Appendix N

Greenhouse Gas Assessment (AECOM Australia Pty Ltd, 2010c)

Myuna Colliery Extension of Mining

Greenhouse Gas Assessment

Greenhouse Gas Assessment

Myuna Colliery Extension of Mining

Prepared for

Centennial Myuna Pty Ltd

Prepared by

AECOM Australia Pty Ltd 17 Warabrook Boulevard Warabrook NSW 2304, T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925

21 October 2010

60153227

Quality Information

Document	Greenhouse Gas Assessment
Ref	60153227 FINAL GHG Assessment_211010
Date	21 October 2010
Prepared by	Holly Marlin Author Signature
Reviewed by	David Rollings Technical Peer Reviewer Signature

Distribution

Copies	Recipient	Copies	Recipient
1	Maryanne Crawford Group Environment Manager Centennial Coal Via Email	1	AECOM File Copy

Contents

1.0	Introdu	ction		1			
	1.1	Scope c	of Works	1			
2.0	Project	Description	1	3			
	2.1	2.1 Mining Area					
	2.2	Mining N	Methods	3			
	2.3	ROM Co	oal Production Limits	3			
	2.4	Coal Tra	ansport				
	2.5	Coal Ha	Indling				
	2.6	Mine Ac	cess and Surface Facilities	3			
3.0	Greenh	nouse Gase	s	5			
	3.1	Global V	Narming Potential	5			
	3.2	Nationa	Response to Climate Change	5			
		3.2.1	Kyoto Protocol	5			
		3.2.2	National Greenhouse Gas Inventory	7			
		3.2.3	Greenhouse Gas Reporting	8			
4.0	Emissi	ons Estimat	es	9			
	4.1	Methodology					
	4.2	Emission Estimates					
		4.2.1	Combustion of Liquid Fuel (Scope 1)	9			
		4.2.2	Fugitive Emissions from the use of Liquefied Petroleum Gas (LPG) (Scope 1)	11			
		4.2.3	Fugitive Emissions from Sulphur Hexafluoride (Scope 1)	11			
		4.2.4	Emissions from Energy Consumed by other than Combustion (Oils and Greases) (Scope 1)	11			
		4.2.5	Fugitive Emissions from the Extraction of Coal	12			
		4.2.6	Fugitive Emissions from Post-Mining Activities (Stockpiled Coal)	13			
		4.2.7	Emissions from Electricity Use (Scopes 2 and 3)	14			
		4.2.8	External Emissions (Scope 3)				
	4.3	Emissio	ns Summary	15			
	4.4	Emissio	n Reduction Opportunities				
5.0	Conclu	sion		17			

List of Tables

Table 1: Greenhouse Warming Potentials - Select Greenhouse Gases	j
Table 2: Australian National Greenhouse Gas Emissions, 20087	,
Table 3: Emission Factors – Diesel Oil Combustion (Transport) 9	,
Table 4: Historical and Predicted Diesel Use10)
Table 5: Scope 1 Emissions – Existing Fuel Combustion (Transport))
Table 6: Scope 1 Emissions – Proposed Fuel Combustion (Transport) 10)
Table 7: Scope 1 Emissions - LPG	
Table 8: Scope 1 Emissions – SF611	
Table 9: Scope 1 Emissions – Oil/Grease (2008/09 - Existing)11	
Table 10: Scope 1 Emissions – Oil/Grease (Proposed) 12	2
Table 11: Gas contribution current operating pattern (1 production unit in each of 3 seams)	2
Table 12: Scope 1 Fugitive Emissions from Coal Extraction (2008/09 – Existing)	;
Table 13: Proposed Scope 1 Fugitive Emissions from Coal Extraction (4 production units in Fassifern seam) 13	;
Table 15: GHG Emissions from Electricity Use	۲
Table 16: Emission Factors - Combustion of Coal 15	;
Table 17: External Emissions - Combustion of Myuna Colliery Coal	;
Table 18: Annual Greenhouse Gas Emissions Summary15	,

1.0 Introduction

AECOM was commissioned by Centennial Myuna Pty Ltd (CMPL) to prepare an Environmental Assessment (EA) for the Myuna Colliery Extension of Mining (proposed Project) located near Lake Macquarie, approximately 90 km north-east of Sydney. This study was undertaken as part of an Environmental Assessment to support an application for Project Approval under Part 3A of the Environmental Planning & Assessment Act 1979.

The Project will extend mining and coal handling at Myuna Colliery within the Project Application Area and proposes to:

- mine using bord and pillar methods in the Wallarah, Great Northern and Fassifern seams in CCL762 and ML1370, for a further 21 years;
- produce, handle and distribute to Eraring Power Station, up to 2 Mtpa using existing infrastructure;
- continue the use of ancillary infrastructure and services for a further 21 years;
- upgrade the water management system; and
- rehabilitate the surface facilities within 5 years of completion of mining.

Myuna Colliery's Surface Facilities Area is located in Wangi Wangi on the western side of Lake Macquarie, 25 km south-west of Newcastle. The Myuna Colliery Surface Facilities Area is surrounded by vegetated ridgelines and is adjacent to the now disused Wangi Power Station. All existing infrastructure within the Surface Facilities Area of Myuna Colliery will be utilised to service the proposed Project, with some minor modification. Myuna Colliery will continue to use the Eraring Energy owned Enclosed Overland Conveyor to transport coal to Eraring Power Station.

CMPL undertakes underground mining at Myuna Colliery:

- Within the Development Consent Mining Area; and
- Within Consolidated Coal Lease (CCL) 762 and Mining Lease (ML) 1370 but external to the Development Consent Mining Area, pursuant to the combined operation of Section 74(1) of the Mining Act 1992 (Mining Act) and clause 8K of the Environmental Planning and Assessment Regulation 2000.

The Project Application Area encompasses ML 1370, a portion of CCL 762 and the Surface Facilities Area. The Project Application Area comprises an area within the boundaries of CCL 762 and ML 1370, but external to the Development Consent Mining Area (with the exception of the inclusion of the Surface Facilities Area).

AECOM was commissioned to undertake an assessment of greenhouse gas (GHG) emissions from the proposed Project for inclusion in the EA.

1.1 Scope of Works

The purpose of this assessment was to estimate the change in annual GHG emissions associated with the proposed Project. A quantitative assessment of the potential scope 1, 2 and 3 GHG emissions from the project were made in relation to the following sources:

- Emissions from combustion of fuel by on-site vehicles used to transport men and materials associated with operations and to handle and manage the mine's small ROM coal stockpile (Scope 1);
- Emissions from the use of Liquefied Petroleum Gas (LPG), sulphur hexafluoride (SF6), and oils and greases (Scope 1);
- Fugitive emissions from the extraction of coal (Scope 1);
- Fugitive emissions from post mining activities (stockpiled coal) (Scope 1);
- Electricity use (Scope 2 and 3);
- Indirect emissions from the combustion of the coal produced at Myuna Colliery by Eraring Power Station (Scope 3).

Scope 1 and Scope 2 emissions were estimated using data provided by CMPL and emission factors and methods specified in the National Greenhouse and Energy Reporting System (NGERS) (to which CMPL is a mandatory respondent). Indirect emissions (Scope 3) associated with the operation of the facility, namely those associated with use of the product coal by Eraring Power Station, were estimated using National Greenhouse Account (NGA) Factors (DCC; June, 2009), as NGERS has no Scope 3 requirement.

Emissions were assessed for two scenarios:

- Existing production (2008/09 data); and
- Proposed maximum production (2.0 Mtpa).

Results were compared to historical Australian emission levels.

2.0 **Project Description**

The Project will extend mining at Myuna Colliery within the Project Application Area, comprising an area external to the Development Consent Mining Area (with the exception of the inclusion of the Surface Facilities Area) but within the boundaries of CCL 762 and ML 1370.

The Project's mining operations will continue to be carried out using bord and pillar methods in the Wallarah, Great Northern and Fassifern coal seams, generally consistent with the manner in which CMPL undertakes current mining operations at Myuna Colliery. Further, all existing infrastructure and services at the Surface Facilities Area will be utilised to service the Project.

2.1 Mining Area

The Project Application Area encompasses the three coal seams (Wallarah, Great Northern and Fassifern) previously mined at Myuna Colliery and, as such, includes some existing workings and areas requiring new workings to be developed. Access to new areas will be from the existing workings.

2.2 Mining Methods

The Project's mining operations will continue to be carried out using bord and pillar methods in the Wallarah, Great Northern and Fassifern coal seams, generally consistent with the manner in which CMPL undertakes current mining operations at Myuna Colliery. The mining layout to be implemented within the three seams in any given area of the Project Application Area will be determined during detailed mine planning and development of a geotechnically -engineered mine design. The mine design will address the various mine constraints, including (at least) the High Water Level Subsidence Control Zone; the 40 metres of solid rock head and the coal pillar factor of safety. For areas where secondary extraction is proposed to be undertaken, CMPL will seek approval from Industry and Investment NSW.

2.3 ROM Coal Production Limits

Myuna Colliery is currently authorised to produce up to 1.3 Mtpa within the Development Consent Mining Area. The Project seeks approval for ROM Coal production up to 2.0 Mtpa, which is within the operational capacities of the existing approved CHP.

2.4 Coal Transport

No changes are proposed to the current coal transport methods. Coal produced by Myuna Colliery will continue to be supplied directly to Eraring Power Station by the Eraring Energy owned Enclosed Overland Conveyor. The small ROM coal stockpile area will continue to be used when Eraring Energy is unable to accept deliveries due to scheduled maintenance or conveyor breakdown. During these outages, a front-end loader recovers coal from the stockpile and loads it onto trucks that dump the coal into a reclaim hopper for transportation to Eraring Power Station by the Enclosed Overland Conveyor as required.

2.5 Coal Handling

No changes are proposed to the current coal handling, preparation, or stockpiling procedures of the existing operations. A negligible amount of waste rock from the CHP will continue to be transported on the Surface Facilities Area and stored back underground.

2.6 Mine Access and Surface Facilities

Existing mining areas (including existing underground workings for ventilation) will continue to be utilised for the Project including (but not limited to) mine access, emergency management and underground services and infrastructure. As such, no changes are proposed to the current mine access, infrastructure or facilities. Minor changes to the licensed discharge point configuration and temporary coal stockpile area (involving minor water management works) will be required to improve water management at the Surface Facilities Area. Vehicles operated on site use diesel fuel, while the coal handling plant, conveyor and other plant are electrically powered.

"This page has been left blank intentionally"

3.0 Greenhouse Gases

GHGs are gases found in the atmosphere that absorb outgoing heat that is reflected from the sun. The absorption of the heat energy warms the air, enabling life to survive, and is known as the Greenhouse Effect. The primary greenhouse gas is carbon dioxide (CO_2) .

Human activities, such as the combustion of carbon-based fuels, increase the amount of GHGs in the atmosphere. This leads to greater absorption of heat and increases in atmospheric temperature, known as the Enhanced Greenhouse Effect.

The NSW Government has committed to a long term GHG reduction target of 60% reduction in GHG emissions by 2050 and a return to year 2000 GHG emission levels in NSW by 2025. There are, however, no legislative limits for emissions of CO_2 , methane (CH₄) or nitrous oxide (N₂O).

Due to the complex interdependencies of environmental and atmospheric systems, quantification of the likely environmental effects associated with a particular amount of GHG release into the atmosphere cannot be made. In general terms, increasing GHG levels in the atmosphere result in increased average global temperatures. These temperature increases can result in changes in ocean levels (due to melting of glaciers and polar ice caps) and water temperatures and greater humidity. Changes in weather patterns are also associated with increased atmospheric temperatures, resulting in effects such as increased droughts in some areas and increased flooding in others.

3.1 Global Warming Potential

Different GHGs have different heat absorbing capacities. In order to achieve a basic unit of measurement, each GHG is compared to the absorptive capacity of CO_2 , and measurements and estimates of GHG levels are reported in terms of CO_2 equivalent emissions (CO_2 -e). Global warming potentials (GWPs) are used to compare the abilities of GHGs to trap heat in the atmosphere. A GWP is based on the radiative efficiency of a gas (i.e. its heat-absorbing ability), relative to that of CO_2 , and its decay rate (i.e. atmospheric lifetime), also relative to CO_2 . The GWP provides a means to convert emissions of GHGs into CO_2 -e units. The global warming potentials of the primary greenhouse gases are shown in **Table 1**.

Greenhouse Gas	Global Warming Potential*				
Carbon dioxide (CO ₂)	1				
Methane (CH ₄)	21				
Nitrous oxide (N ₂ O)	310				
Sulphur hexafluoride (SF ₆)	23,900				
*GWP factors specified for calculating emissions under Kyoto accounting provisions					
Source: NGA Factors, June 2009					

Table 1: Greenhouse Warming Potentials - Select Greenhouse Gases

3.2 National Response to Climate Change

3.2.1 Kyoto Protocol

The Kyoto Protocol is an international agreement created under the United Nations Framework Convention on Climate Change in Kyoto, Japan in 1997. The Kyoto Protocol aims to reduce the collective GHG emissions of developed countries by at least 5 % below 1990 levels during the period 2008 to 2012, which is known as the first commitment period.

Australia ratified the Kyoto Protocol in December, 2007, with the action taking effect in March 2008. Australia has committed to ensuring its GHG emissions over 2008 to 2012 are no more than 8 per cent above 1990 levels.

3.2.2 National Greenhouse Gas Inventory

Australia's National Greenhouse Gas Inventories are designed to provide estimates of Australia's net GHG emissions and track Australia's progress towards its Kyoto target. Australia has updated and published annual national GHG inventories for each year from 1990 to 2008 inclusive. The inventories are prepared according to international guidelines. Details of the most recent inventory (2008) are shown in **Table 2**.

Table 2: Australian National Greenhouse Gas Emissions, 2008

Sector	Mt CO ₂ -e			
Agriculture, forestry, fishing	120.1			
Mining	57.8			
Coal Mining	32.1			
Manufacturing	72.7			
Electricity, gas, water	210.8			
Construction	1.8			
Commercial services	17.6			
Transport & storage	41.0			
Residential	54.3			
Total of all economic (ANZSIC) sectors	576.2			
Source: Australian Greenhouse Emissions Information System, Department of Climate Change and Energy Efficiency. (Wed Jun 30 09:44:41 2010)				

In 2008, Australia's net GHG emissions were 576.2 Mt CO_2 -e. Of the total Australian emissions, 32.1 Mt CO_2 -e (5.5 %) were emitted by the coal mining industry. The change in emissions from coal mining in Australia between 1990 and 2008 are shown in **Figure 1**. Emission levels steadily increased between 2002 and 2007.

Source: http://ageis.climatechange.gov.au/ANZSIC.aspx; accessed 30 June 2010

3.2.3 Greenhouse Gas Reporting

The National Greenhouse and Energy Reporting Act 2007 (the NGER Act) was passed in September 2007. The NGER Act establishes a mandatory reporting system for corporate GHG emissions and energy production and consumption in Australia. The first reporting period under the Act commenced on 1 July 2008.

The NGER Act requires controlling corporations to register and report if they emit GHGs, produce energy, or consume energy at or above specified quantities per financial year (1 July to 30 June). The reporting timeline is shown in **Figure 2**. Corporations emitting the greatest amount of GHG or consuming the most energy were initially targeted for the first phase, while corporations with lower emission and energy consumption levels are now being incorporated. The final threshold is 50 kilotonnes of CO_2 equivalent or 200 terajoules of energy.

Figure 2: NGER Reporting Timeline

Corporations, such as CMPL, that meet the NGER thresholds must report on:

- GHG emissions;
- Energy production; and
- Energy consumption.

The NGER (Measurement) Determination 2008 outlines calculation methods and criteria for GHG emissions, energy production and consumption. The Determination provides for four methods of calculation:

- Method 1 (default method) is derived from the National Greenhouse Accounts methods, and is based on national average estimates;
- Method 2 is a facility-specific method that uses industry practices for sampling and Australian or equivalent standards for analysis;
- Method 3, which is the same as Method 2 but is based on Australian or equivalent standards for both sampling and analysis; and
- Method 4, which relates to direct measurement of emissions by continuous or periodic emissions monitoring.

4.0 Emissions Estimates

4.1 Methodology

Estimation of the GHG emissions associated with the existing approved operations and proposed Project was undertaken using the emission factors and methods outlined in the National Greenhouse and Energy Reporting (Measurement) Determination 2008 and complementary to the National Greenhouse Accounts (NGA) Factors (June, 2009). The NGA Factors provide three types of assessment categories:

- **Scope 1**, which covers direct emissions from sources within the boundary of an organisation, such as fuel combustion and manufacturing processes;
- **Scope 2**, which covers indirect emissions from the consumption of purchased electricity, steam or heat produced by another organisation; and
- **Scope 3**, which includes all other indirect emissions that are a consequence of an organisation's activities but are not from sources owned or controlled by the organisation; that is, emissions associated with the production of fuels and emissions from the generation of purchased electricity (external emissions).

Annual emissions from the following sources were assessed, based on information provided by CMPL:

- Emissions from combustion of fuel by on-site vehicles used to transport staff and materials associated with operations and to handle and manage the mine's small ROM coal stockpile (Scope 1);
- Emissions from the use of Liquefied Petroleum Gas (LPG), sulphur hexafluoride (SF₆), and oils and greases (Scope 1);
- Fugitive emissions from the extraction of coal (Scope 1);
- Fugitive emissions from post mining activities (stockpiled coal) (Scope 1);
- Electricity use (Scope 2 and 3);
- Indirect emissions from the combustion of the coal produced at Myuna Colliery by Eraring Power Station (Scope 3).

CMPL provided historical electricity and diesel use for the period 2006/07 – 2008/09 and expected electricity and diesel use for the Colliery operating at 2 Mtpa. The historical and predicted data were used in the calculations as described in the following sections.

CMPL monitors fugitive emissions associated with the extraction of coal at the ventilation shaft on a monthly basis as required by the NGER Act 2007. The mine operates in the Fassifern, Great Northern and Wallarah seams, and the monitoring data indicates that the gas concentration in the ventilation flow is related to gassy Fassifern seam workings and is not associated with production levels. As such, the fugitive emissions measured between July 2008 and June 2009 were taken to be indicative of both existing and potential future emissions associated with coal production (refer to **Section 4.2.5**).

4.2 Emission Estimates

4.2.1 Combustion of Liquid Fuel (Scope 1)

Fuel Combustion

The combustion of diesel fuel in vehicles is a source of GHGs. For this assessment, diesel-powered mobile vehicles used on site were included in the assessment. Emission factors for transport-related emissions are shown in **Table 3**.

Transport equipment type	Energy content factor	Emission Factor (kg CO ₂ -e/GJ)				
	(GJ/kL)	CO2	CH₄	N ₂ O		
General transport	38.6	69.2	0.2	0.5		
Source: Schedule 1 Part 4 Item 54, NGERS Measurement Determination 2008						

Table 3: Emission Factors – Diesel Oil Combustion (Transport)

Diesel usage at Myuna Colliery is related to the coal production levels, the requirement to transport men in and out of the mine, and to the supply of support materials to the working faces. Historical and predicted diesel use and their associated production levels are shown in **Table 4**. CMPL has applied a key performance indicator (KPI) of 0.000247 kL/ t ROM for future fuel use based on historical production levels and diesel fuel use. This KPI was used to predict fuel use at the proposed maximum production level of 2 Mtpa as shown below.

Table 4: Historical and Predicted Diesel Use

Period	Year	Production (t ROM)	Diesel Use (L)
Historical	2006/07	1,078,020	233,862
	2007/08	1,169,093	272,550
	2008/09	1,132,974	271,579
Predicted	2009/10	1,154,141	286,822
	2011/12	1,592,000	393,000
	2012/13	1,850,000	457,000
	2013/14	1,850,000	457,000
Maximum Production Predicted		2,000,000	494,000

Emissions associated with the combustion of fuel on-site at Myuna Colliery are shown in **Table 5** (existing) and **Table 6** (proposed). Comparison of the data indicates an additional 600 tCO₂-e would be emitted under the proposed production rate of 2 Mtpa.

Table 5. Scone 1	Emissions -	Evicting E	Fuel Combustion	(Transport)
Table J. Scope T	LIIII3310113 -	LAISUNG	uel combustion	(mansport)

Activity Data	Amount (kL)	Energy Content Factor	Energy Content	Emission Factors	Gases	NGERS Method	Scope 1 Emissions (t CO ₂ -e)
Diesel oil	271.6	38.6	10,483.0	69.2	CO ₂	Method 1	725
				0.2	CH ₄		2.1
				0.5	NO ₂		5.2
Total						733	

Table 6: Scope 1 Emissions – Proposed Fuel Combustion (Transport)

Activity Data	Amount (kL)	Energy Content Factor	Energy Content	Emission Factors	Gases	NGERS Method	Scope 1 Emissions (t CO ₂ -e)
Diesel oil	494.0	38.6	19,068.4	69.2	CO ₂	Method 1	1,320
				0.2	CH₄		3.8
				0.5	NO ₂		9.5
Total						1,333	

4.2.2 Fugitive Emissions from the use of Liquefied Petroleum Gas (LPG) (Scope 1)

CPML uses a small quantity of LPG on site. This usage is not expected to change as a result of the proposed increase in production. GHG emissions associated with LPG use at the site are summarised in **Table 7**; these represent existing and predicted emissions.

Table 7: Sco	ope 1	Emissions	- L	PG
--------------	-------	-----------	-----	----

Activity Data	Amount (kL)	Energy Content Factor	Energy Content	Emission Factors	Gases	NGERS Method	Scope 1 Emissions (t CO ₂ -e)
LPG	0.63	25.3	15.939	51.2	CO ₂	Method 1	1
				0.1	CH ₄		0
				0.03	NO ₂		0
Total							1

4.2.3 Fugitive Emissions from Sulphur Hexafluoride (Scope 1)

The mine electrical distribution system uses switchgear insulated by sulphur hexafluoride (SF₆). The quantity of gas within switchgear at the mine is not expected to increase with the planned increase in production. GHG emissions associated with SF₆ use at the site are summarised in **Table 8**; these represent existing and predicted emissions.

Table 8: Scope 1 Emissions – SF6

Activity Data	Amount (t)	Emission Factor	NGERS Method	Scope 1 Emissions (t CO₂-e)
SF ₆	0.012	0.005	Method 1	0
Total	0			

4.2.4 Emissions from Energy Consumed by other than Combustion (Oils and Greases) (Scope 1)

In 2008/09, the mine consumed 360 kL of oils/ greases in the course of operating and maintaining production and ancillary plant and equipment. During this period, the mine had a total production level of 1.13 Mt. GHG emissions associated with this use of materials were equivalent to $390.5 \ 3 \ tCO_2$ -e as shown in **Table 9**.

Table 9: Scope 1 Emissions -	- Oil/Grease (2008	/09 - Existing)
------------------------------	--------------------	-----------------

Activity Data	Amount (kL)	Energy Content Factor	Emission Factors	Gases	NGERS Method	Scope 1 Emissions (t CO ₂ -e)
Petroleum based oils(other	354.852	38.6	27.9	CO ₂	Method 1	384.13
than petroleum based oil as fuel)			0	CH ₄		0
			0	NO ₂		0
Petroleum based greases	5.909	38.6	27.9	CO ₂	Method 1	6.4
			0	CH ₄		0
			0	NO ₂		0
Total	•					390.53

The use of oil/grease at the site is expected to increase proportionally with the proposed increase in production. Predicted emissions associated with the use of oil/grease at the proposed maximum production level of 2 Mtpa are shown in **Table 10**.

Table 10: Scope 1 Emissions - Oil/Grease (Proposed)

Activity Data	Amount (kL)	Energy Content Factor	Emission Factors	Gases	NGERS Method	Scope 1 Emissions (t CO ₂ -e)
Petroleum based oils(other than petroleum based oil as fuel)	626.408	38.6	27.9	CO ₂	Method 1	678.10
			0	CH ₄		0
			0	NO ₂		0
Petroleum based greases	10.431	38.6	27.9	CO ₂	Method 1	11.29
			0	CH ₄		0
			0	NO ₂		0
Total						689.39

4.2.5 Fugitive Emissions from the Extraction of Coal

Fugitive emissions associated with extraction of coal comprise Methane (CH₄) and Carbon Dioxide (CO₂) released at the coalface during production activities and also ongoing from the coal pillars left after mining

CMPL currently produces coal from 3 seams the Wallarah, Great Northern and Fassifern with each seam having different characteristics with respect to the gases contained and subsequently released. The potential for emissions from each seam is related to the seam characteristics, quantity and rate of production activity along with ventilation required for production areas and old mine workings.

With this in mind and considering the planned increase in production will in the near future see all production activity concentrated in the Fassifern seam as below:

- October 2010 1 production unit in Wallarah seam, 2 production units in Fassifern seam.
- November 2010 1 production unit in Wallarah seam, 3 production units in Fassifern seam -,
- May 2012 4 production units in Fassifern seam

And as can be seen from **Table 11** the Fassifern Seam has the greatest contribution to GHG emissions at the mine.

		CH ₄		CO ₂			
Seam	Ventilation Flow (M ³ /sec)	Gas %	Gas Flow (L/sec)	Gas %	Gas Flow (L/sec)		
Wallarah(1 pdx unit)	80	0.05	40	0.4	32		
Great Northern(1 pdx unit)	30	0.09	27	0.5	15		
Old Fassifern(no pdx)	45	0.1	45	0.2	9		
Fassifern(1 pdx unit)	130	0.55	715	0.3	39		
Total	285		827		95		
Gas make and balance as at August 2010; data provided by CMPL.							

Table 11: Gas contribution current operating pattern (1 production unit in each of 3 seams)

CMPL measures emissions of CH_4 and CO_2 from the Myuna ventilation shaft on a monthly basis using Method 4 as required by NGERS. Inspection of the data measured between July 2008 and June 2009, presented in **Table 12** are indicative of the current operation having 1 production unit operating in each of the 3 seams at the mine.

Table 12: Scope 1 Fugitive Emissions from Coal Extraction (2008/09 - Existing)

Activity Type	Amount	Unit	Gas	NGERS Method	Scope 1 Emissions* (t CO ₂ -e)		
Run of mine coal extracted from gassy	1,132,974	Tonnes	CO ₂	Method 4	9,212		
underground mine		of coal	CH ₄	Method 4	414,566		
Total					423,778		
*Estimated using measurements and methods as	*Estimated using measurements and methods as specified in NGERS: data for 2008/09 provided by CMPI						

Total estimated fugitive emissions (NGERS Method 4) from extraction of coal as measured at the mine ventilation shaft in the 2008/09 financial year were 423,778 t CO_2 -e¹. From May 2012 CMPL plan to have implemented operational changes to produce coal from 4 units in the Fassifern seam the resulting fugitive emissions from extraction of coal have been estimated using seam characteristics, historical gas make and balance data and presented in **Table 13**.

Table 13: Proposed Scope 1 Fugitive Emissions from Coal Extraction (4 production units in Fassifer	n seam)
--	---------

Activity Type	Amount	Unit	Gas	NGERS Method	Scope 1 Emissions* (t CO ₂ -e)
Run of mine coal extracted from gassy 2,000,000 Tor	Tonnes	CO ₂	Method 4	7,388	
underground mine		of coal	CH ₄	Method 4	569,213
Total					576,593
*Estimated as specified in NGERS methods using historical data and modelling; data provided by CMPL.					

Total estimated fugitive emissions (NGERS Method 4) for the proposed increased production from operations wholly within the Fassifern seam from extraction of coal amount to 576,593 t CO_2 -e². being an estimated increase of 152,815 t CO_2 -e³.

4.2.6 Fugitive Emissions from Post-Mining Activities (Stockpiled Coal)

Fugitive emissions from the stockpiled coal were estimated as shown in **Table 14**. In accordance with the method required by the NGERS (Measurement) Determination, default values for gassy coal mines were used in these calculations. All ROM coal was assumed to be product coal. Fugitive emissions from the coal mined at Myuna Colliery would equate to approximately $28,000 \text{ t } \text{CO}_2$ -e per year at the proposed production level of 2 Mtpa.

¹ Reported in Myuna Colliery NGERS Report, 2008/09

² Reported in Myuna Colliery NGERS Report, 2008/09

³ Reported in Myuna Colliery NGERS Report, 2008/09

Table 14: Fugitive Emissions - Coal

Scenario	Amount (t)	Emission Factor – methane (t CO ₂ -e/t raw coal)*	Fugitive emissions (t CO ₂ -e)			
Existing	1,132,974	0.014	15,862			
Proposed	2,000,000	0.014	28,000			
Difference	867,026,	-	12,138			
*NGERS Measurement Determination, Chapter 3, Part 3.2 section 3.17 – gassy underground coal mine.						
A gassy mine is defined Greenhouse and Energy	A gassy mine is defined as an underground mine that has at least 0.1 % methane in the mine's return ventilation [National Greenhouse and Energy Reporting (Measurement) Technical Guidelines 2009]					

Total fugitive emissions associated with the coal mining process would be 423,778 t CO₂-e (extraction of coal) plus 28,000 t CO₂-e (post mining stockpile) or 451,778 t CO₂-e in total. This represents an increase of approximately 12,138 t CO₂-e per year at the proposed 2 Mtpa production level.

4.2.7 Emissions from Electricity Use (Scopes 2 and 3)

Coal mining, coal haulage, coal clearance and coal handling plant and equipment at the site, including roof bolters, continuous miners, shuttle cars, conveyors and crushing and screening plant, are electrically-powered. Electricity consumption for 2008/09 was 26.33 MWh; of this, approximately 50% was used in the production process (i.e. is subject to increase under the proposed production rate increase), and the other 50% represented base load (ventilation, compressed air, office/bathhouse and workshop facilities), which is unlikely to change. CMPL estimated electricity consumption for 2011/12 to 2013/14 based on increasing the production-related electricity use in line with the expected production increases; the maximum estimated consumption rate of 37 MWh was used in this assessment as indicative of electricity use for the proposed 2 Mtpa production rate. Results are shown in **Table 15.** The proposed increase in production would result in an additional 0.01 Mt CO₂-e per year compared to existing levels.

	Emission Easter	GHG Emissions (t CO ₂ -e)				
Emissions Type	(kg CO ₂ -e/kWh)*	Existing	Proposed	Difference		
Scope 2	0.89*	23,433.2	32,955	9,521.8		
Scope 3	0.18**	4739.3	5,281.6	542.3		
Full Fuel Cycle (total)	1.07	28,172.5	38,236.6	10,064		
	*	•	•	•		

Table 15: GHG Emissions from Electricity Use

* NGERS (Measurement) Determination 2008, Schedule 1, Part 6, Item 77

** Table 39, NGA Factors, June 2009

4.2.8 External Emissions (Scope 3)

External emissions are those associated with the operations of a facility but are not under the control of the facility. The external emission sources investigated in this assessment were derived from the hypothetical combustion of the maximum permitted ROM coal produced by Myuna Colliery per annum. The emission factors for calculating emissions from the combustion of black coal are shown in **Table 16**.

Table 16: Emission Factors - Combustion of Coal

		Em (k	Emission Factor (kg CO ₂ -e/GJ)	
Fuel type	Energy content factor (GJ/t)	CO ₂	CH₄	N ₂ O
Black coal (other than that used to produce coke)	27	88.2	0.03	0.2
Source: Table 1 of NGA Factors, June 2009				

The above emission factors were used to calculate the emissions associated with the combustion of the coal produced by the Myuna Colliery; results are outlined in **Table 17**.

Table 17: External Emissions - Combustion of Myuna Colliery Coal

	Estimated GHG Emissions (t CO ₂ -e)		
Greenhouse Gas	Existing	Proposed	Difference
CO ₂	2,698,064	4,762,800	2,064,736
CH ₄	918	1,620	702
N ₂ O	6,118	10,800	4,682
Total	2,705,100	4,775,220	2,070,120

As shown, the proposed increase in coal production at the mine has the potential to lead to the release of an additional 2 Mt CO₂-e per year (external to the site).

4.3 Emissions Summary

Emissions estimates from all sources described above are summarised in Table 18.

Table 18: Annual Greenhouse Gas Emissions Summary

		Esti	mated Emissions	(t CO ₂ -e)
Scope	Activity	Existing	Proposed	Difference
1	On-site transport (diesel oil)	733	1,333	600
	LPG	1	1	0
	SF ₆	0	0	0
	Oil and grease	391	689	298
	Extraction of coal	423,778	576,593	152,815
	Stockpiled coal	15,862	28,000	12,138
2	Electricity use	23,433	32,955	9,521
	Total (mine operations only)	464,198	639,571	175,373
3	Electricity	4,739	5,282	542
	Combustion of mined coal	2,705,100	4,775,220	2,070,120
	Total	3,174,037	5,420,073	2,2464,036

The existing mine operations generated an estimated $0.46Mt CO_2$ -e for 2008/09. Emissions would increase to approximately 0.64 Mt CO₂-e at the proposed maximum production rate of 2.0 Mtpa. Fugitive emissions associated with the extraction of coal are the greatest source of emissions associated with on-site activities.

When indirect emissions, including Scope 3 electricity emissions and emissions associated with the combustion of the produced coal, are taken into account, the emissions increase to 3.2 Mtpa and 5.4 Mtpa respectively. As indicated, combustion of the coal generates the most GHG emissions of all activities related to the site's operations.

The total additional emissions associated with the proposed Project represent an approximate increase of 38 % over existing site emissions (i.e. excluding Scope 3 emissions), due to the gaseous nature of future mining within the Fassifern seam. At the proposed production level of 2 Mtpa, Myuna Colliery's on-site emissions represent approximately 2 % of mining emissions in Australia and 0.1 % of total Australian emissions (based on 2008 data from the Australian Greenhouse Emissions Information System, Department of Climate Change and Energy Efficiency, 2010). As such, the proposed increase in production would not substantially increase the total Australian emissions or impede emission reduction actions.

4.4 Emission Reduction Opportunities

As shown in **Table 18**, the greatest emission sources associated with the proposed Project are those associated with the combustion of the coal (Scope 3), the management of which is not controlled by CMPL, followed by fugitive emissions from the mine (Scope 1), which are primarily associated with emissions from ventilation of the underground workings.

The most likely method of directly reducing Scope 2 GHG emissions from the site will be through the ongoing implementation of the site's Energy Saving Action Plan (ESAP). Investigations into opportunities for improvements in energy efficiency are assessed annually in CMPL's ESAP reporting, with emission reduction strategies developed that are cost effective and feasible. The ESAP will continue to identify where potential savings in fuel and electricity could be made, together with the subsequent implementation of energy efficiency strategies where practical. Potential mitigation measures that will be considered include:

- The use of low emission fuels where possible;
- Energy savings initiatives in the key focus areas of:
 - Power factor correction;
 - Metering and monitoring;
 - Compressed air;
 - Coal handling plant; and
- Keeping equipment in good operating order to maintain efficiency. Machinery, plant and equipment will be serviced and kept in good working order and service records will be kept.

CMPL has committed to mitigation and offset of Scope 1 emissions, specifically by:

- Undertaking research into reducing the emissions generated by ventilation air methane (VAM). This includes
 government funding to investigate VAM technology at Mandalong Mine, and if proven successful and cost
 effective, then this technology will provide opportunities for application at other mines.
- Committing to offset 10% of its Scope 1 and Scope 2 emissions per annum. This commitment will coincide with the reporting and auditing obligations outlined under the NGER Act, whereby the tonnes of CO2-e offset each year will go through a rigorous verification process. These offsets will be located in Australia, will be accredited to a recognised scheme or standard (or in the process of achieving accreditation), will be independently verified, and will be undertaken in accordance with any relevant Australian Government policies and standards at that time. These offsets will be put in place where opportunities to avoid or mitigate emissions are not available, or until a National emissions trading scheme is imposed on the Colliery.

Such actions are in keeping with Centennial's commitment to GHG reduction strategies.

5.0 Conclusion

CMPL proposes to continue operations at the Myuna Colliery at an increased production rate of 2 Mtpa. Operations at the site generate GHG emissions associated with:

- Emissions from combustion of fuel by on-site vehicles used to transport men and materials associated with operations and to handle and manage the mine's small ROM coal stockpile (Scope 1);
- Emissions from the use of Liquefied Petroleum Gas (LPG), sulphur hexafluoride (SF6), and oils and greases (Scope 1);
- Fugitive emissions from the extraction of coal (Scope 1);
- Fugitive emissions from post mining activities (stockpiled coal) (Scope 1);
- Electricity use (Scope 2 and 3); and
- Indirect emissions from the combustion of the coal produced at Myuna Colliery (Scope 3).

CMPL provided historical electricity and diesel use for the period 2006/07 - 2008/09 and expected electricity and diesel use for the Colliery operating at 2 Mtpa for 2011/12 - 2013/14. The historical data and predictions were used in the calculations as described in the following sections.

CMPL monitors fugitive emissions associated with the extraction of coal at the ventilation shaft on a monthly basis as required by the NGER Act 2007. The mine operates in the Fassifern, Great Northern and Wallarah seams, and the monitoring data indicate that the gas concentration in the ventilation flow is related to gassy Fassifern seam workings and is not associated with production levels. As such, the fugitive emissions measured between July 2008 and June 2009 were used in the calculations of current and potential future fugitive emissions.

The proposed Project would increase the potential GHG emissions from the operation Myuna Colliery from the current average emissions by approximately 0.01 Mt CO₂-e per year. External emissions associated with the combustion of the coal to generate electricity at a power station represent the greatest proportion of emissions associated with the site's activities (on-site and external).

GHG emission levels of the on-site activities represent approximately 0.1 % of total Australian emissions and 2 % of mining emissions in Australia (based on 2008 data from Australian Greenhouse Emissions Information System, Department of Climate Change and Energy Efficiency). The percentage increase in emissions (38 %) over existing levels is due to the gaseous nature of future mining in the Fassifern seam, though this increase is not considered likely to significantly affect total NSW or Australian emissions or impede emission reduction actions. CMPL is committed to undertaking research into reducing and/or offsetting a portion of its Scope 1 and Scope 2 emissions to addressing the effects of its operations on the Enhanced Greenhouse Effect.

"This page has been left blank intentionally"

Worldwide Locations

Australia	+61-2-8484-8999	Australian Locations
Azerbaijan	+994 12 4975881	Adelaide Brisbane Canberra
Belgium	+32-3-540-95-86	Darwin Melbourne Newcastle
Bolivia	+591-3-354-8564	Perth Sydney Singleton
Brazil	+55-21-3526-8160	www.aecom.com
China	+86-20-8130-3737	
England	+44 1928-726006	
France	+33(0)1 48 42 59 53	
Germany	+49-631-341-13-62	
Ireland	+353 1631 9356	
Italy	+39-02-3180 77 1	
Japan	+813-3541 5926	
Malaysia	+603-7725-0380	
Netherlands	+31 10 2120 744	
Philippines	+632 910 6226	
Scotland	+44 (0) 1224-624624	
Singapore	+65 6295 5752	
Thailand	+662 642 6161	
Turkey	+90-312-428-3667	
United States	+1 978-589-3200	
Venezuela	+58-212-762-63 39	

Appendix O

Economic Assessment (Gillespie Economics, 2010)

Myuna Colliery Extension of Mining

Economic Assessment

Prepared for

AECOM PTY LTD

By

Gillespie Economics Email: gillecon@bigpond.net.au

OCTOBER 2010

TABLE OF CONTENTS

E	XECU	TIVE SUMMARY	3
1	IN	TRODUCTION	5
2	BE	ENEFIT COST ANALYSIS	6
	2.1	INTRODUCTION	6
	2.2	IDENTIFICATION OF THE BASE CASE AND PROJECT	6
	2.3	IDENTIFICATION OF BENEFITS AND COSTS	7
	2.4	QUANTIFICATION/VALUATION OF BENEFITS AND COSTS	7
	2.5	CONSOLIDATION OF VALUE ESTIMATES	
	2.6	SENSITIVITY ANALYSIS	13
3	EC	CONOMIC IMPACT ASSESSMENT	14
	3.1	INPUT-OUTPUT TABLE AND ECONOMIC STRUCTURE OF THE REGION	14
	3.2	REGIONAL ECONOMIC IMPACT OF THE PROJECT	
	3.3	STATE ECONOMIC IMPACTS OF THE PROJECT	
	3.4	PROJECT CESSATION	24
4	CC	DNCLUSION	26
5	RE	FERENCES	27

TABLES

Table 2.1	Production Under the Base Case
Table 2.2	Economic Benefits and Costs of the Project
Table 2.3	Benefit Cost Analysis Results of the Project (Present Values at 7% discount rate)
Table 3.1	Aggregated Transactions Table: Regional Economy 2005-06 (\$'000)
Table 3.2	Annual Regional Economic Impacts of the Project
Table 3.3	Sectoral Distribution of Total Regional Employment Impacts
Table 3.4	Annual State Economic Impacts of the Project
FIGURES	
Figure 3.1	Summary of Aggregated Sectors: Regional Economy (2005-06)
Figure 3.2	Summary of Aggregated Sectors: NSW Economy (2005-06)

- Figure 3.3 Sectoral Distribution of Gross Regional Output and Value-Added (\$'000)
- Figure 3.4 Sectoral Distribution of Gross Regional Income (\$'000) and Employment (No.)
- Figure 3.5 Sectoral Distribution of Imports and Exports (\$'000)

APPENDICES

- Appendix 1 Valuing Greenhouse Gas Emissions
- Appendix 2 Sensitivity Testing
- Appendix 3 The GRIT System for Generating Input-Output Tables

EXECUTIVE SUMMARY

Centennial Myuna Pty Ltd (CMPL) seeks a Project Approval under Part 3A of the *Environmental Planning and Assessment Act 1979* (EP&A Act) to extend underground mining and associated activities at Myuna Colliery within the Project Application Area for a further 21 years (the proposed Project).

The Project requires the preparation of an Environmental Assessment (EA) in accordance with the requirements of the EP&A Act. An economic assessment is required as part of the EA.

From an economic perspective there are two important aspects of the Project that have been considered:

- The economic efficiency of the Project (i.e. consideration of economic costs and benefits) which can be evaluated using benefit cost analysis; and
- The economic impacts of the Project (i.e. the economic stimulus that the Project would provide to the regional or State economy) which can be evaluated using regional economic impact assessment.

A benefit cost analysis identified a range of potential economic costs and benefits of the Project. Values were placed on production and external costs and benefits. The net production benefits of the Project were estimated at \$343M. The external costs from the Project relate to greenhouse gas generation, valued at \$166M. External benefits associated with employment provided by the Project were estimated at \$100M.

Overall the Project is estimated to have net benefits of \$278M and hence is desirable and justified from an economic efficiency perspective.

A regional economic impact analysis, using input-output analysis, estimated that in total, the Project will contribute the following to the regional economy:

- \$159M in annual direct and indirect regional output or business turnover;
- \$71M in annual direct and indirect regional value added;
- \$53M in annual household income; and
- 451 direct and indirect jobs.

At the State level the Project will make the following contribution to the economy:

- \$222M in annual direct and indirect output or business turnover;
- \$104M in annual direct and indirect value added;
- \$71M in annual direct and indirect household income; and
- 732 direct and indirect jobs.

This stimulus would be felt across a range of sectors in the economy including the coal mining sector, structural metal products manufacturing sector, agricultural and mining machinery manufacturing sector, electricity sector, wholesale trade sector, retail trade sector, health sector, other business services sector, and the hotels, cafes and restaurants sector.

A 21-year approval is being sought for the Project. On cessation of mining the economic stimulus provided by the Project will cease. The significance of these Project cessation impacts will depend on:

• The degree to which any displaced workers and their families remain within the region;

- The economic structure and trends in the regional economy at the time.
- Whether other mining developments or other opportunities in the region arise that allow employment of displaced workers.

Nevertheless, given the uncertainties about the circumstances within which Project cessation will occur, it is important for regional authorities and leaders to take every advantage from the stimulation to regional economic activity and skills and expertise that the Project brings to the region, to strengthen and broaden the region's economic base.

1 INTRODUCTION

Centennial Myuna Pty Ltd (CMPL), a 100% subsidiary of Centennial Coal Company Ltd (CCCL), operates the Myuna Coal Mine. Myuna Colliery's Surface Facilities Area is on the western side of Lake Macquarie, approximately 25 kilometres south-west of Newcastle.

CMPL seeks a Project Approval under Part 3A of the *Environmental Planning and Assessment Act 1979* (EP&A Act) to extend underground mining and associated activities within the Project Application Area for a further 21 years (the proposed Project).

An Environmental Assessment (EA) for the Project is required in accordance with the provisions of the EP&A Act. The NSW Department of Planning (DoP) Director-General's Requirements for the Project indicate that an economic assessment is needed as part of the EA. The Director-General's Requirements identify the need for:

- "A detailed assessment of the costs and benefits of the Project as a whole, and whether it would result in a net benefit to the community.
- A conclusion justifying the Project on.....economic grounds,..."

From an economic perspective there are two important aspects of the Project that can be considered:

- The economic efficiency of the Project (i.e. consideration of economic costs and benefits); and
- The economic impacts of the Project (i.e. the economic stimulus that the Project will provide to the regional or State economy).

Planning NSW (James and Gillespie, 2002) *Guideline for Economic Effects and Evaluation in EIA* identifies economic efficiency as the key consideration of economic analysis. Benefit Cost Analysis (BCA) is the method used to consider the economic efficiency of proposals. The draft guideline identifies BCA as essential to undertaking a proper economic evaluation of proposed developments that are likely to have significant environmental impacts.

The above draft guideline indicates that economic impact assessment may provide additional information as an adjunct to the economic efficiency analysis. Economic stimulus to the regional and State economy can be estimated using input-output modelling.

This study relates to the preparation of each of the following types of analyses:

- A BCA of the Project; and
- An economic impact assessment of the Project.

2 BENEFIT COST ANALYSIS

2.1 INTRODUCTION

For the Project to be economically desirable from a community perspective, it must be economically efficient. Technically, a development is economically efficient and desirable on economic grounds if the benefits to society exceed the costs (James and Gillespie, 2002). For mining developments, the main economic benefit is the producer surplus generated by the mine and the employment benefits it provides, while the main economic costs relate to environmental and cultural costs. The technique that is used to weigh up these benefits and costs is BCA.

BCA involves the following key steps:

- identification of the base case or "without" Project case;
- identification of the "with" Project scenario;
- physical quantification and valuation of the projects incremental benefits and costs;
- consolidation of values using discounting to account for the different timing of costs and benefits;
- application of decision criteria;
- sensitivity testing; and
- consideration of non-quantified benefits and costs, where applicable.

The sub-sections below provide a BCA of the Project based on financial, technical and environmental advice provided by CMPL and its specialist consultants.

2.2 IDENTIFICATION OF THE BASE CASE AND PROJECT

Identification of the "base case" or "without" Project scenario is required in order to facilitate the identification and measurement of the incremental economic benefits and costs of the Project.

Under the base case, mining under the existing 1977 development consent and within the development consent boundary would be able to operate viably for approximately another 5 years, though at a decreasing production rate. For the purpose of the analysis, the following base case production profile is assumed:

FIGURCION ONDER THE Dase Case		
Year of Future Production	Annual Coal Production (Mtpa)	
Yr 1 - 2011	1.3	
Yr 2 - 2012	1.3	
Yr 3 - 2013	1.3	
Yr 4 - 2014	0.8	
Yr 5 - 2015	0.4	

Table 2.1 Production Under the Base Case

In contrast, the Project will extend mining and coal handling at Myuna Colliery within the Project Application Area and proposes to:

- mine using bord and pillar methods in the Wallarah, Great Northern and Fassifern seams in CCL762 and ML1370, for a further 21 years;
- produce, handle and distribute to Eraring Power Station, up to 2Mtpa using existing infrastructure;
- continue the use of ancillary infrastructure and services for a further 21 years;
- upgrade the water management system; and
- rehabilitate the surface facilities within 5 years of completion of mining.
CMPL's alternatives for the mining of coal are essentially limited to different scales, designs, technologies, processes, impact mitigation measures etc. However, these alternatives could be considered to be variants of the proposed Project rather than distinct alternatives. Consequently, this BCA focuses on the Project compared to the identified base case.

2.3 IDENTIFICATION OF BENEFITS AND COSTS

Relative to the base case or "without" scenario, the Project may have the potential incremental economic benefits and costs shown in Table 2.2.

Category	Costs	Benefits
Production	Opportunity cost of existing land owned by CMPL Opportunity cost of capital Capital costs associated with continued coal production Operating costs, including administration, mining, processing and rehabilitation (ex royalties) Decommissioning costs of the Project	Avoided decommissioning costs under the base case Economic value of coal Residual value of capital and land at the cessation of the Project
Potential Externalities	Air quality impacts Greenhouse gas impacts Acoustic impacts Aquatic ecology impacts Terrestrial ecology impacts Aboriginal and Non-Aboriginal heritage impacts Groundwater impacts Traffic and transport impacts Visual impacts Surface water impacts and sediment/erosion control	Economic and social benefits of employment provided by the Project

 Table 2.2

 Incremental Economic Benefits and Costs of the Project

It should be noted that the potential external costs, listed in Table 2.1, are only economic costs to the extent that they affect individual and community well-being through direct use of resources by individuals or non-use. If the potential impacts are mitigated to the extent where community wellbeing is insignificantly affected, then no external economic costs arise.

2.4 QUANTIFICATION/VALUATION OF BENEFITS AND COSTS

In accordance with NSW *Treasury Guidelines for Economic Appraisal* (NSW Treasury, 2007), where competitive market prices are available, they have generally been used as an indicator of economic values.

2.4.1 **Production Costs and Benefits**

Production Costs

Opportunity Cost of Land

There is an opportunity cost associated with continuing to use land already owned by CMPL for the Project mine infrastructure instead of its next best use. An indication of the opportunity cost of the

land can be gained from its market value, estimated at \$2.6 Million (M). This opportunity cost occurs in year 5 when under the base case the existing mining operation would likely cease.

Opportunity Cost of Capital

Where continued mining would utilise plant and machinery already owned by CMPL, there is an opportunity cost associated with utilising this plant rather than selling it or using it elsewhere. An indication of its opportunity cost can be gained from its estimated market value. The market value estimated by CMPL is in the order \$49M. This opportunity cost occurs in year 5 when under the base case the existing mining operation would likely cease.

Capital Cost of the Project

Incremental capital costs over the life of the Project are estimated at \$150M including major mining equipment, mobile mining equipment, site infrastructure maintenance, sustaining capital and contingency costs. These costs are included in the economic analysis in the years that they are expected to occur.

Annual Operating Costs of the Project

The operating costs of the Project include those associated with labour, stores and supplies, repairs and maintenance, general expenses and overheads. Average annual incremental operating costs of the mine are estimated at \$67M.

While royalties are a cost to CMPL they are part of the overall producer surplus benefit of the mining that is redistributed by government. Royalties are therefore not included in the calculation of the resource costs of operating the Project. Nevertheless, it should be noted that the Project will generate total incremental royalties in the order of \$109M (undiscounted).

Decommissioning Costs

At the cessation of the Project the surface infrastructure is assumed to be decommissioned at an estimated cost of \$4M.

Production Benefits

Avoided Decommissioning Costs

Under the base case the site would be decommissioned in 2015. With the Project these costs are avoided (but incurred at the end of the Project life). Avoiding this decommissioning cost in 2015 is a benefit of the Project.

Economic Value of Coal

Production is assumed to occur at up to 2 Mtpa for a period of 21 years.

There are two main economic benefits of the Project related coal product. The first relates to the direct value of the coal recovered from Myuna Colliery. An indication of this value is the market value of the coal as indicated by the contract price with Eraring Power Station.

The second economic benefit relates to the fact that without the Project, higher value export coal from other Centennial Mines in Lake Macquarie would be required to supply Eraring Power Station. The Project enables this higher value coal to be diverted to its highest value use – export, rather than lower value domestic thermal use. The value of this additional benefit is equal to the premium obtained by

exporting coal instead of supplying it to Eraring Power Station adjusted for additional washing and delivery costs (to Newcastle Port) compared to delivery to Eraring Power Station.¹

There is obviously considerable uncertainty around future coal prices and hence assumed coal values have been subjected to sensitivity testing (see Section 2.6).

Residual Value at End of the Evaluation Period

At the end of the Project, the rehabilitated surface infrastructure site and purchased capital equipment may have some residual value that could be realised by sale. This is assumed to be \$2.6M and \$49M, respectively.

2.4.2 External Costs and Benefits

<u>Acoustics</u> – the Myuna Colliery Surface Facilities Area is located within a topographic depression approximately 500 metres north west of the nearest potentially affected receiver located at Summerhill Drive, Wangi Wangi, and approximately 600 metres west of residences in Donnelly Rd, Arcadia Vale. Maximum noise levels on Summerhill Drive and Sunset Close, Wangi Wangi, are predicted to be below LAmax 30 dBA. The highest LAmax noise level at any residential area is predicted to occur as a result of forklift pass-by events in the materials yard under the influence of a temperature inversion. External noise levels up to LAmax 43 dBA may occur at residences on Donnelly Road under these circumstances. Hence, predicted noise levels meet the most stringent recommended sleep disturbance noise goal of 49 dBA at Donnelly Road receivers under adverse weather conditions. Based on the negligible impacts predicted, there are not expected to be any external acoustic costs of the Project.

Limited underground blasting may be required for the proposed Project. Vibration from underground blasting is predicted to be negligible and below levels of human perception at the nearest residential locations. The main potential vibration generating activities at the Surface Facilities Area will include the operation of mobile equipment such as the loader and trucks. Given the separation distance between mining operations and the nearest potentially affected residential locations, vibration levels from these activities is predicted to be negligible and below levels for human perception at the nearest residential receivers. Based on the negligible impacts predicted, blasting is not expected to result in an external cost of the Project.

<u>Air quality</u> – sensitive air quality receptors surrounding the Surface Facilities Area include the residential areas of Wangi Wangi and Arcadia Vale. All modelling predictions indicate that the concentrations of particulate matter and dust deposition attributable to the proposed Project would be within the current NSW DECCW air quality goals at all surrounding receivers near to the Surface Facilities Area. Based on the negligible impacts predicted, there are not expected to be any external air quality costs of the Project.

<u>Greenhouse gases</u> – the Project is predicted to generate in the order of 644,853 tonnes of greenhouse gas emissions (CO_2 -e) associated with mining and transport of product coal via conveyor

¹ An alternative but equivalent approach to the consideration of the economic value of the coal is to recognise that while the Myuna Colliery supplies coal to Eraring Power Station at a negotiated financial price, the appropriate estimate of the economic value for thermal coal from the Myuna Colliery is the world price for this coal (Sinden and Thampapillai 1995). The current FOB world price for thermal coal is around \$100/t. However, this relates to washed coal delivered to Port. The operating costs referred to earlier do not include allocations for washing and delivery to port as this is not required by Eraring Power Station. Consequently the economic value is the world prices for thermal coal adjusted for additional washing and delivery costs (to Newcastle Port) compared to delivery to Eraring Power Station.

to Eraring Power Station². To place an economic value on carbon dioxide equivalent (CO_2 -e) emissions, a shadow price of carbon is required that reflects its social costs. The social cost of carbon is the present value of additional economic damages now and in the future caused by an additional tonne of carbon emissions. There is great uncertainty around the social cost of carbon with a wide range of estimated damage costs reported in the literature. An alternative method to trying to estimate the damage costs of carbon dioxide is to examine the price of carbon credits. Again, however, there is a wide range of permit prices. For this analysis, a shadow price of carbon of AUS\$30/t CO_2 -e was used, with sensitivity testing from AUS\$8/t CO_2 -e to AUS\$40/t CO_2 -e (refer to Appendix 1).

<u>Aquatic Ecology</u> – part of the Project Application Area is located below Lake Macquarie, which is inhabited by estuarine plants and animals living on or within the lake bed, in the water column and within the intertidal zone along the foreshore. Seagrass habitat is extensive throughout shallow nearshore sections of the Project Application Area, however, given that predicted subsidence levels where seagrass beds occur would be negligible (< 20 millimetres), the Project is not considered to have any substantial impact on seagrass habitat. Direct or indirect impacts to fish and threatened species that utilise seagrass habitat are not therefore expected. Saltmarsh and mangrove habitat are not known to occur within or in proximity of the Project Application Area and would not be affected by the Project. Part of the Lake Macquarie State Conservation Area (Point Wolstoncroft), does occur within the Project Application Area. However, no impact to the conservation values of this these areas (in terms of aquatic ecology) as a result of the Project is expected. Based on the negligible impacts predicted, there are not expected to be any external aquatic ecology costs of the Project.

<u>Terrestrial Ecology</u> – the Project Application Area includes areas of native vegetation, State Forest, State Conservation Areas and partially disturbed vegetation, among the developed residential and industrial areas of Eraring and Morisset Peninsula. However, due to the negligible subsidence (i.e. less than 20 millimetres) proposed on the land-based areas of the Project Application Area the proposed Project is unlikely to significantly impact on any species, population or ecological community listed under the *Threatened Species Conservation Act 1995*, *Environment Protection and Biodiversity Conservation Act 1999* or State Environmental Planning Policy No. 44 – Koala Habitat Protection. No threatened species, endangered populations or threatened ecological communities were identified during a survey of the area of the proposed minor drainage works at the Surface Facilities Area. Based on the negligible impacts predicted, there are not expected to be any external terrestrial ecology costs of the Project.

<u>Aboriginal and non-Aboriginal heritage</u> – impacts on highly significant Aboriginal heritage sites have been shown to affect the well-being of the broader community (Gillespie Economic 2008). The fieldwork undertaken for the Aboriginal cultural heritage impact assessment led to the recording of four new Aboriginal cultural heritage sites within the Project Application Area. However, due to the negligible subsidence (i.e. less than 20 millimetres) proposed on the land-based areas of the Project Application Area, it is considered that the proposed Project is unlikely to have significant impacts on items or works of Aboriginal or European heritage significance. No listed or new items or works of European Heritage significance have been previously recorded within the Project Application Area. Based on the negligible impacts predicted, there are not expected to be any external Aboriginal and non-Aboriginal heritage costs of the Project.

<u>Groundwater</u> – the Project will result in additional groundwater seepage into the workings requiring an increase in the amount of water delivered back to the surface and underground storage. However, the Project is not likely to result in significant impacts to the local groundwater regime, as the groundwater make will continue to be discharged back into Lake Macquarie. Similarly, the saline water which will continue to enter the mine and be discharged back into a saline environment following settlement is not predicted to alter the salinity balance of Lake Macquarie. Areas subject to subsidence of less than

² It should be noted that greenhouse gas generation associated with usage of the product coal is considered to be outside of the scope of the BCA of the Project.

20 millimetres (Morisset Peninsular and Point Wolstoncroft) may experience minimal disturbance to the rock overlying the coal seam and so negligible disturbance to shallow alluvial groundwaters is predicted. Based on the negligible impacts predicted, there are not expected to be any external Groundwater costs of the Project

<u>Traffic and transport</u> – the proposed Project will not significantly alter the existing traffic and transport network for deliveries and staff movements to and from the Surface Facilities Area. No coal is proposed to be transported by road. Traffic impacts of the Project are therefore expected to be negligible. Based on the negligible impacts predicted, there are not expected to be any external transport costs of the Project.

<u>Visual impacts</u> – Myuna Colliery Surface Facilities Area is primarily surrounded by an elevated, vegetated buffer, largely screening it from residential receptors. Due to the topographical positioning and surrounding landforms, Myuna Colliery is generally not visible to the local community, thereby having little effect on the visual amenity of the local area. As no new infrastructure is proposed for the Project there is not expected to be any external visual costs of the Project.

<u>Surface water impacts</u> – the Project will continue to undertake treatment and discharge of ground and surface waters in accordance with an Environmental Protection Licence (EPL). The Project will effect an increase in discharges though the EPL's two licensed discharge points due to the increase in the extent of mining. These increases will be accommodated in the approved discharge limits and will adhere to the water quality criteria of the EPL. The increased discharges requires by the Project will not require any variation to existing EPL conditions. Surface water will continue to be managed in accordance with the Water Management System to control and separate clean and dirty water with discharges designed to meet DECCW requirements. This will be aided by the proposed clean water diversions at the Myuna Colliery Surface Facilities Area. No negative surface water impacts are anticipated, thus it is not expected to result in an external cost of the Project.

<u>Social and economic value of employment</u> – the Project would require approximately 210 direct jobs for a period of 21 years. Historically, employment benefits of projects have tended to be omitted from benefit cost analysis on the implicit assumption that labour resources used in a project would otherwise be employed elsewhere. Where this is not the case and labour resources would otherwise be unemployed for some period of time, Streeting and Hamilton (1991) and Bennett (1996) outline that otherwise unemployed labour resources utilised in a project should be valued in a BCA at their opportunity cost (wages less social security payments and income tax) rather than the wage rate which has the effect of increasing the net production benefits of the project. In addition, there may be social costs of unemployment that require the estimation of people's willingness to pay to avoid the trauma created by unemployment. These are non-market values.

More recently, it has been recognised that the broader community may hold non-environmental, nonmarket values (Portney 1994) for social outcomes such as employment (Johnson and Desvouges 1997) and the viability of rural communities (Bennett et al 2004). Gillespie Economics (2008) estimated the value the community hold for the 23 years that the Metropolitan Colliery provides 320 jobs, to be \$756M (present value). Gillespie Economics (2009) estimated the value the community hold for the 30 years that the Bulli Seam Operations provides 1,170 jobs, to be \$870M (present value). The value for 10 years that the Warkworth Mine provides 975 jobs was estimated at \$286M (present value).

The Project will provide approximately 210 direct jobs for a period of 21 years. Using the more conservative Bulli Seam Operation employment value gives an estimated \$107M for the employment benefits of the Project³. This community benefit value has been included in the BCA.

 $^{^{3}}$ This value was placed in year 1 of the analysis and discounted at 7%.

2.5 CONSOLIDATION OF VALUE ESTIMATES

The present value of costs and benefits of the Project, using a 7% discount rate are provided in Table 2.3.

COSTS	(\$M)	BENEFITS (\$M)		
Production				
Opportunity cost of land	\$2	Avoided decommissioning costs	\$3	
Opportunity cost of capital	\$35	Coal value	\$1,093	
Capital costs	\$71	Residual value of land	\$1	
Operating costs	\$656	Residual value of capital	\$12	
Decommissioning costs	\$1			
Total Production Costs	\$766	Total Production Benefits	\$1,109	
		Net Production Benefits	\$343	
Potential Externalities				
Air quality impacts	Negligible impacts	Social and economic values of employment	\$100	
Greenhouse gas impacts	\$166			
Acoustic impacts	Negligible impacts			
Aquatic ecology impacts	Negligible impacts			
Terrestrial ecology impacts	Negligible impacts			
Aboriginal and Non-Aboriginal heritage impacts	Negligible impacts			
Groundwater impacts	Negligible impacts			
Traffic and transport impacts	Negligible impacts			
Visual impacts	Negligible impacts			
Surface water impacts and sediment/erosion control	Negligible impacts			
TOTAL QUANTIFIED	\$931	TOTAL QUANTIFIED	\$1,209	
NET QUANTIFIED BENEFITS (I	NPV)	\$278		

 Table 2.3

 Benefit Cost Analysis Results of the Project (Present Values @ 7% discount rate)

The main decision criterion for assessing the economic desirability of a project to society is its net present value (NPV). NPV is the present value of benefits less the present value of costs. A positive NPV indicates that it would be desirable from an economic perspective for society to allocate resources to the Project, because the community as a whole would obtain net benefits from the Project. Table 2.3 indicates that the Project will have net production benefits of \$343M.

The net production benefit shown in Table 2.3 is distributed amongst a range of stakeholders including:

- CMPL and its shareholders;
- The NSW Government via royalties; and
- The Commonwealth Government in the form of Company tax.

The NSW Government receives additional benefits in the form of payroll tax and local councils also benefit through rates and development contributions.

The external costs from the Project relate to greenhouse gas generation. Greenhouse gas costs have been valued at \$166M. CMPL proposes internalising some of these costs by offsetting 10% of its Scope 1 emissions where opportunities to avoid or mitigate emissions are not available.

External benefits associated with employment provided by the Project have been estimated at \$100M.

Overall, the Project is estimated to have net benefits of \$278M and hence is desirable and justified from an economic efficiency perspective.

2.6 SENSITIVITY ANALYSIS

This NPV presented in Table 2.3 is based on a range of assumptions around which there is some level of uncertainty. Uncertainty in a BCA can be dealt with through changing the values of critical variables in the analysis (James and Gillespie, 2002) to determine the effect on the NPV.

In this analysis, the BCA result was tested for 20% changes to the following variables at a 4%, 7% and 10% discount rate:

- Opportunity cost of land;
- Opportunity cost of capital;
- Capital costs;
- Operating costs;
- Decommissioning costs;
- Value of coal;
- Residual value of capital and land;
- Greenhouse costs; and
- Employment benefits.

What this analysis indicates (refer to Appendix 2) is that the results of the BCA are not sensitive to reasonable changes in assumptions regarding any of these variables. In particular, significant increases in the value used for the external impact of greenhouse gas generation had little impact on the economic desirability of the Project.

The results were most sensitive to increases in operating costs and decreases in the economic value of the coal.

3 ECONOMIC IMPACT ASSESSMENT

3.1 INPUT-OUTPUT TABLE AND ECONOMIC STRUCTURE OF THE REGION

Economic impact assessment is primarily concerned with the effect of an impacting agent on an economy in terms of a number of specific indicators, such as gross regional output, value-added, income and employment.

These indicators can be defined as follows:

- Gross regional output the gross value of business turnover;
- **Value-added** the difference between the gross regional output and the costs of the inputs of raw materials, components and services bought in to produce the gross regional output;
- Income the wages paid to employees including imputed wages for self employed and business owners; and
- *Employment* the number of people employed (including full-time and part-time).

An impacting agent may be an existing activity within an economy or may be a change to a local economy (Powell *et al.*, 1985; Jensen and West, 1986). This assessment is concerned with the impact of 2 Mtpa of ROM coal production at the Myuna Colliery.

The economy on which the impact is measured can range from a township to the entire nation (Powell *et al.*, 1985). In selecting the appropriate economy, regard needs to be had to capturing the local expenditure and employment associated with the Myuna Project, but not making the economy so large that the impact of the Project becomes trivial (Powell and Chalmers, 1995). Advice is that the workforce is likely to predominantly reside in the Newcastle Statistical Sub-Division (SSD) comprising Cessnock Statistical Local Area (SLA), Lake Macquarie SLA, Maitland SLA, Port Stephens SLA and Newcastle SLA. Consequently, for this study, the economic impacts of the Project have been estimated for the Australian Bureau of Statistics (ABS) Newcastle SSD.

A range of methods can be used to examine the economic impacts of an activity on an economy including economic base theory, Keynesian multipliers, econometric models, mathematical programming models and input-output models (Powell *et al.*, 1985). This study uses input-output analysis.

Input-output analysis essentially involves two steps:

- Construction of an appropriate input-output table (regional transaction table) that can be used to identify the economic structure of the region and multipliers for each sector of the economy; and
- Identification of the initial impact or stimulus of the Project (construction and/or operation) in a form that is compatible with the input-output equations so that the input-output multipliers and flow-on effects can then be estimated (West, 1993).

A 2005-06 input-output table of the regional economy (Newcastle SSD) was developed using the Generation of Input-Output Tables (GRIT) procedure (Appendix 3) and a 2005-06 input-output table of the NSW economy (developed by Monash University) as the parent table. The 109 sector input-output table of the regional economy was aggregated to 30 sectors and 6 sectors for the purpose of describing the economies.

A highly aggregated 2005-06 input-output table for the regional economy is provided in Table 3.1. The rows of the table indicate how the gross regional output of an industry is allocated as sales to other industries, to households, to exports and other final demands (OFD - which includes stock changes, capital expenditure and government expenditure). The corresponding column shows the sources of

inputs to produce that gross regional output. These include purchases of intermediate inputs from other industries, the use of labour (household income), the returns to capital or other value-added (OVA - which includes gross operating surplus and depreciation and net indirect taxes and subsidies) and goods and services imported from outside the region. The number of people employed in each industry is also indicated in the final row.

	Ag, forestry, fishing	Mining	Manuf.	Utilities	Building	Services	TOTAL	Household Expenditure	OFD	Exports	Total
Ag, forestry, fishing	5,210	104	53,983	17	640	20,108	80,062	36,107	88,978	146,046	351,193
Mining	16	42,584	83,271	125,586	6,359	4,153	261,969	1,394	-27,225	916,730	1,152,868
Manuf.	32,231	37,215	1,797,045	28,654	381,091	997,263	3,273,500	705,662	731,871	5,765,119	10,476,153
Utilities	3,584	7,473	163,699	979,533	16,256	193,578	1,364,123	144,583	20,054	618,646	2,147,406
Building	2,463	8,617	24,290	28,291	672,890	271,283	1,007,834	0	2,038,505	164,397	3,210,736
Services	41,939	66,754	1,167,476	68,708	361,460	4,469,637	6,175,975	4,392,512	5,466,987	8,009,805	24,045,279
TOTAL	85,443	162,747	3,289,764	1,230,788	1,438,697	5,956,023	12,163,463	5,280,258	8,319,170	15,620,743	41,383,635
Household Income	69,912	150,384	1,581,260	155,696	817,163	8,675,384	11,449,801	0	0	0	11,449,801
OVA	62,747	709,177	1,345,491	411,354	308,138	4,021,630	6,858,537	672,889	294,152	28,076	7,853,654
Imports	133,091	130,559	4,259,637	349,568	646,738	5,392,241	10,911,834	6,242,146	1,580,417	1,107,411	19,841,809
TOTAL	351,193	1,152,868	10,476,15 3	2,147,406	3,210,736	24,045,279	41,383,635	12,195,294	10,193,739	16,756,230	80,528,898
Employment	1,805	2,273	22,802	2,281	11,708	140,819	181,688				

 Table 3.1

 Aggregated Transactions Table: Regional Economy 2005-06 (\$'000)

Gross regional product (GRP or Value-added) for the regional economy is estimated at \$19,3030M, comprising \$11,449M to households as wages and salaries (including payments to self employed persons and employers) and \$7,853M in OVA.

The employment total working in the region was 181,688 people.

The economic structure of the regional economy can be contrasted with that for NSW through a comparison of results from the respective input-output models (Figures 3.1 and 3.2). This reveals that the economies are not dissimilar with the main difference being the greater relative importance of the manufacturing sectors to the regional economy as well as the greater relative importance of GRP and output in the mining and utilities sectors to the regional economy. The agriculture/forestry/fishing sectors, building sectors and services sectors are of slightly lower relative importance to the regional economy than they are to the NSW economy.

Figure 3.1 Summary of Aggregated Sectors: Regional Economy (2005-06)

Summary of Aggregated Sectors: NSW Economy (2005-06) 90% 77%77% 80% 71% Employment 70% H-hold 60% GRP 50% Output 40% 30% 19% 20% 11%11%11% 7% 8% 6% 9% 10% 1% 1% 2% 3% 1% 1% 2% 2% 3% 2% 2% 2% 0% Ag/Forest/Fish Utilities Building Mining Manufacturing Services

Figure 3.2

Figures 3.3 to 3.5 provide a more expansive sectoral distribution of gross regional output, employment, household income, value-added, exports and imports, and can be used to provide some more detail in the description of the economic structure of the economy.

What is clear from these figures is the importance of the tertiary sectors and manufacturing sectors to the economy, with coal mining being the dominant primary sector activity. In terms of gross regional output the business services sectors and metal manufacturing sectors are the most significant, with the business services sectors also being the most significant in terms of value-added and income. The retail sector is the most significant sector in term of employment while the metal manufacturing sectors the most significant sectors in terms of exports and imports.

At an individual sector level the retail trade sector and basic non-ferrous metal manufacturing sector are the most significant sectors for output while the retail trade sector and health sector are the most significant sectors in terms of value-added, employment and income. The retail trade sector and basic non-ferrous metal manufacturing sector are the most significant sectors for imports and exports.

Figure 3.3 Sectoral Distribution of Gross Regional Output and Value-Added (\$'000)

Gross Value-Added

Gillespie Economics

Gillespie Economics

Figure 3.5 Sectoral Distribution of Imports and Exports (\$'000)

Gillespie Economics

3.2 REGIONAL ECONOMIC IMPACT OF THE PROJECT

3.2.1 *Introduction*

For the analysis of the extension of mining at Myuna Colliery, a new Myuna Coal Mine sector was inserted into the regional input-output table reflecting production levels of approximately 2 Mtpa of coal for the Project and employment levels of 210. The revenue, expenditure and employment data for this new sector was obtained from financial information provided by CMPL. For this new sector:

- the estimated gross annual revenue was allocated to the *Output* row;
- the estimated wage bill of the direct employment residing in the region (100%) was allocated to the *household wages* row;
- non-wage expenditure was initially allocated across the relevant *intermediate sectors* in the economy, *imports* and *other value-added*;
- allocation was then made between *intermediate sectors* in the local economy and *imports* based on regional location quotients;
- purchase prices for expenditure in each sector in the region were adjusted to basic values and margins and taxes and allocated to appropriate sectors using relationships in the 2001-02 National Input-Output Tables;
- the difference between total revenue and total costs was allocated to the *other value-added* row; and
- employment that resides in the region was allocated to the *employment* row.

3.2.2 Impacts of the Project on the Regional Economy

The total and disaggregated annual impacts of the Project on the regional economy in terms of output, value-added, income and employment (in 2010 dollars) are shown in Table 3.2.

	Direct Effect	Production Induced	Consump. Induced	Total Flow-on	TOTAL EFFECT
OUTPUT (\$'000)	85,130	42,843	31,329	74,172	159,302
Type 11A Ratio	1.00	0.50	0.37	0.87	1.87
VALUE ADDED (\$'000)	40,778	15,501	14,756	30,256	71,035
Type 11A Ratio	1.00	0.38	0.36	0.74	1.74
INCOME (\$'000)	31,552	10,677	10,850	21,527	53,079
Type 11A Ratio	1.00	0.34	0.34	0.68	1.68
EMPL. (No.)	210	104	138	241	451
Type 11A Ratio	1.00	0.49	0.66	1.15	2.15

Table 3.2 Annual Regional Economic Impacts of the Project

In total, the Project is estimated to make up to the following contribution to the regional economy:

- \$159M in annual direct and indirect regional output or business turnover;
- \$71M in annual direct and indirect regional value added;
- \$53M in annual household income; and
- 451 direct and indirect jobs.

3.2.3 Multipliers

The Type 11A ratio multipliers for the Project range from 1.68 for income up to 2.15 for employment.

Capital intensive industries tend to have a high level of linkage with other sectors in an economy thus contributing substantial flow-on employment while at the same time only having a lower level of direct employment (relative to output levels). This tends to lead to a relatively high ratio multiplier for employment. A lower ratio multiplier for income (compared to employment) also generally occur as a result of comparatively higher wage levels in the mining sectors compared to incomes in the sectors that would experience flow-on effects from the Project. Capital intensive mining projects also typically have a relatively low ratio multiplier for value-added reflecting the relatively high direct value-added for the Project compared to that in flow-on sectors. The low output ratio multiplier largely reflects the high direct output value of the Project compared to those sectors that experience flow-on effects from the Project.

3.2.4 Main Sectors Affected

Flow-on impacts from the Project are likely to affect a number of different sectors of the regional economy. The sectors most impacted by output, value-added and income flow-ons are likely to be the:

- Structural metal products manufacturing;
- Agricultural and mining machinery manufacturing sector;
- Electricity sector;
- Health services sector;
- Wholesale trade sector;
- Retail trade sector;
- Other business services sector; and
- Hotels, cafes and restaurants sector.

Examination of the estimated direct and flow-on employment impacts gives an indication of the sectors in which employment opportunities will be generated (Table 3.3).

Sector	Average Direct Effects	Production induced	Consumption- induced	Total
Primary	0	0	1	1
Mining	210	2	0	212
Manufacturing	0	49	8	58
Utilities	0	4	2	6
Wholesale/Retail	0	14	30	44
Accommodation, cafes, restaurants	0	2	21	23
Building/Construction	0	2	1	3
Transport	0	7	5	12
Services	0	22	70	92
Total	210	104	138	451

 Table 3.3

 Sectoral Distribution of Total Regional Employment Impacts

Note: Totals may have minor discrepancies due to rounding.

Table 3.3 indicates that direct, production-induced and consumption-induced employment impacts of the Project on the regional economy are likely to have different distributions across sectors. Production-induced flow-on employment will occur mainly in the manufacturing sectors, wholesale/retail sectors and services sectors while consumption induced flow-on employment will be mainly in the services sectors, wholesale/retail sectors and accommodation/cafes/restaurants sectors.

Businesses that can provide the inputs to the production process at Myuna Colliery and/or the products and services required by employees will directly benefit from the Project by way of an increase in economic activity. However, because of the inter-linkages between sectors, many indirect businesses also benefit.

3.3 STATE ECONOMIC IMPACTS OF THE PROJECT

3.3.1 *Introduction*

The State economic impacts of the Project were assessed in the same manner as for estimation of the regional impacts. A new Myuna Coal Mine sector was inserted into a 2010 NSW input-output table in the same manner described in Section 3.2.1. The primary difference from the sector identified for the regional economy was that a greater level of expenditure was captured by NSW economy compared to the regional economy.

3.3.2 Impacts of the Project on NSW

The total and disaggregated annual impacts of the Project on the NSW economy in terms of output, value-added, income and employment (in 2010 dollars) are shown in Table 3.4.

	Direct Effect	Production Induced	Consump. Induced	Total Flow-on	TOTAL EFFECT
OUTPUT (\$'000)	85,130	54,394	82,432	136,826	221,956
Type 11A Ratio	1.00	0.64	0.97	1.61	2.61
VALUE ADDED (\$'000)	40,779	20,864	41,987	62,851	103,630
Type 11A Ratio	1.00	0.51	1.03	1.54	2.54
INCOME (\$'000)	31,553	15,493	24,028	39,521	71,074
Type 11A Ratio	1.00	0.49	0.76	1.25	2.25
EMPL. (No.)	210	179	343	522	732
Type 11A Ratio	1.00	0.85	1.64	2.49	3.49

Table 3.4
Annual State Economic Impacts of the Project

In total, the Project is estimated to make the following contribution to the NSW economy:

- \$222M in annual direct and indirect output or business turnover;
- \$104M in annual direct and indirect value added;
- \$71M in annual household income; and
- 732 direct and indirect jobs.

The impacts on the NSW economy are greater than for the regional economy, as the NSW economy is able to capture more mine and household expenditure, and there is a greater level of intersectoral linkages in the larger NSW economy.

3.4 PROJECT CESSATION

The Project will continue to stimulate demand in the regional and NSW economy leading to sustained business turnover in a range of sectors and ongoing employment opportunities. Conversely, the cessation of the mining operations in the future would result in a contraction in regional economic activity.

The magnitude of the regional economic impacts of cessation of the Project would depend on a number of interrelated factors at the time, including:

- The movements of workers and their families;
- Alternative development opportunities; and
- Economic structure and trends in the regional economy at the time.

Ignoring all other influences, the impact of Project cessation would depend on whether the workers and their families affected would leave the region. If it is assumed that some or all of the workers remain in the region, then the impacts of Project cessation would not be as severe compared to a greater level leaving the region. This is because the consumption-induced flow-ons of the decline would be reduced through the continued consumption expenditure of those who stay (Economic and Planning Impact Consultants, 1989). Under this assumption, the regional economic impacts of Project cessation would approximate the direct and production-induced effects in Table 3.2. However, if

displaced workers and their families leave the region then impacts would be greater and begin to approximate the total effects in Table 3.2.

The decision by workers, on cessation of the Project, to move or stay would be affected by a number of factors including the prospects of gaining employment in the local region compared to other regions, the likely loss or gain from homeowners selling, and the extent of "attachment" to the local region (Economic and Planning Impact Consultants, 1989).

To the extent that alternative development opportunities arise in the regional economy, the regional economic impacts associated with mining closure that arise through reduced production and employment expenditure can be substantially ameliorated and absorbed by the growth of the region. One key factor in the growth potential of a region is its capacity to expand its factors of productions by attracting investment and labour from outside the region (BIE, 1994). This in turn can depend on a region's natural endowments. In this respect, the Newcastle SSD region is highly prospective with considerable coal resources (NSW DPI, 2009). It is therefore likely that over time, new mining developments will occur, offering potential to strengthen and broaden the economic base of the region and hence buffer against impacts of the cessation of individual activities.

Ultimately, the significance of the economic impacts of cessation of the Project would depend on the economic structure and trends in the regional economy at the time. For example, if Project cessation takes place in a declining economy, the impacts might be more significant. Alternatively, if Project cessation takes place in a growing diversified economy where there are other development opportunities, the ultimate cessation of the Project may not be a cause for concern.

Nevertheless, given that it is not possible to foresee the likely circumstances within which Project cessation would occur, it is important that regional authorities and leaders take every advantage from the stimulation to regional economic activity and skills and expertise that the Project would maintain in the region.

4 CONCLUSION

A BCA identified a range of potential economic costs and benefits of the Project. Values were placed on production costs and benefits as well as external costs and benefits. The net production benefits of the Project were estimated at \$343M. The main external cost from the Project relate to greenhouse gas generation, estimated at \$166. External benefits associated with employment provided by the Project have been estimated at \$100M.

Overall, the Project is estimated to have net benefits of \$278M and hence is desirable and justified from an economic efficiency perspective.

A regional economic impact analysis, using input-output analysis, estimated that in total, the Project will contribute the following to the regional economy:

- \$159M in annual direct and indirect regional output or business turnover;
- \$71M in annual direct and indirect regional value added;
- \$53M in annual household income; and
- 451 direct and indirect and indirect direct jobs.

At the State level the Project will make the following contribution to the economy:

- \$222M in annual direct and indirect output or business turnover;
- \$104M in annual direct and indirect value added;
- \$71M in annual direct and indirect household income; and
- 732 direct and indirect jobs.

This stimulus would be felt across a range of sectors in the economy including the coal mining sector, structural metal products manufacturing sector, agricultural and mining machinery manufacturing sector, electricity sector, wholesale trade sector, retail trade sector, health sector, other business services sector, and hotels, cafes and restaurants sector.

A 21-year approval is being sought for the Project. On cessation of mining the economic stimulus provided by the Project will cease. The significance of these Project cessation impacts will depend on:

- The degree to which any displaced workers and their families remain within the region;
- The economic structure and trends in the regional economy at the time.
- Whether other mining developments or other opportunities in the region arise that allow employment of displaced workers.

Nevertheless, given the uncertainties about the circumstances within which Project cessation will occur, it is important for regional authorities and leaders to take every advantage from the stimulation to regional economic activity and skills and expertise that the Project brings to the region, to strengthen and broaden the region's economic base.

5 REFERENCES

Australian Government (2008) The Carbon Pollution Reduction Scheme: Australia's Low Pollution Future, White Paper.

Bayne, B. and West, G. (1988), *GRIT – Generation of Regional Input-Output Tables: Users Reference Manual.* Australian Regional Developments No. 15, Office of Local Government, Department of Immigration, Local Government and Ethnic Affairs, AGPS.

Bennett, J. (1996) *The Economic Efficiency of RACAC Resource Allocation Options: A Conceptual Framework*, prepared for the Resource and Conservation Assessment Council.

Bennett, J., van Bueren, M., and Whitten, S. (2004) Estimating society's willingness to pay to maintain viable rural communities, *Australian Journal of Agricultural and Resource Economics*, 48:3, pp. 487-512.

Bureau of Industry Economics (BIE) (1994), *Regional Development: Patterns and Policy Implications*. AGPS, Canberra.

Economic and Planning Impact Consultants (1989) *The Economic Impact of the Woodchipping Industry in South Eastern NSW.* Report to the Wilderness Society.

Gillespie Economics (2008) *Managing the Impacts of a Mine in the Southern Coalfield, A Survey of Community Attitudes*, prepared for Helensburgh Coal Pty Ltd, In Peabody (2009) Metropolitan Coal Project Responses to Planning Assessment Commissions Queries.

Gillespie Economics (2009) *Bulli Seam Operations Socio-Economic Assessment*, prepared for Illawarra Coal Holdings Pty Ltd.

Johnson, F. and W. Desvouges (1997). Estimating Stated Preferences with Rated-Pair Data: Environmental, Health and Employment Effects of Energy Programs. *Journal of Environmental Economics and Management*, 34, 75-99

James, D. and Gillespie, R. (2002) *Guidelines for Economic Effects and Evaluation for EIA*. Prepared for NSW Department of Urban Affairs and Planning.

Jensen, G. (1980) The concept of accuracy in regional input-output models. *International Regional Science Review*, 5(2), 139-54.

Jensen, R. and West, G. (1986), *Input-output for Practitioners: Theory and Applications*. Prepared for Department of Local Government and Administrative Services, Local Government and Regional Development Division, Australian Government Publishing Service.

Nordhaus, W. (2008) A Question of Balance: Weighing the Options on Global Warming Policies, Yales University Press, New Haven and London.

NSW Department of Primary Industries (DPI) (2009) New South Wales Coal Industry Profile.

NSW Treasury (2007) *Treasury Guidelines for Economic Appraisal*. Website: <u>www.treasury.nsw.gov.au</u>. Date Accessed: 26 July 2010.

Portney, P. (1994). .The Contingent Valuation Debate: Why Economists Should Care., *Journal of Economic Perspectives*, 8(4), 3-18

Powell, R. and Chalmers, L. (1995), *The Regional Economic Impact of Gibraltar Range and Dorrigo National Park*. A Report for the NSW National Parks and Wildlife Service.

Powell, R., Jensen, R. and Gibson, A. (1985), *The Economic Impact of Irrigated Agriculture in NSW*. A report to the NSW Irrigators' Council Limited.

Sinden, J. and Thampapillai, D. (1995) Introduction to Benefit Cost Analysis, Longman, Australia.

Stern, N. (2006) *Stern Review: The Economics of Climate Change – Executive Summary*, Cabinet Office – HM Treasury, <u>www.hm-treasury.gov.uk/media/8AC/F7/Executive_Summary.pdf</u>

Streeting, M. and Hamilton, C. (1991) *Economic analysis of the forests of south-eastern Australia*, prepared for the Resource Assessment Commission.

Tol, R. (2005) The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties, Energy Policy 33 (2005) p. 2064-2074.

Tol, R. (2006) *The Stern Review of the Economics of Climate Change: A Comment.* Economic and Social Research Institute, Hamburg, Vrije and Carnegie Mellon Universities.

West, G. (1993), Input-Output Analysis for Practitioners, Version 7.1, User's Guide.

Appendix 1 – Valuing Greenhouse Gas Emissions

To place an economic value on CO_2 -e emissions a shadow price of carbon is required that reflects its social costs. The social cost of carbon is the present value of additional economic damages now and in the future caused by an additional tonne of carbon emissions.

A prerequisite to valuing this environmental damage is scientific dose-response functions identifying how incremental emissions of CO_2 -e would impact climate change and subsequently impact human activities, health and the environment on a spatial basis. Only once these physical linkages are identified is it possible to begin to place economic values on the physical changes using a range of market and non market valuation methods. Neither the identification of the physical impacts of additional greenhouse gas nor valuation of these impacts is an easy task, although various attempts have been made using different climate and economic modelling tools. The result is a great range in the estimated damage costs of greenhouse gas.

The Stern Review: Economics of Climate Change (Stern 2006) acknowledged that the academic literature provides a wide range of estimates of the social cost of carbon. It adopted an estimate of US85/t CO₂-e for the "business as usual" case, i.e. an environment in which there is an annually increasing concentration of greenhouse gas in the atmosphere.

Tol (2006) highlights some significant concerns with Stern's damage cost estimates including:

- that in estimating the damage of climate change Stern has consistently selected the most pessimistic study in the literature in relation to impacts;
- Stern's estimate of the social cost of carbon is based on a single integrated assessment model, PAGE2002, which assumes all climate change impacts are necessarily negative and that vulnerability to climate change is independent of development;
- Stern uses a near zero discount rate which contravenes economic theory and the approach recommended by Treasury's around the world

All these have the effect of magnifying the social cost of carbon estimate, providing what Tol (2006) considers to be an outlier in the marginal damage cost literature.

Tol (2005) in a review of 103 estimates of the social cost of carbon from 28 published studies found that the range of estimates was right-skewed: the mode was US $0.55/t CO_2$ -e (in 1995 US\$), the median was US $$3.82/t CO_2$ -e, the mean US $$25.34/t CO_2$ -e and the 95th percentile US $$95.37/t CO_2$ -e. He also found that studies that used a lower discount rate and those that used equity weighting across regions with different average incomes per head, generated higher estimates and larger uncertainties. The studies did not use a standard reference scenario, but in general considered 'business as usual' trajectories.

Tol (2005) concluded that "it is unlikely that the marginal damage costs of carbon dioxide emissions exceed US\$14/t CO_2 -e and are likely to be substantially smaller than that". Nordhaus's (2008) modelling using the DICE-2007 Model suggests a social cost of carbon with no emissions limitations of US\$30 per tonne of carbon (/tC) (US\$8/t CO_2 -e).

An alternative method to trying to estimate the damage costs of carbon dioxide is to examine the price of carbon credits. This is relevant because emitters can essentially emit CO_2 -e resulting in climate change damage costs or may purchase credits that offset their CO_2 -e impacts, internalising the cost of the externality at the price of the carbon credit. The price of carbon credits therefore provides an alternative estimate of the economic cost of greenhouse gas. However, the price is ultimately a function of the characteristics of the scheme and the scarcity of permits etc and hence may or may not reflect the actual social cost of carbon.

In 2008 the price of carbon credits under the European Union Emissions Trading Scheme were around $\leq 24/t \text{ CO}_2$ -e, the equivalent of about US\$38 t CO₂-e while spot prices in the Chicago Climate Exchange were in the order of US\$3.95 t CO₂-e.

As of July 2008 the spot price under the NSW Government Greenhouse Gas Reduction Scheme was AUS\$7.25 t CO_2 -e. Prices under the Commonwealth Governments Greenhouse Friendly Voluntary Scheme were AUS\$8.30 t CO_2 -e and Australian Emissions Trading Unit (in advance of the Australian Governments Emissions Trading Scheme) was priced at AUS\$21 t CO_2 -e (Next Generation Energy Solutions pers. comms. 24 July 2008).

A National Emissions Trading Scheme was foreshadowed in Australia by 2010. While the ultimate design and hence liabilities under any scheme are still a work in progress, the National Emissions Trading Taskforce cited a carbon permit price of around AUS35 t CO₂-e.

The Carbon Pollution Reduction Scheme: Australia's Low Pollution Future White Paper (Australian Government,2008) cited a carbon permit price of AUS\$23/t CO₂-e in 2010 and AUS\$35/t CO₂-e in 2020 (in 2005) dollars for a 5% reduction in carbon pollution below 2000 levels by 2020.

Given the above information and the great uncertainty around damage cost estimates, a range for the social cost of greenhouse gas emissions from AUS8/ t CO₂-e to AUS40/ t CO₂-e was used in the sensitivity analysis in Section 2.6, with a conservatively high central value of AUS30/ t CO₂-e.

Appendix 2 – Sensitivity Testing (NPV A\$M)

INCREASE 20%	4%	7%	10%
Opportunity cost of land	\$357	\$278	\$226
Opportunity cost of capital	\$353	\$273	\$221
Capital costs	\$338	\$264	\$215
Operating costs	\$179	\$147	\$126
Decommissioning costs	\$357	\$278	\$227
Value of coal	\$653	\$497	\$393
Residual value of capital and land	\$362	\$281	\$228
Greenhouse costs @\$40/t	\$282	\$223	\$184
Employment benefits	\$378	\$298	\$246
DECREASE 20%			
Opportunity cost of land	\$357	\$278	\$227
Opportunity cost of capital	\$361	\$283	\$231
Capital costs	\$376	\$292	\$237
Operating costs	\$535	\$409	\$326
Decommissioning costs	\$357	\$278	\$226
Value of coal	\$61	\$59	\$60
Residual value of capital and land	\$352	\$276	\$225
Greenhouse costs @ \$8/t	\$521	\$399	\$319
Employment benefits	\$336	\$258	\$207

Appendix 3 – The GRIT System for Generating Input-Output Tables

"The Generation of Regional Input-Output Tables (GRIT) system was designed to:

- combine the benefits of survey based tables (accuracy and understanding of the economic structure) with those of non-survey tables (speed and low cost);
- enable the tables to be compiled from other recently compiled tables;
- allow tables to be constructed for any region for which certain minimum amounts of data were available;
- develop regional tables from national tables using available region-specific data;
- produce tables consistent with the national tables in terms of sector classification and accounting conventions;
- proceed in a number of clearly defined stages; and
- provide for the possibility of ready updates of the tables.

The resultant GRIT procedure has a number of well-defined steps. Of particular significance are those that involve the analyst incorporating region-specific data and information specific to the objectives of the study. The analyst has to be satisfied about the accuracy of the information used for the important sectors; in this case the non-ferrous metals and building and construction sectors. The method allows the analyst to allocate available research resources to improving the data for those sectors of the economy that are most important for the study. It also means that the method should be used by an analyst who is familiar with the economy being modelled, or at least someone with that familiarity should be consulted.

An important characteristic of GRIT-produced tables relates to their accuracy. In the past, survey-based tables involved gathering data for every cell in the table, thereby building up a table with considerable accuracy. A fundamental principle of the GRIT method is that not all cells in the table are equally important. Some are not important because they are of very small value and, therefore, have no possibility of having a significant effect on the estimates of multipliers and economic impacts. Others are not important because of the lack of linkages that relate to the particular sectors that are being studied. Therefore, the GRIT procedure involves determining those sectors and, in some cases, cells that are of particular significance for the analysis. These represent the main targets for the allocation of research resources in data gathering. For the remainder of the table, the aim is for it to be 'holistically' accurate (Jensen, 1980). That means a generally accurate representation of the economy is provided by the table, but does not guarantee the accuracy of any particular cell. A summary of the steps involved in the GRIT process is shown in Table A-1" (Powell and Chalmers, 1995).

Table A-1 The GRIT Method

Phase	Step	Action
PHASE 1		ADJUSTMENTS TO NATIONAL TABLE
	1	Selection of national input-output table (106-sector table with direct allocation of all imports, in basic values).
	2	Adjustment of national table for updating.
	3	Adjustment for international trade.
PHASE II		ADJUSTMENTS FOR REGIONAL IMPORTS
		(Steps 4-14 apply to each region for which input-output tables are required)
	4	Calculation of 'non-existent' sectors.
	5	Calculation of remaining imports.
PHASE III		DEFINITION OF REGIONAL SECTORS
	6	Insertion of disaggregated superior data.
	7	Aggregation of sectors.
	8	Insertion of aggregated superior data.
PHASE IV		DERIVATION OF PROTOTYPE TRANSACTIONS TABLES
	9	Derivation of transactions values.
	10	Adjustments to complete the prototype tables.
	11	Derivation of inverses and multipliers for prototype tables.
PHASE V		DERIVATION OF FINAL TRANSACTIONS TABLES
	12	Final superior data insertions and other adjustments.
	13	Derivation of final transactions tables.
	14	Derivation of inverses and multipliers for final tables.

Source: Bayne and West (1988)

Appendix P

Schedule of Land

Page	1	of	16
i ago		•••	

Lot	Schedule	DP
		37670
		45057
		70772
1		1018646
1		1039389
1		1058010
1		1074358
1		1088536
1		1092888
1		1094699
1		1107356
1		11539
1		12863
1		13120
1		13123
1		15556
1		16793
1		17781
1		18060
1		204202
1		204737
1		22842
1		23604
1		250973
1		251160
1		25985
1		262960
1		26549
1		26634
1		270423
1		28046
1		285482
1		317336
1		436113
1		500470

Lot	Schedule	DP
		505798
		533069
		542486
		548107
		551113
		551787
		561577
		566927
		567633
		568311
		579042
		583186
		602008
		608817
		621171
		622484
		629396
		632417
		651963
		704468
		704490
		727245
		727939
		746870
		778463
		803077
		806513
		807936
		814599
		861549
		870118
	С	27655
	F	27655
	Н	2458
	J	2458

 $\frac{1}{1} \frac{1}{1} \frac{1}$

 $\begin{array}{r}
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\$

1 1 1

Lot	Schedule	DP
10		1022724
10		1055349
10		1071069
10		11287
10		11995
10		13123
10		15556
10		16793
10		17367
10		17781
10		22842
10		23604
10		248691
10		26634
10		28046
10		28068
10		582048
10		808724
10	С	27655
10	D	2458
10	ш	2458
10	ш	27655
10	F	27655
10	J	27655
100		1088711
100		11539
100		11995
100		13123
100		15556
100		17367
100		713777
100		790729
100		8055
100		863278
100		880089

Lot	Schedule	DP
1003		650194
101		1014736
101		1088711
101		1119224
101		11539
101		11995
101		15556
101		17367
101		558722
101		730402
101		790729
101		8055
101		844302
101		863278
101		880089
102		1014736
102		1088711
102		1119224
102		11287
102		11539
102		11995
102		13123
102		17367
102		238489
102		558722
102		730402
102		8055
102		844302
103		1014736
103		1088711
103		1119224
103		11287
103		11539
103		11995
103		13123

	Page	2	of	16
--	------	---	----	----

Lot	Schedule	DP
103		15556
103		17367
103		238489
103		730402
103		8055
104		1088711
104		1119224
104		11287
104		11539
104		11995
104		13123
104		17367
104		238489
104		8055
105		1088711
105		1119224
105		11287
105		11539
105		11995
105		13123
105		15556
105		17367
105		238489
105		8055
106		1088711
106		1119224
106		11287
106		11539
106		11995
106		13123
106		15556
106		17367
106		8055
107		1088711
107		11539

Lot	Schedule	DP
107		11995
107		13123
107		15556
107		17367
107		8055
108		1088711
108		11287
108		11539
108		11995
108		13123
108		17367
108		8055
109		1088711
109		11287
109		11995
109		13123
109		15556
109		17367
109		8055
11		1022724
11		1050120
11		11287
11		11995
11		13120
11		13123
11		15556
11		16793
11		17367
11		22842
11		23604
11		248691
11		26634
11		28046
11		582048
11		625009

Lot	Schedule	DP
11		701829
11		803842
11		808724
11	С	27655
11	D	2458
11	E	2458
11	E	27655
11	F	27655
11	J	27655
110		1088711
110		11995
110		13123
110		15556
110		17367
110		8055
111		1088711
111		1116254
111		13123
111		15556
111		17367
111		629441
111		8055
112		1088711
112		1116254
112		11287
112		11995
112		13123
112		15556
112		17367
112		629441
112		8055
113		1088711
113		1116254
113		11995
113		13123

Lot	Schedule	DP
113		15556
113		17367
113		8055
114		1088711
114		11995
114		13123
114		15556
114		17367
114		8055
115		1088711
115		11287
115		11995
115		13123
115		15556
115		17367
115		8055
116		1088711
116		11287
116		11995
116		13123
116		15556
116		17367
116		8055
117		1088711
117		11287
117		11995
117		13123
117		15556
117		17367
117		8055
118		1088711
118		11287
118		11995
118		13123
118		15556

raye 5 01 10	Page	3	of	16
--------------	------	---	----	----

Lot	Schedule	DP
118		17367
119		1088711
119		11287
119		11995
119		13123
119		17367
119		8055
12		1022724
12		1050193
12		11287
12		11995
12		13120
12		13123
12		15556
12		16793
12		17367
12		22842
12		23604
12		248691
12		26634
12		582049
12		621361
12		625009
12		701829
12		716529
12	С	27655
12	D	2458
12	E	2458
12	E	27655
12	F	27655
12	J	27655
120		1088711
120		11287
120		11539
120		11995

Lot	Schedule	DP
120		13123
120		15556
120		17367
120		8055
121		1088711
121		11287
121		11539
121		11995
121		13123
121		15556
121		17367
121		8055
121		836139
122		1088711
122		11287
122		11539
122		11995
122		13123
122		15556
122		17367
122		8055
123		1088711
123		11287
123		11539
123		11995
123		13123
123		15556
123		17367
123		8055
124		1088711
124		11287
124		11539
124		11995
124		13123
124		15556

Lot	Schedule	DP
124		17367
124		8055
125		11287
125		11539
125		11995
125		13123
125		15556
125		17367
125		8055
126		11287
126		11539
126		13123
126		15556
126		17367
126		8055
127		11539
127		13123
127		15556
127		17367
127		8055
1271		1010499
1272		1010499
128		11287
128		11539
128		13123
128		15556
128		17367
128		8055
129		11287
129		13123
129		15556
129		17367
129		8055
13		11287
13		11995

Lot	Schedule	DP
13		13120
13		13123
13		15556
13		17367
13		22842
13		23604
13		248691
13		26634
13		28068
13		582049
13		625009
13		701829
13		716529
13	С	27655
13	D	2458
13	ш	2458
13	E	27655
13	J	27655
130		11287
130		13123
130		15556
130		17367
130		8055
131		11287
131		13123
131		15556
131		17367
131		249719
131		8055
131		859693
132		11287
132		15556
132		17367
132		249719
132		6945

1 490 4 01 10	Page	4	of	16
---------------	------	---	----	----

Lot	Schedule	DP
132		8055
132		859693
133		11287
133		15556
133		17367
133		249719
133		6945
133		8055
134		11287
134		15556
134		17367
134		249719
134		8055
1341		844700
1342		844700
135		11287
135		15556
135		17367
135		249719
135		8055
136		11287
136		15556
136		17367
136		249719
136		8055
137		11287
137		15556
137		17367
137		249719
137		8055
138		11287
138		13123
138		15556
138		17367
138		8055

Lot	Schedule	DP
139		13123
139		15556
139		17367
139		8055
1391		580454
1392		580454
14		11287
14		11995
14		13120
14		13123
14		15556
14		17367
14		22842
14		23604
14		248691
14		26634
14		28068
14		538780
14		582049
14	С	27655
14	D	2458
14	E	2458
14	E	27655
14	J	27655
140		13123
140		15556
140		17367
140		656807
140		8055
141		1105594
141		11287
141		13123
141		15556
141		17367
141		852383

Lot	Schedule	DP
142		1105594
142		11287
142		13123
142		15556
142		17367
142		8055
142		852383
143		1105594
143		11287
143		13123
143		17367
144		11287
144		13123
144		17367
144		8055
145		11287
145		13123
145		17367
145A		17367
146		11539
146		13123
146		17367
1461		856874
147		11287
147		11539
147		13123
147		17367
147		8055
148		11287
148		11539
148		13123
148		17367
1482		562711
149		11287
149		11539

Lot	Schedule	DP
149		13123
149		17367
15		11287
15		11995
15		13120
15		13123
15		15556
15		22842
15		23604
15		248691
15		26634
15		28068
15		538780
15		582049
15	С	27655
15	D	2458
15	E	2458
15	E	27655
15	J	27655
150		11287
150		11539
150		13123
150		17367
150		6945
151		11287
151		11539
151		13123
151		17367
151		6945
151		734618
151		854877
152		11539
152		13123
152		17367
152		854877

raye 5 01 10	Page	5	of	16
--------------	------	---	----	----

Lot	Schedule	DP
153		11287
153		11539
153		13123
153		17367
154		11287
154		11539
154		13123
154		17367
154		8055
155		11287
155		11539
155		13123
155		17367
155		8055
156		11287
156		11539
156		13123
156		17367
156		8055
157		11287
157		11539
157		13123
157		8055
1572		1043970
158		11287
158		11539
158		13123
158		17367
158		8055
159		11539
159		13123
159		17367
159		8055
16		11287
16		11995

Lot	Schedule	DP
16		13120
16		13123
16		15556
16		22842
16		23604
16		248691
16		26634
16		573091
16		582050
16	С	27655
16	D	2458
16	E	2458
16	E	27655
16	F	2458
16	J	27655
160		11287
160		11539
160		13123
160		17367
161		11287
161		11539
161		13123
161		17367
162		11287
162		11539
162		13123
162		17367
163		11287
163		11539
163		13123
163		17367
164		11287
164		11539
164		13123
164		17367

Lot	Schedule	DP
164		8055
165		11287
165		11539
165		13123
165		17367
165		8055
166		11287
166		13123
166		17367
166		8055
167		11287
167		13123
167		8055
168		11287
168		13123
168		15556
168		8055
169		8055
1691		1110053
1692		1110053
1693		1110053
17		11287
17		11995
17		13120
17		13123
17		15556
17		22842
17		23604
17		248691
17		26634
17		28068
17		573091
17		582050
17	С	27655
17	D	2458

Lot	Schedule	DP
17	E	2458
17	E	27655
17	F	2458
17	J	27655
170		8055
171		8055
172		11287
172		8055
173		11287
173		15556
173		8055
174		11287
174		8055
175		11287
175		8055
176		11287
176		15556
176		8055
177		11287
177		8055
178		11287
178		8055
179		11287
179		15556
179		8055
18		11287
18		11995
18		13120
18		13123
18		15556
18		22842
18		23604
18		248691
18		26634
18		28068

Lot	Schedule	DP
18		527120
18		582050
18	С	27655
18	D	2458
18	E	2458
18	E	27655
18	F	2458
18	J	27655
180		11287
180		8055
181		11287
181		8055
182		11287
183		11287
183		8055
184		11287
184		8055
185		11287
185		15556
185		8055
186		11287
186		15556
186		8055
187		11287
187		15556
188		11287
189		11287
189		8055
19		11287
19		11995
19		13120
19		13123
19		15556
19		22842
19		23604

Lot	Schedule	DP
19		248691
19		26634
19		582051
19	С	27655
19	D	2458
19	E	27655
19	F	2458
190		11287
190		8055
191		1046133
191		11287
191		8055
191		880592
192		1046133
192		11287
192		8055
192		880592
193		11287
193		8055
194		11287
194		8055
195		11287
195		8055
196		11287
196		8055
197		11287
197		8055
198		11287
198		8055
199		11287
199		8055
2		1013763
2		1018646
2		1058010
2		1074358

Lot	Schedule	DP
2		1094699
2		1107356
2		11539
2		13120
2		13123
2		15556
2		16793
2		17367
2		17781
2		18060
2		204202
2		204737
2		22842
2		23604
2		251160
2		25985
2		262960
2		26634
2		270423
2		28046
2		28068
2		285482
2		311027
2		375836
2		500470
2		505798
2		512166
2		533069
2		542486
2		548107
2		548546
2		551787
2		561577
2		567633
2		568311

Lot	Schedule	DP	
2		568493	
2		579042	
2		583186	
2		585142	
2		597631	
2		614183	
2		621171	
2		629396	
2		632417	
2		634668	
2		704490	
2		746870	
2		778463	
2		803077	
2		806513	
2		807936	
2		810981	
2		814599	
2		861549	
2		870118	
2	С	27655	
2	E	27655	
2	F	27655	
2	Н	2458	
20		1075811	
20		11995	
20		13120	
20		13123	
20		15556	
20		22842	
20		23604	
20		248691	
20		26634	
20		582051	
20	С	27655	
Page	7	of	16
------	---	----	----
------	---	----	----

Lot	Schedule	DP
20	D	2458
20	E	27655
20	F	2458
200		11287
200		600959
200		8055
200		843074
201		1093288
201		700345
201		8055
201		843074
2011		1052556
2012		1052556
202		1020262
202		1093288
202		11287
202		700345
202		8055
203		1020262
203		11287
203		8055
204		1017819
204		11287
204		8055
205		1017819
205		11287
205		8055
206		11287
206		15556
2061		1011261
2062		1011261
207		11287
207		8055
208		11287
208		8055

Lot	Schedule	DP
209		11287
209		8055
21		1029069
21		1075811
21		11995
21		13120
21		13123
21		15556
21		17367
21		23604
21		248691
21		27749
21		582052
21	С	27655
21	D	2458
21	ш	27655
21	F	2458
21	F	27655
21	J	27655
210		11287
210		8055
211		11287
211		8055
212		11287
212		8055
213		11287
214		11287
215		11287
215		8055
216		8055
2161		580453
2162		580453
2163		580453
2164		580453
2165		580455

Lot	Schedule	DP
2166		580455
2167		580455
217		11287
217		8055
218		11287
218		8055
219		11287
219		8055
22		1016699
22		1029069
22		13120
22		13123
22		15556
22		23604
22		248691
22		27749
22		582052
22	С	27655
22	D	2458
22	E	27655
22	F	2458
22	F	27655
220		11287
220		8055
221		1066814
221		11287
221		8055
222		1066814
222		11287
222		8055
222		833454
223		1004649
223		11287
223		8055
223		833454

Lot	Schedule	DP
224		1004649
224		11287
224		8055
225		11287
225		8055
226		11287
226		8055
227		11287
227		8055
228		12507
228		8055
229		8055
2291		554538
2292		554538
23		1016699
23		11287
23		13120
23		13123
23		15556
23		23604
23		248691
23		26634
23		27749
23		582052
23	С	27655
23	D	2458
23	ш	27655
23	F	2458
23	F	27655
230		11287
230		8055
231		11287
231		8055
232		11287
232		8055

Page 8 of	t 16
-----------	------

Lot	Schedule	DP
233		11287
233		8055
234		11287
234		8055
235		11287
235		8055
236		11287
236		8055
237		8055
2371		1042396
2372		1042396
238		8055
2381		574218
2382		574218
239		11287
239		8055
24		11287
24		13120
24		13123
24		15556
24		17367
24		23604
24		27749
24		582052
24	С	27655
24	D	2458
24	E	27655
24	F	27655
240		8055
241		8055
242		8055
243		8055
244		8055
245		8055
246		8055

Lot	Schedule	DP
247		12507
247		8055
248		12507
248		8055
249		12507
249		8055
25		11287
25		11995
25		13120
25		13123
25		15556
25		17367
25		23604
25		27749
25		582053
25	С	27655
25	D	2458
25	E	27655
250		12507
250		8055
251		8055
252		8055
253		8055
254		8055
255		8055
256		8055
257		12507
259		8055
26		11287
26		11995
26		13120
26		13123
26		15556
26		23604
26		27749

Lot	Schedule	DP
26		582053
26	С	27655
26	D	2458
26	E	27655
26	F	27655
260		8055
264		11287
265		11287
266		11287
267		11287
268		11287
27		11287
27		11995
27		13120
27		13123
27		15556
27		23604
27		27749
27		582054
27	С	27655
27	D	2458
27	F	27655
271		845831
272		845831
274		11287
274		755207
275		11287
276		11287
277		11287
278		11287
279		11287
28		11287
28		11995
28		13120
28		13123

Lot	Schedule	DP
28		15556
28		23604
28		27749
28		582054
28	С	27655
28	D	2458
28	E	27655
280		11287
284		11287
285		11287
286		11287
287		11287
288		11287
29		11287
29		11995
29		13120
29		13123
29		15556
29		23604
29		27749
29		548114
29		582054
29	С	27655
29	D	2458
29	E	27655
29	F	2458
3		1018646
3		1074358
3		1079794
3		11539
3		11995
3		13120
3		13123
3		15556
3		16793

Page	9	of	16
------	---	----	----

Lot	Schedule	DP
3		17781
3		18060
3		204737
3		22842
3		23604
3		250973
3		251160
3		25985
3		262960
3		26549
3		26634
3		270423
3		28046
3		28068
3		285482
3		315830
3		375836
3		533069
3		548107
3		548546
3		561577
3		568311
3		579042
3		621171
3		627231
3		629396
3		778463
3		803077
3		814599
3		861549
3		981104
3	С	27655
3	E	27655
3	F	27655
3	Н	2458

Lot	Schedule	DP
30		11287
30		11995
30		13120
30		13123
30		15556
30		23604
30		27749
30		548114
30		582055
30	С	27655
30	D	2458
30	E	27655
30	F	2458
302		11287
303		11287
304		11287
305		11287
306		11287
307		11287
308		11287
309		658235
31		1083788
31		11287
31		11995
31		13120
31		13123
31		15556
31		23604
31		27749
31		548114
31		582055
31	С	27655
31	D	2458
31	E	27655
31	F	2458

Lot	Schedule	DP
313		11287
314		11287
315		11287
316		11287
316		755242
317		11287
318		11287
319		11287
32		1083788
32		11287
32		11995
32		13120
32		13123
32		15556
32		23604
32		524726
32		582055
32	С	27655
32	D	2458
32	E	27655
32	F	2458
320		11287
321		11287
322		11287
323		11287
324		11287
325		11287
326		11287
327		11287
328		11287
33		11287
33		11995
33		13120
33		13123
33		15556

Lot	Schedule	DP
33		23604
33		524726
33		582056
33	С	27655
33	D	2458
33	F	2458
330		710063
34		11287
34		11539
34		11995
34		13120
34		13123
34		15556
34		23604
34		27749
34		582056
34	D	2458
34	F	2458
340		11287
341		11287
341		556246
342		11287
342		556246
343		11287
343		556246
344		11287
345		11287
346		11287
347		11287
348		11287
349		11287
35		11287
35		11539
35		11995
35		13120

Lot	Schedule	DP
35		13123
35		17367
35		27749
35		582056
35	С	27655
35	D	2458
35	F	2458
350		11287
351		11287
351		840188
352		11287
352		840188
353		11287
3530		555858
3531		555858
354		11287
355		11287
356		11287
357		11287
358		11287
359		11287
36		11287
36		11995
36		13120
36		13123
36		15556
36		17367
36		27749
36		582056
36	С	27655
36	D	2458
36	F	2458
360		11287
361		11287
363	1	11287

Lot	Schedule	DP
364		11287
365		11287
365		46746
366		11287
3671		874598
3672		874598
37		11287
37		11539
37		11995
37		13120
37		13123
37		15556
37		17367
37		27749
37		582057
37	С	27655
37	D	2458
370		11287
371		11287
372		11287
373		11287
374		11287
374		727253
375		11287
376		11287
376		727253
377		11287
378		11287
379		11287
38		11287
38		11539
38		11995
38		13120
38		13123
38		15556

Lot	Schedule	DP
38		17367
38		27749
38		582057
38	С	27655
38	D	2458
380		11287
380		755242
3810		1049904
3811		1049904
3812		1049904
383		755242
385		755242
386		727264
386		755242
387		755242
388		727264
388		755242
389		755242
39		11287
39		11539
39		11995
39		13120
39		13123
39		15556
39		17367
39		27749
39		582057
39	С	27655
39	D	2458
390		755242
391		729419
391		755242
392		755242
393		755242
394		11287

Lot	Schedule	DP
394		755242
395		755242
396		755242
397		755242
398		755242
399		755242
4		1018646
4		1063845
4		1074358
4		11539
4		11995
4		13120
4		13123
4		15556
4		16793
4		17367
4		17781
4		18060
4		23604
4		248691
4		250973
4		251160
4		25985
4		262960
4		26634
4		270423
4		28046
4		28068
4		548107
4		568311
4		778463
4		981106
4	С	27655
4	E	27655
4	F	27655

Lot	Schedule	DP
4	G	2458
4	Н	2458
40		1102122
40		11287
40		11539
40		11995
40		13120
40		13123
40		15556
40		17367
40		27749
40		582057
40	С	27655
40	D	2458
402		48820
409		11287
41		1073017
41		11287
41		11995
41		13120
41		13123
41		15556
41		17367
41		27749
41		539413
41		559640
41		582058
41		872109
41	С	27655
41	D	2458
410		11287
411		11287
412		11287
413		11287
413		755242

Lot	Schedule	DP
414		11287
414		755242
415		755242
416		755242
417		755242
418		755242
419		755242
42		1073017
42		11287
42		11995
42		13120
42		13123
42		15556
42		17367
42		27749
42		539413
42		582058
42		872109
42	С	27655
42	D	2458
420		755242
421		755242
423		755242
424		755242
43		1073017
43		11287
43		11995
43		13120
43		13123
43		15556
43		17367
43		27749
43		539413
43		582058
43	С	27655

Lot	Schedule	DP
43	D	2458
430		12507
437		12507
439		755242
44		11287
44		11995
44		13120
44		13123
44		15556
44		17367
44		27749
44		548118
44		582058
44		862349
44	С	27655
44	D	2458
45		1109834
45		11287
45		11995
45		13120
45		13123
45		15556
45		654334
45	С	27655
45	D	2458
450		818534
46		11287
46		11995
46		13120
46		13123
46		15556
46		27749
46		654032
46		859972
46	С	27655

Lot	Schedule	DP
466		1138964
469		1138964
47		11287
47		11995
47		13120
47		13123
47		15556
47		17367
47		27749
47		755207
47		859972
471		1138964
472		1138964
48		11287
48		11995
48		13120
48		13123
48		15556
48		17367
48		27749
48	С	27655
49		11287
49		11995
49		13120
49		13123
49		15556
49		17367
49		27749
49	С	27655
5		1018646
5		1063845
5		1074358
5		11287
5		11539
5		11995

Lot	Schedule	DP
5		13120
5		13123
5		15556
5		16793
5		17367
5		17781
5		18060
5		22842
5		23604
5		248691
5		250973
5		251160
5		25985
5		262960
5		26634
5		270423
5		28046
5		285482
5		519261
5		582046
5		778463
5		981103
5	С	27655
5	E	2458
5	E	27655
5	F	27655
50		11287
50		11995
50		13120
50		13123
50		15556
50		17367
50		27749
50	С	27655
500		755242

Lot	Schedule	DP
51		11287
51		11995
51		13120
51		13123
51		15556
51		17367
51		27749
51		785435
51		792987
51	С	27655
517		12507
518		12507
519		12507
52		11287
52		11995
52		13120
52		15556
52		17367
52		27749
52		785435
52		792987
52	С	27655
520		12507
521		1054794
521		12507
521		543408
522		1054794
522		12507
522		543408
523		12507
524		12507
525		12507
526		12507
527		12507
528		12507

Lot	Schedule	DP
529		12507
53		11287
53		11995
53		13120
53		15556
53		17367
53		27749
53		755207
53		785435
53	С	27655
530		12507
531		12507
532		12507
533		12507
534		12507
536		12507
537		12507
538		12507
539		12507
54		11287
54		11995
54		13120
54		13123
54		15556
54		17367
54		27749
54		785435
54	С	27655
540		12507
541		12507
542		12507
543		12507
544		12507
545		12507
55		11287

Lot	Schedule	DP
55		11995
55		13120
55		13123
55		15556
55		17367
55		27749
55		785435
55	С	27655
557		12507
56		11287
56		11995
56		13120
56		13123
56		15556
56		17367
56		27749
56	С	27655
57		11287
57		11995
57		13120
57		15556
57		17367
57		27749
58		11287
58		11995
58		13120
58		15556
58		17367
58		27749
582		12507
583		12507
584		12507
585		12507
586		12507
587		12507

Lot	Schedule	DP
588		12507
589		12507
59		11287
59		11995
59		13120
59		15556
59		17367
59		27749
590		12507
591		12507
592		12507
593		12507
594		12507
595		12507
596		12507
597		12507
598		12507
599		12507
6		1018646
6		11287
6		11539
6		11995
6		13120
6		13123
6		15556
6		16793
6		17367
6		17781
6		18060
6		22842
6		248691
6		251160
6		25985
6		26549
6		26634

	Lot	Schedule	DP
6)		270423
6	;		28046
6)		285482
6	5		519261
6)		582047
6	5	С	27655
6	5	ш	2458
6	5	ш	27655
6	5	F	27655
6	60		1074161
6	60		11287
6	60		11995
6	60		13120
6	60		15556
6	60		17367
6	60		27749
6	600		12507
6	601		12507
6	602		12507
6	603		12507
6	604		12507
6	605		12507
6	606		12507
6	607		12507
6	6081		806879
6	6082		806879
6	609		12507
6	51		1074161
6	51		11995
6	51		15556
6	51		17367
6	51		27749
6	510		12507
6	511		12507
6	511		816224

Lot	Schedule	DP
612		12507
612		816224
613		12507
613		816224
614		12507
615		12507
6161		870274
6162		870274
617		12507
617		821603
618		12507
619		12507
62		1074161
62		11995
62		15556
62		17367
62		27749
620		12507
621		12507
6221		819628
6222		819628
6231		806876
6232		806876
624		12507
6271		792607
6272		792607
6273		792607
628		12507
629		12507
63		1074161
63		11995
63		13123
63		17367
63		27749
630		12507

Lot	Schedule	DP
631		12507
631		872639
632		12507
632		872639
633		12507
634		12507
64		11995
64		13123
64		15556
64		17367
64		27749
65		11995
65		13123
65		15556
65		17367
65		27749
66		11539
66		11995
66		13123
66		15556
66		17367
66		27749
661		12507
662		12507
663		12507
664		12507
665		12507
666		12507
667		12507
668		12507
669		12507
67		11539
67		11995
67		13123
67		15556

Lot	Schedule	DP
67		17367
67		27749
670		12507
671		12507
672		12507
673		12507
674		12507
675		12507
677		12507
678		12507
679		12507
68		11539
68		11995
68		12507
68		13123
68		15556
68		17367
68		27749
680		12507
681		12507
682		12507
683		12507
684		12507
685		12507
686		12507
687		12507
688		12507
689		12507
69		11539
69		11995
69		12507
69		13123
69		15556
69		17367
69		27749

Lot	Schedule	DP
690		12507
691		12507
692		12507
693		12507
694		12507
695		12507
696		12507
697		12507
698		12507
699		12507
7		11287
7		11995
7		13120
7		13123
7		15556
7		16793
7		17367
7		17781
7		18060
7		22842
7		248691
7		26634
7		28046
7		285482
7		524374
7		582047
7	А	2458
7	С	27655
7	D	2458
7	E	2458
7	E	27655
7	F	27655
70		11539
70		12507
70		13123

Lot	Schedule	DP
70		15556
70		17367
70		27749
700		12507
7001		1077055
7005		1066246
701		12507
7015		1119454
7016		1021267
7021		584905
7022		584905
703		12507
7033		1021485
7074		1029683
71		11539
71		11995
71		12507
71		13123
71		15556
71		17367
71		568495
71		618457
72		11539
72		11995
72		13123
72		15556
72		17367
72		568495
721		537942
721		737050
722		537942
722		737050
729		12507
73		11539
73		11995

Lot	Schedule	DP
73		13123
73		15556
73		17367
73		568495
730		12507
730		836821
731		836821
74		11539
74		11995
74		13123
74		15556
74		17367
746		12507
747		12507
748		12507
749		12507
75		11995
75		12507
75		13123
75		15556
75		17367
750		12507
751		1099436
751		12507
752		1099436
752		12507
753		1099436
753		12507
754		12507
755		12507
756		12507
757		12507
758		12507
76		11995
76		12507

Lot	Schedule	DP
76		13123
76		15556
76		17367
76		8055
760		12507
77		11995
77		13123
77		15556
77		17367
771		619779
772		619779
773		619779
78		11995
78		13123
78		17367
78		8055
781		1060935
782		1060935
79		11287
79		11995
79		13123
79		15556
79		17367
8		11287
8		11995
8		13120
8		13123
8		15556
8		16793
8		17367
8		17781
8		22842
8		248691
8		26634
8		28046

Lot	Schedule	DP
8		524374
8		582048
8		931022
8	С	27655
8	D	2458
8	E	2458
8	E	27655
8	F	27655
80		11287
80		11995
80		13123
80		17367
801		1038413
802		1038413
81		11287
81		11995
81		13123
81		17367
81		620426
81		8055
811		816616
812		816616
82		11995
82		13123
82		17367
82		620426
82		740968
821		588493
822		588493
83		11287
83		11995
83		13123
83		17367
83		620426
831		598304

Lot	Schedule	DP
832		598304
833		598304
84		11287
84		11995
84		13123
84		17367
841		810843
842		810843
843		810843
844		810843
845		810843
846		810843
847		810843
848		810843
849		810843
85		11287
85		11995
85		13123
85		17367
850		810843
851		810843
86		11287
86		11995
86		13123
86		15556
86		17367
861		557889
862		557889
87		11287
87		11995
87		13123
87		17367
87		8055
871		733417
872		733417

Lot	Schedule	DP
873		733417
88		11287
88		11995
88		13123
88		15556
88		17367
88		8055
89		11287
89		11995
89		13123
89		17367
89		8055
9		11287
9		11995
9		13120
9		13123
9		15556
9		16793
9		17367
9		17781
9		22842
9		248691
9		26634
9		28046
9		28068
9		582048
9	С	27655
9	D	2458
9	E	2458
9	E	27655
9	F	27655
90		11287
90		11995
90		13123
90		17367

Page 1	6	of	16
--------	---	----	----

Lot	Schedule	DP
90		8055
91		11287
91		11995
91		13123
91		17367
91		800646
91		8055
91		880881
911		747550
912		747550
92		11287
92		11995
92		13123
92		17367
92		800646
92		8055
93		11287
93		11995
93		13123
93		17367
93		8055
94		11287
94		11995
94		13123
94		17367
94		8055
95		11287
95		11995
95		13123
95		17367
95		8055
96		11287
96		11995
96		13123
96		17367

Lot	Schedule	DP
96		8055
97		11287
97		11995
97		13123
97		17367
97		8055
98		11287
98		11995
98		13123
98		15556
98		17367
98		8055
99		11995
99		13123
99		15556
99		17367
99		8055
А		336081
А		340249
А		365476
А		367461
А		380066
А		391075
В		25385
В		327578
В		336081
В		340249
В		365476
В		367461
В		380066
В		391075
В		395654
С		25385
С		327578
С		365476

Lot	Schedule	DP
CL		U.
D		25385
D		356160
E		25385