

This document has been prepared on behalf of **Sell & Parker Pty Ltd** by:

Northstar Air Quality Pty Ltd,

Suite 1504, 275 Alfred Street, North Sydney, NSW 2060

www.northstarairquality.com | Tel: +61 (02) 9071 8600

Kings Park Metal Resource Facility

Revised Air Quality Impact Assessment

Addressee(s): Sell & Parker Pty Ltd

Report Reference: 20.1074.FR4V1

Date: 17 December 2021

Status: Final

Quality Control

Study	Status	Prepared	Checked	Authorised
INTRODUCTION	Final	Northstar	MD, PR, AG, HR	GCG
THE PROPOSAL	Final	Northstar	MD, PR, AG, HR	GCG
LEGISLATION, REGULATION AND GUIDANCE	Final	Northstar	MD, PR, AG, HR	GCG
EXISTING CONDITIONS	Final	Northstar	MD, PR, AG, HR	GCG
METHODOLOGY	Final	Northstar	MD, PR, AG, HR	GCG
RESULTS	Final	Northstar	MD, PR, AG, HR	GCG
DISCUSSION AND CONCLUSION	Final	Northstar	MD, PR, AG, HR	GCG

Report Status

Northstar References	5	Report Status	Report Reference	Version
Year	Job Number	(Draft: Final)	(R <i>x</i>)	(V <i>x</i>)
20	1074	Final	R4	V1
Based upon the above, the specific reference for this version of the report is:			20.1074.FR4V1	

Final Authority

This report must by regarded as draft until the above study components have been each marked as final, and the document has been signed and dated below.

G. Graham

17th December 2021

© Northstar Air Quality Pty Ltd 2021

Copyright in the drawings, information and data recorded in this document (the information) is the property of Northstar Air Quality Pty Ltd. This report has been prepared with the due care and attention of a suitably qualified consultant. Information is obtained from sources believed to be reliable, but is in no way guaranteed. No guarantee of any kind is implied or possible where predictions of future conditions are attempted. This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

Non-Technical Summary

This report (ref: 20.1074.DR4V2, dated 17/12/2021) includes components of:

- The original Air Quality Impact Assessment report (ref: 20.1074.FR1V3, dated 6 August 2020) (Northstar Air Quality, 2020) which was submitted in support of the Environmental Impact Statement; and
- The Supplementary Air Quality Impact Assessment report (ref: 20.1074.FR3V1, dated 31 March 2021) (Northstar Air Quality, 2021), which was a supplementary report prepared in response to the subsequent Request For Information request issued by the NSW Environmental Protection Authority upon review of the Environmental Impact Statement.

This report has been prepared at the request of NSW Environmental Protection Authority to submit the previously submitted report as a single document. It has been called a "Revised Air Quality Impact Assessment" report solely to differentiate it from the previous reports and is intended as a single-bound standalone document. It additionally includes some new content to provide further clarity on a number of issues also at the request of NSW EPA.

Sell & Parker purchase, sell and recycle all types of ferrous and non-ferrous metals. Their facilities are located strategically throughout NSW and Australia. Sell & Parker currently own and operate a resource recovery facility at 23-43 and 45 Tattersall Road, Kings Park. This resource recovery facility currently operates under State Significant Development approval 5041 and three associated modifications.

Sell & Parker is seeking approval to increase the throughput limit of the resource recovery facility from 350 000 to 600 000 tonnes per annum. Approval for the Proposal is sought as State Significant Development under Part 4, Division 4.7 of the *Environmental Planning and Assessment 1979* (EP&A Act).

Northstar Air Quality has been engaged to perform an air quality impact assessment to support the Environmental Impact Statement for the proposed throughput increase.

This revised air quality impact assessment has been performed in accordance with the State Environmental Assessment Requirements and the NSW Environment Protection Authority guidance "*Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales*".

Using a range of site-specific data regarding the type and nature of activities to be performed on site, peak day emissions to air have been estimated in accordance with the relevant guidance, and the dispersion of emissions has been modelled using approved atmospheric dispersion modelling techniques. The corresponding impacts have been predicted at a number of receptor locations representing community exposure and at industrial locations, as discrete impacts and as cumulative impacts which account for general prevailing air quality conditions considered to be representative of the site.

The impact assessment does not predict any additional exceedances of the relevant air quality and odour assessment criteria, as published in NSW Environment Protection Authority guidance "*Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales*", except for a predicted exceedance of the standard applicable to deposited dust at a single location beyond the site boundary, but not at a location sensitive to this potential impact.

It is noted that over some periods of the year used for the modelling exercise, the general prevailing background air quality conditions adopted from the monitoring network operated by NSW Department of Planning, Industry and Environment were already in exceedance of the impact assessment criterion. In such circumstances, the guidance provided in *"Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales"* requires the demonstration of no additional exceedances of the health-based criteria, and this assessment demonstrates compliance with that requirement.

The air quality impact assessment also considers the potential impacts of the operation of the neighbouring Autorecyclers Pty Ltd operations at a proposed increased throughput of 130 000 tonnes per year. The report assesses the potential aggregated impacts with those emissions, and the assessment does not predict any exceedance of the relevant air quality and odour assessment criteria, as published in NSW Environment Protection Authority guidance "*Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales*".

Further to the air quality impact assessment, a Best Management Practice Dust Control benchmarking study has been performed to identify controls that may be reasonably applied to manage particulate emissions from the activities performed. That assessment has identified a number of additional controls that have been evaluated to be applied to further control emissions, and also identifies that a number of Best Management Practice measures are already performed as part of site operations.

The report presents a number of recommendations including:

- the next scheduled emission testing event on the Hammermill, as required under the Environmental Protection Licence, is extended in scope by Sell & Parker to include a wider range of pollutants;
- a number of additional dust control measures identified through a Best Management Practice Dust Control assessment;
- a review of the configuration, location, metrics and trigger points of the on-site air quality monitoring stations.

Contents

1.		
1.1.	Project Background	
1.2.	Key Terms	
1.3.	Referenced Guidance	
1.4.	Secretary's Environmental Assessment Requirements	15
1.5.	Issues Raised in Submissions	
1.6.	Consultation with EPA	27
2.	THE PROPOSAL	29
2.1.	Proposal Site	29
2.2.	Proposal Description	
2.2.1.	Approved Operating Hours	
2.2.2.	Capacity and Throughput	
2.2.3.	Material Flow through the Processes	34
2.2.4.	Plant and Equipment	35
2.2.5.	Identified Potential Emissions to Air	35
2.3.	Proximate Sources	35
3.	LEGISLATION, REGULATION AND GUIDANCE	
3.1.	Protection of the Environment Operations Act	
3.2.	Ambient Air Quality Standards	
3.3.	Odour	
4.	EXISTING CONDITIONS	43
4.1.	Surrounding Land Sensitivity	43
4.1.1.	Discrete Receptor Locations	43
4.1.2.	Land Use Sensitivity	47
4.1.3.	Uniform Receptor Locations	49
4.2.	Topography	49
4.3.	Meteorology	51
4.4.	Air Quality	53

4.4.1.	DPIE Air Quality Monitoring Stations	53
4.4.2.	Exceptional Events	55
4.4.3.	On-Site Monitoring	56
5.	METHODOLOGY	61
5.1.	Dispersion Modelling	61
5.2.	Emissions Estimation	62
5.2.1.	Scope and Sources	62
5.2.2.	Hammermill Emissions	68
5.2.3.	Oxycutter Emissions	70
5.2.4.	Vehicle Emissions	70
5.2.5.	Odour	70
5.2.6.	Summary	
5.3.	NO_{χ} to NO_{2} Conversion	72
6.	RESULTS	73
6.1.	Annual Average TSP, PM_{10} and $PM_{2.5}$	74
6.2.	24-hour Average PM_{10} and $PM_{2.5}$	75
6.2.1.	Incremental Impacts	75
6.2.2.	Cumulative Impacts	75
6.3.	Nitrogen Dioxide	77
6.4.	Metals	79
6.5.	Annual Average Dust Deposition	79
6.6.	Odour	81
7.	DISCUSSION AND CONCLUSION	82
7.1.	Compliance with Air Quality Criteria	82
7.2.	Aggregated Impacts with Autorecyclers Pty Itd	83
7.3.	Air Quality Management	87
7.3.1.	Committed Air Quality Management Measures	87
7.3.2.	Proposed Air Quality Management Measures	
7.3.3.	Implementation through the EMS	90

7.3.4.	Hammermill	90
7.3.5.	Oxycutter	
7.3.6.	Air Quality Monitoring	93
7.4.	Conclusion	94
7.4.1.	Summary	94
7.4.2.	Recommendations	95
8.	REFERENCES	97
Appendix A - Meteorology		
Appendix B – Background Air Quality107		
Appendix C – Emission Estimation113		
Appendix D – Schedule of Results		
Appendix E – Best Management Practice Dust Control146		
Appendix F – Emission Test Reports164		

Tables

Table 1	Terminology	14
Table 2	Secretary's Environmental Assessment Requirements (SSD 10396)	15
Table 3	Summary of Submissions	18
Table 4	Comments from consultation with EPA	27
Table 5	Approved operational hours	32
Table 6	Summary of processing capacity for plant equipment	33
Table 7	EPL 11555 air concentration limits (EPA-3 Hammermill Stack)	37
Table 8	Summary of emission test results (EPA-3 Hammermill Stack)	37
Table 9	NSW EPA air quality standards and goals	38
Table 10	NSW EPA Technical Framework odour criteria	40
Table 11	Receptor locations used in the study	45
Table 12	Identified proximate schools and hospitals	46
Table 13	Receptor selection and sensitivity	47
Table 14	Details of meteorological monitoring surrounding the Proposal site	51
Table 15	Air quality background concentrations	54
Table 16	Summary of background air quality used in the AQIA	55
Table 17	S&P monitoring data summary (2017-2018)	58
Table 18	S&P monitoring data excerpt (3 Aug 2018)	58
Table 19	TAPM and CALMET configuration	61
Table 20	Assumed peak material activity rates	63
Table 21	Summary of particulate emission test results from the Hammermill	68
Table 22	Measured odour emissions from the Hammermill (EML Air, June 2014)	69
Table 23	Predicted incremental annual average TSP, PM_{10} and $PM_{2.5}$ concentrations	74
Table 24	Predicted incremental 24-hour average PM_{10} and $PM_{2.5}$ concentrations	75
Table 25	Predicted cumulative 24-hour average PM_{10} concentrations	76
Table 26	Predicted cumulative 24-hour average PM _{2.5} concentrations	77
Table 27	Predicted incremental 1-hour and annual average NO_2 concentrations	78
Table 28	Predicted incremental & cumulative dust deposition rates	79
Table 29	Predicted incremental 99 th percentile odour impacts	81
Table 30	Aggregated impact receptors	83
Table 31	Predicted aggregated annual average TSP, PM_{10} and $PM_{2.5}$ concentrations	84
Table 32	Predicted aggregated 24-hour PM_{10} and $PM_{2.5}$ concentrations	85
Table 33	Predicted aggregated 99 th percentile 3-second odour concentrations	86
Table 34	Committed air quality control measures	87
Table 35	Summary of adopted control measures	89
Table 36	Practicability of implementing the (specific) control measure of semi-encapsula	tion on
	the Oxycutter	92
Table 37	Summary of recommendations	95

20.1074.FR4V1 Final

Table 39Statistics for meteorological observations and TAPM model predictions at Horsley	Park
	TUIK
Equestrian Centre AWS	105
Table 40Correlation statistics for TAPM meteorological performance	106
Table 41Details of closest AQMS surrounding the site	108
Table 42PM10 and PM2.5 statistics (Prospect 2018)	109
Table 43Summary of measured background air quality data (Prospect 2018)	111
Table 44Emission estimates- point source emissions	113
Table 45Emission estimate – volume source emissions – peak activity rates	119
Table 46Emission estimate – volume source emissions – peak emission rates	124
Table 47Emission estimate – open area wind erosion sources – peak activity rates	127
Table 48Emission estimate – open area wind erosion sources – peak emission rates	127
Table 49Emission estimate – wheel generated dust – peak activity rates	128
Table 50Emission estimate – wheel generated dust – peak emission rates	128
Table 51Annual emission estimate by activity and site total - TSP	129
Table 52Annual emission estimate by activity and site total – PM10	129
Table 53Annual emission estimate by activity and site total – PM2.5	130
Table 54 Predicted incremental and cumulative annual average TSP, PM_{10} and P	PM _{2.5}
concentrations (all receptors)	132
Table 55Predicted incremental 24-hour average PM10 and PM2.5 concentrations	134
Table 56Predicted cumulative 24-hour average PM10 concentrations	135
Table 57Predicted cumulative 24-hour average PM2.5 concentrations	135
Table 58Predicted incremental 1-hour and annual average NO2 concentrations	136
Table 59Predicted incremental & cumulative dust deposition rates	138
Table 60Predicted incremental impacts (1 of 2)	140
Table 61Predicted incremental impacts (2 of 2)	142
Table 62Predicted incremental 99th percentile odour impacts	144
Table 63Uncontrolled particulate emissions	148
Table 64Best practice control measures – paved haulage routes	150
Table 65Best practice control measures – conveyors	151
Table 66Best practice control measures – handling and transfer	151
Table 67Control factors assumed for potential control measures	152
Table 68Potential emissions reductions from further control measures	153
Table 69Practicability of implementing control measures for haulage routes	156
Table 70Practicability of implementing control measures for conveying	157
Table 71Practicability of implementing control measures for handling and transfer	158
Table 72Summary of adopted control measures	161

Figures

Figure 1	Location of the Proposal site	30
Figure 2	The Proposal site	31
Figure 3	Process flow diagram	34
Figure 4	Population density and sensitive receptors surrounding the Proposal site	44
Figure 5	Identified proximate schools and hospitals	47
Figure 6	Three-dimensional representation of topography surrounding the Proposal site	50
Figure 7	Meteorological monitoring stations surrounding the Proposal site	52
Figure 8	Air Quality Monitoring Stations surrounding the Proposal site	53
Figure 9	Sell and Parker Blacktown monitoring station locations	57
Figure 10	S&P 24-hr PM ₁₀ monitoring data summary (2017 left) (2018 right)	60
Figure 11	Difference in 24-hr PM_{10} monitoring data (2017 left) (2018 right)	60
Figure 12	Modelled emission source locations	67
Figure 13	Annual wind roses 2015 to 2019, Prospect AQMS	100
Figure 14	Annual wind roses 2015 to 2019 – Prospect AQMS	101
Figure 15	Annual wind speed distribution – Prospect AQMS	102
Figure 16	Predicted meteorological parameters – Proposal site 2018	104
Figure 17	Predicted wind speed and direction – Proposal site 2018	105
Figure 18	Wind roses, observed (left) and TAPM (right)	106
Figure 19	Co-located TSP and PM_{10} measurements, Lower Hunter, Sydney Metro and Illawarr	a 110
Figure 20	PM ₁₀ measurements, Prospect 2018	112
Figure 21	PM _{2.5} measurements, Prospect 2018	112
Figure 22	Potential uncontrolled emission estimate	149
Figure 23	Potential emissions reductions associated with haulage	154
Figure 24	Potential emissions reductions associated with conveying	154
Figure 25	Potential emissions reductions associated with handling and transfer	155
Figure 26	Summary of potential site wide emissions reductions	163

Units Used in the Report

All units presented in the report follow International System of Units (SI) conventions, unless derived from references using non-SI units. In this report, units formed by the division of SI and non-SI units are expressed as a negative exponent, and do not use the solidus (/) symbol. *For example*, 50 micrograms per cubic metre would be expressed as 50 μ g·m⁻³ and not 50 μ g/m³.

Common Abbreviations

Abbreviation	Term
ABS	Australian Bureau of Statistics
AHD	Australian height datum
AQIA	air quality impact assessment
AQMP	air quality management plan
AQMS	air quality monitoring station
AWS	Automatic Weather Station
ВоМ	Bureau of Meteorology
BMP	Best Management Practice
Cl ₂	chlorine
СО	carbon monoxide
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DEC	Department of Environment and Conservation
DPIE	Department of Planning, Industry and Environment
EETM	emission estimation technique manual
EIS	Environmental Impact Statement
EMS	environmental management system
EPA	Environmental Protection Authority
EPL	Environment Protection Licence
H ₂ S	hydrogen sulphide
HCI	hydrogen chloride
m ²	square metre
m ³	cubic metre
m·s ⁻¹	metres per second
mg∙m⁻³	milligram per cubic metre of air
mg∙Nm⁻³	milligram per normalised cubic metre of air
µg∙m⁻³	microgram per cubic metre of air

Abbreviation	Term
mE	metres East
mS	metres South
NCAA	National Clean Air Agreement
NEPM	National Environment Protection Measure
NO	nitric oxide
NO _X	oxides of nitrogen
NO ₂	nitrogen dioxide
O ₃	ozone
OU	odour unit
PM	particulate matter
PM ₁₀	particulate matter with an aerodynamic diameter of 10 μ m or less
PM _{2.5}	particulate matter with an aerodynamic diameter of 2.5 μm or less
RRF	resource recovery facility
S&P	Sell and Parker
SEARs	Secretary's Environmental Assessment Requirements
SEPP	State Environmental Planning Policy
SSD	State Significant Development
t	tonne
ТАРМ	The Air Pollution Model
tpa	tonnes per annum
TSP	total suspended particulates
US EPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
VKT	vehicle kilometres travelled

1. INTRODUCTION

This report (ref: 20.1074.DR4V2, dated 17/12/2021) includes components of:

- The original Air Quality Impact Assessment report (ref: 20.1074.FR1V3, dated 6 August 2020) (Northstar Air Quality, 2020) which was submitted in support of the Environmental Impact Statement; and
- The Supplementary Air Quality Impact Assessment report (ref: 20.1074.FR3V1, dated 31 March 2021) (Northstar Air Quality, 2021), which was a supplementary report prepared in response to the subsequent Request For Information request issued by the NSW Environmental Protection Authority upon review of the Environmental Impact Statement.

This report has been prepared at the request from NSW Environmental Protection Authority to submit the previously submitted report as a single document. It has been called a "Revised Air Quality Impact Assessment" report solely to differentiate it from the previous reports and is intended as a single-bound standalone document. It additionally includes some new content to provide further clarity on a number of issues at the request of NSW EPA.

Highlighted text boxes have been added where necessary in this report to provide clarification where this report differs from the original AQIA report.

On behalf of Sell & Parker Pty Ltd (S&P, the applicant), Arcadis Australia Pty Ltd (Arcadis) has engaged Northstar Air Quality Pty Ltd (Northstar) to perform an Air Quality Assessment (AQIA) for the proposed expansion of the existing resource recovery facility (RRF).

1.1. Project Background

S&P purchase, sell and recycle all types of ferrous and non-ferrous metals. Their facilities are located strategically throughout NSW and Australia. S&P currently own and operate an RRF at 23-43 and 45 Tattersall Road, Kings Park (the Proposal site). This RRF currently operates under State Significant Development (SSD) approval 5041 and three associated modifications (the Original Approval)¹.

• Original Approval: https://www.planningportal.nsw.gov.au/major-projects/project/5191

S&P is seeking approval to increase the throughput limit of the RRF from 350 000 to 600 000 tonnes per annum (tpa) (the Proposal). Approval for the Proposal is sought as SSD under Part 4, Division 4.7 of the *Environmental Planning and Assessment 1979* (EP&A Act).

¹ Original Approval: https://www.planningportal.nsw.gov.au/major-projects/project/5191

The existing infrastructure at the Proposal site has the capacity to accommodate an increased throughput without altering the approved operational hours or requiring any construction works on the Proposal site.

1.2. Key Terms

The key terms are outlined in Table 1.

Table 1 Terminology

Term	Description
The Original Approval	The approved Environmental Impact Assessment for SSD 5041 (and subsequent modifications)
The Proposal	The proposal for which approval is being sought, namely the expansion of Kings Park metal recycling and processing facility
The Proposal site	 The Sell and Parker Premises at 23-43 and 45 Tattersall Road, Kings Park NSW. The area at which the Proposal would be located incorporates the following lots: Lot 2, DP 550522 Lot 5, DP 7086.

1.3. Referenced Guidance

To allow assessment of the level of risk associated with the Proposal in relation to air quality, the AQIA has been performed with due reference to:

- Approved Methods for the Modelling and Assessment of Air Pollutants in NSW (NSW EPA, 2017);
- Technical Framework Assessment and Management of Odour from Stationary Sources in NSW (NSW DEC, 2006);
- Technical Notes Assessment and Management of Odour from Stationary Sources in NSW (NSW DEC, 2006);
- Protection of the Environment Operations Act 1997; and
- Protection of the Environment Operations (Clean Air) Regulation 2021.

1.4. Secretary's Environmental Assessment Requirements

NSW Department of Planning, Industry and Environment (DPIE), issued the Planning Secretary's Environmental Assessment Requirements (SEARs) for the Proposal in December 2019. **Table 2** below identifies the SEARs relevant to this AQIA report and the relevant sections of the report in which they have been addressed.

Agency / Issue	Requirement	Addressed
Blacktown City Council / Environmental Health	a) An air quality assessment must be conducted by a suitably qualified expert in line with the Approved methods and Guidance for the Modelling and Assessment of Air Pollutants in NSW (EPA 2011) which includes:	This report
Air Quality Impact Assessment	 All processes and scenarios that could result in air pollution and/or generation of odour, this must also include worst case scenarios 	Section 2.2 and 5.2
	• An assessment of the air quality impacts arising from the project on surrounding sensitive receptors (particularly dust and odour)	Sections 4.1.1 and 6
	• Provide an air quality management plan that includes details of the various methods that will be employed to control pollutants during the operational phase of the development	Section 7.3
	• The accumulative impact of this proposal along with adjacent development, particularly to the west of the site.	Section 7.2
NSW EPA / Air Pollution	Impact on the amenity of surrounding community from smoke, odour, particulates and dust and measures to be implemented to minimise or prevent these emissions including:	This report
	 The feasibility of semi-encapsulation of oxy-cutting activities to manage particulate emissions; 	Section 7.1
	A cumulative assessment of environmental impacts; and	Sections 6 and 7.2
	Evidence that existing approved infrastructure can	Section 7.2
	accommodate increased throughput – in particular the Emissions Collection System	
NSW EPA /	• Identify all sources or potential sources of air emissions from the	Section 2.2 and 5.2
Description of the	development	and Appendix C
Proposal	Note: emissions can be classified as either: point (e.g. emissions	
	from stack or vent) or fugitive (from wind erosion, leakages or	
	spillages, associated with loading or unloading, conveyors,	
	storage facilities, plant and yard operation, vehicle movements (dust from road, exhausts, loss from load), land clearing and	
	construction works)	

Table 2	Secretary	's Environmental	Assessment	Requirements	(55D 10396)
Table 2	Secretary	S Environmenta	Assessment	Requirements	(330 10390)

Agency / Issue	Requirement	Addressed
	 Provide details of the project that are essential for predicting and assessing air impacts including: A) the quantities and physio-chemical parameters (e.g. concentration, moisture content, bulk density, particle sizes etc) of materials to be used, transported, produced or stored B) an outline of procedures for handling, transport, production and storage C) The management of solid, liquid and gaseous waste streams with potential to generate emissions to air. 	Section 5.2 and Appendix C Section 7 Section 7
NSW EPA / The location	 Describe the topography and surrounding land uses. Provide details of the exact locations of dwellings, schools and hospitals. Where appropriate provide a perspective view of the study area such as the terrain file used in dispersion models. Describe surrounding buildings that may affect plume 	Section 4.1.1 Figure 4, Figure 5 Section 2.2 and 5.1
	 dispersion. Provide and analyse site representative data on following meteorological parameters: a) temperature and humidity b) rainfall, evaporation and cloud cover c) wind speed and direction d) atmospheric stability class e) mixing height (the height that emissions will be ultimately mixed in the atmosphere) f) katabatic air drainage g) air re-circulation. 	Section4.3 and Appendix B
NSW EPA / The environmental issues	 Describe baseline conditions Provide a description of existing air quality and meteorology, using existing information and site representative ambient monitoring data. Assess impacts 	Section 4 Sections 4.4 and 4.3 Appendices A and B
	 Identify all pollutants of concern and estimate emissions by quantity (and size for particles), source and discharge point. Estimate the resulting ground level concentrations of all pollutants. Where necessary (e.g. potentially significant impacts and complex terrain effects), use an appropriate dispersion model to estimate ambient pollutant concentrations. Discuss choice of model and parameters with the EPA. Describe the effects and significance of pollutant concentration on the environment, human health, amenity and regional ambient air quality standards or goals. Describe the contribution that the development will make to 	Section 6 Section 6
	regional and global pollution, particularly in sensitive locations.	Section

Agency / Issue	Requirement	Addressed
	• For potentially odorous emissions provide the emission rates in	Section 5.2 and
	terms of odour units (determined by techniques compatible with	Appendix C
	EPA procedures). Use sampling and analysis techniques for	
	individual or complex odours and for point or diffuse sources, as	
	appropriate. Note: With dust and odour, it may be possible to	
	use data from existing similar activities to generate emission	
	rates.	
	Reference should be made to relevant guidelines e.g. Approved	Section 1.3
	Methods for the Modelling and Assessment of Air Pollutants in	
	NSW (DEC, 2016); Approved Methods for the Sampling and	
	Analysis of Air Pollutants in NSW (DEC, 2007); Assessment and	
	Management of Odour from Stationary Sources in NSW (DEC,	
	2006); Technical Notes: Assessment and Management of Odour	
	from Stationary Sources in NSW (DEC, 2006); Load Calculation	
	Protocol for use by holders of NSW Environment Protection	
	Licences when calculating Assessable Pollutant Loads (DECC,	
	2009).	
	Describe management and mitigation measures	
	Outline specifications of pollution control equipment (including	Section 7
	manufacturer's performance guarantees where available) and	
	management protocols for both point and fugitive emissions.	
	Where possible, this should include cleaner production	
	processes.	

1.5. **Issues Raised in Submissions**

The Supplementary AQIA report (Northstar Air Quality, 2021) provided responses to the submissions outlined in Table 3.

Table 3 Summary of Submissions			
Comment	Addressed		
Blacktown City Council			
Blacktown City Council The additional Air Quality Impact Assessment notes the following: "the annual average concentration of PM2.5 in 2018 was 8.5 µg·m-3 exceeding the criteria at all receivers without the Proposal. The additional contribution from the Proposal at all receivers is less than 0.1 µg·m-3 and is considered negligible." We remain concerned that the proposed expansion will exacerbate the air quality and requires confirmation from NSW Health that the proposed 0.1 µg·m-3 further exceedance will be negligible. Until a confirmation from NSW Health is received, we cannot support the proposal in this instance.	The values of "<0.1 µg·m ⁻³ " presented in the AQIA represents the limit of reporting (LOR), and as such represents the upper bound of that value (that is, the value predicted is less than this "less than" concentration). The underlying premise of that limit is that an increment of <0.1 µg·m ⁻³ is essentially a predicted unmeasurable concentration change. A concentration of 0.1 µg·m ⁻³ is essentially the resolution limit of PM ₂₅ analysis in the field. Any study that assesses PM ₂₅ would present such predicted minimal impact results as an upper limit of limit of reporting rather than "0 µg·m ⁻³ " which cannot be scientifically justified. The position adopted by Council that an increase of <0.1 µg·m ⁻³ is unacceptable essentially implies that any study that assesses PM ₂₅ , and demonstrates a predicted minimal increment, would be unsupportable. It is therefore the position of the applicant that this position imposes a barrier to any development that has assessed PM ₂₅ and is therefore unreasonable. Furthermore, as outlined by NSW EPA in the Approved Methods document (NSW EPA, 2016, section 5.1.3, page 17): 5.1.3 Dealing with elevated background concentrations <i>In some locations, existing ambient air pollutant concentrations may exceed the impact assessment criteria from time to time. In such circumstances, a licensee must demonstrate that no additional exceedances of the impact assessment practices will be implemented to minimise emissions of air pollutants as far as is practical Requesting NSW Health to confirm a negligible increase is not regarded as necessary, given the assessment methodology identified by NSW EPA in the Approved Methods document.</i>		
	The Revised Air Quality Impact Assessment provides a detailed assessment of best management practice measures to be implemented at the site, and		
	the report therefore meets the requirements of the NSW EPA guidance.		
NSW EPA			
It is not clear whether the assumed	The assessment has been based upon a peak "worst case" daily activity rate		
operations and emissions in the	of 2 634 t·day ⁻¹ , commensurate with an extrapolated annual tonnage		
AQIA are representative of normal	throughput of 795 468 t-year-1. The data used to quantify the worst-case		

Table 3 Summary of Submissions

20.1074.FR4V1	INTRODUCTION
Final	Kings Park Metal Resource Facility - Revised Air Quality Impact Assessment

operations or a worst-case scenario scenario is presented in **Section 2.2** and specifically in **Table 6**.

Comment	Addressed
and how the increased throughput will be handled at the facility.	The worst-case assumptions may be compared to the Proposal activity rate of 600 000 t·year ⁻¹ which corresponds to a daily average activity rate of 1 987 t·day ⁻¹ over 302 operating days. It can be seen that the assumed worst-case activity rate is approximately 33 % higher than typical activity rates. The increase in throughput is facilitated by operational efficiency, not a change in plant capacity.
The proponent must present and adequately justify that a worst-case scenario has been assessed and if it has not, undertake such an assessment.	See above. This assumption has been used in the AQIA.
The proponent must detail how the facility is capable of handling the increased throughput, particularly in light of no additional works being conducted to facilitate the increase.	The increased throughput is within the design capacity of the plant. As illustrated in in Section 2.2 and Table 6 , the maximum daily throughput is based upon the maximum design specification for the non-ferrous baler, the shredder, the shears and oxycutter, and the corresponding material handling and transfer rates. In regard to the capability of the plant to manage this throughput, EPL 11555 requires emissions testing on the shredder (Hammermill and emission collection system "ECS"). The NATA Accredited emission testing demonstrates that the measured TSP and Type 1&2 emissions are comfortably and consistently lower than the emission limits specified under EPL 1555. This is discussed in Section 2.2 and Section 5.2 . The respective complete emission test reports are presented in Appendix F for cross reference.
The proponent must provide a clear linkage between emission sources (Table 14), process (Figure 3), movement of materials onsite, throughput and activity rates.	The linkages between the emission sources, process flow diagram, throughput and activity rates are discussed in Section 2.2 , which provides clarification of the material flows and assumed activity rates. Figure 3 has been updated to provide additional clarification to the activity rates and provide a clear linkage between emission sources and the associated activity rates.
The proponent must include total emissions per year for each activity and as an entire site in the emission inventory	 Appendix C presents an emission inventory for each activity (Table 44 to Table 50) for use in the emission modelling assessment using peak-hour assumptions. Annualised emission estimates are provided in Table 51 to Table 53, as requested.
There is uncertainty as to whether the hammermill is meeting current Licence limits.	EPL 11555 requires emissions testing on the shredder (Hammermill and emission collection system "ECS"). The NATA Accredited emission testing demonstrates that the measured TSP and Type 1&2 emissions are comfortably and consistently lower than the emission limits specified under EPL 1555. This is discussed in Section 2.2 and Section 5.2 .

Comment	Addressed
The AQIA has modelled the	The AQIA has modelled the emissions from the Hammermill at the
hammermill at the emission	maximum measured concentrations reported in the NATA endorsed
concentration limits from the	emission test reports performed on the Hammermill are presented in
Licence, Type 1 and 2 substances	Appendix F (Ektimo, May 2017), (Ektimo, Sep 2018), (Ektimo, Sep 2019),
(in aggregate) of 1 mg/m3 and TSP	(Ektimo, Oct 2019), (Ektimo, Sep 2020) and (Ektimo, May 2021).
of 20 mg/m3. The parameters of	Table 21 presents a summary of those emission reports which shows the
the hammermill modelled include a	2021 emission test data remains compliant with the emission limits specified
discharge velocity of 25 m/s.	in EPL 11555.
Emission concentrations from the	Emissions of PM_{10} and $PM_{2.5}$ are derived from measurements presented in
hammermill for PM10 and PM2.5	R003396 (Ektimo, May 2017). The measured emission concentrations of TSP,
have been given as 47 % and 15%,	PM_{10} and $PM_{2.5}$ are 9.3 mg·Nm ⁻³ , 6.6 mg·Nm ⁻³ and <4 mg·Nm ⁻³ respectively.
respectively, of the TSP	The emission concentration of PM_{10} is therefore (approx.) 71 % of TSP and
concentration (Appendix C). No	$PM_{2.5}$ is (approx.) 43 % of TSP.
testing data has been provided to	Appendix F provides the NATA accredited emissions testing performed on
support these emission	the Hammermill under EPL 11555 over the period from 2014 to 2021
concentrations and parameters	(inclusive). The scope of testing required under EPL 11555 is TSP and Type 1
despite the requirement for annual	& 2 substances (metals). The various test reports demonstrate continuous
testing of TSP on the licence since	compliance with the emission limits for TSP and Type 1 & 2 substances, and
2016.	additional analyses performed at the request of S&P.
Further, the SEARs specifically	EPL 11555 requires emissions testing on the shredder (Hammermill and
required evidence that the existing	emission collection system "ECS"). The NATA Accredited emission testing
emissions collection system can	demonstrates that the measured TSP and Type 1&2 emission are
accommodate the increased	comfortably and consistently lower than the emission limits specified under
throughput. No such evidence is	EPL 1555. This is discussed in Section 2.2 and Section 5.2 .
provided in the AQIA.	The NATA endorsed emission test reports performed on the Hammermill
provided in the AQA.	are presented in Appendix F (Ektimo, May 2017), (Ektimo, Sep 2018),
	(Ektimo, Sep 2019), (Ektimo, Oct 2019), (Ektimo, Sep 2020) and (Ektimo, May
	2021).
	The increase in throughput is facilitated by operational efficiency, not a
	change in plant capacity.
The proponent must provide the	The NATA endorsed emission test reports performed on the Hammermill
emissions testing reports for the	are presented in Appendix F (Ektimo, May 2017), (Ektimo, Sep 2018),
hammermill to demonstrate it is	(Ektimo, Sep 2019), (Ektimo, Oct 2019), (Ektimo, Sep 2020) and (Ektimo, May
achieving compliance and to	2021).
validate the use of the emission	
concentrations and parameters in	
the AQIA.	
The proponent must provide	The increased throughput is within the design capacity of the plant. As
evidence that the existing	illustrated in in Section 2.2 and Table 6, the maximum daily throughput is
infrastructure, including the	based upon the maximum design specification for the non-ferrous baler,
emissions collection system, can	the shredder, the shears and Oxycutter, and the corresponding material
accommodate the proposed	handling and transfer rates.
increased throughput.	

Comment	Addressed
	In regard to the capability of the plant to manage this throughput,
	EPL 11555 requires emissions testing on the shredder (Hammermill and
	emission collection system "ECS"). The NATA Accredited emission testing
	demonstrates that the measured TSP and Type 1&2 emissions are
	comfortably and consistently lower than the emission limits specified under
	EPL 1555. This is discussed in Section 2.2 and Section 5.2 . The respective
	complete emission test reports are presented in Appendix F for cross
	reference.
The AQIA has not considered or	Appendix F presents the relevant emission test report R007718 (Ektimo,
included in the assessment particle	Sept 2019) which presents the NATA endorsed emissions testing report
or metal emissions from the oxy-	performed on the Oxycutter.
cutting activities (Appendix C) as	The emission assumptions for the Oxycutter are presented in Section 5.2.3
the emissions from the process are	and Appendix C which are derived from direct measurements.
considered to be low. The EPA	Emissions of odour, particulates, NO _x and metals (incl. Ag, Al, As, Ba, Be, Ca,
advises that the proponent has	Cd, Co, Co[II], Cr, Cu, Fe, Fe[I,II], Hg, K, Li, Mg, Mg[IV], Mn, Mo, Na, Ni, P, Pb,
been required previously to verify	Sb, Se, Sn, Th, Zn) have been assessed as documented in Appendix F .
the air emissions from oxy-cutting	
and the EPA can advise that oxy-	
cutting is not an insignificant	
source of particulates from the	
premises.	
' The proponent must include	
particulate and metal emissions	
from oxy-cutting activities in the	
AQIA.	
There is uncertainty as to the	Appendix C presents a detailed emission inventory for each activity and
emission factors and variables.	specifies the emission variables and assumptions applied.
The AQIA states that emission	
factors were sourced from the	
USEPA's AP42 Chapters 11 and 13.	
The emission factors for each	
activity is listed in Appendix C	
however specific details regarding	
the emission factors and variables	
used to calculate the emissions	
inventory have not been provided.	
Therefore, the EPA is unable to	
confirm the emissions from the	
proposal.	
The proponent must provide and	
justify all emission factor equations	
and variables used to determine	
the emissions inventory.	

Comment	Addressed
There is uncertainty as to the	The odour emission rates are derived directly from the NATA endorsed
source of odour emission	emission testing reports presented in Appendix F. For clarity, these are
concentration data.	measured, not estimated.
Estimated odour concentration and	The odour emissions for the Hammermill and Oxycutter is presented in
odour emission rates are given in	report N92746 (EML Air, June 2014) which is attached in Appendix F.
Appendix C for the oxy-cutting and	The NATA endorsed emission testing report for the odour emissions for the
the hammermill. No information as	Oxycutter is presented in report R007718 (Ektimo, Sept 2019) which is
to the source of odour data is	attached in Appendix F.
provided in the AQIA.	The emission estimation for the Hammermill, Oxycutter are presented in
The proponent must provide	Section 5.2.2 and Section 5.2.3 respectively. Odour emissions are further
supporting information to evaluate	discussed in Section 5.2.5
the odour emission rates used in	
the assessment (oxy-cutting and	
hammermill).	
There is uncertainty regarding	Section 7.3.1 presents the mitigation measures presented in (ERM, 2015)
current air related pollution	and Table 34 provides a tabulated summary of how these measures have
controls and proposed air related	been implemented.
pollution controls.	Appendix E presents a detailed Best Management Practice Dust Control for
The AQIA lists site-specific	the activities, based upon NSW EPA requirements (NSW OEH, 2011), and
mitigation measures "to be	concludes with recommendations for the adoption of additional control
implemented" to achieve best	measures. Section 7.3 provides a summary of the daily air quality
available techniques. The AQIA also	management performed by S&P and provides details of reviews of the
states that the 2015 AQIA (ERM,	specification of the current air quality monitoring station and pro-active and
2015) presented a list of best	reactive use of those measurement data through the Air Quality
practise measures to be	Management Plan.
implemented.	
Control factors applied in the	Control factors applied include waster sprays on material handling and
modelling appear limited to water	dumping (70 %), side walls and covers on conveyors (70 %), conveyor water
sprays on material handling and	sprays (50 %) and road watering (30 %).
truck dumping (70 %) and fully	The Hammermill emissions are based on measured emissions data post air
enclosed conveyors (100 %). The	pollution control, and those controls are intrinsic to the measurements.
cyclone and wet scrubber controls	
on the hammermill are assumed in	
the emission concentrations for	
that source.	
The EPA advise that it is unclear	Section 7.3.1 presents the mitigation measures presented in (ERM, 2015)
which control and mitigation	and Table 34 provides a tabulated summary of how these measures have
measures from the 2015	been implemented. Table 34 shows that all of the control and mitigation
assessment have been put in place,	measures identified in the 2015 assessment have been implemented and
which are still to be implemented	provides further commentary of the implementation of those measures.
and which are additional measures	Appendix E presents a detailed Best Management Practice Dust Control for
for the current proposal. It is also	the activities, based upon NSW EPA requirements (NSW OEH, 2011), and
unclear the potential impact on the	concludes with recommendations for the adoption of additional control

Comment	Addressed
emissions as the AQIA has not	measures. Section 7.3 provides a summary of the daily air quality
discussed the additional controls in	management performed by S&P and provides recommendations for a
reducing offsite impacts.	review of the specification of the current air quality monitoring station and
	pro-active and reactive use of those measurement data through the Air
	Quality Management Plan.
However, it is clear from the results	Appendix E presents a detailed Best Management Practice Dust Control for
of onsite monitoring presented in	the activities, based upon NSW EPA requirements (NSW OEH, 2011), and
the AQIA (Table 11 and 12) that the	concludes with recommendations for the adoption of additional control
current operations and controls are	measures. Section 7.3 provides a summary of the daily air quality
not adequately able to reduce	management performed by S&P and provides recommendations for a
particulate concentrations to below	review of the specification of the current air quality monitoring station and
relevant criteria.	pro-active and reactive use of those measurement data through the Air
	Quality Management Plan.
	The recommendations of this AQIA are presented in Section 7.4.2 and Table 37 .
The proponent must clarify existing	As above.
controls and proposed controls for	
the site, including time frames for	
implementation of additional	
controls.	
Further, the predicted impacts for	The AQIA does not predict any additional exceedances of the impact
the proposed increase in	assessment criteria at any sensitive receptor location.
throughput are likely to exceed the	Impacts greater than the impact assessment criteria at locations not
EPA's criteria at multiple receptors	representative of sensitive land uses are presented in Appendix D for
which indicate that even with the	annual average PM_{10} and deposited dust, and elevated incremental 24-hour
proposed controls there remains a	average PM ₁₀ concentrations are predicted.
high risk that impact above the	For clarity, Section 6 of the AQIA presents a summary of the predicted
EPA's criteria will occur.	impacts at the relevant receptor locations and Appendix D provides a full schedule of results.
	Appendix E presents a Best Management Practice Dust Control assessment,
	performed in accordance with NSW EPA guidance (NSW OEH, 2011), which
	identifies a range of additional controls which are recommended for
	implementation, which would help mitigate those impacts
	Section 7.3 presents a series of recommendations for additional mitigation,
	including a thorough review of the application of the on-site air quality
	monitoring stations for reactive and proactive dust control, to be
	implemented through the Air Quality Management Plan.
The SEARs required the AQIA to	A Best Management Practice Dust Control assessment was performed in
consider the feasibility of semi-	accordance with NSW EPA guidance (NSW OEH, 2011). This procedure
encapsulation of oxy-cutting	requires an emissions inventory (without controls) to be estimated, the
activities. The AQIA concludes that	sources ranked to identify the most significant source contributions to that
the semi-encapsulation of the oxy-	total, and the top 95 % of emissions evaluated in terms of potential
cutting is not considered to be	controls. The Oxycutter is ranked 6 of 6 in that procedure and is estimated

Comment	Addressed
practical nor warranted as the emissions from the oxy-cutting are low and impacts are lower than the criteria. As outlined above, this is not the case and consideration to additional enclosures or encapsulation should be considered. The proponent must consider additional control and mitigation measures aimed at ensuring particulate impacts do not exceed the EPA's air quality criteria at	Addressed to contribute 0.5 kg·day ⁻¹ of a total estimate of 111.1 kg·day ⁻¹ , ie. 0.45 % of the total. Based upon the methodology stipulated in (NSW OEH, 2011) the Oxycutter is screened from further evaluation in terms of additional controls. This is presented fully in Appendix E. Irrespective of the minor contribution of the Oxycutter to the total emission budget, Section 7.3.5 provides a discussion of the potential for semi- encapsulation of the Oxycutter. A discussion of the potential for semi-encapsulation of the Oxycutter and which discusses recommendations for additional controls on that source is presented in Section 7.3.5.
receptors. The proponent must assess the impacts from each activity to determine where additional controls may be most effective and considers those controls which may be implemented.	A comprehensive Best Management Practice Dust Control benchmarking study has been performed in accordance with the requirements of (NSW OEH, 2011). That study identifies the activities that contribute up to 95 % of emissions from the site (uncontrolled) and provides a risk assessment against potential constraints to identify where additional controls may be effectively and reasonably implemented. The assessment identifies a number of controls, which have been recommended for implementation, as set out in Appendix E and summarised in Section 7.4 .
Pick and Payless	
The AQIA appears to omit emissions from hauling activities at the site, stating that as the surface would be paved and swept regularly, emissions from vehicle and plant movements on-site are considered negligible. Based on the scale and type of the Project, hauling activities are expected to be a significant source of dust emissions from the operations, and thus its omission would lead to substantial underpredictions of impacts. The air emission inventory should include all significant dust generating activity.	The roads are paved and are swept regularly. Road haulage emissions have been <u>included</u> in the assessment, and this is presented in Section 5.2.4 . Appendix C presents the emission estimation for road haulage.
Diesel exhaust emissions from vehicles and plant have not been considered. Diesel exhaust emissions comprise PM2.5 and	Diesel exhaust emissions from on-site vehicles were considered for inclusion within the AQIA. However, upon review of the Traffic Assessment, it was determined that the <u>maximum</u> hourly heavy vehicle movement would be 33

Comment	Addressed
NOX emissions which would	vehicles, with a further maximum of 10 light vehicles per hour, representing
contribute to the incremental and	approximately just 1 vehicle every 01:25 minutes.
cumulative impact from the	For context, the provided traffic survey data measured on Tattersall Road
operations.	during February to March 2020 reports a weekday average 2-way traffic
- F	flow of 5 531 vehicles. In context of the traffic movements on Tattersall
	Road, the contribution of site traffic is low, and the contribution of exhaust
	emissions is correspondingly low. In context of the net emissions from the
	site, the contribution of the low volumes of traffic exhaust is considered
	minor (i.e. <10 % of local traffic flows) and has not been considered further.
Only emissions of odour and NOx	Emissions of odour, particulates, NO _x and metals (incl. Ag, Al, As, Ba, Be, Ca,
have been assumed for oxy cutting.	Cd, Co, Co[II], Cr, Cu, Fe, Fe[I,II], Hg, K, Li, Mg, Mg[IV], Mn, Mo, Na, Ni, P, Pb,
The AQIA does not adequately	Sb, Se, Sn, Th, Zn) have been assessed from the Oxycutter.
assess the potential for	The emission assumptions for the Oxycutter are presented in Section 5.2.3
fume/particle emissions from this	and Appendix C.
source as required by the SEARs.	
It is unclear if a maximum 24-hour	The assessment has been based upon a peak "worst case" daily activity rate
average rate has been adequately	of 2 634 t day ⁻¹ , commensurate with an extrapolated annual tonnage
assessed for 24-hour average	throughput of 795 468 t year ⁻¹ . The data used to quantify the worst-case
impacts. The largest daily tonnage	scenario is presented in Section 2.2 and specifically in Table 6.
proposed to be handled for any	The worst-case assumptions may be compared to the Proposal activity rate
source is 1,800 tonnes per day, for	of 600 000 tyear ⁻¹ which corresponds to a daily average activity rate of
operations six days a week	1 987 t·day ⁻¹ over 302 operating days.
(Monday to Saturday). If a single	It can be seen that the assumed worst-case activity rate is approximately
source was to handle all material in	33 % higher than typical activity rates.
the proposed 600,000tpa, the	
maximum daily rate would be	
approximately 1,918 tonnes per day	
(i.e. 600,000 / 365 x 7/ 6 = 1,918).	
This would result in a potential	
underestimation of the 24-hour	
average impacts.	
The data presented in Table 17	The assessment of aggregated impacts with Autorecyclers Pty Ltd is
show levels approaching the	presented in Section 7.2 and includes justification of the conservative
criterion of 50µg/m ³ which do not	approach adopted.
include the existing or proposed	The aggregated assessment assumes the worst-case emission predictions
neighbouring operation. The	from the operations at Sell & Parker with the worst-case impact predictions
contemporaneous assessment	from Autorecyclers Pty Ltd, irrespective of when those impacts occur. This is
should be revised to include the	more conservative than a contemporaneous assessment.
neighbouring operation for the	Note: Autorecyclers Pty Ltd has ceased operations and the land sold. The
selected meteorological year to	aggregated impact assessment presented in this Revised AQIA is no longer
demonstrate the Project operating	considered to represent an actual operating scenario, although it has been
in conjunction with the	retained for completeness.
neighbouring operation would not	

Comment
result in any additional
exceedances of the relevant 24-
hour particulate criteria.
An attempt at a cumulative
assessment of 24-hour average
impacts has been made in Table 24
which considers the maximum
incremental impacts from the
Project and the neighbouring
operation. However, as the
modelling uses different
meteorological years/datasets, the
predicted maximum impacts and
contemporaneous background
levels would not occur over the
same periods. The assessment does
not adequately demonstrate that
this would not result in any
additional exceedances of the
relevant 24-hour average
particulate criteria.

1.6. Consultation with EPA

Following the above response to submissions, a round of consultation with NSW EPA was performed, and an on-line meeting was held on 13th September 2021. In response to that meeting the information summarised in **Table 3** was discussed. **Table 4** provides a summary of that requested information and the associated response(s).

Table 4 Comments from consultation with EPA					
Comment	Response				
Air Quality Assessment Information					
The Supplementary Air Quality Assessment (Northstar) provided as Appendix D of the Response to Submissions (Arcadis, August 2021) has re-estimated emissions and remodelled impacts, however, this revised information has only been provided as data tables which have not been clearly explained or cross-referenced.	As requested, this AQIA report presents a revised assessment report, presented as a stand-alone document in its entity.				
 As such, the EPA cannot provide detailed comments on 1. the adequacy of the response or determine if conditions of approval can be provided. 2. Further, the Response to submission includes two pieces of information from separate air quality consultants. The two pieces of correspondence provide some conflicting information (i.e. modelled emission rates). The EPA recommends the proponent presents a revised AQIA in its entirety that includes all the requested additional information and provides the appropriate context to interpret the new and/or changed information. 					
 The emissions inventory includes additional emissions sources and changes in control factors and assumptions that have not been explained or justified. An additional source that was stated to have negligible emissions in the original AQIA is estimated to be a significant source in the Supplementary Air Quality Assessment. 	The sources assessed, the emission factors used and the associated assumptions are fully documented in this Revised AQIA. As requested, this AQIA report presents a revised assessment report, presented as a stand-alone document in its entity.				

Table 4 Comments from consultation with EPA

Comment	Response
An adequate assessment of cumulative impacts at industrial and commercial receptors. The Response to Submissions has labelled the receptors R10-R19 as fence- line despite the original AQIA identifying them as industrial.	In regard to health impacts associated with air pollutants, the justification of receptor locations commensurate with the associated averaging time is presented in Section 4.1.2. Similarly, the justification of receptor locations relative to odour amenity is presented in Section 4.1.2 of the Revised AQIA. For clarification, Appendix D provides a summary of <u>all</u> predicted impacts at <u>all</u> receptor locations.
Although the adequate assessment of industrial and commercial receptors has not been provided, the incremental impacts in the original AQIA are significant at nearby industrial and commercial receptors. The original AQIA and Supplementary Air Quality Assessment has not undertaken a detailed and robust benchmarking of all mitigation and management measures against best practice to demonstrate that all reasonable and feasible measures for management of emissions is proposed and that offsite impacts can be managed.	As stated above, the justification of receptor locations commensurate with the associated averaging time is presented in Section 4.1.2 of the revised AQIA and Appendix D provides a summary of all predicted impacts at all receptor locations including those at nearby industrial and commercial receptors. That Best Management Practice assessment is discussed in Section 7.3 of this AQIA report, which presents a comprehensive summary of air quality management measures, and which are tabulated in Table 37. Appendix E of this AQIA report presents a Best Management Practice assessment, performed in accordance with the relevant guidance (NSW OEH, 2011).
The original AQIA and Supplementary Air Quality Assessment indicates that onsite meteorological and ambient air monitoring is undertaken onsite for day-to- day management of dust control. Yet there is no information about the management control measures including reactive measures and the specific triggers and actions to demonstrate that any reactive management measures proposed can manage offsite impacts	The available on-site meteorological and ambient air quality monitoring currently performed on site is discussed in Section 4.4.3 and Section 7.3.6 provides recommendations for the review and revision of that monitoring capability to provide proactive and reactive air quality management responses to be implemented approved through the Air Quality Management Plan. The Air Quality Management Plan includes a 4-hour average trigger concentration to manage offsite impacts.

2. THE PROPOSAL

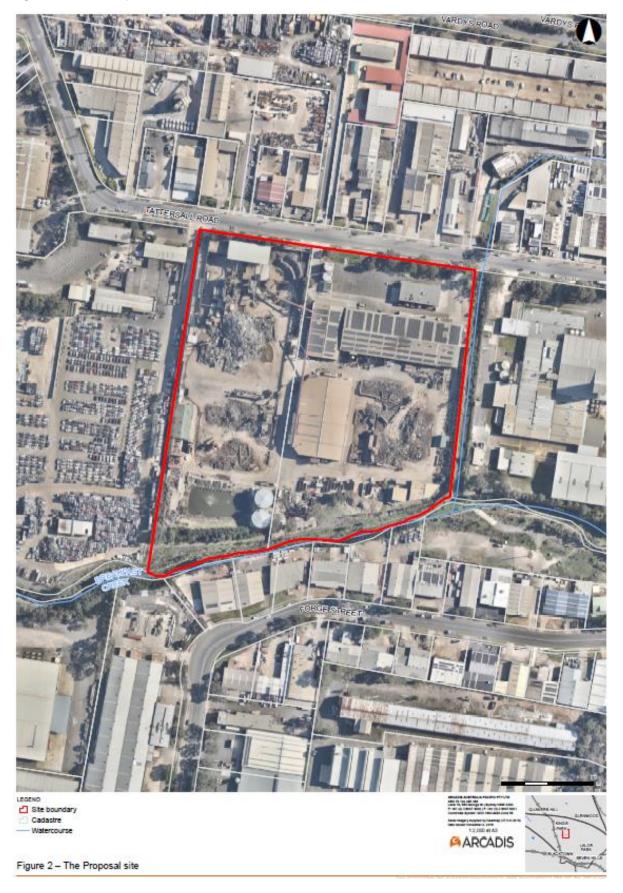
The following provides a description of the context, location, and scale of the Proposal, and a description of the processes and development activities on site. It also identifies the potential for emissions to air associated with the Proposal.

2.1. Proposal Site

The Proposal site is situated within the Blacktown Local Government Area (LGA) approximately 40 kilometres (km) north-west of the Sydney Central Business District (CBD) and around 3 km from Blacktown CBD. The local area is characterised by general industrial development.

Access is from Tattersall Road, to which the Proposal site has approximately 240 metres (m) of frontage. Tattersall Road is a two-lane road which connects to Sunnyholt Road to the east, and Vardys Road to the north-west, both of which are four lanes. Sunnyholt Road connects in turn to the M7, 1.2 km to the north of the Tattersall Road intersection. The area of the Proposal site is approximately 6.4 hectares (ha).

The location of the Proposal site is shown in **Figure 1**. An aerial view of the Proposal site is shown in **Figure 2**.



Source: Arcadis

Figure 2 The Proposal site

Source: Arcadis

2.2. Proposal Description

The Proposal would be considered SSD under Clause 23 (waste and resource management facilities) of Schedule 1 of the State Environmental Planning Policy (State and Regional Development) 2011, and therefore requires the preparation of an EIS prepared in accordance with the Secretary's Environmental Assessment Requirements (SEARs) No. 10396 (see **Section 1.4**).

The Proposal is to increase the maximum scrap metal processing throughput at the Proposal site from 350 000 to 600 000 tpa.

The existing infrastructure at the Proposal site has the capacity to accommodate the increased throughput. The Proposal would not require any construction works and would not change the mix of materials currently received at the RRF (i.e. it is an operational approval only). However, adjustments to site management practices would be required in terms of internal vehicle movements and stacking locations to allow the increased throughput.

The Proposal would utilise existing road infrastructure, other utility installations and stormwater discharge points.

The operation of the Proposal site would result in the employment of approximately 80 full time employees at the RRF.

2.2.1. Approved Operating Hours

The approved operational hours for the existing RRF are outlined in Table 5.

Table 5Approved operational hours

Activity	Day	Hours
Oxy-acetylene torch cutting	Monday to Saturday	9 am to 3 pm
	Sunday and public holidays	Nil
Maintenance and cleaning	Monday to Saturday	9 pm to 6 am
	Sunday	24 hours
All other activities	Monday to Saturday	6 am to 9 pm
	Sunday and Public Holidays	Nil

The hours of operations at the RRF would not change as a result of the Proposal.

2.2.2. Capacity and Throughput

The Proposal would facilitate an increased throughput limit from 350 000 to 600 000 tpa of scrap metal.

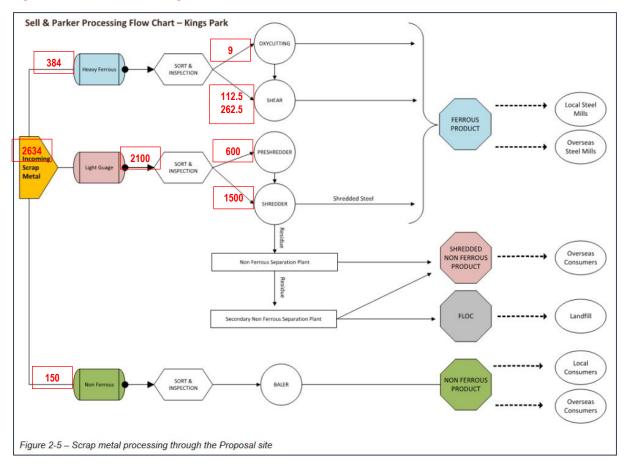
The AQIA has been based upon the <u>maximum operating capacity</u> and operating hours of process component and this data is taken from the information presented in Table 2-3 of the EIS which is reproduced as **Table 6**.

Operational capacity (tonnes per hour) ²	Permissible Operational hours ³	Daily Capacity (tonnes)	Weekly (tonnes)	Yearly (tonnes)⁴
10	15	150	900	45,300
140	15	2,100	12,600	634,200
7.5	15	112.5	675	33,975
17.5	15	262.5	1,575	79,275
1.5	6	9	54	2,718
	capacity (tonnes per hour) ² 10 140 7.5 17.5	capacity (tonnes per hour)2Permissible Operational hours31015140157.51517.515	capacity (tonnes per hour)2Permissible Operational hours3Daily Capacity (tonnes)1015150140152,1007.515112.517.515262.5	capacity (tonnes per hour)2Permissible Operational hours3Daily Capacity (tonnes)Weekly (tonnes)1015150900140152,10012,6007.515112.567517.515262.51,575

Table 6 Summary of processing capacity for plant equipment

Source: Arcadis

In terms of addressing the issue of peak daily verses annual average activity rates, adopting the maximum daily throughput capacities as outlined in Table 2-3 of the EIS (see **Table 6**) results in an extrapolated annual throughput of 795 468 t·year⁻¹ (as presented in that table) which, when compared to the proposed annual throughput threshold of 600 000 t·year⁻¹, can be seen to represent the worst-case scenario by a factor of approximately (^{795 468}/_{600 000}×100) 133 %.


As illustrated in **Table 6**, the shredder (Hammermill) has a <u>maximum hourly operating capacity</u> of 140 t \cdot hr⁻¹ and a permissible daily operating period of 15 hours, generating a throughput capacity of 2 100 t \cdot day⁻¹. The shredder and its associated Emission Collection System (ECS) has been designed to an operating capacity of 140 t \cdot hr⁻¹. For clarity, the current maximum operating capacity of the shredder is 140 t \cdot hr⁻¹ and the proposed maximum operating capacity remains unchanged at 140 t \cdot hr⁻¹.

Emissions testing reports on the shredder and ECS are presented in **Appendix F** and it can be seen that the most recently measured emission concentrations are significantly lower the emission concentration limit values stipulated through Environmental Protection Licence (EPL) 11555 (see **Section 3.1** and **Appendix F**). Based upon this direly measured data, and the fact that the operating capacity remains unchanged at 140 t·hr⁻¹, it is considered that there is no reasonable evidence to imply that the shredder and ECS cannot continue to comply with the emission limits under EPL 11555.

2.2.3. Material Flow through the Processes

It is understood that the scrap metal processing is generally in accordance with Figure 2-5 of the EIA, which is reproduced below in **Figure 3**.

Additional text boxes have been added to indicate the material flow ($t \cdot day^{-1}$) through the processes which are derived from the data discussed in **Section 2.2.2**.

Figure 3 Process flow diagram

The incoming waste (2 634 t·day⁻¹) (refer Table 6) becomes split into the following process 'streams'

- heavy ferrous fraction, bound for the shears and Oxycutter (at an aggregated <u>maximum daily operating</u> capacity of 384 t·day⁻¹);
- light gauge ferrous fraction which is handled by the pre-shredder and shredder or bypasses the preshredder and goes directly to the shredder (at a maximum daily operating capacity of 2 100 t·day⁻¹);
- non-ferrous fraction which goes straight to the fully enclosed baler (at a <u>maximum daily operating</u> <u>capacity</u> of 150 t·day⁻¹).

The heavy ferrous material (384 t·day⁻¹) is transferring the material to the oxy-cutter (9 t·day⁻¹) and Lindemann and Danieli shears (112.5 t·day⁻¹ and 262.5 t·day⁻¹).

The light gauge material is transferred directly to the shredder (1 500 t·day⁻¹) or via the pre-shredder (600 t·day⁻¹), and subsequently transferred from the pre-shedder to the shredder (600 t·day⁻¹).

The increase in plant annual throughput will be achieved through increasing the processing throughput (activity rate) and not by increasing plant capacity.

2.2.4. Plant and Equipment

The existing plant and equipment would be utilised as part of the Proposal. Therefore, there would be no changes to the inventory of plant and equipment.

2.2.5. Identified Potential Emissions to Air

The existing processes operated at the Proposal site have the potential for emissions of particulates, which may be emitted at various particle size ranges. In terms of air quality studies, these may be categorised as total suspended particulates (TSP), particles with a mean aerodynamic diameter of 10 micrometres (μ m) and 2.5 μ m or less, (PM₁₀ and PM_{2.5} respectively).

The operations performed at the Proposal site are regulated by NSW EPA under the Protection of the Environment Operations (POEO) Act (1997) through an Environment Protection Licence (EPL 11555). This is discussed further in **Section 3**. EPL 11555 includes requirements for monitoring of various metals and TSP.

The AQIA has been performed for all metals tested in an emissions testing report, including: Ag, Al, As, Ba, Be, Ca, Cd, Co, Co[II], Cr, Cu, Fe, Fe[I,II], Hg, K, Li, Mg, Mg[IV], Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Th, Zn (refer **Appendix F**).

Reference is also made to the previous assessment reports for the Original Approval. This presents data relating to emissions from various sources including oxides of nitrogen (NO_x as NO_2) and odour.

The source of these assumptions is included in **Appendix F**.

2.3. Proximate Sources

As required under the SEARs for the Proposal (see **Section 1.4**) the AQIA is required to assess "...the accumulative impact of this proposal along with adjacent development, particularly to the west of the site."

The land to the west and immediately adjacent to the Proposal site is currently occupied by Autorecyclers Pty Ltd, although it is noted that Autorecyclers Pty Ltd has currently ceased operations. Currently, that activity has an approved throughput limit of 30 000 tpa and is currently shredding around 9 000 t of cars per year. In 2019, Autorecyclers Pty Ltd made an application for an increase to 130 000 tpa which is understood to be

currently under consideration for planning approval. As part of the application, an EIS was submitted, supported by an AQIA (TAS, 2019). Reference has been made to the location of the air quality receptors adopted in that AQIA and the results of the assessment of impacts commensurate with an increased annual throughput of 130 000 tpa. Consideration of receptor locations is presented in **Section 4.1.1** and the potential for cumulative impacts of the Proposal with that were assessed as part of the Autorecyclers Pty Ltd application and is presented in **Section 7.2**.

A search of the NSW EPA EPL database² does not show any EPL issued for any activity at that location or held by Autorecyclers Pty Ltd.

² <u>https://apps.epa.nsw.gov.au/prpoeoapp/default.aspx</u>

3. LEGISLATION, REGULATION AND GUIDANCE

3.1. Protection of the Environment Operations Act

The activities performed at the Proposal site are regulated by NSW EPA under the *Protection of the Environment Operations Act 1997* and the Protection of the Environment Operations (Clean Air) Regulation 2021 through Environmental Protection Licence (EPL) 11555³. EPL 11555 contains various conditions of operations to manage environmental impacts, including hours of operation, throughput rates and emission concentration limits. Of relevance to this AQIA, EPL 11555 includes emission limits for metals (type 1 and type 2) and solid particles from the Hammermill Wet Scrubber Stack (licenced emission point 'EPA-3').

Table 7 EPL 11555 air concentration limits (EPA-3 Hammermill Stack)

Pollutant	Units of measure	100 percentile concentration limit	Reference conditions
Type 1 and Type 2 substances in aggregate	milligrams per cubic metre	1	Dry, 273 K, 101.3 kPa
Solid particles	milligrams per cubic metre	20	Dry, 273 K, 101.3 kPa

Appendix F presents NATA Accredited emission test reports performed on the Hammermill (shredder) as required under EPL 11555. A summary of selected emission test data from those reports is presented in Table 8.

Table 8	Summary of emission test results (EPA-3 Hammermill Stack)
---------	---

Pollutant	Units	EPL	Emission Test Report (Issue Date and Ref)				
		11555	26-May-17	27-Sep-18	11-Oct-19	4-Sep-20	26-May-21
		Limit	R003396	R006468-1	R008184	R009653	R010794
		Value					
TSP	mg∙Nm⁻³	20	9.3	6.8	3.7	<3	7.3
Type 1 & 2	mg∙Nm⁻³	1	<0.017	<0.0076	<0.042	<0.035	< 0.051
PM ₁₀	mg∙Nm⁻³	n/a	6.6	nd	nd	nd	nd
PM _{2.5}	mg∙Nm⁻³	n/a	<4	nd	nd	nd	nd

The data demonstrates compliance with the air concentration limits presented in **Table 7** for each and every emission test performed over the period 2017 to 2021.

EPL 11555 Condition L5 limits the hours of operation of the Oxycutter to 09:00-15:00 and between 06:00-21:00 for all other activities, consistent with the hours of operation presented in **Table 5**.

EPL 11555 Condition O3 relates to the management of dust:

³ https://apps.epa.nsw.gov.au/prpoeoapp/ViewPOEOLicence.aspx?DOCID=186196&SYSUID=1&LICID=11555

O3 Dust

- O3.1 All operations and activities occurring at the premises must be carried out in a manner that will minimise emission of dust from the premises.
- O3.2 The licensee must manage stockpiles of scrap metal and processed material to ensure air emissions are minimised.
- O3.3 All areas on the premises must be maintained, at all times, in a condition which effectively minimises the emission of wind-blown or traffic-generated dust.
- O3.4 The licensee must ensure that no material, including sediment or oil, is tracked onto public roads from the premises.
- O3.5 Ambient real time PM10 Dust Monitors must be installed and operated in accordance with the information supplied to the EPA in the report by ERM, Waste Metal Recovery, Processing and Recycling Facility 45 and 23-43 Tattersall Road, Kings Park, Blacktown, Air Quality Assessment, Sell & Parker Pty Ltd, September 2015.
- O3.6 The licensee must keep a legible record of when dust generating activities are reduced or ceased as a result of the dust monitoring required by Condition O3.4 including:
 - a) the date and time that dust generating activities were reduced or ceased; and
 - b) what activities were reduced or ceased. These records must be made available to the EPA on request.

3.2. Ambient Air Quality Standards

State air quality guidelines adopted by the NSW EPA are published in the '*Approved Methods for the Modelling and Assessment of Air Pollutants in NSW*' (the Approved Methods) (NSW EPA, 2017), which has been consulted during the preparation of this AQIA.

The Approved Methods lists the statutory methods that are to be used to model and assess emissions of criteria air pollutants from stationary sources in NSW. Section 7.1 of the Approved Methods clearly outlines the impact assessment criteria for the Proposal. The criteria listed in the Approved Methods are derived from a range of sources (including National Health and Medical Research Council (NHMRC), National Environment Protection Council (NEPC), Department of Environment (DoE), World Health Organisation (WHO), and Australian and New Zealand Environment and Conservation Council (ANZECC)). Where relevant to this AQIA (coincident with the potential emissions), the criteria have been adopted as set out in Section 7.1 of the Approved Methods (NSW EPA, 2017) which are presented in **Table 9** below.

Table 9 NSW EPA	l air quality	standards and	goals
-----------------	---------------	---------------	-------

Pollutant	Averaging period	Units	Criterion	Notes
Nitrogen dioxide (NO ₂)	1 hour	µg∙m ^{-3 (a)}	246	Numerically equivalent to
	1 year	µg∙m⁻³	62	the AAQ NEPM ^(b) standards
Particulates (as PM ₁₀)	24 hours	µg∙m⁻³	50	and goals.
	1 year	µg∙m⁻³	25	
Particulates (as PM _{2.5})	24 hours	µg∙m⁻³	25	
	1 year	µg∙m⁻³	8	
Particulates (as TSP)	1 year	µg∙m⁻³	90	

Pollutant	Averaging period	Units	Criterion	Notes
Particulates (as dust deposition)	1-year ^(c)	g·m ⁻² ·month ⁻¹	2	Assessed as insoluble solids
	1-year ^(d)	g·m ⁻² ·month ⁻¹	4	as defined by AS 3580.10.1
Lead	1 year	µg∙m⁻³	0.5	
Copper dusts and mists	1 hour	mg∙m⁻³	0.018	
Iron oxide fumes	1 hour	mg∙m⁻³	0.09	
Manganese and compounds	1 hour	mg∙m⁻³	0.018	
Chromium (VI)	1 hour	mg∙m⁻³	0.00009	

Notes: (a): micrograms per cubic metre of air

(b): National Environment Protection (Ambient Air Quality) Measure(c): Maximum increase in deposited dust level(d): Maximum total deposited dust level

3.3. Odour

It is noted that odorous materials are not accepted at the Proposal site, but a number of activities performed have the potential to give rise to odour emissions (ERM, 2015).

Impacts from odorous air contaminants are often nuisance-related rather than health-related. Odour performance goals guide decisions on odour management but are generally not intended to achieve "no odour", but manage odour impacts to an acceptable level.

The detectability of an odour is a sensory property that refers to the theoretical minimum concentration that produces an olfactory response or sensation. This point is called the odour detection threshold (ODT) and defines one odour unit (OU). An odour goal of less than 1 OU would (by definition) result in no odour impact being detectable in laboratory conditions. In practice, the character of an odour can only be judged by the receiver's reaction to it, and preferably only compared to another odour under similar social and regional conditions.

Based on the literature available, the level at which an odour is perceived to be a nuisance can range from 2 OU to 10 OU (or greater) depending on a combination of the following factors:

- **Odour quality:** whether an odour results from a pure compound or from a mixture of compounds. Pure compounds tend to have a higher threshold (lower offensiveness) than a mixture of compounds.
- **Population sensitivity:** any given population contains individuals with a range of sensitivities to odour. The larger a population, the greater the number of sensitive individuals it contains.
- **Background level:** whether a given odour source, because of its location, is likely to contribute to a cumulative odour impact. In areas with more closely-located sources it may be necessary to apply a lower threshold to prevent offensive odour.

- **Public expectation:** whether a given community is tolerant of a particular type of odour and does not find it offensive, even at relatively high concentrations. For example, background agricultural odours may not be considered offensive until a higher threshold is reached than for odours from a landfill facility.
- **Source characteristics:** whether the odour is emitted from a stack (point source) or from an area (diffuse source). Generally, the components of point source emissions can be identified and treated more easily using control equipment than diffuse sources. Point sources tend to be located in urban areas, while diffuse sources are more prevalent in rural locations.
- **Health effects:** whether a particular odour is likely to be associated with adverse health effects. In general, odours from agricultural activities are less likely to present a health risk than emissions from industrial facilities.

Experience gained through odour assessments from proposed and existing facilities in NSW indicates that an odour performance goal of 7 OU is likely to represent the level below which "offensive" odours should not occur (for an individual with a 'standard sensitivity' to odours). Therefore, the Odour Technical Framework (DECC, 2006) recommends that, as a design goal, no individual be exposed to ambient odour levels of greater than 7 OU. In modelling and assessment terms, this is expressed as the 99th percentile value, as a nose response time average (approximately one second).

Odour assessment criteria need to consider the range in sensitivities to odours within the community to provide additional protection for individuals with a heightened response to odours. This is addressed in the Technical Framework (DECC, 2006) by setting a population dependant odour assessment criterion, and in this way, the odour assessment criterion allows for population size, cumulative impacts, anticipated odour levels during adverse meteorological conditions and community expectations of amenity. A summary of odour performance goals for various population densities, as referenced in the Odour Technical Notes (DECC, 2006) is shown in **Table 10** This table shows that in situations where the population of the affected community lies between 125 and 500 people, an odour assessment criterion of 4 OU at the nearest residence (existing or any likely future residences) is to be used. For isolated residences, an odour assessment criterion of 7 OU is appropriate.

Population of Affected Community	Impact Assessment Criteria for Complex Mixture of Odours (99 th percentile 1-second OU)
Urban area (≥2000)	2.0
500 – 2000	3.0
125 – 500	4.0
30 – 125	5.0
10 - 30	6.0
Single residence (≤2)	7.0

Table 10 NSW EPA Technical Framework odour criteria

Source: The Odour Technical Notes, DECC 2006

It is the view of the NSW EPA that the odour criterion which is applicable in Metropolitan Sydney is 2 OU. Given that this is the most stringent criterion, any intensification in residential development in an area would not result in a change to that criterion.

It is noted that the odour assessment criteria outlined in **Table 10** are a <u>design</u> tool rather than a <u>regulatory</u> tool. The benchmark for operational facilities is not the odour assessment criteria outlined above but whether the emission of odour is *'offensive'* or being prevented or minimised using best management practices.

The *Protection of the Environment (Operations) Act* 1997 (POEO) is applicable to scheduled activities in NSW and emphasises the importance of preventing 'offensive odour'.

For reference, "offensive odour" is defined within the POEO Act as:

an odour:

- (a) that, by reason of its strength, nature, duration, character or quality, or the time at which it is emitted, or any other circumstances:
 - (i) is harmful to (or is likely to be harmful to) a person who is outside the premises from which it is emitted, or
 - (ii) interferes unreasonably with (or is likely to interfere unreasonably with) the comfort or repose of a person who is outside the premises from which it is emitted, or

(b) that is of a strength, nature, duration, character or quality prescribed by the regulations or that is emitted at a time, or in other circumstances, prescribed by the regulations.

Further to the discussion of factors that determine whether an odorous mixture may be determined to lead to a nuisance, and the impact assessment criterion determined above, numerous papers and articles identify the disconnect between those two drivers that help regulate odour (as referenced in (Graham, Lawrence, & Doyle, 2013)). The description provided in the POEO Act may be summarised as a function of five broad factors, called the FIDOL factors, namely:

- **Frequency:** indicates how often an odour is experienced. Exposure to relatively pleasant odours (such as a bakery, for example) may be perceived to be a nuisance (or 'offensive odour') if it is experienced too frequently., and conversely, a more unpleasant odour may be tolerated if it is experienced hardly ever.
- Intensity: indicates the relative strength of the odour;
- **Duration:** in parallel to frequency, duration is an important factor representing the length of time of which an odour exposure is observed;
- Offensiveness: indicates how pleasant / unpleasant an odour is to the population. Whilst individuals may express a personal opinion of acceptance to specific odours, it is generally accepted that some odours are more unpleasant than others due to their chemical composition and also a hazard identification function. The relative scale of typical pleasantness / unpleasantness is described as the odour's hedonic tone.

• Location: indicates the relationship between the odour experienced and the general perception of amenity that would be expected at that location. An odour that may be tolerated at an industrial site may be less tolerated at a healthcare centre, for example.

4. EXISTING CONDITIONS

4.1. Surrounding Land Sensitivity

4.1.1. Discrete Receptor Locations

Air quality assessments typically use a desk-top mapping study to identify 'discrete receptor locations', which are intended to represent a selection of locations that may be susceptible to changes in air quality. In broad terms, the identification of sensitive receptors, refers to places at which humans may be present for a period representative of the averaging period for the pollutant being assessed. Typically, these locations are identified as residential properties, although other sensitive land uses may include schools, medical centres, places of employment, recreational areas or ecologically sensitive locations.

It is important to note that the selection of discrete receptor locations, is not intended to represent a fully inclusive selection of all sensitive receptors across the study area. The location selected should be considered to be representative of its broader location and may be reasonably assumed to be representative of the immediate environs. In some instances, several viable receptor locations may be identified in a small area, for example a school neighbouring a medical centre. In this instance the receptor closest to the potential sources to be modelled would generally be selected and would be used to assess the risk to other sensitive land uses in the area.

It is further noted that in addition to the identified 'discrete' receptor locations, the entire modelling area is gridded with 'uniform' receptor locations (see **Section 4.1.3**) that are used to plot out the predicted impacts, and as such the accidental non-inclusion of a location that is sensitive to changes in air quality does not render the AQIA invalid, or otherwise incapable of assessing those potential risks.

To ensure that the selection of discrete receptors for the AQIA are reflective of the locations in which the population of the area surrounding the Proposal site reside, population-density data has been examined. Population-density data based on the 2016 census, have been obtained from the Australian Bureau of Statistics (ABS) for a 1 square kilometre (km²) grid, covering mainland Australia (ABS, 2017). Using a Geographical Information System (GIS), the locations of sensitive receptor locations, have been confirmed with reference to their population densities.

For clarity, the ABS use the following categories to analyse population density (persons km⁻²):

- Very high
 >8,000
 Low
 >500

 High
 >5,000
 Very low
 <500</td>
- Medium >2,000 •

Using ABS data in a GIS, the population density of the area surrounding the Proposal site are presented in **Figure 4**.

No population

0

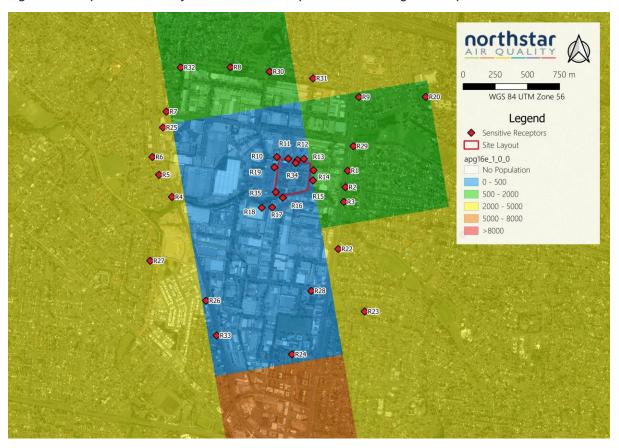


Figure 4 Population density and sensitive receptors surrounding the Proposal site

Image courtesy of Google Maps and data sourced from the ABS

The Proposal site and receptors are located in areas of 'very low', 'low' and 'medium' population densities, which would be expected given the largely industrial activities of the immediate area.

In accordance with the requirements of the NSW EPA, several receptor have been identified and the receptors adopted for use within this AQIA are presented in **Table 11** and illustrated in **Figure 4**.

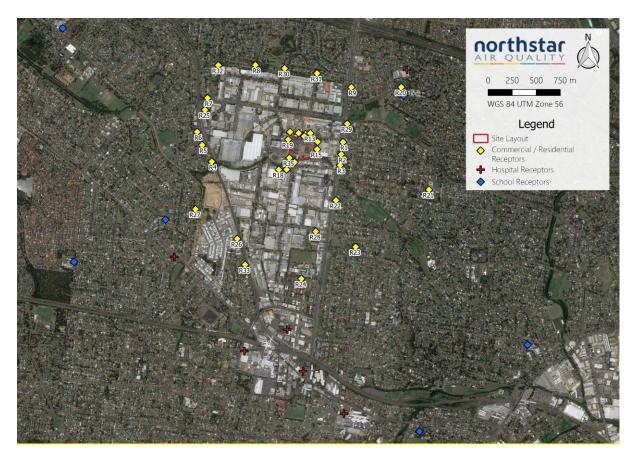
Table 11 includes 35 receptor locations that have been used in this study. To facilitate intra-study assessment and comparison, receptors used in (ERM, 2015) and (TAS, 2019) have been incorporated. It is noted that receptors R10-R19 are industrial land-use receptor locations at, or near to the boundary of the Site, and designed to represent the maximum off-site pollutant concentrations and are not representative of typical community exposure locations.

Receptors R1-4, R6-8, R22 and R28-R33 are used to evaluate the potential cumulative impact with the proposed expansion of the neighbouring Autorecyclers Pty Ltd, as introduced in **Section 2.3** and discussed in **Section 7.2**. R34 and R35 are the locations of the two on-site air quality monitoring stations (named "out station" and "in station" respectively). These receptor locations are not representative of exposure locations but are used as part of the discussion in **Section 7**.

Table 11 Receptor locations used in the study

Rec	Address	Land use	Locatic	on (UTM)	Northstar	ERM	TAS
			mE	mS	2020	2015	2019
R1	1 Anthony Street, Blacktown	Residential	306 993	6 263 656	\checkmark	\checkmark	\checkmark
R2	2 Redwood Street, Blacktown	Residential	306 975	6 263 528	\checkmark	\checkmark	\checkmark
R3	191-209 Sunnyholt, Road Blacktown	Nature Reserve	306 963	6 263 414	~	\checkmark	~
R4	5 Chedley Place, Marayong	Residential	305 627	6 263 452	\checkmark	\checkmark	\checkmark
R5	12 Railway Road, Marayong	Residential	305 527	6 263 624	\checkmark	\checkmark	
R6	28 Railway Road, Marayong	Residential	305 475	6 263 762	\checkmark	\checkmark	\checkmark
R7	12 Cobham Street, Kings Park	Residential	305 584	6 264 114	\checkmark	\checkmark	\checkmark
R8	65 Faulkland Crescent, Kings Park	Residential	306 081	6 264 458	\checkmark	\checkmark	~
R9	32 Elsom Street, Kings Langley	Residential	307 080	6 264 227	\checkmark	\checkmark	
R10	62 Tattersall Road Kings Park	Industrial	306 442	6 263 762	\checkmark	\checkmark	
R11	50 Tattersall Road Kings Park	Industrial	306 531	6 263 749	\checkmark	\checkmark	
R12	38 Tattersall Road Kings Park	Industrial	306 602	6 263 739	\checkmark	\checkmark	
R13	32 Tattersall Road Kings Park	Industrial	306 653	6 263 748	\checkmark	\checkmark	
R14	21 Tattersall Road Kings Park	Industrial	306 728	6 263 659	\checkmark	\checkmark	
R15	21 Tattersall Road Kings Park	Industrial	306 723	6 263 581	\checkmark	\checkmark	
R16	34 Forge Street Blacktown	Industrial	306 489	6 263 446	\checkmark	\checkmark	
R17	24 Forge Street Blacktown	Industrial	306 406	6 263 371	\checkmark	\checkmark	
R18	48 Bessemer Street Blacktown	Industrial	306 325	6 263 369	\checkmark	\checkmark	
R19	57 Tattersall Road Kings Park	Industrial	306 423	6 263 682	\checkmark	\checkmark	
R20	56 Isaac Smith Parade, Kings Langley	Nature Reserve	307 599	6 264 228	\checkmark		
R21	87 Turner Street, Blacktown	School	307 887	6 263 160	\checkmark		
R22	2 Stephen Street, Blacktown	Residential	306 919	6 263 049	\checkmark		\checkmark
R23	24 Bedford Road, Blacktown	Nature Reserve	307 124	6 262 564	\checkmark		
R24	19 Fifth Avenue ,Blacktown	School	306 559	6 262 232	\checkmark		
R25	1 Bowmans Road, Kings Park	Commercial	305 557	6 263 991	\checkmark		
R26	30 Ironwood Crescent, Blacktown	Residential	305 892	6 262 648	~		
R27	Noel Street, Marayong	Nature Reserve	305 458	6 262 957	\checkmark		
R28	90 Sunnyholt Road Blacktown	School	306 709	6 262 724	\checkmark		\checkmark
R29	305 Vardys Road Blacktown	Residential	307 037	6 263 846	\checkmark		\checkmark
R30	29 Camorta Close Kings Park	Residential	306 386	6 264 424	\checkmark		\checkmark
R31	7 Camorta Close Kings Park	Residential	306 723	6 264 372	\checkmark		\checkmark
R32	49 Cobham Street Kings Park	Residential	305 695	6 264 456	\checkmark		\checkmark

Rec	Address	Land use	Location (UTM)		Northstar	ERM	TAS
			mE	mS	2020	2015	2019
R33	5 Springfield Avenue Blacktown	Residential	305 974	6 262 378	\checkmark		\checkmark
R34	S&P AQMS "Out station"	On-site	306 589	6 263 715	\checkmark		
R35	S&P AQMS "In station"	On-site	306 434	6 263 491	\checkmark		


Note: The requirements of this AQIA may vary from the specific requirements of other studies, and as such the selection and naming of receptor locations, may vary between technical reports. This does not affect or reduce the validity of those assumptions.

To specifically address the requirement to identify the locations of schools and hospitals, the following locations presented in **Table 12** have been identified and these locations are presented on **Figure 5**.

Table 12 Identified proximate schools and hospitals

Location	Land use	Coordinates (UTM)		Distance to site
		mE	mS	(km)
Blacktown Hospital	Health Care	307 002	6 260 827	2.7
Kildare Road Medical Centre	Health Care	305 967	6 261 478	2.0
Pacific Medical & Dental Centre	Health Care	306 413	6 261 702	1.8
Blacktown Family Medical Centre	Health Care	306 578	6 261 268	2.2
Richmond Road Medical Centre	Health Care	305 237	6 262 460	1.6
Centre Medical Practice	Health Care	307 657	6 264 408	1.2
Kings Langley Public School	Education	307 624	6 264 141	1.0
Quakers Hill Public School	Education	304 076	6 264 841	2.6
Marrayong Public School	Education	305 146	6 262 847	1.4
Marrayong South Primary School	Education	304 193	6 262 408	2.5
William Rose School	Education	308 912	6 261 544	3.0
Bert Oldfield Public School	Education	307 788	6 260 641	3.1

Figure 5 Identified proximate schools and hospitals

As illustrated in **Figure 5**, the location of the most proximate schools and hospitals are further from the Proposal site than the receptors summarised in **Table 11**, and as such have not been used as discrete receptor locations in the assessment.

4.1.2. Land Use Sensitivity

The following provides additional clarification of how the results of the assessment have been interpreted with regard to the land use and the averaging period of the relevant pollutants.

The results of the modelling assessment used to assess the potential impact of operational phase emissions are assessed sequentially in this AQIA. The impact assessment is principally driven by the requirement to manage potential exposure at locations representative of community exposure locations commensurate with the averaging period(s) for the respective pollutants, as summarised in **Table 13**.

Table 13	Receptor	selection	and	sensitivity
----------	----------	-----------	-----	-------------

Receptors	Land uses	Context	Exposure
R1-R9	Residential	 Receptor locations used in previous studies (ERM, 2015), (TAS, 2019)^A. 	All exposure periods

Receptors	Land uses	Context	Exposure
R10-R19	Industrial	 Representative of surrounding industrial land uses at, or just beyond, the boundary of the site. Receptor locations used in previous studies (ERM, 2015). 	≤ 8 hrs
R20-R33	Residential / community	 Additional receptors selected to represent additional residential / community exposure locations Receptor locations used in previous studies (TAS, 2019)^B. 	All exposure periods
R34-R35	On-site	On-site air quality monitoring stations	None

Notes: (A) excluding R5 and R9 used in (TAS, 2019) which were not selected for use in this study (B) relating to R22 and R28-R33.

Receptors R1-R9 are selected as they have been used historically as receptor locations in previous studies (ERM, 2015), (TAS, 2019) and adopting these receptors provides transparency with previous studies.

Receptors R10-R19 are locations have been adopted to help characterise dust control but are not representative of locations where there is potential for <u>longer-term</u> exposure. It is reasonable to expect an individual to be at these locations for around 8-hours per day (typical of a working shift) and are entirely appropriate for the assessment for air quality criteria with an averaging period of 8-hour or less. In this assessment, R10-R19 have been used in the assessment of 1-hour NO₂ and 1-hour (as 1-sec) odour concentrations, for example.

The principal of varying environmental risk by exposure time is intrinsic to all air quality impact criteria / standards and workplace exposure standards, implemented by every jurisdiction, including in NSW. An example of the implementation of this concept into regulation is provided in the Western Australia *Environmental Protection (Kwinana) (Atmospheric Wastes) Regulations* (1992)⁴ that sets particulate (as TSP) standards with averaging periods of less than 24-hours at a significantly higher concentration threshold than for the 24-hour period. This should not be interpreted as justification for not employing best practice to reduce air emissions at source but provides a case that is it is unreasonable to impose air pollutant standards at locations where such exposure periods are unrealistic or are not likely to occur.

In regard to odour, it is considered that the sensitivity of the industrial locations at R10-R19 is lower than may be reasonably expected at residential locations, and correspondingly the application of the 2 OU criterion at the industrial locations is considered to be inappropriate. This is discussed in **Section 3.3**, and specifically addresses the "location [L]" component of the FIDOL factors.

Note: Incremental impacts from all pollutants have been assessed and are presented in this report (**Appendix D**), as this is useful to benchmark effective air emission control.

⁴ https://www.legislation.wa.gov.au/legislation/statutes.nsf/law_s4417.html

Receptors R20-R33 are representative of additional potential residential / community exposure locations as these represent locations where a reasonable level of amenity is to be anticipated and protected.

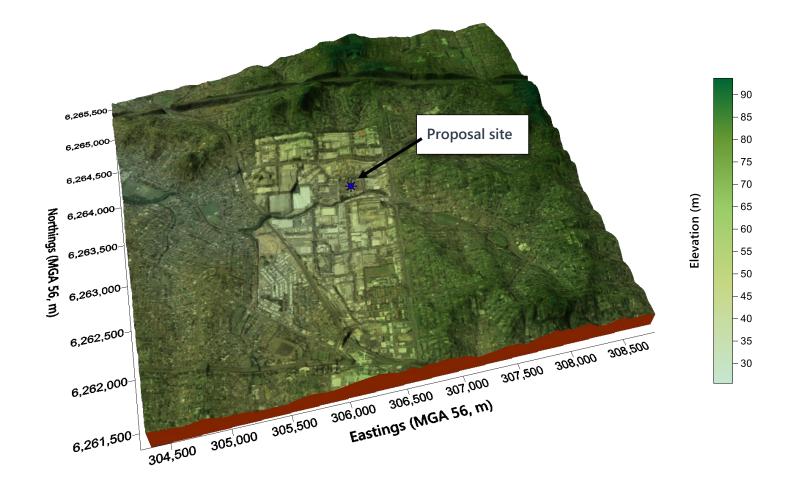
Note: It is noted that the above approach is consistent with the selection of sensitive receptor locations and the assessment of of-site air quality impacts adopted in (TAS, 2019).

It is noted that comments (responses) were received in response to the EIS for the proposed expansion of the Autorecyclers Pty Ltd operations from a number of local industrial operators, including:

- Hardware & General Supplies Limited Blacktown 24/32 Forge St, Blacktown NSW 2148;
- B&E Foods 25 Bessemer St, Blacktown NSW 2148; and
- Wesfresh Chicken Outlet 25 Bessemer St, Blacktown NSW 2148.

It is noted that industrial receptors R16, R17 and R18 are adopted in this assessment, and may be considered to be representative of likely exposure predictions at Forge Street. There is no specific receptor located on 25 Bessemer Street, although it is noted that R18 lies between the Proposal site and that address, and R18 may be used as a conservative assessment location for 25 Bessemer Street.

4.1.3. Uniform Receptor Locations


Additional to the sensitive receptors identified in **Section 4.1.1**, a grid of uniform receptor locations has been used in the AQIA to allow presentation of contour plots of predicted impacts.

4.2. Topography

The elevation of the Proposal site is approximately 44 m Australian Height Datum (AHD). The topography between the Proposal site and nearest sensitive receptor locations is uncomplicated. A 3-dimensional representation of the topography surrounding the Proposal site is presented in **Figure 6** overleaf.

Figure 6 Three-dimensional representation of topography surrounding the Proposal site

Source: Northstar Air Quality

Note: MGA – Map Grid of Australia

EXISTING CONDITIONS

Page 50

4.3. Meteorology

The meteorology experienced within an area can govern the generation (in the case of wind-dependent emission sources), dispersion, transport and eventual fate of pollutants in the atmosphere. The meteorological conditions surrounding the Proposal site have been characterised using data collected by the Australian Government Bureau of Meteorology (BoM) at a number of surrounding Automatic Weather Stations (AWS). Meteorology is also measured by DPIE at a number of Air Quality Monitoring Station (AQMS) surrounding the Proposal site (refer **Section 4.4**).

To provide a characterisation of the meteorology which would be expected at the Proposal site, a meteorological modelling exercise has also been performed.

A summary of the inputs and outputs of the meteorological modelling assessment, including validation of those outputs is presented in **Appendix A**.

A summary of the relevant AWS operated by BoM and the DPIE is provided in **Table 14** below (listed by proximity) and also displayed in **Figure 7** overleaf.

Site Name	Source	Appro Locatic	Approximate Distance	
		mE	mS	km
Prospect AQMS	DPIE	306 744	6 258 645	4.9
Rouse Hill AQMS	DPIE	305 670	6 271 042	7.4
Horsley Park Equestrian Centre AWS – Station # 67119	BoM	301 710	6 252 290	12.2
Sydney Olympic Park AWS – Station # 66212	BoM	321 583	6 245 405	17.4

Table 14 Details of meteorological monitoring surrounding the Proposal site

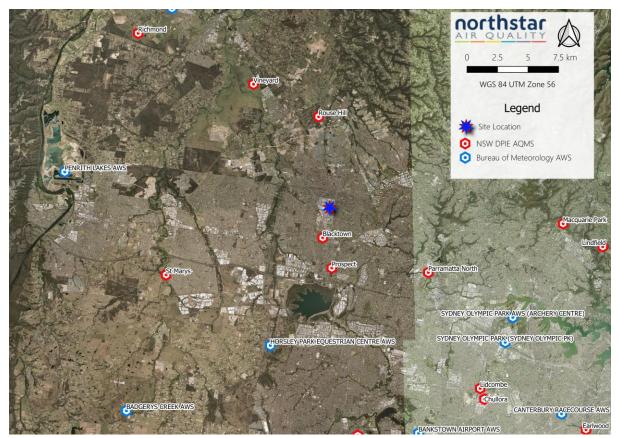


Figure 7 Meteorological monitoring stations surrounding the Proposal site

The meteorological conditions measured at the identified meteorological stations, are presented in **Appendix A**.

It is considered that Prospect AQMS is most likely to represent the conditions at the Proposal site, based upon its proximity and lack of significant topographical features between the two locations. The wind roses presented in **Appendix A** indicate that from 2015 to 2019, winds at Prospect AQMS show similar wind distribution patterns across the years assessed, with a predominant south-westerly wind direction.

The majority of wind speeds experienced at Prospect AQMS over the 5-year period 2015 to 2019 are generally in the range <0.5 metres per second ($m \cdot s^{-1}$) to 5.5 $m \cdot s^{-1}$ with the highest wind speeds (greater than 8 $m \cdot s^{-1}$) occurring from an easterly direction. Winds of this speed are not frequent, occurring <0.1 % of the observed hours over the 5-year period.

Given the wind distributions across the years examined, data for the year 2018 has been selected as being appropriate for further assessment, as it best represents the general trend across the 5-year period studied. Reference should be made to **Appendix A** for further details.

Image courtesy of Google Earth **Note**: Blacktown AQMS decommissioned in 2004

4.4. Air Quality

4.4.1. DPIE Air Quality Monitoring Stations

The air quality experienced at any location will be a result of emissions generated by natural and anthropogenic sources on a variety of scales (local, regional and global). The relative contributions of sources at each of these scales to the air quality at a location, will vary based on a wide number of factors including the type, location, proximity and strength of the emission source(s), prevailing meteorology, land uses and other factors affecting the emission, dispersion and fate of those pollutants.

When assessing the impact of any particular source of emissions on the potential air quality at a location, the impact of all other sources of an individual pollutant, should also be assessed. This 'background' (sometimes called 'baseline') air quality conditions will vary depending on the pollutants to be assessed and can often be characterised by using representative air quality monitoring data.

The Proposal site is located proximate to a number of AQMS operated by NSW DPIE (Figure 7 and Figure 8).

Figure 8 Air Quality Monitoring Stations surrounding the Proposal site

Image courtesy of Google Earth **Note**: Blacktown AQMS decommissioned in 2004

It is noted that Blacktown AQMS has been decommissioned, and the closest active AQMS is noted to be located at Prospect and is generally considered to be the monitoring location most reflective of the conditions at the Proposal site.

Appendix B provides a detailed assessment of the background air quality monitoring data collected at the Prospect AQMS.

It is noted that none of the AQMS in proximity to the Proposal site measure Total Suspended Particulate (TSP) which is of relevance to the expected emissions from the Proposal. Based upon long-term historic monitoring data, a numerical relationship between TSP and PM_{10} has been established for the Sydney Metropolitan region. Based upon these data, a relationship between ambient concentrations of TSP : PM_{10} of 2.0551 : 1 is used to approximate background annual average TSP concentrations. This relationship is established and is used frequently to approximate background annual average TSP concentrations in similar locations (see **Appendix B**).

The impact assessment criteria used for deposited dust (see **Table 9**) are presented as (i) a cumulative deposition rate of $4 \text{ g} \cdot \text{m}^{-2} \cdot \text{month}^{-1}$ and (ii) an incremental deposition rate of $2 \text{ g} \cdot \text{m}^{-2} \cdot \text{month}^{-1}$. In lieu of a background deposition rate to derive a cumulative rate, the incremental impact assessment criterion ($2 \text{ g} \cdot \text{m}^{-2} \cdot \text{month}^{-1}$) will be used. This is a commonly adopted approach when background deposition rates are not available, and is consistent with (ERM, 2015).

Table 15 presents a summary of the annual average per year (2014-2018) as measured at Prospect AQMS.

Pollutant	Annual average concentration ($\mu g \cdot m^{-3}$)					
	2014	2015	2016	2017	2018	
PM ₁₀	17.6	17.6	18.9	18.9	21.9	
PM _{2.5}	7.5	8.2	8.7	7.7	8.5	
NO ₂	21.1	22.5	20.9	20.1	18.7	
O ₃	38.5	34.2	36.3	36.3	40.6	

 Table 15
 Air quality background concentrations

Source: NSW DPIE⁵

A detailed summary of the background air quality is presented in **Appendix B**, and a summary of the air quality monitoring data and assumptions used in this assessment are presented in **Table 16**, noting data over the calendar year 2018 has been used to be consistent with the meteorological data used in the assessment (see **Section 4.3**).

⁵ <u>https://www.dpie.nsw.gov.au/air-quality/air-quality-data-services/data-download-facility</u>

Pollutant	Ave Period	Measured Value	Notes
Particles (as TSP)	Annual µg∙m⁻³	45.0	Estimated on a TSP:PM ₁₀ ratio of 2.0551 : 1
(derived from PM_{10})			
Particles (as PM ₁₀)	24-hour µg·m⁻³	Daily Varying	The 24-hour maximum for $\ensuremath{PM_{10}}$ in 2018 was
(Prospect)	Annual µg∙m⁻³	21.9	113.3 μ g·m ⁻³ (exceeding the criterion)
Particles (as PM _{2.5})	24-hour µg∙m⁻³	Daily Varying	The 24-hour maximum for PM _{2.5} in 2015
(Prospect)	Annual µg·m⁻³	8.5	was 47.5 $\mu g \cdot m^{\text{-3}}$ (exceeding the criterion)
Dust deposition	Annual	2.0	Difference in NSW DPIE maximum
	g·m⁻²·month⁻¹		allowable and incremental impact criterion
Nitrogen dioxide (NO ₂)	1-hour µg∙m⁻³	104.6	Hourly max 1-hr average in 2018
(Prospect)	Annual µg·m⁻³	18.7	Annual average in 2018
Ozone (O ₃)	1-hour µg∙m⁻³	224.7	Hourly max 1-hr average in 2018
(Prospect)	Annual µg·m⁻³	39.8	Annual average in 2018

Table 16 Summary of background air quality used in the AQIA

Note: Reference should be made to Appendix B

For context, in 2018 NSW experienced record temperatures and persistent dry conditions, with the entire State drought-declared in August 2018. The most extensive dust storm event occurred from 21 to 23 November 2018, when particle levels at many of the sites in the NSW air quality monitoring network exceeded the PM_{10} national standard. Ozone levels peaked in the warmer months from October to March (NSW Annual Air Quality Statement 2018).

On 28 December 2018, ozone levels above the national standards were recorded at Prospect.

In the instance of elevated background air quality conditions, the Approved Methods (NSW EPA, 2017) requires an AQIA to demonstrate that no additional exceedance of the air quality criteria are predicted as a consequence of the operation of the Proposal.

Background air quality monitoring of other pollutants assessed in this AQIA, including metals, are not routinely performed in NSW, or Australia, although specific pollutant monitoring campaigns may be performed to identify and quantify risks surrounding specific emission sources. As such data is not available for the study area, background concentrations of other pollutants, including metals is assumed to be negligible. This is a commonly adopted assumption, and consistent with (ERM, 2015). Ozone data is used to convert emissions of NO_X to NO_2 (see Section 5.3)

4.4.2. **Exceptional Events**

Final

During 2018, local sources of air pollution, including hazard reduction burning, mining and industrial activity, and domestic wood heaters, affected air quality in some locations. As introduced above, particle pollution (PM₁₀ and PM_{2.5}), also increased due to more frequent 'exceptional' events, such as dust storms, bushfires and hazard reduction burning.

In 2018, there were 51 days where exceptional events led to poor air quality, of which 25 days were affected by dust storms and 26 days were affected by bushfires or hazard reduction burning, and across NSW, most regions experienced some days of poor air quality due to dust storms. Increased hazard reduction burning, to manage bushfire risk, resulted in poor air quality in the Sydney region on some days during autumn and winter.

Annual PM_{2.5} levels above the national standard were recorded at about half of the NSW air quality monitoring stations. This increase was mainly due to smoke from hazard reduction burning and from increased dust due to the drought (NSW OEH, 2018).

In 2018, air quality index (AQI) levels reached the 'hazardous' category (with an AQI greater than 200) on a total of 36 days. In Sydney, the majority of hazardous particle days (92 %) were due to smoke from large hazard reduction burns from April to August (NSW RFS, 2019), and a number of uncontrolled forest fires. Six of the hazardous days were due to dust storms, and these occurred in March, August and November (NSW Govt, 2018a), (NSW Govt, 2018b) The most extensive dust storm event occurred from 21 to 23 November 2018, when particle levels at many of the sites in the NSW air quality monitoring network exceeded the PM₁₀ national standard. Sydney had 25 hazardous days in total as follow:

- 21 days in April (seven), May (seven), July (one), August (six) due to hazard reduction burns;
- one day each in April and July due to forest fires;
- one day in June due to a localised unidentified source; and
- one day in November due to an extensive dust storm.

4.4.3. On-Site Monitoring

An ambient air quality monitoring program has historically been performed on site. The on-site monitoring includes measurement of PM₁₀ using beta attenuation monitors (BAM) at two locations, named as "In Station" (currently located to the south-west of the Proposal site) and "Out Station" (currently located to the north of the Proposal site), and meteorological monitoring at one location. For the purposes of this AQIA, data monitoring summary reports have been provided by S&P for the period Jan-Dec 2017, Jan-Dec 2018 and Feb 2020.

The locations of the monitoring locations are illustrated in Figure 9.

Figure 9 Sell and Parker Blacktown monitoring station locations

Source: Northstar Air Quality

The purpose of having the two monitoring locations is that during specific wind directions, the difference between the two measurements may be generally attributed to an on-site particulate contribution. When the wind is from the north north-east or south south-east directions, the influence of external contributions of particulate is likely to be less significant and the resultant change in measured concentration may be reasonably interpreted as an on-site contribution disregarding background. This metric is used by S&P to quantify on-site particulate emissions, and the 4-hour average PM₁₀ concentration is used as an indicator to review the current particulate controls being deployed on site (see **Section 7.3** also).

However, when wind directions are from the east or west quadrants, the difference between the two measurements is less clearly identified and may be more attributed to off-site near-field sources of emissions. This may be more noticeable when the wind is from the western quadrant, and particulate emissions from the neighbouring Autorecyclers Pty Ltd may be a significant contributor under certain conditions. A paired-data correlation between the In-station and Out-station measurements is +0.638 and +0.630 for 2017 and 2018 respectively. The calculated coefficient indicates a reasonable correlation, but as it is not filtered by wind direction, it is influenced by cross-wind flows that do not reflect Proposal site activities.

The monitoring data has been collated from the monthly reports (as 24-hour PM_{10} measurements) and is summarised in **Table 17**. For each 24-hour average PM_{10} concentration, the difference between in In Station and Out Station concentration value has been calculated, irrespective of which station reported the higher value.

Year	2017	(24-hr PM ₁₀ µg	ŀ•m⁻³)	2018	(24-hr PM ₁₀ µg	ŀm⁻³)
Location	In Station	Out Station	Difference	In Station	Out Station	Difference
Mean	29.5	31.2	13.3	32.5	31.1	11.9
Standard deviation	24.7	28.6	18.0	27.3	22.7	17.5
Skew	+2.1	+3.0	+2.8	+2.7	+1.8	+4.6
Kurtosis	+5.8	+11.4	+11.9	+11.9	+4.2	+35.8
Minimum	2.4	2.4	0.0	3.2	3.3	0.0
Percentile 25	13.2	15.2	1.5	13.7	15.7	1.8
Percentile 50	21.9	22.4	5.7	24.9	25.0	5.5
Percentile 75	39.1	36.7	20.2	41.0	39.3	17.2
Percentile 90	62.0	56.9	34.0	65.3	58.1	32.2
Percentile 95	75.3	89.8	45.1	78.2	80.6	40.4
Percentile 99	131.3	140.8	89.6	135.9	103.3	64.4
Maximum	155.8	213.2	135.6	218.4	154.0	177.4

Table 17 S&P monitoring data summary (2017-2018)

Deriving data useful for the AQIA is problematic due to the highly variable contributions of:

- background contributions to the measured concentration values, although these should generally contribute a similar concentration at each monitoring location (baring analyser response and the influence of micro-scale wind flows around each monitoring site);
- the variability of short-term (i.e. minutes) on-site dust-generating events to potentially affect longerterm (24-hour) concentration measurements; and
- the influence emissions from the Autorecyclers Pty Ltd, and other proximate sources to the measured concentrations.

The maximum measured 24-hour PM_{10} differential over the period 2017 – 2018 is measured on 3rd August 2018 as 177 μ g·m⁻³. An excerpt from the raw 1-hour PM_{10} data report over 3rd August 2018 is reproduced in **Table 18**.

Date/Time	PM ₁₀ In station (µg∙m ⁻³)	PM₁₀ Out station (µg⋅m⁻³)	WS (m∙s⁻¹)	WD (°)	Sigma (°)	AT 2m (°C)	AT 10m (°C)	SR (W∙m⁻²)	Rain (mm)
3/08/2018 14:00	280	85	2.5	335	33	22.4	22.2	506	0.0
3/08/2018 15:00	107	33	1.7	349	40	23.1	22.9	392	0.0
3/08/2018 16:00	-	21	1.7	5	50	23.3	23.2	243	0.0

T I I 40	
lable lo	S&P monitoring data excerpt (3 Aug 2018)

Date/Time	PM₁₀ In station (µg·m⁻³)	PM₁₀ Out station (µg·m ⁻³)	WS (m∙s⁻¹)	WD (°)	Sigma (°)	AT 2m (°C)	AT 10m (°C)	SR (W∙m⁻²)	Rain (mm)
3/08/2018 17:00	855	67	1.7	356	51	22.2	22.2	84	0.0
3/08/2018 18:00	269	34	0.9	7	51	20.5	20.6	6	0.0
3/08/2018 19:00	71	15	0.9	5	52	19.8	19.9	5	0.0
3/08/2018 20:00	-	29	0.8	4	41	19.6	19.6	6	0.0
3/08/2018 21:00	1244	15	0.9	15	36	18.6	18.7	6	0.0
3/08/2018 22:00	359	10	1.8	332	27	18.9	18.9	6	0.0
3/08/2018 23:00	26	62	3.6	299	29	18.3	18.3	3	0.0
4/08/2018 00:00	465	92	2.7	308	25	15.8	15.9	4	0.0

The selected data above shows high measured 1-hour PM_{10} differentials at the "In station" which is located to the south of the Proposal site, with a peak of >1 mg·m⁻³ at 21:00. The wind speeds are generally typical of a light breeze blowing from the northern quadrant (315° to 45°) which would represent conditions likely to transport on-site emissions to the In station monitoring station.

It is noted that the 1-hour PM_{10} measurements are <u>not</u> a compliance metric, but it does show that under certain conditions it is a useful tool for identifying potential off-site impacts and providing a trigger for appropriate management response.

In light of the above limitations, the most useful metric for the AQIA is the average differential 24-hour PM_{10} concentration of 13.3 μ g·m⁻³ and 11.2 μ g·m⁻³ for 2017 and 2018 respectively, which represents the average 24-hour on-site increment, albeit acknowledged to be an over-estimation based upon the above factors.

The time series plots of the measured 24-hour PM_{10} concentrations are presented below in **Figure 10** for 2017 (left) and 2018 (right). The corresponding calculated difference is illustrated in **Figure 11**.

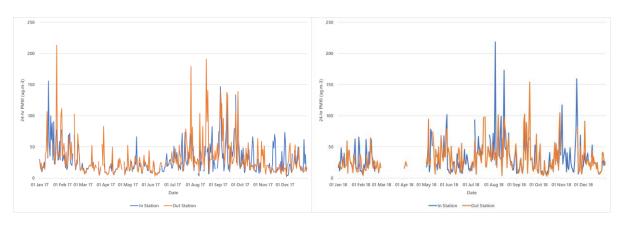
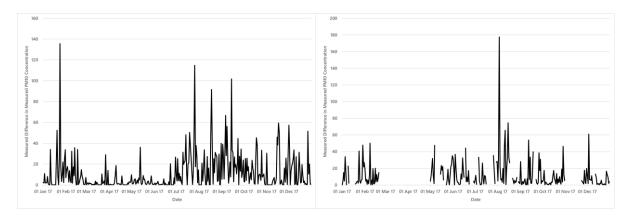



Figure 11 Difference in 24-hr PM₁₀ monitoring data (2017 left) (2018 right)

This information is provided for context and descriptive purposes and is not used as part of this AQIA.

Section 7.3.6 provides further discussion, specification and application of the data collected from the two air quality monitoring stations.

5. METHODOLOGY

5.1. Dispersion Modelling

A dispersion modelling assessment has been performed using the NSW EPA approved CALPUFF Atmospheric Dispersion Model. The modelling has been performed using TAPM and processing with CALTAPM, CALMET and CALPUFF, in accordance with the general requirements of the Approved Methods (NSW EPA, 2017). This approach is consistent with that adopted in ERM (2015) which supported the Original Approval.

Model	Parameter	Value
TAPM (4.0.5)	Grid points	35 × 35 × 25
	Grid resolution (km)	30, 10, 3, 1
	Centre point (UTM)	306 258, 6 263 597
	Period	1 January to 31 December 2018
CALMET (6.5.0)	Observation mode	No obs
	Grids	120 × 120
	Vertical levels	12
	Land use	European Space Agency GlobCover Portal
	Elevation	90 m SRTM

Table 19 TAPM and CALMET configuration

An assessment of the impacts of the operation of activities at the Proposal site has been performed, which characterises the likely day-to-day (and hour-to-hour) operation, approximating average operational characteristics which are appropriate to assess against longer term (annual average) and shorter term (24-hr and 1-hr) criteria for emissions to air.

The modelling scenario provides an indication of the air quality impacts of the operation of activities at the Proposal site. The predictions are termed 'incremental impacts'. Added to the incremental impacts are background air quality concentrations (where available and discussed in **Section 4.4** and **Appendix B**), which represent the air quality which may be expected within the area surrounding the Proposal site, without the impacts of the Proposal itself. The addition of background assumptions to the incremental impacts derived the predicted 'cumulative impacts'.

The following provides a description of the determination of appropriate emissions of air pollutants resulting from the operation of the Proposal.

5.2. Emissions Estimation

5.2.1. Scope and Sources

The estimation of emissions from a process is typically performed using direct measurement or through the application of factors, which appropriately represent the processes under assessment. This assessment has used directly measured data for the point sources (i.e. the Hammermill and oxy-cutter) and adopted emission factors from the US EPA AP42 emission factor compendium (US EPA, various) specifically Chapter 13 (Miscellaneous Sources) (USEPA, 2011) for the assessment of particulate matter emissions resulting from batch drop processes which represent material transfer points, Chapter 11 (Mineral Products Industry) which were used to assess the emissions from wind erosion and Chapter 13.2.1 (Paved Roads) (USEPA, 2011) for the assessment of wheel generated particulate from on-site vehicle movements.

Data has been provided by the Applicant to approximate the activities being performed at the Proposal site on a peak basis. These data have been split into disaggregated material flows through the process (e.g. ferrous and non-ferrous materials) (see **Section 2.2**). The emissions inventory is presented in **Appendix C**.

Table 20 presents a summary of the emission sources modelled in the AQIA. The naming convention hasbeen retained from (ERM, 2015) to provide consistency and assist review. Reference should be made toSection 2.2.3 and Figure 3.

Table 20 Assumed peak material activity rates

Source	Location		Description	Peak	Units	BPM	Notes
ID	mE	mS		Activity Rate		Group ^(D)	
MH01	306607	6263635	Non-ferrous metal transferred to the non-ferrous processing building	150	t∙day⁻¹	TRANS	(A)
MH02	306519	6263572	Transfer of raw material directly to the inspected stockpile of scrap metal (bypass pre- shredder)	1500	t∙day-1	TRANS	(A)
MH03	306503	6263664	Transfer of raw material directly to the inspected stockpile of scrap metal (bypass pre- shredder)	1500	t∙day-1	TRANS	(A)
MH04	306509	6263576	Transfer of raw material from stockpile to pre-shredder	600	t∙day⁻¹	TRANS	(A)
MH05	306522	6263569	Transfer of raw material from stockpile to pre-shredder	600	t∙day⁻¹	TRANS	(A)
MH06	306523	6263581	Transfer of pre-shredder output to a truck to inspected stockpile of scrap metal close to the conveyor into the hammer mill	600	t∙day⁻¹	TRANS	(A)
MH07	306503	6263664	Transfer of pre-shredder output to a truck to inspected stockpile of ap metal close to the conveyor into the hammer mill	600	t∙day⁻¹	TRANS	(A)
MH08	306503	6263664	Transfer of the inspected stockpile of scrap metal close to the conveyor onto the hammer mill conveyor	2100	t∙day-1	TRANS	(A)
MH09	306483	6263652	Transfer of the inspected stockpile of scrap metal close to the conveyor onto the hammer mill conveyor	2100	t∙day-1	TRANS	(A)
MH10	306503	6263664	Ferrous metals are collected from the stockpile by FEL and loaded into trucks	1050	t∙day⁻¹	TRANS	(A) (2100/2)
MH11	306533	6263680	Ferrous metals are collected from the stockpile by FEL and loaded into trucks	1500	t∙day⁻¹	TRANS	(A) (2100/2)
MH12	306633	6263573	Heavy ferrous pick up	384	t∙day⁻¹	TRANS	(A), (B)
MH13	306561	6263643	Non-ferrous material collected and loaded into trucks	600	t∙day-1	TRANS	(A), (B)
MH14	306603	6263616	Heavy ferrous drop point	384	t∙day⁻¹	TRANS	(A), (B)
TP01	306525	6263577	Pre-shredder drop point	600	t∙day⁻¹	TRANS	(A)

20.1074.FR4V1 Final

Source	Loc	cation	Description	Peak	Units	BPM	Notes
ID	mE	mS		Activity		Group ^(D)	
TP02	306517	6263691	The cleaned fragmented material (on a conveyor C1) passes under a drum magnet, where ferrous metals are dropped onto the picking conveyor (C2)	Rate 1610	t∙day⁻¹	CONV	(A)
TP03	306529	6263701	Ferrous metals transferred from C2, where operators remove remaining non-ferrous materials to C3	1610	t∙day⁻¹	CONV	(A)
TP04	306541	6263711	Ferrous metals are conveyed to the product stockpile	1550	t∙day⁻¹	CONV	(A)
TP05	306512	6263687	Non-ferrous materials drop beneath the drum magnet to a conveyor (C4) that runs perpendicular to the ferrous product	79	t∙day⁻¹	CONV	(A)
TP06	306494	6263732	Transfer point at conveyor bend 1	471	t∙day⁻¹	CONV	(A)
TP07	306563	6263721	Transfer point at conveyor bend 2	471	t∙day⁻¹	CONV	(A)
TP08	306551	6263643	Transfer point at conveyor bend 3	471	t∙day⁻¹	CONV	(A)
CV01	306484	6263660	Material from the stockpiles is conveyed into the hammer mill	1800	t∙day-1	CONV	(A), (C)
CV02	306486	6263672	Material from the stockpiles is conveyed into the hammer mill	1800	t∙day-1	CONV	(A), (C)
CV03	306489	6263687	Material from the stockpiles is conveyed into the hammer mil	1800	t∙day-1	CONV	(A), (C)
CV04	306489	6263694	Material from the hammer mill is carried upward by an incline conveyor and dropped into a chute	1800	t∙day⁻¹	CONV	(A), (C)
CV05	306513	6263691	The cleaned fragmented material from the cascade chute passes under the drum magnet and ferrous metals are removed	1354	t∙day⁻¹	CONV	(A), (C)
CV06	306520	6263693	Operators remove remaining non-ferrous materials	1354	t∙day⁻¹	TRANS	(A), (C)
CV07	306527	6263699	Operators remove remaining non-ferrous materials	1354	t∙day⁻¹	TRANS	(A), (C)
CV08	306534	6263704	Ferrous materials are taken and dropped onto a conveyor, which are conveyed to the product stockpile	1354	t∙day⁻¹	CONV	(A), (C)
CV09	306538	6263708	Ferrous materials are taken and dropped onto a conveyor, which are conveyed to the product stockpile	1354	t∙day⁻¹	CONV	(A), (C)
CV10	306514	6263695	Non-ferrous materials are dropped onto a conveyor, which transports material to the conveyor before the non-ferrous processing building	69	t∙day⁻¹	CONV	(A), (C)

20.1074.FR4V1	METHODOLOGY
Final	Kings Park Metal Resource Facility - Revised Air Quality Impact Assessment

Source	e Location		Description		Units	BPM	Notes
ID	mE	mS		Activity		Group ^(D)	
C) //11	200515	6262702		Rate	1 - 11		
CV11	306515	6263702	Non-ferrous materials are dropped onto a conveyor, which transports material to the	69	t∙day⁻¹	CONV	(A), (C)
C) /12	200510	C2C2711	conveyor before the non-ferrous processing building	<u> </u>	+ alay -1		
CV12	306516	6263711	Conveys non-ferrous material into the non-ferrous recovery plant	69	t∙day ⁻¹	CONV	(A), (C)
CV13	306491	6263710	Floc product is transferred onto conveyor	377	t∙day ⁻¹	CONV	(A), (C)
CV14	306492	6263718	Floc product is transferred onto conveyor	377	t∙day-1	CONV	(A), (C)
CV15	306493	6263727	Floc product is transferred onto conveyor	377	t∙day⁻¹	CONV	(A), (C)
CV16	306503	6263732	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV17	306512	6263731	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV18	306522	6263729	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV19	306533	6263727	Conveyor transports floc product to the post shredder processing building	411	t∙day-1	CONV	(A), (C)
CV20	306542	6263726	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV21	306551	6263725	Conveyor transports floc product to the post shredder processing building	411	t∙day-¹	CONV	(A), (C)
CV22	306558	6263724	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV23	306558	6263713	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV24	306556	6263703	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV25	306555	6263693	Conveyor transports floc product to the post shredder processing building	411	t∙day⁻¹	CONV	(A), (C)
CV26	306553	6263683	Conveyor transports floc product to the post shredder processing building	411	t∙day-¹	CONV	(A), (C)
CV27	306552	6263674	Conveyor transports floc product to the post shredder processing building	411	t∙day-¹	CONV	(A), (C)
CV28	306551	6263663	Conveyor transports floc product to the post shredder processing building	411	t∙day-¹	CONV	(A), (C)
CV29	306550	6263653	Conveyor transports floc product to the post shredder processing building	411	t∙day-¹	CONV	(A), (C)
CV30	306551	6263643	Conveyor transports floc product to the post shredder processing building	411	t∙day-1	CONV	(A), (C)
CV31	306557	6263635	Conveyor transports floc product to the post shredder processing building	411	t∙day-1	CONV	(A), (C)
CV32	306562	6263625	Conveyor transports floc product to the post shredder processing building	411	t∙day-1	CONV	(A), (C)
CV33	306567	6263617	Conveyor transports floc product to the post shredder processing building	411	t∙day-¹	CONV	(A), (C)
TRK01	306502	6263580	Truck dumping at raw material delivery	2634	t∙day⁻¹	TRANS	(A)

Source	e Location		Description	Peak	Units	BPM	Notes
ID	mE	mS		Activity		Group ^(D)	
				Rate			
TRK02	306503	6263664	Truck carries pre-shredder output to the inspected stockpile of scrap metal close to the	600	t∙day⁻¹	TRANS	(A)
			conveyor into the hammer mill				
C1	306613	6263608	Oxy-acetylene cutting	9	t∙day⁻¹	OXY	(A)
WSS01	306567	6263613	Hammermill wet scrubber stack (EPL Point 3)	2100	t∙day⁻¹	HAMMER	(A)
ROAD1	various	various	Internal road from western gate to eastern gate via shred/floc	42.044	VKT·day⁻¹	HAUL	(B)
ROAD2	various	various	Internal road from central gate to eastern gate via non-ferrous	34.608	VKT·day⁻¹	HAUL	(B)
ROAD3	various	various	Internal road from western gate to eastern gate via pre-shredder	14.496	VKT·day⁻¹	HAUL	(B)
ROAD4	various	various	Internal road from western gate to eastern gate via shears and oxy-cutter	12.972	VKT·day⁻¹	HAUL	(B)
WE01	306494	6263578	Scrap stockpile	653	m ²	WE	
WE02	306507	6263543	Scrap stockpile	428	m ²	WE	
WE03	306631	6263571	Post pre-shredder stockpile 1 - at pre-shredder	2100	m ²	WE	
WE04	306503	6263664	Post pre-shredder stockpile 2 - at hammer mill	2562	m ²	WE	
WE05	306542	6263709	Ferrous product stockpile	303	m ²	WE	
WE06	306544	6263695	Ferrous product stockpile	303	m ²	WE	

Notes (A) Activity rates derived from the material flow diagram presented as Figure 2-5 in the EIA (replicated in Table 6).

- (B) Not considered in the ERM 2015 assessment report, but upon review, these additional transfer points were added.
- (C) Assumed to be 100 % controlled in the ERM 2015 assessment report but upon review and inspection on-site, the sources are no longer omitted.
- (D) Best Management Practice Dust Control assessment (see **Appendix E**). Activities are assigned to the following groups:
 - TRANS material handling and transfer points, incl MH01-MH14, TP01, CV06, CV07, TRK01, TRK02
 - CONV conveyors, incl TP02-TP08, CV-01-CV-05, CV08-CV33

OXY – oxy-cutter, C1

- HAMMER hammermill ECS, WSS01
- HAUL internal haul road, incl ROAD1-ROAD4
- WE wind erosion sources incl WE01-WE06

The location of the sources listed in Table 20 is illustrated in Figure 12.

Figure 12 Modelled emission source locations

The following is noted:

- On-site vehicle movements: The surface of the site is entirely paved and watered regularly to manage dust generation. Emissions from on-site vehicle movements have been included within this assessment. A control factor of 30 % has been used for on-site road watering and has been conservatively applied;
- All conveyor points (CV1-CV33) are enclosed with side walls and covers, and are controlled at transfer points with water sprays, and control factors of 70 % and 50 % have been applied respectively (70 % & 50 % = 85 %);
- All material handling processes (MH1-MH14) have actively operating water misting systems, and a control factor of 70 % has been applied;
- Truck dumping will only be operated with dust suppression through water sprays, and a control factor of 70 % has been adopted;
- Emissions of PM₁₀ from the Hammermill has been measured at 71 %(w/w) of the TSP emission rate and similarly emissions of PM_{2.5} are measured to represent 44 %(w/w) of TSP.

Metals from the Hammermill are assumed to be speciated by mass fraction of PM_{2.5} consistently with that assessed by the USEPA⁶ as Cr (as Cr_{vi}) 0.04 %(w/w), Cu 0.1 %(w/w); Fe 5.76 %(w/w); Pb 0.49 %(w/w); Mn 0.088 %(w/w); Ni 0.031 %(w/w); Ti 0.025 %(w/w); V 0.001 %(w/w); and Zn 2.1 %(w/w).

Reference should be made to **Appendix C** for the details of the emission estimation.

All material handling, transfer points, conveyors and truck dumping emissions are derived from the AP-42 batch drop estimation. Truck dumping emissions are assumed to be hourly varying with wind speed. Wind erosion sources (material stockpiles) are assumed to be hourly varying.

Dispersion modelling has been performed for the Proposal only. Emissions estimations are provided in **Appendix C**.

5.2.2. Hammermill Emissions

The emissions from the Hammermill Wet Scrubber Stack are regulated under EPL 11555. The emission concentration limit values applicable to this source are presented in **Table 7** (see **Section 3.1**).

S&P has provided a number of emission test reports to inform the assumed emissions from the Hammermill as controlled through the ECS. These test reports are included as **Appendix F** of this report. A summary of the emission test results for Type 1 and Type 2 substances (in aggregate) and particulates is reproduced in **Table 21**.

Pollutant	Units	EPL	Emission Test Report (Issue Date and Ref)				
		11555	26-May-17 27-Sep-18		11-Oct-19	4-Sep-20	26-May-21
		Limit	R003396	R006468-1	R008184	R009653	R010794
		Value					
TSP	mg∙Nm⁻³	20	9.3	6.8	3.7	<3	7.3
Type 1 & 2	mg∙Nm ⁻³	1	<0.017	<0.0076	<0.042	< 0.035	<0.051
PM ₁₀	mg∙Nm⁻³	n/a	6.6	nd	nd	nd	nd
PM _{2.5}	mg∙Nm⁻³	n/a	<4	nd	nd	nd	nd

 Table 21
 Summary of particulate emission test results from the Hammermill

The maximum emission rate (g·s⁻¹) for each pollutant derived from the emission test reports listed above has been used as the emission rate in this supplementary report (highlighted in **Table 21**). The maximum measured concentration of each metal species (R003396 to R009653 inclusive) has been adopted in this assessment. Emission conditions (discharge velocity, temperature, etc) are reasonably constant, and the values measured in the most recent test report have been adopted. These data are presented in **Appendix F**.

⁶ https://www.epa.gov/air-emissions-modeling/speciate

Note: It is noted that the emission test reports include evidence of a 'reducing cone' attached to the discharge point of the Hammermill. The reduction in the discharge diameter increases the discharge velocity of the gas emitted from the Hammermill and also a marginal (1.2 m) increase in the discharge height (both of which improve the potential for dispersion) have been incorporated in this assessment.

The Hammermill (and associated ECS) has been designed to manage emissions at a capacity processing rate of 140 t·hr⁻¹, which is incorporated into the assessment (see **Table 6**). The emission test reports demonstrate compliance with EPL 11555 emission concentration limits. Under the new proposal the hourly processing rate (140 t·hr⁻¹) does not change therefore the emission rate is not anticipated to change. The most recent measured TSP concentration (i.e. most reflective of current operations), is less than 15 % of the emission limit, and the Type 1 and 2 emissions are less than 1 % of the limit value (see **Table 21**). It is considered that the emission test reports provide directly measured evidence to demonstrate that the emission collection system can accommodate the proposed increased throughput.

It is noted that the Proposal is for increased throughput based on efficiency of use of current plant. It is noted that the ECS will remain subject to strict emissions testing imposed through conditions in EPL 11555 and subject to review by NSW EPA.

The adopted odour emission rate from the Hammermill is derived from measurements reported in Emissions Testing Report N92746 (EML Air, June 2014) which is presented in its entirety in **Appendix F**. Odour was measured as two repeat tests, each comprising two replicate samples with four determinations in total, as reproduced in **Table 22**.

Replicate	Test	Concentration	Description
		(OU)	
1	Test 1	1 000	Mildly Unpleasant/Distinct Acidic
	Test 2	1 600	Mildly Unpleasant/Distinct Acid
	Average	1 300	-
2	Test 1	940	Mildly Unpleasant/Distinct Metal
	Test 2	650	Mildly Unpleasant Metal
	Average	790	-

Table 22	Measured odour	emissions from t	the Hammermill	(EML Air, June 2014)
				(

For the purposes of this assessment, the maximum measured odour emission (1 600 OU) has been used to represent odour emissions from the Hammermill, which is noted to be a conservative assumption.

It is recommended that the next scheduled NATA accredited emission testing event on the Hammermill ECS under EPL 11555 is supplemented to include measurement of NO_x , H_2S , HF and HCl, Cl_2 and odour, in addition to the requirement for the measurement of particulates, particulate and vapour phase metals.

5.2.3. Oxycutter Emissions

The emissions estimation for the Oxycutter is presented in **Appendix C** and the test reports are presented in **Appendix F** (EML Air, June 2014) (Ektimo, Sep 2019).

It is noted that the emissions test report and the derived emission inventory includes particulates and all measured metal species (Ag, Al, As, Ba, Be, Ca, Cd, Co, Co[II], Cr, Cu, Fe, Fe[I,II], Hg, K, Li, Mg, Mg[IV], Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Th, Zn), NO_x and odour as measured during an emission test during September 2019 (Ref: R007718) which is presented in **Appendix F**.

In regard to the contribution to site-wide emissions, emission estimates are provided in **Appendix E** as part of the Best Management Practice assessment.

It is recommended that the operation of the Oxycutter is kept under review.

5.2.4. Vehicle Emissions

The movement of vehicles on the paved road surfaces are included as sources in the assessment, and are described in **Appendix C**.

As reported in the Traffic Assessment (TTPP, November 2021), the number of heavy vehicles entering the site on the busiest hour is anticipated to be 33 vehicles per hour (10:00 and 14:00), with a further maximum of 10 light vehicles per hour (10:00), representing approximately 1 vehicle every 01:25 minutes and a total vehicle movement of 423 heavy vehicles and 89 light vehicles per day.

For context, the provided traffic survey data measured on Tattersall Road during February to March 2020 reports a weekday average 2-way traffic flow of 5 531 vehicles. In context of the traffic movements on Tattersall Road, the contribution of site traffic is low, and the contribution of exhaust emissions is correspondingly low. Based upon the above, the significance of site-traffic exhaust is considered minor (i.e. <10 %) and is not considered to warrant a detailed assessment.

For clarity, the contribution of wheel generated particulate emissions has been included.

5.2.5. Odour

In this AQIA it is assumed that the sources generating odour emissions are the odour emission sources are limited to the Oxycutter and the Hammermill Wet Scrubber Stack, which is consistent with (ERM, 2015).

The odour emission rate for the Oxycutter used in the assessment is derived from test report R00718 (September 2019) which was appended to letter report from ERM (ref: 0462777_L04, dated 19 September 2019). EPA responded to that letter report in January 2020 (ref: DOC20/42792, dated 30 January 2020).

The source of the odour emission rate for the Hammermill is Emissions Testing Report N92746 (EML Air, June

2014) which is presented in its entirety in **Appendix F** and which was provided as part of the EIS for SSD 5041.

The NATA accredited emission test reports from which the odour emission rates have been derived are presented in **Appendix F**.

A peak to mean ratio of 2.3 has been applied to the predicted 1-hour odour impacts, as required under (NSW EPA, 2017)

5.2.6. Summary

Emission estimates for each activity are presented in **Appendix C**, which also presents the assumed variables for each emission factor adopted. The following tables sequentially present the activity rates and subsequently the emission estimation for each activity.

•	Table 44	Emission estimates- point source emissions
•	Table 45	Emission estimate – volume source emissions – peak activity rates
•	Table 46	Emission estimate – volume source emissions – peak emission rates
•	Table 47	Emission estimate – open area wind erosion sources – peak activity rates
•	Table 48	Emission estimate – open area wind erosion sources – peak emission rates
•	Table 49	Emission estimate – wheel generated dust – peak activity rates
•	Table 50	Emission estimate – wheel generated dust – peak emission rates

It is important to note that the above tables in **Appendix C** are based upon the peak daily emission estimates discussed in **Section 2.2** and presented in **Table 20** and the purpose of which is to perform the dispersion modelling assessment based on peak activity rates. Those emission estimates have been used to assess the short-term and long-term impact predictions, acknowledging that they will be a highly conservative means of predicting long-term (i.e. annual average) impacts.

Appendices C and E of this assessment includes a requirement by NSW EPA for the following:

The proponent must include total emissions per year for each activity and as an entire site in the emission inventory

To specifically address that requirement, Appendix C additionally presents annual emission estimates in the following tables:

- Table 51 Annual emission estimate by activity and site total TSP
- Table 52 Annual emission estimate by activity and site total PM10
- Table 53 Annual emission estimate by activity and site total PM2.5

5.3. NO_x to NO_2 Conversion

The emission rates of oxides of nitrogen (NO_x) have been modelled as nitrogen dioxide (NO₂). Approximately 90% - 95% of NO_x from a combustion process will be emitted as NO, with the remaining 5% - 10% emitted directly as NO₂. Over time and after the point of discharge, NO in ambient air will be transformed by secondary atmospheric reactions to form NO₂, and this reaction often occurs at a considerable distance downwind from the point of emission, and by which time the plume will have dispersed and diluted significantly from the concentration at point of discharge.

Air quality impact assessments need to account for the conversion of NO to NO_2 to enable a comparison against the air quality criterion for NO_2 . To perform this, various techniques are common, which are briefly outlined below:

- **100% conversion**: the most conservative assumption is to assume that 100% of the total NO_x emitted is discharged as NO₂, and that further reactions do not occur.
- Jansen method: where the location is represented by good monitoring data for NO and NO_X, the empirical relationship between NO and NO₂ may be used to derive 'steady state' relationships.
- **Ozone limiting method**: this method uses contemporaneous ozone data to estimate that rate at which NO is oxidised to NO₂ hour-on-hour using an established relationship.

This AQIA has used an assumption of 100 % conversion of NO_X to NO_2 , in accordance with the methodology described in (NSW EPA, 2017).

6. **RESULTS**

This section presents the results of the dispersion modelling assessment and uses the following terminology:

- Incremental impact relates to the concentrations predicted as a result of the construction and operation of the Proposal in isolation.
- Cumulative impact relates to the incremental concentrations predicted as a result of the construction and operation of the Proposal <u>PLUS</u> the background air quality concentrations discussed in **Section 4.4**.

The results are presented in this manner to allow examination of the likely impact of the Proposal in isolation and the contribution to air quality impacts in a broader sense.

In the presentation of results, the tables included shaded cells which represent the following:

Model prediction	Pollutant concentration /	Pollutant concentration /
	deposition rate less than the	deposition rate equal to, or greater
	relevant criterion	than the relevant criterion

Reference should be made to **Appendix D** which tabulates the results of the modelling at all receptor locations, irrespective of whether they represent community locations, industry receptors or on-site receptors.

The isopleth plots of predicted (i) annual average incremental TSP concentrations, (ii) incremental 24-hour PM_{10} concentrations (iii) incremental 24-hour $PM_{2.5}$ concentrations and (iv) incremental 1-hour NO_2 concentrations are presented in **Appendix E**.

Where incremental impacts are predicts as less than (<) the relevant reporting range, the cumulative impact has been calculated at 100 % of the reporting threshold.

Reference should be made to **Section 4.1.1** and **Table 13** for discussion on the interpretation of predicted results with regard to the respective pollutant averaging time.

For the purposes of ongoing air quality management, **Appendix D** presents a full summary predicted impacts at all receptor locations.

6.1. Annual Average TSP, PM₁₀ and PM_{2.5}

Incremental and cumulative annual average TSP, PM_{10} and $PM_{2.5}$ impacts are presented in **Table 23** for R1-R9 and R20-R33. Reference should be made to **Appendix D** for a full summary of predicted impacts at all receptor locations.

	Annual Average Concentration (µg·m ⁻³)								
		TSP			PM ₁₀			PM _{2.5}	
Receptor	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact
R1	1.2	44.8	46.0	0.4	21.8	22.2	0.1	8.5	8.6
R2	1.1	44.8	45.9	0.4	21.8	22.2	<0.1	8.5	8.6
R3	0.9	44.8	45.7	0.3	21.8	22.1	<0.1	8.5	8.6
R4	0.6	44.8	45.4	0.2	21.8	22.0	<0.1	8.5	8.6
R5	0.5	44.8	45.3	0.2	21.8	22.0	<0.1	8.5	8.6
R6	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R7	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6
R8	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R9	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R20	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6
R21	0.1	44.8	44.9	<0.1	21.8	21.9	<0.1	8.5	8.6
R22	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R23	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6
R24	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6
R25	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6
R26	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6
R27	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6
R28	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6
R29	0.9	44.8	45.7	0.3	21.8	22.1	<0.1	8.5	8.6
R30	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R31	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R32	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6
R33	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6
Criterion	-	9	0	-	2	5		3	}

The results do not predict an exceedance of the annual average TSP or PM_{10} criteria. The annual average $PM_{2.5}$ criterion is predicted to be exceeded, but these impacts are associated with a background contribution already exceeding the criterion (see also **Section 4.4** and **Table 16**). The assessment does not predict the operation of the Proposal would lead to any additional exceedances of the relevant criteria.

6.2. 24-hour Average PM₁₀ and PM_{2.5}

6.2.1. Incremental Impacts

Maximum incremental 24-hour PM_{10} and $PM_{2.5}$ impacts are presented in **Table 24** for R1-R9 and R20-R33. Reference should be made to **Appendix D** for a full summary of predicted impacts at all receptor locations.

	Maximum 24-hour average concentration (μ g·m ⁻³)					
Receptor	PM ₁₀	PM _{2.5}				
R1	4.7	1.2				
R2	6.2	1.6				
R3	4.5	1.2				
R4	2.1	0.6				
R5	1.8	0.5				
R6	1.9	0.5				
R7	1.9	0.5				
R8	1.9	0.5				
R9	1.9	0.5				
R20	1.4	0.4				
R21	1.2	0.3				
R22	3.6	1.0				
R23	2.0	0.5				
R24	1.9	0.5				
R25	1.8	0.5				
R26	1.6	0.5				
R27	2.1	0.6				
R28	2.1	0.6				
R29	4.3	1.2				
R30	2.7	0.7				
R31	2.4	0.6				
R32	1.4	0.4				
R33	1.1	0.3				

Table 24 Predicted incremental 24-hour average PM₁₀ and PM_{2.5} concentrations

6.2.2. Cumulative Impacts

Cumulative impacts are assessed as incremental impact aggregated with the background concentration assumptions discussed in **Section 4.4** and **Appendix B**, and are presented in **Table 25** and **Table 26**.

Results are presented for the receptor at which the highest incremental PM_{10} and $PM_{2.5}$ impacts have been predicted (see **Table 24**), and also for the receptors at which the highest cumulative impacts (increment plus background) have been predicted. These may often be different receptors than those at which the highest incremental impacts are predicted.

The left side of the tables show the predicted concentration on days with the highest cumulative predictions (generally driven by the highest background concentration days), and the right side shows the total predicted concentration on days with the highest predicted incremental concentrations. Correspondingly, **Table 25** presents impacts at R2 for PM_{10} and **Table 26** for $PM_{2.5}$.

	24-hour average PM_{10} concentration				24-hour average PM_{10} concentration			
Date	R2 (μg⋅m⁻³)			Date	R2 (µg⋅m⁻³)			
Date	Incremental Impact	Background	Cumulative Impact	Date	Incremental Impact	Background	Cumulative Impact	
22/11/2018	1.4	113.3	114.7	12/07/2018	6.2	20.0	26.2	
19/03/2018	<0.1	70.2	70.3	13/06/2018	4.2	14.1	18.3	
28/05/2018	<0.1	65.8	65.9	21/05/2018	3.4	17.5	20.9	
18/07/2018	3.3	61.9	65.2	18/07/2018	3.3	61.9	65.2	
15/02/2018	<0.1	61.6	61.7	23/05/2018	2.9	29.3	32.2	
29/05/2018	<0.1	58.7	58.8	17/08/2018	2.9	20.0	22.9	
21/11/2018	0.7	55.7	56.4	14/06/2018	2.8	12.6	15.4	
19/07/2018	<0.1	54.4	54.5	4/08/2018	2.8	22.3	25.1	
18/03/2018	1.3	47.9	49.2	27/07/2018	2.8	31.2	34.0	
14/04/2018	<0.1	47.8	<47.9	14/08/2018	2.5	18.6	21.1	
These data represent the highest Cumulative Impact 24-hour PM_{10} predictions outlined in red as a result of the operation of the project.				These data represent the highest Incremental Impact 24-hour PM_{10} predictions outlined in blue as a result of the operation of the project.				

Table 25 Predicted cumulative 24-hour average PM₁₀ concentrations

The results predict exceedances of the 24-hour PM_{10} criterion, although these are shown to be driven by elevated background concentrations already exceeding the criterion (see also **Section 4.4** and **Table 16**).

Critically, the assessment does not predict the operation of the Proposal would lead to any additional exceedances of the relevant 24-hour PM_{10} criterion.

	24-hour average PM _{2.5} concentration				24-hour average PM _{2.5} concentration				
Date	R2 (μg⋅m⁻³)			Date	R2 (μg⋅m⁻³)				
Date	Incremental Impact	Background	Cumulative Impact	Date	Incremental Impact	Background	Cumulative Impact		
29/05/2018	<0.1	47.5	47.6	12/07/2018	1.6	13.8	15.4		
28/05/2018	<0.1	42.5	42.6	13/06/2018	1.1	6.9	8.0		
6/05/2018	0.3	27.1	27.4	27/07/2018	0.8	19.5	20.3		
27/05/2018	<0.1	27.0	27.1	21/05/2018	0.8	7.4	8.2		
15/07/2018	0.5	23.1	23.6	23/05/2018	0.8	11.3	12.1		
9/05/2018	<0.1	21.7	21.8	18/07/2018	0.8	8.9	9.7		
25/04/2018	<0.1	20.6	20.7	14/06/2018	0.8	5.2	6.0		
27/07/2018	0.8	19.5	20.3	17/08/2018	0.8	9.4	10.2		
8/05/2018	0.2	19.9	20.1	4/08/2018	0.7	9.2	9.9		
26/08/2018	0.6	18.4	19.0	22/06/2018	0.7	17.0	17.7		
These data re	These data represent the highest Cumulative Impact 24-hour			These data represent the highest Incremental Impact 24-hour					
PM ₁₀ predictio	PM_{10} predictions outlined in red as a result of the operation				PM_{10} predictions outlined in blue as a result of the operation of				
of the project.				the project.					

Table 26 Predicted cumulative 24-hour average PM_{2.5} concentrations

The results predict exceedances of the 24-hour $PM_{2.5}$ criterion, although these are shown to be driven by elevated background concentrations already exceeding the criterion (see also **Section 4.4** and **Table 16**).

Critically, the assessment does not predict the operation of the Proposal would lead to any additional exceedances of the relevant 24-hour $PM_{2.5}$ criterion.

6.3. Nitrogen Dioxide

Incremental and cumulative 1-hour and annual average NO₂ impacts are presented in **Table 27**. The results schedules report concentrations at R1-R33, as those receptor locations are relevant to a 1-hour averaging period. The results at R34 and R35 are not shown as they are on-site monitoring locations and are not representative of potential off-site exposure locations.

Reference should be made to **Appendix D** for a full summary of predicted impacts at all receptor locations

It is noted that the assessment assumes a 100 % conversion of NO_X to NO_2 (see **Section 5.3**) and adopts the highest 1-hour measured NO_2 concentration and the annual average NO_2 concentration as background values.

	Nitrogen dioxide (NO ₂) concentration (μg·m ⁻³)								
Rec.		1 hour			Annual Average				
	Increment	Background	Cumulative	Increment	Background	Cumulative			
R1	1.0	104.6	105.6	0.01	18.7	18.7			
R2	0.9	104.6	105.5	0.01	18.7	18.7			
R3	0.8	104.6	105.4	0.01	18.7	18.7			
R4	0.5	104.6	105.1	0.01	18.7	18.7			
R5	0.4	104.6	105.0	0.00	18.7	18.7			
R6	0.4	104.6	105.0	0.00	18.7	18.7			
R7	0.4	104.6	105.0	0.00	18.7	18.7			
R8	0.7	104.6	105.3	0.01	18.7	18.7			
R9	0.8	104.6	105.4	0.01	18.7	18.7			
R10	1.1	104.6	105.7	0.06	18.7	18.8			
R11	1.8	104.6	106.4	0.07	18.7	18.8			
R12	2.3	104.6	106.9	0.05	18.7	18.8			
R13	2.6	104.6	107.2	0.05	18.7	18.7			
R14	2.1	104.6	106.7	0.04	18.7	18.7			
R15	1.3	104.6	105.9	0.04	18.7	18.7			
R16	3.5	104.6	108.1	0.09	18.7	18.8			
R17	1.8	104.6	106.4	0.05	18.7	18.8			
R18	1.2	104.6	105.8	0.04	18.7	18.7			
R19	1.4	104.6	106.0	0.05	18.7	18.8			
R20	0.5	104.6	105.1	0.00	18.7	18.7			
R21	0.6	104.6	105.2	0.00	18.7	18.7			
R22	0.7	104.6	105.3	0.00	18.7	18.7			
R23	0.6	104.6	105.2	0.00	18.7	18.7			
R24	0.5	104.6	105.1	0.01	18.7	18.7			
R25	0.5	104.6	105.1	0.00	18.7	18.7			
R26	0.4	104.6	105.0	0.01	18.7	18.7			
R27	0.4	104.6	105.0	0.01	18.7	18.7			
R28	0.6	104.6	105.2	0.01	18.7	18.7			
R29	0.9	104.6	105.5	0.01	18.7	18.7			
R30	0.6	104.6	105.2	0.01	18.7	18.7			
R31	0.8	104.6	105.4	0.01	18.7	18.7			
R32	0.5	104.6	105.1	0.00	18.7	18.7			
R33	0.4	104.6	105.0	0.00	18.7	18.7			
Criterion		24	46		6	2			

Table 27 Predicted incremental 1-hour and annual average NO₂ concentrations

The results do not predict any exceedances of the 1-hour or annual average NO_2 criteria.

6.4. Metals

Metals are assessed as the respective fraction of $PM_{2.5}$, as indicated in **Section 5.2** as Cr (as Cr_{VI}) 0.04 %(w/w), Cu 0.1 %(w/w); Fe 5.76 %(w/w); Pb 0.49 %(w/w); Mn 0.088 %(w/w); Ni 0.031 %(w/w); Ti 0.025 %(w/w); V 0.001 %(w/w); and Zn 2.1 %(w/w).

The maximum incremental <u>1-hour</u> $PM_{2.5}$ prediction is 25.4 μ g·m⁻³ at R11 (an industrial receptor). Accounting for the contribution of site-wide emissions (as a worst case assumption) rather than just the Hammermill in isolation and the above mass fractions derives maximum 1-hour concentrations of the following:

•	Cr (assessed as Cr _{vI})	0.01 μ g·m ⁻³ (11.3 % of the criterion)
•	Cu	0.03 μ g·m ⁻³ (0.1 % of the criterion)
•	Fe	1.46 μ g·m ⁻³ (1.6 % of the criterion)
•	Mn	0.02 µg·m⁻³ (0.1 % of the criterion)

Lead (Pb) has an annual average criterion. The maximum (non-industrial) concentration has been used for the assessment. The maximum annual average $PM_{2.5}$ prediction of <0.1 µg·m⁻³ and a Pb fraction of 0.49 % derives an annual average lead concentration of 0.0005 µg·m⁻³ (0.1 % of the criterion).

Background concentrations of metals are assumed to be negligible (see **Section 4.4.1**), and therefore the assessment considers incremental impacts only, or alternatively, the incremental impact is equal to the cumulative impact.

The results do not predict any exceedances of the respective 1-hour metals criteria nor the annual average Pb criterion.

6.5. Annual Average Dust Deposition

Incremental and cumulative deposited dust impacts are presented in **Table 28**. Reference should be made to **Appendix D** for a full summary of predicted impacts at all receptor locations

Decenter	Annual Average Dust Deposition (g·m ⁻² ·month ⁻¹)						
Receptor	Incremental Impact	Background	Cumulative Impact				
R1	0.1	2.0	2.1				
R2	<0.1	2.0	<2.1				
R3	<0.1	2.0	<2.1				
R4	<0.1	2.0	<2.1				
R5	<0.1	2.0	<2.1				
R6	<0.1	2.0	<2.1				
R7	<0.1	2.0	<2.1				
R8	<0.1	2.0	<2.1				

 Table 28
 Predicted incremental & cumulative dust deposition rates

	Annual Average Dust Deposition (g·m ⁻² ·month ⁻¹)					
Receptor	Incremental Impact	Background	Cumulative Impact			
R9	<0.1	2.0	<2.1			
R10	1.3	2.0	3.3			
R11	3.2	2.0	5.2			
R12	1.95	2.0	3.9			
R13	1.0	2.0	3.0			
R14	0.7	2.0	2.7			
R15	0.7	2.0	2.7			
R16	0.9	2.0	2.9			
R17	0.4	2.0	2.4			
R18	0.3	2.0	2.3			
R19	1.8	2.0	3.8			
R20	<0.1	2.0	<2.1			
R21	<0.1	2.0	<2.1			
R22	<0.1	2.0	<2.1			
R23	<0.1	2.0	<2.1			
R24	<0.1	2.0	<2.1			
R25	<0.1	2.0	<2.1			
R26	<0.1	2.0	<2.1			
R27	<0.1	2.0	<2.1			
R28	<0.1	2.0	<2.1			
R29	<0.1	2.0	<2.1			
R30	<0.1	2.0	<2.1			
R31	<0.1	2.0	<2.1			
R32	<0.1	2.0	<2.1			
R33	<0.1	2.0	<2.1			
Criterion	2	-	2			

The results predict a minor exceedance of the annual average dust deposition rate at R11, which is an industrial location at close proximity to the Proposal site. This assessment presents a Best Management Practice Dust Control assessment in **Appendix E**, which identifies opportunities for proactive dust control.

6.6. Odour

Incremental 99th percentile odour impacts are presented in **Table 29** at receptors R1-R9 and R20-R33 representing locations where amenity impacts are to be managed. Reference should be made to **Appendix D** for a full summary of predicted impacts at all receptor locations

Receptor	99 th percentile nose response time odour concentration (OU)
R1	0.2
R2	0.2
R3	0.2
R4	0.1
R5	0.1
R6	0.1
R7	0.1
R8	0.1
R9	0.1
R20	0.1
R21	0.0
R22	0.1
R23	0.0
R24	0.1
R25	0.1
R26	0.1
R27	0.1
R28	0.1
R29	0.2
R30	0.1
R31	0.1
R32	0.1
R33	0.1
Criterion	2.0

 Table 29
 Predicted incremental 99th percentile odour impacts

The assessment does not predict any exceedance of the 2 OU odour impact criterion at any receptors.

In accordance with the requirements of the POEO (see **Section 3.3**) odour is to be assessed and controlled from each premises to not give rise to offensive odour.

Correspondingly, odour is assessed as discrete emissions only although the potential cumulative impacts are discussed considering the AQIA supporting the neighbouring operations of Autorecyclers Pty Ltd (see Section 2.3 and Section 7.2).

7. DISCUSSION AND CONCLUSION

7.1. Compliance with Air Quality Criteria

The prediction of potential impacts associated with operational activities has been performed in general accordance with the requirements of the NSW Approved Methods (NSW EPA, 2017), using an approved and appropriate dispersion modelling technique. The estimation of emissions has been performed using referenced emission factors, and this is documented in **Section 5.2** and **Appendix C**.

The predicted incremental and cumulative impacts from the operation of the Proposal are presented in **Section 6**, which may be compared to the relevant air quality criteria outlined in **Section 3**. Based upon the assumptions presented in this report, the AQIA does not predict there to be any exceedances of the air quality criteria with the exception of the following

- In regard to annual average PM_{2.5} the Proposal is not predicted to result in any additional exceedances. The background annual average PM_{2.5} of 8.5 μg·m⁻³ already exceeds the impact assessment criterion of 8.0 μg·m⁻³. See Section 6.1;
- In regard to 24-hour PM₁₀, the Proposal is not predicted to result in any additional exceedance. Exceedances at R2 are presented in **Table 25**, which is caused by background 24-hour PM₁₀ concentrations already exceeding the impact assessment criterion. See **Section 6.2**;
- In regard to 24-hour PM_{2.5}, the Proposal is not predicted to result in any additional exceedances.
 Exceedances at R2 are presented in Table 26, which is caused by daily-varying background 24-hour PM_{2.5} concentrations already exceeding the impact assessment criterion. See Section 6.2;
- In regard to annual average dust deposition, an exceedance is predicted at R11, which is at an industrial location and not a residential receptor location. See **Section 6.5**.

On all occasions of predicted exceedances of the 24-hour PM_{10} and $PM_{2.5}$ criteria, the assessment is driven by elevated background conditions, that would give rise to exceedances, irrespective of any contribution of the Proposal site.

7.2. Aggregated Impacts with Autorecyclers Pty Itd

Reference has been made to the AQIA (TAS, 2019) submitted as part of the EIS for the extension of throughput to 130 000 tpa at the neighbouring site (see **Section 2.3**).

To facilitate the assessment of aggregated potential impacts, the discrete impact assessment results have been extracted from that AQIA and are summarised in the section below. Reference is made to **Section 2.3** and **Section 4.1.1** for the discussion of how the discrete receptor locations were selected for this purpose, and the co-incidence of receptors in the studies is tabulated below. It is noted that the co-ordinates of the receptor locations in (TAS, 2019) are not presented in that report and have been approximated from a desktop mapping exercise.

The predicted results associated with the list of common receptors presented in **Table 30** have been used for this aggregated impact exercise.

Northstar	TAS			Northstar	TAS		
Receptor	Receptor	mE	mS	Receptor	Receptor	mE	mS
R1	R3	306 993	6 263 656	R22	R2	306 919	6 263 049
R2	R4	306 975	6 263 528	R28	R1	306 709	6 262 724
R3	R5	306 963	6 263 414	R29	R6	307 037	6 263 846
R4	R13	305 627	6 263 452	R30	R8	306 386	6 264 424
R6	R12	305 475	6 263 762	R31	R7	306 723	6 264 372
R7	R11	305 584	6 264 114	R32	R10	305 695	6 264 456
R8	R9	306 081	6 264 458	R33	R15	305 974	6 262 378

Table 30Aggregated impact receptors

The calculated aggregated annual average TSP, PM_{10} and $PM_{2.5}$ concentrations are presented in **Table 31** overleaf, and the corresponding 24-hour average PM_{10} and $PM_{2.5}$ concentrations are presented in **Table 32**.

The aggregated assessment has used the maximum incremental impact predicted in this study with the respective contemporaneous 24-hour background and aggregated this with the maximum 24-hour increment predicted from emissions associated with the proposed Autorecyclers Pty Ltd throughput expansion to 130 000 tpa. It is noted that this is a highly conservative assumption, as the incremental impacts are not necessarily contemporaneous.

Rec	TAS Rec	TAS Rec Northstar (2020)				TAS (2019)			Estimated Aggregate				
		TS	SP	PN	Л ₁₀	PN	A _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
		Incr	BG	Inc	BG	Inc	BG	Inc	Inc	Inc	Aggr	Aggr	Aggr
		А	В	С	D	E	F	G	Н	/	A+B+G	C+D+H	E+F+I
R1	R3	1.2	44.8	0.4	21.8	0.1	8.5	0.3	0.2	0.1	46.3	22.4	8.7
R2	R4	1.1	44.8	0.4	21.8	0.1	8.5	0.4	0.2	0.1	46.3	22.4	8.7
R3	R5	0.9	44.8	0.3	21.8	0.1	8.5	0.5	0.2	0.1	46.2	22.3	8.7
R4	R13	0.6	44.8	0.2	21.8	0.1	8.5	0.4	0.2	0.1	45.8	22.2	8.7
R6	R12	0.4	44.8	0.2	21.8	0.1	8.5	0.3	0.1	0.1	45.5	22.1	8.7
R7	R11	0.3	44.8	0.1	21.8	0.1	8.5	0.2	0.1	0.1	45.3	22.0	8.7
R8	R9	0.4	44.8	0.2	21.8	0.1	8.5	0.3	0.1	0.1	45.5	22.1	8.7
R22	R2	0.4	44.8	0.2	21.8	0.1	8.5	0.2	0.1	0.1	45.4	22.1	8.7
R28	R1	0.4	44.8	0.1	21.8	0.1	8.5	0.2	0.1	0.1	45.4	22.0	8.7
R29	R6	0.9	44.8	0.3	21.8	0.1	8.5	0.6	0.3	0.1	46.3	22.4	8.7
R30	R8	0.4	44.8	0.2	21.8	0.1	8.5	0.3	0.1	0.1	45.5	22.1	8.7
R31	R7	0.4	44.8	0.2	21.8	0.1	8.5	0.3	0.2	0.1	45.5	22.2	8.7
R32	R10	0.3	44.8	0.1	21.8	0.1	8.5	0.2	0.1	0.1	45.3	22.0	8.7
R33	R15	0.3	44.8	0.1	21.8	0.1	8.5	0.3	0.1	0.1	45.4	22.0	8.7
Criterion	-	-	-	-	-	-	-	-	-	-	90	25	8

Table 31 Predicted aggregated annual average TSP, PM₁₀ and PM_{2.5} concentrations

Note Incr = incremental impact ($\mu g \cdot m^{-3}$), BG = background ($\mu g \cdot m^{-3}$), aggr = aggregate ($\mu g \cdot m^{-3}$) (comprised of Northstar increment + background + TAS increment

Rec TAS Rec Northstar (2020) TAS (2019) Estimated Aggregate PM₁₀ PM_{2.5} **PM**₁₀ PM_{2.5} **PM**₁₀ PM_{2.5} BG BG Inc Inc Inc Inc Aggr Aggr A+B+E 1.2 R1 R3 4.7 20.0 13.8 3.0 1.0 27.7 16.0 1.6 R2 R4 6.2 1.2 29.6 16.6 20.0 13.8 3.4 R5 R3 4.5 20.0 1.2 13.8 3.0 1.1 27.5 16.1 R4 R13 0.6 0.8 2.1 22.9 10.7 2.3 27.3 12.1 R6 R12 22.7 1.9 18.4 0.5 13 2.4 0.9 14.4 R7 R11 26.1 14.6 1.9 22.1 0.5 13.3 2.1 0.8 R9 R8 1.9 13.9 0.5 6.6 1.9 0.7 17.7 7.8 R22 R2 14.0 3.6 8.9 1.0 6.8 1.5 0.5 8.3 R1 R28 2.1 58.7 0.6 47.5 1.8 0.5 62.6 48.6 R6 R29 4.3 18.9 1.2 16.1 2.9 0.9 26.1 18.2 R30 R8 2.7 11.3 0.7 9.2 7.7 2.1 0.8 16.1 R7 R31 2.4 20.0 0.6 2.4 0.8 24.8 8.3 6.9 R32 R10 1.4 22.1 0.4 13.3 1.4 0.6 24.9 14.3 R33 R15 1.1 0.3 1.7 0.6 20.7 17.9 11 11.9 Criterion -50 25 -_ _ -_ -

Table 32 Predicted aggregated 24-hour PM₁₀ and PM_{2.5} concentrations

Note Incr = incremental impact ($\mu g \cdot m^{-3}$), BG = background ($\mu g \cdot m^{-3}$), aggr = aggregate ($\mu g \cdot m^{-3}$) (comprised of Northstar increment + background + TAS increment

Table 31 indicates that the annual average $PM_{2.5}$ concentrations are predicted to exceed the relevant air quality criteria at all receptors. However, as highlighted in **Section 4.4**, the background is (in itself) exceeding the air quality criterion. The incremental annual average $PM_{2.5}$ predictions from both sites are predicted to be 0.1 µg·m⁻³ or less at all receptors.

The assessment predicts an exceedance of the 24-hour PM_{10} and $PM_{2.5}$ criteria at R28, however this is noted to be driven by already exceeding background PM_{10} and $PM_{2.5}$ concentrations, and the assessment does not predict any additional exceedances of the relevant criterion.

With regard to odour, the aggregated impact is estimated as shown in Table 33.

REC	TAS Rec	Northstar (2021)	TAS (2019)	Estimated Aggregate
			OU (3-sec OU)	
R1	R3	0.2	0.2	0.4
R2	R4	0.2	0.2	0.4
R3	R5	0.2	0.2	0.4
R4	R13	0.1	0.3	0.4
R6	R12	0.1	0.2	0.3
R7	R11	0.1	0.2	0.3
R8	R9	0.1	0.2	0.3
R22	R2	0.1	0.1	0.2
R28	R1	0.1	0.1	0.2
R29	R6	0.2	0.3	0.5
R30	R8	0.1	0.2	0.3
R31	R7	0.1	0.2	0.3
R32	R10	0.1	0.2	0.3
R33	R15	0.1	0.1	0.2
Criterion	-	-	-	2

 Table 33
 Predicted aggregated 99th percentile 3-second odour concentrations

It is appreciated that the above approach is limited in that it aggregates two discrete sets of 99th percentile values, but it is limited as to the data available. It is noted that the meteorological period adopted in each assessment differs, however the above aggregates the corresponding maximum (as 99th percentile) predictions at each receptor, independently of wind conditions, and will therefore be conservative.

Based upon the above, it is considered that the aggregated impact of the Proposal with the proposed expansion of Autorecyclers Pty Ltd should not cause any exceedance of the relevant odour criterion.

The aggregated assessment presented above does not predict any additional exceedances of any criteria.

7.3. Air Quality Management

7.3.1. Committed Air Quality Management Measures

It is noted that (ERM, 2015) presented a series of best practice measures to be implemented by reference to the relevant EU Integrated Pollution Prevent & Control (IPPC) Bureau reference documents, including waste treatment which includes: *"common waste treatments such as the temporary storage of waste, blending and mixing, repackaging, waste reception, sampling, checking and analysis, waste transfer and handling installations, and waste transfer stations"*⁷. The site-specific mitigation measures identified in (ERM, 2015) and to be implemented to achieve best available techniques included measures for:

- Managing, receiving and recording incoming raw material streams, and identification of unacceptable materials, including spot checks;
- Procedural visual material checks at the point of raw material reception, raw material handling at the cutter, subsequent transfer, control cabin;
- Non-acceptance of cars with LPG cylinders;
- Draining of petrol and oil from scrap cars and storage in above-ground storage tanks for removal off-site;
- Waste and product storage to control emissions to atmosphere;
- Full and complete enclosure of all conveyors and conveyor transfer points;
- Operation of an "Emission Collection System" is regulated through EPL 11555 to manage and control emissions from the Hammermill;
- Operation of all oxy-cutting processes under wet conditions to manage the emissions of NO_x and metal fumes;
- Operation of water sprays / mists on all material handling activities, and the collection of subsequent run-off within an on-site retention basin;
- Regular sweeping of on-site surfaces to minimise wheel-generated emissions from plant and vehicles;
- Management of dust emissions through the Environmental Management Plan (EMP).

Table 34 below provides a summary of the committed mitigation measures and an update from S&P regarding implementation.

Table 34 Committed air quality control measures

Committed Mitigation Measure (ERM, 2015)	Implementation Status	Comments
Managing, receiving and recording incoming raw	Implemented	All loads are inspected to comply with
material streams, and identification of		the conditions imposed to EPL 11555
unacceptable materials, including spot checks		

⁷ https://eippcb.jrc.ec.europa.eu/reference/waste-treatment-0

Committed Mitigation Measure (ERM, 2015)	Implementation Status	Comments
Procedural visual material checks at the point of	Implemented	All loads are inspected to comply with
raw material reception, raw material handling at		the conditions imposed to EPL 11555
the cutter, subsequent transfer, control cabin		
Non-acceptance of cars with LPG cylinders	Implemented	Any LPG End of Life Vehicles (ELV) are
		returned to the supplier or sent for
		third-party treatment.
Draining of petrol and oil from scrap cars and	Implemented	It is noted that the vast majority of ELV
storage in above-ground storage tanks for		received are already drained prior to
removal off-site		receival on site.
Waste and product storage to control emissions	Implemented	Floc and non-ferrous are stored in
to atmosphere		enclosed buildings.
Full and complete enclosure of all conveyors and	Implemented	Conveyors are enclosed with water
conveyor transfer points;		sprays at transfer points
Operation of an "Emission Collection System" is	Implemented	The "Emission Collection System" is
regulated through EPL 11555 to manage and		operational and regulated as EPA ID 3
control emissions from the Hammermill		"Hammermill Stack through EPL 11555.
		(See also Section 5.2.2).
Operation of all oxy-cutting processes under wet	Implemented	Water suppression provided by
conditions to manage the emissions of NO_X and		Spraystream 25i (or equivalent)
metal fumes		
Operation of water sprays / mists on all material	Implemented	All surface run off is directed by gravity
handling activities, and the collection of		flow to the retention basin.
subsequent run-off within an on-site dam		
Regular sweeping of on-site surfaces to minimise	Implemented	Currently performed with two
wheel-generated emissions from plant and		permanent sweepers and a hired third-
vehicles		party sweeper (a required).
Management of dust emissions through the	Implemented	Air quality is managed through the
Environmental Management Plan (EMP)		AQMP, implemented through the EMS.

As may be determined from **Table 34**, S&P have implemented all identified control measures in (ERM, 2015), with the exception that material stored in enclosures are not subject to water sprays, as it is not required due to the controls offered by enclosure.

7.3.2. Proposed Air Quality Management Measures

The AQIA is underpinned by an emissions estimation that is described in **Section 5.2** and **Appendix C** which accounts for various "control factors" on various sources, as derived from published sources. The control factors applied are commensurate with operational controls described by S&P and implemented though the EPL and also operational procedures.

As requested by NSW EPA, this AQIA includes a benchmarked evaluation of potential control measures that may be reasonably implemented at the Proposal site. **Appendix E** of this AQIA includes a Best Management Practice Dust Control assessment, performed in accordance with the NSW EPA requirements and standard procedure (NSW OEH, 2011) which provides a comprehensive Best Management Practice assessment to transparently and systematically benchmark and evaluate control measures that may be considered for the operations at the Proposal site.

The benchmarking of those emissions, the evaluation of potential control options and the recommendations for further control measures are presented in **Appendix E**. Based upon the assumptions presented, the implementation of those best practice measures is estimated to offer the following emission reductions, when compared to uncontrolled emissions:

- Reduce emissions of particulate from haulage by 65 % of uncontrolled estimates;
- Reduce emissions of particulate from conveying materials by 85 % of uncontrolled estimates; and
- Reduce emissions of particulate from material handling and transfer by 51% of uncontrolled estimates.

A summary of the recommended controls is presented below in **Table 35**. It is noted that a number of these controls have been implemented by S&P and this has been noted in the table.

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Haulage					
Sweeping Watering	RISK = LOW RISK = LOW	RISK = LOW	RISK = LOW RISK = MEDIUM	RISK = LOW RISK = LOW	 Adopted potential measure RH1 Already
					implemented control
Conveying					
Enclosure of transfers	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	 ✓ Adopted potential measure C1
Water sprays	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	

Table 35Summary of adopted control measures

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
					Already implemented control
Handling and	transfer				
Water sprays during truck unloading	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	☑Alreadyimplementedcontrol
Water sprays	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	✓ Adopted potential measure HT1
Minimisation of drop height	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	Adoptedpotentialmeasure HT2

7.3.3. Implementation through the EMS

This AQIA does not seek to replace the S&P Environmental Management System (EMS) as the published / approved EMS includes various commitments implemented to comply with the conditions associated with the Original Approval, including the Air Quality Management Plan (AQMP) (Arcadis, 2019) However, to comply with the requirement of the SEARs (see **Section 1.4**) this AQIA proposes additions in accordance with the assumptions and commitments determined through the BMP assessment (as outlined in **Table 35** and **Appendix E**).

The EMS will be updated by S&P as per the Conditions of the new consent.

7.3.4. Hammermill

The NATA endorsed emission testing reports performed on the Hammermill and the associated ECS are presented (in full) in **Appendix F**. Selected data are also summarised in **Table 8** and **Table 21**.

The maximum measured TSP emission concentration of $9.3 \text{ mg} \cdot \text{Nm}^{-3}$ (Ektimo, May 2017) is 47 % of the EPL 11555 emission concentration limit.

The maximum measured Type 1 and 2 emission concentration of $<0.051 \text{ mg}\cdot\text{Nm}^{-3}$ (upper bound concentration) is less than 5.1 % of the EPL 11555 emission concentration limit.

The data presented in the NATA endorsed emission testing reports do not show any exceedance of any emission concentration limits imposed through EPL 11555.

It is noted that the assessment utilises the maximum measured TSP emission concentration value, and also the maximum speciated Type 1 and Type 2 metal concentration value, irrespective of the report.

With reference to **Appendix E**, the Best Management Practice assessment estimates the emission from the Hammermill of 4.1 kg·day⁻¹ is approximately 3.7 % of the uncontrolled peak daily site emission estimate of 111 kg·day⁻¹.

Corresponding, irrespective of the fact that the hammermill is screened from consideration in the Best Management Practice assessment, in accordance with the procedure outlined in (NSW OEH, 2011), additional controls on the hammermill are not considered to be warranted.

7.3.5. Oxycutter

Emissions from oxycutting are not subject to emission concentration limits in EPL 11555. However, NATA accredited emission testing report performed on the Oxycutter are presented in **Appendix F** (EML Air, June 2014), (Ektimo, Sept 2019).

With reference to data presented in the NATA accredited test reports presented in **Appendix F**, the Best Management Practice assessment (presented in **Appendix E**) estimates the particulate emission from the Oxycutter of 0.3 kg·day⁻¹, which is approximately 0.27 % of the uncontrolled peak daily site emission estimate of 111 kg·day⁻¹ (see **Table 63**). Consequently, the Oxycutter is screened from consideration in the Best Management Practice assessment, in accordance with the procedure outlined in (NSW OEH, 2011).

The issue of semi-encapsulation of the Oxycutter has been specifically raised by NSW EPA (see **Table 3**). Despite the emissions from the Oxycutter being screened from the Best Practice Assessment, an evaluation of the potential of that control is provided below in **Table 36**.

Table 36Practicability of implementing the (specific) control measure of semi-encapsulation on
the Oxycutter

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Semi- encapsulation	RISK = LOW	RISK = LOW	RISK = HIGHThestructurewould need to beconstructed with anabovegroundclearanceofapproximately 15 mtoavoid safetyissueswith thecrane/striking the roof ofan enclosure.	RISK = HIGH The site has limited capacity to locate a suitably sized structure for semi- encapsulation.	Not considered further in this assessment given that the current risk assessed and BMP indicates that the Oxycutter adds a negligible contribution to air quality emissions

In regard to the limited ability of the site to accommodate this control, reference is made to previous correspondence between NSW EPA and S&P on this issue. A summary of that previous discussion are chronologically presented below.

In September 2019, a letter addressing the commissioning of the oxy-cutter was provided to NSW EPA (ref: 0462777_L04, dated 19 September 2019) (ERM, Sep 2019). That letter report was appended with a monitoring report performed on the oxycutter (Ektimo, Sept 2019), which is also provided in **Appendix F** of this revised AQIA report.

In January 2020, the EPA provided a response to S&P on the above commissioning report (ref: DOC20/42792, dated 30 January 2020) requesting further clarification on compliance with Conditions 1.5(d) (relating to modelled compliance with the relevant impact assessment criteria) and Condition 1.5 (e) (relating to changes to the oxy-cutter to achieve compliance with 1.5(d).

In April 2020, S&P responded to the EPA letter (dated: 1 April 2020) which provided further clarification on the modelling performed as part of the commissioning of the oxy-cutter, and the subsequent opinion that no further changes to the operation of the oxy-cutter were required to achieve compliance with the relevant impact assessment criteria.

That opinion expressed on the April 2020 letter is supported by the findings of this report. The BMP assessment has identified emissions from the Oxycutter, as derived from NATA accredited emission testing (Ektimo, Sept 2019) to be 0.27 % of site emissions. It is further advised by S&P through the BMP assessment that there are significant safety and compatibility constraints for the semi-encapsulation of the Oxycutter (see **Table 36**). Based upon the foregoing, it is not considered that further changes to the operation of the Oxycutter are required nor warranted.

7.3.6. Air Quality Monitoring

The AQMP includes a commitment for the monitoring of PM_{10} concentrations at two AQMS, the 'In-station' and the 'Out-station'. Reference should be made to **Section 4.4.3** of this report that provides a summary of the locations of the AQMS and the measured concentration values.

The limitations of the measured data and its applicability to this AQIA are discussed in **Section 4.4.3**. It is proposed that the air quality monitoring program is continued to achieve the following objectives:

- Provide quantification of impacts using methods referenced in (NSW DEC, 2007);
- Provide S&P relevant metrics (i.e. rolling 4-hour PM₁₀ concentration value) to implement reactive air quality management responses; and
- Provide a means to verify operational air quality control.

However, as noted in **Section 4.4.3**, the analysis and use of the data collected by the AQMS is not straight forward, and requires an element of judgement of source contribution to interpret the data, particularly with regard to the disaggregation of the measured concentrations to background sources, neighbouring contributions and on-site contributions.

As part of an ongoing commitment through the EMS, a review is periodically undertaken regarding the appropriateness of the current location of the two AQMS at the Premises with regard to:

- Proximity of the monitoring locations to potential sources;
- Validity of those locations to represent particulate emissions from the site;
- Compliance with Australian Standard 3580.1.1:2016 *Methods for sampling and analysis of ambient air - Guide to siting air monitoring equipment*, and
- The potential effect of building and structure wake on the measurements.

In summary, the reviews performed by S&P have reconfirmed that:

- The site layout has not significantly changed since 2015;
- There are limited locations that an AQMS can be located on site that meet the requirements of AS 3580.1.1
- Potential locations next to identified sources are unable to be pursued due to safety concerns to equipment and personnel

- Internal site locations were subject to wake effects from buildings. and limitations imposed through AS 3850.1.1;
- Two previous locations that had been trialled were further away from identified sources than the current locations;

Subsequent to these reviews, it has been determined that the two AQMS will remain in their current positions and S&P will undertake a review periodically as required under the EMS, or when the site undergoes significant changes in configuration. The AQMS will continue to be operated in accordance with the specifications provided in the AQMP (Arcadis, 2019).

7.4. Conclusion

7.4.1. Summary

S&P is seeking approval to increase the throughput limit of the RRF from 350 000 to 600 000 tonnes per annum (tpa). Approval for the Proposal is sought as State Significant Development (SSD) under Part 4, Division 4.7 of the *Environmental Planning and Assessment 1979* (EP&A Act).

The existing infrastructure at the Proposal site has the capacity to accommodate an increased throughput without altering the approved operational hours or requiring any construction works on the Proposal site by making more efficient use of the existing processes.

The AQIA has been performed in accordance with the relevant guidance and is cognisant of the SEARs (see **Section 1.4**).

Using a range of site-specific data regarding the type and nature of activities to be performed on site, emissions to air have been estimated in accordance with the relevant guidance, and the dispersion of emissions associated with peak operations has been modelled using approved atmospheric dispersion modelling techniques. The corresponding impacts have been predicted at a number of receptor locations representing community exposure and at industrial locations, as discrete impacts and as cumulative impacts which account for general prevailing air quality conditions considered to be representative of the site.

The impact assessment does not predict any exceedances of the relevant air quality and odour assessment criteria, as published in NSW Environment Protection Authority guidance "*Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales*" at any surrounding residential receptor locations. There is noted to be a potential for off-site exceedance of the deposited dust criterion at a non-residential location beyond the site boundary. It is recommended that the additional measures identified through the Best Management Practice Dust Control assessment are implemented to manage this risk.

The air quality impact assessment also considers the potential impacts of the operation of the neighbouring Autorecyclers Pty Ltd operations at a proposed increased throughput of 130 000 tonnes per year. The report assesses the potential aggregated impacts with those emissions, and the assessment does not predict any exceedance of the relevant air quality and odour assessment criteria, as published in NSW Environment Protection Authority guidance "*Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales*".

Impacts at surrounding industrial receptors have been presented within the main body of the report where exposure times are commensurate with those land uses. **Appendix D** presents a full schedule of results at all receptor locations, irrespective of averaging time, and this indicates that additional controls should be implemented to reduce off-site migration of site-generated emissions. To identify the additional controls which may be reasonably implemented, a Best Management Practice Dust Control assessment has been performed, which is presented in **Appendix E**.

That assessment has been performed in accordance with NSW EPA methodology and identifies a range of recommendations for additional controls.

7.4.2. Recommendations

The recommendations presented in the report, including those identified through the best management practice dust control assessment have been summarised.

This report provides the following recommendations, as summarised in Table 37:

Reference	Recommendation	Report Reference
1	The next scheduled NATA accredited emission testing event on the Hammermill ECS be extended in scope to include measurement of NO_x , H_2S , HF and HCl, Cl_2 and odour, in addition to the requirement for the measurement of particulates, particulate and vapour phase metals.	Section 5.2.2
2	It is recommended that the operation, and emissions from the Oxycutter are kept under review	Section 5.2.3
3	 The recommendations of the Best Management Practice Dust Control assessment are implemented at the earliest opportunity, as detailed in Appendix E, and including: Continued use of road sweepers to manage road silt content, and particularly to remove silt from road verges after large rain events (adopted potential measure HR1) 	Appendix E, Table 69
4	Enclosure of the conveyor transfer points (adopted potential measure C1);	Appendix E, Table 70

Table 37 Summary of recommendations

Reference	Recommendation	Report Reference
5	 Use of targeted water sprays on all appropriate handling and transfer points, ensuring that run off is appropriately captured, filtered and discharged or recycled (adopted potential measure HT1 (on appropriate sources); 	Appendix E, Table 71
6	• Minimisation of drop heights on all handling and transfer points (adopted potential measure HT2).	Appendix E, Table 71
7	It is recommended that the current AQMS configuration, location, metrics and trigger points continue to be periodically reviewed, as required through the EMS, to achieve the objectives outlined in Section 7.3.6 .	Section 7.3.6

8. **REFERENCES**

ABS. (2017). *Australian Bureau of Statistics*. Retrieved from 3101.0 - Australian Demographic Statistics: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun%202015?OpenDocument

AIRUSE Life 11. (2017). Guidebook, Measures to Improve Urban Air Quality .

Arcadis. (2019). Sell and Parker Kings Park Metal Recovery, Processing and Recycling Facility - Air Quality Management Plan (Rev E).

Australian Govt. (2012). National Pollutant Invenory - Emission Estimation Technique Manual for Moning (Version 3.1).

Countess Environmental. (2006). WRAP Fugitive Dust Handbook.

- DECC. (2006). Technical Framework: Assessment and Management of Odour from Stationary Sources in NSW.
- DECC. (2006). Technical Notes: Assessment and Management of Odour from Stationary Sources in NSW.

Ektimo. (May 2017). R003396 Emission Testing Report - Sell and Parker, Kings Park.

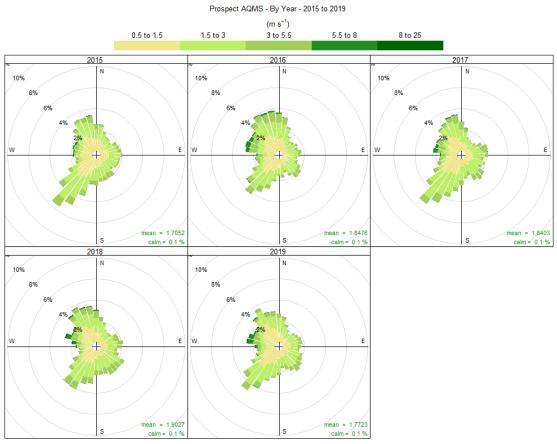
Ektimo. (May 2021). R010794 Annual Emission Testing, Sell and Parker, Kings Park.

Ektimo. (Oct 2019). R008184 Annual Emission Testing - Sell and Parker, Kings Park.

Ektimo. (Sep 2018). R006468-1 Emission Testing - ERM Australia Pty Ltd, Docklands.

Ektimo. (Sep 2019). R007718 Emission Testing - ERM Australia Pty Ltd.

- Ektimo. (Sep 2020). R009653 Annual Emission Testing Sell and Parker, Kings Park.
- Ektimo. (Sept 2019). R007718 Emission Testing.
- EML Air. (June 2014). N92746 Emission Testing Report.
- ERM. (2015). Waste Metal Recovery, Processing and Recycling Facility, 45 and 23-43 Tatterhall Road, Kings Park, Blacktown - Air Quality Assessment.
- ERM. (Sep 2019). Oxy-Cutting Commissioning Report for Sell and Parker Pty Ltd, Kings Park Metal Recycling Facility.
- Graham, G., Lawrence, K., & Doyle, M. (2013). Development of Odour Impact Assessment Methodologies Accounting for Odour 'Offensiveness' or Hedonic Tone. *Proceedings of the 21st Clean Air Society of Australia and New Zealand Conference*. Sydney.


- Katestone. (2011). NSW Coal Mining Benchmarking Study: International Best Practice for the Prevention and/or Minimisation of Emissions of Particulate Matter from Coal Mining.
- Northstar Air Quality. (2020). *Kings Park Metal Resource Facility Air Quality Impact Assessment* (20.1074.FR1V3).
- Northstar Air Quality. (2021). *Kings Park Metal Resource Facility Supplementary Air Quality Impact Assessment (20.1074.FR3V1).*
- NSW DEC. (2006). Technical Framework: Assessment and Management of Odour from Stationary Sources in NSW.
- NSW DEC. (2006). Technical Notes: Assessment and Management of Odour from Stationary Sources in NSW.
- NSW DEC. (2007). Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales.
- NSW EPA. (2017). Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales. NSW Environment Protection Authority.
- NSW Govt. (2018a). DustWatch Report (March).
- NSW Govt. (2018b). DustWatch Report (November).
- NSW OEH. (2011). Coal Mine Particulate matter Cintrol Best Practice Site-specific determination guideline.
- NSW OEH. (2011). Coal Mine Particulate Matter Control Best Practice Site-specific determination guideline.
- NSW OEH. (2018). NSW Annual Average Air Quality Statement.
- NSW RFS. (2019). Annual Report (2018/19).
- SKM. (2005). Improvement of NPI Fugitive Particulate Matter Emission Estimation Techniques.
- TAS. (2019). Air quality impact assessment 57 Tattershall Road, Kings Park.
- TTPP. (November 2021). 23-43 & 45 Tattersall Road, Kings Park Response to Submissions (ref: 19237).
- USEPA. (2011). AP-42 Compilation of Air Pollutant Emission Factors, Chapter 13.2.1 Paved Roads.

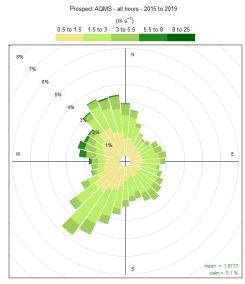
Appendix A - Meteorology

As discussed in **Section 4.3** a meteorological modelling exercise has been performed to characterise the meteorology of the Proposal site in the absence of site-specific measurements. The meteorological monitoring has been based on measurements taken at a number of surrounding automatic weather stations (AWS) operated by the Bureau of Meteorology (BoM). Meteorology is also measured by the NSW Department of Planning, Industry and Environment (DPIE) at a number of Air Quality Monitoring Station (AQMS) surrounding the Proposal site (refer **Section 4.4**).

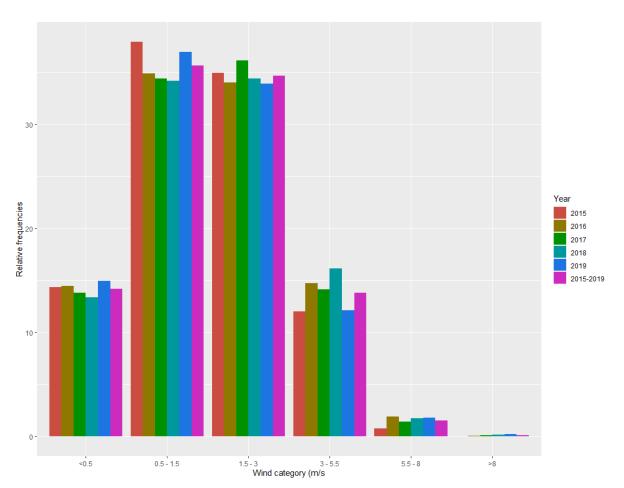
Meteorological conditions at Prospect AQMS was chosen for further investigation due to its location relative to the Proposal site. This site has been examined to determine a 'typical' or representative dataset for use in dispersion modelling. Annual wind roses for the most recent 5 years of data (2015 to 2019) are presented in **Figure 13**.

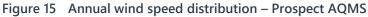
Figure 13 Annual wind roses 2015 to 2019, Prospect AQMS

Frequency of counts by wind direction (%)


The wind roses indicate that from 2015 to 2019, winds at Prospect AQMS show similar patterns across the years, with a predominant south-easterly wind direction.

The majority of wind speeds experienced at Prospect AQMS over the 5-year period, 2015 to 2019 are generally in the range <0.5 metres per second ($m \cdot s^{-1}$) to 5.5 $m \cdot s^{-1}$ with the highest wind speeds (greater than 8 $m \cdot s^{-1}$) occurring from a north westerly direction. Winds of this speed are not frequent, occurring <0.1% of the observed hours over the 5-year period, at Prospect. Calm winds (<0.5 $m \cdot s^{-1}$) occur during 0.1% of hours on average across the 5-year period.


Given the wind distributions across the years examined, data for the year 2015 has been selected as being appropriate for further assessment, as it best represents the general trend across the 5-year period studied.


Presented in **Figure 14** is the annual wind rose for the 2015 to 2019 period and **Figure 15** illustrates the corresponding wind speed distribution over the same period.

Frequency of counts by wind direction (%)

Meteorological Processing

The BoM and DPIE data adequately cover the issues of data quality assurance, however it is limited by its location compared to the Proposal site. To address these uncertainties, a multi-phased assessment of the meteorology data has been performed.

In absence of any measured onsite meteorological data, site representative meteorological data for this proposal was generated using the TAPM meteorological model in a format suitable for using in the CALPUFF dispersion model (refer **Section 5.1**).

Meteorological modelling using The Air Pollution Model (TAPM, v 4.0.5) has been performed to predict the meteorological parameters required for CALPUFF. TAPM, developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) is a prognostic model which may be used to predict three-dimensional meteorological data and air pollution concentrations.

TAPM predicts wind speed and direction, temperature, pressure, water vapour, cloud, rain water and turbulence. The program allows the user to generate synthetic observations by referencing databases (covering terrain, vegetation and soil type, sea surface temperature and synoptic scale meteorological analyses) which are subsequently used in the model input to generate site-specific hourly meteorological observations at user-defined levels within the atmosphere.

CALMET is a meteorological model that develops wind and temperature fields on a three-dimensional gridded modelling domain. Associated two-dimensional fields such as mixing height, surface characteristics, and dispersion properties are also included in the file produced by CALMET. The interpolated wind field is then modified within the model to account for the influences of topography, as well as differential heating and surface roughness associated with different land uses across the modelling domain. These modifications are applied to the winds at each grid point to develop a final wind field and thus the final wind field reflects the influences of local topography and current land uses.

The parameters used in TAPM and CALMET modelling are presented in Table 38.

TAPM v 4.0.5	
Modelling period	1 January 2019 to 31 December 2019
Centre of analysis	306 258 mE, 6 263 597 mS (UTM Coordinates)
Number of grid points	35 × 35 × 25
Number of grids (spacing)	4 (30 km, 10 km, 3 km, 1 km)
Terrain	AUSLIG 9 second DEM
Data assimilation	None
CALMET	
Modelling period	1 January 2019 to 31 December 2018
South-West corner of analysis	294,580 mE, 6,251,617 mS (UTM Coordinates)
Meteorological grid domain	0.2 km x 120 x 120
(resolution)	
Vertical resolution (cell heights)	10 (0 m, 20 m, 40 m, 80 m, 12 0m, 180 m, 300 m, 600 m, 1000 m, 1200 m,
	1800 m, 2200 m, 3000 m)
Data assimilation	No-obs approach using TAPM – 3D.DAT file

Table 38Meteorological parameters used for this study

As generally required by the NSW EPA the following provides a summary of the modelled meteorological dataset. Given the nature of the pollutant emission sources at the Proposal site, detailed discussion of the humidity, evaporation, cloud cover, katabatic air drainage and air recirulation potential of the Proposal site has not been provided. Details of the predictions of wind speed and direction, mixing height and temperature at the Proposal site are provided below.

Diurnal variations in maximum and average mixing heights predicted by CALMET at the Proposal site during 2019 period are illustrated in **Figure 16**. Also presented are predicted temperature, stability class and wind speed frequency.

As expected, an increase in mixing height during the morning is apparent, arising due to the onset of vertical mixing following sunrise. Maximum mixing heights occur in the mid to late afternoon, due to the dissipation of ground based temperature inversions and growth of the convective mixing layer.

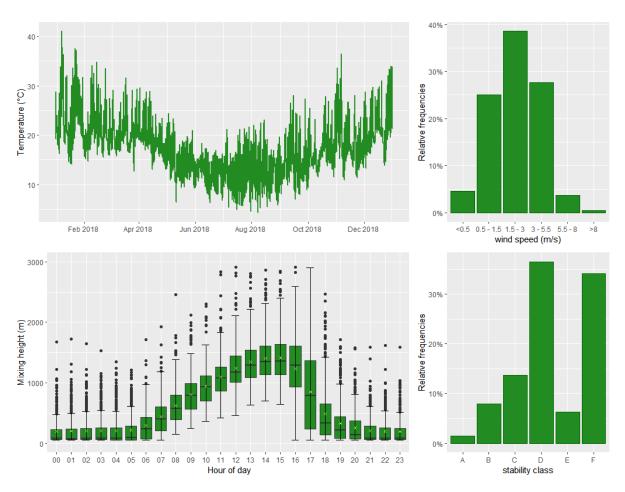
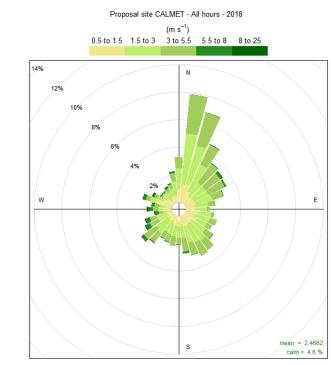



Figure 16 Predicted meteorological parameters – Proposal site 2018

The modelled wind speed and direction at the Proposal site during 2019 are presented in Figure 17.

Figure 17 Predicted wind speed and direction – Proposal site 2018

Frequency of counts by wind direction (%)

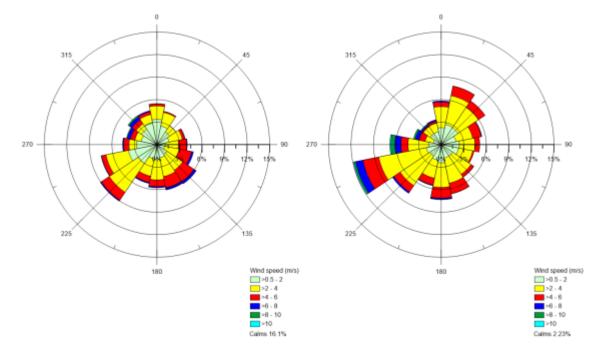

TAPM Validation

Table 39	Statistics for meteorological observations and TAPM model predictions at Horsley Park
	Equestrian Centre AWS

Parameter	Units	Source	Average	STD	Minimum	Maximum
Wind speed	m·s⁻¹	Observations	2.2	1.7	0.0	9.7
		ТАРМ	2.9	1.6	0.5	12.3
U component	m·s⁻¹	Observations	0.0	2.1	-7.0	9.0
		ТАРМ	0.3	2.4	-5.8	12.3
V component	m·s⁻¹	Observations	0.4	1.9	-6.9	7.6
		ТАРМ	0.3	2.2	-6.3	9.0
Temperature	°C	Observations	17.6	6.4	-1.3	44.1
		ТАРМ	17.1	5.6	4.4	40.4

Statistic	Ideal score	Wind	U	V	Temperatur	
		speed	component	component	e	
Root mean square error	0	1.6	1.6	1.6	2.4	
Systemic root mean square error	0	1.8	2.1	1.9	6.4	
Unsystemic root mean square error	0	1.6	2.4	2.2	5.6	
Mean error	0	0.6	0.3	-0.1	-0.5	
Absolute mean error	0	1.2	1.2	1.2	1.9	
Index of agreement	1	0.8	0.9	0.8	1.0	
Skill e	<1	1.0	1.2	1.2	0.9	
Skill v	1	1.0	1.2	1.2	0.9	
Skill r	<1	0.9	0.8	0.9	0.4	

Table 40 Correlation statistics for TAPM meteorological performance

Figure 18 Wind roses, observed (left) and TAPM (right)

Appendix B – Background Air Quality

Continuous air quality monitoring data measured at a representative location has been adopted for the purposes of this assessment. Determination of data to be used as a location representative of the Proposal site and during a representative year can be complicated by factors which include:

- the sources of air pollutant emissions around the Proposal site and representative AQMS; and
- the variability of particulate matter concentrations (often impacted by natural climate variability).

Air quality monitoring is performed by the NSW Department of Planning, Industry and Environment (DPIE) at four air quality monitoring station (AQMS) within a 17 km radius of the Proposal site. Details of the monitoring performed at these AQMS is presented in **Table 41** (below) and **Figure 7** (in **Section 4.3**).

Table 41 Details of closest AQMS surrounding the site

	Data Availability	Distance	Screening Parameters					
AQMS Location		to Site	2018	Measurements				
		(km)	Data	PM ₁₀	PM _{2.5}	TSP	NO ₂	O ₃
Prospect	2007 - 2019	4.9	\checkmark	\checkmark	\checkmark	×	✓	\checkmark
Rouse Hill	Since May 2019	7.3	\checkmark	\checkmark	\checkmark	×	✓	✓
Parramatta North	2017-2019	9.5	\checkmark	✓	\checkmark	×	✓	✓
St Marys	2002-2019	14.5	\checkmark	✓	\checkmark	×	✓	✓

Based on the sources of AQMS data available and their proximity to the Proposal site, Prospect was selected as the candidate source of AQMS data for use in this assessment.

Summary statistics are for PM_{10} and $PM_{2.5}$ data are presented in **Table 42**.

Table 42	PM ₁₀ and PM ₂	5 statistics	(Prospect 2018)
----------	--------------------------------------	--------------	-----------------

AQMS	Pros	pect
Year	20	18
Pollutant	PM ₁₀	PM _{2.5}
Averaging Period	24-hour	24-hour
Data Points (number)	363	352
Mean (µg·m⁻³)	21.9	8.5
Standard Deviation (µg·m ⁻³)	10.9	4.9
Skew ¹	2.7	3.0
Kurtosis ²	15.6	17.7
Minimum (µg·m⁻³)	5.4	1.1
Percentiles (µg·m⁻³)		
1	7.1	2.0
5	9.9	3.2
10	11.2	4.1
25	14.8	5.3
50	20.2	7.4
75	25.8	10.4
90	33.3	13.8
95	37.4	16.1
97	42.9	17.8
98	52.8	19.9
99	61.7	25.0
Maximum	113.3	47.5
Data Capture (%)	99.5	96.4

Notes: 1: Skew represents an expression of the distribution of measured values around the derived mean. Positive skew represents a distribution tending towards values higher than the mean, and negative skew represents a distribution tending towards values lower than the mean. Skew is dimensionless.

2: Kurtosis represents an expression of the value of measured values in relation to a normal distribution. Positive skew represents a more peaked distribution, and negative skew represents a distribution more flattened than a normal distribution. Kurtosis is dimensionless.

Concentrations of TSP are not measured by the NSW DPIE at any AQMS surrounding the Proposal site. An analysis of co-located measurements of TSP and PM_{10} in the Lower Hunter (1999 to 2011), Illawarra (2002 to 2004), and Sydney Metropolitan (1999 to 2004) regions is presented in **Figure 19**.

The analysis concludes that, on the basis of the measurements collected across NSW between 1999 to 2011, the derivation of a broad TSP:PM₁₀ ratio of 2.0551 : 1 (i.e. PM_{10} represents ~48 % of TSP) is appropriate to be applied to measurements in the Sydney Metro.

In the absence of any more specific information, this ratio has been adopted within this AQIA. These estimates have not been adjusted for background exceedances.

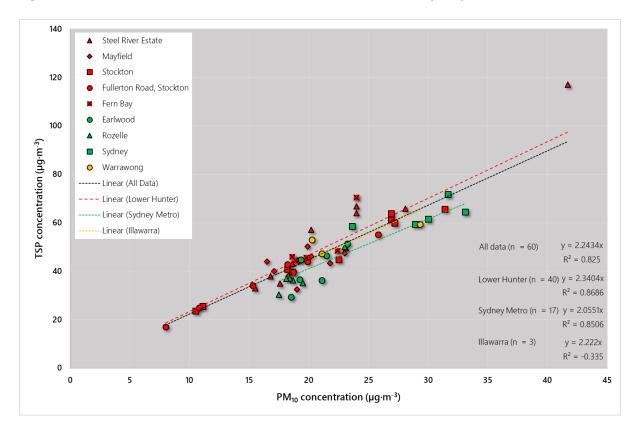


Figure 19 Co-located TSP and PM₁₀ measurements, Lower Hunter, Sydney Metro and Illawarra

Similarly, no dust deposition data is available for the area surrounding the Proposal site. The incremental impact criterion of $2 \text{ g} \cdot \text{m}^{-2} \cdot \text{month}^{-1}$ as outlined within the Approved Methods has been adopted which effectively provides a background deposition level of $2 \text{ g} \cdot \text{m}^{-2} \cdot \text{month}^{-1}$ (the total allowable deposition being $4 \text{ g} \cdot \text{m}^{-2} \cdot \text{month}^{-1}$).

A summary of background air quality data for the site for the year 2018 is presented in Table 43.

Graphs presenting the daily varying PM_{10} and $PM_{2.5}$ data recorded at Prospect in 2018 are presented in **Figure 20** and **Figure 21**, respectively.

Pollutant	TSP (μg⋅m ⁻³)	PM ₁₀ (µg⋅m⁻³)	PM _{2.5} (µg⋅m⁻³)	NO₂ (µg⋅m⁻³)	O₃ (µg⋅m⁻³)
Averaging Period	Annual	24-Hour	24-Hour	1-Hour	1-Hour
Data Points (number)	363	363	352	7583.0	7529.0
Mean	45.01	21.9	8.5	18.7	39.8
Standard Deviation	-	10.9	4.9	17.0	28.8
Skew ¹	-	2.7	3.0	1.2	1.0
Kurtosis ²	-	15.6	17.7	1.0	1.9
Minimum	45.01	5.4	1.1	-4.1	-2.1
Percentiles (µg·m⁻³)					
1	-	7.1	2.0	0.0	0.0
5	-	9.9	3.2	0.0	2.1
10	-	11.2	4.1	2.1	4.3
25	-	14.8	5.3	6.2	17.1
50	-	20.2	7.4	12.3	38.5
75	-	25.8	10.4	28.7	55.6
90	-	33.3	13.8	43.1	72.8
95	-	37.4	16.1	53.3	89.9
97	-	42.9	17.8	59.5	102.7
98	-	52.8	19.9	64.5	112.6
99	-	61.7	25.0	69.7	130.1
Maximum	45.01	113.3	47.5	104.6	224.7
Data Capture (%)	99.5	99.5	96.4	86.6	85.9

 Table 43
 Summary of measured background air quality data (Prospect 2018)

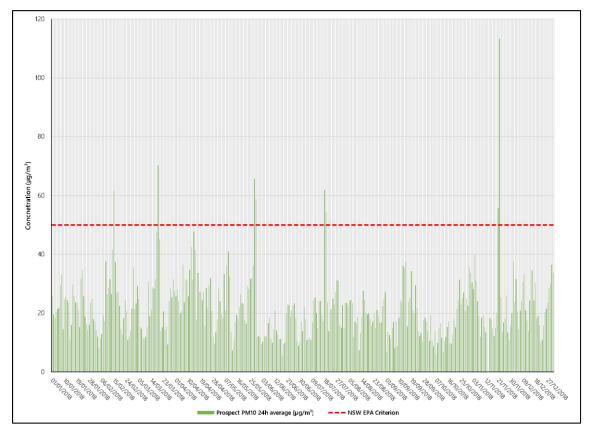
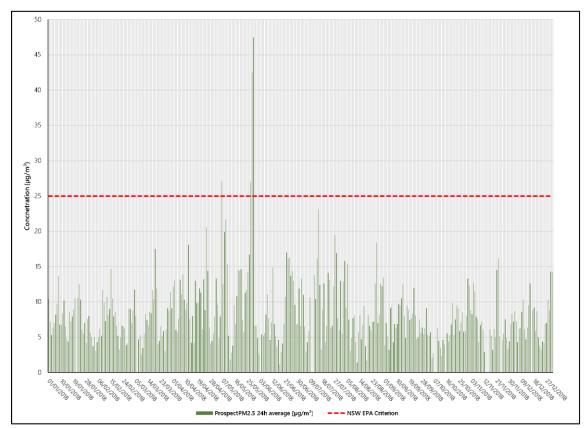



Figure 21 PM_{2.5} measurements, Prospect 2018

Appendix C – Emission Estimation

Point Source Emission Estimates

Table 44 presents a summary of the emission estimation for the Oxycutter and Hammermill (post ECS).Reference should also be made to the emission test reports presented in **Appendix F**.

Table 44 Emission estimates- point source emissions

Source	Units	Oxycutter ⁽¹⁾	Hammermill ⁽²⁾
Emission source	value	C1	WSS01
Easting	m	306 613	306 567
Northing	m	6 263 608	6 263 613
Elevation	m	44.73	44.21
Start time (Table 5)	hh:mm	09:00	06:00
End time (Table 5)	hh:mm	15:00	21:00
Stack height	m AGL	1	16.7
Diameter at point of discharge	m ID	0.05	0.440
Emission temperature	°C	31	39
Emission velocity (discharge)	m·s⁻¹	14.0	50.0
Gas flow	Nm ³ ·s ⁻¹	0.1	6.6
ER (odour)	OU·m ³ ·s ⁻¹	2.50E+02	1.216E+04
ER (TSP)	g·s ⁻¹	2.17E-02	7.50E-02
ER (PM ₁₀)	g·s ⁻¹	-	5.33E-02
ER (PM _{2.5})	g·s ⁻¹	-	3.33E-02
ER (NO _x)	g·s ⁻¹	5.50E-02	3.33E-02
ER (Ag)	g·s ⁻¹	1.500E-07	-
ER (AI)	g·s ⁻¹	2.833E-05	-
ER (As)	g·s ⁻¹	3.333E-06	1.667E-05
ER (Ba)	g·s ⁻¹	5.000E-05	-
ER (Be)	g·s ⁻¹	1.333E-07	6.667E-06
ER (Ca)	g·s ⁻¹	5.000E-05	-
ER (Cd)	g·s ⁻¹	1.167E-07	5.000E-06
ER (Co)	g·s ⁻¹	3.333E-07	6.667E-06
ER (CO II)	g·s ⁻¹	6.333E-06	-
ER (Cr)	g·s ⁻¹	1.267E-06	1.833E-05
ER (CrVI)	g·s ⁻¹	-	3.333E-05
ER (Cu)	g·s ⁻¹	5.167E-06	2.000E-05
ER (Fe)	g·s⁻¹	5.500E-03	2.333E-04
ER (FE II,III)	g·s⁻¹	2.333E-02	-
ER (Hg)	g·s⁻¹	8.333E-08	2.167E-05
ER (K)	g·s⁻¹	3.333E-05	-
ER (Li)	g·s⁻¹	1.500E-07	-

Source	Units	Oxycutter ⁽¹⁾	Hammermill ⁽²⁾
ER (Mg)	g·s⁻¹	3.333E-05	-
ER (Mg IV)	g·s⁻¹	1.467E-04	-
ER (Mn)	g·s⁻¹	9.167E-05	2.000E-05
ER (Mo)	g·s⁻¹	8.333E-07	-
ER (Na)	g·s⁻¹	3.333E-05	-
ER (Ni)	g·s⁻¹	1.567E-06	1.667E-05
ER (P)	g·s⁻¹	1.517E-05	-
ER (Pb)	g·s⁻¹	3.333E-06	2.000E-05
ER (Sb)	g·s⁻¹	1.167E-06	5.000E-05
ER (Se)	g·s⁻¹	1.167E-06	5.000E-05
ER (Sn)	g·s⁻¹	5.333E-07	1.667E-05
ER (Ti)	g·s⁻¹	-	1.267E-05
ER (Th)	g·s⁻¹	5.000E-07	-
ER (V)	g·s ⁻¹	-	3.333E-05
ER (W)	g·s ⁻¹	-	1.167E-05
ER (Zn)	g·s ⁻¹	1.833E-04	1.500E-03

Note: (1) Source data derived from Ektimo Emission Test Report (Ektimo, Sep 2019) as appended to (ERM, Sep 2019). The tests were performed in duplicate, and the maximum value has been used to quantify the emission rates. See Appendix F.

(2) Source data derived from Ektimo Emission Test Reports (Ektimo, May 2017), (Ektimo, Sep 2018), (Ektimo, Oct 2019), (Ektimo, Sep 2020). The maximum measured emission rate from <u>all</u> test reports has been adopted in this supplementary AQIA. Emission conditions, including flow rates, temperatures etc., were derived from (Ektimo, Sep 2020). See **Appendix F** for the complete monitoring reports.

To provide additional clarification on the adoption of the maximum measured emission rates for the Hammermill, a summary of those emission rates derived from the NATA accredited emissions monitoring reports is presented below.

TT									
Parameter	Units	18-Jun-14	26-May-17	27-Sep-18	11-Oct-19	4-Sep-20	26-May-21	Adopted	% PM2.5
		N92746	R003396	R006468-1	R008184	R009653	R010794		
Flow	Nm ³ .s ⁻¹ , STP		8.0	6.1	6.2	6.7	6.6		
Flow	m ³ .s ⁻¹ actual		9.2	7	7.1	7.6	7.6		
Temperature	°C		28	31	36	27	39	39	
Measured velocity	m.s ⁻¹		25	25	26	27	27		
Diameter at sampling plane	m ID		0.680	0.595	0.595	0.595	0.595		
Diameter at discharge	m ID			0.440	0.440	0.440	0.440		
Velocity at sampling plane	m.s ⁻¹ (A)		25	25	26	27	27		
Velocity at discharge	m.s ⁻¹ (A)			46	47	50	50	50	
ER (TSP)	g.s ⁻¹		7.500E-02	4.167E-02	2.333E-02	1.667E-02	4.833E-02	7.500E-02	
ER (PM ₁₀)	g.s ⁻¹		5.333E-02					5.333E-02	
ER (PM _{2.5})	g.s ⁻¹		3.333E-02					3.333E-02	
ER (NO _x)	g.s ⁻¹		3.333E-02	1.667E-02				3.333E-02	
ER (H ₂ S)	g.s ⁻¹		5.000E-05	5.000E-05				5.000E-05	
ER (HF)	g.s ⁻¹			8.333E-05				8.333E-05	
ER (HCI)	g.s ⁻¹			8.333E-05				8.333E-05	
ER (Cl ₂)	g.s ⁻¹			8.333E-05				8.333E-05	
ER (odour)	OU.m ³ .s ⁻¹	1.216E+04						1.216E+04	
ER (As)	g.s ⁻¹		1.167E-05	8.333E-06	1.667E-05	1.667E-05	1.667E-05	1.667E-05	0.050%
ER (Be)	g.s ⁻¹		6.667E-06			5.000E-06	6.667E-06	6.667E-06	0.020%
ER (Cd)	g.s ⁻¹		3.333E-06	2.833E-06	5.000E-06	5.000E-06	5.000E-06	5.000E-06	0.015%
ER (Co)	g.s ⁻¹		3.333E-06	3.333E-06	6.667E-06	6.667E-06	6.667E-06	6.667E-06	0.020%
ER (Cr)	g.s ⁻¹		4.833E-06	4.167E-06	8.333E-06	1.833E-05	1.300E-05	1.833E-05	0.055%
ER (Cr _{vi})	g.s ⁻¹		3.333E-05					3.333E-05	0.100%
ER (Cu)	g.s⁻¹		2.000E-05					2.000E-05	0.060%

20.1074.FR4V1	Appendix C – Emission Estimation	Page 115
Final	Kings Park Metal Resource Facility - Revised Air Quality Impact Assessment	

Parameter	Units	18-Jun-14	26-May-17	27-Sep-18	11-Oct-19	4-Sep-20	26-May-21	Adopted	% PM2.5
		N92746	R003396	R006468-1	R008184	R009653	R010794		
ER (Fe)	g.s ⁻¹		2.333E-04					2.333E-04	0.700%
ER (Hg)	g.s ⁻¹		5.500E-06	2.167E-05		6.667E-06	1.667E-05	2.167E-05	0.065%
ER (Mn)	g.s ⁻¹		8.333E-06	1.000E-05	1.667E-05	2.000E-05	4.167E-05	4.167E-05	0.125%
ER (Ni)	g.s ⁻¹		6.667E-06	5.000E-06	1.667E-05	1.167E-05	3.333E-05	3.333E-05	0.100%
ER (Pb)	g.s ⁻¹		8.667E-06	1.083E-05	2.000E-05	2.000E-05	4.667E-05	4.667E-05	0.140%
ER (Sb)	g.s ⁻¹		3.333E-05	1.667E-05	5.000E-05	5.000E-05	1.333E-04	1.333E-04	0.400%
ER (Se)	g.s ⁻¹		3.333E-05	1.667E-05	5.000E-05	5.000E-05		5.000E-05	0.150%
ER (Sn)	g.s ⁻¹		1.167E-05	8.333E-06	1.667E-05	1.667E-05	1.667E-05	1.667E-05	0.050%
ER (Ti)	g.s ⁻¹		1.267E-05					1.267E-05	0.038%
ER (V)	g.s ⁻¹		6.667E-06	5.000E-06	1.333E-05	3.333E-05	1.333E-05	3.333E-05	0.100%
ER (W)	g.s ⁻¹		1.167E-05					1.167E-05	0.035%

Final

Volume Source Emissions

Material Handling

Emissions for material handling (MHn), transfer points (TPn) and conveyors (CVn) have been estimated using the US EPA batch drop equations. The assumed variables used have been highlighted for clarity.

Sources modelled as wind speed dependent volume sources during hours of operation.

The activity rates relevant to each material handling are presented in **Table 45** and the corresponding emission estimates are presented in **Table 46**.

$$ER = EF \times A \times (1 - CF) \times \frac{1000}{3600}$$

$$EF = k \times 0.0016 \times \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$

where:

- *ER* = emission rate ($g \cdot s^{-1}$)
- *EF* = emission factor (kg·t⁻¹)
- $A = \text{throughput (t-hr^{-1})}$
- CF = control factor
- *k* =particle size multiplier (TSP: 0.74; PM₁₀: 0.35; PM_{2.5}: 0.053)
- U = hourly wind speed (m·s⁻¹) (ave 2.48 m·s⁻¹)
- M = moisture content (assumed 2 %)

Wind Erosion Sources

Emissions for wind erosion sources (i.e. material stockpiles) (WE*n*) have been modelled as wind speed varying volume sources using the NPI Wind Erosion equation.

The activity rates relevant to each wind erosion source are presented in **Table 47** and the corresponding emission estimates are presented in. **Table 48**.

 $ER_{TSP,hr} = WF_{hr} \times ER_{TSP}$ $ER_{PM10,hr} = WF_{hr} \times ER_{PM10}$ $ER_{PM2.5,hr} = WF_{hr} \times ER_{PM2.5}$

$$WF_{hr} = \begin{cases} 0 \quad U \le 3.1\\ \frac{(U^* - U_t^*)^3}{\sum_{hr=1}^{8760} (U^*_{hr} - U_t^*)^3} \quad U > 3.1 \end{cases}$$

where:

ER = emission rate $(g \cdot s^{-1})$

WF = hourly weighting factor

U = hourly wind speed (m·s⁻¹) (ave 2.48 m·s⁻¹)

- U^* = threshold friction velocity (assumed 0.11 U)
- U^*_t = threshold friction vel. (m·s⁻¹) for 3.1 m·s⁻¹

Paved Roads at Industrial Sites

Wheel generated dust emissions have been modelled for all site vehicles using the US EPA equation.

The activity rates relevant to each road source are presented in **Table 49** and the corresponding emission estimates are presented in **Table 50**.

$$where:$$

$$E = k(sL)^{0.91} \times (W)^{1.02}$$

$$E = particulate emission factor$$

$$k = particle size multiplier$$

$$sL = road silt loading (9.7 g \cdot m^{-2})$$

$$W = average weight (15 t) of the vehicles$$

Controls

The control factor (CF) assumed for material handling points MH1-MH14, truck dumping points TRKD01 and TRK02 and transfer points TP 01-08 have been assumed to be controlled by 70 % through water sprays.

Conveyor points CV1-CV33 are considered to be controlled by water sprays (50 %) and by enclosure (70 %) (50 % & 70% = 85 %)

An emission reduction of 30 % has been applied for the watering of paved roads as per (USEPA, 2011) which indicates that an hourly water flushing at a rate of 0.48 gal·yd⁻² (equivalent to 2.2 L·m⁻²·hr⁻¹) could result in emissions reductions of between 30 % and 70 %. For the purposes of this assessment, the lower (conservative) reduction factor of 30 % has been adopted.

Table 45 Emission estimate – volume source emissions – peak activity rates

Source	Co-or	dinates	Description	Source	Emissions	Tir	ne	Source	Peak	Activity Rat	tes
ID	mE	mS		Туре		Start	Stop	Group	t.day ⁻¹	hr.day ⁻¹	t.hr ⁻¹
MH01	306607	6263635	Non-ferrous metal transferred to the non-ferrous processing building	volume	Constant	6am	9pm	TRANS	150	15	10.0
MH02	306519	6263572	Transfer of raw material directly to the inspected stockpile of scrap metal (bypass pre-shredder)	volume	Constant	6am	9pm	TRANS	1500	15	100.0
MH03	306503	6263664	Transfer of raw material directly to the inspected stockpile of scrap metal (bypass pre-shredder)	volume	Constant	6am	9pm	TRANS	1500	15	100.0
MH04	306509	6263576	Transfer of raw material from stockpile to pre-shredder	volume	Constant	6am	9pm	TRANS	600	15	40.0
MH05	306522	6263569	Transfer of raw material from stockpile to pre-shredder	volume	Constant	6am	9pm	TRANS	600	15	40.0
MH06	306523	6263581	Transfer of pre-shredder output to a truck to inspected stockpile of scrap metal close to the conveyor into the hammer mill	volume	Constant	6am	9pm	TRANS	600	15	40.0
MH07	306503	6263664	Transfer of pre-shredder output to a truck to inspected stockpile of ap metal close to the conveyor into the hammer mill	volume	Constant	6am	9pm	TRANS	600	15	40.0
MH08	306503	6263664	Transfer of the inspected stockpile of scrap metal close to the conveyor onto the hammer mill conveyor	volume	Constant	6am	9pm	TRANS	2100	15	140.0
MH09	306483	6263652	Transfer of the inspected stockpile of scrap metal close to the conveyor onto the hammer mill conveyor	volume	Constant	6am	9pm	TRANS	2100	15	140.0
MH10	306503	6263664	Ferrous metals are collected from the stockpile by FEL and loaded into trucks	volume	Constant	6am	9pm	TRANS	1050	15	70.0
MH11	306533	6263680	Ferrous metals are collected from the stockpile by FEL and loaded into trucks	volume	Constant	6am	9pm	TRANS	1050	15	70.0
MH12	306633	6263573	Heavy ferrous pick up	volume	Constant	6am	9pm	TRANS	384	15	25.6
MH13	306561	6263643	Non ferrous material collected and loaded into trucks	volume	Constant	6am	9pm	TRANS	150	15	10.0

Source	Co-oro	dinates	Description	Source	Emissions	Tir	ne	Source	Peak	Activity Ra	tes
ID	mE	mS		Туре		Start	Stop	Group	t.day⁻¹	hr.day ⁻¹	t.hr ⁻¹
MH14	306603	6263616	Heavy ferrous drop point	volume	Constant	6am	9pm	TRANS	384	15	25.6
TP01	306525	6263577	Pre-shredder drop point	volume	Constant	6am	9pm	TRANS	600	15	40.0
TP02	306517	6263691	The cleaned fragmented material (on a conveyor C1) passes under a drum magnet, where ferrous metals are dropped onto the picking conveyor (C2)	volume	Constant	6am	9pm	CONV	1610	15	107.3
TP03	306529	6263701	Ferrous metals transferred from C2, where operators remove remaining non-ferrous materials to C3	volume	Constant	6am	9pm	CONV	1610	15	107.3
TP04	306541	6263711	Ferrous metals are conveyed to the product stockpile	volume	Constant	6am	9pm	CONV	1550	15	103.4
TP05	306512	6263687	Non-ferrous materials drop beneath the drum magnet to a conveyor (C4) that runs perpendicular to the ferrous product	volume	Constant	6am	9pm	CONV	79	15	5.2
TP06	306494	6263732	Transfer point at conveyor bend 1	volume	Constant	6am	9pm	CONV	471	15	31.4
TP07	306563	6263721	Transfer point at conveyor bend 2	volume	Constant	6am	9pm	CONV	471	15	31.4
TP08	306551	6263643	Transfer point at conveyor bend 3	volume	Constant	6am	9pm	CONV	471	15	31.4
CV01	306484	6263660	Material from the stockpiles is conveyed into the hammer mill	volume	Constant	6am	9pm	CONV	1800	15	120.0
CV02	306486	6263672	Material from the stockpiles is conveyed into the hammer mill	volume	Constant	6am	9pm	CONV	1800	15	120.0
CV03	306489	6263687	Material from the stockpiles is conveyed into the hammer mill	volume	Constant	6am	9pm	CONV	1800	15	120.0
CV04	306489	6263694	Material from the hammer mill is carried upward by an incline conveyor and dropped into a chute	volume	Constant	6am	9pm	CONV	1800	15	120.0
CV05	306513	6263691	The cleaned fragmented material from the cascade chute passes under the drum magnet and ferrous metals are removed	volume	Constant	6am	9pm	CONV	1354	15	90.3
CV06	306520	6263693	Operators remove remaining non ferrous materials	volume	Constant	6am	9pm	TRANS	1354	15	90.3
CV07	306527	6263699	Operators remove remaining non ferrous materials	volume	Constant	6am	9pm	TRANS	1354	15	90.3

Source	Co-or	dinates	Description	Source	Emissions	Tir	ne	Source	Peak	Activity Ra	tes
ID	mE	mS		Туре		Start	Stop	Group	t.day ⁻¹	hr.day ⁻¹	t.hr ⁻¹
CV08	306534	6263704	Ferrous materials are taken and dropped onto a conveyor, which are conveyed to the product stockpile	volume	Constant	6am	9pm	CONV	1354	15	90.3
CV09	306538	6263708	Ferrous materials are taken and dropped onto a conveyor, which are conveyed to the product stockpile	volume	Constant	6am	9pm	CONV	1354	15	90.3
CV10	306514	6263695	Non-ferrous materials are dropped onto a conveyor, which transports material to the conveyor before the non-ferrous processing building	volume	Constant	6am	9pm	CONV	69	15	4.6
CV11	306515	6263702	Non-ferrous materials are dropped onto a conveyor, which transports material to the conveyor before the non-ferrous processing building	volume	Constant	6am	9pm	CONV	69	15	4.6
CV12	306516	6263711	Conveys non-ferrous material into the non-ferrous recovery plant (3/3)	volume	Constant	6am	9pm	CONV	69	15	4.6
CV13	306491	6263710	Floc product is transferred onto conveyor	volume	Constant	6am	9pm	CONV	377	15	25.1
CV14	306492	6263718	Floc product is transferred onto conveyor	volume	Constant	6am	9pm	CONV	377	15	25.1
CV15	306493	6263727	Floc product is transferred onto conveyor	volume	Constant	6am	9pm	CONV	377	15	25.1
CV16	306503	6263732	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV17	306512	6263731	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV18	306522	6263729	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV19	306533	6263727	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV20	306542	6263726	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4

Source	Co-or	dinates	Description	Source	Emissions	Tir	ne	Source	Peak	Activity Rat	es
ID	mE	mS		Туре		Start	Stop	Group	t.day ⁻¹	hr.day ⁻¹	t.hr ⁻¹
CV21	306551	6263725	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV22	306558	6263724	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV23	306558	6263713	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV24	306556	6263703	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV25	306555	6263693	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV26	306553	6263683	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV27	306552	6263674	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV28	306551	6263663	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV29	306550	6263653	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV30	306551	6263643	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV31	306557	6263635	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV32	306562	6263625	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4
CV33	306567	6263617	Conveyor transports floc product to the post shredder processing building	volume	Constant	6am	9pm	CONV	411	15	27.4

Source	Co-ordinates		Description		Emissions	Tir	ne	Source	Peak	Activity Rat	tes
ID	mE	mS		Туре		Start	Stop	Group	t.day ⁻¹	hr.day⁻¹	t.hr ⁻¹
TRKD0	306502	6263580	Truck dumping at raw material delivery	volume	Constant	6am	9pm	TRANS	2634	15	175.6
1											
TRKD0	306503	6263664	Truck carries pre-shredder output to the inspected stockpile	volume	Constant	6am	9pm	TRANS	600	15	40
2			of scrap metal close to the conveyor into the hammer mill								

Note: source group please refer to Appendix E

Final

Table 46 Emission estimate – volume source emissions – peak emission rates

The variables used in these estimations are presented earlier in Appendix C.

Source ID		Emission Factor		Emission	Rate (Uncontroll	ed) (ERu)	Emission Rate (Controlled) (ERc)					
		(AP42 batch drop)									
	EF TSP	EF PM ₁₀	EF PM _{2.5}	ERu TSP	ERu PM ₁₀	ERu PM _{2.5}	CF	ERc TSP	ERc PM ₁₀	ERc PM _{2.5}		
	kg.t⁻¹	kg.t⁻¹	kg.t ⁻¹	g.s⁻¹	g.s⁻¹	g.s⁻¹	%	g.s ⁻¹	g.s⁻¹	g.s⁻¹		
MH01	0.0014	0.0007	0.0001	3.843E-03	1.818E-03	2.753E-04	70	1.153E-03	5.453E-04	8.258E-05		
MH02	0.0014	0.0007	0.0001	3.843E-02	1.818E-02	2.753E-03	70	1.153E-02	5.453E-03	8.258E-04		
MH03	0.0014	0.0007	0.0001	3.843E-02	1.818E-02	2.753E-03	70	1.153E-02	5.453E-03	8.258E-04		
MH04	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	70	4.612E-03	2.181E-03	3.303E-04		
MH05	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	70	4.612E-03	2.181E-03	3.303E-04		
MH06	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	70	4.612E-03	2.181E-03	3.303E-04		
MH07	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	70	4.612E-03	2.181E-03	3.303E-04		
MH08	0.0014	0.0007	0.0001	5.380E-02	2.545E-02	3.854E-03	70	1.614E-02	7.634E-03	1.156E-03		
MH09	0.0014	0.0007	0.0001	5.380E-02	2.545E-02	3.854E-03	70	1.614E-02	7.634E-03	1.156E-03		
MH10	0.0014	0.0007	0.0001	2.690E-02	1.272E-02	1.927E-03	70	8.071E-03	3.817E-03	5.780E-04		
MH11	0.0014	0.0007	0.0001	2.690E-02	1.272E-02	1.927E-03	70	8.071E-03	3.817E-03	5.780E-04		
MH12	0.0014	0.0007	0.0001	9.838E-03	4.653E-03	7.046E-04	70	2.952E-03	1.396E-03	2.114E-04		
MH13	0.0014	0.0007	0.0001	3.843E-03	1.818E-03	2.753E-04	70	1.153E-03	5.453E-04	8.258E-05		
MH14	0.0014	0.0007	0.0001	9.838E-03	4.653E-03	7.046E-04	70	2.952E-03	1.396E-03	2.114E-04		
TP01	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	0	1.537E-02	7.271E-03	1.101E-03		
TP02	0.0014	0.0007	0.0001	4.125E-02	1.951E-02	2.954E-03	0	4.125E-02	1.951E-02	2.954E-03		
TP03	0.0014	0.0007	0.0001	4.125E-02	1.951E-02	2.954E-03	0	4.125E-02	1.951E-02	2.954E-03		
TP04	0.0014	0.0007	0.0001	3.972E-02	1.879E-02	2.845E-03	0	3.972E-02	1.879E-02	2.845E-03		
TP05	0.0014	0.0007	0.0001	2.011E-03	9.513E-04	1.441E-04	0	2.011E-03	9.513E-04	1.441E-04		
TP06	0.0014	0.0007	0.0001	1.207E-02	5.708E-03	8.643E-04	0	1.207E-02	5.708E-03	8.643E-04		
TP07	0.0014	0.0007	0.0001	1.207E-02	5.708E-03	8.643E-04	0	1.207E-02	5.708E-03	8.643E-04		
TP08	0.0014	0.0007	0.0001	1.207E-02	5.708E-03	8.643E-04	0	1.207E-02	5.708E-03	8.643E-04		
CV01	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	85	1.729E-03	8.180E-04	1.239E-04		
CV02	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	85	1.729E-03	8.180E-04	1.239E-04		

20.1	074.	FR4V
------	------	------

Appendix C – Emission Estimation Kings Park Metal Resource Facility - Revised Air Quality Impact Assessment

Source ID	.(Emission Factor (AP42 batch drop)		Emission	Rate (Uncontroll	ed) (ERu)		Emission Rate (Controlled) (ERc)	
	EF TSP	EF PM ₁₀	EF PM _{2.5}	ERu TSP	ERu PM ₁₀	ERu PM _{2.5}	CF	ERc TSP	ERc PM ₁₀	ERc PM _{2.5}
	kg.t⁻¹	kg.t⁻¹	kg.t⁻¹	g.s ⁻¹	g.s ⁻¹	g.s ⁻¹	%	g.s⁻¹	g.s ⁻¹	g.s ⁻¹
CV03	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	85	1.729E-03	8.180E-04	1.239E-04
CV04	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	85	1.729E-03	8.180E-04	1.239E-04
CV05	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	85	1.041E-03	4.923E-04	7.455E-05
CV06	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	85	1.041E-03	4.923E-04	7.455E-05
CV07	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	85	1.041E-03	4.923E-04	7.455E-05
CV08	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	85	1.041E-03	4.923E-04	7.455E-05
CV09	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	85	1.041E-03	4.923E-04	7.455E-05
CV10	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV11	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV12	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV13	0.0014	0.0007	0.0001	3.221E-03	1.523E-03	2.307E-04	85	4.831E-04	2.285E-04	3.460E-05
CV14	0.0014	0.0007	0.0001	3.221E-03	1.523E-03	2.307E-04	85	4.831E-04	2.285E-04	3.460E-05
CV15	0.0014	0.0007	0.0001	3.221E-03	1.523E-03	2.307E-04	85	4.831E-04	2.285E-04	3.460E-05
CV16	0.0014	0.0007	0.0001	1.054E-02	4.986E-03	7.550E-04	85	1.581E-03	7.479E-04	1.132E-04
CV17	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV18	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV19	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV20	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV21	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV22	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV23	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV24	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV25	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV26	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV27	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV28	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06
CV29	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06

20.1074.FR4V1	Appendix C – Emission Estimation	Page 125
Final	Kings Park Metal Resource Facility - Revised Air Quality Impact Assessment	

Source ID	Emission Factor (AP42 batch drop)			Emissior	Emission Rate (Uncontrolled) (ERu)			Emission Rate (Controlled) (ERc)				
	EF TSP EF PM ₁₀ EF PM _{2.5}		ERu TSP	ERu PM ₁₀	ERu PM _{2.5}	CF	ERc TSP	ERc PM ₁₀	ERc PM _{2.5}			
	kg.t ⁻¹	kg.t ⁻¹	kg.t ⁻¹	g.s⁻¹	g.s⁻¹	g.s⁻¹	%	g.s ⁻¹	g.s ⁻¹	g.s⁻¹		
CV30	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06		
CV31	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06		
CV32	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06		
CV33	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	85	8.784E-05	4.155E-05	6.291E-06		
TRKD01	0.0014	0.0007	0.0001	6.749E-02	3.192E-02	4.833E-03	70	2.025E-02	9.576E-03	1.450E-03		
TRKD02	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	70	4.612E-03	2.181E-03	3.303E-04		

Final

Source ID	Co-or	dinates	Description	Emissions	Time		Source Group	Peak Activity Rates	
	mE	mS			Start	Stop		Area	hr.day ⁻¹
WE01	306,494	6,263,578	Scrap stockpile	Hourly varying	12am	12am	WE	653 sqm	24
WE02	306,507	6,263,543	Scrap stockpile	Hourly varying	12am	12am	WE	428 sqm	24
WE03	306,631	6,263,571	Post pre-shredder stockpile 1- at pre-shredder	Hourly varying	12am	12am	WE	2100 sqm	24
WE04	306,503	6,263,664	Post pre-shredder stockpile 2- at hammer mill	Hourly varying	12am	12am	WE	2562 sqm	24
WE05	306,542	6,263,709	Ferrous product stockpile.	Hourly varying	12am	12am	WE	303 sqm	24
WE06	306,544	6,263,695	Ferrous product stockpile.	Hourly varying	12am	12am	WE	303 sqm	24

Table 47 Emission estimate – open area wind erosion sources – peak activity rates

Table 48 Emission estimate – open area wind erosion sources – peak emission rates

The variables used in these estimations are presented earlier in **Appendix C**.

Source ID		Emissio	n Factor kg·ł	na⁻¹·yr⁻¹	Emi	ssion Rate ko	g∙yr⁻¹
		TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
WE01	NPI Mining	925.8	462.9	370.3	60.5	30.2	24.2
WE02	NPI Mining	925.8	462.9	370.3	39.6	19.8	15.8
WE03	NPI Mining	925.8	462.9	370.3	194.4	97.2	77.8
WE04	NPI Mining	925.8	462.9	370.3	237.2	118.6	94.9
WE05	NPI Mining	925.8	462.9	370.3	28.1	14.0	11.2
WE06 NPI Mining		925.8 462.9 370.3		370.3	28.1	14.0	11.2
				Total	588	294	235

Table 49 Emission estimate – wheel generated dust – peak activity rates

Source	Gate in	Destination	Gate out	Dist. (m)	Veh∙day⁻¹	VKT·day⁻¹	W (ave t)	sL	Sources
ROAD 1	Western	Shred/Floc	Eastern	457	92	42.044	15	9.7	16
ROAD 2	Central	Non Ferrous	Eastern	336	103	34.608	15	9.7	16
ROAD 3	Western	Pre Shred	Eastern	604	24	14.496	15	9.7	16
ROAD 4	Western	Shear & Oxy	Eastern	564	23	12.972	15	9.7	16

Table 50 Emission estimate – wheel generated dust – peak emission rates

The variables used in these estimations are presented earlier in Appendix C.

Source	EF kg·VKT ⁻¹)			l	ERu (kg·day⁻¹)		CF ERc (kg·day ⁻¹)			ERc (g⋅s⁻¹)			
	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	%	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
ROAD 1	0.4044	0.0776	0.0188	17.001	3.263	0.790	30	11.901	2.875	0.767	0.2204	0.0532	0.0142
ROAD 2	0.4044	0.0776	0.0188	13.994	2.686	0.650	30	9.796	2.423	0.634	0.1814	0.0449	0.0117
ROAD 3	0.4044	0.0776	0.0188	5.862	1.125	0.272	30	4.103	1.079	0.269	0.0760	0.0200	0.0050
ROAD 4	0.4044	0.0776	0.0188	5.245	1.007	0.244	30	3.672	0.970	0.241	0.0680	0.0180	0.0045

Final

The following tables present annual emission estimates, as discussed in Section 5.2.6.

Estimation	Реа	ak ^(B)		Турі	cal ^(C)	
Conditions	Uncon	Con ^(A)	Uncon	Con	Uncon	Con
BPM Source Group ^(D)	kg∙day⁻¹	kg∙day⁻¹	kg∙day⁻¹	kg∙day⁻¹	kg·yr⁻¹	kg·yr⁻¹
Haulage (HAUL)	42.1	29.5	31.8	22.2	9 527.1	6 669.0
Conveying (CONV)	36.3	5.5	27.4	4.1	8 223.6	1 233.5
Handling/transfer (TRANS)	26.7	8.0	20.2	6.0	6 045.5	1 813.7
Hammermill ^(E) (HAMMER)	4.1	4.1	4.1	4.1	1215.0	1 215.0
Wind erosion ^{(E)(F)} (WE)	1.6	1.6	1.6	1.6	587.8	587.8
Oxycutting ^{(E)(F)} (OXY)	0.3	0.3	0.3	0.3	88.6	88.6
Total	111	49	85	38	25 688	11 608

Table 51 Annual emission estimate by activity and site total - TSP

Notes: (A) Controlled as per the control factors (CF) presented in Appendix C, ie. 30 % for road haulage, 85 % for conveyors and 70 % for handling / transfers

(B) Based on peak daily activity rates (see Section 2.2.2 and Section 5.2)

(C) Based on typical emission daily activity rates (see Section 2.2.2) (daily peak \times 0.753), extrapolated to annual estimates through multiplication by 300 operational days per year, except wind erosion which is 365 days per year.

(D) See Appendix E

(E) Assumed to be constant with the peak activity rates

(F) Emission rates determined from monitoring data, and therefore represents actual conditions

Table 52 Annual emission estimate by activity and site total – PM₁₀

Estimation	Pea	ak ^(B)		Турі	cal ^(C)	
Conditions	Uncon	Con ^(A)	Uncon	Con	Uncon	Con
BPM Source Group ^(D)	kg∙day⁻¹	kg∙day⁻¹	kg∙day⁻¹	kg∙day⁻¹	kg·yr⁻¹	kg∙yr⁻¹
Haulage (HAUL)	8.1	5.7	6.1	4.3	1828.7	1280.1
Conveying (CONV)	17.2	2.6	13.0	1.9	3889.5	583.4
Handling/transfer (TRANS)	12.6	3.8	9.5	2.9	2859.4	857.8
Hammermill ^(E) (HAMMER)	2.9	2.9	2.9	2.9	864.0	864.0
Wind erosion ^{(E)(F)} (WE)	0.8	0.8	0.8	0.8	293.9	293.9
Oxycutting ^{(E)(F)} (OXY)	0.0	0.0	0.0	0.0	0.0	0.0
Total	42	16	32	13	9 736	3 879

Notes: (A) Controlled as per the control factors (CF) presented in Appendix C, ie. 30 % for road haulage, 85 % for conveyors and 70 % for handling / transfers

(B) Based on peak daily activity rates (see Section 2.2.2 and Section 5.2)

(C) Based on typical emission daily activity rates (see **Section 2.2.2**) (daily peak × 0.753), extrapolated to annual estimates through multiplication by 300 operational days per year, except wind erosion which is 365 days per year.

(D) See Appendix E

(E) Assumed to be constant with the peak activity rates

(F) Emission rates determined from monitoring data, and therefore represents actual conditions

Estimation	Реа	Peak ^(B) Typical ^(C)				
Conditions	Uncon	Con ^(A)	Uncon	Con	Uncon	Con
BPM Source Group ^(D)	kg∙day⁻¹	kg∙day⁻¹	kg∙day⁻¹	kg∙day⁻¹	kg·yr⁻¹	kg·yr⁻¹
Haulage (HAUL)	2.0	1.4	1.5	1.0	442.4	309.7
Conveying (CONV)	2.6	0.4	2.0	0.3	589.0	88.3
Handling/transfer (TRANS)	1.9	0.6	1.4	0.4	433.0	129.9
Hammermill ^(E) (HAMMER)	1.8	1.8	1.8	1.8	540.0	540.0
Wind erosion ^{(E)(F)} (WE)	0.6	0.6	0.6	0.6	235.1	235.1
Oxycutting ^{(E)(F)} (OXY)	0.0	0.0	0.0	0.0	0.0	0.0
Total	9	5	7	4	2 240	1 303

Table 53 Annual emission estimate by activity and site total – PM_{2.5}

Notes: (A) Controlled as per the control factors (CF) presented in Appendix C, ie. 30 % for road haulage, 85 % for conveyors and 70 % for handling / transfers

(B) Based on peak daily activity rates (see Section 2.2.2 and Section 5.2)

(C) Based on typical emission daily activity rates (see Section 2.2.2) (daily peak \times 0.753), extrapolated to annual estimates through multiplication by 300 operational days per year, except wind erosion which is 365 days per year.

(D) See Appendix E

(E) Assumed to be constant with the peak activity rates

(F) Emission rates determined from monitoring data, and therefore represents actual conditions

Appendix D – Schedule of Results

The following section presents the results of the dispersion modelling exercise performed with the emission inventory presented in **Appendix C**.

This section presents the results of the dispersion modelling assessment and uses the following terminology:

- Incremental impact relates to the concentrations predicted as a result of the construction and operation of the Proposal in isolation.
- Cumulative impact relates to the incremental concentrations predicted as a result of the construction and operation of the Proposal <u>PLUS</u> the background air quality concentrations.

The results are presented in this manner to allow examination of the likely impact of the Proposal in isolation and the contribution to air quality impacts in a broader sense.

In the presentation of results, the tables included shaded cells which represent the following:

Model prediction	Pollutant concentration /	Pollutant concentration /
	deposition rate less than the	deposition rate equal to, or greater
	relevant criterion	than the relevant criterion

Where incremental impacts are predicts as less than (<) the relevant reporting range, the cumulative impact has been calculated at 100 % of the reporting threshold.

Reference should be made to **Section 4.1.1** and **Table 13** for discussion on the interpretation of predicted results with regard to the respective pollutant averaging time. For the purposes of ongoing air quality management this appendix presents a full summary predicted impacts at all receptor locations.

Results at industrial receptors R10 to R19 and on-site monitoring stations R34 to R35 are shown as *italicised* text to assist with interpretation and context.

Annual Average TSP, PM_{10} and $PM_{2.5}$

Table 54Predicted incremental and cumulative annual average TSP, PM10 and PM2.5concentrations (all receptors)

			Anı	nual Averag	ge Concent	ration (µg∙r	n⁻³)		
		TSP			PM ₁₀			PM _{2.5}	
Receptor	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact
R1	1.2	44.8	46.0	0.4	21.8	22.2	0.1	8.5	8.6
R2	1.1	44.8	45.9	0.4	21.8	22.2	<0.1	8.5	8.6
R3	0.9	44.8	45.7	0.3	21.8	22.1	<0.1	8.5	8.6
R4	0.6	44.8	45.4	0.2	21.8	22.0	<0.1	8.5	8.6
R5	0.5	44.8	45.3	0.2	21.8	22.0	<0.1	8.5	8.6
R6	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R7	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6
R8	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R9	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R10	10.6	44.8	55.4	3.9	21.8	25.7	0.8	8.5	9.3
R11	21.1	44.8	65.9	8.7	21.8	30.5	1.6	8.5	10.1
R12	11.9	44.8	56.7	4.3	21.8	26.1	0.9	8.5	9.4
R13	7.3	44.8	52.1	2.4	21.8	24.2	0.6	8.5	9.1
R14	5.5	44.8	50.3	1.6	21.8	23.4	0.4	8.5	8.9
R15	5.3	44.8	50.1	1.4	21.8	23.2	0.4	8.5	8.9
R16	7.1	44.8	51.9	2.3	21.8	24.1	0.6	8.5	9.1
R17	3.5	44.8	48.3	1.2	21.8	23.0	0.3	8.5	8.8
R18	2.7	44.8	47.5	0.9	21.8	22.7	0.2	8.5	8.7
R19	14.6	44.8	59.4	5.3	21.8	27.1	1.1	8.5	9.6
R20	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6
R21	0.1	44.8	44.9	<0.1	21.8	21.9	<0.1	8.5	8.6
R22	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R23	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6
R24	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6
R25	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6
R26	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6
R27	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6
R28	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6
R29	0.9	44.8	45.7	0.3	21.8	22.1	<0.1	8.5	8.6
R30	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R31	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6
R32	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6

Kings Park Metal Resource Facility - Revised Air Quality Impact Assessment

		Annual Average Concentration (µg·m ⁻³)									
	TSP			PM ₁₀			PM _{2.5}				
Receptor	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact		
R33	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6		
R34	16.4	44.8	61.2	6.1	21.8	27.9	1.2	8.5	9.7		
R35	9.5	44.8	54.3	3.0	21.8	24.8	0.8	8.5	9.3		
Criterion	-	90		-	25			8	3		

24-hour Average Incremental $\text{PM}_{\rm 10}$ and $\text{PM}_{\rm 2.5}$

Receptor	Maximum 24-hour average concentration $(\mu g \cdot m^{-3})$					
·	PM ₁₀	PM _{2.5}				
R1	4.7	1.2				
R2	6.2	1.6				
R3	4.5	1.2				
R4	2.1	0.6				
R5	1.8	0.5				
R6	1.9	0.5				
R7	1.9	0.5				
R8	1.9	0.5				
R9	1.9	0.5				
R10	20.9	4.4				
R11	42.1	7.2				
R12	29.3	5.2				
R13	14.9	3.3				
R14	11.4	3.0				
R15	15.2	3.9				
R16	16.1	3.6				
R17	7.0	1.9				
R18	7.1	2.0				
R19	21.8	4.3				
R20	1.4	0.4				
R21	1.2	0.3				
R22	3.6	1.0				
R23	2.0	0.5				
R24	1.9	0.5				
R25	1.8	0.5				
R26	1.6	0.5				
R27	2.1	0.6				
R28	2.1	0.6				
R29	4.3	1.2				
R30	2.7	0.7				
R31	2.4	0.6				
R32	1.4	0.4				
R33	1.1	0.3				
R34	38.9	6.2				
R35	14.0	3.7				

Table 55 Predicted incremental 24-hour average PM_{10} and $PM_{2.5}$ concentrations

24-hour Average Cumulative $\ensuremath{\mathsf{PM}_{10}}$ and $\ensuremath{\mathsf{PM}_{2.5}}$

	24-hour av	erage PM ₁₀ con	centration		24-hour average PM_{10} concentration			
Date		R2 (µg⋅m⁻³)		Date	R2 (μg⋅m⁻³)			
Date	Incremental Impact	Background	Cumulative Impact	Date	Incremental Impact	Background	Cumulative Impact	
22/11/2018	1.4	113.3	114.7	12/07/2018	6.2	20.0	26.2	
19/03/2018	<0.1	70.2	70.3	13/06/2018	4.2	14.1	18.3	
28/05/2018	<0.1	65.8	65.9	21/05/2018	3.4	17.5	20.9	
18/07/2018	3.3	61.9	65.2	18/07/2018	3.3	61.9	65.2	
15/02/2018	<0.1	61.6	61.7	23/05/2018	2.9	29.3	32.2	
29/05/2018	<0.1	58.7	58.8	17/08/2018	2.9	20.0	22.9	
21/11/2018	0.7	55.7	56.4	14/06/2018	2.8	12.6	15.4	
19/07/2018	<0.1	54.4	54.5	4/08/2018	2.8	22.3	25.1	
18/03/2018	1.3	47.9	49.2	27/07/2018	2.8	31.2	34.0	
14/04/2018	<0.1	47.8	47.9	14/08/2018	2.5	18.6	21.1	
These data rep	present the highe	est Cumulative Im	pact 24-hour	These data rep	present the highe	est Incremental In	npact 24-hour	
PM ₁₀ predictio	ns outlined in re	d as a result of th	ne operation	PM_{10} predictions outlined in blue as a result of the operation				
of the project.				of the project.				

Table 56 Predicted cumulative 24-hour average PM₁₀ concentrations

Table 57 Predicted cumulative 24-hour average PM_{2.5} concentrations

	24-hour av	erage PM _{2.5} cor	centration	24-hour average PM _{2.5} concentrati				
Date		R2 (µg⋅m⁻³)		Date	R2 (μg⋅m ⁻³)			
Date	Incremental Impact	Background	Cumulative Impact	Date	Incremental Impact	Background	Cumulative Impact	
29/05/2018	<0.1	47.5	47.6	12/07/2018	1.6	13.8	15.4	
28/05/2018	<0.1	42.5	42.6	13/06/2018	1.1	6.9	8.0	
6/05/2018	0.3	27.1	27.4	27/07/2018	0.8	19.5	20.3	
27/05/2018	<0.1	27.0	27.1	21/05/2018	0.8	7.4	8.2	
15/07/2018	0.5	23.1	23.6	23/05/2018	0.8	11.3	12.1	
9/05/2018	<0.1	21.7	21.8	18/07/2018	0.8	8.9	9.7	
25/04/2018	<0.1	20.6	20.7	14/06/2018	0.8	5.2	6.0	
27/07/2018	0.8	19.5	20.3	17/08/2018	0.8	9.4	10.2	
8/05/2018	0.2	19.9	20.1	4/08/2018	0.7	9.2	9.9	
26/08/2018	0.6	18.4	19.0	22/06/2018	0.7	17.0	17.7	
These data re	present the high	est Cumulative In	npact 24-hour	These data repre	esent the highest	Incremental Imp	act 24-hour	
PM ₁₀ predictio	ons outlined in re	ed as a result of t	he operation	PM_{10} predictions outlined in blue as a result of the operation of				
of the project.				the project.				

Nitrogen Dioxide

Incremental and cumulative 1-hour and annual average NO_2 impacts are presented in **Table 27**. The results schedules report concentrations at R1-R33, as those receptor locations are relevant to a 1-hour averaging period. The industrial receptor locations are shown with shading to assist with interpretation.

It is noted that the assessment assumes a 100 % conversion of NO_X to NO_2 .

	Nitrogen dioxide (NO ₂) concentration (μg·m ⁻³)								
Rec.		 1 hour			Annual Average				
	Increment	Background	Cumulative	Increment	Background	Cumulative			
R1	1.0	104.6	105.6	0.01	18.7	18.7			
R2	0.9	104.6	105.5	0.01	18.7	18.7			
R3	0.8	104.6	105.4	0.01	18.7	18.7			
R4	0.5	104.6	105.1	0.01	18.7	18.7			
R5	0.4	104.6	105.0	0.00	18.7	18.7			
R6	0.4	104.6	105.0	0.00	18.7	18.7			
R7	0.4	104.6	105.0	0.00	18.7	18.7			
R8	0.7	104.6	105.3	0.01	18.7	18.7			
R9	0.8	104.6	105.4	0.01	18.7	18.7			
R10	1.1	104.6	105.7	0.06	18.7	18.8			
R11	1.8	104.6	106.4	0.07	18.7	18.8			
R12	2.3	104.6	106.9	0.05	18.7	18.8			
R13	2.6	104.6	107.2	0.05	18.7	18.7			
R14	2.1	104.6	106.7	0.04	18.7	18.7			
R15	1.3	104.6	105.9	0.04	18.7	18.7			
R16	3.5	104.6	108.1	0.09	18.7	18.8			
R17	1.8	104.6	106.4	0.05	18.7	18.8			
R18	1.2	104.6	105.8	0.04	18.7	18.7			
R19	1.4	104.6	106.0	0.05	18.7	18.8			
R20	0.5	104.6	105.1	0.00	18.7	18.7			
R21	0.6	104.6	105.2	0.00	18.7	18.7			
R22	0.7	104.6	105.3	0.00	18.7	18.7			
R23	0.6	104.6	105.2	0.00	18.7	18.7			
R24	0.5	104.6	105.1	0.01	18.7	18.7			
R25	0.5	104.6	105.1	0.00	18.7	18.7			
R26	0.4	104.6	105.0	0.01	18.7	18.7			
R27	0.4	104.6	105.0	0.01	18.7	18.7			
R28	0.6	104.6	105.2	0.01	18.7	18.7			
R29	0.9	104.6	105.5	0.01	18.7	18.7			

Table 58 Predicted	incremental 1-hou	r and annual avera	age NO ₂ concentrations

	Nitrogen dioxide (NO ₂) concentration (μ g·m ⁻³)							
Rec.		1 hour		Annual Average				
	Increment	Background	Background Cumulative		Background	Cumulative		
R30	0.6	104.6	105.2	0.01	18.7	18.7		
R31	0.8	104.6	105.4	0.01	18.7	18.7		
R32	0.5	104.6	105.1	0.00	18.7	18.7		
R33	0.4	104.6	105.0	0.00	18.7	18.7		
R34	2.0	104.6	106.6	0.05	18.7	18.8		
R35	3.1	104.6 107.7		0.08	18.7	18.8		
Criterion		24	46		62			

The results do not predict any exceedances of the 1-hour or annual average NO₂ criteria.

Annual Average Dust Deposition

Describes	Annual Average Dust Deposition (g·m ⁻² ·month ⁻¹)							
Receptor	Incremental Impact	Background	Cumulative Impact					
R1	0.1	2.0	2.1					
R2	<0.1	2.0	2.1					
R3	<0.1	2.0	2.1					
R4	<0.1	2.0	2.1					
R5	<0.1	2.0	2.1					
R6	<0.1	2.0	2.1					
R7	<0.1	2.0	2.1					
R8	<0.1	2.0	2.1					
R9	<0.1	2.0	2.1					
R10	1.3	2.0	3.3					
R11	3.2	2.0	5.2					
R12	1.9	2.0	3.9					
R13	1.0	2.0	3.0					
R14	0.7	2.0	2.7					
R15	0.7	2.0	2.7					
R16	0.9	2.0	2.9					
R17	0.4	2.0	2.4					
R18	0.3	2.0	2.3					
R19	1.8	2.0	3.8					
R20	<0.1	2.0	2.1					
R21	<0.1	2.0	2.1					
R22	<0.1	2.0	2.1					
R23	<0.1	2.0	2.1					
R24	<0.1	2.0	2.1					
R25	<0.1	2.0	2.1					
R26	<0.1	2.0	2.1					
R27	<0.1	2.0	2.1					
R28	<0.1	2.0	2.1					
R29	<0.1	2.0	2.1					
R30	<0.1	2.0	2.1					
R31	<0.1	2.0	2.1					
R32	<0.1	2.0	2.1					
R33	<0.1	2.0	2.1					
R34	3.0	2.0	5.0					
R35	1.3	2.0	3.3					
Criterion	2	-	2					

Table 59 Predicted incremental & cumulative dust deposition rates

20.1074.FR4V1 Final

Other Pollutants

Model predictions for metals and other pollutants (including CI_2 and HF) for which there are a published criterion in the Approved Methods (NSW EPA, 2017) are summarised in **Table 60** and **Table 61**.

The predicted impacts are not predicted to exceed the relevant impact assessment criteria for any pollutants.

Table 60Predicted incremental impacts (1 of 2)

Rec.				Pr	edicted Impact (µ	g·m⁻³)			
	Ag	As	Ва	Cd	Cl ₂	Cr(VI)	Cr	Cu	Fe
	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour
1	2.57E-06	4.92E-04	8.56E-04	1.47E-04	2.45E-03	9.80E-04	5.39E-04	5.89E-04	9.63E-02
2	2.49E-06	4.43E-04	8.29E-04	1.33E-04	2.21E-03	8.83E-04	4.85E-04	5.30E-04	9.32E-02
3	2.23E-06	4.18E-04	7.43E-04	1.25E-04	2.08E-03	8.33E-04	4.58E-04	5.01E-04	8.45E-02
4	7.11E-07	2.34E-04	2.37E-04	7.01E-05	1.17E-03	4.67E-04	2.57E-04	2.81E-04	2.73E-02
5	5.84E-07	1.98E-04	1.95E-04	5.94E-05	9.90E-04	3.96E-04	2.17E-04	2.38E-04	2.29E-02
6	5.72E-07	2.15E-04	1.91E-04	6.44E-05	1.07E-03	4.29E-04	2.36E-04	2.58E-04	2.24E-02
7	3.93E-07	2.09E-04	1.31E-04	6.26E-05	1.04E-03	4.17E-04	2.29E-04	2.51E-04	1.49E-02
8	5.21E-07	3.57E-04	1.74E-04	1.07E-04	1.78E-03	7.11E-04	3.91E-04	4.27E-04	1.98E-02
9	9.92E-07	4.14E-04	3.31E-04	1.24E-04	2.06E-03	8.25E-04	4.53E-04	4.95E-04	3.89E-02
10	8.26E-06	6.95E-04	2.75E-03	1.61E-04	2.62E-03	1.05E-03	6.33E-04	8.97E-04	3.09E-01
11	1.41E-05	9.05E-04	4.69E-03	2.71E-04	4.52E-03	1.81E-03	9.92E-04	1.08E-03	5.22E-01
12	1.91E-05	1.16E-03	6.38E-03	3.49E-04	5.81E-03	2.32E-03	1.28E-03	1.39E-03	7.04E-01
13	1.98E-05	1.31E-03	6.60E-03	3.94E-04	6.56E-03	2.62E-03	1.44E-03	1.57E-03	7.28E-01
14	2.17E-05	1.05E-03	7.22E-03	3.15E-04	5.24E-03	2.10E-03	1.15E-03	1.26E-03	7.95E-01
15	2.18E-05	9.65E-04	7.27E-03	2.01E-04	3.35E-03	1.34E-03	7.36E-04	1.32E-03	8.05E-01
16	1.23E-05	1.75E-03	4.10E-03	5.23E-04	8.71E-03	3.48E-03	1.91E-03	2.09E-03	4.51E-01
17	5.50E-06	8.81E-04	1.83E-03	2.64E-04	4.39E-03	1.76E-03	9.65E-04	1.06E-03	2.04E-01
18	3.19E-06	5.96E-04	1.06E-03	1.78E-04	2.97E-03	1.19E-03	6.53E-04	7.14E-04	1.19E-01
19	1.18E-05	7.55E-04	3.93E-03	2.13E-04	3.51E-03	1.40E-03	7.91E-04	9.42E-04	4.32E-01
20	3.45E-07	2.52E-04	1.15E-04	7.55E-05	1.26E-03	5.03E-04	2.76E-04	3.02E-04	1.29E-02
21	2.49E-07	2.79E-04	8.32E-05	8.36E-05	1.39E-03	5.57E-04	3.06E-04	3.34E-04	9.40E-03
22	8.77E-07	3.64E-04	2.92E-04	1.09E-04	1.82E-03	7.27E-04	3.99E-04	4.36E-04	3.28E-02

20.1074.FR4V1	Appendix D – Schedule of Results	Page 140
Final	Kings Park Metal Resource Facility - Revised Air Quality Impact Assessment	

	๗๙๚๛๛	AIR QUALITY
--	-------	-------------

Rec.	Predicted Impact (μg·m ⁻³)								
	Ag	As	Ва	Cd	Cl ₂	Cr(VI)	Cr	Cu	Fe
	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour
23	3.03E-07	3.22E-04	1.01E-04	9.65E-05	1.61E-03	6.43E-04	3.53E-04	3.86E-04	1.15E-02
24	2.40E-07	2.70E-04	8.01E-05	8.08E-05	1.35E-03	5.38E-04	2.96E-04	3.23E-04	9.24E-03
25	4.83E-07	2.29E-04	1.61E-04	6.86E-05	1.14E-03	4.57E-04	2.51E-04	2.74E-04	1.83E-02
26	5.28E-07	2.26E-04	1.76E-04	6.75E-05	1.13E-03	4.50E-04	2.47E-04	2.70E-04	2.10E-02
27	3.60E-07	1.97E-04	1.20E-04	5.91E-05	9.84E-04	3.94E-04	2.16E-04	2.36E-04	1.37E-02
28	5.14E-07	3.00E-04	1.71E-04	8.97E-05	1.50E-03	5.98E-04	3.28E-04	3.59E-04	1.94E-02
29	1.89E-06	4.54E-04	6.29E-04	1.36E-04	2.26E-03	9.05E-04	4.97E-04	5.44E-04	7.02E-02
30	6.70E-07	2.91E-04	2.23E-04	8.73E-05	1.45E-03	5.81E-04	3.19E-04	3.49E-04	2.55E-02
31	9.07E-07	4.07E-04	3.02E-04	1.22E-04	2.03E-03	8.11E-04	4.46E-04	4.87E-04	3.54E-02
32	3.80E-07	2.41E-04	1.27E-04	7.22E-05	1.20E-03	4.81E-04	2.64E-04	2.89E-04	1.45E-02
33	3.82E-07	2.20E-04	1.27E-04	6.59E-05	1.10E-03	4.39E-04	2.41E-04	2.64E-04	1.45E-02
34	2.96E-05	1.02E-03	9.86E-03	3.04E-04	5.07E-03	2.03E-03	1.11E-03	1.31E-03	1.09E+00
35	9.24E-06	1.57E-03	3.08E-03	4.69E-04	7.82E-03	3.13E-03	1.72E-03	1.88E-03	3.43E-01
Max	2.96E-05	1.75E-03	9.86E-03	5.23E-04	8.71E-03	3.48E-03	1.91E-03	2.09E-03	1.09E+00
Criterion	1.8	0.09	9	0.018	50	0.09	9	3.7	90
Max/Crit.	0.00%	1.94%	0.11%	2.90%	0.02%	3.87%	0.02%	0.06%	1.21%

Table 61 Predicted incremental impacts (2 of 2)

Receptor	Predicted Impact (μg·m ⁻³)					
	Fe (II,III)	Hg	Mg	Mn	Pb	HF
	1-hour	1-hour	1-hour	1-hour	Annual	24-hour
1	3.99E-01	6.39E-04	5.70E-04	1.76E-03	8.07E-06	3.04E-05
2	3.86E-01	5.75E-04	5.52E-04	1.70E-03	6.96E-06	2.59E-05
3	3.46E-01	5.43E-04	4.95E-04	1.60E-03	5.42E-06	2.01E-05
4	1.10E-01	3.04E-04	1.58E-04	5.41E-04	3.60E-06	1.43E-05
5	9.07E-02	2.58E-04	1.30E-04	4.88E-04	2.60E-06	1.02E-05
6	8.89E-02	2.80E-04	1.27E-04	4.72E-04	2.43E-06	9.58E-06
7	6.10E-02	2.72E-04	8.71E-05	2.83E-04	2.71E-06	1.07E-05
8	8.09E-02	4.64E-04	1.16E-04	4.27E-04	4.54E-06	1.78E-05
9	1.54E-01	5.37E-04	2.20E-04	8.23E-04	4.58E-06	1.81E-05
10	1.28E+00	6.82E-04	1.83E-03	5.62E-03	3.93E-05	1.45E-04
11	2.18E+00	1.18E-03	3.12E-03	9.12E-03	4.79E-05	1.63E-04
12	2.97E+00	1.51E-03	4.25E-03	1.19E-02	4.32E-05	1.30E-04
13	3.08E+00	1.71E-03	4.40E-03	1.22E-02	3.69E-05	1.22E-04
14	3.37E+00	1.37E-03	4.81E-03	1.33E-02	3.32E-05	1.07E-04
15	3.39E+00	8.72E-04	4.84E-03	1.38E-02	2.83E-05	8.77E-05
16	1.91E+00	2.27E-03	2.73E-03	7.55E-03	5.85E-05	2.17E-04
17	8.54E-01	1.14E-03	1.22E-03	3.57E-03	3.33E-05	1.28E-04
18	4.96E-01	7.75E-04	7.08E-04	2.14E-03	2.49E-05	9.69E-05
19	1.83E+00	9.16E-04	2.61E-03	7.23E-03	3.66E-05	1.34E-04
20	5.35E-02	3.28E-04	7.65E-05	3.02E-04	2.62E-06	1.05E-05
21	3.88E-02	3.63E-04	5.54E-05	3.34E-04	1.68E-06	6.75E-06
22	1.36E-01	4.74E-04	1.95E-04	5.96E-04	3.25E-06	1.21E-05
23	4.70E-02	4.19E-04	6.72E-05	3.86E-04	1.84E-06	7.19E-06

20.1074.FR4V1
Final

Receptor	Predicted Impact (µg·m ⁻³)					
	Fe (II,III)	Hg	Mg	Mn	Pb	HF
	1-hour	1-hour	1-hour	1-hour	Annual	24-hour
24	3.73E-02	3.51E-04	5.33E-05	3.23E-04	3.23E-06	1.28E-05
25	7.50E-02	2.98E-04	1.07E-04	3.46E-04	2.85E-06	1.12E-05
26	8.19E-02	2.93E-04	1.17E-04	4.63E-04	3.99E-06	1.57E-05
27	5.60E-02	2.56E-04	8.00E-05	2.64E-04	3.29E-06	1.32E-05
28	7.98E-02	3.89E-04	1.14E-04	3.65E-04	3.83E-06	1.47E-05
29	2.93E-01	5.90E-04	4.19E-04	1.24E-03	7.79E-06	3.01E-05
30	1.04E-01	3.79E-04	1.49E-04	4.95E-04	4.71E-06	1.82E-05
31	1.41E-01	5.29E-04	2.01E-04	7.39E-04	4.26E-06	1.64E-05
32	5.90E-02	3.13E-04	8.43E-05	2.89E-04	3.01E-06	1.19E-05
33	5.93E-02	2.86E-04	8.47E-05	2.79E-04	3.13E-06	1.23E-05
34	4.60E+00	1.32E-03	6.57E-03	1.82E-02	4.77E-05	1.22E-04
35	1.44E+00	2.04E-03	2.05E-03	6.03E-03	5.50E-05	2.08E-04
Max	4.60E+00	2.27E-03	6.57E-03	1.82E-02	5.85E-05	2.17E-04
Criterion	90	0.18	180	18	0.5	1.5
Max/Crit.	5.11%	1.26%	<0.01%	0.10%	0.01%	0.01%

Note: 7-day, 30-day and 90-day HF results have not been estimated due to the very low incremental impacts predicted.

Final

Odour

Incremental 99th percentile odour impacts are presented in **Table 29** at receptors R1-R9 and R20-R33 representing locations where amenity impacts are to be managed. Results for R10-R19 (fenceline locations) are presented, although these should not be compared to the odour impact criterion of 2 OU with caution as they are not representative of typical sensitive exposure locations, although it is noted that the predictions are all lower than the odour criterion in any case.

Receptor	99th percentile nose response time odour concentration (OU)
R1	0.2
R2	0.2
R3	0.2
R4	0.1
R5	0.1
R6	0.1
R7	0.1
R8	0.1
R9	0.1
<i>R10</i>	0.7
R11	0.8
R12	0.9
<i>R13</i>	0.8
R14	0.7
R15	0.7
R16	0.7
<i>R17</i>	0.5
R18	0.4
R19	0.8
R20	0.1
R21	0.0
R22	0.1
R23	0.0
R24	0.1
R25	0.1
R26	0.1
R27	0.1
R28	0.1
R29	0.2
R30	0.1
R31	0.1
R32	0.1

Table 62 Predicted incremental 99th percentile odour impacts

Receptor	99th percentile nose response time odour concentration (OU)
R33	0.1
R34	0.9
R35	0.7
Criterion	2.0

Appendix E – Best Management Practice Dust Control

A site-specific Best Management Practice (BMP) assessment has been performed for the operations at the Project site in accordance with the methodology outlined in (NSW OEH, 2011)

The BPM assessment has been performed to allow the identification of control measures which might be implemented as part of the Project operation whilst taking into consideration:

- regulatory requirements;
- environmental impacts;
- safety implications; and
- compatibility with proposed future development.

NSW EPA guidance relates to best practice dust assessments for the coal mining industry (there are no guidelines specific to the waste management industry) and indicates that either the top four sources, or sources representing 95 % of total annual site emissions should be examined for application of further controls.

Broadly, the following outlines the procedure adopted:

- Step 1: assessment of major sources to identify emissions that contribute to the top 95 % of emissions;
- **Step 2:** assessment of control measures to address the top 95 % of emissions;
- **Step 3:** evaluation of potential additional control measures

Step 1: Assessment of Major Sources

Sources of particulate matter emissions associated with the project operating at a throughput of 600 000 tpa have been categorised as follows:

- haulage;
- handling and transfer;
- conveying;
- Oxycutting;
- Hammermill; and
- wind erosion.

Uncontrolled emissions of particulate matter for the Project have been calculated adopting the emission factors outlined in **Appendix C**. The results indicate that the top emission sources, covering 95% of total site emissions (of TSP) comprise of (and rank), as presented in **Table 9**, and graphically in **Figure 22**.

The three emissions source categories contributing to 95 % of total site emissions of TSP included haulage, conveying, and handling and transfer activities.

Note that the rank order of emissions sources does change depending on the particulate fraction being examined, and the sources contributing to the top 95 % of sources also changes. Emission of PM₁₀ associated with haulage, conveying, and handling and transfer activities account for 91 % of total site emissions. Inclusion of PM₁₀ emissions from the hammermill increases that to 100 %. For the purposes of this BMP assessment, the emissions sources of haulage, conveying, handling and transfer, and hammermill activities have been considered.

For clarity, and as discussed elsewhere in this report, the emissions associated with the hammermill are controlled through the use of a cyclone and wet scrubber. The emission test reports demonstrate compliance with EPL 11555 emission concentration limits. The most recent measured TSP concentration (i.e. most reflective of current operations), is less than 15 % of the emission limit. It is considered that the emission test reports provide directly measured evidence to demonstrate that the emission collection system can appropriately control particulate emissions, and no further discussion of additional controls associated with the hammermill is provided.

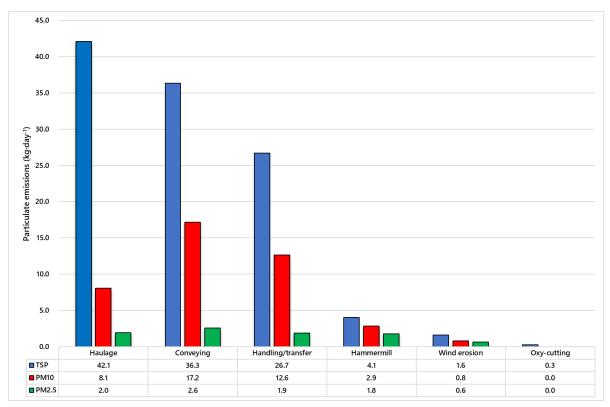

Emission source	Emi	ssions (kg∙da	ay-1)	Rank (TSP)	Cumulative TSP %	
	TSP	PM ₁₀	PM _{2.5}			
Haulage	42.1	8.1	2.0	1	38	
Conveying	36.3	17.2	2.6	2	71	
Handling and transfer	26.7	12.6	1.9	3	95	
Hammermill ^(a)	4.1	2.9	1.8	4	98	
Wind erosion	1.6	0.8	0.6	5	100	
Oxycutting ^(b)	0.3	-	-	6	100	
Total	111.1	41.6	8.9	-	-	

Table 63	Uncontrolled	particulate	emissions
----------	--------------	-------------	-----------

Notes: (a): Controlled emission, no data on uncontrolled emissions available (b):No PM₁₀ or PM_{2.5} emission data available for the Oxycutter

Step 2: Assessment of Control Measures

In accordance with the method outlined in NSW EPA (2011), a range of particulate control measures associated with each emission source identified above have been reviewed. Emission control measures have been determined through review of the following documents:

- National Pollutant Inventory Emission Estimation Technique for Mining, Version 3.1 (Australian Govt, 2012)
- NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining. June 2011 (NSW OEH, 2011)
- Western Regional Air Partnership, Fugitive Dust Handbook (Countess Environmental, 2006)
- Guidebook, Measures to Improve Urban Air Quality (AIRUSE Life 11, 2017)

Options for the control of particulate matter from each identified source are presented in the following sections.

Haulage routes

Published control factors associated with paved roads (as are present at the Project site) are limited, but would be associated with:

20.1074.FR4V1 Final

- Vehicle restrictions that limit the speed, weight or number of vehicles on the road.
- Surface improvement through minimisation of silt loading (through for example, sweeping).
- Surface treatment through water flushing or addition of chemical suppressants.

Emissions reductions due to reduction in vehicle speeds on paved roads at the Project site have not been assessed, as there are no defensible emissions reductions available in the literature. Speed limits of 5 km·hr⁻¹ are imposed at the Project site and would result in the minimisation of particulate entrainment, however.

The application of water to paved haulage routes could occur, and an emission reduction of 30 % could been applied to the watering of paved roads as per (USEPA, 2011) which indicates that an hourly water flushing at a rate of 0.48 gal·yd⁻² (equivalent to 2.2 L·m⁻²·hr⁻¹) could result in emissions reductions of between 30 % and 70 %. For the purposes of this assessment, the lower (conservative) reduction factor of 30 % has been adopted.

Paved road surfaces could also be routinely swept to keep surfaces clean and to avoid dust generation through resuspension, and emission reductions for a range of street sweeper units as published in (AIRUSE Life 11, 2017) indicate PM_{10} reduction factors (particulate loading) of between 88 % and 99 % when compared to a reference (dry) street. (AIRUSE Life 11, 2017) does also indicate that detection of a reduction in ambient PM_{10} due to street sweeping is difficult, and is affected by factors including:

- The road dust (silt) loading.
- Sweeper efficiency.
- Retention of particles within the sweeper.
- Road surface type and integrity.
- Frequency of sweeping.

For the purposes of this assessment, and considering the factors above, a nominal control factor associated with sweeping has been taken to be 50 % as this is appropriately conservative.

A summary of the potential control measures for minimising particulate emissions from paved haulage routes, and their effectiveness, is provided in **Table 64**.

Table 64	Best practice control measures	 paved haulage routes
----------	--------------------------------	--

Emission control measure	Adopted control efficiency Comments (%)	
Limitation of vehicle speed	Not quantified	No justifiable control factor available in literature
Sweeping	50	Conservative, and dependent on the type of street sweeper
Watering	30	At a rate of 2.2 L·m ² ·hr ⁻¹

Conveying

Published control factors associated with the movement of material on conveyors are presented in (NSW OEH, 2011), (Australian Govt, 2012) and (USEPA, 2011) and are generally associated with:

- Wind shielding, including enclosure.
- Belt cleaning.
- Water sprays (with chemicals).

A summary of the potential control measures for minimising particulate emissions from conveyors, and their effectiveness, is provided in **Table 65**.

Emission control measure	Adopted control efficiency (%)	Comments
Wind shielding (roof or side wall)	40	-
Wind shielding (roof and side wall)	70	-
Enclosure of transfers	70	-
Water sprays with chemicals	90	-
Water sprays	50	-
Belt cleaning and spillage minimisation	Not quantified	No justifiable control factor available in literature

Table 65 Best practice control measures – conveyors

Handling and Transfer

Published control factors associated with the handling and transfer of material are similar to those for conveying and are also presented in (NSW OEH, 2011), (Australian Govt, 2012) and (USEPA, 2011) and are generally associated with:

- Wind shielding, including enclosure.
- Water sprays (with chemicals).

A summary of the potential control measures for minimising particulate emissions from materials handling and transfer, and their effectiveness, is provided in **Table 66**.

Emission control measure	Adopted control efficiency (%)	Comments
Water sprays during truck unloading	70	-
Enclosure	70	-
Water sprays with chemicals	90	-

Emission control measure	Adopted control efficiency (%)	Comments
Water sprays	50	-
Minimisation of drop height	30	-
Three sided and roofed enclosure	70	-
Three sided and roofed enclosure with water sprays	85	-

Quantification of Potential Particulate Management Measures

Table 67 presents the emission control factors assumed in this assessment for the potential particulate management measures identified. Note that emissions reductions associated with the hammermill have not been included in **Table 67** as emissions are already considered to be appropriately controlled in accordance with best practice.

Emission Source	Emission control measure	Control factor assumed (%)
Paved Roads	Sweeping	50
	Watering	30
Conveying	Wind shielding (roof or side wall)	40
	Wind shielding (roof and side wall)	70
	Enclosure of transfers	70
	Water sprays with chemicals	90
	Water sprays	50
Handling and	Water sprays during truck unloading	70
transfer	Enclosure	70
	Water sprays with chemicals	90
	Water sprays	50
	Minimisation of drop height	30
	Three sided and roofed enclosure	70
	Three sided and roofed enclosure with water sprays	85

 Table 67
 Control factors assumed for potential control measures

outlines the anticipated emissions reductions should the reduction measures in **Table 67** be applied. These are also presented graphically in **Figure 23**, **Figure 24** and **Figure 25**.

Emission Source	Emission control measure	Control factor		Emissions (uncontrolled) (kg·day ⁻¹)					olled)
		assumed (%)	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	
Paved	Sweeping	50	42.1	8.1	2.0	21.1	4.1	1.0	
Roads	Watering	30	42.1	0.1	2.0	29.5	5.7	1.4	
Conveying	Wind shielding (roof or side wall)	40				21.8	10.3	1.6	
	Wind shielding (roof and side wall)	70	26.2	47.0	2.6	10.9	5.2	0.8	
	Enclosure of transfers	70	36.3	17.2		10.9	5.2	0.8	
	Water sprays with chemicals	90				3.6	1.7	0.3	
	Water sprays	50				18.2	8.6	1.3	
Handling and	Water sprays during truck unloading	70		12.6	1.9	8.0	3.8	0.6	
transfer	Enclosure	70				8.0	3.8	0.6	
	Water sprays with chemicals	90				2.7	1.3	0.2	
	Water sprays	50				13.4	6.3	1.0	
	Minimisation of drop height	30	26.7			18.7	8.8	1.3	
	Three sided and roofed enclosure	70				8.0	3.8	0.6	
	Three sided and roofed enclosure with water sprays	85				4.0	1.9	0.3	

Table 68 Potential emissions reductions from further control measures

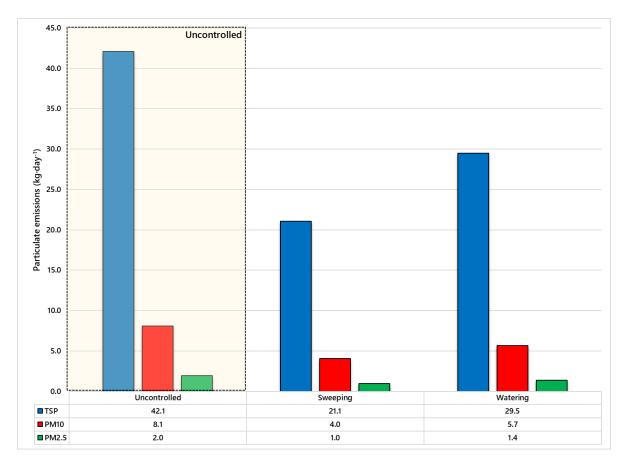
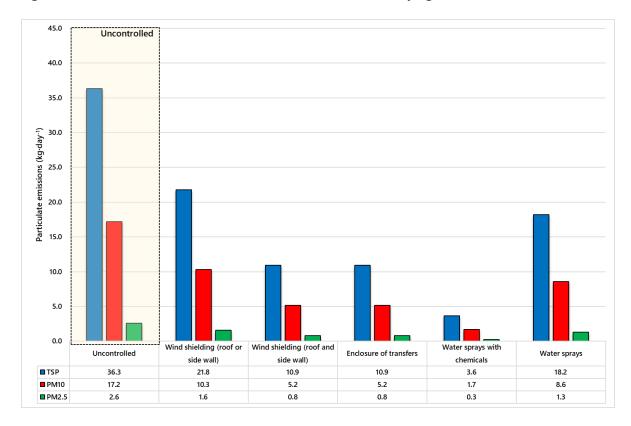
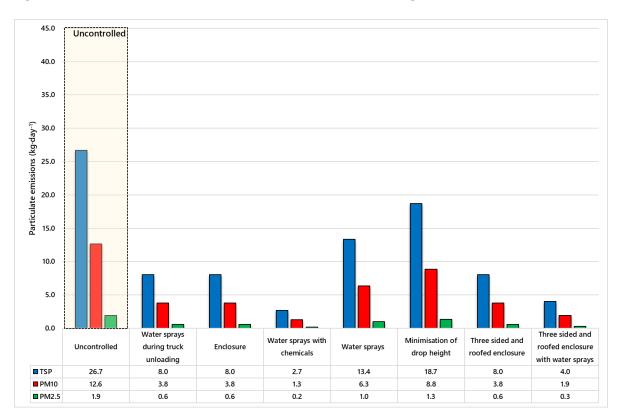




Figure 23 Potential emissions reductions associated with haulage

Figure 24 Potential emissions reductions associated with conveying

Step 3: Evaluation of additional control measures

As required by EPA, the practicability of implementing each of the particulate control options identified above is to be assessed with due consideration given to:

- regulatory requirements;
- environmental impacts;
- safety implications; and
- compatibility with current processes and proposed future developments.

The following sections examine the measures that may constrain the implementation of the particulate control measures outlined above, namely the regulatory requirements, environmental impacts, safety implications and compatibility with current processes and future development.

Each measure is provided a risk rating (**low**, **medium** or **high**) which identifies the constraints which may result in the implementation of the measure not being practical at the Project site. Where any of the four measures of practicability are rated as high, these measures are not taken forward for an assessment of cost implication and feasibility.

Evaluation findings – haulage routes

Table 69 provides a discussion of the feasibility of control measures for haulage routes.

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future	Conclusion of Evaluation
				Developments RISK	
Sweeping	RISK = LOW	RISK = LOW Need to ensure that any sweeper removes material, rather than redistributing silt. Sweeping / removal of silt from road verges after large rain events	RISK = LOW	RISK = LOW	Adopted potential measure HR1
Watering	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = MEDIUM Applying further water to routes with high silt content may generate a safety risk and potentially result in avoidable accidents (see sweeping)	RISK = LOW	✓ Already implemented control

 Table 69
 Practicability of implementing control measures for haulage routes

Evaluation findings – conveying

Table 70 provides a discussion of the feasibility of control measures for conveying.

	Practicability of implementing control measures for conveying				
Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Wind shielding (roof or side wall)	RISK = LOW	RISK = LOW	RISK = LOW	RISK = HIGH Conveyors already enclosed	Not considered further in this assessment
Wind shielding (roof and side wall)	RISK = LOW	RISK = LOW	RISK = LOW	RISK = HIGH Conveyors already enclosed	Not considered further in this assessment
Enclosure of conveyor transfers	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	Adoptedpotentialmeasure C1
Water sprays with chemicals	RISK = LOW	RISK = HIGH Use of chemicals in areas where they are not required to ensure that environmental objectives are met is not considered to be best practice	RISK = LOW	RISK = LOW	Not considered further in this assessment
Water sprays	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = LOW	RISK = LOW Already applied	✓ Already implemented control

Table 70 Practicability of implementing control measures for conveying

Evaluation findings – handling and transfer

Table 71 provides a discussion of the feasibility of control measures for handling and transfer activities.

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Water sprays during truck unloading	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = LOW	RISK = LOW Already applied	✓ Already implemented control
Enclosure	RISK = LOW	RISK = LOW	RISK = LOW	RISK = HIGH Several handling and transfer points are small and cannot be enclosed without affecting flow of material around the site.	Not considered further in this assessment
Water sprays with chemicals	RISK = LOW	RISK = HIGH Use of chemicals in areas where they are not required to ensure that environmental objectives are met is not considered to be best practice	RISK = LOW	RISK = LOW	Not considered further in this assessment

 Table 71
 Practicability of implementing control measures for handling and transfer

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Water sprays	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = LOW Ensure that run off is appropriately captured, filtered and discharged or recycled	RISK = LOW	RISK = MEDIUM There is limited potential for the use of water sprays on floc material as it creates material handling issues. Floc is already transferred in enclosures and water sprays would have minimal effect on dust control. The potential for water sprays on finished product is also constrained by commercial limitations.	☑ Adopted potential measure HT1 (where appropriate)
Minimisation of drop height	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	✓ Adopted potential measure HT2
Three sided and roofed enclosure	RISK = LOW	RISK = LOW	RISK = LOW	RISK = HIGH Several handling and transfer points are small and cannot be enclosed without affecting flow of material around the site.	Not considered further in this assessment

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Three sided and roofed enclosure with water sprays	RISK = LOW	RISK = LOW	RISK = LOW	RISK = HIGH Several handling and transfer points are small and cannot be enclosed without affecting flow of material around the site.	Not considered further in this assessment

It is understood that NSW EPA generally consider that Best Management Practice for activities performed at the Project site would be represented by full enclosure. This mitigation measure has not been considered in this BMP assessment, as it was regarded as economically unviable at an early stage.

Evaluation findings – summary

A summary of the emission control measures selected for implementation at the Project site are presented in **Table 72**, and presented graphically in **Figure 26**.

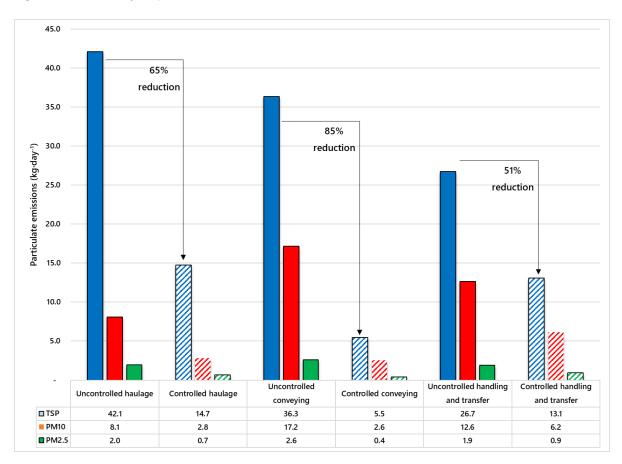

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Haulage					
Sweeping	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	Adoptedpotential controlHR1
Watering	RISK = LOW	RISK = LOW	RISK = MEDIUM	RISK = LOW	✓Alreadyimplementedcontrol
Conveying					
Enclosure of transfers	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	 Adopted potential measure C1
Water sprays	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	 ✓ Already implemented control
Handling and	transfer				
Water sprays during truck unloading	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	 ✓ Already implemented control
Water sprays	RISK = LOW	RISK = LOW	RISK = LOW	RISK = MEDIUM Limited application, as per Table 71	 Adopted potential measure HT1 (where appropriate)

Table 72	Summarv	of adopted	control	measures
	Sammary	or adopted	control	measures

Control Measure	Regulatory Requirements RISK	Environmental Impacts RISK	Safety Implications RISK	Compatibility with Current Processes and Future Developments RISK	Conclusion of Evaluation
Minimisation of drop height	RISK = LOW	RISK = LOW	RISK = LOW	RISK = LOW	 Adopted potential measure HT2

Although not included within this BMP assessment, S&P has installed a series of shipping containers on the side of the Project site, primarily to manage offsite noise impacts.

It would be anticipated that this would also result in reductions in the transport of particulate matter from the site, although this has not been quantified.

Appendix F – Emission Test Reports

EML Air Pty Ltd Report Number N92746

Emission Testing Report ERM Australia Pty Ltd, Blacktown Plant

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced except in full

This document is confidential and is prepared for the exclusive use of ERM Australia Pty Ltd and those granted permission by ERM Australia Pty Ltd.

Matthew Cook Laboratory Manager

MELBOURNE 427 Canterbury Road Surrey Hills Victoria 3127 P: +61 3 9813 7200

Mina Redda

Melissa Reddan BAppSc

Compliance Manager

SYDNEY 1/251 Princes Highway Unanderra NSW 2526 P: +61 2 4239 7800 **PERTH** 7/16 Ledgar Road Balcatta WA 6021 P: +61 8 9240 5260 BRISBANE PO Box 2390 Southport BC QLD 4215 Freecall: 1300 364 005

EML Air Pty Ltd | ABN 98 006 878 342 | PO Box 466, Canterbury Victoria 3126 | www.emlair.com.au

Document Information

Client Name:	ERM Australia Pty Ltd
Report Number:	N92746
Report Title:	Emission Testing Report
Date of Issue:	18 June 2014
Attention:	Dr Iain Cowan
Address:	ERM Australia Pty Ltd Level 3, Tower 3, World Trade Centre, 18-38 Siddeley Street DOCKLANDS VIC 3005

Sampling Information

Sampling Date:	June 2014
Sampling Team:	DH

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	-	-	-	-	-
Final Report	N92746	18 June 2014	JW/AD	MR	MC
Amend Report	-	-	-	-	-

Internal Reference: ad doc:n92746.doc

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	-	-	-	-

Table of Contents

1	Executive Summary	4
Z	Results	5
3	Plant operating conditions	8
4	Test methods	8
5	Quality Assurance/ Quality Control Information	9
6	Definitions	10

List of Tables

Table 1: Results Summary	4
Table 2: Hammer Mill - Test Results	
Table 3: Oxy Cutting Area (Up Windl - Test Results	6
Table 4: Oxy Cutting Area (Down Windl - Test Results	7
Table 5: Test Method Table	8

Appendices

Nil

1 EXECUTIVE SUMMARY

Tests were performed at the request of ERM Australia Pty Ltd to determine emissions to air as detailed below;

Table 1: Testing Summary

Location	Test Date	Test Parameters*
Hammer Mill	12 June 2014	Odour and character
Oxy Cutting Area (up wind)	12 June 2014	Odour and character
Oxy Cutting Area (down wind)	12 June 2014	Odour and character

* Flow rate, velocity, temperature and moisture were determined unless otherwise stated.

2 RESULTS

Table 2: Hammer Mill - Test Results

Date	12/06/2014	Client	Sell & Pa	arker - (ERM Austra	lia)	
Report	N92746	Stack I	D Hammer	Mill		
Licence No.	-	Locatio	on Blacktow	/n	State	NSW
EML Staff	DH/ZP					
Process Con	ditions	Please refer to client r	ecords.			
Reason for te	esting:	Client requested testir	ng to determine e	emissions to air		
Odour		Average		Test 1	Te	st 2
Sampling date &	Time		12/06/	14 1102	12/06/14	1128
Analysis date & Ti	ime		13/06/	14 1438	13/06/14	1444
Holding time				27 hours		27 hours
Dilution factor & T	hreshold		1	1000 ou	1	1600 ou
Butanol threshold	29 ppb					
Laboratory temp	20 °C		Concentrat	ion	Concentration	
Last calibrated	10/01/14	ou	ou		ou	
No. ITE's used				12	1	2
Concentration		1300	100	0	1600	
Lower Uncertainty	/ Limit	900	470)	750	
Upper Uncertainty	/ Limit	2000	220	0	3500	
Hedonic tone			Mildly U	Mildly Unpleasant/Distinct		asant/Distinct
Odour character				Acidic	Ac	id

Table 3: Oxy Cutting Area (Up Windl - Test Results

Date	12/06/2014	Client	t	Sell & Parker	- (ERM Australi	a)	
Report	N92746	Stack	ID	Oxy Cutting A	rea (Upwind)		
Licence No.	-	Locat	ion	Blacktown		State	NSW
EML Staff	DH/ZP						
Process Con	ditions	Please refer to client	records				
Reason for te	esting:	Client requested test	ing to de	etermine emiss	ions to air		
Odour		Average		Te	st 1	Tes	st 2
Sampling date & T	ime			12/06/14	1248	12/06/14	1322
Analysis date & Ti	me			13/06/14	1451	13/06/14	1500
Holding time					26 hours		26 hours
Dilution factor & TI	hreshold			1	940 ou	1	650 ou
Butanol threshold	29 ppb						
Laboratory temp	20 °C			Concentration		Concentration	
Last calibrated	10/01/14	ou		ou		ou	
No. ITE's used					8	1	2
Concentration		790		940		650	
Lower Uncertainty	Limit	540		430		300	
Upper Uncertainty	Limit	1200		2000		1400	
Hedonic tone				Mildly Unpleasant/Distinct		Mildly Ur	npleasant
Odour character				Me	etal	Me	etal

Page 6 of 10

Table 4: Oxy Cutting Area (Down Windl - Test Results

Date Bonort	12/06/2014 N92746	Clien Stack			(ERM Australi ea (Downwind)	,	
Report	1192740		,	, 0			
Licence No.	-	Loca	tion Bla	cktown		State	NSW
EML Staff	DH/ZP	-					
Process Con		Please refer to client					
Reason for te	esting:	Client requested tes	ting to detern	nine emissi	ons to air		
Odour		Average		Tes	st 1	Те	st 2
Sampling date & T	ïme			12/06/14	1248	12/06/14	1322
Analysis date & Tir	me			13/06/14	1421	13/06/14	1431
Holding time					26 hours		25 hours
Dilution factor & Th	hreshold			1	540 ou	1	550 ou
Butanol threshold	29 ppb						
Laboratory temp	20 °C		Con	centration		Concentration	
Last calibrated	10/01/14	ou		ou		ou	
No. ITE's used				1:	2	1	0
Concentration		550		540		550	
Lower Uncertainty	Limit	370		250		250	
Upper Uncertainty	Limit	800		1200		1200	
Hedonic tone			М	ildly Unplea	sant/Distinct	Mildly Unple	asant/Distinct
Odour character				Smokey	, Metal	Smoke	ey,Metal

Page 7 of 10

3 PLANT OPERATING CONDITIONS

Unless otherwise stated, the plant operating conditions were normal at the time of testing. See ERM Australia Pty Ltd's records for complete process conditions.

4 TEST METHODS

Unless otherwise stated, the following methods meet the requirements of the NSW Office of Environment and Heritage (as specified in the Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales, January 2007). All sampling and analysis was performed by EML Air unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Test Method	Method Detection Limit	Uncertainty*	NATA Acc	credited
				Sampling	Analysis
Sample Plane Criteria	NSW TM-1	NA	-	\checkmark	NA
Velocity	NSW TM-2	2ms ⁻¹	7%	\checkmark	NA
Temperature	NSW TM-2	0°C	2%	\checkmark	NA
Flow rate	NSW TM-2	Location specific	8%	\checkmark	NA
Moisture content	NSW TM-22	0.4%	8%	\checkmark	\checkmark
Odour	NSW OM-7	16ou	not specified	\checkmark	\checkmark

Table 5: Test Method Table

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

5 QUALITY ASSURANCE/ QUALITY CONTROL INFORMATION

EML Air Pty Ltd is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources (Accreditation number 2732). Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for EML Air at NATA's website www.nata.asn.au.

EML Air Pty Ltd is accredited by NATA (National Association of Testing Authorities) to Australian Standard 17025 – General Requirements for the Competence of Testing and Calibration Laboratories. Australian Standard 17025 requires that a laboratory have a quality system similar to ISO 9002. More importantly it also requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Assurance Manager.

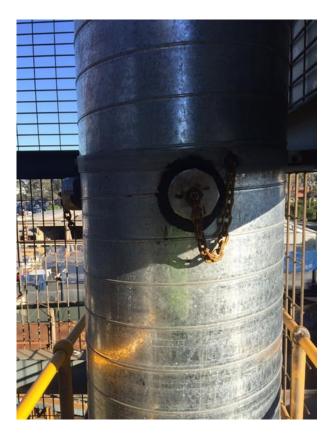
NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at EML Air to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

- NTP Normal temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
- Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.
- VOC Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.
- TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.
- OU The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).
- PM_{2.5} Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (μm).
- PM₁₀ Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (μm).
- BSP British standard pipe
- NT Not tested or results not required
- NA Not applicable
- D_{50} 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
- D Duct diameter or equivalent duct diameter for rectangular ducts
- < Less than
- > Greater than
- ≥ Greater than or equal to
- ~ Approximately
- CEM Continuous Emission Monitoring
- CEMS Continuous Emission Monitoring System
- DEC Department of Environment & Conservation (WA)
- DECC Department of Environment & Climate Change (NSW)
- EPA Environment Protection Authority
- FTIR Fourier Transform Infra Red
- NATA National Association of Testing Authorities
- RATA Relative Accuracy Test Audit
- AS Australian Standard
- USEPA United States Environmental Protection Agency
- Vic EPA Victorian Environment Protection Authority
- ISC Intersociety committee, Methods of Air Sampling and Analysis
- ISO International Organisation for Standardisation
- APHA American public health association, Standard Methods for the Examination of Water and Waste Water
- CARB Californian Air Resources Board
- TM Test Method
- OM Other approved method
- CTM Conditional test method
- VDI Verein Deutscher Ingenieure (Association of German Engineers)
- NIOSH National Institute of Occupational Safety and Health
- XRD X-ray Diffractometry


Address (Head Office) 7 Redland Drive MITCHAM VIC 3132

Postal Address 52 Cooper Road COCKBURN CENTRAL WA 6164 Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 <u>www.ektimo.com.au</u> ABN: 86 600 381 413

Report Number R003396

Emission Testing Report Sell and Parker, Kings Park

This document is confidential and is prepared for the exclusive use of Sell and Parker and those granted permission by Sell and Parker.

Document Information

Client Name:	Sell and Parker
Report Number:	R003396
Date of Issue:	26 May 2017
Attention:	Howard Richards
Address:	46 Tattersall Road Kings Park NSW 2148
Testing Laboratory:	Ektimo (EML) ABN 98 006 878 342

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	R003396[DRAFT]	17/05/2017	JWe	ADa	ZXa
Final Report	R003396	26/05/2017	JWe	ADa	ZXa
Amend Report	-	-	-	-	-

Template Version: 170407

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	-	-	-	-

Report Authorisation

Aaron Davis

Client Manager

Zac Xavier Ektimo Signatory

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Table of Contents

1	Executive Summary	. 4
2	Results Summary	. 4
3	Results	. 5
3.2	L EPA 3 Hammer Mill	. 5
4	Plant Operating Conditions	. 8
5	Test Methods	. 8
6	Quality Assurance/ Quality Control Information	. 9
7	Definitions	10

1 EXECUTIVE SUMMARY

Ektimo was engaged by Sell and Parker to perform air emission testing for various analytes from the Hammer Mill exhaust duct.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 3 Hammer Mill	27 April 2017	Solid particles (TPM), fine particulates (PM_{10} and $PM_{2.5}$), type 1 and type 2 substances in aggregate, hexavalent chromium ($Cr6+$), silver, tungsten, iron, titanium, copper, zinc, hydrogen sulfide (H_2S), nitrogen oxides (NOx), sulfur dioxide, sulfuric acid mist and sulfur trioxide (as SO_3), carbon dioxide, oxygen

* Flow rate, velocity, temperature and moisture were determined unless otherwise stated

The sampling methodologies chosen by Ektimo are those recommended by the NSW Office of Environment and Heritage (as specified in the *Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales, January 2007*).

All results are reported on a dry basis at STP. Unless otherwise indicated, the methods cited in this report have been performed without deviation.

Plant operating conditions have been noted in the report.

2 **RESULTS SUMMARY**

The following comparison table shows that all analytes highlighted in green are below the limits prescribed by the *Protection of Environment Operations (Clean Air) Regulation 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).*

Location	Pollutant	Units	POEO Reg Limit (Gp 6)	Detected values
	Solid particles	mg/m ³	20	9.3
	Nitrogen oxides (NO _x)	mg/m ³	350	<3
	Sulfur dioxide (SO ₂)	mg/m ³	1000	<0.01
	Sulfuric acid mist and sulfur trioxide (SO $_3$)	mg/m ³	100	<0.01
	Hydrogen sulfide (H ₂ S)	mg/m ³	5	<0.006
EPA 3	Type 1 substances in aggregate (Sb, As, Cd, Pb, Hg)	mg/m ³	-	≤0.0072
Hammer Mill	Type 1 and 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, N, Se, Sn, V)	mg/m ³	1	≤0.017
	Cadimum (Cd)	mg/m ³	0.2	<0.0004
	Mercury (Hg)	mg/m ³	0.2	0.00069
	Silver (Ag), tungsten (W), iron (Fe), titanium (Ti), Copper (Cu), Zinc (Zn)	mg/m ³	-	see report

3 RESULTS

3.1 EPA 3 Hammer Mill

Date 27-04-2017	(Client	Sell & Parker	
Report R003396		Stack ID	EPA 3 Hammer Mill Stack	
Licence No. 11555		ocation	Kings Park	
Ektimo Staff Aaron Davis / Steven		State	NSW	
Process Conditions Please refer to client				
Sampling Plane Details				
Sampling plane dimensions	(680 mm		
Sampling plane area	C	0.363 m ²		
Sampling port size, number	4"	' BSP (x2)		
Access & height of ports	Stairs 1	l5 m		
Duct orientation & shape	Vertical C	Circular		
Downstream disturbance	Exit 4	1 D		
Upstream disturbance	Bend 6	3 D		
No. traverses & points sampled	2 8	3		
Sample plane compliance to AS4323.1	Satis	sfactory		
Stock Boromotoro				
Stack Parameters	27/20trat-1)			
Moisture content, %v/v	3.7 (saturated)		20.0 (dr.)	
Gas molecular weight, g/g mole	28.6 (wet)		29.0 (dry)	
Gas density at STP, kg/m ³	1.28 (wet)		1.29 (dry)	
Gas Flow Parameters				
Flow measurement time(s) (hhmm)	1000			
Temperature, °C	28			
Temperature, K	301			
Velocity at sampling plane, m/s	25			
Volumetric flow rate, discharge, m ³ /s	9.2			
Volumetric flow rate (wet STP), m ³ /s	8.3			
Volumetric flow rate (dry STP), m ³ /s	8			
Mass flow rate (wet basis), kg/hour	38000			
Velocity difference, %	<1			
	1			
Gas Analyser Results		Average		
Sampling time		103	0-1129	
		O	Mana Data	
Combustion Coope		Concentration mg/m ³	Mass Rate g/min	
Combustion Gases		-	-	
Nitrogen oxides (as NO ₂)		<3	<2	
		Concentration %		
Carbon dioxide		<0.3		
Oxygen		<0.3 20.9		
Oxygen		20.9		
Isokinetic Results	kinetic Results Results		esults	
Sampling time		1010	D - 1115	
		Concentration	Mass Rate	
		mg/m³	g/min	
Solid Particles		9.3	4.5	
Fine particulates (PM10)		6.6	3.2	
Fine particulates (PM2.5)		<4	<2	
D50 cut size, 10µm		10.5		
D50 cut size, 2.5µm		2.20		
Sulfur dioxide		<0.01	<0.006	
Sulfuric acid mist and sulfur trioxide (as SO_3)		<0.01	<0.005	
Isokinetic Sampling Parameters		Isokinetic	PM 10&2.5	
Sampling time, min		64	64	
Isokinetic rate, %		93	88	
	I	33	00	

Date	27-04-2017	Client	Sell & Parker	
Report	R003396	Stack ID	EPA 3 Hammer Mill Stack	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Steven Weekes	State	NSŴ	
Process Conditions	Please refer to client records.			
Sampling Plane De	etails			
Sampling plane dimensions		680 mm		
Sampling plane area		0.363 m ²		
Sampling port size, number		4" BSP (x2)	4" BSP (x2)	
Access & height of ports		Stairs 15 m		
Duct orientation & shape		Vertical Circular		
Downstream disturbance		Exit 4 D		
Upstream disturbance		Bend 6 D		
No. traverses & points sampled		28		
Sample plane compliance to AS4323.1		Satisfactory		
Stack Parameters				
Moisture content, %v/v	,	3.7 (saturated)		
Gas molecular weight		28.6 (wet)	29.0 (dry)	
Gas density at STP, kç		1.28 (wet)	1.29 (dry)	
Gas Flow Paramete	ers			
Flow measurement tir	ne(s) (hhmm)	1000		
Temperature, °C		28		
Temperature, K		301		
Velocity at sampling p	lane, m/s	25		
Volumetric flow rate, d	-	9.2		
Volumetric flow rate (w		8.3		
Volumetric flow rate (d		8		
Mass flow rate (wet ba	isis), kg/hour	38000		

Isokinetic Results	Results		
Sampling time	1230-1335		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.004 <0.002		
Arsenic	<0.004 <0.002 <0.001 <0.0007		
Beryllium	<0.0007 <0.0004		
Cadmium	<0.0004 <0.0002		
Chromium	0.00061 0.00029		
Cobalt	<0.0005 <0.0002		
Copper	0.0026 0.0012		
Iron	0.028 0.014		
Lead	0.0011 0.00052		
Manganese	<0.001 <0.0005		
Mercury	0.00069 0.00033		
Nickel	<0.0009 <0.0004		
Selenium	<0.004 <0.002		
Silver	<0.0005 <0.0002		
Tin	<0.001 <0.0007		
Titanium	0.0016 0.00076		
Tungsten	<0.001 <0.0007		
Vanadium	<0.0008 <0.0004		
Zinc	0.19 0.09		
Type 1 & 2 Substances			
Upper Bound			
Total Type 1 Substances	≤0.0072 ≤0.0034		
Total Type 2 Substances	≤0.0096 ≤0.0046		
Total Type 1 & 2 Substances	≤0.017 ≤0.0081		
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	100		

Date 27-04-2017		(Client	Sell & Parker
Report R003396		5	Stack ID	EPA3 Hammer Mill Stack
Licence No. 11555		L	ocation	Kings Park
Ektimo Staff Aaron Davis / Stev	en Weekes	S	State	NSW
Process Conditions Please refer to clie	ent records.			
Sampling Plane Details Sampling plane dimensions		680 n	om	
Sampling plane area		0.363		
Sampling port size, number		4" BSP		
Access & height of ports		4 BSF Stairs 1	· · /	
Duct orientation & shape		Vertical C		
Downstream disturbance		Exit 4		
Upstream disturbance		Bend 6		
		2 8		
No. traverses & points sampled				
Sample plane compliance to AS4323.1		Satisfa	CIOTY	
Stack Parameters				
Moisture content, %v/v		3.7 (saturated)		
Gas molecular weight, g/g mole		28.6 (wet)		29.0 (dry)
Gas density at STP, kg/m ³		1.28 (wet)		1.29 (dry)
Gas Flow Parameters				
Flow measurement time(s) (hhmm)		1000		
Temperature, °C		28		
Temperature, K		301		
Velocity at sampling plane, m/s		25		
Volumetric flow rate, discharge, m ³ /s		9.2		
Volumetric flow rate (wet STP), m ³ /s		9.2 8.3		
× //		8.3		
Volumetric flow rate (dry STP), m ³ /s		o 38000		
Mass flow rate (wet basis), kg/hour				
Velocity difference, %		<1		
Hydrogen Sulfide			Res	sults
Sampling tin	ne		1130	0-1230
			Concentration	Mass Date
		(Concentration mg/m ³	Mass Rate g/min
Hydrogen sulfide			<0.006	<0.003
lastinatia Daguta				
Isokinetic Results				sults
Sampling tin	ne		1120)-1225
		(Concentration	Mass Rate
			mg/m ³	g/min
Hexavalent chromium			<0.004	<0.002
laskingtis Compling Description				
Isokinetic Sampling Parameters			0.4	
Sampling time, min			64	
Isokinetic rate, %			98	

4 PLANT OPERATING CONDITIONS

Unless otherwise stated, the plant operating conditions were normal at the time of testing. See Sell and Parker's records for complete process conditions.

5 TEST METHODS

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Ac	credited
				Sampling	Analysis
Sample plane criteria	NSW TM-1	NA	-	√	NA
Moisture content	NSW TM-22	NSW TM-22	19%	\checkmark	\checkmark
Temperature	NSW TM-2	NA	2%	\checkmark	NA
Flow rate	NSW TM-2	NA	8%	\checkmark	NA
Velocity	NSW TM-2	NA	7%	\checkmark	NA
Solid particles (TPM)	NSW TM-15	NSW TM-15	5%	\checkmark	\checkmark
Particulate matter < 2.5μm (PM _{2.5})	USEPA 201A	USEPA 201A	9%	✓	\checkmark
Particulate matter < 10µm (PM ₁₀)	NSW OM-5	NSW OM-5	6%	✓	\checkmark
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse	15%	✓	\checkmark^1
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse	15%	\checkmark	\checkmark^1
Total (gaseous and particulate) metals & compounds incl Ag, Fe, W, Ti, Cu, Zn	NSW TM-12, NSW TM-13, NSW TM-14	Envirolab inhouse	15%	✓	\checkmark^1
Hexavalent chromium	NSW OM-4	Envirolab inhouse	16%	×	\checkmark^1
Sulfur dioxide and sulfur trioxide	NSW TM-3	Ektimo (EML Air) 235	16%	✓	✓
Hydrogen sulfide	NSW TM-5	NSW TM-5	19%	✓	✓
Nitrogen oxides (NOx)	NSW TM-11	NSW TM-11	12%	✓	✓
Carbon dioxide	NSW TM-24	NSW TM-24	13%	\checkmark	\checkmark
Oxygen	NSW TM-25	NSW TM-25	13%	✓	✓

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

1. Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 10 May 2017 in report number 166156.

6 QUALITY ASSURANCE/ QUALITY CONTROL INFORMATION

Ektimo (EML) and Ektimo (ETC) are accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo (EML) and Ektimo (ETC) are accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025. – General Requirements for the Competence of Testing and Calibration Laboratories. ISO/IEC 17025 requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Compliance Manager.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

7 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

- STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
- Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.
- VOC Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.
- TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.
- OU The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).
- PM_{2.5} Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (μm).
- PM₁₀ Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (μm).
- BSP British standard pipe
- NT Not tested or results not required
- NA Not applicable
- D_{50} 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
- D Duct diameter or equivalent duct diameter for rectangular ducts
- < Less than
- > Greater than
- ≥ Greater than or equal to
- Approximately
 CEM Continuous Emission Monitoring
- CEMS Continuous Emission Monitoring System
- DER WA Department of Environment & Regulation
- DECC Department of Environment & Climate Change (NSW)
- EPA Environment Protection Authority
- FTIR Fourier Transform Infra Red
- NATA National Association of Testing Authorities
- RATA Relative Accuracy Test Audit
- AS Australian Standard
- USEPA United States Environmental Protection Agency
- Vic EPA Victorian Environment Protection Authority
- ISC Intersociety committee, Methods of Air Sampling and Analysis
- ISO International Organisation for Standardisation
- APHA American public health association, Standard Methods for the Examination of Water and Waste Water
- CARB Californian Air Resources Board

X-ray Diffractometry

- TM Test Method
- OM Other approved method
- CTM Conditional test method
- VDI Verein Deutscher Ingenieure (Association of German Engineers)
- NIOSH National Institute of Occupational Safety and Health

XRD

Address (Head Office) 7 Redland Drive MITCHAM VIC 3132

Postal Address 52 Cooper Road COCKBURN CENTRAL WA 6164 Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 <u>www.ektimo.com.au</u> ABN: 86 600 381 413

Report Number R006468-1

Emission Testing ERM Australia Pty Ltd, Docklands

This document is confidential and is prepared for the exclusive use of ERM Australia Pty Ltd and those granted permission by ERM Australia Pty Ltd.

Document Information

Client Name:	ERM Australia Pty Ltd
Report Number:	R006468-1
Date of Issue:	27 September 2018
Attention:	lain Cowan
Address:	Level 3, Tower 3, World Trade Centre, 18-38 Siddeley Street DOCKLANDS VIC 3005
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	R006468-1[DRAFT]	21/09/2018	ADo	ADa	SCo
Final Report	R006468-1	27/09/2018	ADo	ADa	SCo
Amend Report	-	-	-	-	-

Template Version: 080818

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	-	-	-	-

Report Authorisation

Aaron Davis

Client Manager

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Table of Contents

1	Executive Summary	4
2	POEO Results Comparison	4
3	Results	5
3.1	EPA 3 – Hammer Mill	. 5
4	Plant Operating Conditions	8
5	Test Methods	8
6	Quality Assurance/Quality Control Information	8
7	Definitions	9

Ektimo was engaged by ERM Australia Pty Ltd to perform emission testing at Sell and Parker, Kings Park NSW. Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 3 - Hammer Mill	11 September 2018	Total solid particles, type 1 and 2 substances, total fluoride, hydrogen chloride, chlorine, sulfur trioxide and sulfuric acid mist, hydrogen sulfide, nitrogen oxides, carbon dioxide, oxygen

* Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP

Plant operating conditions have been noted in the report.

2 POEO RESULTS COMPARISON

PROTECTION OF THE ENVIRONMENT OPERATIONS (CLEAN AIR) REGULATION 2010 - SCHEDULE 4						
GROUP 6						
Air Impurity	POEO Limit	Units	Detected Values			
			11/09/2018			
Total Solid Particles	50	mg/m ³	6.8			
Nitrogen dioxide (NO ₂) or Nitric oxide (NO) or both, as NO ₂ equivalent	350	mg/m ³	<3			
Sulfuric acid mist (H_2SO_4) or sulfur trioxide (SO ₃) or both, as SO ₃ equivalent	100	mg/m ³	<0.008			
Hydrogen sulfide	5	mg/m ³	<0.009			
Fluorine (F ₂) and any compound containing fluorine, as total fluoride (HF equivalent)	50	mg/m ³	<0.01			
Chlorine (Cl ₂)	200	mg/m ³	<0.01			
Hydrogen chloride (HCl)	100	mg/m ³	<0.01			
Type 1 substances (in aggregate)	NA	NA	≤0.011			
Type 1 substances and Type 2 substances (in aggregate)	1	mg/m ³	≤0.0076			
Cadmium (Cd)	0.2	mg/m ³	0.00047			
Mercury (Hg)	0.2	mg/m ³	0.0034			

Note: All analytes highlighted in green are below the Group 6 - Protection of the Environment Operations (Clean Air) Regulation 2010 limits.

Date

3 RESULTS

3.1 EPA 3 – Hammer Mill

11/09/2018

ReportR006468-1Licence No.11555Ektimo StaffAaron Davis / SteveProcess ConditionsPlease refer to clien		Stack ID Location State	EPA3 - Ham Kings Park NSW	mer Mill	180831
Sampling Plane Details					
Sampling plane dimensions	59	5 mm			
Sampling plane area		78 m²			
Sampling port size, number		SP (x2)			
Access & height of ports	Elevated work platform	. ,			
Duct orientation & shape		l Circular			
Downstream disturbance	Exit cone	e 3 D			
Upstream disturbance	Bend	18D			
No. traverses & points sampled		2 8			
Sample plane compliance to AS4323.1	lo	leal			
Comments					
An exit cone has been installed on the stack	exit which measures 440mr	n in diameter			
Stack Parameters					
Moisture content, %v/v	3.1				
Gas molecular weight, g/g mole	28.6 (wet)		29.0 (dry)		
Gas density at STP, kg/m ³	1.28 (wet)		29.0 (dry) 1.29 (dry)		
	1.20 (wei)		<u></u> (ury)		
Gas Flow Parameters					
Flow measurement time(s) (hhmm)	0945 & 1115	5			
Temperature, °C	31				
Temperature, K	304				
Velocity at sampling plane, m/s	25				
Velocity at exit plane, m/s	46				
Volumetric flow rate, actual, m ³ /s	7				
Volumetric flow rate (wet STP), m ³ /s	6.3				
Volumetric flow rate (dry STP), m ³ /s	6.1 29000				
Mass flow rate (wet basis), kg/hour	29000				
	Average	Min	imum	Maxii	mum
Gas Analyser Results	Average				
Gas Analyser Results Sampling time	Average 1007 - 1110		- 1110	1007 -	1110
	•		- 1110	1007 -	- 1110
	•			1007 - Concentration	· 1110 Mass Rate
	e 1007 - 1110	1007			
Sampling time	e 1007 - 1110 Concentration Mass Rate	1007 Concentration	Mass Rate	Concentration	Mass Rate
Sampling time	 1007 - 1110 Concentration Mass Rate g/m³ g/min <3 <1 Concentration 	1007 Concentration mg/m ³ <3 Concentration	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂)	2 1007 - 1110 Concentration Mass Rate mg/m ³ g/min <3 <1 Concentration %	1007 Concentration mg/m³ <3 Concentration %	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration %	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 	1007 Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂)	2 1007 - 1110 Concentration Mass Rate mg/m ³ g/min <3 <1 Concentration %	1007 Concentration mg/m³ <3 Concentration %	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration %	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re:	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re:	Mass Rate g/min <1 sults	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re:	Mass Rate g/min <1 sults 3-1109	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m³ <3 Concentration % <0.1 20.9 Re: 1005	Mass Rate g/min <1 sults 2-1109	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration	Mass Rate g/min <1 sults D-1109 Mass Rate	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults 3-1109 Mass Rate g/min <0.003 sults 3-1110	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sampling time Sulfur trioxide and/or Sulfuric acid (as SO3)	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sampling time Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.008	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters Sampling time, min	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.008	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters Sampling time, min Isokinetic rate, %	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters Sampling time, min	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.008	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min

Client

ERM

NATA

Date	11/09/2018	Client	ERM	
Report	R006468-1	Stack ID	EPA3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Steven Weekes	State	NSW	
Process Conditions	Please refer to client records.			180831
Sampling Diana Dat				
Sampling Plane Det				
Sampling plane dimens	sions	595 mm		
Sampling plane area		0.278 m²		
Sampling port size, num	nber	4" BSP (x2)		
Access & height of ports	Elevated	work platform 20 m		
Duct orientation & shap	e	Vertical Circular		
Downstream disturband	ce	Exit cone 3 D		
Upstream disturbance		Bend 8 D		
No. traverses & points s	ampled	28		
Sample plane compliar	ice to AS4323.1	ldeal		
Comments				
An exit cone has been in	nstalled on the stack exit which mea	sures 440mm in diameter		
Stack Parameters				
Moisture content, %v/v		3.1		
Gas molecular weight, g	g/g mole	28.6 (wet)	29.0 (dry)	
Gas density at STP, kg/r	n³	1.28 (wet)	1.29 (dry)	

Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)
Gas Flow Parameters		
Flow measurement time(s) (hhmm)	1550 & 1705	
Temperature, °C	33	
Temperature, K	306	
Velocity at sampling plane, m/s	25	
Velocity at exit plane, m/s	46	
Volumetric flow rate, actual, m ³ /s	7	
Volumetric flow rate (wet STP), m ³ /s	6.3	
Volumetric flow rate (dry STP), m ³ /s	6.1	
Mass flow rate (wet basis), kg/hour	29000	

Isokinetic Results	Results
Sampling time	1557-1702
	Concentration Mass Rate
Solid Particles	6.8 2.5
Antimony	<0.003 <0.001
Arsenic	<0.001 <0.0005
Beryllium	<0.0007 <0.0003
Cadmium	0.00047 0.00017
Chromium	0.00068 0.00025
Cobalt	<0.0005 <0.0002
Lead	0.0018 0.00065
Manganese	<0.002 <0.0006
Mercury	0.0034 0.0013
Nickel	<0.0008 <0.0003
Selenium	<0.004 <0.001
Tin	<0.001 <0.0005
Vanadium	<0.0008 <0.0003
Type 1 & 2 Substances	
Upper Bound	
Total Type 1 Substances	≤0.011 ≤0.0039
Total Type 2 Substances	≤0.01 ≤0.0037
Total Type 1 & 2 Substances	≤0.021 ≤0.0076
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	99
Velocity difference, %	-1

NA

Date	11/09/2018		Client	ERM	
Report	R006468-1		Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555		Location	Kings Park	
Ektimo Staff	Aaron Davis / Steven Weeke	es	State	NSŴ	
Process Conditions	Please refer to client record	ls.			180831
Sampling Plane De	taila				
Sampling plane dimen		595	mm		
1 01	510115	0.278			
Sampling plane area					
Sampling port size, nu		4" BSF	. ,		
Access & height of port		Elevated work platform 20 m			
Duct orientation & sha	pe	Vertical	Circular		
Downstream disturbar	ice	Exit cone	3 D		
Upstream disturbance		Bend	8 D		
No. traverses & points	sampled	2	8		
Sample plane complia	nce to AS4323.1	lde	al		
Comments					
				_	
An exit cone has been	installed on the stack exit whic	n measures 440mm	in diametei	·	
Stack Parameters					
Moisture content, %v/v		3			
Gas molecular weight,	g/g mole	28.6 (wet)		29.0 (dry)	
Gas density at STP, kg		1.28 (wet)		1.29 (dry)	

Gas Flow Parameters		
Flow measurement time(s) (hhmm)	0945 & 1115	
Temperature, °C	31	
Temperature, K	304	
Velocity at sampling plane, m/s	25	
Velocity at exit plane, m/s	46	
Volumetric flow rate, actual, m3/s	7	
Volumetric flow rate (wet STP), m ³ /s	6.3	
Volumetric flow rate (dry STP), m ³ /s	6.2	
Mass flow rate (wet basis), kg/hour	29000	

Isokinetic Results	Res	ults	
Sampling time	1003-	1110	
	Concentration mg/m³	Mass Rate g/min	
Total fluoride (as HF)	<0.01	<0.005	
Chloride (as HCI)	<0.01	<0.005	
Chlorine	<0.01	<0.005	
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	102		
Velocity difference, %	<1		

NATA

4 PLANT OPERATING CONDITIONS

Unless otherwise stated, the plant operating conditions were normal at the time of testing. See ERM Australia Pty Ltd's records for complete process conditions.

5 TEST METHODS

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Ad	credited
				Sampling	Analysis
Sample plane criteria	NSW TM-1	NA	-	✓	NA
Flow rate, temperature and velocity	NSW TM-2	NA	8%, 2%, 7%	✓	NA
Moisture content	NSW TM-22	NSW TM-22	8%	✓	✓
Carbon dioxide	NSW TM-24	NSW TM-24	13%	✓	✓
Nitrogen oxides (NO _x)	NSW TM-11	NSW TM-11	12%	~	✓
Oxygen	NSW TM-25	NSW TM-25	13%	✓	✓
Hydrogen sulfide	NSW TM-5	NSW TM-5	not specified	✓	\checkmark^{\dagger}
Chlorine	NSW TM-7	Ektimo 235	14%	✓	\checkmark^{\dagger}
		ALS Method QWI-EN/EA144	с		
Total fluoride	NSW TM-9	&	17%	~	✓ ^{#,†}
		Ektimo 235			
Hydrogen chloride	NSW TM-8	Ektimo 235	14%	✓	\checkmark^{\dagger}
Particulate matter	NSW TM-15	NSW TM-15	5%	✓	✓
Sulfuric acid mist (including sulfur trioxide)	NSW TM-3	Ektimo 235	16%	✓	\checkmark^{\dagger}
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse	15%	✓	√‡
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse	15%	√	√‡
					180

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

Analysis performed by Ektimo, NATA accreditation number 14601.
 Laboratory analytical results were reported on 17 September 2018 in report number R006468-H2S
 Laboratory analytical results were reported on 20 September 2018 in report number R006468-SOx_Halides_Halogens

- Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 20 September 2018 in report number 200664
- [#] Analysis (solid fluoride only) performed by Australian Laboratory Services Pty Ltd, NATA accreditation number 825. Results were reported to Ektimo on 21 September 2018 in report number EN1805880

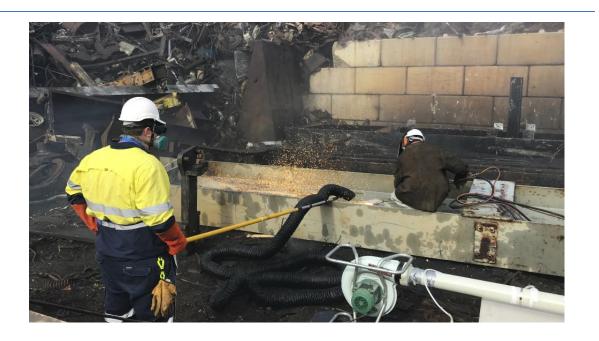
6 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

The following symbols and abbreviations may be used in this test report: Approximately Less than < > Greater than ≥ Greater than or equal to APHA American public health association, Standard Methods for the Examination of Water and Waste Water AS Australian Standard BSP British standard pipe CARB Californian Air Resources Board CEM **Continuous Emission Monitoring** CEMS **Continuous Emission Monitoring System** CTM Conditional test method D Duct diameter or equivalent duct diameter for rectangular ducts **D**50 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D₅₀ of that cyclone and less than the D₅₀ of the preceding cyclone. DECC Department of Environment & Climate Change (NSW) Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter. DWER Department of Water and Environmental Regulation EPA **Environment Protection Authority** FTIR Fourier Transform Infra Red ISC Intersociety committee, Methods of Air Sampling and Analysis ISO International Organisation for Standardisation NA Not applicable NATA National Association of Testing Authorities NIOSH National Institute of Occupational Safety and Health NT Not tested or results not required OM Other approved method ΟU The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response). PM10 Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (μ m). Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less PM_{2.5} than approximately 2.5 microns (μ m). PSA Particle size analysis RATA **Relative Accuracy Test Audit** Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry STP basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified. TM **Test Method** TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives. USEPA United States Environmental Protection Agency VDI Verein Deutscher Ingenieure (Association of German Engineers) Vic EPA Victorian Environment Protection Authority VOC Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.


Address (Head Office) 7 Redland Drive MITCHAM VIC 3132

Postal Address 52 Cooper Road COCKBURN CENTRAL WA 6164 Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 <u>www.ektimo.com.au</u> ABN: 86 600 381 413

Report Number R007718

Emission Testing ERM Australia Pty Ltd

Document Information

Client Name:	ERM Australia Pty Ltd
Report Number:	R007718
Date of Issue:	5 September 2019
Attention:	lain Cowan
Address:	Level 3, Tower 3, World Trade Centre, 18-38 Siddeley Street Docklands VIC 3005
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	R007718[DRAFT]	19/07/2019	DBu	RCo	ADa
Final Report	R007718	05/09/2019	DBu	RCo	ADa
Amend Report	-	-	-	-	-

Template Version: 180619

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	-	-	-	-

Report Authorisation

Ryan Collins

Client Manager

Aaron Davis Ektimo Signatory

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Table of Contents

1	Executive Summary	4
2	Approach to Sampling and Analysis	4
3	Results	5
3.	1 Scrap Metal Cutting Area, Test 1	5
3.	2 Scrap Metal Cutting Area, Test 2	7
4	Plant Operating Conditions	Э
5	Test Methods	9
6	Quality Assurance/Quality Control Information	Э
7	Definitions	0
8	Appendix 1: Safe Work Australia Report1	1

Monitoring was performed at the Sell & Parker facility, 45 Tattersall Rd, Blacktown NSW as follows:

Location	Test Date	Test Parameters*
Scrap metal cutting area	12 June 2019	Metals (total) plus copper oxide, iron oxide and manganese oxide Solid particles Nitrogen dioxide and nitric oxide (as nitrogen dioxide) Odour Crystalline phases in solids

* Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP (except odour wet – STP).

Plant operating conditions have been noted in the report.

Sell & Parker process scrap metal at their Blacktown Plant. Part of the process involves cutting large pieces of scrap metal (eg beams, pipes, rail undercarriage parts) into manageable sizes; approximately 800mm.

The cutting operation is conducted in an outdoors open area, by hand, using an oxy-cutter.

A fume extraction system was fabricated and used manually to capture fumes generated by the oxy-cutting. The captured fumes were exhausted through a rigid PVC duct allowing for sampling according to NATA and NSW EPA approved methods.

Observation of the operation of the fume extraction system indicated that the majority of generated fume was captured.

2 APPROACH TO SAMPLING AND ANALYSIS

Sampling was conducted from the exhaust duct of the sampling system during two separate and consecutive testing periods. Each testing period consisted of oxy-cutting operations on the same large mild steel beam and included occasional short periods of non-cutting time as the operator shifted to different sections of the same beam.

The sampling system was operated according to the following plan:

- Combustion gases were measured continuously throughout each of the two testing periods, both during and in between cutting activities;
- Metals were sampled during each of the two test periods only when oxy-cutting was actually taking place. That is, the sampling system was paused whenever cutting was not taking place.
- Odour sampling was conducted only when oxy-cutting was actually taking place (during Test 2).

Particulate metals samples were divided into two equal portions with half submitted for analysis according to NSW TM 12, 13 and 14 and the other half submitted for X-Ray Diffractometry (XRD) to determine crystalline phases of solid emissions.

Concentrations and mass emission rates of metal oxides have been determined by expressing elemental concentrations of copper, manganese and iron as their equivalent typical oxide.

3 RESULTS

Combustion Gases

Nitrogen oxides (as NO₂)

3.1 Scrap Metal Cutting Area, Test 1

Date Report	12/06/2019 R007718			Client Stack ID	ERM Australia F Sell and Parker,	Pty Ltd Oxy cutting proces	
Licence No.	11555			Location	Kings Park		
Ektimo Staff	Ryan Collins, Daniel De S	Sensi		State	NSW		
Process Conditions	Please refer to client rec	ords.					19052
Comulius Diana Dataila							
Sampling Plane Details			100				
Sampling plane dimension	IS			mm or?			
Sampling plane area				85 m²			
Sampling port size, numbe	er		1" ho	()			
Access & height of ports			Ground level				
Duct orientation & shape			Horizontal				
Downstream disturbance				22 D			
Upstream disturbance			Junction				
No. traverses & points sar			1				
Sample plane compliance	to AS4323.1		Id	eal			
Stack Parameters							
Moisture content, %v/v			0.83				
Gas molecular weight, g/g	mole		28.9 (wet)		29.0 (dry)		
Gas density at STP, kg/m ³			1.29 (wet)		1.29 (dry)		
Gas Flow Parameters							
Flow measurement time(s	s) (hhmm)		1038 & 1238				
Temperature, °C			31				
Temperature, K			304				
Velocity at sampling plane	e. m/s		14				
Volumetric flow rate, actu			0.11				
Volumetric flow rate (wet			0.1				
Volumetric flow rate (dry			0.1				
Mass flow rate (wet basis)			470				
Velocity difference, %	// ···· // ··· / ···		2				
Gas Analyser Results		Avera	ge	Min	iimum	Maxim	um
	Sampling time	1101 - 1	.221	1101	1 - 1221	1101 - 12	221
		Concentration	Mass Rate	Concentration	Mass Rate	Concentration	Mass Rate

g/min

0.033

mg/m³

<4

g/min

<0.02

mg/m³

88

g/min

0.53

mg/m³

5.4

Date	12/06/2019	Client	ERM Australia Pty Ltd
Report	R007718	Stack ID	Sell and Parker, Oxy cutting process
Licence No.	11555	Location	Kings Park
Ektimo Staff	Ryan Collins, Daniel De Sensi	State	NSW
Process Conditions	Please refer to client records.	State	190528
Trocess conditions			19020
Isokinetic Results		Te	est 1
	Samplingtime	1101	L-1218
		Concentration mg/m³	Mass Rate g/min
Solid Particles		140	0.82
Aluminium		0.27	0.0016
Antimony		0.011	0.000064
Arsenic		0.018	0.00011
Barium		0.39	0.0024
Beryllium		<0.0005	<0.000003
Cadmium		0.0011	0.0000066
Calcium		0.17	0.001
Chromium		0.0092	0.000056
Cobalt		0.0018	0.000011
Copper		0.049	0.00029
Iron		36	0.21
Lead		0.029	0.00017
Lithium		< 0.0006	<0.000004
Magnesium		<0.2	<0.001
Manganese		0.62	0.0037
Mercury		< 0.0004	<0.000002
Molybdenum		0.0053	0.000032
Nickel		0.011	0.000064
Phosphorus		0.12	0.0007
Potassium		<0.1	<0.0009
Selenium		<0.005	<0.0003
Silver		<0.005	<0.000004
Sodium		<0.0008 0.15	0.00088
Thallium		<0.002	<0.00001
Tin		<0.002 0.0053	0.000032
Zinc		1.8	0.000032
Copper (II) oxide		0.061	0.00037
Manganese (IV) oxide		0.99	0.0059
Iron (II,III) oxide		150	0.89
Isokinetic Sampling Para	neters		
Sampling time, min		59	
Isokinetic rate, %		92	
Velocity difference, %		2	

3.2 Scrap Metal Cutting Area, Test 2

Date	12/06/2019	Client	ERM Australia Pty Ltd	
Report	R007718	Stack ID	Sell and Parker, Oxy cutting process	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Ryan Collins, Daniel De Sensi	State	NSW	
Process Conditions	Please refer to client records.			190528
Sampling Plane Deta	ils			
Sampling plane dimension	ons	100 mm		
Sampling plane area		0.00785 m²		
Sampling port size, num	ber	1" hole (x1)		
Access & height of ports	;	Ground level 1 m		
Duct orientation & shap	be	Horizontal Circular		
Downstream disturbance		Exit 22 D		
Upstream disturbance		Junction 8 D		
No. traverses & points sampled		1 1		
Sample plane compliance	e to AS4323.1	Ideal		
Stack Parameters				
Moisture content, %v/v		1.5		
Gas molecular weight, g	/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m	3	1.28 (wet)	1.29 (dry)	
Gas Flow Parameters	i			
Flow measurement time	e(s) (hhmm)	1334 & 1413		
Temperature, °C		30		
Temperature, K		303		
Velocity at sampling pla	ne, m/s	14		
Volumetric flow rate, ac	tual, m³/s	0.11		
Volumetric flow rate (w	et STP), m³/s	0.1		
Volumetric flow rate (dr	y STP), m³/s	0.1		
Mass flow rate (wet bas	is), kg/hour	470		
Velocity difference, %		<1		

Gas Analyser Results		Aver	age	Minir	num	Maxii	num
	Sampling time	1328 -	1436	1328 -	1436	1328 -	1436
Combustion Gases		Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.02	<4	<0.02	8.2	0.049

Odour	Aver	age	Tes	st 1	Tes	t 2
Sampling time			1317 -	1325	1419 -	1427
	Concentration ou	Mass Rate oum³/min	Concentration ou	Mass Rate oum ³ /min	Concentration ou	Mass Rate oum ³ /min
Results	2300	14000	2400	15000	2100	13000
Lower uncertainty limit	1500		1100		950	
Upper uncertainty limit	3300		5300		4500	
Hedonic tone			mildly un	pleasant	mildly un	pleasant
Odour character			Burnt, co	mbustion	Burnt, co	mbustion
Analysis date & time			13/06/19,	1100-1230	13/06/19, 1	1100-1230
Holding time			22 h	ours	21 h	ours
Dilution factor			1	L	1	
Bag material			Nalo	phan	Nalo	ohan
Hedonic tone			0)	0	
Odour character			0)	0	
Butanol threshold (ppb)	37.	.7				
Laboratory temp (°C)	21.8	85				
Last calibration date	October	r 2018				

Date	12/06/2019	Client	ERM Australia Pty Ltd
Report	R007718	Stack ID	Sell and Parker, Oxy cutting process
Licence No.	11555	Location	Kings Park
Ektimo Staff	Ryan Collins, Daniel De Sensi	State	NSW
Process Conditions	Please refer to client records.		190528
Isokinetic Results		Res	sults
	Sampling time	1337	2-1410
		Concentration mg/m ³	Mass Rate g/min
Solid Particles		220	1.3
Aluminium		0.28	0.0017
Antimony		< 0.01	<0.00007
Arsenic		0.033	0.0002
Barium		0.5	0.003
Beryllium		< 0.001	<0.00008
Cadmium		<0.001	<0.000007
Calcium		<0.4	<0.003
Chromium		0.013	0.000076
Cobalt		0.0033	0.00002
Copper		0.051	0.00031
Iron		54	0.33
Lead		0.034	0.0002
Lithium		<0.001	<0.00009
Magnesium		<0.3	<0.002
Manganese		0.92	0.0055
Mercury		<0.0009	<0.000005
Molybdenum		0.0084	0.00005
Nickel		0.016	0.000094
Phosphorus		0.15	0.00091
Potassium		<0.3	<0.002
Selenium		<0.01	<0.002
Silver		<0.01	<0.00009
Sodium		<0.001	<0.000
Thallium		<0.3	<0.002
Tin		<0.005	
			<0.00003 0.0096
Zinc		1.6	0.000
Copper (II) oxide		0.063	0.00038
Manganese (IV) oxide		1.5	0.0088
Iron (II,III) oxide		230	1.4
Isokinetic Sampling Paran	neters		
Sampling time, min		30	
Isokinetic rate, %		104	
Velocity difference, %		<1	

4 PLANT OPERATING CONDITIONS

Unless otherwise stated, the plant operating conditions were normal at the time of testing. The manual oxycutting operator performed cutting activities on one large mild steel beam throughout the testing programme.

See ERM Australia Pty Ltd's records for complete process conditions.

5 TEST METHODS

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Ac	credited
				Sampling	Analysis
Sample plane criteria	NSW TM-1	NA	NA	✓	NA
Flow rate, temperature and velocity	NA	NSW TM-2	8%, 2%, 7%	NA	✓
Moisture content	NSW TM-22	NSW TM-22	19%	\checkmark	✓
Carbon dioxide	NSW TM-24	NSW TM-24	13%	\checkmark	✓
Nitrogen oxides	NSW TM-11	NSW TM-11	12%	\checkmark	✓
Dxygen	NSW TM-25	NSW TM-25	13%	✓	✓
Solid particles (total)	NSW TM-15	NSW TM-15	5%	✓	✓
Total (gaseous and particulate) metals and metallic compounds	NSW TM-12, NSW TM-13, NSW TM 14	Envirolab inhouse Metals-006, Metals-022, Metals- 021	15%	\checkmark	\checkmark^{\ddagger}
Гуре 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse Metals-006, Metals-022, Metals- 021	15%	~	√ [‡]
Гуре 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse Metals-006, Metals-022	15%	\checkmark	\checkmark^{\ddagger}
Odour	NSW OM-7	NSW OM-7 [¥]	Refer to results	✓	~
Odour Characterisation	NA	direct observation	NA	NA	×
Crystalline phases in solids	USEPA 29	Safe Work NSW Inhouse (WCA.112 modified)	NA	×	× b

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

- [‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 28 June 2019 in report number 220106
- * Odour analysis conducted at the Ektimo NSW laboratory by forced choice olfactometry. Results were reported to Ektimo on 13 June 2019 in report number OV-00108
- Analysis performed by WorkCover New South Wales. NATA Accreditation does not cover the performance of this service. Results were reported to Ektimo on 9 July 2019 in Laboratory Reference 2019-2896

6 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

7 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio, dry or wet basis
~	Approximately
<	Less than
>	Greater than
≥	Greater than or equal to
АРНА	American public health association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BSP	British standard pipe
CARB	Californian Air Resources Board
CEM	Continuous Emission Monitoring
CEMS	Continuous Emission Monitoring System
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D ₅₀	'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency
	ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The
	D ₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of
	the particles with a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the
	preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination.
	This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections,
	junctions, direction changes or changes in pipe diameter.
DWER	Department of Water and Environmental Regulation (WA)
DEHP	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FTIR	Fourier Transform Infra-red
ISC	Intersociety committee, Methods of Air Sampling and Analysis
ISO	International Organisation for Standardisation
Lower Bound	Defines values reported below detection as equal to zero.
Medium Bound	Defines values reported below detection are equal to half the detection limit.
NA	Not applicable
NATA	National Association of Testing Authorities
NIOSH	National Institute of Occupational Safety and Health
NT	Not tested or results not required
OM	Other approved method
OU	The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the
00	number of dilutions to arrive at the odour threshold (50% panel response).
PM ₁₀	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than
1 10110	approximately 10 microns (µm).
PM _{2.5}	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than
1 1012.5	approximately 2.5 microns (µm).
PSA	Particle size analysis
RATA	Relative Accuracy Test Audit
Semi-guantified VOCs	Unknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of
Semi-quantineu vocs	the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality
	exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak
	with the nearest suitable compound in the analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at
JIF	discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
ТМ	Test Method
	The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its
TOC	derivatives.
USEPA VDI	United States Environmental Protection Agency Versin Deutscher Ingenieure (Association of German Engineers)
	Verein Deutscher Ingenieure (Association of German Engineers)
Vic EPA VOC	Victorian Environment Protection Authority Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a
VUC	corresponding volatility under the particular conditions of use. These compounds may contain oxygen,
	nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid,
XRD	metallic carbides and carbonate salts.
Upper Bound	X-ray Diffractometry Defines values reported below detection are equal to the detection limit.
opper bound	beines values reported below detection are equal to the detection limit.

8 APPENDIX 1: SAFE WORK AUSTRALIA REPORT

Analysis of Crystalline Phases in Solids

Reference Number	Ektimo Sample ID	Sample Location	Crystalline Phases Detected
2019-2896-1	N8715	Scrap metal cutting area Test 1.	Magnetite: Fe₃O₄
2019-2896-2	N9370	Scrap metal cutting area Test 2.	Magnetite: Fe₃O₄
2019-2896-3	N9371	Field Blank	No crystalline phase detected

Lab. Reference: 2019-2896

RyanCollins Ektimo 7RedlandDrive MITCHAM VIC 3132

SAMPLE ORIGIN: Job R007718

DATE OF INVESTIGATION: Not Stated

DATE RECEIVED: 24/06/19

ANALYSIS REQUIRED:

Crystalline Phases

RESULTS OF ANALYSIS

See attached sheet(s) for sample description and test results.

For all administrative or account details please contact Jeanine Wells.

Increment and total pagination can be seen on the following pages.

hereeuo

Martin Mazereeuw Manager

m

Date: 9/07/19

Report of Analysis for Crystalline Phases in Solids

Requested by: Ryan Collins

Sample received: 24-Jun-2019

Organisation: Ektimo

Reference number	Sample ID (Type)	Crystalline Phases Detected (qualitative)
2019-2896-1	N8715	Magnetite: Fe ₃ O ₄
	(filter)	
2019-2896-2	N9370	Magnetite: Fe ₃ O ₄
	(filter)	ан сайтаан айсан айс айсан айсан айс
2019-2896-3	N9371	No crystalline phase detected.
	(filter)	

Comments: The filter samples were analysed as received.

Method Description : Qualitative Identification of Minerals and Other Inorganic Crystalline Substances in Bulk Solids by X-Ray Diffractometry. Method No. : WCA.112 modified

Detection Limit: 1% - 10% depending on matrix and phase constituents.

2019-2896.xlsx

Page 2 of 2

TestSafe Australia – Chemical Analysis Branch ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

REPORT NUMBER R008184

Annual Emission Testing Sell and Parker, Kings Park

www.ektimo.com.au

Document Information

Client Name:	Sell and Parker
Report Number:	R008184
Date of Issue:	11 October 2019
Attention:	Howard Richards
Address:	46 Tattersall Road Kings Park NSW 2148
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Aaron Davis Client Manager

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Sell and Parker and those granted permission by Sell and Parker. The report shall not be reproduced except in full.

Table of Contents

1	E	Executive Summary	4
	1.1	Background	4
	1.2	Project objectives	
	1.3	Licence Comparison	4
2	F	Results	5
	2.1	EPA 3 – Hammer Mill Stack	5
3	F	Plant Operating Conditions	7
4	٦	Fest Methods	7
5	(Quality Assurance/Quality Control Information	7
6	[Definitions	8

1 EXECUTIVE SUMMARY

1.1 Background

Ektimo was engaged by Sell and Parker to perform emission testing at their Kings Park plant. Testing was carried out in accordance with Environmental Licence 11555.

1.2 Project objectives

The objectives of the project were to conduct a monitoring programme to quantify emissions from one discharge point to determine whether it was in compliance with Sell and Parker's Environmental licence and the *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6)

Location	Test Date	Test Parameters*
EPA 3 – Hammer Mill Stack	26 September 2019	Solid particles, type 1 and 2 substances

* Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by:

- The *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).
- the NSW EPA as per licence 11555 (last amended on 10 December 2018).

Monitoring results are summarized in the following table:

Location	Pollutant	Units	POEO Reg Limit (Gp 6)	Environment Protection Licence Limit	Detected values
	Solid particles	mg/m ³	20	20	3.7
	Type 1 substances in aggregate (Sb, As, Cd, Pb, Hg)	mg/m ³	-	-	≤0.017
EPA 3 Hammer Mill	Type 1 and 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, N, Se, Sn, V)	mg/m ³	1	1	≤0.042
	Cadimum (Cd)	mg/m ³	0.2	-	<0.0009
[Mercury (Hg)	mg/m ³	0.2	-	0.0011

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

2 RESULTS

2.1 EPA 3 – Hammer Mill Stack

	26/09/2019	Client	Sell and Parker	
Report	R008184	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Hamish Proust	State	NSW	
Process Conditions	Normal operating conditions for	Hammer Mill		19090
Sampling Plane Det	ails			
Sampling plane din	nensions	595 mm		
Sampling plane are	a	0.278 m ²		
Sampling port size,	number	4" BSP (x2)		
Access & height of p	oorts Elevate	d work platform 20 m		
Duct orientation &	shape	Vertical Circular		
Downstream disturl	bance	Exit cone 3 D		
Upstream disturbar	nce	Bend 8 D		
No. traverses & poir	nts sampled	28		
Comple plane comp	bliance to AS4323.1	Ideal		
Comments An exit cone has be	en installed on the stack which meas sumed to be composed of dry air and	ures 440mm in diameter		
Comments An exit cone has be The discharge is as:	en installed on the stack which meas	ures 440mm in diameter		
Comments An exit cone has be The discharge is as Stack Parameters	en installed on the stack which meas sumed to be composed of dry air and	ures 440mm in diameter moisture		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, %	en installed on the stack which meas sumed to be composed of dry air and śv/v	ures 440mm in diameter moisture 2	20.0 (d-)	
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig	en installed on the stack which meas sumed to be composed of dry air and Sv/v ght, g/g mole	ures 440mm in diameter moisture 2 28.7 (wet)	29.0 (dry)	
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig	en installed on the stack which meas sumed to be composed of dry air and Sv/v ght, g/g mole	ures 440mm in diameter moisture 2	29.0 (dry) 1.29 (dry)	
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, %	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³	ures 440mm in diameter moisture 2 28.7 (wet)		
Comments An exit cone has be The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP,	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³ rs	ures 440mm in diameter moisture 2 28.7 (wet)		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Paramete Flow measurement	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³ rs	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet)		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³ rs	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm)	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, i Gas Flow Paramete	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm) g plane, m/s	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36 309		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at samplin; Volumetric flow rate	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36 309 26		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at sampling	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36 309 26 7.1		

Date	26/09/2019	Client	Sell and Parker	
Report	R008184	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Hamish Proust	State	NSW	
Process Conditions	Normal operating conditions for Ham	mer Mill		190909
Isokinetic Results		Res	ults	
isonalie ne ne suns	Sampling time			
		Concentration	Mass Rate	
		mg/m³	g/min	
Solid Particles		3.7	1.4	
Antimony		<0.009	<0.003	
Arsenic		<0.004	<0.001	
Beryllium		<0.001	<0.0004	
Cadmium		<0.0009	<0.0003	
Chromium		<0.001	<0.0005	
Cobalt		<0.001	<0.0004	
Lead		0.0033	0.0012	
Manganese		<0.004	<0.001	
Mercury		0.0011	0.0004	
Nickel		< 0.003	<0.001	
Selenium		<0.009	<0.003	
Tin		< 0.004	<0.001	
Vanadium		<0.002	<0.0008	
Type 1 & 2 Substances				
Upper Bound				
Total Type 1 Substances	s	≤0.017	≤0.0065	
Total Type 2 Substances	s	<0.02	<0.009	
Total Type 1 & 2 Substa	nces	≤0.042	≤0.016	
Isokinetic Sampling Parar	neters			
Sampling time, min		64		
Isokinetic rate, %		93		
Velocity difference, %		<1		

3 PLANT OPERATING CONDITIONS

Normal operating conditions for Hammer Mill

4 TEST METHODS

All sampling and analysis will be performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Accredited	
				Sampling	Analysis
Sample plane criteria	NSW TM-1	NA	NA	✓	NA
Flow rate, temperature and velocity	NA	NSW TM-2	8%, 2%, 7%	NA	✓
Moisture content	NSW TM-22	NSW TM-22	8%	✓	✓
Molecular weight	NA	NSW TM-23	not specified	NA	✓
Solid particles (total)	NSW TM-15	NSW TM-15 ⁺⁺	5%	✓	✓
Total (gaseous and particulate) metals and metallic compounds	NSW TM-12, NSW TM-13, NSW TM-14	Envirolab inhouse Metals-006, Metals-022, Metals-021	15%	~	✓ [‡]
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse Metals-006, Metals-022, Metals-021	15%	✓	√ ‡
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse Metals-006, Metals-022	15%	~	✓ [‡]

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

⁺⁺ Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.

Analysis performed by Envirolab, NATA accreditation number 2901.
 Results were reported to Ektimo on 8 October 2019 in report number 227343.

5 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio, dry or wet basis
~	Approximately
<	Less than
>	Greater than
ž	Greater than or equal to
APHA	American public health association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BSP	British standard pipe
CARB	Californian Air Resources Board
CEM	Continuous Emission Monitoring
CEMS	Continuous Emission Monitoring System
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D ₅₀	'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie.
	half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D ₅₀ method
	simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with
	a diameter equal to or greater than the D $_{50}$ of that cyclone and less than the D $_{50}$ of the preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This
	includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions,
	direction changes or changes in pipe diameter.
DWER	Department of Water and Environmental Regulation (WA)
DEHP	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FTIR	Fourier Transform Infra-red
ISC	Intersociety committee, Methods of Air Sampling and Analysis
ISO	International Organisation for Standardisation
Lower Bound	Defines values reported below detection as equal to zero.
Medium Bound	Defines values reported below detection are equal to half the detection limit.
NA	Not applicable
NATA	National Association of Testing Authorities
NIOSH	National Institute of Occupational Safety and Health
NT	Not tested or results not required
OM	Other approved method
OU	The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the
514	number of dilutions to arrive at the odour threshold (50% panel response).
PM10	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
DNA	10 microns (μm).
PM _{2.5}	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
PSA	2.5 microns (μm).
RATA	Particle size analysis
Semi-guantified VOCs	Relative Accuracy Test Audit Unknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the
Semi-quantineu vocs	chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%.
	An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable
	compound in the analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at
511	discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
ТМ	Test Method
TOC	The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its
	derivatives.
USEPA	United States Environmental Protection Agency
VDI	Verein Deutscher Ingenieure (Association of German Engineers)
Velocity Difference	The percentage difference between the average of initial flows and afterflows.
Vic EPA	Victorian Environment Protection Authority
VOC	Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a
	corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and
	other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and
	carbonate salts.
XRD	X-ray Diffractometry
Upper Bound	Defines values reported below detection are equal to the detection limit.
95% confidence interval	Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result
	is outside this range.

Address (Head Office) 7 Redland Drive Mitcham VIC 3132

Postal Address 52 Cooper Road Cockburn Central WA 6164

> Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 www.ektimo.com.au ABN 86 600 381 413

REPORT NUMBER R009653

Annual Emission Testing Sell and Parker, Kings Park

www.ektimo.com.au

Document Information

Client Name:	Sell and Parker
Report Number:	R009653
Date of Issue:	4 September 2020
Attention:	Howard Richards
Address:	46 Tattersall Road Kings Park NSW 2148
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

NATA Accredited Laboratory No. 14601

Aaron Davis Client Manager

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Sell and Parker and those granted permission by Sell and Parker. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation. This does not include comments, conclusions or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Template Version; 030620

Table of Contents

1	E	xecutive Summary	4
	1.1	Background	4
	1.2	Project Objectives	
	1.3	Licence Comparison	4
2	F	Results	5
	2.1	EPA 3 – Hammer Mill Stack	5
3	F	Plant Operating Conditions	7
4	Т	est Methods	7
5	C	Quality Assurance/Quality Control Information	7
6	0	Definitions	8

1 EXECUTIVE SUMMARY

1.1 Background

Ektimo was engaged by Sell and Parker to perform emission testing at their Kings Park facility. Testing was carried out in accordance with the requirements of their Environmental Protection Licence 11555.

1.2 Project Objectives

The objectives of the project were to conduct monitoring to quantify emissions from one discharge point to determine whether it was in compliance with Sell and Parker's Environmental Protection licence and the *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 3 – Hammer Mill Stack	21 August 2020	Solid particles
		Metals type 1 and 2 substances

* Flow rate, velocity, temperature and moisture were also determined as per EPL 11555 requirements

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

1.3 *Licence Comparison*

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by:

- The *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).
- the NSW EPA as per licence 11555 (last amended on 24 April 2020).

Monitoring results are summarised in the following table:

Location	Pollutant	Units	POEO Reg Limit (Gp 6)	Environment Protection Licence Limit	Detected values
	Solid particles	mg/m ³	20	20	<3
	Type 1 substances in aggregate (Sb, As, Cd, Pb, Hg)	mg/m ³	-	-	≤0.015
EPA 3 Hammer Mill	Type 1 and 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, N, Se, Sn, V)	mg/m ³	1	1	≤0.035
	Cadimum (Cd)	mg/m ³	0.2	-	<0.0007
	Mercury (Hg)	mg/m ³	0.2	_	<0.0009

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

2 RESULTS

2.1 EPA 3 – Hammer Mill Stack

Date	21/08/2020	Client	Sell and Parker	
Report	R009653	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Joel Micale-David	State	NSW	
Process Conditions	Normal operating conditions for	Hammer Mill with expansi	on spray chamber system	
	operational during commission	ing.		200805
Sampling Plane Deta				
Sampling plane dim		595 mm		
Sampling plane are		0.278 m ²		
Sampling port size,	number	4" BSP (x2)		
Access & height of p	orts Elevate	d work platform 20 m		
Duct orientation &	shape	Vertical Circular		
Downstream disturt	bance	Exit cone 3 D		
Upstream disturban	ce	Bend 8 D		
No. traverses & poir	nts sampled	28		
Sample plane comp	liance to AS4323.1	Ideal		
Comments				
An exit cone has be	en installed on the stack which meas	ures 440mm in diameter		
	en installed on the stack which meas sumed to be composed of dry air and			
The discharge is ass Stack Parameters	sumed to be composed of dry air and			
The discharge is ass Stack Parameters Moisture content, %	sumed to be composed of dry air and	2.4	29.0 (drv)	
The discharge is ass Stack Parameters	sumed to be composed of dry air and v/v ht, g/g mole	moisture	29.0 (dry) 1.29 (dry)	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig	sumed to be composed of dry air and v/v ht, g/g mole	2.4 28.7 (wet)	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig	sumed to be composed of dry air and v/v ht, g/g mole ‹g/m³	2.4 28.7 (wet)	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I	v/v ht, g/g mole «g/m ³	2.4 28.7 (wet)	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Parameter	v/v ht, g/g mole «g/m ³	2.4 28.7 (wet) 1.28 (wet)	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Parameter Flow measurement	v/v ht, g/g mole «g/m ³	2.4 28.7 (wet) 1.28 (wet) 0945 & 1055	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Parameter Flow measurement Temperature, °C	v/v ht, g/g mole (g/m ³ rs time(s) (hhmm)	2.4 28.7 (wet) 1.28 (wet) 0945 & 1055 27	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Parameter Flow measurement Temperature, °C Temperature, K	v/v ht, g/g mole (g/m ³ rs time(s) (hhmm)	2.4 28.7 (wet) 1.28 (wet) 0945 & 1055 27 300	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling	v/v ht, g/g mole (g/m ³ r s time(s) (hhmm) g plane, m/s e, actual, m ³ /s	2.4 28.7 (wet) 1.28 (wet) 0945 & 1055 27 300 27	· //	
The discharge is ass Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Parameter Flow measurement Temperature, °C Temperature, K Velocity at sampling Volumetric flow rate	v/v ht, g/g mole (g/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s	2.4 28.7 (wet) 1.28 (wet) 0945 & 1055 27 300 27 7.6	· //	

Date	21/08/2020	Client	Sell and Parker	
Report	R009653	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Joel Micale-David	State	NSW	
Process Conditions	Normal operating conditions for H	Hammer Mill with expansion	s pra y chamber s ys tem	
	operational during commissionin	g.		200805
Isokinetic Results		Res	ults	
	Sampling time	0946-	-1051	
		Concentration	Mass Rate	
		mg/m³	g/min	
Solid Particles		<3	<1	
Antimony		<0.007	<0.003	
Arsenic		<0.003	<0.001	
Beryllium		<0.0008	<0.0003	
Cadmium		<0.0007	<0.0003	
Chromium		0.0027	0.0011	
Cobalt		<0.001	<0.0004	
Lead		0.003	0.0012	
Manganese		0.003	0.0012	
Mercury		<0.0009	<0.0004	
Nickel		<0.002	<0.0007	
Selenium		<0.007	<0.003	
Tin		<0.003	<0.001	
Vanadium		<0.002	<0.0007	
Type 1 & 2 Substances				

Type 1 & 2 Substances	
Upper Bound	
Total Type 1 Substances	≤0.015 ≤0.0059
Total Type 2 Substances	≤0.021 ≤0.0084
Total Type 1 & 2 Substances	≤0.035 ≤0.014
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	107
Velocity difference, %	<1

3 PLANT OPERATING CONDITIONS

See Sell and Parker records for complete process conditions.

Low magnesium steels and general black iron were being processed at the time of testing.

4 TEST METHODS

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Method Detection Limit	Uncertainty*	NATA Ac	credited
					Sampling	Analysis
Sample plane criteria	NSW TM-1	NA	NA	NA	✓	NA
Flow rate, temperature and velocity	NA	NSW TM-2	Location specific	8%, 2%, 7%	NA	~
Moisture content	NSW TM-22	NSW TM-22	0.1%	8%	✓	~
Molecular weight	NA	NSW TM-23	not specified	not specified	NA	✓
Solid particles (total)	NSW TM-15	NSW TM-15 ⁺⁺	0.001 g/m ³	5%	~	~
Total (gaseous and particulate) metals and metallic compounds	NSW TM-12, NSW TM-13, NSW TM-14	Envirolab inhouse Metals-006, Metals- 022, Metals-021	Analyte specific	15%	~	\checkmark^{\ddagger}
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse Metals-006, Metals- 022, Metals-021	not specified	15%	~	\checkmark^{\ddagger}
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse Metals-006, Metals- 022	not specified	15%	~	✓‡

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

- ^{††} Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.
- Analysis performed by Envirolab, NATA accreditation number 2901.
 Results were reported to Ektimo on 1 September 2020 in report number 249772.

5 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio, dry or wet basis
~	Approximately
<	Less than
>	Greater than
ž	Greater than or equal to
APHA	American public health association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BSP	British standard pipe
CARB	Californian Air Resources Board
CEM	Continuous Emission Monitoring
CEMS	Continuous Emission Monitoring System
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D ₅₀	'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie.
	half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D ₅₀ method
	simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with
	a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This
	includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions,
	direction changes or changes in pipe diameter.
DWER	Department of Water and Environmental Regulation (WA)
DEHP	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FTIR	Fourier Transform Infra-red
ISC	Intersociety committee, Methods of Air Sampling and Analysis
ISO	International Organisation for Standardisation
Lower Bound	Defines values reported below detection as equal to zero.
Medium Bound	Defines values reported below detection are equal to half the detection limit.
NA	Not applicable
NATA	National Association of Testing Authorities
NIOSH	National Institute of Occupational Safety and Health
NT	Not tested or results not required
OM	Other approved method
OU	The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the
	number of dilutions to arrive at the odour threshold (50% panel response).
PM10	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
	10 microns (µm).
PM _{2.5}	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
	2.5 microns (μm).
PSA	Particle size analysis
RATA	Relative Accuracy Test Audit
Semi-quantified VOCs	Unknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the
	chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%.
	An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable
CTD	compound in the analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at
TN 4	discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
TM	Test Method
тос	The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.
USEPA	United States Environmental Protection Agency
VDI	Verein Deutscher Ingenieure (Association of German Engineers)
Velocity Difference	The percentage difference between the average of initial flows and afterflows.
Vic EPA	Victorian Environment Protection Authority
VOC	Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a
100	corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and
	other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and
	carbonate salts.
XRD	X-ray Diffractometry
Upper Bound	Defines values reported below detection are equal to the detection limit.
95% confidence interval	Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result
	is outside this range.
	_

Address (Head Office) 7 Redland Drive Mitcham VIC 3132

Postal Address 52 Cooper Road Cockburn Central WA 6164

> Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 www.ektimo.com.au ABN 86 600 381 413

REPORT NUMBER R010794

Annual Emission Testing Sell and Parker, Kings Park

www.ektimo.com.au

Template Version; 240920

Document Information

Client Name:	Sell and Parker
Report Number:	R010794
Date of Issue:	26 May 2021
Attention:	Howard Richards
Address:	46 Tattersall Road Kings Park NSW 2148
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Steven Cooper Ektimo Signatory

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Sell and Parker and those granted permission by Sell and Parker. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation. This does not include comments, conclusions or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Table of Contents

1	E	xecutive Summary4	ţ
-	L.1	Background	1
-	L.2	Project Objectives	
-	L.3	Licence Comparison4	1
2	R	esults5	5
2	2.1	EPA 3 – Hammer Mill Stack	5
3	Ρ	Plant Operating Conditions	7
4	Т	est Methods	7
5	C	Quality Assurance/Quality Control Information7	7
6	۵	Definitions	3

1 EXECUTIVE SUMMARY

1.1 Background

Ektimo was engaged by Sell and Parker to perform emission testing at their Kings Park facility. Testing was carried out in accordance with the requirements of their Environment Protection Licence (EPL) 11555.

1.2 Project Objectives

The objectives of the project were to conduct monitoring to quantify emissions from one discharge point to determine compliance with Sell and Parker's EPL as well as the *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 3 – Hammer Mill Stack	26 April 2021	Solid particles
		Metals (type 1 and 2 substances)

* Flow rate, velocity, temperature and moisture were also determined, as per EPL 11555 requirements.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by:

- The *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).
- the NSW EPA as per licence 11555 (last amended on 15 April 2021).

Monitoring results are summarised in the following table:

Location	Pollutant	Units	POEO Reg Limit (Gp 6)	Environment Protection Licence Limit	Detected values
	Solid particles	mg/m ³	20	20	7.3
	Type 1 substances in aggregate (Sb, As, Cd, Pb, Hg)	mg/m ³	-	-	≤0.022
EPA 3 Hammer Mill	Type 1 and 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, N, Se, Sn, V)	mg/m ³	1	1	≤0.051
	Cadimum (Cd)	mg/m ³	0.2	-	<0.0008
	Mercury (Hg)	mg/m ³	0.2	-	0.0025

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

2 RESULTS

2.1 EPA 3 – Hammer Mill Stack

	26/04/2021		Client	Sell and Parker	
Report	R010794		Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555		Location	Kings Park	
Ektimo Staff	Steven Cooper & Ahm	ad Ramiz	State	NSW	
Process Conditions	Normal operating cor	nditions			2 10329
Sampling Plane Det					
Sampling plane dimensions			595 mm		
Sampling plane are			0.278 m ²		
Sampling port size,			4" BSP (x2)		
Access & height of ports		Elevated work p			
Duct orientation & shape			Vertical Circular		
Downstream distur		E	xit cone 3 D		
Upstream disturbance			Bend 8D		
No. traverses & poin	•		28		
Sample plane comp	liance to AS4323.1		Ideal		
Test paused betwe	en 1136-1247 due to operat sumed to be composed of (aft	
Test paused betwe The discharge is as				aft	
Test paused between The discharge is as	sumed to be composed of o	dry air and moisture		aft	
•	sumed to be composed of o	dry air and moisture	e	aft 	
Test paused betwe The discharge is as Stack Parameters Moisture content, %	sumed to be composed of o Sv/v ght, g/g mole	dry air and moisture 28.8	e		
Test paused betwe The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP,	sumed to be composed of o Sv/v ght, g/g mole	dry air and moisture 28.8 1.28	e 1.5 3 (wet)	29.0 (dry)	
Test paused betwe The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl	sumed to be composed of o sv/v ght, g/g mole kg/m ³ harge conditions, kg/m ³	dry air and moisture 28.8 1.28	e 1.5 3 (wet) 3 (wet)	29.0 (dry)	
Test paused betwe The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl Gas Flow Paramete	sumed to be composed of o sv/v ght, g/g mole kg/m ³ narge conditions, kg/m ³	dry air and moisture 28.8 1.28	e 1.5 3 (wet) 3 (wet)	29.0 (dry)	
Test paused betwe The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP,	sumed to be composed of o sv/v ght, g/g mole kg/m ³ narge conditions, kg/m ³	dry air and moisture 28.8 1.28 0940	e 1.5 3 (wet) 3 (wet) 1.14	29.0 (dry)	
Test paused betwee The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl Gas Flow Paramete Flow measurement Temperature, °C	sumed to be composed of o sv/v ght, g/g mole kg/m ³ narge conditions, kg/m ³	dry air and moisture 28.8 1.28 0940	e 1.5 3 (wet) 3 (wet) 1.14 0 & 1345	29.0 (dry)	
Test paused betwee The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl Gas Flow Paramete Flow measurement Temperature, °C Temperature, K	sumed to be composed of o w/v ght, g/g mole kg/m ³ narge conditions, kg/m ³ rs time(s) (hhmm)	dry air and moisture 28.8 1.28 2940	e 1.5 3 (wet) 3 (wet) 1.14 0 & 1345 39	29.0 (dry)	
Test paused betwee The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at samplin	sumed to be composed of o sv/v ght, g/g mole kg/m ³ narge conditions, kg/m ³ rs time(s) (hhmm) g plane, m/s	dry air and moisture 28.8 1.28 0940	e 1.5 3 (wet) 3 (wet) 1.14 0 & 1345 39 312	29.0 (dry)	
Test paused betwee The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at samplin Volumetric flow rat	sumed to be composed of o sv/v ght, g/g mole kg/m ³ narge conditions, kg/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s	dry air and moisture 28.8 1.28 0940	e 1.5 3 (wet) 3 (wet) 1.14 0 & 1345 39 312 27	29.0 (dry)	
Test paused betwee The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at samplin Volumetric flow rat	sumed to be composed of o sv/v ght, g/g mole kg/m ³ narge conditions, kg/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s	dry air and moisture 28.8 1.28 0940	e 1.5 3 (wet) 3 (wet) 1.14 0 & 1345 39 312 27 7.6	29.0 (dry)	
Test paused betwe The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas density at discl Gas Flow Paramete Flow measurement	sumed to be composed of o sv/v ght, g/g mole kg/m ³ harge conditions, kg/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s e (dry STP), m ³ /s	dry air and moisture 28.8 1.28 0940	e 1.5 3 (wet) 3 (wet) 1.14 0 & 1345 39 312 27 7.6 6.8	29.0 (dry)	

Date	26/04/2021	Client	Sell and Parker	
Report	R010794	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Steven Cooper & Ahmad Ramiz	State	NSW	
Process Conditions	Normal operating conditions			2 10329
Isokinetic Results		Res	sults	
	Samplingtime	1115		
		Concentration mg/m ³	Mass Rate g/min	
Solid particles		7.3	2.9	
Antimony		<0.008	<0.003	
Arsenic		<0.003	<0.001	
Beryllium		<0.0009	<0.0004	
Cadmium		<0.0008	<0.0003	
Chromium		0.002	0.00078	
Cobalt		<0.001	<0.0004	
Lead		0.0069	0.0028	
Manganese		0.0062	0.0025	
Mercury		0.0025	0.001	
Nickel		0.0051	0.002	
Selenium		<0.008	<0.003	
Tin		<0.003	<0.001	
Vanadium		<0.002	<0.0008	
Type 1 & 2 Substances	s			
Upper Bound				
Total Type 1 Substar	nces	≤0.022	≤0.0087	
Total Type 2 Substar	nces	≤0.029	≤0.012	
Total Type 1 & 2 Sub	stances	≤0.051	≤0.02	
Isokinetic Sampling Pa	arameters			
Sampling time, min		64		
Isokinetic rate, %		99		
Velocity difference,	%	-2		

3 PLANT OPERATING CONDITIONS

See Sell and Parker records for complete process conditions.

Normal condition: Hammer Mill processing typical feedstock.

4 TEST METHODS

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Accredited	
				Sampling	Analysis NA
Sample plane criteria	NSW TM-1	NA		✓	
Flow rate, temperature and velocity	NSW TM-2	NSW TM-2	8%, 2%, 7%	NA	✓
Moisture content	NSW TM-22	NSW TM-22	8%	~	✓
Molecular weight	NA	NSW TM-23	not specified	NA	✓
Solid particles (total)	NSW TM-15	NSW TM-15 ⁺⁺	3%	✓	✓
Total (gaseous and particulate) metals and metallic compounds	NSW TM-12, NSW TM-13, NSW TM-14	Envirolab inhouse Metals-006, Metals-022, Metals-021	15%	~	\checkmark^{\ddagger}
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse Metals-006, Metals-022, Metals-021	15%	\checkmark	\checkmark^{\ddagger}
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse Metals-006, Metals-022	15%	\checkmark	√ [‡]
					210

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

^{††} Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 7 May 2021 in report number 268004.

5 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio, dry or wet basis
~	Approximately
<	Less than
>	Greater than
2	Greater than or equal to
APHA	American public health association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BSP	British standard pipe
CARB	Californian Air Resources Board
CEM	Continuous Emission Monitoring
CEMS	Continuous Emission Monitoring System
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D ₅₀	'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the
	particles with a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This
Distai Suffee	includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.
DWER	Department of Water and Environmental Regulation (WA)
DEHP	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FTIR	Fourier Transform Infra-red
ISC	Intersociety committee, Methods of Air Sampling and Analysis
ISO	International Organisation for Standardisation
Lower Bound	Defines values reported below detection as equal to zero.
Medium Bound	Defines values reported below detection are equal to half the detection limit.
NA	Not applicable
NATA NIOSH	National Association of Testing Authorities National Institute of Occupational Safety and Health
NT	Not tested or results not required
OM	Other approved method
OU	The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the
	number of dilutions to arrive at the odour threshold (50% panel response).
PM ₁₀	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
	10 microns (μm).
PM _{2.5}	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
	2.5 microns (μm).
PSA	Particle size analysis
RATA	Relative Accuracy Test Audit
Semi-quantified VOCs	Unknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest
	suitable compound in the analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
TM	Test Method
TOC	The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its
USEPA	derivatives.
VDI	United States Environmental Protection Agency Verein Deutscher Ingenieure (Association of German Engineers)
Velocity Difference	The percentage difference between the average of initial flows and afterflows.
Vic EPA	Victorian Environment Protection Authority
VOC	Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a
-	corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen
	and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic
	carbides and carbonate salts.
XRD	X-ray Diffractometry
Upper Bound	Defines values reported below detection are equal to the detection limit.
95% confidence interval	Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result
	is outside this range.

Address (Head Office) 7 Redland Drive Mitcham VIC 3132

Postal Address 52 Cooper Road Cockburn Central WA 6164

> Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 www.ektimo.com.au ABN 86 600 381 413