Ektimo

Boral Cement Ltd, Berrima Kiln Emission Testing Report – Tyre Fuel Trial Report Number R012341

Prepared for: Boral Cement Ltd

Document Information

Template Version 211117

Client Name: Boral Cement Ltd

Report Number: R012341

Date of Issue: 28 March 2022

Attention: Gabriel Paicu

Address: Taylor Avenue

New Berrima NSW 2577

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Aaron Davis Senior Air Monitoring Consultant NATA Accredited Laboratory No. 14601

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Boral Cement Ltd and those granted permission by Boral Cement Ltd.

The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation. This does not include comments, conclusions or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Page: 2 of 16

Prepared for: Boral Cement Ltd

Table of Contents

1	1 Executive Summary	4
	1.1 Background	4
	1.2 Project Objective	
	1.3 Licence Comparison	5
2	2 Results	6
	2.1 EPA 2 – No.6 Kiln Stack	6
3	3 Test Methods	13
4	4 Plant Operating Conditions	14
5	5 Quality Assurance/Quality Control Information	14
6	6 Definitions	14
7	7 Appendix 1: Site Location Photo	15

Prepared for: Boral Cement Ltd

1 Executive Summary

1.1 Background

Ektimo was engaged by Boral Cement Ltd to perform emission monitoring at their Berrima plant, as requested.

1.2 Project Objective

The objective of the project was to conduct a monitoring programme to quantify emissions from one discharge point to determine compliance with Boral Cement Ltd's Environment Protection Licence, 1698.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*						
		Solid particles						
		Coarse particulates						
		Fine particulates (PM ₁₀) by particle size analysis (PSA)						
	27 January 2022	Fine particulates (PM _{2.5}) by particle size analysis (PSA)						
		Sulfuric acid mist and sulfur trioxide as (SO₃), sulfur dioxide						
		Metals - type 1 & 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, Sn, V), copper, thallium, zinc						
EPA 2 – No. 6 Kiln Stack		Dioxins and furans (PCDDs & PCDFs)						
		Polycyclic aromatic hydrocarbons (PAHs)						
		Hexavalent chromium (Cr ⁶⁺)						
	28 January 2022	Nitrogen oxides (as NO _x), carbon monoxide (CO)						
		Carbon dioxide (CO ₂), Oxygen (O ₂)						
		Speciated volatile organic compounds (VOCs)						
		Total fluoride (as HF), hydrogen chloride (as HCl), chlorine (Cl ₂)						

^{*} Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP.

 PM_{10} and $PM_{2.5}$ results determined as sample fractions from particle size analysis (PSA), are calculated based on the assumption that the density of the sample material is 1 g/cm³, i.e., no corrections have been made for sample density.

Plant operating conditions have been noted in the report.

Page: 4 of 16

Prepared for: Boral Cement Ltd

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence set by the NSW EPA as per licence 1698 (last amended on 18 December 2019).

EPA	Parameter	Units	Licence limit	Detected values	Detected values (corrected to 10% O ₂)
	Mercury	mg/m ³	0.05	0.0086	0.0093
	Type 1 and Type 2 substances in aggregate	mg/m ³	0.5	≤0.044	≤0.047
	Solid particles	mg/m ³	50	18	18
	Nitrogen oxides		1250	1000	1100
	Cadmium + Thallium	mg/m ³	0.05	≤0.00053	≤0.00057
FDA 2. Kila Cta alı Na. C	Chlorine	mg/m ³	50	<0.01	<0.01
EPA 2 - Kiln Stack No. 6	Dioxins & furans (I-TEQ middle bound)	ng/m³	0.1	0.0007	0.00072
	Hydrogen chloride	mg/m ³	10	0.4	0.42
	Hydrogen fluoride	mg/m ³	1	0.06	0.063
	Sulfur dioxide	mg/m ³	50	<0.02	<0.02
	Sulfuric acid mist and sulfur trioxide (as SO ₃)	mg/m ³	50	1.9	1.9
	Volatile organic compounds	mg/m ³	40	1.2	1.2

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

Page: 5 of 16

Prepared for: Boral Cement Ltd

2 Results

2.1 EPA 2 - No.6 Kiln Stack

27/01/2022 Date Client Boral Cement Ltd Report R012341 Stack ID EPA 2: No. 6 Kiln Stack New Berrima Licence No. 1698 Location **Ektimo Staff** Zoe Parker & Harrison Handicott State NSW

Process Conditions Please refer to client records.

Sampling Plane Details

Sampling plane dimensions 3000 mm Sampling plane area 7.07 m² 3" BSP and 4" Flange Sampling port size, number Access & height of ports Elevator 30 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 8 D Upstream disturbance Junction 8 D No. traverses & points sampled 2 24 Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters Moisture content, %v/v 13 Gas molecular weight, g/g mole 30.1 (wet) 31.8 (dry) Gas density at STP, kg/m³ 1.34 (wet) 1.42 (dry) Gas density at discharge conditions, kg/m³ 0.85 % Oxygen correction & Factor 10 % 0.99 **Gas Flow Parameters** 1245 & 1503 Flow measurement time(s) (hhmm) Temperature, °C 121 Temperature, K 394 Velocity at sampling plane, m/s 29 Volumetric flow rate, actual, m³/s 210 Volumetric flow rate (wet STP), m³/s 130 Volumetric flow rate (dry STP), m³/s 120 640000 Mass flow rate (wet basis), kg/hour

Isokinetic Results		Average		Test 1			Test 2			
Sampling tir	ne		1256-1500				1256-1500			
		Corrected			Corrected			Corrected		
	Concentration mg/m³	to 10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	to 10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	to 10% O2 mg/m³	Mass Rate g/min	
Solid Particles	18	18	130	15	15	110	21	21	140	
Fine particulates (PM10) (PS	A) 11	11	74	9	8.9	64	13	12	84	
Fine particulates (PM2.5) (PS	A) 4.7	4.6	32	3.9	3.9	28	5.4	5.3	36	
Coarse Particulates	7.5	7.5	52	6.2	6.2	44	8.9	8.8	59	
Sulfur dioxide	<0.02	<0.02	<0.1	<0.01	<0.01	<0.1	<0.02	<0.02	<0.1	
Sulfur trioxide and/or Sulfuric acid (as SO ₃	1.9	1.9	13	2	2	14	1.8	1.8	12	
Isokinetic Sampling Parameters										
Sampling time, min					120			120		
Isokinetic rate, %					100			101		
Gravimetric analysis date (total particulat	2)			(04-02-2022		(04-02-2022		

Page: 6 of 16

Prepared for: Boral Cement Ltd

27/01/2022 Date Client Boral Cement Ltd R012341 EPA 2: No. 6 Kiln Stack Report Stack ID Licence No. 1698 New Berrima Location Ektimo Staff Zoe Parker & Harrison Handicott State NSW **Process Conditions** Please refer to client records.

Sampling Plane Details Sampling plane dimensions 3000 mm 7.07 m² Sampling plane area Sampling port size, number 3" BSP and 4" Flange Access & height of ports Elevator 30 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 8 D Upstream disturbance Junction 8 D No. traverses & points sampled 2 24 Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	13		
Gas molecular weight, g/g mole	29.8 (wet)	31.6 (dry)	
Gas density at STP, kg/m³	1.33 (wet)	1.41 (dry)	
Gas density at discharge conditions, kg/m³	0.85		
% Oxygen correction & Factor	10 %	1.08	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1503 & 1730		
Temperature, °C	118		
Temperature, K	392		
Velocity at sampling plane, m/s	31		
Volumetric flow rate, actual, m³/s	220		
Volumetric flow rate (wet STP), m³/s	140		
Volumetric flow rate (dry STP), m³/s	120		
Mass flow rate (wet basis), kg/hour	670000		

Isokinetic Results		Average			Test 1		Test 2		
Sampling time				:	1523-1726			1523-1726	
		Corrected			Corrected			Corrected	
	Concentration			Concentration			Concentration		Mass Rate
	mg/m³	mg/m³	g/min	mg/m³	mg/m³	g/min	mg/m³	mg/m³	g/min
Antimony	<0.003	<0.003	<0.02	<0.003	<0.003	< 0.02	<0.003	<0.003	<0.02
Arsenic	<0.001	<0.001	<0.008	<0.001	<0.001	<0.008	<0.001	<0.001	<0.009
Beryllium	<0.0003	<0.0004	<0.002	<0.0003	<0.0004	<0.002	<0.0003	<0.0004	< 0.003
Cadmium	≤0.00053	≤0.00057	≤0.0039	<0.0003	<0.0003	<0.002	0.00074	0.0008	0.0055
Chromium	0.00093	0.001	0.0067	0.0014	0.0015	0.0099	0.00047	0.00051	0.0035
Cobalt	<0.0004	<0.0005	< 0.003	<0.0004	<0.0005	< 0.003	<0.0004	<0.0005	< 0.003
Copper	0.0014	0.0015	0.0099	0.0014	0.0015	0.0099	0.0013	0.0014	0.0099
Lead	≤0.011	≤0.012	≤0.079	<0.001	<0.001	<0.008	0.02	0.022	0.15
Manganese	0.012	0.013	0.086	0.013	0.014	0.092	0.011	0.012	0.08
Mercury	0.0086	0.0093	0.063	0.0087	0.0093	0.062	0.0086	0.0093	0.064
Nickel	≤0.0011	≤0.0012	≤0.0079	0.0015	0.0016	0.011	<0.0007	<0.0007	<0.005
Selenium	<0.004	<0.004	<0.03	<0.003	<0.003	< 0.02	<0.004	<0.005	<0.03
Thallium	<0.001	<0.001	<0.008	<0.001	<0.001	<0.008	<0.001	<0.001	< 0.009
Tin	<0.001	<0.001	<0.008	<0.001	<0.001	<0.008	<0.001	<0.001	<0.009
Vanadium	0.00093	0.001	0.0068	0.00092	0.00099	0.0066	0.00094	0.001	0.007
Zinc	0.0046	0.005	0.034	0.0056	0.006	0.04	0.0036	0.0039	0.027
Type 1 & 2 Substances									
Upper Bound									
Total Type 1 Substances	≤0.024	≤0.025	≤0.17	≤0.014	≤0.015	≤0.099	≤0.033	≤0.036	≤0.25
Total Type 2 Substances	≤0.02	≤0.022	≤0.15	≤0.021	≤0.023	≤0.15	≤0.019	≤0.021	≤0.14
Total Type 1 & 2 Substances	≤0.044	≤0.047	≤0.32	≤0.035	≤0.038	≤0.25	≤0.053	≤0.057	≤0.39
Isokinetic Sampling Parameters									
Sampling time, min					120			120	
Isokinetic rate, %					99			100	

Page: 7 of 16

Prepared for: Boral Cement Ltd

Sample plane conformance to AS4323.1 (2021)

Date 28/01/2022 Client Boral Cement Ltd Report R012341 Stack ID EPA 2: No. 6 Kiln Stack Licence No. 1698 Location New Berrima **Ektimo Staff** Steven Cooper & Harrison Handicott NSW State **Process Conditions** Please refer to client records.

Sampling Plane Details 3000 mm Sampling plane dimensions Sampling plane area 7.07 m² Sampling port size, number 3" BSP and 4" Flange Elevator 30 m Access & height of ports Duct orientation & shape Vertical Circular Downstream disturbance Exit 8 D Upstream disturbance Junction 8 D No. traverses & points sampled 2 24

Stack Parameters Moisture content, %v/v 13 Gas molecular weight, g/g mole 29.8 (wet) 31.7 (dry) Gas density at STP, kg/m³ 1.33 (wet) 1.41 (dry) Gas density at discharge conditions, kg/m³ 0.88 % Oxygen correction & Factor 10 % 1.02 **Gas Flow Parameters** Flow measurement time(s) (hhmm) 1115 & 1728 Temperature, °C 105 Temperature, K 378 Velocity at sampling plane, m/s 29 Volumetric flow rate, actual, m3/s 200 Volumetric flow rate (wet STP), m3/s 140 Volumetric flow rate (dry STP), m³/s 120 Mass flow rate (wet basis), kg/hour 650000

Ideal sampling plane

Gas Analyser Results		Average			Minimum		Maximum		
Sampling time	1422 - 1525		1422 - 1525			1422 - 1525			
	Corrected to		Corrected to			Corrected to			
	Concentration	10% O2	Mass Rate	Concentration	10% 02	Mass Rate	Concentration	10% O2	Mass Rate
Combustion Gases	mg/m³	mg/m³	g/min	mg/m³	mg/m³	g/min	mg/m³	mg/m³	g/min
Nitrogen oxides (as NO ₂)	1000	1100	7300	1000	1000	7100	1100	1100	7500
Carbon monoxide	290	300	2100	250	260	1800	320	330	2300
	C	oncentration		Concentration			Concentration		
		% v/v			% v/v			% v/v	
Carbon dioxide		19.6			19.2			20.1	
Oxygen		10.2			10			10.4	

Total VOCs (as n-Propane)		Average			Test 1		Test 2			
		Corrected to			Corrected to			Corrected to		
	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min	
Total	1.2	1.2	8.2	1	1.1	7.3	1.3	1.3	9	

VOC (speciated)		Average			Test 1			Test 2	
Sampling tin	ie				1159-1259			1301-1401	
		Corrected to			Corrected to			Corrected to	
	Concentration	10% O2	Mass Rate	Concentration	10% O2	Mass Rate	Concentration	10% O2	Mass Rate
	mg/m³	mg/m³	g/min	mg/m³	mg/m³	g/min	mg/m³	mg/m³	g/min
Detection limit ⁽¹⁾	<0.1	<0.1	<0.8	<0.1	<0.1	<0.8	<0.1	<0.1	<0.8
Benzene	1.4	1.5	10	1.2	1.2	8.4	1.7	1.7	12
Toluene	0.17	0.17	1.2	0.17	0.17	1.2	0.17	0.17	1.2
Acetone	0.35	0.36	2.5	0.37	0.37	2.6	0.34	0.34	2.4

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 1,1-Dichloroethene, trans-1,2-Dichloroethene, clis-1,2-Dichloroethene, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, 1,1,2-Trichloroethane, Tetrachloroethane, Chloroforme, Ethylbenzene, 1,2,3-Trimethylbenzene, Ethylbenzene, Ethylben

Page: 8 of 16

Prepared for: Boral Cement Ltd

28/01/2022 Client Date Boral Cement Ltd R012341 Stack ID EPA 2: No. 6 Kiln Stack Report Licence No. 1698 Location New Berrima **Ektimo Staff** NSW Steven Cooper & Harrison Handicott State

Process Conditions Please refer to client records.

Dioxins & Furans (PCDDs & PCDFs) Average Test 1 Test 2 Sampling time 1122 - 1725 1122 - 1725 Corrected Corrected Corrected Concentration to 10% O2 Mass Rate Concentration to 10% O2 Mass Rate Concentration to 10% O2 Mass Rate ng/m³ ng/m³ ng/m³ ng/m³ ng/min ng/m³ ng/m³ ng/min ng/min 2.3.7.8-TCDF 0.00013 0.00014 0.00015 0.00015 0.00012 0.00012 0.85 0.94 1 2,3,7,8-TCDD <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <1 <1 <1 0.000028 0.000032 1,2,3,7,8-PeCDF 0.000028 0.2 0.000032 0.22 0.000024 0.000024 0.17 2,3,4,7,8-PeCDF 0.0003 0.00031 2.1 0.00024 0.00025 1.7 0.00037 0.00037 2.6 <0.00007 <0.00008 1.2.3.7.8-PeCDD < 0.00007 <0.5 < 0.00008 <0.5 < 0.00007 < 0.00007 < 0.5 1,2,3,4,7,8-HxCDF 0.000032 0.000033 0.23 0.000024 0.000025 0.17 0.00004 0.000041 0.28 1.2.3.6.7.8-HxCDF 0.000029 0.000029 0.2 0.000026 0.000026 0.18 0.000031 0.000032 0.22 0.000021 2,3,4,6,7,8-HxCDF 0.00002 0.14 0.000015 0.000015 0.1 0.000026 0.000027 0.18 1.2.3.7.8.9-HxCDF < 0.000007 <0.000007 < 0.05 < 0.000006 < 0.000006 < 0.04 < 0.000007 < 0.000007 < 0.05 1,2,3,4,7,8-HxCDD < 0.000009 < 0.000009 < 0.06 < 0.000009 < 0.000009 < 0.06 < 0.000009 < 0.000009 < 0.06 ≤0.0000099 <0.000009 <0.000009 <0.06 0.00001 0.000011 0.074 1.2.3.6.7.8-HxCDD ≤0.0000098 ≤0.069 1,2,3,7,8,9-HxCDD ≤0.0000092 ≤0.0000094 ≤0.065 0.0000097 0.0000099 0.068 <0.000009 <0.000009 <0.06 0.0000038 0.026 0.0000024 0.0000025 0.017 0.000005 0.0000051 0.036 1,2,3,4,6,7,8-HpCDF 0.0000037 1,2,3,4,7,8,9-HpCDF <0.000008 <0.0000008 <0.006 <0.0000009 <0.000009 <0.006 <0.000007 <0.0000007 <0.005 1,2,3,4,6,7,8-HpCDD 0.0000041 0.0000042 0.029 0.0000032 0.0000032 0.022 0.000005 0.0000051 0.036 OCDF ≤0.000000089 €0.00000009 ≤0.00063 <0.00000009 <0.00000009 < 0.0006 $0.000000087 \ 0.000000089$ 0.00061 OCDD 0.0000085 0.0000087 0.000005 0.0000051 0.035 0.000012 0.000012 0.085 0.06 Total TCDF isomers 0.032 0.033 230 0.035 0.036 250 0.03 0.03 210 Total TCDD isomers 0.0024 0.0024 17 0.002 0.002 0.0028 0.0028 20 14 Total PeCDF isomers 0.0068 0.0069 48 0.0064 0.0065 45 0.0071 0.0073 50 Total PeCDD isomers 0.0011 0.0011 7.5 0.00076 0.00077 5.3 0.0014 0.0014 9.7 Total HxCDF isomers 0.0019 0.0019 13 0.0015 0.0015 11 0.0023 0.0023 16 Total HxCDD isomers 0.0012 0.0012 8.2 0.0008 0.00082 5.7 0.0015 0.0016 11 Total HpCDF isomers 0.00046 0.00047 3.2 0.00027 0.00028 1.9 0.00064 0.00066 4.5 Total HpCDD isomers 0.00092 0.00094 6.5 0.00074 0.00076 5.2 0.0011 0.0011 7.7 Total PCDDs + PCDFs 0.055 0.056 390 0.052 0.053 370 0.059 0.06 410 I-TEQ Lower Bound 0.00057 0.00058 4 0.00051 0.00051 3.6 0.00064 0.00065 4.5

Abbreviations and definitions

Middle Bound

Upper Bound

I-TEQ International toxic equivalents for dioxins and furans
Lower Bound Defines values reported below detection as equal to zero.

0.0007

0.00083

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

0.00072

0.00085

5

5.9

0.00063

0.00076

0.00064

0.00077

4.5

5.3

0.00077

0.00091

0.00079

0.00092

5.5

6.4

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Test 1	Test 2
PAHs, Dioxins & Furans		
Sampling time, min	360	360
Isokinetic rate, %	95	98

Page: 9 of 16

Prepared for: Boral Cement Ltd

28/01/2022 Date Client Boral Cement Ltd Report R012341 Stack ID EPA 2: No. 6 Kiln Stack Licence No. 1698 Location New Berrima Ektimo Staff Steven Cooper & Harrison Handicott State NSW

 Ektimo Staff
 Steven Cooper & Harrison Handicott
 State
 NSV

 Process Conditions
 Please refer to client records.

Polycyclic Aromatic Hydrocarbons		Average			Test 1			Test 2	
(PAHs) Sampling time				:	1122 - 1725		1	122 - 1725	
		Corrected			Corrected			Corrected	
	Concentration	to 10% O2	Mass Rate	Concentration	to 10% O2	Mass Rate	Concentration	to 10% O2	Mass Rate
	ng/m³	ng/m³	ng/min	ng/m³	ng/m³	ng/min	ng/m³	ng/m³	ng/min
Naphthalene	120000	120000	860000000	120000	120000	820000000	130000	130000	900000000
2-Methylnaphthalene	55000	56000	390000000	39000	40000	280000000	71000	73000	500000000
Acenaphthylene	670	680	4700000	680	690	4800000	660	670	4700000
Acenaphthene	≤110	≤110	≤750000	<3	<3	<20000	210	210	1500000
Fluorene	41	42	290000	41	42	290000	42	43	290000
Phenanthrene	490	500	3500000	530	540	3700000	450	460	3200000
Anthracene	8.8	9	62000	7	7.1	49000	11	11	75000
Fluoranthene	22	22	160000	20	20	140000	24	25	170000
Pyrene	17	18	120000	14	14	96000	21	21	150000
Benz(a)anthracene	<20	<20	<100000	<20	<20	<100000	<20	<20	<100000
Chrysene	15	15	110000	13	14	95000	16	17	120000
Benzo(b)fluoranthene	<8	<8	<60000	<8	<8	<50000	<9	<9	<60000
Benzo(k)fluoranthene	<8	<8	<60000	<8	<8	<50000	<9	<9	<60000
Benzo(e)pyrene	<3	<3	<20000	<3	<3	<20000	<3	<4	<20000
Benzo(a)pyrene	<3	<3	<20000	<3	<3	<20000	<3	<4	<20000
Perylene	<3	<3	<20000	<3	<3	<20000	<3	<4	<20000
Indeno(1,2,3-cd)pyrene	<7	<7	<50000	<7	<7	<50000	<8	<8	<60000
Dibenz(ah)anthracene	<3	<3	<20000	<3	<3	<20000	<3	<4	<20000
Benzo(ghi)perylene	<7	<7	<50000	<6	<6	<40000	<7	<7	<50000
Total 16 PAHs	160000	160000	1100000000	120000	120000	830000000	200000	200000	1400000000
Total 19 PAHs	180000	180000	1300000000	160000	160000	1100000000	200000	200000	1400000000
BaP-TEQ									
Lower Bound	0.15	0.15	1100	0.13	0.14	950	0.16	0.17	1200
Middle Bound	4.6	4.7	32000	4.3	4.3	30000	4.9	5	35000
Upper Bound	9	9.2	64000	8.4	8.6	59000	9.7	9.8	68000

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Test 1	Test 2
PAHs, Dioxins & Furans		
Sampling time, min	360	360
Isokinetic rate, %	95	98

Page: 10 of 16

Prepared for: Boral Cement Ltd

Date 28/01/2022 Client Boral Cement Ltd Stack ID EPA 2: No. 6 Kiln Stack Report R012341 Licence No. 1698 Location New Berrima Ektimo Staff Steven Cooper & Harrison Handicott State NSW **Process Conditions** Please refer to client records.

Sampling Plane Details Sampling plane dimensions 3000 mm Sampling plane area 7.07 m² 3" BSP and 4" Flange Sampling port size, number Access & height of ports Elevator 30 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 8 D Upstream disturbance Junction 8 D No. traverses & points sampled 2 24 Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters	·	·	
Moisture content, %v/v	14		
Gas molecular weight, g/g mole	29.7 (wet)	31.6 (dry)	
Gas density at STP, kg/m ³	1.33 (wet)	1.41 (dry)	
Gas density at discharge conditions, kg/m³	0.88		
% Oxygen correction & Factor	10 %	1.06	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0905 & 1115		
Temperature, °C	106		
Temperature, K	379		
Velocity at sampling plane, m/s	29		
Volumetric flow rate, actual, m³/s	200		
Volumetric flow rate (wet STP), m ³ /s	140		
Volumetric flow rate (dry STP), m³/s	120		
Mass flow rate (wet basis), kg/hour	650000		

Isokinetic Results		Average			Test 1			Test 2	
Samplin	g time				0910-1112			0910-1112	
		Corrected to			Corrected to			Corrected to	
	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min
Chloride (as HCl)	0.4	0.42	2.8	0.33	0.35	2.3	0.46	0.49	3.3
Chlorine	<0.01	< 0.01	< 0.07	<0.009	< 0.009	<0.06	<0.01	< 0.01	<0.07
Total Fluoride (as HF)	0.06	0.063	0.42	0.039	0.042	0.28	0.08	0.085	0.56
Isokinetic Sampling Parameters									
Sampling time, min					120			120	
Isokinetic rate, %					100			101	

Page: 11 of 16

Prepared for: Boral Cement Ltd

Date 28/01/2022 Client Boral Cement Ltd Report R012341 Stack ID EPA 2: No. 6 Kiln Stack Licence No. Location New Berrima 1698 Ektimo Staff Steven Cooper & Harrison Handicott State NSW Please refer to client records. **Process Conditions**

Sampling Plane Details 3000 mm Sampling plane dimensions Sampling plane area 7.07 m² Sampling port size, number 3" BSP and 4" Flange Access & height of ports Elevator 30 m Vertical Circular Duct orientation & shape Downstream disturbance Exit 8 D Upstream disturbance Junction 8 D No. traverses & points sampled 2 24 Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters 13 Moisture content, %v/v 31.5 (dry) Gas molecular weight, g/g mole 29.7 (wet) Gas density at STP, kg/m³ 1.32 (wet) 1.41 (dry) Gas density at discharge conditions, kg/m³ 0.87 % Oxygen correction & Factor 10 % 1.11 **Gas Flow Parameters** Flow measurement time(s) (hhmm) 1728 & 1935 Temperature, °C 109 Temperature, K 382 Velocity at sampling plane, m/s 31 Volumetric flow rate, actual, m³/s 220 Volumetric flow rate (wet STP), m³/s 140 Volumetric flow rate (dry STP), m³/s 120 Mass flow rate (wet basis), kg/hour 680000

Isokinetic Results		Average			Test 1			Test 2	
Sampli	ng time				1730-1932			1730-1932	
		Corrected to			Corrected to			Corrected to	
	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	10% O2 mg/m³	Mass Rate g/min
Hexavalent chromium	<0.003	<0.003	<0.02	<0.003	<0.003	<0.02	<0.003	<0.003	<0.02
Isokinetic Sampling Parameters									
Sampling time, min					120			120	
Isokinetic rate, %					96			92	

Prepared for: Boral Cement Ltd

3 Test Methods

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Accredited	
				Sampling	Analysis
Sampling points - Selection	NSW EPA TM-1	NA	NA	✓	NA
Flow rate, temperature and velocity	NSW EPA TM-2	NSW EPA TM-2	8%, 2%, 7%	NA	✓
Moisture content	NSW EPA TM-22	NSW EPA TM-22	19%	✓	✓
Molecular weight	NA	NSW EPA TM-23	not specified	NA	✓
Dry gas density	NA	NSW EPA TM-23	not specified	NA	✓
Carbon dioxide	NSW EPA TM-24	NSW EPA TM-24	13%	✓	✓
Carbon monoxide	NSW EPA TM-32	NSW EPA TM-32	12%	✓	✓
Nitrogen oxides	NSW EPA TM-11	NSW EPA TM-11	12%	✓	✓
Sulfur dioxide	NSW EPA TM-4	NSW EPA TM-4	12%	✓	√ †
Speciated volatile organic compounds (VOCs)	NSW EPA TM-34 ^d	Ektimo 344	19%	✓	✓†
Coarse particulates	NSW EPA OM-9	NSW EPA OM-9	not specified	✓	✓**
Particulate matter (PM ₁₀ and PM _{2.5}) by particle size analysis	AS 4323.2	HRL in-house method using Malvern Mastersizer 2000	-	-	x**
Solid particles (total)	NSW EPA TM-15	NSW EPA TM-15	3%	✓	✓**
Total (gaseous and particulate) metals and metallic compounds	NSW EPA TM-12, NSW EPA TM-13, NSW EPA TM-14	Envirolab in-house methods Metals-006, Metals-022 & Metals-021	15%	✓	√ ‡
Type 1 substances (As, Cd, Hg, Pb, Sb)	NSW EPA TM-12	Envirolab in-house methods Metals-006, Metals-022 & Metals-021	15%	✓	√ ‡
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW EPA TM-13	Envirolab in-house methods Metals-006, Metals-022 & Metals-021	15%	√	√ ‡
Total and hexavalent chromium	NSW EPA OM-4	Envirolab in-house method Metals-006 & Inorg-024	16%	✓	✓‡
Dioxins and furans (PCDDs and PCDFs)	NSW EPA TM-18	NMI in-house method AUTL_MET_02	16%	✓	√1
Fluorine & fluorine compounds	NSW EPA TM-9	ALS in-house method EA144C & Ektimo 240	25%	✓	√ #, [†]
Hydrogen chloride	NSW EPA TM-8	Ektimo 235	14%	✓	✓ [†]
Chlorine	NSW EPA TM-7	Ektimo 235	14%	✓	√ [†]
Polycyclic aromatic hydrocarbons (PAHs)	NSW EPA OM-6	NMI in-house method NGCMS 11.27	21%	✓	√¶
Sulfuric acid mist and/or sulfur trioxide	NSW EPA TM-3	Ektimo 235	16%	✓	√ [†]

- * Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).
- [†] Analysis conducted at the Ektimo Mitcham, VIC laboratory, NATA accreditation number 14601. Results were reported on:
 - 10 February 2022 in report LV-002400.
 - 10 February 2022 in report LV-002403.
 - 16 February 2022 in report LV-002413.
 - 22 February 2022 in report R012341-F.
- ft Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.
- [‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 8 February 2022 in report 288290.
- Analysis performed by Australian Government National Measurement Institute, NATA accreditation number 198.
 - Results were reported to Ektimo on: 23 February 2022 in report # DAU22_041.
 - 2 March in report # ORG22_006.
- ** Analysis performed by HRL Technology using a laser-diffraction particle size analyser. NATA accreditation does not cover the performance of this service. Results were reported to Ektimo on 9 February 2022 in report 220177.
- * Analysis (solid fluoride only) performed by Australian Laboratory Services Pty Ltd, NATA accreditation number 825.
 Results were reported to Ektimo on 21 February 2022 in report EN2201250.
- d Excludes recovery study as specified in section 8.4.3 of USEPA Test Method 18

Prepared for: Boral Cement Ltd

4 Plant Operating Conditions

See Boral Cement Ltd's records for complete process conditions.

5 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

6 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry or wet basis

ApproximatelyLess thanGreater than

≥ Greater than or equal to

APHA American Public Health Association, Standard Methods for the Examination of Water and Waste Water

AS Australian Standard
BSP British standard pipe
CARB Californian Air Resource

CARB Californian Air Resources Board
CEM/CEMS Continuous Emission Monitoring/Continuous Emission Monitoring System

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half of

the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the

 D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.

DECC Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or

changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA)
DEHP Department of Environment and Heritage Protection (QLD)

EPA Environment Protection Authority

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable

NATA National Association of Testing Authorities

 $PM_{10} \\ \hspace{2.5cm} \text{Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10} \\$

microns (μm).

PM_{2.5} Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5

microns (μm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

diffraction.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.

TM Test method

USEPA United States Environmental Protection Agency

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

this range.

Page: 14 of 16

Reference: R012341[DRAFT]

Date: 28/03/2022

Prepared for: Boral Cement Ltd (Berrima)

7 Appendix 1: Site Location Photo

EPA 2 – No. 6 Kiln Stack

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road, Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA