

21 August 2020

Rod Williams Principal Environmental Scientist Umwelt (Australia) Pty Ltd 75 York Street Teralba NSW 2284 Our ref:12528177-64267-3 Your ref:

Dear Rod

#### Mackas Sand Groundwater Model Update

#### 1 Background

GHD Pty Ltd (GHD) was engaged by Umwelt (Australia) Pty Ltd (Umwelt) to update the groundwater model for Mackas Sand, located in Salt Ash NSW, using meteorological data for the period 2011 to 2019. The sand quarry operates under Project Approval MP 08\_0142 within Lots 218 and 220 (the site).

A transient groundwater flow model of the site was first developed by Umwelt in 2009 using Visual MODFLOW Pro Version 4.2 (Umwelt, 2009). A single sand layer model extending from bedrock at -23 m AHD to the ground surface was created for a 22.4 square kilometre area, which extends from the Pacific Ocean in the south-east to Tilligerry Creek in the north-west.

The groundwater model was updated in 2011 by Umwelt using Visual MODFLOW Pro Version 2009.1. The update included extending the model domain to the east and west to reduce edge effects, resulting in a larger model area of 32.5 km<sup>2</sup>, refinement of the model ground surface, and inclusion of drain cells to represent the drainage system within the Tilligerry Creek catchment. Details regarding the calibration of this model and model predictions are outlined in Umwelt (2011). A figure showing the model domain, boundary conditions and groundwater monitoring bores used in model calibration is shown in Appendix A.

The NSW Department of Planning, Industry and Environment (DPIE) has requested Mackas Sand undertake a further update to the groundwater model and report on:

- How closely the groundwater model predictions align with groundwater levels measured from 2011 until the present, as part of a recalibration of the model.
- The impact of sand removal by the Mackas Sand operation on predicted groundwater levels. The removal of sand has changed the topographic surface in Lots 218 and 220. Is there any impact on groundwater levels caused by this change, such as an increase in groundwater levels beneath the extracted area or a change in groundwater gradients either to the Hunter Water emergency borefield or towards the Pacific Ocean?
- How any changes identified by this review may affect the maximum extraction depth map.

This letter report outlines the methodology and results of this current groundwater model update.

#### 1.1 Limitations

A numerical groundwater model is a mathematical representation of a complex natural environment where parameters and processes can only be inferred from a finite number of measurements. Simplifications and assumptions are necessary in modelling. Efforts have been made to provide clarity on the data used to support the modelling and associated limitations. Findings presented in this report should be considered in this context.

This report has been prepared by GHD for Umwelt (Australia) Pty Ltd and may only be used and relied on by Umwelt (Australia) Pty Ltd for the purpose agreed between GHD and Umwelt (Australia) Pty Ltd as set out in Section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Umwelt (Australia) Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

#### 2 Methodology

The Umwelt (2011) calibrated transient groundwater model has been used for the current update. For this assessment, MODFLOW 2005, built into the Visual MODFLOW Flex 6.1 software, was utilised. As part of this current update, no changes were made to the hydrogeological conceptualisation, model structure (i.e. surface topography or layer thickness), hydraulic parameters (i.e. hydraulic conductivity or aquifer storage) or evapotranspiration. In addition, no model calibration was undertaken or considered to be warranted.

The adopted input parameter values (from Umwelt, 2011) have been summarised in Table 1.

| Parameters                                                                                          | Value                    |
|-----------------------------------------------------------------------------------------------------|--------------------------|
| Specific Yield (S <sub>y</sub> )                                                                    | 0.12                     |
| Specific Storage (S <sub>s</sub> )                                                                  | 1 x 10 <sup>-5</sup> 1/m |
| Horizontal hydraulic conductivity ( $K_x$ and $K_y$ ) of dunes (zone #1)                            | 13 m/day                 |
| Horizontal hydraulic conductivity of $(K_x \text{ and } K_y)$ of inter-barrier depression (zone #2) | 5 m/day                  |

#### Table 1 Model input parameter values

| Parameters                                             | Value                                      |
|--------------------------------------------------------|--------------------------------------------|
| Vertical hydraulic conductivity (Kz) for zones 1 and 2 | 0.05 m/day                                 |
| Effective Porosity                                     | 15%                                        |
| Total Porosity                                         | 30%                                        |
| Recharge                                               | 35% of rainfall (data from station 061078) |
| Evapotranspiration                                     | 60% of pan evaporation                     |
| Evaporation Extinction Depth                           | 2.5 m                                      |
| Drain Elevation                                        | 0 to 1 m AHD                               |
| Drain Conductance                                      | 10 m/day                                   |
| Constant head at Tilligery Creek                       | 0.4 m AHD                                  |
| Constant head at Pacific Ocean                         | 0 m AHD                                    |

#### 2.1 Model updates

The following updates were made to the Umwelt (2011) groundwater model.

#### 2.1.1 Stress periods and time steps

The monthly time steps were extended to the end of 2019 such that the transient model period was from January 1997 to December 2019 (276 time-steps in total). As in Umwelt (2011), the transient model was run using the monthly 'Relative Date'. The equivalent 'Real Dates' for each time-step is provided in Appendix B. Quarterly stress periods were adopted, made up of three time steps.

#### 2.1.2 Initial head

The model was run under steady state conditions to establish initial heads for the transient model. Parameters outlined in Table 1 were adopted in the steady state run. The initial starting head for the steady state model was equal to the groundwater surface (model default).

#### 2.1.3 Recharge

Monthly meteorological data for the extended period (from September 2011 to December 2019) was obtained from the Australian Bureau of Meteorology (BoM) Williamtown RAAF Base station (station no. 061078).

Rainfall recharge was calculated for each quarterly stress period. Since recharge is in units of mm/year, raw monthly rainfall was first converted to accumulated quarterly totals, multiplied by four to obtain the equivalent annual rainfall rate (mm/year) and then multiplied by 0.35 to obtain the representative rate of groundwater recharge. Rainfall infiltration inputs for each stress period are provided in Appendix C.

#### 2.1.4 Boundary conditions

The Umwelt (2011) groundwater model was constructed using two constant head boundaries, one to the north-west to represent Tilligerry Creek and one to the south-east to represent the Pacific Ocean. Heads assigned to these boundaries are shown in Table 1. A series of drain cells are also included between the Holocene Dunes and Tilligerry Creek to represent the Tilligerry Creek drainage system.

In the current groundwater model update, these boundary conditions were retained and extended to December 2019 with no changes to head or conductance values.

#### 2.1.5 Groundwater observed data

Observed groundwater monitoring data for groundwater monitoring bores SP1-SP5 and BL158 between September 2011 and December 2019 were input into the model to update the observation datasets within the existing model. This data is shown in Table 2.

| Date       | SP1  |      |      |       |      |       |
|------------|------|------|------|-------|------|-------|
|            | 011  | SP2  | SP3  | SP4   | SP5  | BL158 |
| 23/09/2011 | 2.08 | 2.56 | 2.51 | 0.97  | 3.33 | 2.91  |
| 23/10/2011 | 2.1  | 2.41 | 2.39 | 0.8   | 3.27 | 2.72  |
| 22/11/2011 | 2.01 | 2.32 | 2.35 | 1     | 3.24 | 2.63  |
| 24/12/2011 | 1.85 | 2.1  | 2.11 | 0.84  | 3.19 | 2.5   |
| 25/01/2012 | 1.81 | 2.18 | 2.26 | 0.78  | 3.08 | 3     |
| 23/02/2012 | 1.98 | 2.45 | 2.38 | 0.93  | 3.23 | 3.09  |
| 22/05/2012 | 2.35 | 2.78 | 2.7  | 0.97  | 3.3  | 2.81  |
| 25/09/2012 | 1.81 | 2.71 | 2.58 | 0.85  | 3.29 | 2.43  |
| 4/01/2013  | 1.8  | 2.04 | 2.17 | 0.64  | 2.76 | 1.95  |
| 2/04/2013  | 2.05 | 2.94 | 2.5  | 0.94  | 3.12 | 2.46  |
| 3/09/2013  | 2.35 | 2.6  | 2.49 | 0.83  | 3.3  | 2.38  |
| 6/01/2014  | 2.45 | 2.72 | 2.26 | 0.6   | 2.92 | 2.15  |
| 15/04/2014 | 1.88 | 2.13 | 1.91 | 0.7   | 2.67 | 1.75  |
| 31/05/2014 | 2.1  | 2.26 | 1.86 | 0.64  | 3.1  | 1.8   |
| 3/10/2014  | 2.05 | 2.24 | 2.17 | 0.59  | 2.72 | 1.78  |
| 12/01/2015 | 2    | 2.19 | 2.07 | 0.41  | 2.57 | 1.77  |
| 25/02/2015 | 2.1  | 2.33 | 1.86 | -0.03 | 2.57 | 1.81  |
| 13/05/2015 | 2.51 | 3.43 | 2.49 | 0.77  | 3.1  | 2.06  |
| 31/08/2015 | 2.16 | 3.15 | 2.45 | 0.8   | 3.37 | 2.36  |
| 18/11/2015 | 2.05 | 3.1  | 2.44 | 0.7   | 3.16 | 2.22  |
| 14/04/2016 | 2.36 | 2.9  | 2.31 | 0.6   | 3.49 | 3     |
| 30/06/2016 | 2.16 | 2.92 | 2.57 | 0.75  | 3.41 | 2.36  |
| 13/10/2016 | 1.9  | 2.6  | 2.32 | 0.9   | 3.05 | 2.18  |
| 29/12/2016 | 1.58 | 2.21 | 2.09 | 0.78  | 2.8  | 2.04  |
| 23/03/2017 | 1.3  | 2.15 | 1.9  | -0.25 | 2.79 | 2.16  |
| 16/06/2017 | -    | 2.33 | 2.12 | 1.11  | 2.99 | 2.06  |
| 6/09/2017  | 1.15 | 1.95 | 1.96 | 0.83  | 2.82 | 1.92  |
| 19/12/2017 | 0.86 | 1.81 | 1.37 | 0.42  | 2.48 | 1.62  |
| 23/04/2018 | 1.28 | 2.05 | 1.6  | 0.61  | 2.36 | 1.61  |
| 26/06/2018 | 1.69 | 2.54 | 2.53 | 1.14  | 2.98 | 2.1   |
| 25/09/2018 | 1.67 | 2.8  | 1.99 | 0.91  | 2.72 | 1.88  |
| 10/12/2018 | 1.39 | 2.43 | 1.89 | 0.72  | 2.55 | 1.73  |
| 14/03/2019 | 1.06 | 1.95 | 1.46 | 0.42  | 2.08 | 1.36  |
| 24/06/2019 | 1.29 | 2.41 | 1.64 | 1.01  | 2.32 | 1.53  |
| 16/09/2019 | 1.44 | 2.41 | 1.75 | 0.66  | 2.38 | 1.71  |
| 11/12/2019 | 1.22 | 2.04 | 1.6  | 0.28  | 2.21 | 1.64  |

 Table 2
 Observed groundwater levels from September 2011 to December 2019 (m AHD)

#### 3 Model results and discussion

Modelled and observed groundwater levels at each bore (SP1-SP5 and BL158) between January 1997 and December 2019 are shown in Appendix D. The green line represents the final time step of the Umwelt (2011) model (i.e. August 2011). The horizontal red line represents the maximum modelled groundwater level from Umwelt (2011).

As expected, the modelled groundwater levels up to August 2011 closely match the modelled levels from the Umwelt (2011) model with the modelled maximum generally matching the Umwelt (2011) modelled maximum. Any slight differences are attributable to the use of MODFLOW 2005 in the current update compared to MODFLOW 2000 and the use of three monthly stress periods (compared to one monthly stress periods with the previous model).

There is a reasonably close match between modelled and observed groundwater levels between September 2011 and December 2019, particularly at SP4 and BL158. Modelled levels generally overpredict observed levels at SP1 and under-predict at SP2, SP3 and SP5. There is a reasonably similar response in the modelled and observed hydrographs at each bore to wet and dry periods.

Differences between modelled and observed levels are most likely to be attributable to:

- Time resolution of the model. Stress periods are three monthly which means that the effects of high rainfall events are suppressed in the model. It was necessary to change the stress period from monthly to three monthly in the extended model due to limitations on the number of allowable stress periods in MODFLOW.
- Quarrying operations outside Lots 218 and 220 that are not considered in the model. There are a number of quarries in close proximity to Mackas Sand. In particularly, it is noted that groundwater monitoring bore SP2 is very close to an adjacent operation.
- The parameters applied to the drain cells and the degree to which they represent the Tilligerry Creek drainage system and changes over time.

Table 3 shows the maximum observed and modelled groundwater levels for each bore. Modelled levels are shown for the extended period (2011-2019) as well as for the full model period (1997-2019) and are based on the current model update.

The modelled maximum groundwater level for each bore occurred in June 1999. The modelled maximum levels predicted between 2011 and 2019 remain below the June 1999 maximums. The maximum extraction depth map in Umwelt (2011) was based on the maximums from June 1999.

Maximum observed groundwater levels for SP1, SP4, SP5 and BL158 remain below the modelled maximums. The observed maximum at SP2 occurred in May 2015 and is higher than the modelled maximum at this location by 0.61 m. The maximum observed level at SP3 occurred in May 2012 and is slightly higher than the modelled maximum (by 0.06 m).

| Bore  | Maximum Groundwater Level (m AHD) |                         |                         |  |  |  |
|-------|-----------------------------------|-------------------------|-------------------------|--|--|--|
|       | Observed<br>1997-2019             | Modelled<br>(1997-2019) | Modelled<br>(2011-2019) |  |  |  |
|       | Time, Head                        | Time, Head              | Time, Head              |  |  |  |
| SP1   | (5/2015), 2.51                    | (6/1999), 3.66          | (6/2015), 3.13          |  |  |  |
| SP2   | (5/2015), 3.43                    | (6/1999), 2.82          | (6/2015), 2.48          |  |  |  |
| SP3   | (5/2012), 2.7                     | (6/1999), 2.64          | (6/2015), 2.33          |  |  |  |
| SP4   | (6/2018), 1.14                    | (6/1999), 1.33          | (6/2015), 1.15          |  |  |  |
| SP5   | (4/2016), 3.49                    | (6/1999), 3.77          | (6/2015), 2.88          |  |  |  |
| BL158 | (8/1999), 3.52                    | (6/1999), 3.56          | (6/2015), 2.93          |  |  |  |

#### Table 3 Maximum observed and modelled groundwater levels

The observed groundwater levels at SP2 (and to a lesser extent SP3) have consistently been above the corresponding model prediction compared to other bores at Lot 220 between September 2011 and December 2019 (refer Appendix D), whereas the groundwater model predicts a higher groundwater level at SP1 relative to other bores at Lot 220 and a flow gradient across Lot 220 from SP1 to SP4. Therefore, actual groundwater contours across Lot 220 have remained consistent over this period despite the higher observed levels at SP2 and SP3 above modelled maximums.

The discrepancy between modelled and predicted levels in the vicinity of SP2 are most likely attributable to off-site activities that are unknown and cannot be replicated by the model. It is unlikely that changes in landform between 2011 and 2019 resulted in the higher levels in observed levels at SP2 and SP3 above modelled maximums since they have been consistently elevated relative to other bores at Lot 220 over this period. It is noted that there has been no interception of groundwater during sand extraction activities at Lots 218 and 220.

Further, it is noted that the depth to groundwater at SP2 and SP3 is generally greater than 4 m and therefore it is unlikely that changes to evapotranspiration is having much effect on groundwater levels at these locations.

#### 4 Conclusion

The groundwater model for Mackas Sand has been extended to the end of December 2019. No changes have been made to the hydrogeological conceptualisation, model structure or hydraulic parameters. Modelled and observed groundwater levels for groundwater monitoring bores SP1-SP5 and BL158 have been compared over the period September 2011 to December 2019.

Overall there is a reasonable match between modelled and observed groundwater levels and there is a similar response in the modelled and observed hydrographs at each bore for wet and dry periods. Discrepancies between modelled and observed levels are attributable to the time resolution of the model, off-site activities not considered in the model and the representation of the Tilligerry Creek drainage system.

The modelled groundwater levels between September 2011 and December 2019 remain below the maximum modelled groundwater levels reported in Umwelt (2011). Maximum observed levels at SP1, SP4, SP5 and BL158 remain below the maximum modelled levels at these locations, while the observed maximums at SP2 and SP3 are higher than the modelled maximums. Review of observed groundwater level data indicates that observed groundwater levels at SP2 (and to a lesser extent SP3) have consistently been higher than other bores at Lot 220 between September 2011 and December 2019 and, as such, groundwater flow patterns across Lot 220 have not changed over this period despite the changes in landform.

Since there is a good match between modelled and observed groundwater levels across the model domain it is not considered that re-calibration of the model is required at this time. The localised higher observed levels at Lot 220, particularly at SP2, are most likely due to off-site activities that cannot be replicated in the model.

Overall, it is considered that the modelled maximum groundwater levels presented in Table 3 still provide a reasonable indication of maximum groundwater levels across the model domain and it is noted that there has been no interception of groundwater during sand extraction activities at Lots 218 and 220. Therefore it is not considered necessary to update the maximum extraction depth map at this time.

#### 5 References

Umwelt (Australia) Pty Limited, 2009. Environmental Assessment of Sand Extraction Operation from Lot 218 DP 1044608 and Lot 220 DP 1049608, Salt Ash. Report Prepared for Mackas Sand.

Umwelt (Australia) Pty Limited, 2011. Determination of Maximum Predicted Groundwater Level and Maximum Extraction Level at Lot 2018 and 220, Salt Ash. Report Prepared for Mackas Sand.

Sincerely

paran

Stuart Gray Technical Director - Hydrogeology +61 2 4979 9017

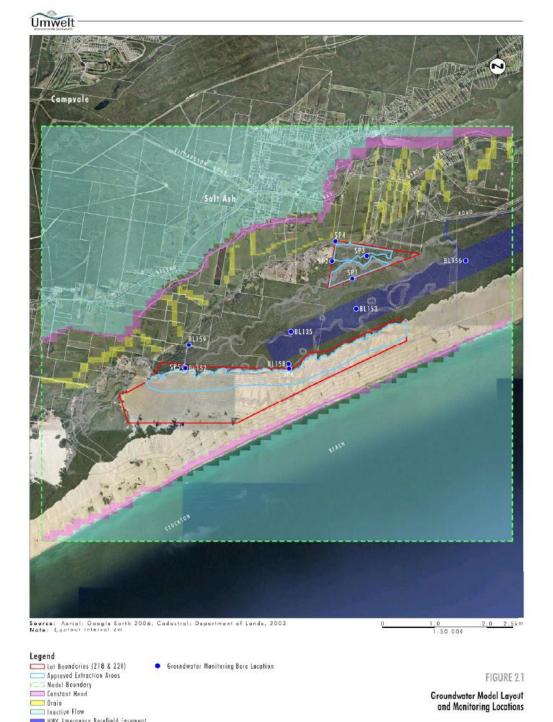



FIGURE 2.1

Groundwater Model Layout and Monitoring Locations

### Appendix A Model domain (from Umwelt, 2011)

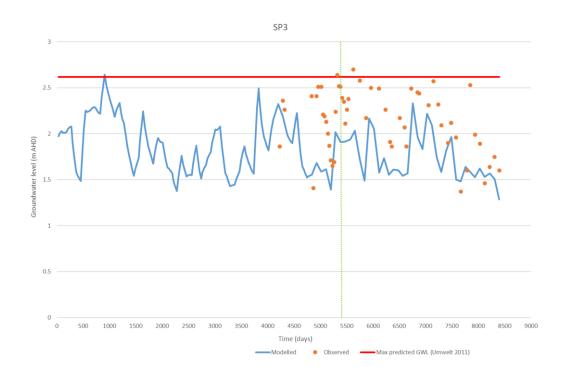
HWC Emergency Borefield Easement File Name (A4): R24\_V1/1046\_192.dpn

| Time     | Relative<br>date | Real<br>date | Time         | Relative<br>date | Real<br>date | Time          | Relative<br>date | Real<br>date |
|----------|------------------|--------------|--------------|------------------|--------------|---------------|------------------|--------------|
| steps    | 31               | 1/01/1997    | steps<br>t54 | 1642             | 1/06/2001    | steps<br>t107 | 3256             | 1/11/2005    |
| t1<br>t2 | 59               | 1/02/1997    | t55          | 1673             | 1/07/2001    | t107          | 3287             | 1/12/2005    |
| t3       | 90               | 1/03/1997    | t56          | 1704             | 1/08/2001    | t109          | 3318             | 1/01/2006    |
| t4       | 120              | 1/04/1997    | t57          | 1734             | 1/09/2001    | t110          | 3346             | 1/02/2006    |
| t5       | 151              | 1/05/1997    | t58          | 1765             | 1/10/2001    | t111          | 3377             | 1/03/2006    |
| t6       | 181              | 1/06/1997    | t59          | 1795             | 1/11/2001    | t112          | 3407             | 1/04/2006    |
| t7       | 212              | 1/07/1997    | t60          | 1826             | 1/12/2001    | t113          | 3438             | 1/05/2006    |
| t8       | 243              | 1/08/1997    | t61          | 1857             | 1/01/2002    | t114          | 3468             | 1/06/2006    |
| t9       | 273              | 1/09/1997    | t62          | 1885             | 1/02/2002    | t115          | 3499             | 1/07/2006    |
| t10      | 304              | 1/10/1997    | t63          | 1916             | 1/03/2002    | t116          | 3530             | 1/08/2006    |
| t10      | 334              | 1/11/1997    | t64          | 1946             | 1/04/2002    | t117          | 3560             | 1/09/2006    |
| t12      | 365              | 1/12/1997    | t65          | 1977             | 1/05/2002    | t118          | 3591             | 1/10/2006    |
| t12      | 396              | 1/01/1998    | t66          | 2007             | 1/06/2002    | t119          | 3621             | 1/11/2006    |
| t14      | 424              | 1/02/1998    | t67          | 2038             | 1/07/2002    | t120          | 3652             | 1/12/2006    |
| t15      | 455              | 1/03/1998    | t68          | 2069             | 1/08/2002    | t120          | 3683             | 1/01/2007    |
| t16      | 485              | 1/04/1998    | t69          | 2099             | 1/09/2002    | t122          | 3711             | 1/02/2007    |
| t17      | 516              | 1/05/1998    | t70          | 2130             | 1/10/2002    | t123          | 3742             | 1/03/2007    |
| t18      | 546              | 1/06/1998    | t71          | 2160             | 1/11/2002    | t124          | 3772             | 1/04/2007    |
| t19      | 577              | 1/07/1998    | t72          | 2191             | 1/12/2002    | t125          | 3803             | 1/05/2007    |
| t20      | 608              | 1/08/1998    | t73          | 2222             | 1/01/2003    | t126          | 3833             | 1/06/2007    |
| t21      | 638              | 1/09/1998    | t74          | 2250             | 1/02/2003    | t127          | 3864             | 1/07/2007    |
| t22      | 669              | 1/10/1998    | t75          | 2281             | 1/03/2003    | t128          | 3895             | 1/08/2007    |
| t23      | 699              | 1/11/1998    | t76          | 2311             | 1/04/2003    | t129          | 3925             | 1/09/2007    |
| t24      | 730              | 1/12/1998    | t77          | 2342             | 1/05/2003    | t120          | 3956             | 1/10/2007    |
| t25      | 761              | 1/01/1999    | t78          | 2372             | 1/06/2003    | t131          | 3986             | 1/11/2007    |
| t26      | 789              | 1/02/1999    | t79          | 2403             | 1/07/2003    | t132          | 4017             | 1/12/2007    |
| t27      | 820              | 1/03/1999    | t80          | 2434             | 1/08/2003    | t133          | 4048             | 1/01/2008    |
| t28      | 850              | 1/04/1999    | t81          | 2464             | 1/09/2003    | t134          | 4077             | 1/02/2008    |
| t29      | 881              | 1/05/1999    | t82          | 2495             | 1/10/2003    | t135          | 4108             | 1/03/2008    |
| t30      | 911              | 1/06/1999    | t83          | 2525             | 1/11/2003    | t136          | 4138             | 1/04/2008    |
| t31      | 942              | 1/07/1999    | t84          | 2556             | 1/12/2003    | t137          | 4169             | 1/05/2008    |
| t32      | 973              | 1/08/1999    | t85          | 2587             | 1/01/2004    | t138          | 4199             | 1/06/2008    |
| t33      | 1003             | 1/09/1999    | t86          | 2616             | 1/02/2004    | t139          | 4230             | 1/07/2008    |
| t34      | 1034             | 1/10/1999    | t87          | 2647             | 1/03/2004    | t140          | 4261             | 1/08/2008    |
| t35      | 1064             | 1/11/1999    | t88          | 2677             | 1/04/2004    | t141          | 4291             | 1/09/2008    |
| t36      | 1095             | 1/12/1999    | t89          | 2708             | 1/05/2004    | t142          | 4322             | 1/10/2008    |
| t37      | 1126             | 1/01/2000    | t90          | 2738             | 1/06/2004    | t143          | 4352             | 1/11/2008    |
| t38      | 1155             | 1/02/2000    | t91          | 2769             | 1/07/2004    | t144          | 4383             | 1/12/2008    |
| t39      | 1186             | 1/03/2000    | t92          | 2800             | 1/08/2004    | t145          | 4414             | 1/01/2009    |
| t40      | 1216             | 1/04/2000    | t93          | 2830             | 1/09/2004    | t146          | 4442             | 1/02/2009    |
| t41      | 1247             | 1/05/2000    | t94          | 2861             | 1/10/2004    | t147          | 4473             | 1/03/2009    |
| t42      | 1277             | 1/06/2000    | t95          | 2891             | 1/11/2004    | t148          | 4503             | 1/04/2009    |
| t43      | 1308             | 1/07/2000    | t96          | 2922             | 1/12/2004    | t149          | 4534             | 1/05/2009    |
| t44      | 1339             | 1/08/2000    | t97          | 2953             | 1/01/2005    | t150          | 4564             | 1/06/2009    |
| t45      | 1369             | 1/09/2000    | t98          | 2981             | 1/02/2005    | t151          | 4595             | 1/07/2009    |
| t46      | 1400             | 1/10/2000    | t99          | 3012             | 1/03/2005    | t152          | 4626             | 1/08/2009    |
| t47      | 1430             | 1/11/2000    | t100         | 3042             | 1/04/2005    | t153          | 4656             | 1/09/2009    |
| t48      | 1461             | 1/12/2000    | t101         | 3073             | 1/05/2005    | t154          | 4687             | 1/10/2009    |
| t49      | 1492             | 1/01/2001    | t102         | 3103             | 1/06/2005    | t155          | 4717             | 1/11/2009    |
| t50      | 1520             | 1/02/2001    | t103         | 3134             | 1/07/2005    | t156          | 4748             | 1/12/2009    |
| t51      | 1551             | 1/03/2001    | t104         | 3165             | 1/08/2005    | t157          | 4779             | 1/01/2010    |
| t52      | 1581             | 1/04/2001    | t105         | 3195             | 1/09/2005    | t158          | 4807             | 1/02/2010    |
| t53      | 1612             | 1/05/2001    | t106         | 3226             | 1/10/2005    | t159          | 4838             | 1/03/2010    |

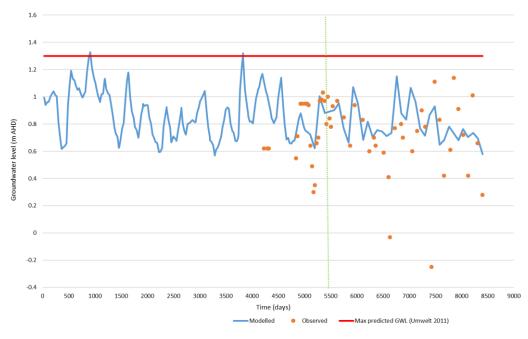
## Appendix B Date/time classification

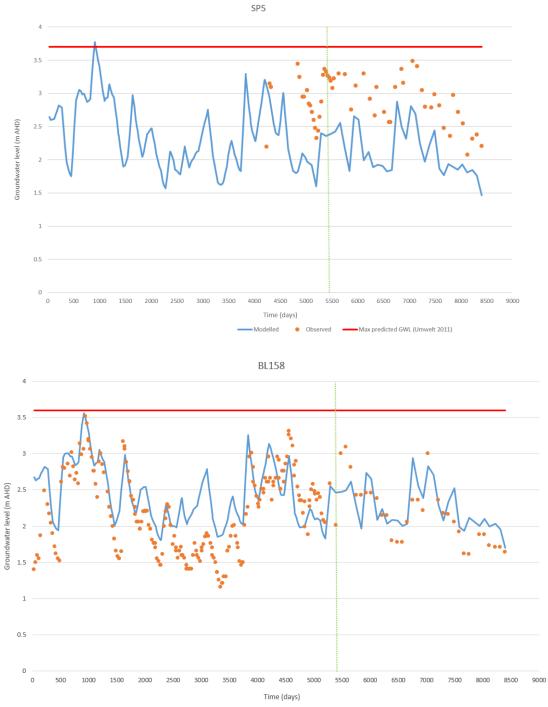
| Time  | Relative | Real      | Time  | Relative | Real      | Time  | Relative | Real      |
|-------|----------|-----------|-------|----------|-----------|-------|----------|-----------|
| steps | date     | date      | steps | date     | date      | steps | date     | date      |
| t160  | 4868     | 1/04/2010 | t208  | 6329     | 1/04/2014 | t263  | 8003     | 1/11/2018 |
| t161  | 4899     | 1/05/2010 | t209  | 6360     | 1/05/2014 | t264  | 8034     | 1/12/2018 |
| t162  | 4929     | 1/06/2010 | t210  | 6390     | 1/06/2014 | t265  | 8065     | 1/01/2019 |
| t163  | 4960     | 1/07/2010 | t211  | 6421     | 1/07/2014 | t266  | 8093     | 1/02/2019 |
| t164  | 4991     | 1/08/2010 | t212  | 6452     | 1/08/2014 | t267  | 8124     | 1/03/2019 |
| t165  | 5021     | 1/09/2010 | t213  | 6482     | 1/09/2014 | t268  | 8154     | 1/04/2019 |
| t166  | 5052     | 1/10/2010 | t214  | 6513     | 1/10/2014 | t269  | 8185     | 1/05/2019 |
| t167  | 5082     | 1/11/2010 | t215  | 6543     | 1/11/2014 | t270  | 8215     | 1/06/2019 |
| t168  | 5113     | 1/12/2010 | t216  | 6574     | 1/12/2014 | t271  | 8246     | 1/07/2019 |
| t169  | 5144     | 1/01/2011 | t217  | 6605     | 1/01/2015 | t272  | 8277     | 1/08/2019 |
| t170  | 5172     | 1/02/2011 | t218  | 6633     | 1/02/2015 | t273  | 8307     | 1/09/2019 |
| t171  | 5203     | 1/03/2011 | t219  | 6664     | 1/03/2015 | t274  | 8338     | 1/10/2019 |
| t172  | 5233     | 1/04/2011 | t220  | 6694     | 1/04/2015 | t275  | 8368     | 1/11/2019 |
| t173  | 5264     | 1/05/2011 | t221  | 6725     | 1/05/2015 | t276  | 8399     | 1/12/2019 |
| t174  | 5294     | 1/06/2011 | t222  | 6755     | 1/06/2015 | 1270  | 0000     | 1/12/2015 |
| t175  | 5325     | 1/07/2011 | t223  | 6786     | 1/07/2015 |       |          |           |
| t176  | 5356     | 1/08/2011 | t223  | 6817     | 1/08/2015 |       |          |           |
| t177  | 5386     | 1/09/2011 | t225  | 6847     | 1/09/2015 |       |          |           |
| t178  | 5417     | 1/10/2011 | t225  | 6878     | 1/10/2015 |       |          |           |
| t179  | 5447     |           | t220  |          | 1/11/2015 |       |          |           |
|       |          | 1/11/2011 |       | 6908     |           |       |          |           |
| t180  | 5478     | 1/12/2011 | t228  | 6939     | 1/12/2015 |       |          |           |
| t181  | 5509     | 1/01/2012 | t229  | 6970     | 1/01/2016 |       |          |           |
| t182  | 5537     | 1/02/2012 | t230  | 6998     | 1/02/2016 |       |          |           |
| t183  | 5568     | 1/03/2012 | t231  | 7029     | 1/03/2016 |       |          |           |
| t184  | 5598     | 1/04/2012 | t232  | 7059     | 1/04/2016 |       |          |           |
| t185  | 5629     | 1/05/2012 | t233  | 7090     | 1/05/2016 |       |          |           |
| t186  | 5659     | 1/06/2012 | t234  | 7120     | 1/06/2016 |       |          |           |
| t187  | 5690     | 1/07/2012 | t235  | 7151     | 1/07/2016 |       |          |           |
| t188  | 5721     | 1/08/2012 | t236  | 7182     | 1/08/2016 |       |          |           |
| t189  | 5751     | 1/09/2012 | t237  | 7212     | 1/09/2016 |       |          |           |
| t190  | 5782     | 1/10/2012 | t238  | 7243     | 1/10/2016 |       |          |           |
| t191  | 5812     | 1/11/2012 | t239  | 7273     | 1/11/2016 |       |          |           |
| t192  | 5843     | 1/12/2012 | t240  | 7304     | 1/12/2016 |       |          |           |
| t193  | 5874     | 1/01/2013 | t241  | 7335     | 1/01/2017 |       |          |           |
| t194  | 5902     | 1/02/2013 | t242  | 7363     | 1/02/2017 |       |          |           |
| t195  | 5933     | 1/03/2013 | t243  | 7394     | 1/03/2017 |       |          |           |
| t196  | 5963     | 1/04/2013 | t244  | 7424     | 1/04/2017 |       |          |           |
| t197  | 5994     | 1/05/2013 | t245  | 7455     | 1/05/2017 |       |          |           |
| t198  | 6024     | 1/06/2013 | t246  | 7485     | 1/06/2017 |       |          |           |
| t199  | 6055     | 1/07/2013 | t247  | 7516     | 1/07/2017 |       |          |           |
| t200  | 6086     | 1/08/2013 | t248  | 7547     | 1/08/2017 |       |          |           |
| t201  | 6116     | 1/09/2013 | t249  | 7577     | 1/09/2017 |       |          |           |
| t202  | 6147     | 1/10/2013 | t250  | 7608     | 1/10/2017 |       |          |           |
| t203  | 6177     | 1/11/2013 | t251  | 7638     | 1/11/2017 |       |          |           |
| t204  | 6208     | 1/12/2013 | t252  | 7669     | 1/12/2017 |       |          |           |
| t205  | 6239     | 1/01/2014 | t253  | 7700     | 1/01/2018 |       |          |           |
| t206  | 6268     | 1/02/2014 | t254  | 7728     | 1/02/2018 |       |          |           |
| t207  | 6299     | 1/03/2014 | t255  | 7759     | 1/03/2018 |       |          |           |
| t208  | 6329     | 1/04/2014 | t256  | 7789     | 1/04/2018 |       |          |           |
| t209  | 6360     | 1/05/2014 | t257  | 7820     | 1/05/2018 |       |          |           |
| t210  | 6390     | 1/06/2014 | t258  | 7850     | 1/06/2018 |       |          |           |
| t204  | 6208     | 1/12/2013 | t259  | 7881     | 1/07/2018 |       |          |           |
| t204  | 6239     | 1/01/2014 | t260  | 7912     | 1/08/2018 |       |          |           |
| t205  | 6268     | 1/02/2014 | t261  | 7942     | 1/09/2018 |       |          |           |
| t200  | 6299     | 1/03/2014 | t262  | 7973     | 1/10/2018 |       |          |           |

# Appendix C Rainfall recharge


| Time steps | Days     | Rainfall recharge (mm/yr) |
|------------|----------|---------------------------|
|            |          |                           |
| t3         | 9.00E+01 | 494.48                    |
| t6         | 1.81E+02 | 428.12                    |
| t9         | 2.73E+02 | 456.12                    |
| t12        | 3.65E+02 | 132.16                    |
| t15        | 4.55E+02 | 266.28                    |
| t18        | 5.46E+02 | 842.24                    |
| t21        | 6.38E+02 | 512.68                    |
| t24        | 7.30E+02 | 563.08                    |
| t27        | 8.20E+02 | 519.12                    |
| t30        | 9.11E+02 | 800.52                    |
| t33        | 1.00E+03 | 415.52                    |
| t36        | 1.10E+03 | 422.8                     |
| t39        | 1.19E+03 | 638.4                     |
| t42        | 1.28E+03 | 357.56                    |
| t45        | 1.37E+03 | 190.96                    |
| t48        | 1.46E+03 | 206.92                    |
| t51        | 1.55E+03 | 461.44                    |
| t54        | 1.64E+03 | 740.04                    |
| t57        | 1.73E+03 | 237.16                    |
| t60        | 1.83E+03 | 279.16                    |
| t63        | 1.92E+03 | 579.04                    |
| t66        | 2.01E+03 | 391.72                    |
| t69        | 2.10E+03 | 200.2                     |
| t72        | 2.19E+03 | 304.08                    |
| t75        | 2.28E+03 | 199.08                    |
| t78        | 2.37E+03 | 526.96                    |
| t81        | 2.46E+03 | 203                       |
| t84        | 2.56E+03 | 327.88                    |
| t87        | 2.65E+03 | 574.28                    |
| t90        | 2.74E+03 | 143.92                    |
| t93        | 2.83E+03 | 382.76                    |
| t96        | 2.92E+03 | 461.16                    |
| t99        | 3.01E+03 | 605.08                    |
| t102       | 3.10E+03 | 483.56                    |
| t105       | 3.20E+03 | 94.08                     |
| t108       | 3.29E+03 | 213.08                    |
| t111       | 3.38E+03 | 306.6                     |
| t114       | 3.47E+03 | 306.6<br>384.72           |
| t114       |          |                           |
|            | 3.56E+03 | 509.88                    |
| t120       | 3.65E+03 | 291.48                    |
| t123       | 3.74E+03 | 296.24                    |

| Time steps | Days                 | Rainfall recharge (mm/yr) |
|------------|----------------------|---------------------------|
| t126       | 3.83E+03             | 990.08                    |
| t129       | 3.93E+03             | 240.24                    |
| t132       | 4.02E+03             | 334.04                    |
| t135       | 4.02E+03<br>4.11E+03 | 655.2                     |
| t138       |                      | 609                       |
| t141       | 4.20E+03<br>4.29E+03 | 428.4                     |
| t144       | 4.29E+03<br>4.38E+03 | 356.44                    |
|            |                      |                           |
| t147       | 4.47E+03             | 419.44                    |
| t150       | 4.56E+03             | 646.52                    |
| t153       | 4.66E+03             | 99.96                     |
| t156       | 4.75E+03             | 255.08                    |
| t159       | 4.84E+03             | 338.8                     |
| t162       | 4.93E+03             | 393.96                    |
| t165       | 5.02E+03             | 262.08                    |
| t168       | 5.11E+03             | 343.84                    |
| t171       | 5.20E+03             | 188.44                    |
| t174       | 5.29E+03             | 721.28                    |
| t177       | 5.39E+03             | 410.76                    |
| t180       | 5.48E+03             | 436.52                    |
| t183       | 5.57E+03             | 448.56                    |
| t186       | 5.66E+03             | 512.12                    |
| t189       | 5.75E+03             | 240.52                    |
| t192       | 5.84E+03             | 183.12                    |
| t195       | 5.93E+03             | 803.04                    |
| t198       | 6.02E+03             | 448.84                    |
| t201       | 6.12E+03             | 139.16                    |
| t204       | 6.21E+03             | 428.68                    |
| t207       | 6.30E+03             | 240.8                     |
| t210       | 6.39E+03             | 356.16                    |
| t213       | 6.48E+03             | 329.56                    |
| t216       | 6.57E+03             | 288.68                    |
| t219       | 6.66E+03             | 332.64                    |
| t222       | 6.76E+03             | 866.88                    |
| t225       | 6.85E+03             | 309.68                    |
| t228       | 6.94E+03             | 340.48                    |
| 1231       | 7.03E+03             | 693.84                    |
| 1234       | 7.12E+03             | 446.46                    |
| 1237       | 7.21E+03             | 221.48                    |
| 1240       | 7.30E+03             | 244.16                    |
| 1243       | 7.39E+03             | 495.04                    |
| 1246       | 7.49E+03             | 513.52                    |
| 1240       | 7.58E+03             | 100.8                     |
| t252       | 7.67E+03             | 273.56                    |
|            | 1.01LT03             | 210.00                    |


| Time steps | Days     | Rainfall recharge (mm/yr) |
|------------|----------|---------------------------|
| t255       | 7.76E+03 | 411.04                    |
| t258       | 7.85E+03 | 498.68                    |
| t261       | 7.94E+03 | 181.72                    |
| t264       | 8.03E+03 | 372.96                    |
| t267       | 8.12E+03 | 271.6                     |
| t270       | 8.22E+03 | 336.56                    |
| t273       | 8.31E+03 | 276.36                    |
| t276       | 8.40E+03 | 136.64                    |




Appendix D Groundwater hydrographs



SP4





