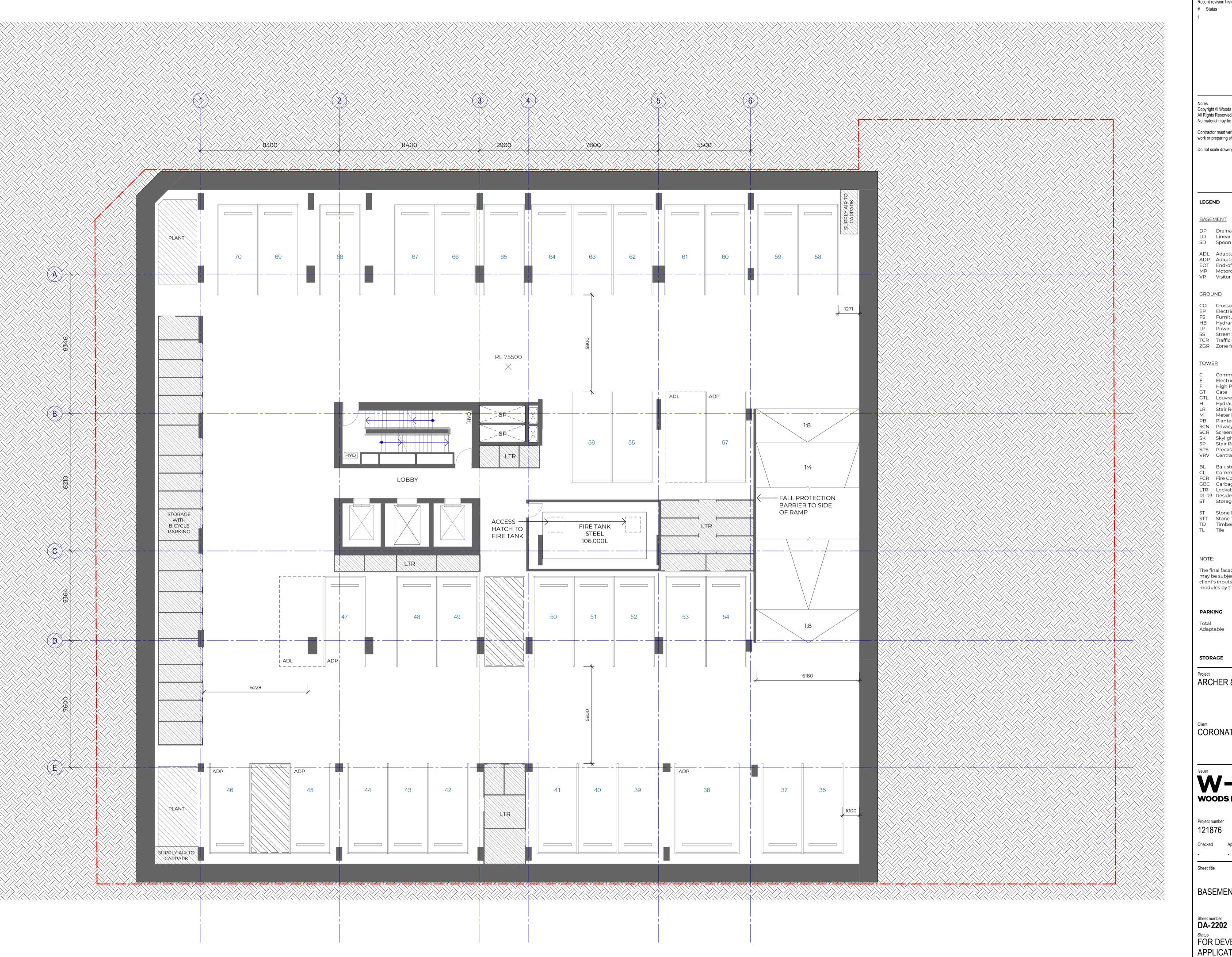
PARKING

Total Adaptable

STORAGE

ARCHER & ALBERT

CORONATION PROPERTY


WOODS BAGOT

Project number 121876

Sheet title

BASEMENT 5

Status FOR DEVELOPMENT APPLICATION

Recent revision history # Status ISSUE FOR DA

19/12/23

Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing

work or preparing shop drawings. Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area
ADP Adaptable Parking Space
EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole
FS Furniture - Seat
HB Hydrant Booster
LP Power and Light Pole SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard E Electrical Cupboard
F High Pressure Fire Pipes Riser

F High Pressure Find GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift FCR Fire Control Room
GBC Garbage Chute

LTR Lockable Storage R1-R3 Residential Lift ST Storage

ST Stone Paving STT Stone Tile Paving TD Timber Deck TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade

PARKING

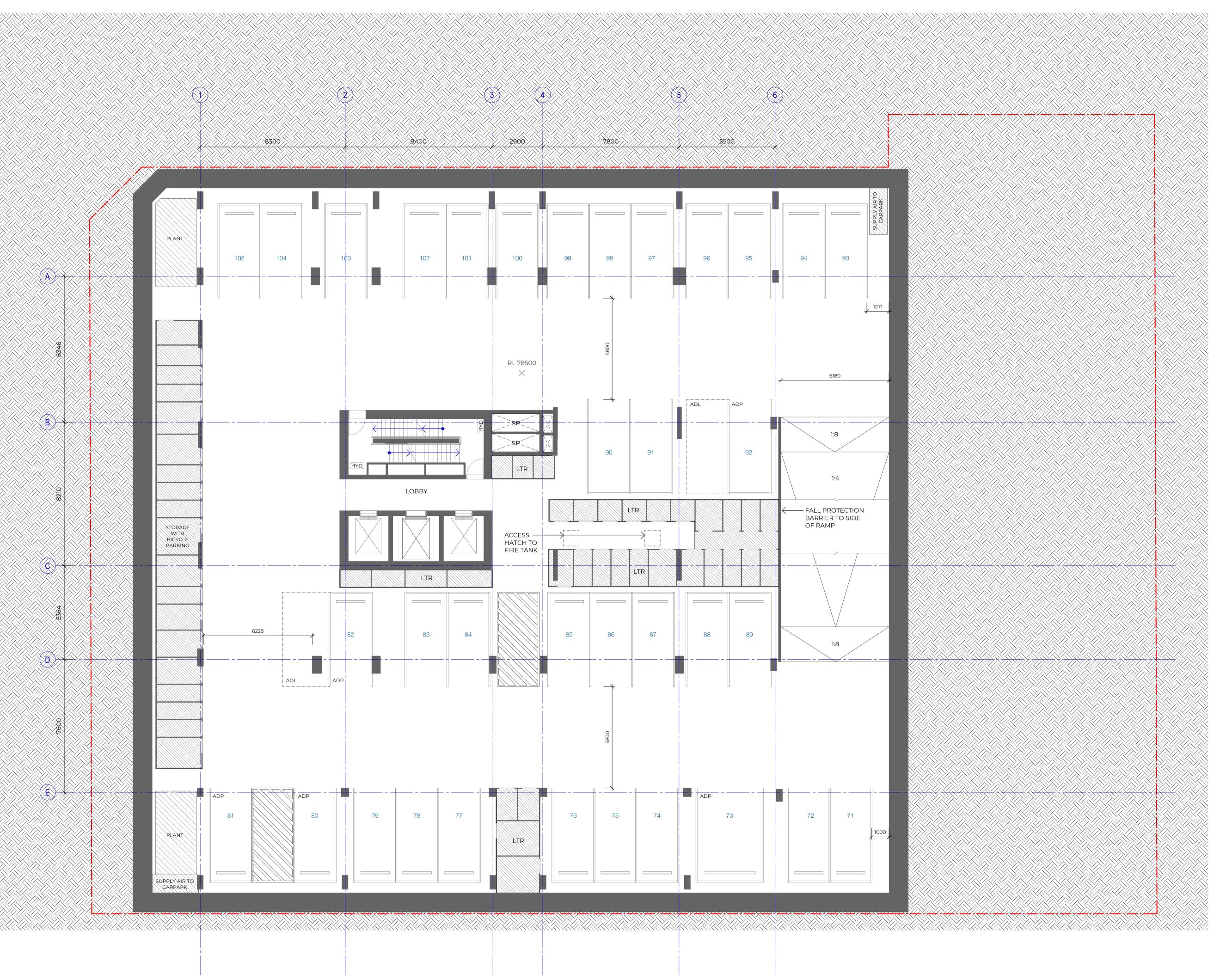
modules by the supplier.

Total 35 Adaptable 5

STORAGE 38

ARCHER & ALBERT

CORONATION PROPERTY


WOODS BAGOT

Project number 121876

Sheet title

BASEMENT 4

Status FOR DEVELOPMENT APPLICATION

19/12/23

Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

> Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area
ADP Adaptable Parking Space
EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole
FS Furniture - Seat
HB Hydrant Booster
LP Power and Light Pole SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard E Electrical Cupboard
F High Pressure Fire Pipes Riser

F High Pressure Find GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift FCR Fire Control Room GBC Garbage Chute LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving STT Stone Tile Paving TD Timber Deck TL Tile

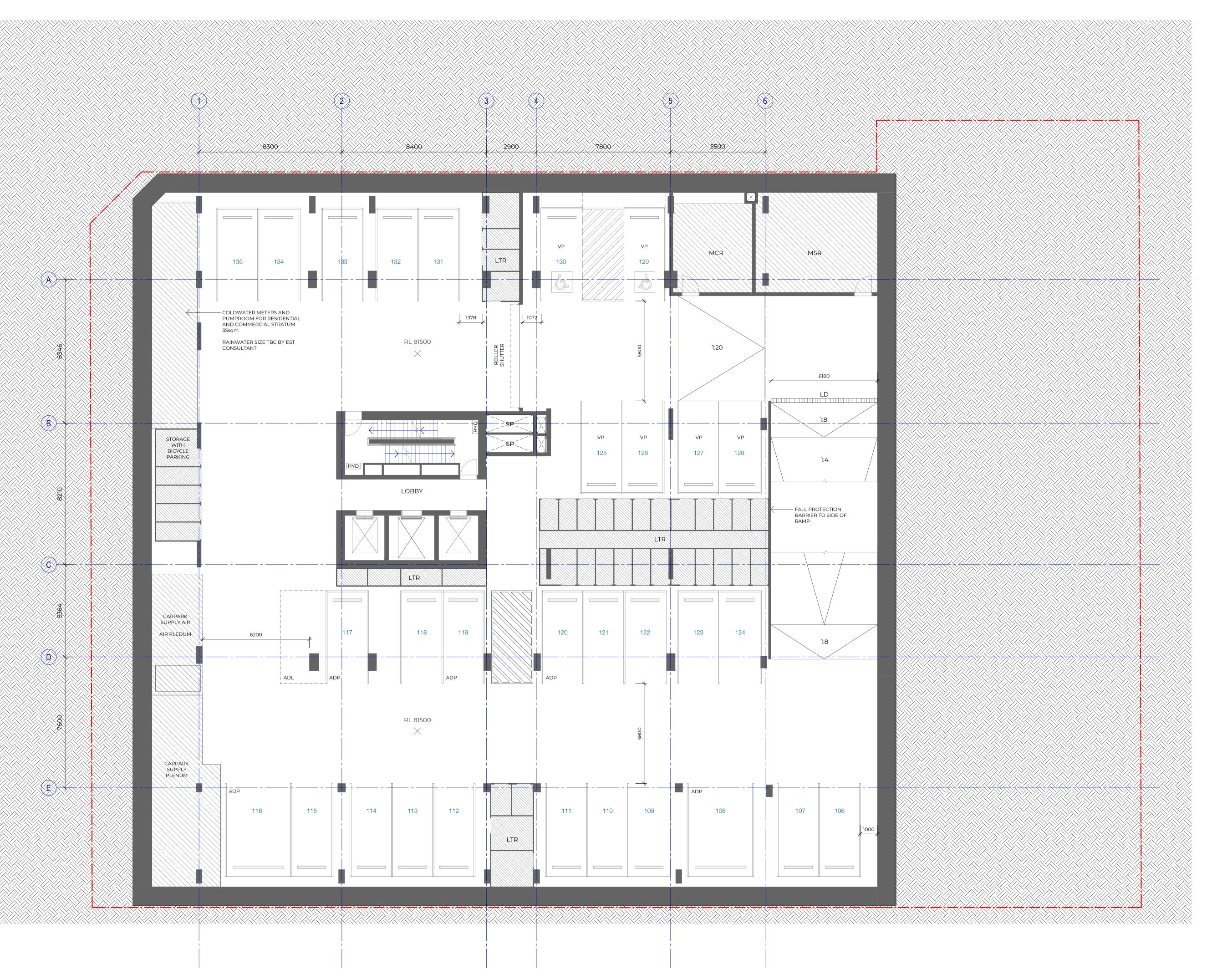
The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

PARKING

Total Adaptable

STORAGE

ARCHER & ALBERT


CORONATION PROPERTY

WOODS BAGOT

Sheet title

Sheet number **DA-2203**

BASEMENT 3

Recent revision history
Status Description
1 ISSUE FOR DA

tion FOR DA

19/12/23

Notes
Copyright © Woods Bagot 2018
All Rights Reserved
No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

DACEMEN

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain

SD Spoon Drain

ADL Adaptable Loading Area
ADP Adaptable Parking Space

EOT End-of-Trip Facility

MP Motorcycle Parking Space

VP Visitor Parking Space

GROUND

CO Crossover
EP Electric Pole
FS Furniture - Seat
HB Hydrant Booster
LP Power and Light Pole
SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser
GT Gate

GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SCR Screen
SK Skylight
SP Stair Press
SPS Precast Spandrel Shading Device
VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift FCR Fire Control Room GBC Garbage Chute

R1-R3 Residential Lift
ST Storage

ST Stone Paving

LTR Lockable Storage

ST Stone Paving STT Stone Tile Paving TD Timber Deck TL Tile

L THE

__

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

PARKING

Total 30 Visitor 6 DDA 2 Adaptable 5

STORAGE 40

ARCHER & ALBERT

CORONATION PROPERTY

WOODS BAGOT

Project number 121876

Size check
25mm

Checked Approved Sheet size Scale
- - A1 1:100

Sheet title

Sheet number **DA-2204**

BASEMENT 2

Revision 1

Date generated 12/19/2023 8:22:32 PM

Recent revision history # Status ISSUE FOR DA

Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe

LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area

ADP Adaptable Parking Space EOT End-of-Trip Facility
MP Motorcycle Parking Space VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat HB Hydrant Booster

LP Power and Light Pole SS Street Sign TCR Traffic Control Pole

ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard E Electrical Cupboard High Pressure Fire Pipes Riser

GT Gate GTL Louvred Gate

H Hydraulic Riser
LR Stair Relief
M Meter Room PB Planter Box

SCN Privacy Screen SCR Screen SK Skylight SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift FCR Fire Control Room

GBC Garbage Chute LTR Lockable Storage R1-R3 Residential Lift

ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

COMMERCIAL PARKING NOTE:

Total 13 刊晚紅inal facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

DDA

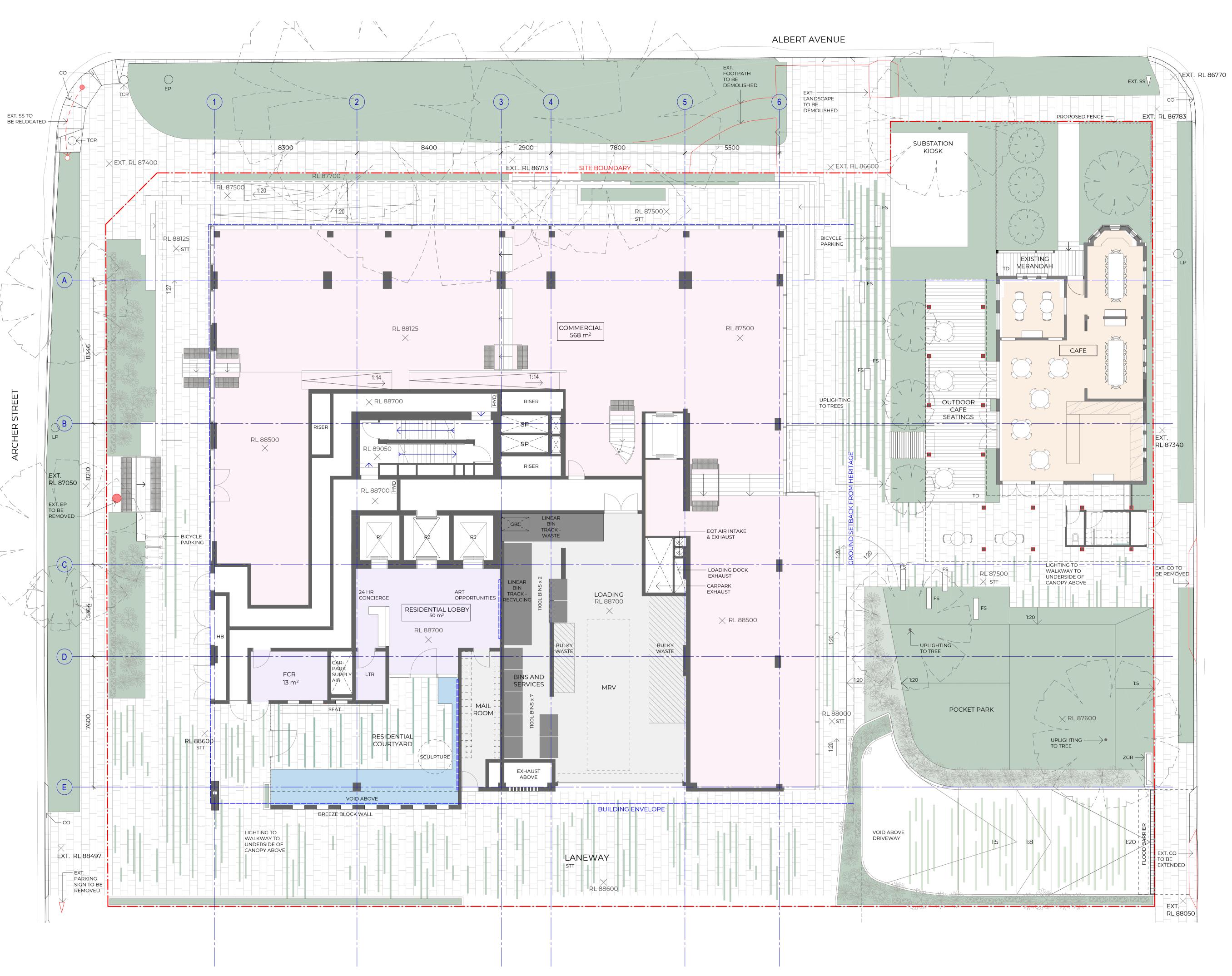
VISITOR PARKING

MOTORCYCLE PARKING 6

STORAGE 33

ARCHER & ALBERT

CORONATION PROPERTY


WOODS BAGOT

Project number 121876

Sheet title

Sheet number DA-2205

BASEMENT 1

Recent revision history ISSUE FOR DA

Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings. Do not scale drawings.

LEGEND

BASEMENT

DP Drainage Pipe LD Linear Drain

SD Spoon Drain ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat HB Hydrant Booster LP Power and Light Pole

SS Street Sign TCR Traffic Control Pole

ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard Electrical Cupboard High Pressure Fire Pipes Riser GT Gate

GTL Louvred Gate H Hydraulic Riser
LR Stair Relief
M Meter Room

PB Planter Box SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room BL Balustrade

CL Commercial Lift FCR Fire Control Room GBC Garbage Chute LTR Lockable Storage R1-R3 Residential Lift ST Storage

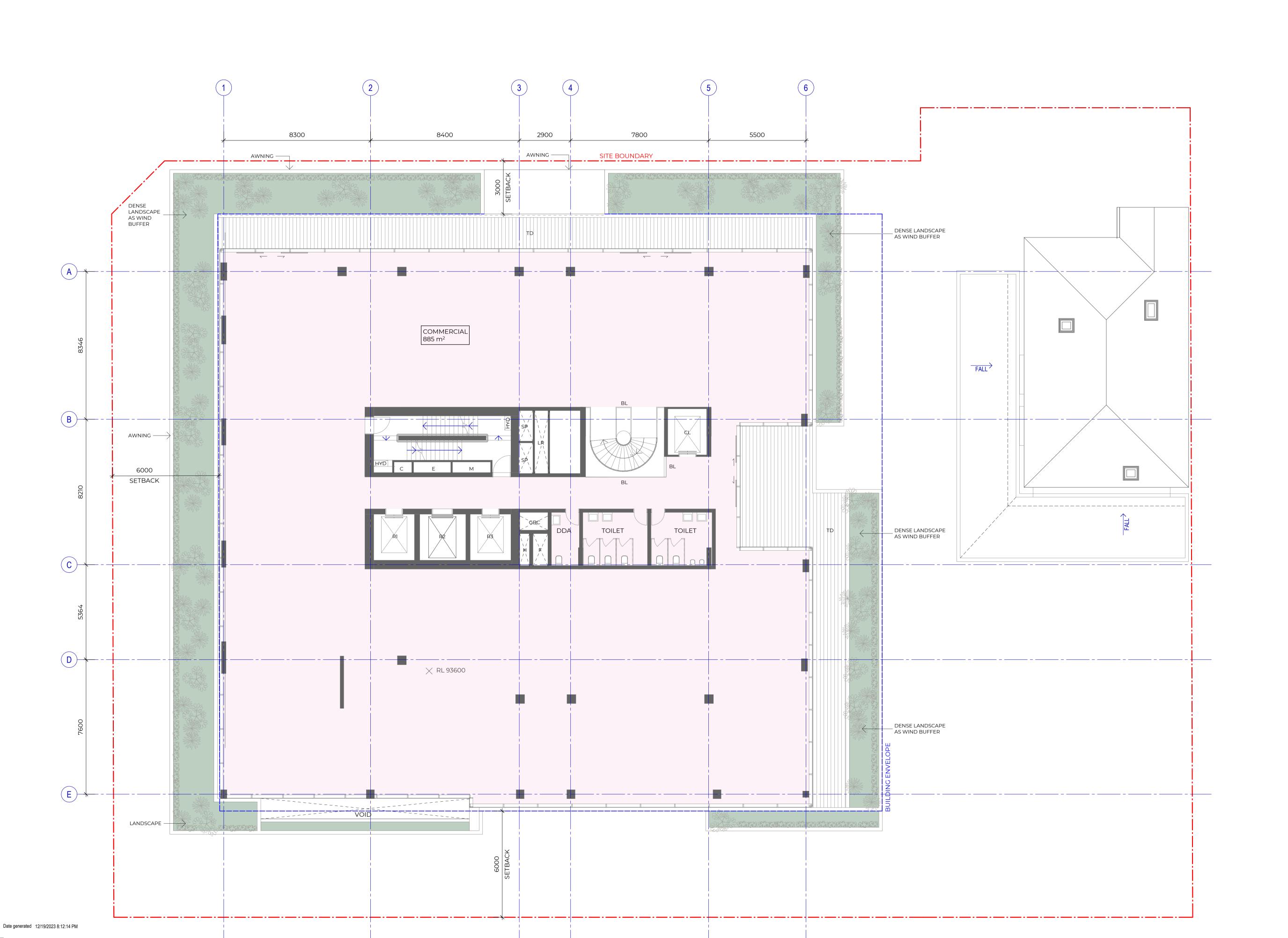
ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

NOTE:

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

ARCHER & ALBERT

CORONATION PROPERTY



Project number

Sheet title

GROUND FLOOR PLAN

DA-2210

19/12/23

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area
ADP Adaptable Parking Space
EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover
EP Electric Pole
FS Furniture - Seat
HB Hydrant Booster
LP Power and Light Pole

SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

F High Pressure File
GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

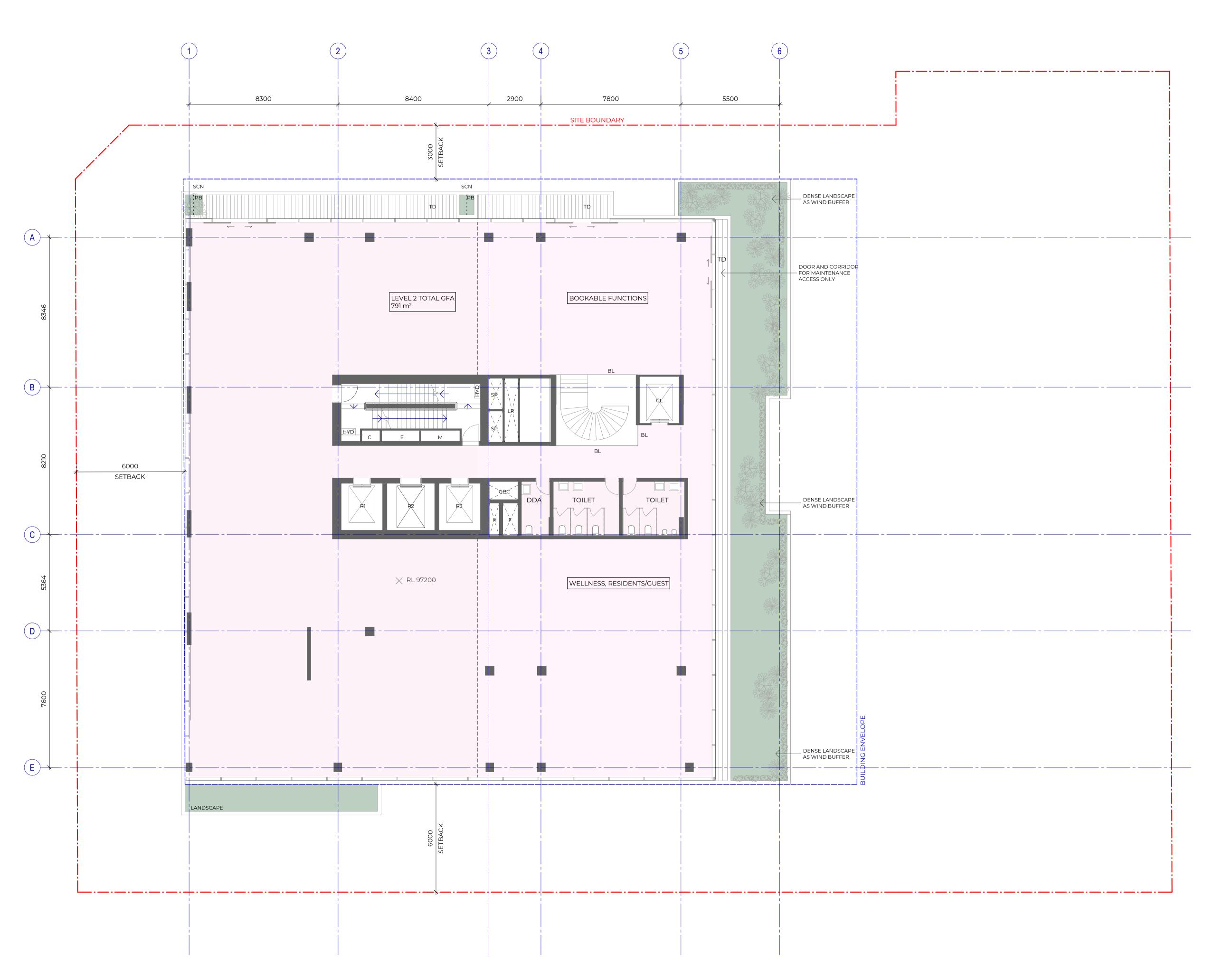
BL Balustrade CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

ARCHER & ALBERT


CORONATION PROPERTY

Sheet title

LEVEL 1

Sheet number DA-2211

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area
ADP Adaptable Parking Space
EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat HB Hydrant Booster LP Power and Light Pole

SS Street Sign TCR Traffic Control Pole ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

F High Pressure File
GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

R1-R3 Residential Lift
ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

Project
ARCHER & ALBERT

CORONATION PROPERTY

Sheet title

LEVEL 2

Sheet number DA-2212

19/12/23

Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain

SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat

HB Hydrant Booster LP Power and Light Pole SS Street Sign TCR Traffic Control Pole

ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard Electrical Cupboard High Pressure Fire Pipes Riser

GT Gate GTL Louvred Gate

H Hydraulic Riser
LR Stair Relief
M Meter Room

PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade

CL Commercial Lift

FCR Fire Control Room GBC Garbage Chute

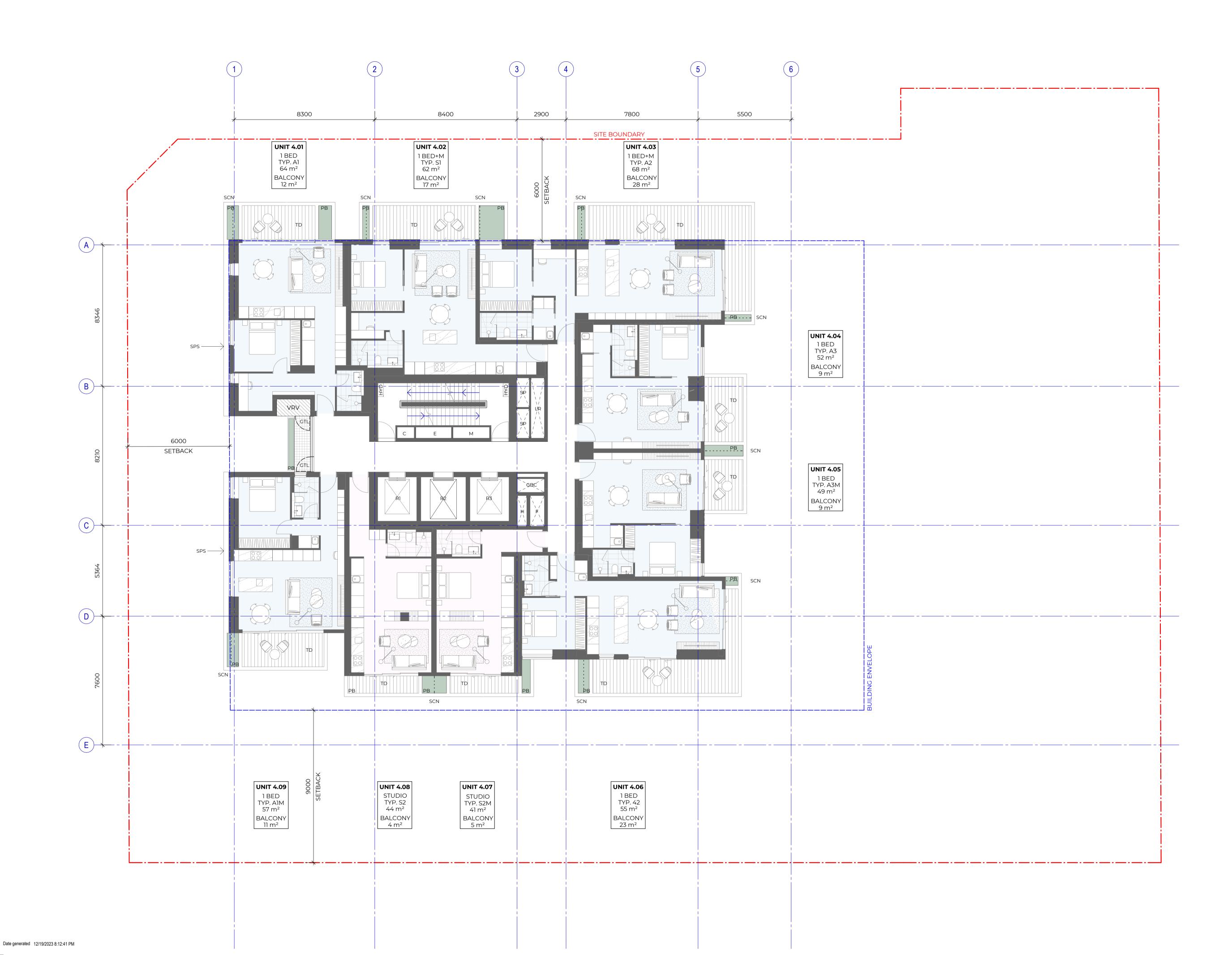
LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

ARCHER & ALBERT


CORONATION PROPERTY

Sheet title

LOWRISE - PODIUM LEVEL 3

Sheet number DA-2213

19/12/23

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover

EP Electric Pole FS Furniture - Seat

HB Hydrant Booster LP Power and Light Pole

SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

GT Gate GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade

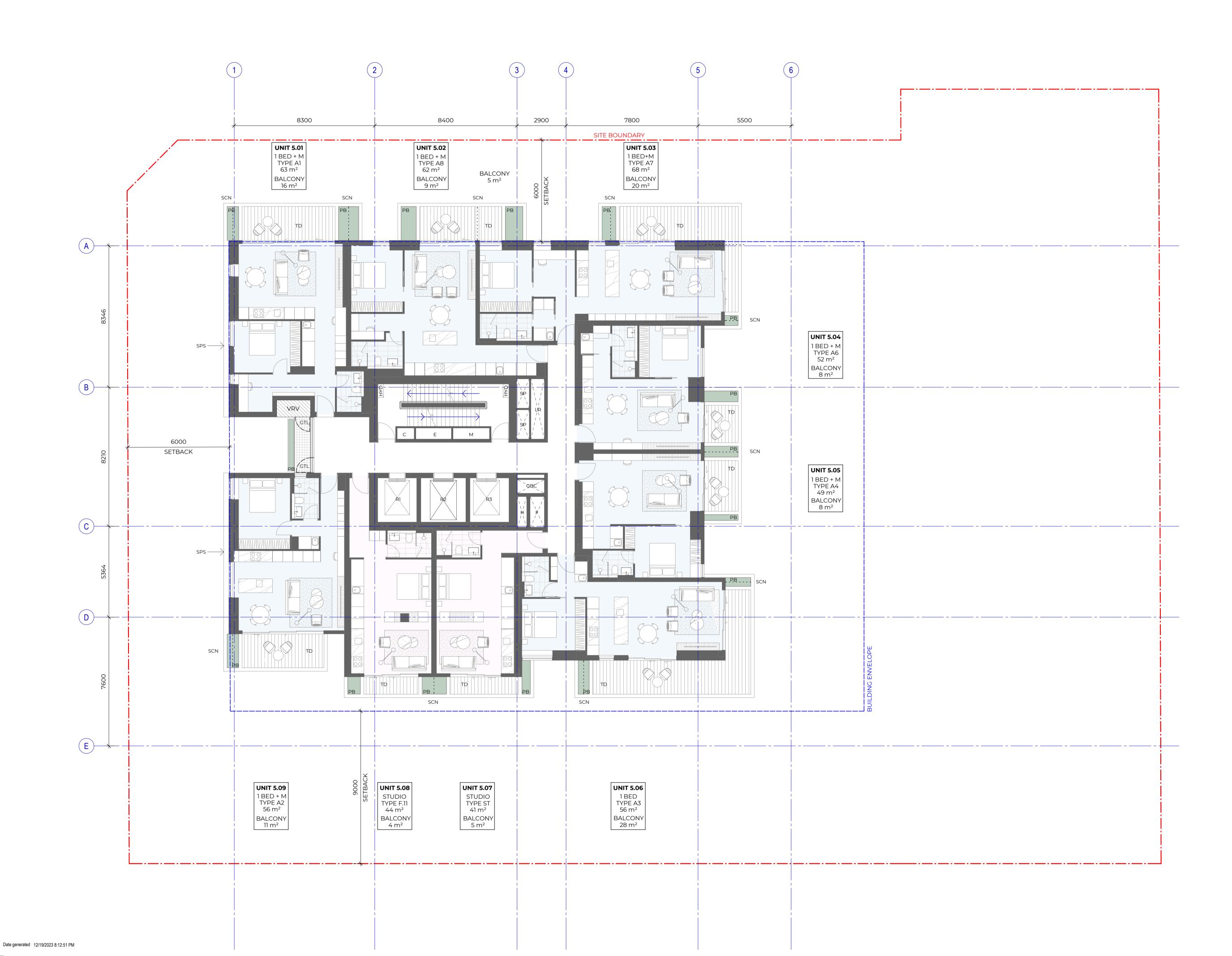
CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

ARCHER & ALBERT


CORONATION PROPERTY

Sheet number **DA-2214**

Sheet title

LOWRISE - TYPICAL LEVEL 4

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain

SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat

HB Hydrant Booster LP Power and Light Pole

SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

GT Gate

GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade

CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

ARCHER & ALBERT

CORONATION PROPERTY

Sheet title LOWRISE - TYPICAL LEVEL 5

Sheet number DA-2215

19/12/23

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u> CO Crossover EP Electric Pole FS Furniture - Seat

HB Hydrant Booster LP Power and Light Pole

SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

GT Gate

GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

Project
ARCHER & ALBERT

CORONATION PROPERTY

Sheet title

LEVEL 6

Sheet number DA-2216

19/12/23

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover

EP Electric Pole
FS Furniture - Seat
HB Hydrant Booster
LP Power and Light Pole SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

F High Pressure File
GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

Project ARCHER & ALBERT

CORONATION PROPERTY

WOODS BAGOT

Sheet title

LEVEL 7-8

Sheet number **DA-2217**

Recent revision history # Status FOR INFORMATION 26/09/23 ISSUE FOR DA 19/12/23

Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain

SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat

HB Hydrant Booster LP Power and Light Pole SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

C Comms. Cupboard E Electrical Cupboard
F High Pressure Fire Pipes Riser

GT Gate

TOWER

GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade CL Commercial Lift FCR Fire Control Room GBC Garbage Chute LTR Lockable Storage R1-R3 Residential Lift

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

ST Storage

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

ARCHER & ALBERT


CORONATION PROPERTY

WOODS BAGOT

Sheet title

Sheet number DA-2219

LEVEL 9-29

19/12/23

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area
ADP Adaptable Parking Space
EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat

HB Hydrant Booster LP Power and Light Pole

SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

F High Pressure File
GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade

CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

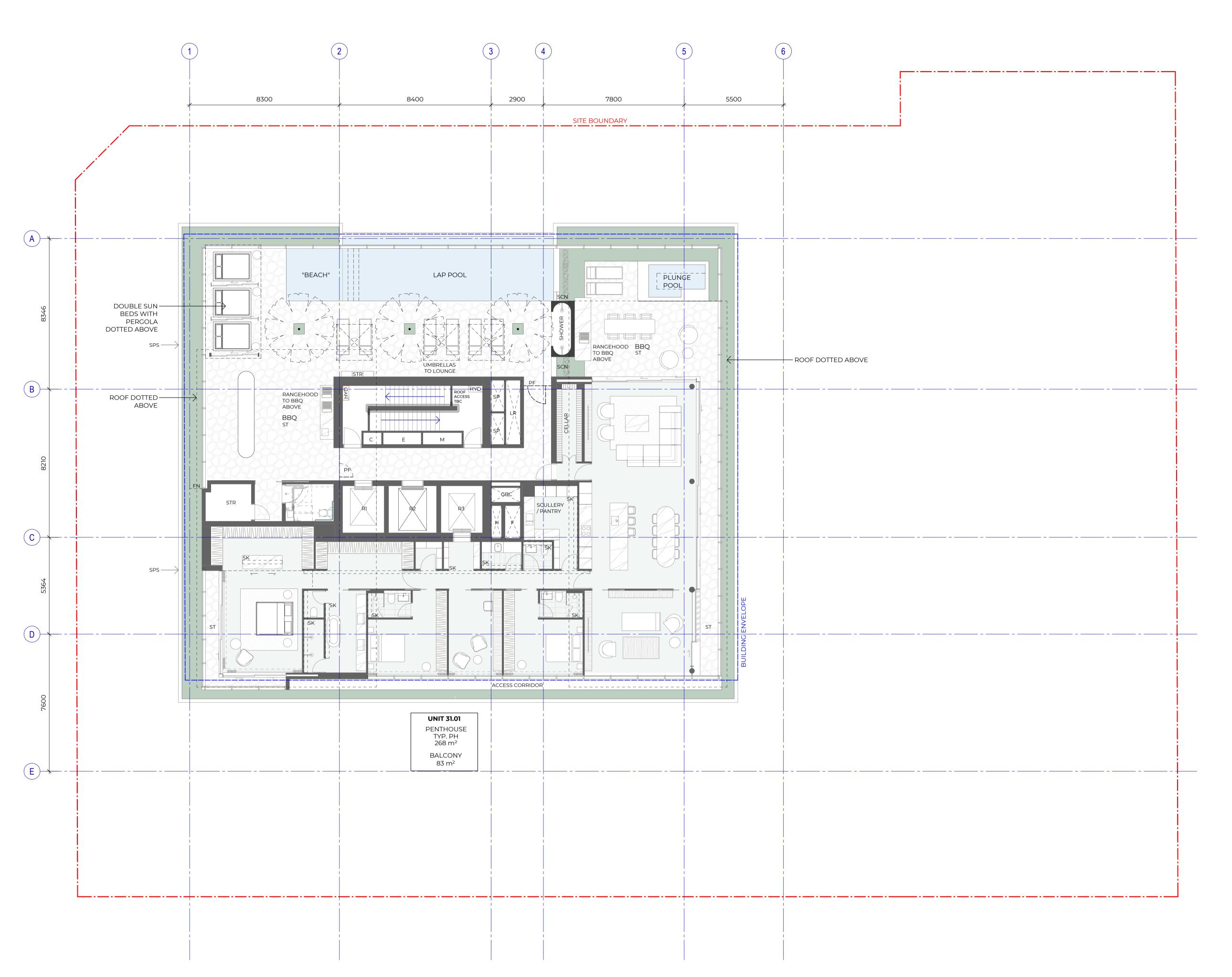
R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

Project ARCHER & ALBERT

CORONATION PROPERTY


WOODS BAGOT

Sheet title

SUB-PENTHOUSES LEVEL 30

Sheet number **DA-2230** Status FOR DEVELOPMENT

APPLICATION

Notes Copyright © Woods Bagot 2018 All Rights Reserved No material may be reproduced without prior permission

Contractor must verify all dimensions on site before commencing work or preparing shop drawings.

Do not scale drawings.

LEGEND

<u>BASEMENT</u>

DP Drainage Pipe LD Linear Drain SD Spoon Drain

ADL Adaptable Loading Area ADP Adaptable Parking Space

EOT End-of-Trip Facility
MP Motorcycle Parking Space
VP Visitor Parking Space

<u>GROUND</u>

CO Crossover EP Electric Pole FS Furniture - Seat

HB Hydrant Booster LP Power and Light Pole

SS Street Sign
TCR Traffic Control Pole
ZGR Zone for Gas Regulator

TOWER

C Comms. Cupboard
E Electrical Cupboard
F High Pressure Fire Pipes Riser

GT Gate

GT Gate
GTL Louvred Gate
H Hydraulic Riser
LR Stair Relief
M Meter Room
PB Planter Box
SCN Privacy Screen
SCR Screen
SK Skylight
SP Stair Press

SPS Precast Spandrel Shading Device VRV Centralised VRF Plant Room

BL Balustrade

CL Commercial Lift
FCR Fire Control Room
GBC Garbage Chute
LTR Lockable Storage

R1-R3 Residential Lift ST Storage

ST Stone Paving
STT Stone Tile Paving
TD Timber Deck
TL Tile

The final facade profile of the proposed design may be subjected to change based on the client's inputs or the availability of facade modules by the supplier.

ARCHER & ALBERT

CORONATION PROPERTY

WOODS BAGOT

Sheet title

LEVEL 31

Sheet number DA-2231