

Detailed Site Investigation Report – Ridge Street (WP12)

Document No. SPA-JGA-REP-ENV-WP12-0-0003

Rev	Date	Prepared by Name	Reviewed by Name	Approved by Name	Remarks
	3.3.2021	A. Mullen	M. Stacey		
	5.3.2021	A. Mullen	M. Stacey		
0	5.3.2021	M. Stacey	R. Waugh	M. Stacey	Draft for issue
1	15.4.2021	M. Stacey	B. Simmons	M. Stacey	Final for issue
2	15.4.2021	M. Stacey	B. Simmons	M. Stacey	Final for issue
3	25.5.2021	M. Stacey	B. Simmons	A. Kandic	Updated to address DPIE review comments

Detailed Site Investigation Report – Ridge Street (WP12)

Table of Contents

Import	ant note about your report	4
Execut	tive summary	5
1 Int	roduction	6
2 Ba	ckground	8
3 Ob	jectives and scope of works	10
3.1	Objectives	10
3.2	Scope of works	10
4 Sit	e description	12
5 Inf	ormation review	13
6 Sit	e investigation	14
6.1	General overview	
6.2	Soil investigation	14
6.3	Depth intervals of sampling	15
6.4	Method of sample collection	15
6.5	Sample containers, method of sample storage and handling	16
6.6	Decontamination procedures	16
6.7	Sample logging	16
6.8	Laboratory analysis	
6.9	Analytical parameters and methods	17
7 Qu	ıality control plan	18
7.1	Field QA/QC program	18
7.1.	1 Environmental samples	18
7.1.		
7.1.	3 Blind triplicate sample	18
7.2	Laboratory QA/QC programme	18
7.2.		
7.2.		
7.2.	3	
7.2.	•	
7.2.		
7.3	Data acceptance criteria	
8 Qu	rality assurance / quality control	21

8.1	Field quality assurance	21
8.2	Field quality control	21
8.3	Laboratory quality assurance	21
8.4	Laboratory quality control	21
8.4.	1 Laboratory duplicates	22
8.4.	2 Laboratory control samples	22
8.4.	3 Surrogates	22
8.4.	.4 Matrix spikes	22
8.4.	5 Method blanks	22
8.4.	.6 Sample holding times	22
8.4.	7 Sample condition	22
8.5	QA/QC assessment	22
9 Sit	te assessment criteria	23
9.1	Aesthetics	23
9.2	Health investigation levels	23
9.3	PFAS	25
10 Re	esults	27
10.1	Site stratigraphy	27
10.2	Aesthetics	28
10.3	Soil analytical results	28
10.4	Statistical analysis and discussion	29
11 Co	onclusions and recommendations	33
12 Ap	oproval response	34
_	· ndix A – Tables	
	ndix B – Laboratory certificates	
	.v.v r - ranniami v reimirameg	

Detailed Site Investigation Report – Ridge Street (WP12)

Important note about your report

The sole purpose of this report is to present the findings of a detailed site investigation carried out by Jacobs for the Sydney Program Alliance (SPA) within the construction footprint of the proposed ancillary support site at Ridge Street, North Sydney NSW, as part of the Warringah Freeway Upgrade (WP12).

All reports and conclusions that deal with sub-surface conditions are based on interpretation and judgement and as a result have uncertainty attached to them. You should be aware that this report contains interpretations and conclusions which are uncertain, due to the nature of the investigations. No study can investigate every risk, and even a rigorous assessment and/or sampling programme may not detect all problem areas within a site.

This report is based on assumptions that the site conditions as revealed through sampling and information provided by SPA are indicative of conditions throughout the site. The findings are the result of standard assessment techniques used in accordance with normal practices and standards, and (to the best of Jacobs' knowledge) they represent a reasonable interpretation of the current conditions on the site.

Sampling techniques, by definition, cannot determine the conditions between the sample points and so this report cannot be taken to be a full representation of the sub-surface conditions. This report only provides an indication of the likely sub surface conditions.

Conditions encountered when site work commences may be different from those inferred in this report, for the reasons explained in this limitation statement. If site conditions encountered during site works are different from those encountered during Jacobs' site investigation, Jacobs reserves the right to revise any of the findings, observations and conclusions expressed in this report.

The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and re-evaluation of the data, findings, observations and conclusions expressed in this report.

In preparing this report, Jacobs has relied upon, and presumed accurate, information provided by the SPA and from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. The reliance on provided information is governed by the specific limitations as detailed in the respective information sources. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, SPA, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and SPA. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Detailed Site Investigation Report – Ridge Street (WP12)

Executive summary

Jacobs Group (Australia) Pty Ltd (Jacobs) undertook assessment of potential contamination for the Sydney Program Alliance (SPA) within the footprint of the proposed minor ancillary support site on Ridge Street (St Leonards Park), North Sydney NSW (referred to hereinafter as the site).

To address the Western Harbour Tunnel and Warringah Freeway Upgrade (SSI-8863) conditions of approval, a Detailed Site Investigation (DSI) report was required to be undertaken at the proposed minor ancillary support site to be established as part of work package 12 (WP12).

The area to be occupied by the proposed minor ancillary support site was identified as having a moderate contamination potential based on the information detailed in Appendix M: Contamination of the Environmental Impact Statement, January 2020 (EIS Appendix M, 2020) prepared for the Western Harbour Tunnel and Warringah Freeway Upgrade project.

Jacobs undertook an evaluation of the assessment work previously completed by SMEC (as reported in 28 October 2020), and the guidelines relevant to the assessment of contamination at the site (i.e. the EIS, and published guidelines relevant to the assessment). This review identified data gaps requiring further assessment. Jacobs undertook further assessment (site investigation, sampling and analysis) to address these data gaps so that the combined Jacobs and SMEC data set met the requirements of the EIS, published guidelines and addressed the conditions of approval.

The following conclusions and recommendations were made based on the scope/limitations of the combined SMEC/Jacobs assessment:

Conclusions

- Reported contaminant concentrations in soil were below the adopted guideline values (for all individual sample results).
- Inert building waste and debris was noted as several locations within fill material across the site.
- Asbestos was not identified by the laboratory in any of the samples submitted for asbestos identification. Asbestos containing materials were not observed by Jacobs while collecting the soil samples.

Recommendations

- Given the presence of other building waste/debris (and the heterogeneous nature of such waste), there is a potential for undiscovered soil contamination and/or asbestos containing materials to also be present. Jacobs do not recommend further assessment of the site, however, the potential for undiscovered soil contamination and/or asbestos containing materials to be present within the subsurface should be noted within the Construction and Environmental Management Plan (including an unexpected finds procedure).
- The site management plan should also ensure that any disturbance of the site surface is managed appropriately (including off-site disposal). For example, minimise dust generation, surface water/sediment runoff from the site, etc.).

Detailed Site Investigation Report – Ridge Street (WP12)

1 Introduction

Jacobs Group (Australia) Pty Ltd (Jacobs) undertook assessment of potential contamination for the Sydney Program Alliance (SPA) within the footprint of the proposed minor ancillary support site on Ridge Street (St Leonards Park), North Sydney NSW (referred to hereinafter as the site). The purpose of this work is summarised below.

Aspect	Comment		
Propose site use	Proposed ancillary support site to be used by contractors and other project personnel during the construction works of the Warringah Freeway Upgrades (WFU).		
Duration of site use	Less than 5 years.		
Why is this work being undertaken	The area to be occupied by the proposed ancillary support site was identified as having a moderate contamination potential based on the information detailed in Appendix M: Contamination of the Environmental Impact Statement, January 2020 (EIS Appendix M, 2020) prepared for the Western Harbour Tunnel and Warringah Freeway Upgrade project. Subsequently the Western Harbour Tunnel and Warringah Freeway Upgrade (SSI-8863)		
	included an approval condition requiring a Detailed Site Investigation (DSI) report.		
Previous assessment works	SMEC had previously undertaken a soil contamination assessment for the WFU which also covered the site 'Provision of Warringah Freeway Contamination Investigation Services' – Contamination Factual Report (SMEC, October 2020).		
Jacobs review	The Jacobs review identified several data gaps (with respect to published guidelines and the EIS) requiring the collection of additional data.		
Additional data collection	Jacobs collected additional data to address the data gaps.		
Evaluation of soil contamination data	The combined SMEC and Jacobs contamination data was used to evaluate the significance of contamination.		
	The published soil quality guideline values for a commercial/industrial land use (as per National Environment Protection (Assessment of Site Contamination) Measure 1999, revised 2013 (NEPC, 2013)) were used to evaluate the significance of contamination.		
	The commercial/industrial guidelines were the most relevant exposure scenario for the proposed site use. However, we note that the published guideline values are based on a much longer exposure period (i.e. 30 years). Therefore, direct application of the published NEPC (2013) guidelines to the proposed site exposure was conservative.		
Key exclusions	Ecological receptors were not relevant for the proposed occupation of the site for the purposes of construction activities since:		
	The majority of existing vegetation at the site will be removed during the construction/occupation period.		
	The proposed use of the site as a construction support site will have minimal landscaping opportunities.		
	The site is located within a heavily urbanised area and soils beneath the investigation area are unlikely to represent a sensitive terrestrial ecosystem that requires protection.		
	The site will not be used for growing produce (e.g. fruit and vegetables) the construction/occupation period.		

Detailed Site Investigation Report – Ridge Street (WP12)

The investigation only targeted soils within the footprint of the proposed construction support site (as per the EIS Appendix M, 2020). The rationale for not targeting other media is provided below:

- Should soil contamination be identified (i.e. above concentrations for commercial/industrial land use), recommendations for additional investigations and/or remedial measures for air, hazardous ground gases, surface water, groundwater, soil vapour, separate phase contaminants, sediments, infrastructure (e.g. concrete), biota and dust would be provided (if considered relevant).
- No receiving surface water bodies are located on and/or adjacent to the site.
- Groundwater is not anticipated to be intersected (i.e. no contact with construction workers, no extraction to support construction) as part of the proposed works.

The assessment of asbestos was primarily based on visual observation with limited laboratory analysis. Note that this investigation does not constitute full characterisation of the site for the potential presence of asbestos nor does the results of this investigation represent an 'asbestos clearance'.

Detailed Site Investigation Report – Ridge Street (WP12)

2 Background

The following provides background information with respect to contamination at the site.

Appendix M of the EIS (2020) prepared for the Western Harbour Tunnel and Warringah Freeway Upgrade project detailed the following with respect to contamination at the proposed Ridge Street minor ancillary support site.

Site	Location relative to alignment	Construction element and anticipated depth	Potential contamination source	Potential contamination distribution	Potential contaminants	Risk ranking
St Leonards Park bordering Warringah Freeway (between Ridge Street and Falcon Street), North Sydney	Within footprint of construction support site and surface works	Ridge Street north construction support site (WHT9) and Warringah Freeway Upgrade surface work (surface)	Deposition of particulate matter and filling	Surface and depth (potentially 0-2 m)	Heavy metals, hydrocarbons, pesticides, PCB, nutrients, cyanide, VOC, asbestos, PFAS	Possible contamination Excavation activities within site footprint Excavation activities within potential contamination distribution range (laterally and vertically – surface work only) Potential contamination distribution unlikely to impact upon tunnelling (based on depth to tunnel).

It should be noted that the inclusion of PFAS was determined by the potential for PFAS to be present in fill from unknown sources to have been used at the site (as detailed in Appendix M of the EIS) and not associated with specific point PFAS sources on the site (e.g. use of AFFF on historical fires on the site).

SMEC were commissioned by TfNSW to undertake a larger contamination investigation within and adjacent to the Warringah Freeway which also included areas to be occupied by the proposed ancillary support site. The following summary should be read in conjunction with the SMEC (2020) report.

The objective of the SMEC (2020) investigation was to collect and provide factual data to TfNSW for the purpose of informing prospective tenderers of the project of the contamination and geotechnical conditions along the proposed WFU alignment.

The following investigation works were undertaken by SMEC at the site:

- Soil sampling from 12 investigation locations (WFU_BH043 to WFU_BH052, WFU_BH056 and WFU_BH057) within the proposed construction footprint and three locations immediately adjacent to the construction footprint (WFU_BH053, WFU_BH054 and WFU_BH055). All soil investigation locations were drilled to a maximum depth of 4.1 metres below ground level (mbgl) with WFU_BH050, WFU_BH052 and WFU_BH057 drilled to a maximum depth of 20.2 mbgl to facilitate the installation of a groundwater wells. All locations were drilled to intersection with natural materials (maximum fill depth of 4.4 mbgl at location WFU_BH050) with the exception of WFU_BH046 which refused on concrete at a depth of 2.2 mbgl.
- Three groundwater wells were also installed (WFU_BH050, WFU_BH052 and WFU_BH057) and sampled.

Detailed Site Investigation Report – Ridge Street (WP12)

No further discussion on groundwater quality is provided as groundwater is not anticipated to be intersected (i.e. no contact with construction workers, no groundwater extraction to support construction) as part of the proposed works (refer to the key exclusions detailed in Section 1 and the assumptions and limitations noted in Section 3).

Sample locations undertaken as part of the SMEC (2020) investigation (locations on the site and in adjacent areas) are presented on **Figure 2-1**.

Figure 2-1: SMEC (2020) investigation locations (figure sourced from the SMEC, 2020)

3 Objectives and scope of works

3.1 Objectives

The objectives of the DSI was to provide responses to the risk management strategy detailed in Appendix M of the EIS (2020) and the conditions of approval from the Western Harbour Tunnel and Warringah Freeway Upgrade (SSI-8863). These conditions (and responses) are provided in Section 12 of this report)

To address these conditions, Jacobs reviewed existing information and developed a scope of work to address data gaps relevant to the proposed use of the site as a temporary ancillary support site. Key aspects for framing this scope were:

- An environmental management plan will be developed for all construction related activities (including the ancillary support areas). This plan will include soil management protocols and unexpected finds procedures.
- The ancillary support site was to be used primarily for construction support activities e.g. temporary site shed, vehicle parking, laydown areas for equipment/supplies, etc.
- Incidental excavation or soil movement (i.e. to install temporary services, level areas for vehicle access) maybe required, however, bulk excavation (with the exception of achieving site levels) was generally not required.
- Occupation/use of the site was to be consistent with a construction work site (e.g. 8 hours per day, 6 days per week).
- The duration of occupation for construction workers was likely to be less than 5 years.
- All workers occupying the site(s) will be inducted into the safety and environment procedures
 relevant to works involving contact with potentially contaminated soils.
- No permanent structure would be built within the investigation areas during the proposed use for ancillary support activities.
- To facilitate the proposed use of the site most of the surface vegetation would be cleared (except for significant trees, where present).

3.2 Scope of works

The scope of works undertaken by Jacobs is detailed below:

- Undertake a review of the SMEC (2020) investigation to assess potential data gaps in the
 assessment (with reference to the EIS, and published guidelines relevant to the assessment
 objective (as noted above)).
- Undertake an intrusive investigation at the site to address identified data gaps.
- Preparation of this report.

Note that the Jacobs assessment (and the SMEC assessment) were conducted on the site prior to the establishment/occupation of the site for construction purposes. Therefore, any disturbance of the soil and or subsurface excavation should consider this report and the appropriate management of soils.

Detailed Site Investigation Report – Ridge Street (WP12)

With respect to the scope of this assessment, the following assumptions and limitations are relevant:

- Assessment of potential contaminants was limited to the potential contaminants of concern identified in the EIS relevant to this area.
- Consideration of the potential impact to the health of construction workers was the primary focus
 of this assessment.
- Soil data was the most relevant media for exposure by construction workers. Therefore, collection
 of near surface (i.e. 1m to 2m depth) soil data was the focus of the assessment. Other exposure
 pathways (e.g. contact/drinking groundwater, indoor vapour inhalation of soil vapour) were
 considered highly unlikely to occur given the proposed used of the site and the implementation
 of an environmental/soil management plan.
- The assessment of asbestos was primarily based on visual observation with limited laboratory analysis. Note that this investigation does not constitute full characterisation of the site for the potential presence of asbestos nor does the results of this investigation represent an 'asbestos clearance'.
- Where the magnitude and/or potential extent of contamination was unclear (following this
 assessment), Jacobs have recommended conservative soil management measures as a
 precaution.
- This assessment was not designed to provide in-situ classification of soils for off-site disposal. In
 the event that off-site disposal of soils is required, EPA guidelines with respect to off-site soil
 appropriate classification/disposal will need to be considered.
- Ecological receptors were not relevant for the proposed occupation of the site for the purposes
 of construction activities since:
 - The majority of existing vegetation at the site will be removed during the construction/occupation period.
 - The proposed use of the site as an ancillary support site will have minimal landscaping opportunities.
 - The site is located within a heavily urbanised area and soils beneath the investigation area are unlikely to represent a sensitive terrestrial ecosystem that requires protection.
 - The site will not be used for growing produce (e.g. fruit and vegetables) the construction/occupation period.

Site description

The site is located at Ridge Street in the south eastern portion of St Leonards Park, North Sydney NSW.

At the time of undertaking this assessment, the site was located within a public park adjacent to the Warringah Freeway The site was operating as a public off-lead dog park comprising grassed areas with scattered trees. The site consisted of undulating grassed mounds and a steep grassed embankment to the east, sloping towards the Warringah Freeway. The site was bound by Ridge Street and associated parking bays to the south, St Leonards Park Basketball Courts and The Greens North Sydney to the west, Bon Andrews Oval to the north and Warringah Freeway to the east. At the time of undertaking the assessment, no works associated with the construction of the proposed minor ancillary support site had commenced on the site.

The site slopes in a general north to south direction towards Lavender Bay, with a steep embankment to the east towards Warringah Freeway. Ground cover on the site was predominately grass with several large trees bordering the site to the east and north.

The extent of the proposed minor ancillary support site is approximately 7,000m². The proposed extent of the proposed minor ancillary support site is presented on Figure 4-1.

Figure 4-1: Proposed minor ancillary support site extent

5 Information review

Jacobs reviewed the SMEC (2020) investigation to assess potential data gaps which were required to meet the objectives of the DSI.

Based on this review, the investigation strategy adopted to supplement the SMEC (2020) data and meet the objectives of the DSI are detailed in **Table 5-1.**

Table 5-1: Information review and proposed investigation strategy

Aspect	Reference	SMEC (2020) investigation	Jacobs DSI scope
Number and location of soil borehole locations	NSW EPA (1995) Sampling Design Guidelines recommends a minimum of 17 grid-based locations for the site size (approximate construction footprint of 7,000m²).	12 locations within and three locations directly adjacent to the construction footprint.	Five additional locations.
Sample depth	The EIS refers to 'surface deposition' as the likely source of contamination.	All soil investigation (with the exception of one location) were drilled to intersection with natural materials. The maximum fill depth encountered was 4.4 mbgl. Three boreholes were drilled to a maximum depth of 20.2 mbgl to facilitate the installation of a groundwater wells.	As noted in Section 3, the Jacobs assessment has considered near surface soils (to approximately 1 m depth). This is inclusive of surface soils. The majority of the SMEC (2020) investigation locations (two locations were terminated prior to 2 mbgl on natural material).
Sample analysis	Appendix M EIS (2020) identified the potential contaminants of concern for the site including heavy metals, Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), PAH, pesticides, Polychlorinated Biphenyls (PCB), nutrients, cyanide, volatile organic compounds (VOC), asbestos, PFAS	Heavy metals, Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), PAH, pesticides, Polychlorinated Biphenyls (PCB), asbestos.	The analytical schedule adopted by SMEC (2020) did not include nutrients, cyanide, VOC, PFAS as detailed in Appendix M of the EIS (2020). Jacobs analytical schedule included the potential contaminants of concern as identified in the WHTWFU EIS including heavy metals, TRH, BTEX, PAH, pesticides (OCP), PCB, VOC, PFAS, cyanide and asbestos. Nutrient analysis was not undertaken as these compounds are only likely to be a concern if groundwater is intersected as part of the construction.
Frequency of sample analysis	Not applicable	Two samples were analysed per borehole	Two samples to be analysed per borehole.

Detailed Site Investigation Report – Ridge Street (WP12)

6 Site investigation

The following information details the fieldworks undertaken during the Jacobs investigation. It should be reiterated that the Jacobs investigation is supplementary to the information contained in the SMEC (2020) investigation and attempts to fill data gaps to:

- Meet the minimum sampling points as detailed in the NSW EPA (1995) guidelines.
- Provide lateral and vertical coverage of the proposed construction extents.
- Assess the potential for contamination of the site as detailed in Appendix M: Contamination of the Environmental Impact Statement, January 2020 (EIS Appendix M, 2020).

6.1 General overview

The fieldwork for the investigation was undertaken on 24 February 2021. The investigation was undertaken by a contaminated site consultant from Jacobs who was responsible for undertaking the work, site observations, excavation logging and sample collection.

6.2 Soil investigation

Five locations (BH01, BH02, BH03, BH04, and BH05) were excavated using decontaminated hand tools (hand auger and crowbar) to 1.0 mbgl.

A total of 17 investigations locations (12 locations by SMEC and five locations by Jacobs) is equal to the minimum sampling points required for site characterisation based on detecting circular hot spots by using a systematic sampling pattern as detailed in the NSW EPA (1995) Contaminated Sites – Sampling Design Guidelines for a site of approximately 7,000m².

The majority of the investigation locations undertaken by SMEC (2020) were drilled to depths beyond the proposed depth of excavation works for the site to establish the construction facility (i.e. 2 mbgl) and the potential contamination distribution (i.e. 2 mbgl) as detailed in the EIS Appendix M (2020). Two investigation locations undertaken by SMEC (2020) were terminated in natural materials above 2 mbgl.

Three of the SMEC investigation locations (WFU_BH053, WFU_BH054 and WFU_ BH055) were located adjacent to the northern boundary of the construction footprint. The contamination mechanism for the site (as detailed in the EIS) was particulate deposition which is likely to result in diffuse contamination distribution (i.e. relatively low levels of contamination spread across large areas). These three investigations locations are also likely to be representative of the contamination mechanism across the areas of the park adjacent to the Warringah Freeway (considering the diffuse nature of particulate deposition) and have been used to further assess the potential for contamination across the construction footprints.

The approximate investigation locations undertaken by SMEC (2020) and Jacobs are presented on **Figure 6-1**.

Figure 6-1: Approximate investigation locations

- Approximate SMEC investigation location
- Approximate Jacobs investigation location

6.3 Depth intervals of sampling

Selected soil samples were collected from the investigation locations at the surface (0.0-0.1m) and at depths of 0.25 mbgl, 0.5 mbgl and 1.0 mbgl.

6.4 Method of sample collection

All soil samples were collected as grab samples from below the surface of the grass and from a decontaminated hand auger at depth. Samples were transferred to sample containers by Jacobs field staff by hand using disposable nitrile gloves. New nitrile gloves were used for the collection of each sample.

Care was taken to ensure that representative samples were obtained from the depth required and that the integrity was maintained, which is particularly important when dealing with potentially volatile components.

6.5 Sample containers, method of sample storage and handling

All soil samples were placed in jars provided by the primary laboratory Envirolab Services (Envirolab). Samples required for per- and polyfluoroalkyl substances (PFAS) analysis were placed in laboratory-provided specific PFAS jars. The jars were completely filled with soil, labelled with the date, unique sampling point identification and sampler information.

The soil jars, once filled with sample and sealed, were immediately placed in an esky / cool box in which ice had been added. At the end of the sampling program the samples in the esky / cool box were transported to the primary laboratory. Custody seals were placed on the esky / cool box for delivery to the laboratory.

An inter-laboratory duplicate was sent to the secondary laboratory, Eurofins Scientific (Eurofins).

6.6 Decontamination procedures

The hand auger and crowbar were decontaminated between sample locations by washing with a solution of phosphate free, PFAS free, laboratory grade detergent (Liquinox) and potable water and rinsed with potable water.

6.7 Sample logging

Experienced Jacobs field staff completed soil logs for the excavation locations. The logs recorded the following data:

- Sample number and depth.
- Soil classification, colour, consistency or density, moisture content and obvious indications of contamination.
- Depth of excavation.
- Excavation refusal.
- Method of excavation.

6.8 Laboratory analysis

Soil samples were selected for laboratory analysis based the potential contaminants for the site as detailed in the EIS Appendix M (2020). A summary of the laboratory testing undertaken is detailed in **Table 6-1.**

Table 6-1: Laboratory testing

Laboratory Test	Quantity
Heavy metals (As, Cd, Cr, Cu, Pb, Ni, Hg, Zn),	10 primary and 2 QAQC
Hydrocarbon compounds (TRH, BTEX, PAH)	10 primary and 2 QAQC
ОСР	10 primary and 2 QAQC
Cyanide	10 primary and 2 QAQC
PCB	10 primary and 2 QAQC

Detailed Site Investigation Report – Ridge Street (WP12)

Laboratory Test	Quantity
Volatile Organic Compounds (VOC)	10 primary and 2 QAQC
PFAS	10 primary
Asbestos (presence/absence)	10 primary and 2 QAQC

6.9 Analytical parameters and methods

Jacobs commissioned Envirolab and Eurofins as the primary and secondary laboratories respectively. Both laboratories are National Association of Testing Authorities (NATA) accredited for the testing undertaken.

Where appropriate, the soil samples were analysed in accordance with NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPC, 2013) guidelines using methods based on US Environment Protection Agency (US EPA) and American Public Health Association (APHA) approved analytical methods.

Detailed Site Investigation Report – Ridge Street (WP12)

7 Quality control plan

Field and laboratory QA/QC requirements compliant with NEPC (2013) requirements (where applicable) were undertaken as part of the fieldwork program as outlined below.

7.1 Field QA/QC program

Field QA/QC for this project consisted of the collection of two blind replicate samples (QAQC1 and QAQC2).

7.1.1 Environmental samples

Environmental samples or field samples were the representative soil samples collected for analysis to determine aspects of their chemical composition.

7.1.2 Blind replicate sample

A blind replicate sample was provided by the collection of two environmental samples from the same location. These samples were preserved, stored, transported, prepared and analysed in an identical manner. As a minimum, the results of analyses on the blind replicate sample pairs were assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD was calculated as the difference between the results divided by their mean value and expressed as a percentage. If the RPD exceeded the value adopted for any analytes, additional investigation would be required, or justification provided for not conducting additional investigation.

Blind replicate samples should be collected at a rate of one duplicate for every 20 environmental samples in accordance with AS 4482.1-2005 *Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds* (AS 4482.1-2005).

7.1.3 Blind triplicate sample

A blind triplicate sample was provided by the collection of two environmental samples from the same location. These samples were preserved, stored, transported, prepared and analysed in an identical manner. One of the samples was transported to a secondary laboratory for analysis. As a minimum, the results of analyses on the blind triplicate sample pairs were assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD was calculated as the difference between the results divided by their mean value and expressed as a percentage. If the RPD exceeded the value adopted for any analytes, additional investigation would be required, or justification provided for not conducting additional investigation.

Blind triplicate samples should be collected at a rate of one duplicate for every 20 environmental samples in accordance with AS 4482.1-2005.

7.2 Laboratory QA/QC programme

The reliability of test results from the analytical laboratories was monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC program employed by Envirolab (the primary laboratory) and Eurofins (the secondary laboratory) specified holding times, extraction dates, method descriptions, CoC requirements, analysis, laboratory levels of reporting (LORs) and acceptance criteria for the results. Laboratory QA/QC requirements undertaken by Envirolab and Eurofins are based on NEPC (2013) requirements and are outlined below.

7.2.1 Laboratory duplicate samples

Laboratory duplicates provided data on analytical precision for each batch of samples.

Laboratory duplicates were performed at a rate of one duplicate for batches of 8-10 samples with an additional duplicate for each subsequent ten samples.

7.2.2 Laboratory control samples

Laboratory control samples consisted of a clean matrix (de-ionised water or clean sand) spiked with a known concentration of the analyte being measured. These samples monitored method recovery in clean samples and were used (where required) to evaluate matrix interference by comparison with matrix spikes.

7.2.3 Surrogates

For organic analyses, a surrogate was added at the extraction stage in order to verify method effectiveness. The surrogate was then analysed with the batch of samples and percentage recovery calculated.

7.2.4 Matrix spike

Matrix spikes consisted of samples spiked with a known concentration of the analyte being measured, in order to identify properties of the matrix that may hinder method effectiveness. Samples were spiked with concentrations equivalent to 5 to 10 times the LOR and percentage recovery calculated.

7.2.5 Method blanks

Method blanks (de-ionised water or clean sand) were carried through all stages of sample preparation and analysis at a rate of approximately 10%. Analyte concentrations in blanks should be less than the stated LOR. Reagent blanks were run if the method blank exceeded the LOR. The purpose of method blanks was to detect laboratory contamination.

7.3 Data acceptance criteria

The QA/QC was assessed against the Data Acceptance Criteria (DAC) provided in Table 7-1.

Table 7-1: QA/QC compliance assessment

QA/QC sample	DQI	Objectives	Acceptance criteria
		Field QA/QC samples	
Blind replicate/triplicate samples	Precision Comparability	To ensure the primary data is reliable and fit for purpose. The assessment of blind duplicate and split replicate samples is undertaken by calculating the Relative Percent Difference (RPD) of the replicate or split concentration compared with the original sample concentration. The RPD is defined as: X1 - X2 RPD = 100 x	Analysed for the same chemicals as the primary sample. Typical RPDs are noted in AS 4482.1-2005 as between 30 – 50%. RPDs exceeding the acceptable range may be considered acceptable for heterogeneous material or where: No Limit (When the average concentration is < 10 times the LOR)

QA/QC sample	DQI	Objectives	Acceptance criteria
		Where: X1 and X2 are the concentration of the original and blind or split samples.	0 – 50% RPD (When the average concentration is 10 to 20 times the LOR)
		Laboratory QA/QC	
Laboratory duplicates	Precision	To ensure precision of the analysis method and replicability of analysis due to potential sample heterogeneity. Assessment as per blind replicates and split samples	As per laboratory QC report
Matrix spike recoveries	Accuracy	To assess the effect of the matrix, laboratory control samples and surrogates on the accuracy of the analytical method used.	As per laboratory QC report
Laboratory Control Samples		Assessment is undertaken by determining the percent recovery of the known spike or addition to the sample.	
Surrogates		C - A % Recovery = 100 x B Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; C = Calculated Concentration.	
Method blanks	Accuracy	To assess potential bias introduced by the laboratory analytical method for a relevant analyte. A method blank assesses the component of the analytical result introduced from laboratory equipment. Each blank is analysed as per the original samples.	Analytical result < LOR

8 Quality assurance / quality control

For the purpose of assessing the quality of data presented in this report, Jacobs collected and analysed blind replicate samples, while the laboratory completed their own internal QC. The current section of this report is focused on the presentation of the results of these QC samples, adherence to Quality Assurance (QA) systems and discussion of deviations, if any from the DAC.

8.1 Field quality assurance

Field QA/QC for this project consisted of the collection of blind replicate samples.

8.2 Field quality control

The following QC samples were collected for laboratory analysis:

- Blind replicate: QAQC1 (duplicate of primary soil sample BH01_B)
- Blind triplicate: QAQC2 (triplicate of primary soil sample BH01_B).

One blind replicate sample was analysed to assess the quality control during the field sampling program. This equates to 10% blind replicate analysis. This blind replicate analysis exceeds and therefore conforms to AS 4482.1-2005.

The RPDs for all analytes for the soil blind replicate pair conformed to the DAC with the exception of the RPDs for selected PAH compounds. The sample collected for the blind replicate pair consisted of fill (silty clay). It is inherently difficult to obtain representative duplicate samples from fill materials which cannot be homogenised in order to retain the integrity of volatile compounds. None of the analytes detected in either sample exceeded the adopted investigation levels for commercial / industrial land use. The exceedances of selected PAH compounds between BH01_B and QAQC1 are unlikely to affect the usability of the data set.

One blind triplicate sample was analysed to assess the quality control during the field sampling program. This equates to 10% blind triplicate analysis. This blind triplicate analysis exceeds and therefore conforms to AS 4482.1-2005.

The RPDs for all analytes for the soil blind triplicate pairs conformed to the DAC with the exception of the RPDs for selected PAH compounds and heavy metals. The sample collected for the blind triplicate pair consisted of fill (silty clay). It is inherently difficult to obtain representative duplicate samples from fill materials which cannot be homogenised in order to retain the integrity of volatile compounds. None of the analytes detected in either sample exceeded the adopted investigation levels for commercial / industrial land sue. The exceedances of selected PAH compounds and heavy metals between BH01_B and QAQC2 are unlikely to affect the usability of the data set.

RPD results for soil blind replicate and triplicate pairs are detailed in **Table A** presented in **Appendix A**.

8.3 Laboratory quality assurance

All analysis was undertaken by NATA accredited laboratories using NATA accredited analytical methods.

8.4 Laboratory quality control

Where undertaken, laboratory QC data is presented in full in the laboratory certificates in Appendix B.

Detailed Site Investigation Report – Ridge Street (WP12)

8.4.1 Laboratory duplicates

Where undertaken, the RPDs for the laboratory samples conformed to the DAC.

8.4.2 Laboratory control samples

Where undertaken, the recoveries for all laboratory control samples conformed to the DAC.

8.4.3 Surrogates

Where undertaken, the recoveries for all laboratory surrogate samples conformed to the DAC.

8.4.4 Matrix spikes

Recoveries for all matrix spike samples conformed to the DAC with the exception of the recoveries for 10:2 FTS, selected PAH compounds and chromium as detailed below:

- Matrix spike recovery for 10:2FTS (178%) was outside the global acceptance criteria (60-140%). However, an acceptable recovery has been obtained for the laboratory control sample
- Percent recovery for PAH from the matrix spike was not possible to report as the high concentration of analytes in sample 262787-5ms have caused interference
- Percent recovery for chromium was not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However, an acceptable recovery was obtained for the laboratory control sample.

These exceptions are not expected to compromise the integrity of the data.

8.4.5 Method blanks

Where undertaken, all method blanks reported analyte concentrations below the laboratory LOR and therefore conformed to the DAC.

8.4.6 Sample holding times

All soil samples were extracted and analysed within the specified holding times.

8.4.7 Sample condition

All samples were received by the analytical laboratory in correctly preserved and chilled containers with no reported breakages. The individual sample receipts are presented with the laboratory reports in Appendix B.

8.5 QA/QC assessment

It is concluded that the laboratory data are of acceptable quality and are considered useable in making conclusions and recommendations regarding the condition of soils at the site.

Detailed Site Investigation Report – Ridge Street (WP12)

9 Site assessment criteria

9.1 Aesthetics

The National Environment Protection (Assessment of Site Contamination) Measure 1999, revised 2013 (NEPC, 2013) notes that there are no specific numeric aesthetic guidelines, however site assessments require a balanced consideration of the quantity, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity. Consideration includes chemically discoloured soils, large quantities of various types of inert refuse and their depth etc.

9.2 Health investigation levels

To evaluate the significance of the reported soil concentrations with respect to the proposed use, Jacobs compared the analytical testing results against the soil quality guidelines published in the NEPC (2013) (i.e. health-based soil investigation (HIL) levels).

The HILs for a commercial/industrial land use (HIL-Setting D), NEPC (2013) were used to evaluate the significance of contamination.

The published guidelines adopted were based on a commercial/industrial land use as these were the most relevant exposure scenario for the proposed site use. However, we note that the published HIL guidelines are based on a much longer exposure period (i.e. 30 years). Therefore, direct application of the published HIL guidelines (for commercial/industrial) to the proposed site exposure (i.e. less than 5 years) was conservative.

As per the guidance provided in the NEPM (2013), average concentrations in soil were used to assess contaminant concentrations with respect to the guidelines rather than individual results. The NEPM also states that in order to use the average concentration of a contaminant, the data set must meet the following criteria:

- No single value should exceed 250% of the relevant investigation or screening level; and
- The standard deviation of the results should be less than 50% of the relevant investigation or screening level'.

Where the above criteria are not met, then the average concentration should not be used and the individual results must be directly compared to the guideline levels.

Published guidelines are also available for the evaluation of soil vapour exposure resulting from soil contaminated with petroleum hydrocarbons (Health Screening Levels (HSLs)). Jacobs have included HSLs for comparison to the soil assessment results. However, adoption of HSL guideline values is conservative given the proposed (temporary) use/occupation of the site (e.g. no permanent structures for occupation).

The HSLs depend on specific soil physio-chemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, and depths below surface to >4 metres. Further details on their use are provided in Friebel and Nadebaum (2011a, 2011b & 2011c).

The HSLs defined within the NEPC (2013) relate only to the volatile fractions of the petroleum hydrocarbons range i.e. BTEX, naphthalene and TRH C6 – C10, TRH C10 – C16. Based on the presence of fill material across the site, HSLs for coarse grained sand to 0-1 m have been adopted.

The Jacobs assessment also considered the potential presence of asbestos. However, this was limited to:

Detailed Site Investigation Report – Ridge Street (WP12)

- Field observations during the collection of soil samples (by Jacobs staff), and
- Testing of selected soil samples by the laboratory for the 'presence or absence' of asbestos.

We note that this was level of assessment does not constitute full characterisation of the site for the potential presence of asbestos nor is an 'asbestos clearance' provided by Jacobs. The potential for asbestos to be discovered during the occupation of the site should be considered within the management plan for any works on site (e.g. unexpected finds protocols). The adopted soil quality guidelines are detailed in **Table 9-1**.

Table 9-1: Adopted soil quality guidelines (mg/kg)

Compounds / Fraction	Soil Investigation Levels			
	Commercial/Industrial			
Heavy Me	etals			
Arsenic (total)	3,000 ¹			
Cadmium	900 1			
Chromium (VI)	3,600 ¹			
Copper	240,000 ¹			
Lead	1,500 ¹			
Mercury (inorganic)	730¹			
Nickel	6,000 ¹			
Zinc	400,000 ¹			
Cyanide (free)	1,500 ¹			
Polychlorinated Bip	henyls (PCBs)			
PCBs	7 1			
Polycyclic Aromatic Hydrocarbons (PAHs)				
Naphthalene	11,000 ³			
BaP TEQ	40 ¹			
Total PAH	4,000 ¹			
Total Recoverable Hydi	rocarbons (TRH) ⁴			
C6-C10	26,000			
>C10-C16	20,000			
>C16-C34	27,000			
>C34-C40	38,000			
Organochlorine Pesticides (OCP)				
DDT+DDE+DDD	3,600 ¹			
Aldrin and dieldrin	45 ¹			
Chlordane	530 ¹			
Endosulfan	2,000 ¹			
Endrin	100 ¹			

Compounds / Fraction	Soil Investigation Levels		
	Commercial/Industrial		
Heptachlor	50 ¹		
НСВ	80 ¹		
Methoxychlor	2,500 ¹		
Mirex	100 ¹		
Toxaphene	160 ¹		
F1, F2 and BTEX (based or	n SAND soil type) #		
Depth (m)	0 – <1		
F1 (C6-C10 minus sum of BTEX concentrations)	260 ²		
F2 (>C10-C16 minus naphthalene)	NL ²		
Benzene	3 ²		
Toluene	99,000 ³		
Ethylbenzene	27,000 ³		
Xylenes	81,000 ³		
Naphthalene	11,000 ³		
Asbestos			
All forms of asbestos TNEPC (2013) Table 1 A(1) Health investigations levels for soil contaminants – Communications (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	No asbestos in any form present in soil samples analysed or observed on surface soils and in excavated materials		

¹ NEPC (2013) Table 1 A(1) Health investigations levels for soil contaminants – Commercial / Industrial D.

9.3 PFAS

The HEPA (2020) PFAS National Environmental Management Plan (NEMP, 2020) provides guideline values for the sum of PFOS and PFHxS and for PFOA in soil to be used for the assessment of potential human exposure through direct soil contact. The PFAS NEMP (2020) further notes that the guideline values should be used in conjunction with other lines of investigations to account for potential leaching, off-site transport, bioaccumulation and secondary exposure.

The soil guideline values are based on the NEPC (2013) Health Investigation Level (HIL) assumptions for specific land uses. All of the guideline values assume that 20% of the Food Standards Australia and New Zealand Tolerable Daily Intake (FSANZ TDI) is from the exposure scenario (i.e. up to 80% of exposure is assumed to come from other pathways). The guideline values applicable for this investigation and additional assumptions are as follows:

Industrial/ commercial: These values were derived based on standard NEPC (2013)
assumptions for HIL—D. The values assume 8 hours spent indoors and 1 hour spent outdoors
at a site such as a shop, office, factory or industrial site.

In terms of the investigation criteria for soil on the site, industrial/commercial HIL have been applied. The adopted soil screening criteria for human health are provided in **Table 9-2**.

² NEPC (2013) Table 1 A(3) Soil HSLs for vapour intrusion – Commercial / Industrial D, 0 to <1, SAND

³ HSL-D Commercial / Industrial, Direct Contact detailed within Table A4, Friebel, E & Nadebaum, P 2011, Soil Health screening levels for direct contact, Technical Report 10.

NL – NL indicates the HSL is not limiting (see Footnote 5, Table 1A(3)).

TEQ – Toxic Equivalent.

[#] Soil Vapour as the primary Exposure Pathway to impact potential receptors.

Detailed Site Investigation Report – Ridge Street (WP12)

Table 9-2: Investigation criteria for PFAS in soils for the protection of human health (mg/kg)

Exposure scenario	PFOS+ PFHxS	PFOA	Comment
On-site	20	50	Based on PFAS NEMP (2020) guideline values for commercial / industrial land use.

10 Results

10.1 Site stratigraphy

A summary of the sub-surface material excavated from the investigation locations is provided in **Table 10-1**.

Table 10-1: Summary of sub-surface materials

BH01		
Co-ordinates: Lat: 33º49.9	9905'S; Long: 151º12.6694'E	
Depth range (mbgl)	Material description	
0.0	Grass	
0.0 - 0.5	Topsoil/fill: silty clay, dark brown, rootlets, fine grained, moist	
0.2	Colour change to light brown/yellow and glass fragments present	
0.25	Colour change back to dark brown	
0.3	Coarse gravel inclusions, sub-rounded	
0.5 – 1.0	FILL: sandy clay with gravel, red mottled white, fine to coarse grained, coarse gravel, sandstone and concrete boulders, dry	
0.6	Asphalt inclusions and slight hydrocarbon odour	
1.0	Sandy clay: brown mottled red, fine to coarse grained, sandstone gravel, moist. Excavation terminated at 1.0 mbgl (limit of investigation).	
BH02		
Co-ordinates: Lat: 33º49.9	9658'S; Long: 151º12.6591'E	
Depth range (mbgl)	Material description	
0.0	Grass	
0.0-0.1	Topsoil/fill: silty sand, dark brown, rootlets, fine to coarse grained, moist	
0.1 - 0.35	Fill: silty sandy clay with sandstone gravel, dark brown/brown/red mottled, fine to coarse grained, coarse gravel, dry	
0.35 - 0.45	FILL: clay with sand, brown/red, stiff, dry	
0.45 - 0.85	FILL: sandy clay with gravel, dark brown, building materials present (iron nail, clay tile fragments, asphalt), dry	
0.85 - 0.9	FILL: clayey sand with sandstone gravel, white, fine to coarse grained, coarse gravel, dry	
0.9 – 1.0	FILL: sandy clay, dark brown with gravel, moist. Excavation terminated at 1.0 mbgl (limit of investigation).	
BH03		
Co-ordinates: Lat: 33º49.9	9661'S; Long: 151º12.6593'E	
Depth range (mbgl)	Material description	
0.0	Grass	
0.0 - 0.3	Topsoil/fill: silty clay with sandstone gravel, dark brown, fine to coarse grained, moist	
0.3 – 1.0	FILL: sandy clay with gravel, white mottled red, dry	
0.75	Asphalt present	
0.8	Ironstone present	
1.0	Excavation terminated at 1.0 mbgl (limit of investigation).	
BH04		
Co-ordinates: Lat: 33º49.9	9401'S; Long: 151º12.6857'E	
Depth range (m)	Material description	

0.0	Grass			
0.0 – 1.0	FILL: clay with sand, brown/red, ironstone inclusions (between 0.0 and 0.4 mbgl), moist			
0.6	Colour change to dark brown, dry			
0.8	Charcoal fragment present			
1.0	Excavation terminated at 1.0 mbgl (limit of investigation).			
BH05				
Co-ordinates: Lat: 33%	49.9077'S; Long: 151º12.7002'E			
Depth range (m)	Material description			
0.0	Grass			
0.0 – 1.0	FILL: sandy clay with some sandstone gravel, brown/red, fine to coarse grained, medium to coarse gravel, subangular, moist			
0.6	Colour change to dark brown			
0.7	Colour change to red/brown			
0.9	Ironstone gravel inclusions, angular			
1.0	Excavation terminated at 1.0 mbgl (limit of investigation).			

10.2 Aesthetics

Fill was identified at all locations to the limit of the investigation (1.0 mbgl) with the exception of BH01. (natural material was encountered at 1.0 mbgl at location BH001). The fill material comprised topsoil/fill overlying sandstone gravels, concrete gravels and construction waste (asphalt, iron nail, clay tile). No potential asbestos containing materials, odorous or discoloured materials were identified in the material recovered from the investigation locations. No potential asbestos containing materials were observed on the surface in the near vicinity of the investigation locations.

Given the presence of other building waste/debris, there is a potential for asbestos containing materials to also be present. Jacobs do not recommend further assessment of the site for asbestos, however, the potential for asbestos containing materials to be present within the subsurface should be noted within the Construction and Environmental Management Plan (including an unexpected finds procedure).

10.3 Soil analytical results

Soil analytical results from samples collected from the SMEC and Jacobs investigations in comparison to the adopted HIL/HSL are discussed below.

Analytical results (SMEC and Jacobs combined) are provided in **Table B** presented **in Appendix A**. Laboratory certificates of analysis from the Jacobs investigation are presented in **Appendix B**.

All individual samples reported concentrations below the adopted soil quality guidelines.

Asbestos was not identified by the laboratory in any of the samples submitted for asbestos identification. With respect to the PFAS concentrations reported:

- No known point source of PFAS were identified on site, suggesting PFAS concentrations reported
 are likely to be indicative of widespread contamination that are likely to be related to widespread
 diffuse contamination extending beyond the boundary of the investigation area.
- PFAS concentrations were several orders of magnitude below the adopted guideline levels for commercial/industrial land use.

The presence of PFAS in soil is expected to have a negligible impact to the proposed use of the site. However, the site management plan should give consideration to the management of on-site soils (to limit

Detailed Site Investigation Report – Ridge Street (WP12)

unnecessary exposure and/or disturbance). Where soils are excavated for off-site disposal appropriate classification and management will be required.

10.4 Statistical analysis and discussion

The following information provides a summary of the data obtained from the SMEC (2020) and the Jacobs investigations.

The data summary has only been undertaken on the potential contaminants (heavy metals, TRH, BTEX, PAH, OCP, PCB, VOC, PFAS and cyanide) as detailed in Appendix M of the EIS (2020) prepared for the Western Harbour Tunnel and Warringah Freeway Upgrade project which have a respective adopted HIL/HSL. There is insufficient data for other contaminant compounds analysed as part of the SMEC (2020) investigation to enable reliable statistical analysis to be undertaken.

The data summary has only been undertaken on the potential contaminants (heavy metals, TRH, BTEX, PAH, pesticides, PCB, VOC, PFAS and cyanide) as detailed in Appendix M of the EIS (2020) prepared for the Western Harbour Tunnel and Warringah Freeway Upgrade project which have a respective adopted HIL/HSL.

The data summary assumes the following:

- The data summary does not include the asbestos identification undertaken at the site as the HIL/HSL is based on presence/absence and not on a numerical concentration.
- Only those contaminant compounds which have HIL/HSL have been subject to statistical analysis.
- Where concentrations of contaminant compounds have been reported at less than the laboratory levels or reporting (LOR), these results have been reported as half the LOR to enable statistical analysis.
- The data summary has been prepared for fill materials only.

The data summary is detailed in **Table 10-2**.

Table 10-2: Data summary

Contaminant	No. samples analysed	Maximum concentration (mg/kg)	95% UCL concentration (mg/kg)	Arithmetic mean concentration (mg/kg)	Standard deviation (mg/kg)	Adopted HIL/HSL	Number of individual samples above HIL/HSL	95%UCL above HIL/HSL	Arithmetic mean above HIL/HSL	Maximum concentration >250% of HIL/HSL	Standard deviation >50% of HIL/HSL
Naphthalene	47	3.1	0.377	0.272	0.423	11,000	0	0	No	✓	√
Total PAH's	47	222	26.51	17.155	37.802	4,000	0	0	No	✓	√
B(a)P TEQ	47	28	4.209	3.022	4.792	40	0	0	No	✓	√
Arsenic	47	24	5.733	4.787	3.82	3,000	0	0	No	✓	√
Cadmium	47	0.5	0.461	0.429	0.127	900	0	0	No	✓	✓
Chromium	47	73	23.33	19.851	14.044	3,600	0	0	No	✓	√
Copper	47	299	32.21	21.574	42.970	240,000	0	0	No	✓	√
Lead	47	144	59.87	50.393	38.299	1,500	0	0	No	✓	√
Mercury	47	1.1	0.132	0.092	0.160	730	0	0	No	✓	✓
Nickel	47	60	9.004	6.351	10.719	6,000	0	0	No	✓	✓
Zinc	47	228	46.02	36.244	39.492	400,000	0	0	No	✓	✓
Cyanide	11	0.6	0.339	0.281	0.101	1,500	0	0	No	✓	✓
Toluene	11	0.25	NV	0.250	0.00	99,000	0	0	No	√	√

PROGRAM ALLIANCE				_	0 00000 00	0	30.01			9	
Contaminant	No. samples analysed	Maximum concentration (mg/kg)	95% UCL concentration (mg/kg)	Arithmetic mean concentration (mg/kg)	Standard deviation (mg/kg)	Adopted HIL/HSL	Number of individual samples above HIL/HSL	95%UCL above HIL/HSL	Arithmetic mean above HIL/HSL	Maximum concentration >250% of HIL/HSL	Standard deviation >50% of HIL/HSL
TRH C6 - C10	47	12.5	7.541	6.755	3.175	26,000	0	0	No	✓	✓
TPH C6 - C10 less BTEX (F1)	47	12.5	7.541	6.755	3.175	260	0	0	No	√	√
Benzene	47	0.1	NV	0.100	0.000	3	0	0	No	√	✓
Ethylbenzene	47	0.5	0.335	0.308	0.106	27,000	0	0	No	√	✓
Total Xylenes	47	1.5	0.674	0.542	0.529	81,000	0	0	No	√	✓
TRH >C10-C16	47	25	NV	25.000	0.000	20,000	0	0	No	✓	✓
TRH >C10 - C16 less Naphthalene (F2)	47	25	NV	25.000	0.000	20,000	0	0	No	√	✓
TRH >C16-C34	47	1420	215.9	157.234	237.125	27,000	0	0	No	✓	✓
TRH >C34-C40	47	470	127.9	100.213	111.746	38,000	0	0	No	✓	✓
НСВ	11	0.05	NV	0.050	0.000	80	0	0	No	✓	✓
Heptachlor	48	0.05	0.0333	0.031	0.010	50	0	0	No	✓	✓
Aldrin	48	0.05	0.0333	0.031	0.010	45	0	0	No	✓	✓
gamma-Chlordane	48	0.05	0.0333	0.031	0.010	530	0	0	No	✓	✓
alpha-chlordane	48	0.05	0.0333	0.031	0.010	530	0	0	No	✓	✓

PROGRAM ALLIANCE							30.01			9	(
Contaminant	No. samples analysed	Maximum concentration (mg/kg)	95% UCL concentration (mg/kg)	Arithmetic mean concentration (mg/kg)	Standard deviation (mg/kg)	Adopted HIL/HSL	Number of individual samples above HIL/HSL	95%UCL above HIL/HSL	Arithmetic mean above HIL/HSL	Maximum concentration >250% of HIL/HSL	Standard deviation >50% of HIL/HSL
Dieldrin	48	0.05	0.0333	0.030	0.010	45	0	0	No	√	✓
Endrin	48	0.05	0.0333	0.030	0.010	100	0	0	No	✓	✓
Endosulfan II	48	0.05	0.0333	0.030	0.010	2,000	0	0	No	✓	✓
Methoxychlor	48	0.1	0.0937	0.088	0.021	2,500	0	0	No	✓	✓
Total DDT+DDD+DDE	48	0.05	0.0333	0.030	0.010	3,600	0	0	No	✓	✓
Total PCBs	11	0.05	NV	0.050	0.000	7	0	0	No	✓	✓
PFOA	10	0.0004	0.0005	0.000	0.000	50	0	0	No	✓	✓
PFHxS & PFOS	10	0.0012	0.00223	0.000	0.000	20	0	0	No	✓	✓

[✓] Arithmetic mean/individual concentration/maximum concentration/standard deviation soil concentration below soil quality guideline and/or acceptable statistical evaluation criteria.

X Arithmetic mean/individual concentration/maximum concentration/standard deviation soil concentration above soil quality guideline and/or unacceptable statistical evaluation criteria.

Detailed Site Investigation Report – Ridge Street (WP12)

11 Conclusions and recommendations

The following conclusions and recommendations were made based on the scope/limitations of the combined SMEC/Jacobs assessment:

Conclusions

- Reported contaminant concentrations in soil were below the adopted guideline values (for all individual sample results).
- Inert building waste and debris was noted at several locations within fill material across the site.
- Asbestos was not identified by the laboratory in any of the samples submitted for asbestos identification. Asbestos containing materials were not observed by Jacobs while collecting the soil samples.

Recommendations

- Given the presence of other building waste/debris (and the heterogeneous nature of such waste), there is a potential for undiscovered soil contamination and/or asbestos containing materials to also be present. Jacobs do not recommend further assessment of the site, however, the potential for undiscovered soil contamination and/or asbestos containing materials to be present within the subsurface should be noted within the Construction and Environmental Management Plan (including an unexpected finds procedure).
- The site management plan should also ensure that any disturbance of the site surface is managed appropriately (including off-site disposal). For example, minimise dust generation, surface water/sediment runoff from the site, etc.).

12 Approval response

The results of the SMEC (2020) and Jacobs investigations in context of the risk management strategy as detailed in the EIS Appendix M (2020) and the draft conditions of approval are presented in **Table 12-1** and **Table 12-2**.

Table 12-1: Responses to risk management strategy

Risk management strategy (EIS Appendix M, 2020)	Response
Based on the information reviewed, a number of moderate to high risk potential AEIs have been identified. Where extensive investigations have not been carried out (all high to moderate risk sites with the exception of the Rozelle Rail Yards site), potentially contaminated areas directly affected by the project will be investigated and managed in accordance with the requirements of guidance endorsed under section 105 of the Contaminated Land Management Act 1997.	The EIS Appendix M (2020) identified the site as a moderate contamination risk site. The investigations (SMEC and Jacobs) undertaken at the site have been undertaken in general accordance with guidance endorsed under Section 105 of the Contaminated Land management Act 1997. Contamination was not identified at concentrations above the adopted HIL/HSL for a commercial / industrial use of the site. Asbestos was not identified in any sample submitted for laboratory identification. Jacobs did not observe potential asbestos containing materials in the vicinity of the investigation locations or within materials excavated as part of the investigation. Therefore, specific management (i.e. remediation as defined by the Contaminated Land Management Act 1997) of contamination is not required at the site under a commercial/industrial land use setting.

Table 12-2: Responses to condition of approvals

Number	Condition of approval	Response
E115	Prior to the commencement of any work that would result in the disturbance of moderate to high risk contaminated sites as identified in the documented listed in Condition A1, a Detailed Site Investigations must be undertaken by a Contaminated Land Consultant certified under either the Environment Institute of Australia or New Zealand's "Certified Environmental Practitioner" (Site Contamination) scheme (CEnvP(SC)) or the Soil Science Australia "Certified Professional Soil Scientist Contaminated Site Assessment and Management (CPSS CSAM) scheme	The SMEC and Jacobs field works were completed prior to occupation/use of the site for the purpose of the construction project. DSI report was reviewed/completed by a Contaminated Land Consultant certified under either the Environment Institute of Australia or New Zealand's "Certified Environmental Practitioner" (Site Contamination) scheme (CEnvP(SC)) or the Soil Science Australia "Certified Professional Soil Scientist Contaminated Site Assessment and Management (CPSS CSAM) scheme.
E116	A Detailed Site Investigation Report must be prepared and submitted to the Planning Secretary for information following the completion of Detailed Site Investigations required by Condition E115. The report must be prepared in accordance with relevant guidelines made or approved by	The investigations (by SMEC and Jacobs) undertaken at the site have been undertaken in general accordance with guidance endorsed under Section 105 of the Contaminated Land management Act 1997 and other relevant guidelines. The DSI report was reviewed/completed by a Contaminated Land Consultant certified under either the Environment Institute of Australia or New Zealand's "Certified Environmental Practitioner"

Number	Condition of approval	Response
	the EPA under section 105 of the Contaminated Land Management Act 1997 (NSW) and prepared by a Contaminated Land Consultant certified under either the Environment Institute of Australia or New Zealand's "Certified Environmental Practitioner" (Site Contamination) scheme (CEnvP(SC)) or the Soil Science Australia "Certified Professional Soil Scientist Contaminated Site Assessment and Management (CPSS CSAM) scheme. Nothing in this condition prevents the Proponent from preparing individual Site Contamination Reports for separate sites	(Site Contamination) scheme (CEnvP(SC)) or the Soil Science Australia "Certified Professional Soil Scientist Contaminated Site Assessment and Management (CPSS CSAM) scheme.
E117	The Detailed Site Investigation Report must prov	ride details on:
	(a) primary sources of contamination, for example potentially contaminating activities, infrastructure (such as underground storage tanks, fuel line, sumps or sewer lines) or site practices;	The EIS Appendix M (2020) did not identify point sources of contamination within the investigation area. The EIS identified particulate deposition and historic fill as the most likely source of contamination. The Jacobs investigation was designed to evaluate contamination associated with particulate deposition and filling across the site. The SMEC (2020) investigation inadvertently assessed potential impacts associated with particulate deposition and filling at the site. Jacobs did not observe any primary sources of contamination during the assessment.
	(b) contaminant dispersal in air, hazardous ground gases, surface water, groundwater, soil vapour, separate phase contaminants, sediments, infrastructure (e.g. concrete), biota, soil and dust;	Contamination was not identified at concentrations above the adopted HIL/HSL for a commercial / industrial use of the site. Asbestos was not identified in any sample submitted for laboratory identification. Jacobs did not observe potential asbestos containing materials in the vicinity of the investigation locations or within materials excavated as part of the investigation. In the event that fill is disturbed and relocated onsite, soil management practices during movement and following relocation should be implemented to minimise exposure, dust and runoff.
	(c) contaminant characterisation and behaviour (volatility, leachability, speciation, degradation products and physical and chemical conditions on-site which may affect how contaminants behave);	As noted above for (b).
	(d) potential effects of contaminants on human health, including the health of occupants of built structures (for example arising from risks to service lines from hydrocarbons in groundwater, or risks to	Contamination was not identified at concentrations above the adopted HIL/HSL for a commercial / industrial use of the site. Asbestos was not identified in any sample submitted for laboratory identification. Jacobs did not observe potential asbestos containing materials in the vicinity of the investigation locations or within materials excavated as part of the investigation.

Condition of approval	Response
concrete from acid sulphate soils) and the environment;	However, as a conservative measure, soil management practices should be implemented to minimise exposure, dust, runoff etc.
(e) potential and actual contaminant migration routes including potential preferential pathways;	Refer to (d).
(f) the adequacy and completeness of all information available for use in the assessment of risk and for making decisions on management requirements, including an assessment of uncertainty;	Refer to Section 3 of this report for the assumptions and limitations related to this report. The assessment undertaken was considered to be adequate to meet these objectives with the resultant recommendation for application of conservative preventative exposure measures during the occupation of the site for construction activities.
(g) the review and update of the conceptual site model from the preliminary and detailed site investigations;	The EIS CSM assumed surface deposition was the primary source of contamination. Given the results of the assessment, revision of the CSM was not required.
(h) nature and extent of any existing remediation (such as impervious surface cappings);	No existing remediation infrastructure was observed or documented at the site.
(i) whether the land is suitable (for the intended final land use) or can be made suitable through remediation.	Refer to Section 3 of this report for the assumptions and limitations related to this report. Contamination was not reported above the adopted guideline values for the proposed construction use of the site. However, conservative preventative exposure measures have been recommended (refer to (d) above).
Should remediation be required to make land suitable for the final intended land use, a Remediation Action Plan must be prepared or reviewed and approved, by consultants certified under either the Environment Institute of Australia and New Zealand's Certified Environmental Practitioner (Site Contamination) scheme (CEnvP(SC)) or the Soil Science Australia Certified Professional Soil Scientist Contaminated Site Assessment and Management (CPSS CSAM) scheme. The Remedial Action Plan must be prepared in accordance with relevant guidelines made or approved by the EPA under section 105 of the Contaminated Land Management Act 1997 and must include measures to remediate the contamination at the site to ensure the site will	Remediation is not required.
	environment; (e) potential and actual contaminant migration routes including potential preferential pathways; (f) the adequacy and completeness of all information available for use in the assessment of risk and for making decisions on management requirements, including an assessment of uncertainty; (g) the review and update of the conceptual site model from the preliminary and detailed site investigations; (h) nature and extent of any existing remediation (such as impervious surface cappings); (i) whether the land is suitable (for the intended final land use) or can be made suitable through remediation. Should remediation be required to make land suitable for the final intended land use, a Remediation Action Plan must be prepared or reviewed and approved, by consultants certified under either the Environment Institute of Australia and New Zealand's Certified Environmental Practitioner (Site Contamination) scheme (CEnvP(SC)) or the Soil Science Australia Certified Professional Soil Scientist Contaminated Site Assessment and Management (CPSS CSAM) scheme. The Remedial Action Plan must be prepared in accordance with relevant guidelines made or approved by the EPA under section 105 of the Contaminated Land Management Act 1997

Detailed Site Investigation Report – Ridge Street (WP12)

Number	Condition of approval	Response
	Remedial Action Plan is implemented. The Remedial Action Plan must be submitted to the Planning Secretary for information prior to undertaking remediation.	
E119	The Remediation Action Plan must include measures to remediate the contamination at the site to ensure the site will be suitable for the proposed use and detail how the environmental and human health risks will be managed during the disturbance, remediation and/or removal of contaminated soil/sediment or groundwater. Nothing in this condition prevents the preparation of individual Remediation Action Plans for separate sites.	Not applicable
E120	Prior to commencing remediation, a Section B Site Audit Statement(s) must be prepared by a NSW EPA-accredited Site Auditor that certifies that the Remediation Action Plan is appropriate and that the site can be made suitable for the proposed use. The Remedial Action Plan must be implemented and any changes to the Remedial Action Plan must be approved in writing by the NSW EPA accredited Site Auditor. Nothing in this condition prevents the Proponent from engaging the Site Auditor to prepare Site Audit Statements for separate sites.	Not applicable.
E121	A Section A1 or A2 Site Audit Statement (accompanied by an Environmental Management Plan) and its accompanying Site Audit Report, which state that the contaminated land disturbed by the work has been made suitable for the intended land use, must be submitted to the Planning Secretary and Council after remediation and no later than prior to the commencement of operation of the CSSI. Nothing in this condition prevents the Proponent from obtaining Section A Site Audit Statements for individual parcels of remediated land.	Not applicable.
E122	Contaminated land must not be used for the purpose approved under the terms of this approval until a Section A1 or A2 Site Audit Statement is obtained which states that the land is suitable for that purpose and any	Not applicable.

Detailed Site Investigation Report – Ridge Street (WP12)

Number	Condition of approval	Response
	conditions on the Section A Site Audit Statement have been complied with.	
E123	An Unexpected Finds Procedure for Contamination must be prepared before the commencement of work and must be followed should unexpected contamination or asbestos (or suspected contamination) be excavated or otherwise discovered. The procedure must include details of who will be responsible for implementing the unexpected finds procedure and the roles and responsibilities of all parties involved. The procedure must be submitted to the Planning Secretary for information.	An Unexpected Finds Procedure for contamination will be prepared before the commencement of work.
E124	The Unexpected Finds Procedure for Contamination must be implemented throughout construction.	An Unexpected Finds Procedure for contamination will be implemented throughout construction

Detailed Site Investigation Report – Ridge Street (WP12)

Appendix A – Tables

Table A: RPD Results		Sample ID	BH01-B	QAQC1	RPD (%)	BH01-B	QAQC2	RPD (%)
		Depth (m) Date	0.25 24/02/2021	24/02/2021		0.25 24/02/2021	24/02/2021	
Compounds Dichlorodifluoromethane Chloromethane	Units mg/kg	LOR 1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
Vinyl Chloride Bromomethane	mg/kg mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
Chloroethane Trichlorofluoromethane	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	
1,1-Dichloroethene trans-1,2-dichloroethene	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
1,1-dichloroethane cis-1,2-dichloroethene bromochloromethane	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1	<1 <1 <1	-	<1 <1 <1	<0.5 <0.5 <0.5	-
chloroform 2,2-dichloropropane	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
1,2-dichloroethane 1,1,1-trichloroethane	mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
1,1-dichloropropene Cyclohexane	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
carbon tetrachloride Benzene dibromomethane	mg/kg mg/kg mg/kg	1 0.2 1	<1 <0.2 <1	<1 <0.2 <1	-	<1 <0.2 <1	<0.5 <0.1 <0.5	
1,2-dichloropropane trichloroethene	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
bromodichloromethane trans-1,3-dichloropropene	mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
cis-1,3-dichloropropene 1,1,2-trichloroethane Toluene	mg/kg mg/kg mg/kg	1 1 0.5	<1 <1 <0.5	<1 <1 <0.5	-	<1 <1 <0.5	<0.5 <0.5 <0.1	-
1,3-dichloropropane dibromochloromethane	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
1,2-dibromoethane tetrachloroethene	mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
1,1,1,2-tetrachloroethane chlorobenzene	mg/kg mg/kg	1	<1	<1 <1	-	<1 <1	<0.5 <0.5	-
Ethylbenzene bromoform m+p-xylene	mg/kg mg/kg mg/kg	1 1 2	<1 <1 <2	<1 <1 <2	-	<1 <1 <2	<0.1 <0.5 <0.2	-
styrene 1,1,2,2-tetrachloroethane	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.2 <0.5 <0.5	-
o-Xylene 1,2,3-trichloropropane	mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.1 <0.5	-
isopropylbenzene bromobenzene p.propyl benzene	mg/kg mg/kg	1 1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5 <0.5	-
n-propyl benzene 2-chlorotoluene 4-chlorotoluene	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1	<1 <1 <1	-	<1 <1 <1	<0.5 <0.5 <0.5	-
1,3,5-trimethyl benzene tert-butyl benzene	mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
1,2,4-trimethyl benzene 1,3-dichlorobenzene	mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	
sec-butyl benzene 1,4-dichlorobenzene 4-isopropyl toluene	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1	<1 <1 <1	-	<1 <1 <1	<0.5 <0.5 <0.5	-
1,2-dichlorobenzene n-butyl benzene	mg/kg mg/ka	1 1	<1	<1	-	<1	<0.5 <0.5	-
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	mg/kg mg/kg	1 1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
hexachlorobutadiene 1,2,3-trichlorobenzene	mg/kg mg/kg	1	<1 <1	<1 <1	-	<1 <1	<0.5 <0.5	-
TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 lessBTEX (F1)	mg/kg mg/kg mg/kg	25 25 25	<25 <25 <25	<25 <25 <25	-	<25 <25 <25	<20 <20 <20	-
Benzene Toluene	mg/kg mg/kg	0.2 0.5	<0.2 <0.5	<0.2 <0.5	-	<0.2 <0.5	<0.1 <0.1	-
Ethylbenzene m+p-xylene	mg/kg mg/kg	1 2	<1 <2	<1 <2	-	<1 <2	<0.1 <0.2	-
o-Xylene naphthalene	mg/kg mg/kg	1 1 3	<1 <1	<1 <1	-	<1 <1	<0.1 <0.5	-
Total +ve Xylenes TRH C10 - C14 TRH C15 - C28	mg/kg mg/kg mg/kg	50 100	<3 <50 <100	<3 <50 190	-	<3 <50 <100	<0.3 <20 <50	-
TRH C29 - C36 TRH >C10-C16	mg/kg mg/kg	100 50	<100 <50	<100 <50	-	<100 <50	<50 <50	-
TRH >C10 - C16less Naphthalene (F2) TRH >C16-C34 TRH >C34-C40	mg/kg mg/kg	50 100	<50 <100	<50 260	-	<50 <100	<50 <100	-
TRH >C34-C40 Total +ve TRH (>C10-C40) Naphthalene	mg/kg mg/kg mg/kg	100 50 0.1	<100 <50 <0.1	120 380 <0.1	-	<100 <50 <0.1	<100 <50 <0.5	
Acenaphthylene Acenaphthene	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	-	<0.1 <0.1	<0.5 <0.5	-
Fluorene Phenanthrene	mg/kg mg/kg	0.1 0.1	<0.1 0.3	<0.1 <0.1	-	<0.1 0.3	<0.5 <0.5	-
Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 0.6 0.9	<0.1 0.2 0.2	- 100 127	<0.1 0.6 0.9	<0.5 0.6 0.6	- 0 40
Benzo(a)anthracene Chrysene	mg/kg mg/kg	0.1	0.5	0.1 0.1	133 120	0.5	<0.5 <0.5	-
Benzo(b,j+k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.2 0.05	0.8 0.52	0.2 0.1	120 135	0.8 0.52	0.5 0.6	46 14
Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	mg/kg mg/kg	0.1	0.1	<0.1 <0.1	-	0.1	<0.5 <0.5	-
Benzo(g,h,i)perylene Total +vePAH's Benzo(a)pyrene TEQ calc (zero)	mg/kg mg/kg mg/kg	0.1 0.05 0.5	0.4 4.6 0.8	<0.1 0.92 <0.5	- 133 -	0.4 4.6 0.8	<0.5 2.3 0.7	- 67 13
Benzo(a)pyrene TEQ calc(half) Benzo(a)pyrene TEQ calc(PQL)	mg/kg mg/kg	0.5 0.5	0.8	<0.5 <0.5	-	0.8 0.8	1 1.3	22 48
alpha-BHC HCB	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	-	<0.1 <0.1	<0.05 <0.05	-
beta-BHC gamma-BHC Heptachlor	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	-	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	-
delta-BHC Aldrin	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1	-	<0.1 <0.1	<0.05 <0.05	-
Heptachlor Epoxide gamma-Chlordane	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	-	<0.1 <0.1	<0.05 <0.05	
alpha-chlordane Endosulfan I pp-DDE	mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	-	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	-
Dieldrin Endrin	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	-	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	-
Endosulfan II pp-DDD	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	-	<0.1 <0.1	<0.05 <0.05	-
Endrin Aldehyde pp-DDT Endosulfan Sulphato	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	-	<0.1	<0.05 <0.05	-
Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD+DDE	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	-	<0.1 <0.1 <0.1	<0.05 <0.2 <0.05	-
Aroclor 1016 Aroclor 1221	mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	-	<0.1	<0.05 <0.1	-
Aroclor 1232 Aroclor 1242	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	-	<0.1 <0.1	<0.5 <0.5	-
Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	-	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	-
Aroclor 1260 Total +ve PCBs (1016-1260) Arsenic	mg/kg mg/kg mg/kg	0.1 0.1 4	<0.1 <0.1 <4	<0.1 <0.1 <4	-	<0.1 <0.1 <4	<0.5 <0.5 4.4	-
Cadmium Chromium	mg/kg mg/kg	0.4 1	<0.4 8	<0.4 7	- 13	<0.4 8	<0.4 24	100
Copper Lead	mg/kg mg/kg	1	11 25	9 39	20 44	11 25	13 50	17 67
Mercury Nickel	mg/kg mg/kg	0.1	<0.1 8	<0.1 6	- 29	<0.1 8	<0.1 14	- 55
Zinc Cyanide	mg/kg mg/kg	1 0.5	27 0.6	20 <0.5	30	27 0.6	45 <1	50 -

Table & Analysis (Inval) Sample (Inval) 0.45C(1 BHD), 5 BHD, 10 BHD,	8H01_D 1.09 11 24/02/2021	8H02_A 0.00 2402/2021	SP/ BH02_C BH 0.50 C 24/02/2021 24/0	3.2021 03_A BH03_D 1.00 1.00 2.2021 24.03/2021	8H05_B 0.25 1 24/02/2021	8H05_D 1.00 24/02/2021	BH04_A B 0.00 24/02/2021 24/	H04_C WFU_B 0.50 0.04 /02/2021 9/07/2	H043 WFU_BH043 0.1 0.4-0.5 2020 9/07/2020	WFU_BH043 WFI 0.7-0.8 C 9/07/2020 SI	U_BH044 WFU_ 10-0.1 1.0 03/2020 9/07	BH044 WFU_BH04 -1.1 2.0-2.1 /2020 9.07/2020	14 WFU_BH045 W 0.0-0.1 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	FU_BH045 WFU_B 0.4-0.5 1.0-1 0/07/2020 20/07/	9H045 WFU_BH045 1.1 2.0-2.1 16/09/2020	WFU_BH046 WF 0.0-0.1 (16/09/2020 16 Volatile O:	U_BH046 WFU_BH0 2.4-0.5 1.0-1.1 09/2020 16/09/2020 gardic Compounds	H6 WFU_SHD47 WF 0.00.1 1307/2020 13	J_BH047 WFU_BH047 0-1.1 2.0-2.1 07/2020 13/07/2020	WFU_SHORE 1 0.0-0.1 9/07/2020	WU_BH048 WU_ 0.4-0.5 1.0 9/07/2020 9/07	BHO48 W/U_BH049 3-1.1 0.0-0.1 7/2020 9.07/2020	SMEC 2 9 WFU_BH049 WFU 0.4-0.5 1. 9/07/2020 9/0	2000 1_BH049 WFU_BH049 0-1.1 2.0-2.1 7/2020 9/07/2020	0.0-0.1 14/09/2020	WFU_BH050 WFU_ 0.4-0.5 1.0 14.09/2020 14.09	8H050 WFU_BH050 -1.1 3.0-3.1 9/07/2020	WFU_BH051 WFU_BH 0.0-0.1 2.0-2.1 9/07/2020 9/07/20	9051 WFU_BH051 1 3.0-3.1 220 997/2029	WFU_BH053 WFU 0.0-0.1 0.4 10/07/2020 10/0	J_BH053 WFU_BH054 4-0.45 0.0-0.1 07/2020 10/07/2020	WFU_BN054 WFU_B 0.4-0.5 0.0-0 10/07/2020 10/07/2	H955 WFU_BH055 1.1 0.4-0.5 2020 10/07/2020	WFU_BH055 WFU 1.0-1.1 0 10/07/2020 16/	_BH056 WFU_BH056 0-0.1 0.4-0.5 99/2020 16/09/2020	WFU_BH056 WF 2.0-2.1 16/09/2020 2	TU_BH057 WFU_ 0.0-0.1 1.0 0.07/2020 20/07	SHC57 WFU_SHC57 -1.1 2.0-2.1 -20.07/2020
Institution	d d d d d	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 01 01 01 01 01	41 41 41 41 41 41 41	61 61 61 61 61 61 61	d - d - d - d - d - d - d - d - d - d -	-							-		-					-		-					-								
St. 2 diction from	d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 01 01 01 01 01 01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 01 01 01 01 01 01	d	-							-		-							-								-					
Columns	61 62 61 61 61 61 61	d1	01 02 0 01 01 01 01 01 01 01 01 01 01 01 01 01 0	d d d d d d d d d d d d d d d d d d d	01 002 01 01 01 01 01	01 00.2 01 01 01 01 01	61 60.2 61 61 61 61 61	01 - 022 - 01 - 01 - 01 - 01 - 01 - 01 -										-		- - - - - - -					-													
1,20 Accordance	<1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	41 405 41 41 41 41 41	<1 <0.5 < c1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	d d d d d d d d d d d d d d d d d d d	<1 <0.5 <1 <1 <1 <1 <1 <1	41 40.5 41 41 41 41 41 41	<1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	61 - 65 - 61 - 61 - 61 - 61 - 61 - 61 -			* * * * * * * * * * * * * * * * * * *		-																	-						-		
Physicismes	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	41 41 42 41 41 41 41	41 41 41 41 41 41 41 41 41 41 41 41 41 4	c1 c1 c2 c1 c1 c1 c1	d - d - d - d - d - d - d - d - d - d -					-					-		-					-				-	-						-		
	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	01 01 01 01 01 01 01	d d d d d d d d d d d d d d d d d d d	61 61 61 61 61 61 61	61 - 61 - 61 - 61 - 61 - 61 - 61 - 61 -	-							-		-							-								-					
malayteman	d d d d d d	d d d d d d d d d d d d d	d d d d d d d d d d d d d d d d d d d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 01 01 01 01 01 01	41 41 41 41 41 41 41	d d d d d d d d d d d d d d d d d d d	d - d - d - d - d - d - d - d - d - d -	-				-			-		-							-				-				-					
PRICE 4 C V	<25 <25 <25 <26 <0.2 <0.5 <1 <2	<25	<25 <25 <25 <20 <20 <20 <21 <21 <22	25 <25 25 <25 25 <25 25 <25 02 <02 05 <0.5 <1 <1 <1	<25 <25 <25 <0.5 <0.5 <1 <2	<25 <25 <25 <0.2 <0.5 <1 <2	<25 <25 <25 <25 <0.2 <0.5 <1	<25 <11 <25 <11 <25 <1 <25 <1 <0.2 <0. <0.5 <0. <1 <0.	0 <10 0 <10 0 <10 0 <10 2 <0.2 5 <0.5 5 <0.5	<10 <10 <10 <10 <0.2 <0.5 <0.5 <0.5	<10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	10 <10 10 <10 10 <10 12 <0.2 15 <0.5 15 <0.5 15 <0.5	<10 <10 <10 <0.2 <0.5 <0.5 <0.5	<10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Total Re 0 <10 0 <10 0 <10 2 <0.2 <0.2 5 <0.5 5 <0.5 5 <0.5	<10	ns / Monocyclic Aromat <10 <10 <10 <10 <10 <10 <10 <10 <0 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	k Hydrocarbons <10 <10 <10 <02 <0.5 <0.5 <0.5	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <0.2 <0.5 <0.5 <0.5	<10 < 10 < 10 < 10 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0	10 <10 10 <10 10 <10 02 <02 05 <05 05 <05		<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <0.2 <0.5 <0.5 <0.5	<10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10	10 <10 10 <10 10 <10 10 <10 10 <0.2 10 <0.2 10 <0.5 10 <0.5	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <0.2 <0.5 <0.5 <0.5	<10 < 10 < 10 < 10 < 10 < 00 < 00 < 0.5 < 0.5 < 0.5 < 0.5 <	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0 <10 0 <10 0 <10 2 <0.2 5 <0.5 5 <0.5 5 <0.5	<10 <10 <10 <10 <0.2 <0.5 <0.5 <0.5	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <0.2 <0.5 <0.5 <0.5	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0 < 10 0 < 10 10 < 10 12 < 0.2 15 < 0.5 0.5 < 0.5 0.5 < 0.5
major majo	<1 1 <3 <50 390 410 <50 <50	<1 <1 <1 <3 <3 <50 <100 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	<1 <1 <1 <3 <50 <60 <60 <60 <60 <60 <60 <60 <60 <60 <6	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <3 <50 <100 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	<1 <1 <1 <3 <50 <100 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	<1 <1 <1 <3 <50 <100 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	<1 <0. <1 <1 <3 <0. <50 <50 <50 <100 <100 <100 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	.5 <0.5 	<0.5	<0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.00 <1 <0.0	3.5 < 0.5 	<0.5 <0.5 <50 <100 <100 <50 <50	<0.5 <0. <0.5 <0. <50 <50 260 <10 260 <10 <50 <50 <50 <50	5 <0.5 . 5 <0.5 0 <50 0 <50 0 <100 0 <50 0 <50 0 <50	<0.5 <0.5 <50 <100 <100 <100 <50 <50	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <100 <300 <100 520 <50 <50 <50 <50 <50 <50	<0.5 <0.5 <50 <100 <100 <50 <50	<0.5 <0.5 	<0.5	<0.5 < <0.5 < <0.5 < <100 < <100 < <100 < <50 < <50 <	0.5 < 0.5 		<0.5 <0.5 	<0.5 <0.5 <50 <100 <100 <50 <50 <50	<0.5 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	0.5 < 0.5 	<0.5 <0.5 	. (0.5 . (0.5 . (0.5 . (0.5 . (0.5) . (0.5)	<0.5 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	<0.5 <0.5 	<0.5 <0 <0.5 <0. <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	5 <0.5 . 5 <0.5 0 <50 0 750 0 <50 0 <50 0 <50	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	-0.5 <0.5 -0.5 <0.5 -0.5 <0.5 -0.5 <0.5 -0.5	<0.5 <0.5 <0.5 <50 <100 <100 <50 <50	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5 <0.5
This CALCAT 2020	310 410 720 3.1 1.2 1 1.5	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	02 1 0.5 1 0.1 <	100 100	<0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c	<0.1 con	<0.00 <100 <50 <0.1 0.1 <0.1 <0.1	<100 <10 <100 <10 <50 <5 <0.1 <0. <0.1 <0. <0.1 <0. <0.1 <0.	50 <100 50 <100 5 <05 5 <05 5 <05 5 <05 5 <05 5 <05	<100 <100 <50 <0.5 <0.5 <0.5 <0.5	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	100 130 100 100 50 120 25 <0.5 25 <0.5 25 <0.5 25 <0.5 25 <0.5 25 <0.5 25 <0.5 25 <0.5 25 <0.5 25 <0.5 26 <0.5 27 <0.5 28 <0.5 29 <0.5 20 <0.5 2	<0.5 <0.5 <0.5 <0.5 <0.5	400 < 10 240 < 10 640 < 5 <0.5 < 0. 1.6 < 0. <0.5 < 0.	5 < 0.5 5 < 0.5 5 < 0.5 5 < 0.5 6 < 0.5 7 < 0.5 8 < 0.5	<000 <000 <000 Polycyclic Ar <0.5 <0.5 <0.5 <0.5 <0.5	<100 730 <100 410 <50 1,740 cmatic Hydrocarbors <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<100 <100 <50 <0.5 <0.5 <0.5 <0.5	<100 <100 <100 <100 <50 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	210 < 110 < 340 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	100 100 100 100 100 100 100 100 100 100		130 200 130	<100 <100 <50 <0.5 <0.5 <0.5 <0.5	<100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 <	00 <100 00 <100 50 <50 55 <0.5 55 <0.5 55 <0.5 55 <0.5	<100 120 <100 <100 <50 120 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<100 <100 <50 <0.5 <0.5 <0.5 <0.5 <0.5	200 < 180 < 400 < 400 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	<050 <100 <100 <100 <100 <100 <100 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	100 <100 1100 <100 100 <50 105 <05 105 <0.5 105 <0.5 105 105 <0.5 105 <0.5 105 <0.5 105 <0.5 105 <0.5 105 <0	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<100 2-100 <1 <100 <1 <100 <2 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <100 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	0 <100 0 <50 0 <50 15 <0.5 3.5 <0.5 3.5 <0.5 3.5 <0.5
Contract	4.1 15 15 9.6 6.9	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 ·	0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 <0.1 7.9 0.3 2.3 0.4 7.9 0.4 5.4 0.2 	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 0.9 0.9 0.7 0.5	<0.1 0.6 0.8 0.7 0.5	<0.1 <0.1 0.5 1.2 0.6 1.3 0.5 0.1 0.5 0.1 0.2 0.4 0.6 . <0.0 0.8 . <0.0	5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 cl 1.0 cl 1.0 cl 1.0 cl <0.5 cl <0.5 cl <0.5 cl	25 <0.5 25 1.6 25 1.8 25 0.7 25 0.8 25 0.9 25 0.9	0.6 2.9 2.8 1.3 1.2 1.9	2.6 c0. 11.9 c0. 13.4 c0. 6.7 c0. 5.9 c0. 7.7 c0. 2.9 c0.	5 <0.5 5 <0.5 5 <0.5 5 <0.5 5 <0.5 5 <0.5 5 <0.5	<05 1.2 1.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	<0.5 1.8 3.1 10.3 3.3 10.3 1.5 5.6 1.4 5.5 2.5 10.6 1.0 3.9	<0.5 0.8 0.9 0.5 0.5 0.8 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<05 07 08 <05 <05 <05 <05 <05	<0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 <	0.5 < 0.5 0.5 1.3 0.5 1.5 0.5 0.7 0.5 0.7 0.5 0.8 0.5 1.0 0.5 1.0		C0.5	<05 0.8 0.9 <0.5 <0.5 <0.5	0.5 cl 1.7 0 1.8 0 0.8 cl 0.8 cl 1.1 cl <0.5 cl	.5	<0.5 0.7 <0.5 3.4 <0.5 3.2 <0.5 1.5 <0.5 1.3 <0.5 1.4 <0.5 1.4	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.5</pre>	<0.5 <0.5 <0.5 <0.5 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<0.5 <0. <0.5 <0. <0.5 3.4 <0.5 1.5 <0.5 <0. <0.5 1.6 <0.5 1.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5 6.3 5 39.7 6 37.4 5 18.7 6 18.2 2 23.2 7 9.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	.05 <0.5 2.5 1.0 4.0 1.2 1.7 0.5 1.8 0.5 2.5 0.8 1.0 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 1 <0.5 5 <0.5 6 <0.5 3 <0.5 3 <0.5 3 <0.5 4 <0.5 1	2 <0.5 2 <0.5 3 <0.5 2 <0.5 0 <0.5 2 <0.5 3 <0.5
	7.9 3.7 1.2 4.3 100 12 12 12	<0.05 <0.1 <0.1 <0.0 <0.05 <0.5 <0.5 <0.5	5 2.4 3 0.8 2.7 5 7.5 7.5 7.5	7.9 0.4 2.6 0.2 1 <0.1 3 <0.1 61 2.4 11 <0.5 11 0.5	0.05 <0.1 <0.1 <0.1 0.05 <0.5 <0.5	0.55 0.3 0.1 0.3 0.5 0.9 0.9	0.75 0.4 0.2 0.5 6 1.1 1.1	0.5 0.1 0.3 <0. 0.1 <0. 0.3 <0. 4 4.3 0.8 0.1 0.8 0.1	5 <0.5 5 <0.5 5 <0.5 5 <0.5 7 <0.5 6 <0.5 9 0.6 2 1.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <	25 08 25 <05 25 <05 25 <05 25 <05 25 10 25 10 25 10	1.6 0.8 <0.5 1.0 16.2 2.1 2.3 2.6	6.8 <0. 3.0 <0. 0.9 <0. 3.4 <0. 76.2 <0. 9.8 <0. 9.8 0.6 9.8 1.2	5 <0.5 5 <0.5 5 <0.5 5 <0.5 5 <0.5 6 0.6 2 1.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.6 1.2	2.2 9.6 1.3 6.0 <0.5 1.2 1.7 8.2 18.9 77.3 2.9 13.5 3.1 13.5 3.4 13.5	0.7 <0.5 <0.5 0.5 4.7 0.8 1.1	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 1.5 <0.5 0.6	<0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0.5 < <0	0.5 0.9 0.5 < 0.5 0.5 < 0.5 0.5 0.5 0.5 0.7 0.5 1.1 0.6 1.4 1.2 1.7		0.8 0.6 c0.5 c0.5 c0.5 c0.5 c0.5 c0.5 c0.5 c0.5	<0.5 <0.5 <0.5 <0.5 <0.5 2.3 <0.5 0.6	1.0 cl <0.5 cl <0.5 cl 0.5 cl 7.7 1 1.2 cl 1.5 0 1.8 1	2.5 <0.5 2.5 <0.5 2.5 <0.5 2.5 <0.5 3.5 <0.5 3.5 <0.5 4.5 <0	<0.5 1.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 <0.5 16.4 <0.5 1.9 0.6 2.2 1.2 2.4	<0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1 < 0.5 0.6	<0.5	0.7 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.1 0.9 1.4 1.2	<0.5 1.8 <0.5 1.0 <0.5 <0.5 <0.5 1.2 <0.5 18.2 <0.5 2.4 0.6 2.6 1.2 2.5	1 19.2 9 9.9 5 2.4 2 11.5 5 222 6 28.0 9 28.0	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2.2 0.8 1.1 <0.5 0.5 <0.5 1.3 <0.5 1.3 <0.5 2.9 0.9 3.1 1.2 3.4 1.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 4 <0.5 1 <0.5 0 <0.5 2 <0.5 2 <0.5 37 <0.5 5 0.6 5	3 <0.5 8 <0.5 5 <0.5 2 <0.5 8 <0.5 6 <0.5 6 <0.5 10 0.0
Teach Teac	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 <0.1	0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05	<0.05 - <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0 - <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0		<0.05 - <0.05 <0.05 <0.05 <0.05	<0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0	05 <0.05 -0.05 05 <0.05 05 <0.05 05 <0.05 06 <0.05	0 rgained <0.05	No.05 Co.05 Co.0	<0.05 - <0.05 <0.05 <0.05 <0.05	(0.05	<0.05 	<0.05 of <0.	0.05 <0.05 	<0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0	0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05	<0.05 - - <0.05 - <0.05 - <0.05 - <0.05	<0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0	.05 <0.05 .05 <0.05 .05 <0.05 .05 <0.05 .05 <0.05 .05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05	<0.05 of	0.05 <0.05 	<0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0	05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05	<0.05	0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0 - <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0	05 <0.05
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	c01	0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	40.1 40.1	05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0	(05 < 0.05 (05 < 0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0 <0.05 <0.0	05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05 05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	(0.05 < 0.05 (0.05 < 0.05 (0.05 (0.05 < 0.05 (0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 cl <0.	0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0	05 <0.05 .05 <0.05 .05 <0.05 .05 <0.05 .05 <0.05 .05 <0.05 .05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05 5 <0.05	<0.05 cl <0.	00.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	CO C	<0.05	0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05 0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0	05 <0.05 05 <0.05 05 <0.05 05 <0.05 105 <0.05 105 <0.05 105 <0.05 105 <0.05
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	05 <0.05 2 <0.2 05 <0.05 2 <0.2 05 <0.05 	<0.05 <0.2 <0.05 <0.2 <0.05	<0.05 <0 <0.2 <1 <0.05 <0 <0.0 <0 <0.0 <0	105 <0.05 12 <0.2 105 <0.05 12 <0.2 105 <0.05 1.2 <0.2 1.5 <0.05	<0.05 <0.2 <0.05 <0.2 <0.05	<0.05 <0.0 <0.2 <0.0 <0.05 <0.0 <0.2 <0.0 <0.02 <0.0	05 <0.05 22 <0.2 05 <0.05 12 <0.2 05 <0.05	<0.05 <0.2 <0.05 <0.2 <0.05 Polychlor	<0.05 <0.05 <0.2 <0.2 <0.05 <0.05 <0.2 <0.05 <0.2 <0.05 inuted Biphony is	<0.05 <0.2 <0.05 <0.2 <0.05	<pre><0.05 <0.05 <0.2 <0.2 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0 <0.0</pre>	<0.05 <0.2 <0.05 <0.2 <0.05	<0.05 <0 <0.2 < <0.05 <0 <0.2 < <0.05 <0 <0.2 < <0.05 <0 <0.2 < <0.05 <0 <0.2 < <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.05 <0 <0.0	0.05 <0.05 0.2 <0.2 0.05 <0.05 0.2 <0.05 0.2 <0.2 0.05 <0.05	<0.05 < 0.2 · 0.05 < 0.2 · 0.05 < 0.2 · 0.05 < 0.2 · 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	<pre>c0.05</pre>	<0.05 <0.2 <0.05 <0.2 <0.05	<0.05 <0 <0.2 < <0.05 <0 <0.2 < <0.05 <0	.05 <0.05 1.2 <0.2 .05 <0.05 1.2 <0.2 .05 <0.05	<0.05 <0.05 <0.2 <0.2 <0.05 <0.05 <0.2 <0.2 <0.05 <0.05	5 <0.05 2 <0.2 5 <0.05 2 <0.2 5 <0.05	<0.05 cl <0.2 c <0.05 cl <0.2 c <0.05 cl 	<pre><0.05 <0.05 <0.2 <0.2 <0.05 <0.</pre>	<0.05 <0.0 <0.2 <0. <0.05 <0.0 <0.2 <0. <0.05 <0.0	05 <0.05 2 <0.2 05 <0.05 2 <0.2 05 <0.05 	<0.05 - <0.2 <0.05 - <0.2 <0.05 - <0.2 <0.05 - <0.2 <0.05 - <0.2 <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05 - <0.05	0.05 <0.05 (0.2 <0.2 0.05 <0.05 (0.2 <0.2 0.05 <0.05 	<0.05 <0.2 <0.05 <0.2 <0.05	<0.05 <0 <0.2 <0 <0.05 <0 <0.2 <0 <0.05 <0	25 <0.05 2 <0.2 05 <0.05 (2 <0.2 05 <0.05
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<pre>-0.1</pre>				5 11		<5 <5		- He	ny Metah					24 9			-	7		6 9	7					-				15 5
100	73 27 17 <0.1 40 28 <0.5	4 2 2 2 4 0.1 4 1 3 3 4 0.5	23 17 23 <0.1 6 140	13 13 13 13 13 13 14 120 14 14 15 1 15 15 15 15 15 15 15 15 15 15 15 1			13 71 31 <0.1 3 29						15 20 124 <0.1 13 58 -		2 4 5 <5 5 12 1 <0.1 2 <2 1 <5		7 8 24 42 45 52 0.1 0.4 3 6 34 31	16 15 62 <0.1 3 41 · · ·	52 4 7 <5 5 8 0.1 <0.1 <2 <2 <2 <5 26	12 7 18 <0.1 4 22	2	45 24 c5 22 10 83 0.1 c0.1 3 5 c5 72		37 18 18 26 61 100 c0.1 0.1 5 4 31 51	34 12 45 <0.1 4 35	<0.1 <1 3 12	0.1 <0.1 1 1 0 24		<0.1 <2 6	0.2 < 3 67		<5 <5 <5 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6		<0.1 <2 <5			<0.1 0 <2 1 <5 6	
Terminatements set	<0.1 <0.1 <0.1 <0.1 <0.1 0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2	<0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 1.2 <0.1 1.2 <0.2 0.2 <0.2 0.2 <0.2 0.2 <0.2	<0.1 <0.1 0.2 <0.2	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2	<0.1	<0.1 - <0.1 - 0.1 -			* * * * * * * * * * * * * * * * * * *		-			-		-							-					-						-		
Pediantesistent out	<0.1 <0.1 <0.1 <0.1 <0.5 <0.5 <0.5	<0.1 <0.1 <0.1 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.2 c0.1 c0.1 c0.5 c0.5 c0.5 c0.5 c0.5 c0.5 c0.5 c0.5	0.1 <0.1 0.1 <0.1 2.4 <0.1 0.1 <0.1 0.5 <0.5 0.5 <0.5 0.5 <0.5			<0.1 <0.1 0.2 <0.1 <0.5 <0.5 <0.5 <0.5	<pre><0.1</pre>					-					-							-													
Performance and part	<0.1 <0.1 <0.2 <0.2 <1 <1		<0.1 < 0.1 < 0.2 < 0.2 < 0.2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	01 <01 01 <01 02 <02 02 <02 04 <1 <1 <1 <1 <1	<0.1 <0.1 <0.2 <0.2 <0.2 <1 <1	<1	<0.1 <0.1 <0.2 <0.2 <1 <1	<0.1	-				-			-		-					-							-								
B. Mr. enthrosopherus/thereinshower up\h1 1 4 4 Mr. enthrosopherus/thereinshower pq\h1 1 1 4 4 Mr. enthrosopherus/thereinshower pq\h1 1 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 6 2 2 4 2 2 4 2 2 6 2 3 4 2 2 6 2 3 4 2 3 4 3 3 4 3 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	<1 <5 <0.2 <0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.1 <0.1 <0.1	<0.2 < 0.2 < 0.2 < 1.1 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	<5 <5 0.2 <0.2 0.2 <0.2 0.2 <0.2 1.2 <0.1 1.6 <0.1 1.6 <0.1	<0.2 <0.2 <0.2 0.2 0.2 0.2	<5 <0.2 <0.2 <0.1 <0.1 <0.1	<1 <5 <0.2 <0.2 <0.2 <0.7 <0.7 <0.7 <0.7	<0.2 ·	-						-			-	: :							:			-	-			-	-				
Appen 202 Appe	se- Brown fine- I & grained soil &	Brown fine Br grained soil & g	rown coarse- Brow pained soil & grains	on fine- ed soil & grained soil	Red coame- & grained soil &	Brown coarse- grained soil &	Brown coarse- grained soil & grain	ern coanse- med soil & nocks. asbestes tected at ting limit of NE kg: Organic	o ND	ND	ND N	D ND	ND ND	ND NE	D ND	ND ND	ND ND	ND ND	ND ND	ND	ND 5	ND ND	ND	ND ND	ND	ND n	D ND	ND ND	ND	ND 7	ND ND	ND ND) ND	ND	ND ND	ND ND	ND N	AD ND
	tibres detected No anhestos detected				nic U.igikg: Urgani led fibres detected is No asbestos detected			s detected asbestos efected) ND	ND	ND N	D ND	ND	ND NC	D ND	ND	ND ND	ND	ND ND	ND	ND 8	4D ND	ND	ND ND	ND	ND h	D ND	ND ND	ND	ND P	ND ND	ND ND	ND ND	ND	ND ND	ND	ND N	ND ND

Detailed Site Investigation Report – Ridge Street (WP12)

Appendix B – Laboratory certificates

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 262787

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Amanda Mullen, Michael Stacey
Address	Level 7, 177 Pacific Highway, North Sydney, NSW, 2060

Sample Details	
Your Reference	<u>IA216715</u>
Number of Samples	22 Soil
Date samples received	25/02/2021
Date completed instructions received	25/02/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	04/03/2021						
Date of Issue	04/03/2021						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *						

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Alexander Mitchell Maclean, Senior Chemist Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

VOCs in soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	102	102	102	103	104
Surrogate aaa-Trifluorotoluene	%	85	90	96	72	75
Surrogate Toluene-d ₈	%	100	98	99	100	100
Surrogate 4-Bromofluorobenzene	%	99	98	99	99	100

VOCs in soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	104	102	102	103	103
Surrogate aaa-Trifluorotoluene	%	78	79	85	97	82
Surrogate Toluene-d₃	%	99	100	99	100	100
Surrogate 4-Bromofluorobenzene	%	99	100	98	100	100

VOCs in soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date extracted	-	26/02/2021
Date analysed	-	02/03/2021
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1
Ethylbenzene	mg/kg	<1

VOCs in soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	104
Surrogate aaa-Trifluorotoluene	%	86
Surrogate Toluene-d₃	%	100
Surrogate 4-Bromofluorobenzene	%	99

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	85	90	96	72	75
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021

<25

<25

<25

<0.2

<0.5

<1

<2

<1

<1

<3

78

<25

<25

<25

<0.2

<0.5

<1

<2

<1

<1

<3

79

<25

<25

<25

<0.2

<0.5

<1

<2

<1

<1

<3

85

mg/kg

%

Envirolab Reference: 262787 Revision No: R00

TRH C₆ - C₉

TRH C₆ - C₁₀

Benzene

Toluene

Ethylbenzene

m+p-xylene

naphthalene

Total +ve Xylenes

Surrogate aaa-Trifluorotoluene

o-Xylene

vTPH C₆ - C₁₀ less BTEX (F1)

<25

<25

<25

<0.2

<0.5

<1

<2

<1

<1

<3

97

<25

<25

<25

<0.2

<0.5

<1

<2

<1

<1

<3

82

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date extracted	-	26/02/2021
Date analysed	-	02/03/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	86

svTRH (C10-C40) in Soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	27/02/2021	26/02/2021	26/02/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	190	<100	390	<100	320
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	410	<100	480
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	260	<100	310	<100	650
TRH >C ₃₄ -C ₄₀	mg/kg	120	<100	410	<100	470
Total +ve TRH (>C10-C40)	mg/kg	380	<50	720	<50	1,100
Surrogate o-Terphenyl	%	95	88	100	84	98

svTRH (C10-C40) in Soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	170	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	150	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	280	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	140	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	420	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	89	88	89	92

svTRH (C10-C40) in Soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date extracted	-	26/02/2021
Date analysed	-	26/02/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	91

PAHs in Soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Naphthalene	mg/kg	<0.1	<0.1	3.1	<0.1	0.2
Acenaphthylene	mg/kg	<0.1	<0.1	1.2	<0.1	0.5
Acenaphthene	mg/kg	<0.1	<0.1	1	<0.1	0.1
Fluorene	mg/kg	<0.1	<0.1	1.5	<0.1	0.2
Phenanthrene	mg/kg	<0.1	0.3	15	<0.1	3.5
Anthracene	mg/kg	<0.1	<0.1	4.1	<0.1	0.8
Fluoranthene	mg/kg	0.2	0.6	15	<0.1	8.6
Pyrene	mg/kg	0.2	0.9	15	<0.1	8.6
Benzo(a)anthracene	mg/kg	0.1	0.5	9.6	<0.1	5.5
Chrysene	mg/kg	0.1	0.4	6.9	<0.1	4.4
Benzo(b,j+k)fluoranthene	mg/kg	0.2	0.8	11	<0.2	8.4
Benzo(a)pyrene	mg/kg	0.1	0.52	7.9	<0.05	5.0
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	3.7	<0.1	2.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	1.2	<0.1	0.8
Benzo(g,h,i)perylene	mg/kg	<0.1	0.4	4.3	<0.1	2.7
Total +ve PAH's	mg/kg	0.92	4.6	100	<0.05	52
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.8	12	<0.5	7.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.8	12	<0.5	7.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.8	12	<0.5	7.5
Surrogate p-Terphenyl-d14	%	106	107	104	106	99

PAHs in Soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.5	<0.1	<0.1	0.1	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.8	<0.1	<0.1	0.3	0.2
Anthracene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	7.9	0.3	<0.1	0.9	0.6
Pyrene	mg/kg	9.3	0.4	<0.1	0.9	0.8
Benzo(a)anthracene	mg/kg	7.9	0.4	<0.1	0.7	0.7
Chrysene	mg/kg	6.4	0.2	<0.1	0.5	0.5
Benzo(b,j+k)fluoranthene	mg/kg	12	0.6	<0.2	0.9	1
Benzo(a)pyrene	mg/kg	7.9	0.4	0.05	0.55	0.75
Indeno(1,2,3-c,d)pyrene	mg/kg	2.6	0.2	<0.1	0.3	0.4
Dibenzo(a,h)anthracene	mg/kg	1	<0.1	<0.1	0.1	0.2
Benzo(g,h,i)perylene	mg/kg	3.0	<0.1	<0.1	0.3	0.5
Total +ve PAH's	mg/kg	61	2.4	0.05	5.5	6.0
Benzo(a)pyrene TEQ calc (zero)	mg/kg	11	<0.5	<0.5	0.9	1.1
Benzo(a)pyrene TEQ calc(half)	mg/kg	11	0.5	<0.5	0.9	1.1
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	11	0.6	<0.5	0.9	1.1
Surrogate p-Terphenyl-d14	%	107	102	103	104	114

PAHs in Soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date extracted	-	26/02/2021
Date analysed	-	01/03/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.5
Pyrene	mg/kg	0.6
Benzo(a)anthracene	mg/kg	0.5
Chrysene	mg/kg	0.4
Benzo(b,j+k)fluoranthene	mg/kg	0.8
Benzo(a)pyrene	mg/kg	0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3
Dibenzo(a,h)anthracene	mg/kg	0.1
Benzo(g,h,i)perylene	mg/kg	0.3
Total +ve PAH's	mg/kg	4.0
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.8
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.8
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8
Surrogate p-Terphenyl-d14	%	104

Organochlorine Pesticides in soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	99	108	99

Organochlorine Pesticides in soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	103	103	104	114

Organochlorine Pesticides in soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date extracted	-	26/02/2021
Date analysed	-	01/03/2021
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	106

PCBs in Soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	99	108	99

PCBs in Soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	103	103	104	114

PCBs in Soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date extracted	-	26/02/2021
Date analysed	-	01/03/2021
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	106

Acid Extractable metals in soil						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	8	73	4	23
Copper	mg/kg	9	11	27	2	17
Lead	mg/kg	39	25	17	2	33
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	8	40	<1	6
Zinc	mg/kg	20	27	28	3	140

Acid Extractable metals in soil						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Arsenic	mg/kg	5	<4	7	6	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	13	39	26	13
Copper	mg/kg	31	4	<1	6	71
Lead	mg/kg	120	14	9	62	31
Mercury	mg/kg	0.1	<0.1	<0.1	1.1	<0.1
Nickel	mg/kg	7	1	1	1	3
Zinc	mg/kg	53	6	7	16	29

Acid Extractable metals in soil		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date prepared	-	26/02/2021
Date analysed	-	26/02/2021
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	13
Copper	mg/kg	5
Lead	mg/kg	13
Mercury	mg/kg	<0.1
Nickel	mg/kg	3
Zinc	mg/kg	8

Moisture						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Moisture	%	14	20	8.5	11	10

Moisture						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Moisture	%	29	16	22	15	25

Moisture		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date prepared	-	26/02/2021
Date analysed	-	01/03/2021
Moisture	%	12

Misc Soil - Inorg						
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Total Cyanide	mg/kg	<0.5	0.6	<0.5	<0.5	<0.5

Misc Soil - Inorg						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Total Cyanide	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Misc Soil - Inorg		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date prepared	-	26/02/2021
Date analysed	-	26/02/2021
Total Cyanide	mg/kg	<0.5

			-			
Asbestos ID - soils		000707.4	000707.0	000707.5	000707.7	000707.0
Our Reference		262787-1	262787-3	262787-5	262787-7	262787-9
Your Reference	UNITS	QAQC1	BH01_B	BH01_D	BH02_A	BH02_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 45g	Approx. 45g	Approx. 40g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Asbestos ID - soils						
Our Reference		262787-11	262787-14	262787-16	262787-18	262787-19
Your Reference	UNITS	BH03_A	BH03_D	BH05_B	BH05_D	BH04_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/03/2021	01/03/2021	01/03/2021	01/03/2021	01/03/2021
Sample mass tested	g	Approx. 30g	Approx. 35g	Approx. 40g	Approx. 45g	Approx. 30g
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Red coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils		
Our Reference		262787-21
Your Reference	UNITS	BH04_C
Date Sampled		24/02/2021
Type of sample		Soil
Date analysed	-	01/03/2021
Sample mass tested	g	Approx. 40g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Turk Ameliania		detected
Trace Analysis	-	No asbestos detected

PFAS in Soils Extended						
Our Reference		262787-3	262787-5	262787-7	262787-9	262787-11
Your Reference	UNITS	BH01_B	BH01_D	BH02_A	BH02_C	BH03_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Perfluorobutanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	0.4	0.2	<0.1	1.1	1.2
Perfluorodecanesulfonic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	μg/kg	<0.2	<0.2	<0.2	0.3	<0.2
Perfluorohexanoic acid	μg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Perfluoroheptanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	0.2	0.4
Perfluorononanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	μg/kg	<5	<5	<5	<5	<5
4:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	μg/kg	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	μg/kg	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	μg/kg	<5	<5	<5	<5	<5
MePerfluorooctanesulf- amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EtPerfluorooctanesulf amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	105	107	101	104	103
Surrogate ¹³ C ₂ PFOA	%	99	103	104	97	106
Extracted ISTD 13 C ₃ PFBS	%	98	101	91	96	87
Extracted ISTD 18 O ₂ PFHxS	%	114	113	104	110	103
Extracted ISTD ¹³ C ₄ PFOS	%	111	113	107	116	112
Extracted ISTD 13 C4 PFBA	%	111	115	105	111	107

PFAS in Soils Extended						
Our Reference		262787-3	262787-5	262787-7	262787-9	262787-11
Your Reference	UNITS	BH01_B	BH01_D	BH02_A	BH02_C	BH03_A
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/202
Type of sample		Soil	Soil	Soil	Soil	Soil
Extracted ISTD 13 C3 PFPeA	%	106	103	94	99	91
Extracted ISTD 13 C ₂ PFHxA	%	116	123	113	116	115
Extracted ISTD 13 C ₄ PFHpA	%	106	115	103	111	107
Extracted ISTD 13 C ₄ PFOA	%	118	127	102	126	113
Extracted ISTD 13 C ₅ PFNA	%	117	126	105	124	117
Extracted ISTD 13 C ₂ PFDA	%	127	133	103	127	127
Extracted ISTD 13 C2 PFUnDA	%	143	145	111	148	141
Extracted ISTD 13 C ₂ PFDoDA	%	160	154	125	156	142
Extracted ISTD 13 C ₂ PFTeDA	%	98	90	92	89	88
Extracted ISTD 13 C ₂ 4:2FTS	%	111	136	103	113	125
Extracted ISTD 13 C ₂ 6:2FTS	%	123	171	111	148	159
Extracted ISTD 13 C2 8:2FTS	%	141	#	90	194	191
Extracted ISTD 13 C8 FOSA	%	100	110	97	112	103
Extracted ISTD d ₃ N MeFOSA	%	108	100	100	110	99
Extracted ISTD d₅ N EtFOSA	%	117	108	112	116	98
Extracted ISTD d ₇ N MeFOSE	%	114	97	114	110	102
Extracted ISTD d ₉ N EtFOSE	%	110	92	113	107	89
Extracted ISTD d ₃ N MeFOSAA	%	146	#	110	#	#
Extracted ISTD d₅ N EtFOSAA	%	164	#	103	#	#
Total Positive PFHxS & PFOS	μg/kg	0.4	0.2	<0.1	1.1	1.2
Total Positive PFOS & PFOA	μg/kg	0.4	0.2	<0.1	1.4	1.6
Total Positive PFAS	μg/kg	0.4	0.2	<0.1	1.8	1.6

PFAS in Soils Extended						
Our Reference		262787-14	262787-16	262787-18	262787-19	262787-21
Your Reference	UNITS	BH03_D	BH05_B	BH05_D	BH04_A	BH04_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Date analysed	-	26/02/2021	26/02/2021	26/02/2021	26/02/2021	26/02/2021
Perfluorobutanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	0.2	<0.1	0.5	0.1
Perfluorodecanesulfonic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorohexanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Perfluorononanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	μg/kg	<5	<5	<5	<5	<5
4:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	μg/kg	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	μg/kg	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	μg/kg	<5	<5	<5	<5	<5
MePerfluorooctanesulf- amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EtPerfluorooctanesulf amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	100	97	108	102	106
Surrogate ¹³ C ₂ PFOA	%	101	102	96	100	96
Extracted ISTD 13 C3 PFBS	%	89	77	91	88	91
Extracted ISTD 18 O2 PFHxS	%	102	92	103	103	109
Extracted ISTD 13 C4 PFOS	%	108	93	105	109	105
Extracted ISTD 13 C ₄ PFBA	%	103	84	101	102	102

PFAS in Soils Extended						
Our Reference		262787-14	262787-16	262787-18	262787-19	262787-21
Your Reference	UNITS	BH03_D	BH05_B	BH05_D	BH04_A	BH04_C
Date Sampled		24/02/2021	24/02/2021	24/02/2021	24/02/2021	24/02/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Extracted ISTD 13 C3 PFPeA	%	88	75	94	90	91
Extracted ISTD 13 C2 PFHxA	%	111	90	110	109	110
Extracted ISTD 13 C ₄ PFHpA	%	99	82	103	103	102
Extracted ISTD 13 C ₄ PFOA	%	103	86	112	109	109
Extracted ISTD 13 C ₅ PFNA	%	109	90	112	109	110
Extracted ISTD 13 C2 PFDA	%	106	87	116	115	112
Extracted ISTD 13 C2 PFUnDA	%	134	89	124	132	125
Extracted ISTD 13 C ₂ PFDoDA	%	141	100	142	102	140
Extracted ISTD 13 C2 PFTeDA	%	93	85	99	92	94
Extracted ISTD 13 C ₂ 4:2FTS	%	105	82	113	102	103
Extracted ISTD 13 C ₂ 6:2FTS	%	117	95	136	127	122
Extracted ISTD 13 C2 8:2FTS	%	111	85	139	121	117
Extracted ISTD 13 C8 FOSA	%	97	96	99	96	98
Extracted ISTD d ₃ N MeFOSA	%	104	96	105	103	100
Extracted ISTD d ₅ N EtFOSA	%	109	103	110	91	109
Extracted ISTD d ₇ N MeFOSE	%	109	106	106	110	105
Extracted ISTD d ₉ N EtFOSE	%	107	104	107	91	108
Extracted ISTD d ₃ N MeFOSAA	%	112	66	116	118	113
Extracted ISTD d₅ N EtFOSAA	%	116	70	114	129	116
Total Positive PFHxS & PFOS	μg/kg	<0.1	0.2	<0.1	0.5	0.1
Total Positive PFOS & PFOA	μg/kg	<0.1	0.2	<0.1	0.7	0.1
Total Positive PFAS	μg/kg	<0.1	0.2	<0.1	0.7	0.1

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Stainin Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hyperchlorite to assess the potential chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5
Date extracted	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Date analysed	-			02/03/2021	3	02/03/2021	02/03/2021		02/03/2021	02/03/2021
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-023	<1	3	<1	<1	0	80	88
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-023	<1	3	<1	<1	0	74	78
2,2-dichloropropane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-023	<1	3	<1	<1	0	80	88
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	3	<1	<1	0	73	82
1,1-dichloropropene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	3	<0.2	<0.2	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-023	<1	3	<1	<1	0	64	70
bromodichloromethane	mg/kg	1	Org-023	<1	3	<1	<1	0	78	87
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-023	<1	3	<1	<1	0	74	83
1,2-dibromoethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-023	<1	3	<1	<1	0	75	83
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	3	<2	<2	0	[NT]	[NT]
styrene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]

QUALI ⁻	TY CONTRO	L: VOCs	in soil			Dι	ıplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5	
o-Xylene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
isopropylbenzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
bromobenzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
n-propyl benzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
2-chlorotoluene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
4-chlorotoluene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,3,5-trimethyl benzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
tert-butyl benzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,2,4-trimethyl benzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
sec-butyl benzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
4-isopropyl toluene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
n-butyl benzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
hexachlorobutadiene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	3	<1	<1	0		[NT]	
Surrogate Dibromofluorometha	%		Org-023	102	3	102	102	0	102	103	
Surrogate aaa-Trifluorotoluene	%		Org-023	99	3	90	89	1	79	90	
Surrogate Toluene-d ₈	%		Org-023	99	3	98	99	1	99	101	
Surrogate 4-Bromofluorobenzene	%		Org-023	99	3	98	98	0	103	101	

QUALIT	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	26/02/2021	26/02/2021			
Date analysed	-			[NT]	21	02/03/2021	02/03/2021			
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Chloromethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Vinyl Chloride	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Bromomethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Chloroethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
bromochloromethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
chloroform	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Cyclohexane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
carbon tetrachloride	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Benzene	mg/kg	0.2	Org-023	[NT]	21	<0.2	<0.2	0		
dibromomethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
trichloroethene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
bromodichloromethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Toluene	mg/kg	0.5	Org-023	[NT]	21	<0.5	<0.5	0		
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
dibromochloromethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
tetrachloroethene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
chlorobenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Ethylbenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
bromoform	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
m+p-xylene	mg/kg	2	Org-023	[NT]	21	<2	<2	0		
styrene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		

QUALI	TY CONTRO	L: VOCs	in soil			Dι		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
isopropylbenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
n-propyl benzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
tert-butyl benzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
sec-butyl benzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
4-isopropyl toluene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
n-butyl benzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
Surrogate Dibromofluorometha	%		Org-023	[NT]	21	104	103	1		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	21	86	96	11		[NT]
Surrogate Toluene-d ₈	%		Org-023	[NT]	21	100	99	1		[NT]
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	21	99	98	1		[NT]

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5	
Date extracted	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021	
Date analysed	-			02/03/2021	3	02/03/2021	02/03/2021		02/03/2021	02/03/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	3	<25	<25	0	74	81	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	3	<25	<25	0	74	81	
Benzene	mg/kg	0.2	Org-023	<0.2	3	<0.2	<0.2	0	77	84	
Toluene	mg/kg	0.5	Org-023	<0.5	3	<0.5	<0.5	0	74	81	
Ethylbenzene	mg/kg	1	Org-023	<1	3	<1	<1	0	76	81	
m+p-xylene	mg/kg	2	Org-023	<2	3	<2	<2	0	72	80	
o-Xylene	mg/kg	1	Org-023	<1	3	<1	<1	0	77	84	
naphthalene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	99	3	90	89	1	79	90	

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	21	26/02/2021	26/02/2021				
Date analysed	-			[NT]	21	02/03/2021	02/03/2021				
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	21	<25	<25	0			
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	21	<25	<25	0			
Benzene	mg/kg	0.2	Org-023	[NT]	21	<0.2	<0.2	0			
Toluene	mg/kg	0.5	Org-023	[NT]	21	<0.5	<0.5	0			
Ethylbenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0			
m+p-xylene	mg/kg	2	Org-023	[NT]	21	<2	<2	0			
o-Xylene	mg/kg	1	Org-023	[NT]	21	<1	<1	0			
naphthalene	mg/kg	1	Org-023	[NT]	21	<1	<1	0			
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	21	86	96	11			

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5		
Date extracted	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021		
Date analysed	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	3	<50	<50	0	135	#		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	3	<100	<100	0	100	#		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	3	<100	<100	0	92	#		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	3	<50	<50	0	135	#		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	3	<100	<100	0	100	#		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	3	<100	<100	0	92	#		
Surrogate o-Terphenyl	%		Org-020	86	3	88	86	2	100	96		

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	21	26/02/2021	26/02/2021		[NT]		
Date analysed	-			[NT]	21	26/02/2021	26/02/2021		[NT]		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	21	<50	<50	0	[NT]		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	21	<50	<50	0	[NT]		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]		
Surrogate o-Terphenyl	%		Org-020	[NT]	21	91	84	8	[NT]		

QUALI	TY CONTRO	L: PAHs	in Soil		Duplicate Spike Reco					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5
Date extracted	-			03/03/2021	1	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Date analysed	-			03/03/2021	1	01/03/2021	01/03/2021		01/03/2021	01/03/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	#
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	#
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	#
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	#
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	109	#
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	111	#
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	122	#
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	0.2	0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.1	0.2	67	114	#
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	104	1	106	105	1	106	90

QUALI	QUALITY CONTROL: PAHs in Soil							Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	3	26/02/2021	26/02/2021			[NT]	
Date analysed	-			[NT]	3	01/03/2021	01/03/2021			[NT]	
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	3	<0.1	<0.1	0		[NT]	
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	3	<0.1	0.2	67		[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	3	<0.1	<0.1	0		[NT]	
Fluorene	mg/kg	0.1	Org-022/025	[NT]	3	<0.1	<0.1	0		[NT]	
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	3	0.3	0.3	0		[NT]	
Anthracene	mg/kg	0.1	Org-022/025	[NT]	3	<0.1	0.1	0		[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	3	0.6	0.9	40		[NT]	
Pyrene	mg/kg	0.1	Org-022/025	[NT]	3	0.9	1	11		[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	3	0.5	0.7	33		[NT]	
Chrysene	mg/kg	0.1	Org-022/025	[NT]	3	0.4	0.6	40		[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	3	0.8	1	22		[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	3	0.52	0.72	32		[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	3	0.1	0.5	133		[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	3	0.1	0.2	67		[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	3	0.4	0.5	22		[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	3	107	103	4		[NT]	

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	26/02/2021	26/02/2021			[NT]
Date analysed	-			[NT]	21	01/03/2021	01/03/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	21	0.1	0.2	67		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	21	0.5	0.7	33		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	21	0.6	0.8	29		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	0.5	0.7	33		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	21	0.4	0.5	22		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	21	0.8	1	22		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	21	0.5	0.61	20		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	21	0.3	0.4	29		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	0.1	0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	21	0.3	0.4	29		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	21	104	102	2		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5
Date extracted	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Date analysed	-			01/03/2021	3	01/03/2021	01/03/2021		01/03/2021	01/03/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	99	108
НСВ	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	96	96
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	83	84
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	108	108
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	107	101
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	109	110
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	107	96
Endrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	91	112
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	101	106
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	97	88
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	104	3	107	103	4	109	97

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	26/02/2021	26/02/2021			[NT]
Date analysed	-			[NT]	21	01/03/2021	01/03/2021			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
HCB	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	21	106	103	3		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5
Date extracted	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Date analysed	-			01/03/2021	3	01/03/2021	01/03/2021		01/03/2021	01/03/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	90	70
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	104	3	107	103	4	109	97

QUAL	ITY CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	26/02/2021	26/02/2021			[NT]
Date analysed	-			[NT]	21	01/03/2021	01/03/2021			[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0		[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-021	[NT]	21	106	103	3		[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	262787-5
Date prepared	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Date analysed	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Arsenic	mg/kg	4	Metals-020	<4	3	<4	<4	0	80	93
Cadmium	mg/kg	0.4	Metals-020	<0.4	3	<0.4	<0.4	0	76	89
Chromium	mg/kg	1	Metals-020	<1	3	8	9	12	78	#
Copper	mg/kg	1	Metals-020	<1	3	11	12	9	84	112
Lead	mg/kg	1	Metals-020	<1	3	25	36	36	77	96
Mercury	mg/kg	0.1	Metals-021	<0.1	3	<0.1	<0.1	0	95	118
Nickel	mg/kg	1	Metals-020	<1	3	8	9	12	80	72
Zinc	mg/kg	1	Metals-020	<1	3	27	33	20	73	89

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	26/02/2021	26/02/2021			[NT]
Date analysed	-			[NT]	21	26/02/2021	26/02/2021			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	21	<4	6	40		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	21	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	21	13	19	38		[NT]
Copper	mg/kg	1	Metals-020	[NT]	21	5	5	0		[NT]
Lead	mg/kg	1	Metals-020	[NT]	21	13	13	0		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	21	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	21	3	3	0		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	21	8	9	12		[NT]

QUALITY	CONTROL:	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	262787-5
Date prepared	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Date analysed	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Total Cyanide	mg/kg	0.5	Inorg-014	<0.5	3	0.6	0.6	0	108	90

QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	26/02/2021	26/02/2021		[NT]	[NT]
Date analysed	-			[NT]	21	26/02/2021	26/02/2021		[NT]	[NT]
Total Cyanide	mg/kg	0.5	Inorg-014	[NT]	21	<0.5	<0.5	0	[NT]	[NT]

QUALITY CO	NTROL: PF	AS in Soi	ls Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	262787-5
Date prepared	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Date analysed	-			26/02/2021	3	26/02/2021	26/02/2021		26/02/2021	26/02/2021
Perfluorobutanesulfonic acid	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	109	112
Perfluoropentanesulfonic acid	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	102	100
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	102	98
Perfluoroheptanesulfonic acid	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	104	104
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	<0.1	3	0.4	0.4	0	100	104
Perfluorodecanesulfonic acid	μg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	99	76
Perfluorobutanoic acid	μg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	98	101
Perfluoropentanoic acid	μg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	112	115
Perfluorohexanoic acid	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	89	89
Perfluoroheptanoic acid	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	110	117
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	<0.1	3	<0.1	0.1	0	98	101
Perfluorononanoic acid	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	94	87
Perfluorodecanoic acid	μg/kg	0.5	Org-029	<0.5	3	<0.5	<0.5	0	93	102
Perfluoroundecanoic acid	μg/kg	0.5	Org-029	<0.5	3	<0.5	<0.5	0	96	87
Perfluorododecanoic acid	μg/kg	0.5	Org-029	<0.5	3	<0.5	<0.5	0	109	104
Perfluorotridecanoic acid	μg/kg	0.5	Org-029	<0.5	3	<0.5	<0.5	0	115	98
Perfluorotetradecanoic acid	μg/kg	5	Org-029	<5	3	<5	<5	0	103	113
4:2 FTS	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	111	109
6:2 FTS	μg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	100	104
8:2 FTS	μg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	94	99
10:2 FTS	µg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	116	##
Perfluorooctane sulfonamide	μg/kg	1	Org-029	<1	3	<1	<1	0	106	106
N-Methyl perfluorooctane sulfonamide	μg/kg	1	Org-029	<1	3	<1	<1	0	99	106
N-Ethyl perfluorooctanesulfon amide	μg/kg	1	Org-029	<1	3	<1	<1	0	103	109
N-Me perfluorooctanesulfonamid oethanol	μg/kg	1	Org-029	<1	3	<1	<1	0	111	100
N-Et perfluorooctanesulfonamid oethanol	μg/kg	5	Org-029	<5	3	<5	<5	0	113	128
MePerfluorooctanesulf- amid oacetic acid	μg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	104	112
EtPerfluorooctanesulf amid oacetic acid	μg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	103	110
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	3	105	108	3	99	100
Surrogate ¹³ C ₂ PFOA	%		Org-029	103	3	99	98	1	103	103

QUALITY CO	ONTROL: PF	AS in Soi	ls Extended			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	262787-5
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	107	3	98	103	5	102	94
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	114	3	114	107	6	111	111
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	117	3	111	107	4	116	118
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	118	3	111	109	2	116	113
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	104	3	106	99	7	102	100
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	119	3	116	112	4	119	122
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	113	3	106	106	0	108	112
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	114	3	118	114	3	110	126
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	112	3	117	111	5	107	124
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	108	3	127	114	11	109	125
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	109	3	143	128	11	112	147
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	114	3	160	150	6	108	153
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	111	3	98	99	1	105	83
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	113	3	111	110	1	104	131
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	110	3	123	116	6	113	177
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	86	3	141	109	26	88	#
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	104	3	100	98	2	100	109
Extracted ISTD d ₃ N MeFOSA	%		Org-029	108	3	108	106	2	112	102
Extracted ISTD d ₅ N EtFOSA	%		Org-029	114	3	117	116	1	113	106
Extracted ISTD d ₇ N MeFOSE	%		Org-029	108	3	114	111	3	107	97

QUALITY CC	NTROL: PF	AS in Soi	ls Extended			Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	262787-5
Extracted ISTD d ₉ N EtFOSE	%		Org-029	114	3	110	114	4	108	80
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	101	3	146	116	23	105	#
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	103	3	164	119	32	104	#

QUALITY CO	NTROL: PF	AS in Soi	ls Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	26/02/2021	26/02/2021			[NT]
Date analysed	-			[NT]	21	26/02/2021	26/02/2021			[NT]
Perfluorobutanesulfonic acid	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluoropentanesulfonic acid	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluoroheptanesulfonic acid	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	[NT]	21	0.1	0.2	67		[NT]
Perfluorodecanesulfonic acid	μg/kg	0.2	Org-029	[NT]	21	<0.2	<0.2	0		[NT]
Perfluorobutanoic acid	μg/kg	0.2	Org-029	[NT]	21	<0.2	<0.2	0		[NT]
Perfluoropentanoic acid	μg/kg	0.2	Org-029	[NT]	21	<0.2	<0.2	0		[NT]
Perfluorohexanoic acid	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluoroheptanoic acid	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluorononanoic acid	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
Perfluorodecanoic acid	μg/kg	0.5	Org-029	[NT]	21	<0.5	<0.5	0		[NT]
Perfluoroundecanoic acid	μg/kg	0.5	Org-029	[NT]	21	<0.5	<0.5	0		[NT]
Perfluorododecanoic acid	μg/kg	0.5	Org-029	[NT]	21	<0.5	<0.5	0		[NT]
Perfluorotridecanoic acid	μg/kg	0.5	Org-029	[NT]	21	<0.5	<0.5	0		[NT]
Perfluorotetradecanoic acid	μg/kg	5	Org-029	[NT]	21	<5	<5	0		[NT]
4:2 FTS	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
6:2 FTS	μg/kg	0.1	Org-029	[NT]	21	<0.1	<0.1	0		[NT]
8:2 FTS	μg/kg	0.2	Org-029	[NT]	21	<0.2	<0.2	0		[NT]
10:2 FTS	μg/kg	0.2	Org-029	[NT]	21	<0.2	<0.2	0		[NT]
Perfluorooctane sulfonamide	μg/kg	1	Org-029	[NT]	21	<1	<1	0		[NT]
N-Methyl perfluorooctane sulfonamide	μg/kg	1	Org-029	[NT]	21	<1	<1	0		[NT]
N-Ethyl perfluorooctanesulfon amide	μg/kg	1	Org-029	[NT]	21	<1	<1	0		[NT]
N-Me perfluorooctanesulfonamid oethanol	μg/kg	1	Org-029	[NT]	21	<1	<1	0		[NT]
N-Et perfluorooctanesulfonamid oethanol	μg/kg	5	Org-029	[NT]	21	<5	<5	0		[NT]
MePerfluorooctanesulf- amid oacetic acid	μg/kg	0.2	Org-029	[NT]	21	<0.2	<0.2	0		[NT]
EtPerfluorooctanesulf amid oacetic acid	μg/kg	0.2	Org-029	[NT]	21	<0.2	<0.2	0		[NT]
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	21	106	104	2		[NT]
Surrogate ¹³ C ₂ PFOA	%		Org-029	[NT]	21	96	98	2		[NT]

QUALITY C	ONTROL: PF	AS in Soi	ls Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	[NT]	21	91	90	1		[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	21	109	107	2		[NT]
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	21	105	109	4		[NT]
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	[NT]	21	102	102	0		[NT]
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	[NT]	21	91	91	0		[NT]
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	[NT]	21	110	111	1		[NT]
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	[NT]	21	102	100	2		[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	21	109	103	6		[NT]
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	[NT]	21	110	113	3		[NT]
Extracted ISTD 13 C ₂ PFDA	%		Org-029	[NT]	21	112	111	1		[NT]
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	[NT]	21	125	125	0		[NT]
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	[NT]	21	140	142	1		[NT]
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	[NT]	21	94	94	0		[NT]
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	[NT]	21	103	106	3		[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	21	122	124	2		[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	21	117	121	3		[NT]
Extracted ISTD 13 C ₈ FOSA	%		Org-029	[NT]	21	98	96	2		[NT]
Extracted ISTD d ₃ N MeFOSA	%		Org-029	[NT]	21	100	101	1		[NT]
Extracted ISTD d ₅ N EtFOSA	%		Org-029	[NT]	21	109	108	1		[NT]
Extracted ISTD d ₇ N MeFOSE	%		Org-029	[NT]	21	105	110	5		[NT]

QUALITY CONTROL: PFAS in Soils Extended						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	[NT]	21	108	106	2		[NT]
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	[NT]	21	113	107	5		[NT]
Extracted ISTD d₅ N EtFOSAA	%		Org-029	[NT]	21	116	111	4	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 262787 Page | 53 of 54

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures.

We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Matrix spike recovery for 10:2FTS (178%) is outside global acceptance criteria (60-140%). However an acceptable recovery has been obtained for the LCS.

PAHs in Soil - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 262787-5ms have caused interference.

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 262787 Page | 54 of 54 R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Jacobs Group (Australia) Pty Ltd
Attention	Amanda Mullen

Sample Login Details	
Your reference	IA216715
Envirolab Reference	262787
Date Sample Received	25/02/2021
Date Instructions Received	25/02/2021
Date Results Expected to be Reported	04/03/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	22 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au						

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	PFAS in Soils Extended	On Hold
QAQC1	✓	✓	✓	✓	✓	✓	✓	✓	✓		
BH01_A											✓
BH01_B	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH01_C											✓
BH01_D	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH01_E											✓
BH02_A	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH02_B											✓
BH02_C	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH02_D											✓
BH03_A	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH03_B											✓
BH03_C											✓
BH03_D	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH05_A											✓
BH05_B	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH05_C											✓
BH05_D	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH04_A	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH04_B											✓
BH04_C	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
BH04_D											✓

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

ENVÎROLAB	ย กงู้ใหญเคย
EI INIKOCHB	<u>@</u> mpl

INVIROLAB	ENVÍROLAB Empl	CHA	4 11	V C)F (cus	TC	'O	Y F	OI	RM	l – 1	Cli	en	t		Nation Sydrometric Nation Nation	onal ph ney Lab shley S	ione nu o - Envi	AB G umber 1 rolab S swood	1300 42 Services	24 344 s 2067
opyright and Confi	dential]																					virolab.com.au
lient: contact Person: roject Mgr: ampler: ddress:	TAROB) t Person: A. IWLLEN / M. STACEY Mgr: RACICEL WAUGH er: A. MWLLEN s: Mob: 0418 412 330				Client Project Name/Number/Site etc (ie report title): /// 2/67/5 PO No.: Envirolab Quote No.: Date results required: Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges apply Additional report format: esdat / equis / Lab Comments:							Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 ① 08 9317 2505 ✓ lab@mpl.com.au Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136 ① 03 9763 2500 ➢ melbourne@envirolab.com.au Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 ① 08 7087 6800 △ delaide@envirolab.com.au Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 ① 07 3266 9532 ➢ brisbane@envirolab.com.au Darwin Office - Envirolab Services Unit 20/119 Reichardt Road, Winnellie, NT 0820										
														٠			Unit ① 08	20/119 8967 1	Reicha 201 /	ırdt Roa ≺darwi	ad, Wir in@env	nnellie, NT 0820 /irolab.com.au
	Sample infor	mation	,										Test	s Requ	ired	م/						Comments
nvirolab Sample ID	Client Sample ID or information	Depth	1	ate npled	<u>Type (</u>	of sample	Haows Mutak (g)	1440	1848ach	HOL	BTEX	000	GCB	daniale	707	PKAS Switz	ON HOLD					Provide as much information about the sample as you can
1	QAQC I		24	12/2	SC	11	×	\succ	×	X	X	X	X	×	×	3						
MGT	QAQC 2			ļ		ì	X	$\overline{\times}$	×	X	\times	$\overline{\times}$	X	X	\times					ĺ		Pls Send
2	BH01_A																\times					QAQC 2
3	BH01-B				-		×	$\overline{}$	×	X	X	X	χ	X	7	×						to Eurofins
7	B-101-C				_												~					
5	BHO1 - D						\prec	\times	~	X	$\overline{}$	\overline{x}	$\overline{\mathbf{x}}$	\times	\overline{x}	\overline{x}						
<u> </u>	BH01-E		\Box				<u> </u>	<u> </u>		_					•	-	J					
7	BH02-A		1				×	~	×	7	×	~	X	×	X	\overline{x}	$\overline{}$	-+			\dashv	
3	BH02-B		+					<u> </u>						-		'	\times					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BH02-C		++				×	$\overline{\mathbf{v}}$	$\overline{\mathbf{x}}$	$\overline{\times}$	$\overline{x}$	×	$\overline{}$	×	Z	$\overline{\times}$	$\frown$				$\longrightarrow$	13
			++				<del>  ^</del>	_				$\overline{}$			$\stackrel{\frown}{\longrightarrow}$		<del></del>				$\longrightarrow$	
(O	BH02-0 BH03-A	-	+-	_									<b>-</b>				×				$\longrightarrow$	
	-!- <u></u>	<u> </u>	-				$\succ$	$\times$	$\sim$	$\times$	$\succeq$	$\times$	$\times$	$\times$	$\times$	×						
	Please tick the box if observed		liment				-	includ				7	analys	is								
elinquished by ((		1			Receive	d by (Comp	<del>-7/-</del> 1	٠	<u> </u>	-	<u> </u>				- ^			Lai	Use (	Only		
	MULLEN				Print Na	me: 🖔	-0)	ha:	zen		<u> </u>		Job nu	ımber:	26		<u> 87</u>	$\overline{}$			-	ick / None
ate & Time: 2	3/2/21	9.00			Date & 1	Time:		151	$\nu_{\mu}\nu$	\	97/	$\mathcal{U}$	Tempe	rature:		16	<u>, 6</u>		Securi	ty seak	Intact	Broken / None
ignature:	Apthen	<u> </u>			Signatu	re:		<u></u>	71				TAT R	eq - SA	ME day	111	2/3	14 (	TD	<u> </u>		
_							K	19	1												1	]

CDVIDOL OD	ENVIROLAB
ENVIROLAB	<u>്ര</u> സ്വ

- 1.

ENVIROLAB	EUNJIKOTHB	CHA	AIN C	)F (	cus	TC	D	Y F	OI	RN	] -	Cli	en	t		Nati Sydr 12 A	onal pi ney La shley \$	hone n <u>b</u> - Envi	umber irolab s tswood	1300 42 Services d, NSW	24 344 s 2067
[Copyright and Confi	dential]																	•	√ sydn .aborat		virolab.com.au
Client: Contact Person:	SACOBS A.MULLEN	IM	STACE	~/		Client	Projec	t Name	Numb	er/Site	etc (ie	report	title):			16-1	8 Hayd	en Crt,	Myare	e, WA 6 mpl.co	3154 om.au
Project Mgr:	R. WAUGH	/	<u>0 // ) CC</u>	/		PO No			<u>,,                                   </u>	, . <u>.</u>										ab Serv	
Sampler:	A. MULLEN						olab Qu	ote No	. ; <del> </del>	_											uth, VIC 3136 @envirolab.com.au
Address:							esults					-				Adel	aide O	ffice - F	Envirol	ab Serv	vices
						Note:	oose: Inform l arges au	ab in ac	,	-	•	-	-			7a T ② 08	he Par 3 7087	ade, No 6800   .	rwood ∖√adela	l, SA 50 aide@e	envirolab.com.au
Phone:		Mob: O4	18412	33 C	)		onal re		rmat: (	esdat /	equis /									lab Serv yo, QLI	
Email:				355			ommer			$\bigcup$		_		-		① 07	3266	9532   2	√ brist	ane@e	envirolab.com.au
amar	rda, nur (len	@ ja	<b>∞</b> 61.	حعامر	^											Unit	20/119	Reicha	ardt Ro		ces Innellie, NT 0820 virolab.com.au
·	Sample inform	nation										Test	s Requ	ired	رم_						Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of	f sample	Heaved 18 (8)	PAH	aspestas	TRH)	8702	0CD	PcB	cynnolo	۲٥ر	Pry Suit	GNOH NO					Provide as much information about the sample as you can
12	3HU3-B		24/2/21	20	14											X					
13	BH03_C		1.		1											$\times$					
[4	BH03-10					$\geq$	$\times$	$\succ$	<b>×</b>	X	$\times$	X	X	X	X						
- 15	BH05-A															X					
16	BH05 - B				<u> </u>	$\times$	<u> </u>	$\times$	$\sim$	$\times$	$\times$	$\times$	×	$\times$	$\times$						
17	BH05 - C					<u> </u>										×					
(	BH05-0					$\times$	$\times$	$\times$	$\times$	$\times$	<b>×</b>	×	$ \chi $	<u>~</u>	×						
ોવ	BH04-A					$\times$	$\times$	$\geq$	$\times$	$\times$	$\times$	$\times$	X	×	$\times$						
70	BH04-B		<u> </u>													X					
21	BH04_C					$\times$	$\times$	$\times$	$\times$	×	$\times$	×	$\geq$	$\succeq$	×						
22	BH04-D		<b>V</b>	7		<u> </u>			ļ							$\times$		<u> </u>			-
									L		L	L				L			<u> </u>		
Щ	Please tick the box if observed		liment presei	nt in wate	rsamples	is to be	e includ	ded in t	he extr	action	and/or	analys	is								
Relinquished by (		7		Received	by (Com	pany):									· ~ ~	700	La	b Use	Only		
Print Name:	A.MULCEN	0 -	01	Print Nar	ne:	- 1	- 1					<b>—</b> —	ımber:	-46	2/	37		Coolir	g: Ice	/ Ice pa	ack / None
	25/2/21	4.0	<u> </u>	Date & Ti		5/	2/2	1_	9	. 20		<del></del>	rature		2-6				ity seal	: Intact	t / Broken / None
Signature:	37VW	<u> </u>		Signatur	e:		V POT	P-				TAT R	eq - SA	ME da	y / 1 /	2 / 3	141	STD	_		<del></del>



Jacobs Group (Australia) P/L NSW Level 7, 177 Pacific Highway North Sydney NSW 2065





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Amanda Mullen

Report 776559-S

Project name

Project ID IA216715
Received Date Feb 25, 2021

Client Sample ID			QAQC2
Sample Matrix			Soil
Eurofins Sample No.			S21-Fe51374
Date Sampled			Feb 24, 2021
Test/Reference	LOR	Unit	,
Total Recoverable Hydrocarbons - 1999 N		OTIIC	
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
BTEX	00	1119/119	100
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	118
Volatile Organics		,,,	
1.1-Dichloroethane	0.5	mg/kg	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5



Client Sample ID			QAQC2
Sample Matrix			Soil
Eurofins Sample No.			S21-Fe51374
•			Feb 24, 2021
Date Sampled	1.05		Feb 24, 2021
Test/Reference	LOR	Unit	
Volatile Organics		T	
Benzene	0.1	mg/kg	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5
Bromoform	0.5	mg/kg	< 0.5
Bromomethane	0.5	mg/kg	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5
Chloroethane	0.5	mg/kg	< 0.5
Chloroform	0.5	mg/kg	< 0.5
Chloromethane	0.5	mg/kg	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1
lodomethane	0.5	mg/kg	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2
Methylene Chloride	0.5	mg/kg	< 0.5
o-Xylene	0.1	mg/kg	< 0.1
Styrene	0.5	mg/kg	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5
Toluene	0.1	mg/kg	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3
Total MAH*	0.5	mg/kg	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5
4-Bromofluorobenzene (surr.)	1	%	118
Toluene-d8 (surr.)	1	%	124
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100

Report Number: 776559-S



Client Sample ID			QAQC2
Sample Matrix			Soil
Eurofins Sample No.			S21-Fe51374
Date Sampled			Feb 24, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons		_	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.7
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.0
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.3
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	0.6
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	0.6
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	0.6
Total PAH*	0.5	mg/kg	2.3
2-Fluorobiphenyl (surr.)	1	%	90
p-Terphenyl-d14 (surr.)	1	%	112
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2
Toxaphene	0.1	mg/kg	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2
Dibutylchlorendate (surr.)	1	%	110
Tetrachloro-m-xylene (surr.)	1	%	103

Report Number: 776559-S



Client Sample ID Sample Matrix				QAQC2 Soil
Eurofins Sample No.				S21-Fe51374
Date Sampled				Feb 24, 2021
Test/Reference		LOR	Unit	
Polychlorinated Biphenyls	·			
Aroclor-1016		0.5	mg/kg	< 0.5
Aroclor-1221		0.1	mg/kg	< 0.1
Aroclor-1232		0.5	mg/kg	< 0.5
Aroclor-1242		0.5	mg/kg	< 0.5
Aroclor-1248		0.5	mg/kg	< 0.5
Aroclor-1254		0.5	mg/kg	< 0.5
Aroclor-1260		0.5	mg/kg	< 0.5
Total PCB*		0.5	mg/kg	< 0.5
Dibutylchlorendate (surr.)		1	%	110
Tetrachloro-m-xylene (surr.)		1	%	103
Cyanide (total)		1	mg/kg	< 1
% Moisture		1	%	13
Heavy Metals				
Arsenic		2	mg/kg	4.4
Cadmium		0.4	mg/kg	< 0.4
Chromium		5	mg/kg	24
Copper		5	mg/kg	13
Lead		5	mg/kg	50
Mercury		0.1	mg/kg	< 0.1
Nickel		5	mg/kg	14
Zinc		5	mg/kg	45



## Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	<b>Holding Time</b>
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Mar 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Mar 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Mar 02, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Mar 02, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Volatile Organics	Sydney	Mar 02, 2021	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Cyanide (total)	Sydney	Mar 02, 2021	14 Days
- Method: E054 Total Cyanide			
Organochlorine Pesticides	Sydney	Mar 02, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Mar 02, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Feb 25, 2021	14 Days

Report Number: 776559-S



Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

**Company Name:** Jacobs Group (Australia) P/L NSW

> Level 7, 177 Pacific Highway North Sydney

NSW 2065

Order No.: Report #: Phone:

Sydney

776559 02 9928 2100

Brisbane

02 9928 2504 Fax:

Received: Feb 25, 2021 3:30 PM Due: Mar 4, 2021

**Priority:** 5 Day

**Contact Name:** Amanda Mullen

**Eurofins Analytical Services Manager: Andrew Black** 

**Project Name:** 

Address:

Project ID: IA216715

		Sai	mple Detail			Asbestos - AS4964	Cyanide (total)	Suite B13: OCP/PCB	Volatile Organics	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71							
Sydn	ey Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Brisk	ane Laborator	y - NATA Site#	20794								
Perth	Laboratory - N	IATA Site # 237	36								
	ield Laboratory										
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	QAQC2	Feb 24, 2021		Soil	S21-Fe51374	Х	Х	Х	Х	Х	Х
Test	Counts					1	1	1	1	1	1



## **Internal Quality Control Review and Glossary**

### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

## **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

### Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

**Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

## QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%  $\,$ 

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$ 

## **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 776559-S



## **Quality Control Results**

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				•	
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank				•	
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	1 3 3				
Volatile Organics					
1.1-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2Tichloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichlorobenzene		< 0.5	0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichloropropane	mg/kg				
• •	mg/kg	< 0.5	0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5	0.5	Pass	
1.2.4-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5	0.5	Pass	
1.3.5-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
2-Butanone (MEK)	mg/kg	< 0.5	0.5	Pass	
2-Propanone (Acetone)	mg/kg	< 0.5	0.5	Pass	
4-Chlorotoluene	mg/kg	< 0.5	0.5	Pass	
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5	0.5	Pass	
Allyl chloride	mg/kg	< 0.5	0.5	Pass	
Bromobenzene	mg/kg	< 0.5	0.5	Pass	
Bromochloromethane	mg/kg	< 0.5	0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5	0.5	Pass	
Bromoform	mg/kg	< 0.5	0.5	Pass	
Bromomethane	mg/kg	< 0.5	0.5	Pass	
Carbon disulfide	mg/kg	< 0.5	0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5	0.5	Pass	
Chlorobenzene	mg/kg	< 0.5	0.5	Pass	
Chloroethane	mg/kg	< 0.5	0.5	Pass	
Chloroform	mg/kg	< 0.5	0.5	Pass	
Chloromethane	mg/kg	< 0.5	0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5	0.5	Pass	
Dibromomethane	mg/kg	< 0.5	0.5	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dichlorodifluoromethane	mg/kg	< 0.5	0.5	Pass	
Iodomethane	mg/kg	< 0.5	0.5	Pass	
Isopropyl benzene (Cumene)	mg/kg	< 0.5	0.5	Pass	
Methylene Chloride	mg/kg	< 0.5	0.5	Pass	
Styrene	mg/kg	< 0.5	0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Trichloroethene	mg/kg	< 0.5	0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Method Blank	ı nıgrı	1 0.0	0.0	1 455	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ne				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
· ·	mg/kg	1			
TRH C6-C10		< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		1	T		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank			3.0	7 0.00	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank	1			1 3332	
Cyanide (total)	mg/kg	< 1	1	Pass	
Method Blank			· ·		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	Hig/Kg		3	1 433	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				I	
TRH C6-C9	%	100	70-130	Pass	
TRH C10-C14	%	76	70-130	Pass	
LCS - % Recovery	70	7.0	70 100	1 455	
BTEX		T T		П	
Benzene	%	117	70-130	Pass	
Toluene	%	110	70-130	Pass	
Ethylbenzene	%	122	70-130	Pass	
m&p-Xylenes	%	120	70-130	Pass	
o-Xylene	%	121	70-130	Pass	
Xylenes - Total*	%	120	70-130	Pass	
LCS - % Recovery	/0	120	70-130	1 033	
Volatile Organics				П	
1.1-Dichloroethene	%	122	70-130	Pass	
1.1.1-Dichloroethene 1.1.1-Trichloroethane	%	110	70-130	Pass	
1.2-Dichlorobenzene	%	108	70-130	Pass	
1.2-Dichloroethane	%	111	70-130	Pass	
Trichloroethene	%	113		1	
LCS - % Recovery	70	113	70-130	Pass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				T	
	%	96	70 120	Page	
Naphthalene		96	70-130	Pass	
TRH C6-C10	%	98	70-130	Pass	
TRH > C10-C16	%	76	70-130	Pass	
LCS - % Recovery		T T		T T	
Polycyclic Aromatic Hydrocarbons	2,			<u> </u>	
Acenaphthene	%	99	70-130	Pass	



Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene LCS - % Recovery	% % % % % % % % % % % % % % % % % % %	96 106 105 111 97 119 107 100 109 104 99 111 96 101 107	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % % % % % % % % % % %	105 111 97 119 107 100 109 104 99 111 96	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % % % % % % % % % %	111 97 119 107 100 109 104 99 111 96 101	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % % % % % % % % %	97 119 107 100 109 104 99 111 96	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % % % % % % % %	119 107 100 109 104 99 111 96	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % % % %	107 100 109 104 99 111 96 101	70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % % % %	100 109 104 99 111 96 101	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % % %	109 104 99 111 96 101	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % %	104 99 111 96 101	70-130 70-130 70-130 70-130	Pass Pass Pass	
Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % % %	99 111 96 101	70-130 70-130 70-130	Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	% % %	111 96 101	70-130 70-130	Pass	
Naphthalene Phenanthrene Pyrene	% %	96 101	70-130		
Phenanthrene Pyrene	%	101		Pass	
Phenanthrene Pyrene					
		107		Pass	
LCS - % Recovery			70-130	Pass	
Organochlorine Pesticides					
Chlordanes - Total	%	119	70-130	Pass	
4.4'-DDD	%	93	70-130	Pass	
4.4'-DDE	%	110	70-130	Pass	
4.4'-DDT	%	118	70-130	Pass	
a-BHC	%	110	70-130	Pass	
Aldrin	%	113	70-130	Pass	
b-BHC	%	112	70-130	Pass	
d-BHC	%	109	70-130	Pass	
Dieldrin	%	104	70-130	Pass	
Endosulfan I	%	108	70-130	Pass	
Endosulfan II	%	96	70-130	Pass	
Endosulfan sulphate	%	102	70-130	Pass	
Endrin	%	110	70-130	Pass	
Endrin aldehyde	%	113	70-130	Pass	
Endrin ketone	%	97	70-130	Pass	
g-BHC (Lindane)	%	114	70-130	Pass	
Heptachlor	%	125	70-130	Pass	
Heptachlor epoxide	%	107	70-130	Pass	
Hexachlorobenzene	%	107	70-130	Pass	
Methoxychlor	%	116	70-130	Pass	
LCS - % Recovery	,,,	110	10 100	1 400	
Polychlorinated Biphenyls					
Aroclor-1016	%	125	70-130	Pass	
Aroclor-1260	%	124	70-130	Pass	
LCS - % Recovery	70	127	70 100	1 455	
Cyanide (total)	%	107	70-130	Pass	
LCS - % Recovery	70	107	70-130	1 033	
Heavy Metals					
Arsenic	%	94	80-120	Pass	
Cadmium	%	95	80-120	Pass	
Chromium	%	96	80-120		
				Pass	
Copper	%	95	80-120	Pass	
Lead	%	97	80-120	Pass	
Mercury	%	96	80-120	Pass	
Nickel Zinc	%	96 94	80-120 80-120	Pass Pass	

Report Number: 776559-S



Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		'					
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1			
TRH C6-C9	S21-Fe46322	NCP	%	74	70-130	Pass	
TRH C10-C14	S21-Ma06214	NCP	%	77	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S21-Fe51875	NCP	%	92	70-130	Pass	
Toluene	S21-Fe51875	NCP	%	95	70-130	Pass	
Ethylbenzene	S21-Fe51875	NCP	%	96	70-130	Pass	
m&p-Xylenes	S21-Fe51875	NCP	%	97	70-130	Pass	
o-Xylene	S21-Fe51875	NCP	%	100	70-130	Pass	
Xylenes - Total*	S21-Fe51875	NCP	%	98	70-130	Pass	
Spike - % Recovery							
Volatile Organics				Result 1			
1.1-Dichloroethene	S21-Fe45430	NCP	%	89	70-130	Pass	
1.1.1-Trichloroethane	S21-Fe45430	NCP	%	93	70-130	Pass	
1.2-Dichlorobenzene	S21-Fe45430	NCP	%	97	70-130	Pass	
1.2-Dichloroethane	S21-Fe45430	NCP	%	109	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1			
Naphthalene	S21-Fe51875	NCP	%	89	70-130	Pass	
TRH C6-C10	S21-Fe46322	NCP	%	75	70-130	Pass	
TRH >C10-C16	S21-Ma06214	NCP	%	76	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbo	ns			Result 1			
Acenaphthene	S21-Ma08990	NCP	%	76	70-130	Pass	
Acenaphthylene	S21-Ma08990	NCP	%	80	70-130	Pass	
Anthracene	S21-Ma08990	NCP	%	84	70-130	Pass	
Benz(a)anthracene	S21-Ma08990	NCP	%	83	70-130	Pass	
Benzo(a)pyrene	S21-Ma08990	NCP	%	83	70-130	Pass	
Benzo(b&j)fluoranthene	S21-Ma08990	NCP	%	85	70-130	Pass	
Benzo(g.h.i)perylene	S21-Ma08990	NCP	%	92	70-130	Pass	
Benzo(k)fluoranthene	S21-Ma08990	NCP	%	97	70-130	Pass	
Chrysene	S21-Ma08990	NCP	%	82	70-130	Pass	
Dibenz(a.h)anthracene	S21-Ma08990	NCP	%	93	70-130	Pass	
Fluoranthene	S21-Ma08990	NCP	%	88	70-130	Pass	
Fluorene	S21-Ma08990	NCP	%	82	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Ma08990	NCP	%	94	70-130	Pass	
Naphthalene	S21-Ma08990	NCP	%	77	70-130	Pass	
Phenanthrene	S21-Ma08990	NCP	%	82	70-130	Pass	
Pyrene	S21-Ma08990	NCP	%	80	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S21-Ma08990	NCP	%	89	70-130	Pass	
4.4'-DDD	S21-Ma08990	NCP	%	88	70-130	Pass	
4.4'-DDE	S21-Ma08990	NCP	%	95	70-130	Pass	
4.4'-DDT	S21-Ma08990	NCP	%	109	70-130	Pass	
а-ВНС	S21-Ma08990	NCP	%	94	70-130	Pass	
Aldrin	S21-Ma08990	NCP	%	91	70-130	Pass	
b-BHC	S21-Ma08990	NCP	%	88	70-130	Pass	
d-BHC	S21-Ma08990	NCP	%	91	70-130	Pass	
Dieldrin	S21-Ma08990	NCP	%	90	70-130	Pass	
Endosulfan I	S21-Ma08990	NCP	%	85	70-130	Pass	
Endosulfan II	S21-Ma08990	NCP	%	80	70-130	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	S21-Ma08990	NCP	%	86			70-130	Pass	
Endrin	S21-Ma08990	NCP	%	103			70-130	Pass	
Endrin aldehyde	S21-Ma08990	NCP	%	83			70-130	Pass	
Endrin ketone	S21-Ma08990	NCP	%	86			70-130	Pass	
g-BHC (Lindane)	S21-Ma08990	NCP	%	91			70-130	Pass	
Heptachlor	S21-Ma08990	NCP	%	116			70-130	Pass	
Heptachlor epoxide	S21-Ma08990	NCP	%	89			70-130	Pass	
Hexachlorobenzene	S21-Ma08990	NCP	%	91			70-130	Pass	
Methoxychlor	S21-Ma08990	NCP	%	103			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S21-Ma08990	NCP	%	101			70-130	Pass	
Aroclor-1260	S21-Ma08990	NCP	%	108			70-130	Pass	
Spike - % Recovery								7 0.00	
				Result 1					
Cyanide (total)	S21-Ma02949	NCP	%	83			70-130	Pass	
Spike - % Recovery	CET MAGEO 10	110.	70				10 100	1 400	
Heavy Metals				Result 1					
Arsenic	S21-Fe51372	NCP	%	96			75-125	Pass	
Cadmium	S21-Fe51372	NCP	<del>//</del> 0	98			75-125	Pass	
Chromium	S21-Fe51372	NCP	%	100			75-125	Pass	
Copper	S21-Fe51372	NCP	<del>//</del> //////////////////////////////////	95			75-125	Pass	
Lead	S21-Fe51372	NCP	<u> </u>	88			75-125 75-125	Pass	
Mercury	S21-Fe51372	NCP	<u> </u>	97			75-125 75-125	Pass	
, iviercury	321-1631372	NOF							
,	CO4 F0E4070	NCD	0/	1 07					
Nickel	S21-Fe51372	NCP	%	97			75-125	Pass	
,	S21-Fe51372 S21-Fe51372	NCP	%	97 78			75-125	Pass	Overlife des
Nickel									Qualifying Code
Nickel Zinc	S21-Fe51372	NCP QA	%	78			75-125 Acceptance	Pass Pass	
Nickel Zinc Test	S21-Fe51372 Lab Sample ID	NCP QA Source	%	78	Result 2	RPD	75-125 Acceptance	Pass Pass	
Nickel Zinc Test Duplicate	S21-Fe51372 Lab Sample ID	NCP QA Source	%	78 Result 1	Result 2	RPD <1	75-125 Acceptance	Pass Pass	
Nickel Zinc Test Duplicate Total Recoverable Hydrocarbons	S21-Fe51372 Lab Sample ID - 1999 NEPM Fract	NCP QA Source	% Units	78 Result 1 Result 1			75-125 Acceptance Limits	Pass Pass Limits	
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9	S21-Fe51372  Lab Sample ID  - 1999 NEPM Fract S21-Fe51857	NCP QA Source	% Units mg/kg	78  Result 1  Result 1  < 20	< 20	<1	75-125 Acceptance Limits	Pass Pass Limits Pass	
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14	S21-Fe51372  Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212	NCP QA Source ions NCP NCP	% Units  mg/kg mg/kg	78  Result 1  Result 1  < 20 < 20	< 20 < 20	<1 <1	75-125 Acceptance Limits 30% 30%	Pass Limits Pass Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28	S21-Fe51372  Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212	NCP QA Source  ions NCP NCP NCP	% Units  mg/kg mg/kg mg/kg	78  Result 1  Result 1  < 20  < 20  51	< 20 < 20 < 50	<1 <1 43	75-125 Acceptance Limits 30% 30% 30%	Pass Limits Pass Pass Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36	S21-Fe51372  Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212	NCP QA Source  ions NCP NCP NCP	% Units  mg/kg mg/kg mg/kg	78  Result 1  Result 1  < 20  < 20  51	< 20 < 20 < 50	<1 <1 43	75-125 Acceptance Limits 30% 30% 30%	Pass Limits Pass Pass Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	S21-Fe51372  Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212	NCP QA Source  ions NCP NCP NCP	% Units  mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64	< 20 < 20 < 50 54	<1 <1 43 17	75-125 Acceptance Limits 30% 30% 30%	Pass Limits Pass Pass Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Ma06212	NCP QA Source ions NCP NCP NCP NCP	% Units  mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64  Result 1	< 20 < 20 < 50 54	<1 <1 43 17 RPD	75-125 Acceptance Limits 30% 30% 30% 30% 30%	Pass Pass Limits Pass Pass Fail Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Ma06212 S21-Fe51857	NCP QA Source  ions NCP NCP NCP NCP NCP	% Units  mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20  51  64  Result 1 < 0.1	< 20 < 20 < 50 54 Result 2 < 0.1	<1 <1 43 17 RPD <1	75-125 Acceptance Limits 30% 30% 30% 30% 30%	Pass Pass Limits  Pass Pass Pass Pass Fail Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Ma06212 S21-Fe51857 S21-Fe51857	NCP QA Source  ions NCP NCP NCP NCP NCP NCP	% Units  mg/kg mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1	< 20 < 20 < 50 54 Result 2 < 0.1 < 0.1	<1 <1 43 17 RPD <1 <1 <1	75-125 Acceptance Limits 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene	S21-Fe51372  Lab Sample ID  - 1999 NEPM Fract  S21-Fe51857  S21-Ma06212  S21-Ma06212  S21-Fe51857  S21-Fe51857  S21-Fe51857  S21-Fe51857	NCP QA Source  ions NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units  mg/kg mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.1	<1 <1 43 17 RPD <1 <1 <1 <1 <1	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Limits  Pass Pass Pass Pass Fail Pass Pass Pass Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	S21-Fe51372  Lab Sample ID  - 1999 NEPM Fract  S21-Fe51857  S21-Ma06212  S21-Ma06212  S21-Fe51857  S21-Fe51857  S21-Fe51857  S21-Fe51857  S21-Fe51857	NCP QA Source  iions NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.2	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2	<1 <1 43 17 RPD <1 <1 <1 <1 <1	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857	NCP QA Source  iions NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1	< 20 < 20 < 50 54 Result 2 < 0.1 < 0.1 < 0.2 < 0.1	<1 <1 43 17 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Zinc Zinc Zinc Zinc Zinc Zinc Zinc Zinc	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857	NCP QA Source  iions NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1	< 20 < 20 < 50 54 Result 2 < 0.1 < 0.1 < 0.2 < 0.1	<1 <1 43 17 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857	NCP QA Source  ions NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3	<1 <1 43 17 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36  Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*  Duplicate Volatile Organics	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract	NCP QA Source  ions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3  Result 1	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3	<1 <1 43 17 RPD <1 <1 <1 <1 <1 <1 <1 RPD <1 RPD	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36  Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*  Duplicate Volatile Organics 1.1-Dichloroethane	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Ma06212 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857	NCP QA Source  iions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5	<1 <1 43 17 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	75-125 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc  Test  Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Volatile Organics 1.1-Dichloroethane 1.1-Dichloroethene	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Ma06212 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857 S21-Fe51857	NCP QA Source  iions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5	<1 <1 43 17 RPD <1 <1	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Pass Pass Pass Pass P	Code
Nickel Zinc  Test  Duplicate  Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36  Duplicate  BTEX  Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylenes Xylenes - Total*  Duplicate  Volatile Organics 1.1-Dichloroethane 1.1-Trichloroethane 1.1.1-Trichloroethane 1.1.1.2-Tetrachloroethane	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract	NCP QA Source  ions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 0.5 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5 < 0.5	<1 <1 <1 <43 17	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Pass Pass Pass Pass Pass Pass	Code
Nickel Zinc  Test  Duplicate  Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C29-C36  Duplicate  BTEX  Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*  Duplicate  Volatile Organics 1.1-Dichloroethane 1.1.2-Tetrachloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract	NCP QA Source  iions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc  Test  Duplicate  Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C29-C36  Duplicate  BTEX  Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*  Duplicate  Volatile Organics 1.1-Dichloroethane 1.1.2-Tetrachloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Tetrachloroethane	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract	NCP QA Source  ions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Limits  Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc  Test  Duplicate  Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36  Duplicate  BTEX  Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*  Duplicate  Volatile Organics 1.1-Dichloroethane 1.1-Dichloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Tetrachloroethane 1.1.2-Dibromoethane	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Ma06212 S21-Fe51857	NCP QA Source  ions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc  Test  Duplicate  Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C29-C36 Duplicate  BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*  Duplicate  Volatile Organics 1.1-Dichloroethane 1.1-J-Trichloroethane 1.1.2-Tetrachloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Tichloroethane 1.1.2-Dibromoethane 1.2-Dibromoethane 1.2-Dibromoethane 1.2-Dichlorobenzene	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract	NCP QA Source  ions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code
Nickel Zinc  Test  Duplicate  Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36  Duplicate  BTEX  Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*  Duplicate  Volatile Organics 1.1-Dichloroethane 1.1-Dichloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane 1.1.2-Tetrachloroethane 1.1.2-Dibromoethane	S21-Fe51372 Lab Sample ID  - 1999 NEPM Fract S21-Fe51857 S21-Ma06212 S21-Ma06212 S21-Ma06212 S21-Fe51857	NCP QA Source  ions NCP	mg/kg	78  Result 1  < 20 < 20 51 64  Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 20 < 50 54  Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3  Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	75-125 Acceptance Limits  30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pas	Code



Duplicate									
•				Daguit 4	Describ 0	DDD	l		
Volatile Organics	004 5:54057	NOD		Result 1	Result 2	RPD	000/	<b>D</b>	
1.2.4-Trimethylbenzene 1.3-Dichlorobenzene	S21-Fe51857 S21-Fe51857	NCP NCP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
1.3-Dichloropropane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
			mg/kg						
1.3.5-Trimethylbenzene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chlorotoluene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Allyl chloride	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromobenzene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromochloromethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon disulfide	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
lodomethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methylene Chloride	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Styrene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			T		
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S21-Fe51857	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Fe51857	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-Ma06212	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Ma06212	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Ma06212	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	ıs			Result 1	Result 2	RPD			
Acenaphthene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
· · · · · · · · · · · · · · · · · · ·	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	



Duplicate									
	hone			Popult 4	Result 2	RPD			
Polycyclic Aromatic Hydrocar		NCP		Result 1			200/	Doos	
Dibenz(a.h)anthracene Fluoranthene	S21-Ma00750		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoraninene	S21-Ma00750 S21-Ma00750	NCP NCP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass Pass	
Indeno(1.2.3-cd)pyrene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
, ,,,	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene Phenanthrene	S21-Ma00750	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Ma00750	NCP	mg/kg mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	321-Ma00730	INCF	l Hig/kg	_ < 0.5	< 0.5	<1	30 /6	Fass	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-Ma00750	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-Ma00750	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Ma00750	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Ma06212	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S21-Ma06212	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Ma06212	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S21-Ma06212	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S21-Ma06212	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S21-Ma06212	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S21-Ma06212	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total PCB*	S21-Ma06212	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Cyanide (total)	S21-Fe51374	CP	mg/kg	< 1	< 1	<1	30%	Pass	
% Moisture	S21-Fe51372	NCP	%	13	13	4.0	30%	Pass	
Duplicate									
Heavy Metals			1	Result 1	Result 2	RPD			
Arsenic	S21-Fe48315	NCP	mg/kg	30	26	13	30%	Pass	
Cadmium	S21-Fe48315	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Fe48315	NCP	mg/kg	55	48	13	30%	Pass	
Copper	S21-Fe48315	NCP	mg/kg	28	33	15	30%	Pass	
Lead	S21-Fe48315	NCP	mg/kg	55	61	9.0	30%	Pass	
Mercury	S21-Fe48315	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Fe48315	NCP	mg/kg	8.6	7.7	11	30%	Pass	
Zinc	S21-Fe48315	NCP	mg/kg	31	34	8.0	30%	Pass	



#### Comments

### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

#### **Qualifier Codes/Comments**

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference. Q08

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised by:

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Charl Du Preez Senior Analyst-Inorganic (NSW) Senior Analyst-Metal (NSW) John Nguyen

Glenn Jackson **General Manager** 

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 776559-S



Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

**Company Name:** Jacobs Group (Australia) P/L NSW

Level 7, 177 Pacific Highway

North Sydney

NSW 2065

**Project Name:** 

Address:

Project ID: IA216715 Order No.: Report #:

776559

Phone: 02 9928 2100 02 9928 2504 Fax:

Received: Feb 25, 2021 3:30 PM Due: Mar 4, 2021

**Priority:** 5 Day

**Contact Name:** Amanda Mullen

**Eurofins Analytical Services Manager: Andrew Black** 

Sample Detail						Asbestos - AS4964	Cyanide (total)	Suite B13: OCP/PCB	Volatile Organics	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ry - NATA Site	# 1254 & 142	271							
Sydr	ney Laboratory	NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Brist	pane Laboratory	/ - NATA Site #	20794		_						
Perti	n Laboratory - N	IATA Site # 237	36								
	ield Laboratory										
	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	QAQC2	Feb 24, 2021		Soil	S21-Fe51374	Х	Х	Х	Х	Х	Х
Test	Test Counts								1	1	1



# Certificate of Analysis

# **Environment Testing**

Jacobs Group (Australia) P/L NSW Level 7, 177 Pacific Highway North Sydney NSW 2065





NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Amanda Mullen Report 776559-AID

**Project Name** 

Project ID IA216715

Received Date Feb 25, 2021

Date Reported Mar 05, 2021

### Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.







Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 6

**Project Name** 

Date Reported: Mar 05, 2021

**Project ID** IA216715 Feb 24, 2021 **Date Sampled** Report 776559-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
QAQC2	21-Fe51374	Feb 24, 2021	Sample consisted of: Brown coarse-grained clayey-sandy soil and	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Report Number: 776559-AID ABN: 50 005 085 521 Telephone: +61 2 9900 8400



## **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyFeb 25, 2021Indefinite

Report Number: 776559-AID



Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

**Priority:** 

**Contact Name:** 

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Mar 4, 2021

Amanda Mullen

Feb 25, 2021 3:30 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

**Company Name:** Jacobs Group (Australia) P/L NSW

> Level 7, 177 Pacific Highway North Sydney

NSW 2065

**Project Name:** Project ID:

Address:

IA216715

Order No.: Report #:

776559

Phone: 02 9928 2100 02 9928 2504 Fax:

**Eurofins Analytical Services Manager: Andrew Black** 

5 Day

Sample Detail							Cyanide (total)	Suite B13: OCP/PCB	Volatile Organics	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71							
Sydr	ey Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Brisk	oane Laboratory	y - NATA Site #	20794								
Perth	n Laboratory - N	IATA Site # 237	36								
Mayf	ield Laboratory	1									
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	QAQC2	Feb 24, 2021		Soil	S21-Fe51374	Χ	Х	Х	Х	Х	Х
Test	Test Counts							1	1	1	1

Page 4 of 6



### **Internal Quality Control Review and Glossary**

#### General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

Date Reported: Mar 05, 2021

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 5 of 6

Report Number: 776559-AID



#### Comments

The sample received was not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-sample to be analysed accurately represented the sample received.

### Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

### **Qualifier Codes/Comments**

Code Description N/A Not applicable

### **Asbestos Counter/Identifier:**

Sayeed Abu Senior Analyst-Asbestos (NSW)

#### Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 776559-AID



ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40017 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

**New Zealand** 

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

## Sample Receipt Advice

Company name:

Jacobs Group (Australia) P/L NSW

Contact name: Project name: Project ID:

Amanda Mullen Not provided IA216715 5 Day

Turnaround time: Date/Time received

Feb 25, 2021 3:30 PM

**Eurofins reference** 

776559

# Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

# **Notes**

# Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Amanda Mullen - amanda.mullen@jacobs.com.

