

DPHI reference: SSD-78247462 (PAE-78264716)

11 December 2024

Department of Planning, Housing and Infrastructure Locked Bag 5022 PARRAMATTA NSW 2124

Attention: Samantha Oyston

SSD-78247462, Canyonleigh Battery Energy Storage System (BESS): 962 Canyonleigh Road, Brayton; Request for Secretary's Environmental Assessment Requirements (SEARS)

Thank you for referring the abovementioned request for SEARs to Transport for NSW (TfNSW) seeking comments in relation to Canyonleigh Battery Energy Storage System located within the Goulburn Mulwaree Local Government Area (LGA).

TfNSW has reviewed the Scoping Study prepared for Canyonleigh BESS by ERM Australia dated 25 November 2024 and provides advice in Attachment A and Attachment B to assist in the preparation of the Environmental Impact Statement (EIS) and supporting documentation for the future lodgement of the application with the Department of Planning, Housing and Infrastructure.

TfNSW recommends a meeting to discuss the SEARs requirements before proceeding to EIS. If you have any questions or wish to discuss this matter further, please contact Kumar Kuruppu, Senior Transport Planner on 1300 019 680 or email development.renewables@transport.nsw.gov.au

Yours faithfully,

Alexandra Power

Team Leader Development Services- Renewables Transport Planning Planning, Integration and Passenger

1 of 5

Attachment A

SSD-78247462, Canyonleigh Battery Energy Storage System (BESS): 962 Canyonleigh Road, Brayton; Request for Secretary's Environmental Assessment Requirements (SEARS)

Context

- Canyonleigh BESS proposed to have a capacity of up to 300 megawatts (MW) / 1200 megawatt-hours (MWh).
- The site is located at Lot12/DP727493 Goulburn Mulwaree LGA.
- Existing substation is located on Lot 2341 DP 622834, and electrical reticulation network connection will likely be via Crown land to the west of the project area.
- Ancillary infrastructure will include carpark, storage area, site fencing, lighting, temporary construction site office and amenities.
- Access to the site is proposed from Canyonleigh Road, via Brayton Road / Hume Highway.
 Internal roads are to be used for access within the site. (Brayton Road East of George Street and Hume Highway are classified State Roads)
- The affected state classified road include (but not limited to) the Hume Highway and Brayton Road East of George Street at Marulan.
- Scoping report indicates that the construction work proposed to be commenced in 2026 with 75 to 115 full time equivalent (FTE) workers, and operation commences in 2027 with 5 FTE.
- During construction, materials will be transported to the site from either the Port Kembla or Port Botany. The transport route and delivery ports will be confirmed through the EIS.

TfNSW advice for SEARs

The Environmental Impact Statement to be submitted as part of the environmental planning process will need to include the following:

Following review of the *Scoping Report*, TfNSW have identified and recommends the following issues be addressed in the Environmental Assessment:

A Traffic Impact Assessment (TIA) prepared in accordance with the methodology set out in *Guide to Transport Impact Assessment (GTIA) 2024* and part 12 Austroads Guide to Traffic Management including:

- 1. Hours, days and periods of construction.
- 2. Schedule for phasing/staging of the project (including pre-construction, accommodation and ancillary infrastructure works) and identifying the traffic volumes for each stage.
- 3. Traffic volumes:
 - a. Surveyed existing background traffic at key intersections per Part 3 Austroads Guide to Traffic Management with survey raw data included.
 - b. Project-related traffic volumes (measured as vehicle trips per an hour and per a day) for each stage including pre-construction, construction, operation, and decommissioning and identifying peak period(s) for traffic volumes.

OFFICIAL

- 4. Traffic volumes are to include a description of:
 - a. Ratio of light vehicles to heavy vehicles.
 - b. Differentiation of Over Size/Over Mass (OSOM) that do or do not require an NHVR permit and proposed times of operation on the State road network.
 - c. Project related traffic interaction with existing and projected background traffic with annual growth rate applied linearly.
 - d. Peak times for existing traffic and project related traffic.
 - e. Transportation hours.
- 5. The origin, destination and routes for:
 - a. Employee and contractor light traffic.
 - b. Heavy vehicle traffic.
 - c. OSOM vehicle traffic.
 - d. OSOM high risk loads.
 - e. A description of all non-high risk OSOM vehicles and materials to be transported. The shortest and least trafficked route is to be given priority for movement of materials and machinery to minimise risk and impact to other motorists, so far as is reasonably practicable.
 - f. The impact of generated traffic and measures employed to ensure efficiency and safety on the public road network during construction, operation and decommissioning of the project. This includes enforcement to managing traffic volumes, driver behaviour and access paths to site.
 - g. A turn warrant assessment for the worst-case scenario (ie peak project traffic volumes applied to peak background traffic) in accordance with Part 6 Austroads Guide to Traffic Management is to be undertaken at identified key intersections on project routes, project site access and site access points to access ancillary infrastructure.
 - h. TIA is to detail improvements to the road network, such as road widening and intersection treatments, to cater for and to mitigate the impact of project-related traffic (including accommodation and ancillary infrastructure components) at key intersections with State roads. Proposed road facilities, access and intersection treatments are to be identified and conform with Austroads Guide to Road Design and TfNSW Supplements, including safe intersection sight distance. Strategic designs are to include swept path analysis for largest vehicle passing through the intersection(s). To assist the proponent in preparing strategic designs, the below link is provided: Strategic-Design-requirements-for-DA-Factsheet.pdf (nsw.gov.au)
 - Note: Swept paths for OSOM vehicles on, entering and existing the State road network are to be on sealed road pavement.
 - Note: It is the proponent's responsibility to acquire and dedicate land required to accommodate road infrastructure including, but not limited to, footways, structures, stormwater drainage, batters, maintenance access and utilities.
 - i. Details of traffic routes for operation, construction, and decommissioning on/through the nearby level crossings, under bridges, and overbridges on Country Regional Network (CRN) rail corridors managed by UGLRL.
- 6. Traffic safety assessment:
 - a. Local climate conditions that may affect road safety for vehicles used during construction,

OFFICIAL

transport.nsw.gov.au 3 of 5

operation and decommissioning of the project (eg fog, wet weather, etc).

- b. A review of crash data along the identified transport route/s for the most recent 5-year reporting period and an assessment of road safety along the proposed transport route(s).
- c. Measures to be employed to ensure a high level of road safety for daily staff commutes between accommodation and construction site(s), specifically addressing impacts of unsafe driver behaviour and driver fatigue for all project stages and how measures employed will be enforced.
- 7. Details of emergency access/egress, including details of:
 - a. The location of the emergency access(es).
 - b. How the access will be managed (e.g., gates) to prevent non-emergency-related vehicle movements from using it.
 - c. Sufficient storage at the throat of the access to allow emergency vehicle(s) to store within the access and not within the through lane or road shoulder.

Electricity transmission lines (where applicable)

- 8. In relation to the EIS, TfNSW requires the identification of ancillary infrastructure, such as Electricity Transmission Lines that are crossing or near the state-classified road network or rail infrastructure within TfNSW remit. With respect to this matter the following information is required:
 - a. The heights or depths (under boring) and the vertical and horizontal clearances (overhead) in accordance with Austroads.
 - b. The method for construction of the transmission lines.
 - c. location of infrastructure and impacts (excavation or fill) relative to the road reserve, including demarcation of local and state-classified road reserves.
 - d. Access required to construct and maintain the infrastructure. Access points or access tracks required for ETLs or other infrastructure will require the same level of assessment as the primary project access point.
 - e. Strategic concept designs must be provided for each transmission line crossing the stateclassified road network.

Workforce Accommodation Camp (where applicable)

9. If workforce accommodation is proposed, then the TIA is required to assess the pre-construction, construction schedule, staging, parallel construction activities and traffic generation until the workforce is fully accommodated at the camp. The traffic assessment requirements identified in this letter will apply to the workforce accommodation.

Attachment B

Concept Level Route Analysis required for High Risk OSOM

- 1. The route assessment is required for <u>high risk OSOM</u> (as defined on <u>TfNSW website</u>) delivering components to the project. The concept level route analysis must include:
 - a. Port or point of origin for the entire route to the site access and intersections required to facilitate high risk OSOM movements required for the project.
 - b. Overall combination type, configuration, load and vehicle configuration.
 - c. The laden dimensions and weight of the vehicle configuration and loads.
 - d. The TIA is required to include details of all high risk OSOM loads and vehicle configurations for the project.
 - e. The location of pull-over bays / rest areas along high risk OSOM routes (including GPS coordinates) and demonstrate through swept paths that high risk OSOMs can be physically accommodated for the project (in terms of size, width and accessibility).
 - f. Bridge Assessments for any at risk bridges on classified roads due to dimensions and weight of OSOM vehicles.
 - g. The design vehicle templates used in the swept path analysis software are also requested in order for TfNSW to review the performance within the software (e.g. Autodesk Vehicle Tracking or Transoft AutoTURN).
 - h. Highlighting each at-risk road structures that the haulage route crosses including bridges, traffic signals, signage, major culverts, and minor culverts that may not meet the desirable cover to cater for proposed axle loads.
 - i. Traffic mitigation measures or road works, modifications, or road upgrades to facilitate the movement of the high risk OSOM(s) associated with the project.
 - j. Potential high level mitigation measures or commitments to mitigate known traffic, safety and impacts to road users along the high risk OSOM route (i.e school bus routes, mining shift changes, TSRs, harvest periods and events).
 - k. Identify and assess implications of any road and rail projects under construction during the indicative schedule for project related OSOM movements.
 - Note: NHVR permits do not cover road works or upgrades and environmental approvals required along any proposed OSOM route. Any road works or upgrades works required along the OSOM route must be included within the scope of works in the SSD to ensure the development is constructable.
 - Note: Given high number of renewable energy and other large scale projects requiring road haulage of OSOM components, restrictions, and limitations on OSOM movements may be in imposed. In this regard, it is recommended you engage earlier with TfNSW's Development Services Renewables team to discuss requirements of the route assessment.