4.2.10 Operational Requirements

At the design stage, the DSC requires designers to specifically outline all designer requirements for operation and response actions that must be met to ensure the ongoing safety of the dam. Criteria for mechanical and electrical works (including pumps) should also be specified and align with the considerations set out in the DSC's Guidance Sheet on *General Dam Safety Considerations - DSC3G*. Designers' operational requirements are to be highlighted in the Operation and Maintenance Manual prepared for each tailings dam.

4.2.11 Upstream / Centre Lift Tailings Dams

While upstream tailings dams can be the cheapest method of construction, they require the highest level of operator skill and owner diligence in order to maintain their stability. They also need to be subject to strict design and operational constraints to ensure their ongoing safety. The DSC has identified several particularly critical issues, which require an appropriate minimum standard of design (and operation) to satisfy the DSC's requirements for this type of dam, as follows:

- · A separate geotechnical report should be prepared;
- Results of a flownet analysis, detailing all assumptions, should be undertaken;
- Operating pond levels and trigger levels, which signal "unsafe" phreatic surfaces, should be determined and documented;
- Tailings discharge requirements for safe operation of the dam should be established;
- A planned, and safe maximum, rate of rise of the dam should be determined:
- Design parameters, values and requirements for seepage control, should be assessed and documented;
- Specifications for surveillance (including monitoring instrumentation) should be determined and outlined; and
- A conceptual rehabilitation plan should be prepared.

New dams should have either a suitably permeable foundation or an upstream drainage blanket. If this requirement is not met for existing dams then the Operational Pond Limit should be determined by flownet analyses based on measured permeability values. In the absence of a flownet analysis, or underdrainage system, the DSC will require that the operational pond not approach closer to the embankment than a distance which is 10 times the height of the embankment.

Flood handling capabilities of these types of tailings dams are particularly crucial for their long term safe operation and they should meet the criteria specified in Table 3.

The rate of rise of an upstream or centre-lift dam should not exceed 5 m per year. Proposals to exceed this rate should consider a total stress stability analysis and must incorporate additional monitoring aimed at fully understanding the pore pressures being developed in the dam.

DSC3F

http://www.damsafety.nsw.gov.au

Page 11 of 18

4.3 Construction

Owners of all prescribed tailings dams are required to comply with the provisions of the pertinent chapters of the ANCOLD Guidelines on Dam Safety Management – August 2003, and ANCOLD Guidelines on Tailings Dam Design, Construction and Operation – 1999 which have been adopted by the DSC.

The DSC requires dam designers to be integrally involved during the construction of tailings dams and to approve any design changes made during construction. This involvement is to be signed off formally by the Owner's representative in a Construction Certificate to be provided to the DSC at the end of each stage, and conclusion, of construction. Work-As-Executed Drawings and a Construction Report are to be provided to the DSC at the same time (refer pertinent sections of DSC Guidance Sheets DSC2A, DSC2B and DSC3G for details).

4.4 Operation, Maintenance and Emergency Management

Owners of all prescribed tailings dams are generally required to meet, in full, the provisions of the DSC's Guidance Sheets DSC2F, DSC2G and DSC3G. These requirements are in line with the pertinent chapters of the ANCOLD Guidelines on Dams Safety Management – August 2003, and ANCOLD Guidelines on Tailings Dam Design, Construction and Operation – 1999 which have been adopted by the DSC, subject to the following qualifications:

- Since operational rules are important for the ongoing safety of tailings dams, an Operation and Maintenance (O&M) Manual is to be compiled, normally prior to commissioning of a tailings dam. The exception to this requirement is for upstream and centre lift construction tailings dams where, as a minimum, the Operational Management Section of the Manual is to be forwarded at the design stage for DSC consideration. This action is required for these types of dams as design operational rules are crucial to their ongoing safety;
- Operational Management Plans within the O&M Manual should specifically highlight all designer requirements for operation and response actions that must be met to ensure the ongoing safety of the dam. The O&M Manual should specify all requirements for operators and the minimum level of operator training with alternatives (e.g. consultant assistance) whenever these levels are not available;
- Operation and Maintenance Manuals for tailings dams are to be updated at least every two years with the updated copies forwarded to the DSC for its information;
- The DSC requires a Dam Safety Emergency Plan (DSEP) to be prepared for prescribed tailings dams where non-itinerant persons could be at risk. The DSEP is to include an appropriate dambreak study with the conservative assumption of liquid tailings flow in the event of dam failure (refer DSC2G for details);
- The DSC requires a modified DSEP to be prepared for all other prescribed tailings dams (refer DSC2G for details);

DSC3F

http://www.damsafety.nsw.gov.au

Page 12 of 18

> DSEPs are to emphasise planning and strategies to minimise dam failure impacts on the surrounding environment. DSEPs are to be forwarded to the DSC for its consideration before commissioning of tailings dams. DSEPs are to be updated annually with pertinent update sections forwarded to the DSC for its information.

4.5 Surveillance

wners of all prescribed dams are required to meet in full the provisions of the DSC's Guidance Sheet on Surveillance Reports for Dams - DSC2C. These requirements are in line with the pertinent chapters of the ANCOLD Guidelines on Dam Safety Management - August 2003, which have been adopted by the DSC. They recommend that dam owners undertake comprehensive inspections on initial dam filling, and thence on a five yearly basis, with intermediate inspections undertaken usually on an annual basis. Routine inspection and monitoring of the dam is to be undertaken by trained staff, with overall DSC surveillance requirements as set out in Table 4, which is adapted from the ANCOLD Dam Safety Management Guidelines - 2003.

TABLE 4 - TAILINGS DAM SURVEILLANCE CRITERIA

Sunny Day Consequence Category	Low	Significant	High C	High B	High A <i>I</i> Extreme
Comprehensive Inspections	5yr	5yr	5yr	5yr	5yr
Intermediate Inspections	2yr	Annual	Annual	Annual	Annual
Routine Inspections	Monthly	Weekly	Tri- weekly	Daily to Tri-weekly	Daily
Rainfall	Monthly	Weekly	Tri- weekly	Daily to Tri-weekly	Daily
Pond Level	Monthly	Weekly	Tri- weekly	Daily to Tri-weekly	Daily
Seepage – rate	Monthly	Weekly	Tri- weekly	Daily to Tri-weekly	Daily
Seepage - chemistry analysis		Consider	Annual	Annual	Annual
Pore Pressure	Consider	3 Monthly	Monthly	Monthly	Monthly
Surface Survey ¹	Consider	2yr	Annual	Annual	Annual

Note 1 For compacted dams on solid foundations - (more frequent survey required for lightly compacted dams and dams on compressible foundations).

The DSC requires all prescribed dam owners to submit the results of their comprehensive inspections in Surveillance Reports to the DSC (refer DSC2C for details). For water supply dams, the DSC does not require the submission of intermediate reports and they are usually incorporated into the normal Surveillance Reports for dams. However, due to the normally dynamic nature of tailings dams, the DSC requires the owners of tailings dams to submit the results of their intermediate inspections in reports for the DSC's consideration.

For dams requiring Type 1 and 2 Surveillance Reports, these intermediate reports should be prepared by a suitably qualified engineer, and cover the same surveillance issues addressed in five yearly Surveillance Reports, including updates on operations and programming, but need not be as detailed (e.g. not include a long-term review of surveillance data) as the review requirements for

DSC3F

http://www.damsafety.nsw.gov.au

Page 13 of 18

Surveillance Reports (see attached DSC Form D19 for report checklist). Owners of other prescribed tailings dams are to submit their intermediate inspection reports in the format of Type 3 Surveillance Reports.

The following specific issues should be considered and reported to the DSC, where appropriate:

- Groundwater monitoring with special emphasis on the environmental impacts of the tailings dam on groundwater;
- Seepage monitoring, both visual observations and seepage measurement is required as a minimum; and
- Chemical analysis of seepage water with reference to changing chemical and
- · physical characteristics of the flow.

In view of the short term nature of mining operations, it is essential that dam owners conform to the report process and the required deadlines for submissions. Failure to do so could result in delays of approvals to proceed with construction and operational activities, with consequent interruptions to the mining operation.

In ensuring effective surveillance of tailings dams, the owners are required to select suitable operational staff and arrange for their training in the areas of dam safety management with regular refresher courses to keep operators up to date with current practices. As part of that training, operators should be capable of recognising abnormal conditions and circumstances that could affect the safety of their dams and be able to institute appropriate actions including when to call for more expert assistance.

Incident Reports of any events threatening dam safety, including their inspection, assessment and remedial action / control details, are to be forwarded at the earliest opportunity for the DSC's consideration (refer DSC2A for details).

4.6 Decommissioning

The decommissioning of tailings dams raises issues that are not faced in the decommissioning of other dams. The DSC notes that it is often necessary to undertake site rehabilitation and long term monitoring of decommissioned dams. Dam owners are required to advise the DSC of their strategies in this regard at the initial design stage for the dam to enable assessment of the long term feasibility of design options. Dam owners are also required to submit their final decommissioning proposal for the DSC's consideration prior to implementing their decommissioning processes.

In particular, the DSC requires, as a minimum, consideration of the following issues in decommissioning a tailings dam:

- · Protection of its long term stability;
- The potential for erosion of an embankment, especially if it has been an upstream construction with a low quality material on the exposed face;

DSC3F

http://www.damsafety.nsw.gov.au

Page 14 of 18

- Its flood capacity with consideration of provision for changes in future standards and the long term loss of holding capacity;
- Advice on its ongoing effects on the surrounding environment and long term controls to minimise these effects;
- Advice on the proposal for its long term monitoring and the role of the Department of Primary Industries in this respect; and
- Advice on when the dam can be de-prescribed, in the owner's opinion.

Dam owners are advised that the DSC will maintain prescription of any dam, and place its normal dam safety obligations on the dam owner, until such stage that the decommissioning process has guaranteed that the dam imposes minimal safety risks to life and the surrounding environment, whereupon the DSC will deprescribe the dam.

5.0 DOCUMENTATION

The DSC's normal requirements as to the substance and timing of information required by the DSC, and the responses to be expected from the DSC, are set out in the DSC's Guidance Sheet on Documentation and Information Flow over Dam Life Cycle - DSC2B. These requirements apply for all tailings dams with the following qualifications:

- Incident Reports of any events threatening dam safety, including their inspection, assessment and remedial action / control details, are to be forwarded at the earliest opportunity for the DSC's consideration (refer DSC2A for details);
- Due to the usually dynamic nature of tailings dams, the DSC requires the owners of these dams to submit the results of their intermediate inspections in reports for the DSC's consideration. These reports should cover the same surveillance issues addressed in five yearly Surveillance Reports, and include updates on operations and programming, but need not be as detailed as Surveillance Reports (refer sub-section 4.5 and Form D19 checklist). They should also include an updated DSC D8 Form to update the DSC on pertinent owner contact details;
- The DSC also has some concerns about the issue of ownership of tailings dams. Submissions should state clearly "Who is the owner?" and "What is their relationship to the land owner or leaseholder?" In this context, the term "owner" has its usual legal sense, and does not have the meaning defined in the Dams Safety Act 1978. There should also be advice on the corporate structure clearly outlining the responsibilities for the management of the dams. Any changes in the detail of these arrangements should be advised to the DSC immediately;
- Rehabilitation Strategy Plans are to be submitted at the design stage to enable determination of the long term feasibility of design options;

DSC3F

http://www.damsafety.nsw.gov.au

Page 15 of 18

- Management Plans are to be submitted at the design stage for upstream or centre lift construction tailings dams to ensure designer requirements are appropriately incorporated for these types of dams; and
- Operational Management Plans are to be included in the Operations and Maintenance Manual for the dam.

6.0 REFERENCES

- ANCOLD (Australian National Committee on Large Dams), 1998, Guidelines for Design of Dams for Earthquake, August.
- ANCOLD, 1999, Guidelines on Tailings Dam Design, Construction and Operation, October.
- ANCOLD, 2000, Guidelines on Selection of Acceptable Flood Capacity for Dams, March
- ANCOLD, 2000, Guidelines on Assessment of the Consequences of Dam Failure, May.
- ANCOLD, 2003, Guidelines on Dam Safety Management, August.
- · ANCOLD, 2003, Guidelines on Risk Assessment, October.
- DMEWA (Western Australian Department of Minerals and Energy), 1998, Guidelines on the Development of an Operating Manual for Tailings Storage.
- DMEWA, 1999, Guidelines on the Safe Design and Operating Standards for Tailings Storage.
- EPA, 1995, Best Practice Environmental Management In Mining, 1995
- Fell, MacGregor, and Stapledon, 2004, Geotechnical Engineering of Dams, GEED
- ICOLD (International Commission on Large Dams) Bulletin 97, 1994, Tailings Dams-Design of Drainage-Review and Recommendations.
- ICOLD Bulletin 98, 1995, Tailings Dams and Seismicity-Review and Recommendations.
- ICOLD Bulletin 104, 1996, Monitoring of Tailings Dams-Review and Recommendations.
- ICOLD Bulletin 106, 1996, A Guide to Tailings Dams and Impoundments-Design, Construction, Use and Rehabilitation.
- ICOLD Bulletin 121: Tailings Dams Risk of Dangerous Occurrences Lessons learnt from Practical Experiences
- Mining Association of Canada, 1998, A Guide to the Management of Tailings Facilities, September.
- UNEP, 1996, Environmental and Safety Incidents Concerning Tailings Dams at Mines
- Vick, Steven, 1990, Planning Design and Analysis of Tailings Dams BiTech Publishers.
- WMC (Western Mining Corporation) Guidelines for the Design of Tailings Storage Facilities- GL68, undated.

DSC3F

http://www.damsafety.nsw.gov.au

Page 16 of 18

New South Wales Government Dams Safety Committee

D19 Form

TAILINGS DAM - INTERMEDIATE REPORT REQUIREMENTS

Checklist for owners and consultants preparing Reports

Please return this form completed with Report

The following checklist covers the minimum items to be included in Intermediate Reports. Please tick against each item to indicate completion of the item in the Report, and enclose the signed D19 Form with the copy of the Report submitted to the Dams Safety Committee. Please note that Reports which do not address all relevant items may not be accepted.

40 11	of address an relevant terms may not be accepted.
	Owner to provide cover letter indicating that the owner accepts the report and containing a program to carry out recommendations
	Conclusions (in point form)
	Recommendations (in point form), separate from the Conclusions
	Basic Dam Details – location, type of dam, height, crest length, storage volume, consequence categories, outlet works, spillway type and hydrology, etc
	Inspection
	o Details of inspection – names of inspection team, date, weather conditions, storage level
	 Condition of dam, e.g. evidence of slips, erosion, cracks, sink holes, piping, subsidence, seepage, settlement, movement, misalignment, etc. & history (old, recent or continuing)
	 Condition of Abutments & Foundations – seepages related to the storage, slips, erosion, piping, etc. & history
	 Condition of Spillways – stability, erosion, blockages, movement, etc. & history
	o Condition of Storage Basin & Downstream Areas
	 Condition & operability of inlet & outlet works, spillway works and other mechanical & electrical equipment
	Monitoring
	Type of instrumentation and frequency of monitoring
	 Comment on monitoring measurements since the previous Report – seepage (rates & quality), pore pressures, groundwater, deformation surveys, rainfall, storage level, etc.
	Comment on compliance of inspection and monitoring procedures with the ANCOLD "Guidelines on Dam Safety Management - 2003".
	Comment on status of O & M Manual and Dam Safety Emergency Plan (DSEP)
	Findings of any reports produced since the previous Report
	Incidents which have occurred since the previous Report and actions taken
	Changes to the dam, operating procedures, developments, management or operating staff since the previous Report and their effect on dam safety.
	Comparison to the previous Report, action taken as a result of that Report's recommendations and any recommendations not carried out.
	Provide information on mining activities close to the dam or storage
	An opinion as to whether the dam is safe in terms of the Committee's requirements
_	Signatures of Report writers
_	Appendices
_	Dam data sheets - D1 & D8
	o Drawings, e.g. Site, General Arrangement, Cross-Section, Spillway, Outlet Works, etc.
	Photographs of main aspects of dam taken during the inspection, particularly areas commented on in the Report
	Monitoring data summary sheets
	 An IBM compatible CD, or equivalent, containing a Microsoft Word format file of the text and a PDF of the entire report including drawings and photos.

Checklist completed by:
DSC3F

http://www.damsafety.nsw.gov.au

Page 17 of 18

This Guidance Sheet is one of a series available from our Website at:

http://www.damsafety.nsw.gov.au

In order to read this file you need a Portable Document Format (PDF) reader. A free PDF reader is available from http://www.adobe.com/

For any further information please contact:

NSW Dams Safety Committee
Level 3, Macquarie Tower
10 Valentine Avenue, Parramatta NSW 2150

PO Box 3720, Parramatta NSW 2124

2 (02) 9895 7363 **△** (02) 9895 7354

dsc@damsafety.nsw.gov.au

ISSN 1039-821X

RESPONSE TO SUBMISSIONS

BIG ISLAND MINING PTY LTD

Dargues Gold Mine

Report No.752/42 Appendix 1

APPENDIX B

Embankment Water Breach Output Files

T. 1 1 D. 11	Subject	Cortona Resources	Made by	AMJ	Job No.	PE801-00139
Knight Piésold	Dargues Reef (Gold	Checked	TML	Date	08/11/2011
	TSF Spillway D	esign: Stage / Storage	Approved			

Spillway Design: Outflow Rating Table for Dargues Reef TSF Pond (5 m spillway)

The following information was developed for use in hydrologic routing of the proposed channel spillway, which operates under broad-crested weir control (Q = C * L * H^{1.5}), with coefficient "C" taken from: Brater, E.F. & King, H.W. (1996) "Handbook of Hydraulics, Seventh Edition", New York, N.Y: McGraw-Hill.

The channel spillway rating information is taken
from a hydraulic model developed using HEC-RAS
software.

Dam crest length is:
467.0 m
6.0 m
712.0 m

Elevation	Water Storage	Channel Spil	lway Outflow	Crest O	verflow	Combined
	Volume	Weir	HEC-RAS	Weir	{Weir Eqn.}	Total
(m)	(m ³)	Coefficient	(m³/s)	Coefficient	(m³/s)	(m³/s)
706.0	0.0	#N/A	0.0	#N/A	#N/A	0.0
706.1	58.8	#N/A	0.0	#N/A	#N/A	0.0
706.2	117.6	#N/A	0.0	#N/A	#N/A	0.0
706.3	176.4	#N/A	0.0	#N/A	#N/A	0.0
706.4	235.2	#N/A	0.0	#N/A	#N/A	0.0
706.5	294.0	#N/A	0.0	#N/A	#N/A	0.0
706.6	352.8	#N/A	0.0	#N/A	#N/A	0.0
706.7	411.6	#N/A	0.0	#N/A	#N/A	0.0
706.8	470.4	#N/A	0.0	#N/A	#N/A	0.0
706.9	529.2	#N/A	0.0	#N/A	#N/A	0.0
707.0	588.0	#N/A	0.0	#N/A	#N/A	0.0
707.1	1,170.4	#N/A	0.0	#N/A	#N/A	0.0
707.2	1,752.8	#N/A	0.0	#N/A	#N/A	0.0
707.3	2,335.2	#N/A	0.0	#N/A	#N/A	0.0
707.4	2,917.6	#N/A	0.0	#N/A	#N/A	0.0
707.5	3,500.0	#N/A	0.0	#N/A	#N/A	0.0
707.6	4,082.4	#N/A	0.0	#N/A	#N/A	0.0
707.7	4,664.8	#N/A	0.0	#N/A	#N/A	0.0
707.8	5,247.2	#N/A	0.0	#N/A	#N/A	0.0
707.9	5,829.6	#N/A	0.0	#N/A	#N/A	0.0
708.0	6,412.0	#N/A	0.0	#N/A	#N/A	0.0
708.1	8,391.0	#N/A	0.0	#N/A	#N/A	0.0
708.2	10,370.0	#N/A	0.0	#N/A	#N/A	0.0
708.3	12,349.0	#N/A	0.0	#N/A	#N/A	0.0
708.4	14,328.0	#N/A	0.0	#N/A	#N/A	0.0
708.5	16,307.0	#N/A	0.0	#N/A	#N/A	0.0
708.6	18,286.0	#N/A	0.0	#N/A	#N/A	0.0
708.7	20,265.0	#N/A	0.0	#N/A	#N/A	0.0
708.8	22,244.0	#N/A	0.0	#N/A	#N/A	0.0
708.9	24,223.0	#N/A	0.0	#N/A	#N/A	0.0
709.0	26,202.0	#N/A	0.0	#N/A	#N/A	0.0
709.1	30,576.5	#N/A	0.0	#N/A	#N/A	0.0
709.2	34,951.0	#N/A	0.0	#N/A	#N/A	0.0
709.3	39,325.5	#N/A	0.0	#N/A	#N/A	0.0
709.4	43,700.0	#N/A	0.0	#N/A	#N/A	0.0
709.5	48,074.5	#N/A	0.0	#N/A	#N/A	0.0
709.6	52,449.0	#N/A	0.0	#N/A	#N/A	0.0
709.7	56,823.5	#N/A	0.0	#N/A	#N/A	0.0
709.8	61,198.0	#N/A	0.0	#N/A	#N/A	0.0
709.9	65,572.5	#N/A	0.0	#N/A	#N/A	0.0
710.0	69,947.0	#N/A	0.0	#N/A	#N/A	0.0
710.1	77,403.1	#N/A	0.0	#N/A	#N/A	0.0
710.2	84,859.2	#N/A	0.0	#N/A	#N/A	0.0
710.3	92,315.3	#N/A	0.0	#N/A	#N/A	0.0
710.4	99,771.4	#N/A	0.0	#N/A	#N/A	0.0

November 2011 Knight Piésold Pty. Ltd.
P\PE801-00139 Dargues\Technica\Hydrology\Spillway Sizing\Spillway Sizing - SO (5m HEC-RAS - for Dam Breach Assessment) xlsm

PE801-00139

Page 1 of 3

T/ 1 1 D:/ 11	Subject	Cortona Resources	Made by	AMJ	Job No.	PE801-00139
Knight Piésold	Dargues Reef (∋old	Checked	TML	Date	08/11/2011
	TSF Spillway D	esign: Stage / Storage	Approved			

Spillway Design: Outflow Rating Table for Dargues Reef TSF Pond (5 m spillway)

The following information was developed for use in hydrologic routing of the proposed channel spillway, which operates under broad-crested weir control (Q = C * L * H^{1.5}), with coefficient "C" taken from: Brater, E.F. & King, H.W. (1996) "Handbook of Hydraulics, Seventh Edition", New York, N.Y: McGraw-Hill.

The channel spillway rating information is taken	Dam crest length is:	467.0 m
from a hydraulic model developed using HEC-RAS	Dam crest breadth is:	6.0 m
software.	Dam crest invert elevation is:	712.0 m

	Combined	verflow	Crest O	lway Outflow	Channel Spil	Water Storage	Elevation
	Total (m ³ /s)	{Weir Eqn.} (m³/s)	Weir Coefficient	HEC-RAS (m ³ /s)	Weir Coefficient	Volume (m³)	(m)
	0.0	#N/A	#N/A	0.0	#N/A	107,227.5	710.5
	0.0	#N/A	#N/A	0.0	#N/A	114,683.6	710.6
	0.0	#N/A	#N/A	0.0	#N/A	122,139.7	710.7
	0.0	#N/A	#N/A	0.0	#N/A	129,595.8	710.8
	0.0	#N/A	#N/A	0.0	#N/A	137,051.9	710.9
⇔ Spillway inver	0.0	#N/A	#N/A	0.0	#N/A	144,508.0	711.0
	0.3	#N/A	#N/A	0.3	#N/A	153,595.0	711.1
	0.8	#N/A	#N/A	0.8	#N/A	162,682.0	711.2
	1.5	#N/A	#N/A	1.5	#N/A	171,769.0	711.3
	2.4	#N/A	#N/A	2.4	#N/A	180,856.0	711.4
	3.5	#N/A	#N/A	3.5	#N/A	189,943.0	711.5
	4.7	#N/A	#N/A	4.7	#N/A	199,030.0	711.6
	6.2	#N/A	#N/A	6.2	#N/A	208,117.0	711.7
	7.8	#N/A	#N/A	7.8	#N/A	217,204.0	711.8
	9.6	#N/A	#N/A	9.6	#N/A	226,291.0	711.9
□ Dam crest	11.6	0.0	1.490	11.6	#N/A	235,378.0	712.0
	35.8	22.0	1.490	13.8	#N/A	244,465.0	712.1
1	78.4	62.2	1.490	16.2	#N/A	253,552.0	712.2
l	130.0	111.3	1.450	18.7	#N/A	262,639.0	712.3
1	194.0	172.5	1.460	21.5	#N/A	271,726.0	712.4
	263.9	239.4	1.450	24.5	#N/A	280,813.0	712.5

Note: storage information shown pertains to the last month of operations.

November 2011
P:PE801-00139 Dargues\Technical\Hydrology\Spillway Sizing\Spillway Sizing - SO (5m HEC-RAS - for Dam Breach Assessment).xlsm

Variabt Diácald	Subject	Cortona Resources	Made by	TML	Job No.	PE801-00139
Knigni Piesola	Dargues Reef	Gold	Checked		Darte	07/11/2011
CONSULTING	PMP Estimation	on (Summer): Impact Analysis	Approved		Slicet No.	1 of 14

Estimation of Probable Maximum Precipitation in Australia: GSDM For Short Duration PMP (Depth)

Estimation of short duration Probable Maximum Precipitation (PMP) in Australia is performed using procedures taken from the following publication of the Australian Bureau of Meteorology (BOM):

- "The Estimation of Probable Maximum Precipitation in Australia", June 2003 ← (GSDM) for short (≤6 h) duration PMP only.

	Location Information							
Catchment	Catchment	Located	Catchment	Catchment	PMP	Smooth (S)	Rough (R)	Consider
ID	Area	in	Latitude	Longitude	Duration	Portion of	Portion of	Monthly
		Aus.			Limit	Catchment	Catchment	PMP?
	(km²)	State	O	O	(h)			
Majors Creek	19.593	NSW	-35.5475	149.7482	6.0	0.00	1.00	Yes

Computation of Adjustment Factors						
Catchment	Mean	Adustment	Elevation	Moisture		
ID	Catchment	for	Adjustment	Adjustment		
	Elevation	Elevation	Factor	Factor		
		l	EAF	MAF		
	(m)					
Majors Creek	721	0.00	1.00	0.640		

Estin	nation of Dept	h-Duration P	MP (Short Du	ration)
Duration	Initial PMP Depth	Depth	PMP	Rounded PMP
(h)	Smooth, D _s (mm)	Rough, D _R	Estimate (mm)	Estimate (mm)
0.25	202.0	202.0	129.4	130
0.50	297.0	297.0	190.2	190
0.75	377.0	377.0	241.4	240
1.0	443.0	443.0	283.7	280
1.5	506.0	567.0	363.1	360
2.0	567.0	663.0	424.6	420
2.5	605.0	733.0	469.4	470
3.0	634.0	799.0	511.7	510
4.0	704.0	912.0	584.0	580
5.0	756.0	1,001.0	641.0	640
6.0	802.0	1,067.0	683.3	680

The Annual Exceedance Probability (AEP) associated with a PMP storm is estimated based on the area of the catchment it occurs within; see ARR 1999 - Volume 1, Book 6, Section 3.6, Figure 6.

PMP Frequency				
AEP	ARI			
	(1 in X yr)			
1.0E-07	10000000			

If the overall catchment area exceeds 1 km² and the required level of calculations warrant the effort, estimated PMP rainfall may be varied spatially using the procedures given in GSDM, Section 6 and GSDM, Figure 6. However, spatially-distributing PMP is generally not required unless the contributing catchment area exceeds 5 km². (Spatially-distributed PMP is considered for Impact Analysis.)

In addition, for Australian catchments south of 30° S with catchments smaller than 500 km², annual PMP values may be converted to monthly PMP values using the information given in GSDM, Figure 7 as illustrated below. (Values are rounded to the nearest 10 mm.)

		Se	asonal Variat	ion: Monthly P	MP for Southe	rn Australian	Catchments	(mm)			
Duration (h)	0.25	0.50	0.75	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0
Annual	129.4	190.2	241.4	283.7	363.1	424.6	469.4	511.7	584.0	641.0	683.3
January	130	190	240	280	360	420	470	510	580	640	680
February	130	190	240	280	360	420	470	510	580	640	680
March	130	190	240	280	360	420	470	510	580	640	680
April	110	160	210	240	310	360	400	430	500	540	580
May	90	140	180	210	270	310	340	370	430	470	500
June	80	120	150	180	230	260	290	320	360	400	420
July	80	110	140	160	210	250	270	300	340	370	400
August	70	110	140	160	200	240	260	290	330	360	380
September	80	120	150	170	220	260	290	310	360	390	420
October	90	140	170	200	260	310	340	370	420	460	490
November	110	160	200	230	300	350	380	420	480	530	560
December	130	190	240	280	360	420	470	510	580	640	680

PE801-00139 Page 2 of 14

,	Subject	Cortona Resources	TML 4q spery	Joh No.	PE801-00139
t Piesold	Dargues	Reef Gold	Checked	Date	07/11/2011
0 N S O F T T O S N O	PMP Est	imation (Summer): Impact Analysis	panoaddy		

Estimation of Probable Waximum Precipitation in Australia: GSDM For Short Duration PMP (Spatial Distribution)

f the size of the catchment of interest and/or required level of calculations warrant the effort, PMP r

Step 1 Position the spatial distribution diagram
Overlay the set of 10 concentric elipses (labeled A - J) from GSDMF site topography and position them to obtain the best fit by the smalles

J) to the outermost ellipse from Step 1. Where the catchment completely fills both the inner and successive ellipses, (CBtn. CBtn; is simply the area between the areas enclosed by each ellipse <u>Step 2</u> Determine the catchment area between successive ellipses
Determine the area of the catchment lying between successive a

ellipse (CEnc.) is simply the sum of all CBtn, values from the i he outermost ellipse will equal the total area of the catchment. Step 3 Determine the catchment area enclosed by each ellipse. The area of catchment enclosed by each ellipse (CEnc) is:

GSDM, Figure 4. (Note that DDA initial mean rainfall depths from GSDM, Figure 4 are not to be extrapolated for areas greater than 1000 km²l) and R. see GSDM, Section 4.2. catchment only partially fills an ellipse (CEnc, < Area), the x-hour each duration) from Table 1 (below). successive ellipses (CEnc, from Step 3) are dete Step 4 Determine initial mean rainfall depth enclosed by each ellipse Step 4a The initial mean rainfall depths (IMRD) for each of the are. Step 4b The composite initial mean rainfall depths are

 $CEnc_1 = \sum_{k=A}^{L} CBtn_k$

AMRD, = IMRD, · MAF · EAF. nost ellipse will equal the (unrounded) PMP estimate for the whole catchment, see GSDM, Section 4.5. The adjusted mean rainfall depth (AMRD) for the area enclosed by the cutern Step <u>6</u> Determine adjusted mean rainfall depth enclosed by each ellipse The initial mean rainfall depths (IMRD) for each of the areas enclosed by

areas (CEnc, from Step 3): VEnc, = AMRD, · CEnc,

determined by multiplying the corresponding adjusted mean rainfall depths (AMRD, from Step 5) and the Step 6 Determine the volume of rain enclosed by each ellipse

Step 7 Determine the volume of rain between successive ellipses. The volumes of rainfall between successive ellipses (VBtn.) are

ellipses are given by dividing the volumes of rainfall between ellipses (VBtn, from Step 7) by the catchment areas between ellipses (CBtn, from Step 2); MRD, = VBtn, f CBtn, f CBtn,

subtraction of the volumes from Step 6: VBtn, = VEnc, - VEnc,

Step 9 Other PMP durations Repeat Steps 4 to 8 for the other PMP durations.

	_		_			-			_	_	_	_	_	_
				6.0	1200	1087	950							
				6.0	1135	1018	880							
		_		4.0	1030	956	811							
	nts: IMRD _R	Enc, = Area		3.0	901	810	717							
	JGH eleme	ellipse (CE	_	2.5	821	742	663							
	m) for ROL	ely fills the	for Duration (hours)		744	672	280							
	II Depth (m	nt complet	for Dura	1.5 2.0	929	575	511							
	Initial Mean Rainfall Depth (mm) for ROUGH elements: IMRD _R	where the catchment completely fills the ellipse (CEnc, = Area)		1.0	493	449	397							
	Initial M	where th		0.75	425	383	330							
				0.50	336	301	260							
M Table 2				Н	232	204	177							
from GSD				0.25	879	811	737							
data taken				6.0	832	192	969							
fall depth				6.0	3 12	11	643 6							
mean rain	MRDs	Area,)		4.0	2 50	12 7	9 929							
Table 1: Initial mean rainfall depth data taken from GSDM Table 2	elements:	se (CEnc =		3.0	22 69	2 642								
Tak	SMOOTH	Is the ellip	hours)	2.5	99	.9	1 546							
	Initial Mean Rainfall Depth (mm) for SMOOTH elements: IMRD _S	where the catchment completely fills the ellipse (CEnc, = Area,)	for Duration (hours)	2.0	33 628	13 575	453 511							
	ainfall Dep	chment co	ē	1.5	3 563	9 21								
	tial Mean R	nere the cat		1.0	5 493	3 44	397							
	ī	W		0.75	6 425	1 383	330							
				0.50	336	301	7 260							
	L	_		0.25	3 237	207	171							
		Area	Btn.	(km ²)	5 2.0	0 13.4	0 49.0							
	Ellipse	Ĺ	Enc.	(km²)	2.0	16.0	92'(
		Label			٧	m	U	۵	В	ш	g	I	_	٦

Dargues Gold Mine

ā

11, 21, 11	sutject Cortona Resources	Made by TML	Jub No. PE801.	PE801-00139
Knight Piesold	Dargues Reef Gold	Checked	Date 07/11/20	11/2011
2	PMP Estimation (Summer): Impact Analysis	percusidy		

	Ē	₹	ш	L	Ш	Ш							J
	ī.		0.75	425	385	377							
			0.50	336	303	297							
			0.25	232	205	202							
			0.9	879	814	802							
			6.0	832	767	756							
	ő		4.0	1771	714	704							
	ments: IMF	e i (CEnq)	3.0	202	645	634							
3D _{Si} values	MOOTH ele	ed by ellips urs)	2.5	699	615	605							
ermine IMF	(mm) for S	eas enclosi uration (ho	2.0	628	577	267							
tep 4a: Def	nfall Depth	tchment are for D	1.5	563	515	206							
	l Mean Rai	of given cal	1.0	493	451	443							
	Initia		0.75	425	385	377							
			0.50	336	303	297							
			0.25	232	205	202							
8	ent Area	Enc.	(km ²)	2.6	15.1	19.6							
teps 2 and	Catchm	Ggr.	(km²)	2.6	12.5	4.5							
S	Ellipse	Label		4	В	υ	۵	В	ш	9	I	_	
	Steps 2 and 3 Step 4a: Determine IMRD _S values	tops 2 and 3 Step 4a: Determine IMRDs, values Catchment Area Initial Mean Rainfail Depth (mm) for SMOOTH elements: IMRDs	teps 2 and 3 Catchment Area Btn. Enc. CBtn CEnc.	Careformer Area	Catchment Area Catc	Catciment Area Catc	Calciforners Assess	Cariciment Area Cariciment	Caricipane Area Caricipane	Cariciment Area Cariciment	Caretinemet Area Caretinemet	Carity C	Carity C

-5													Ħŀ									H	Ħ	
Desig	置	ted Sub-Areas Catchment Area			Yolume.	ep 6: Deter s of Adjust	mine VEnc ed Mean R	Step 6: Determine VEnc, = (AMRD) · CEnc,) values Volumes of Adjusted Mean Rainfall Depth (mm · km²): VEnc,	· CEnc.) va h (mm · kn	lues n^): VEnc,						Volu	Step 7: De nes of Adju	termine VB isted Mean	n, = (VEnc. Rainfall De,	Step 7: Determine VBtn₁ = (VEnc₁ - VEnc₁.) values Volumes of Adjusted Mean Rainfall Depth (mm · km²): VBtn₁	n²): VBtn			
Label	CBth.	Enc. CEnc				ē	for Durat	closed by ellipse i (CEn for Duration (hours)	inc _.)								petw	between successive ellipses i and i - 1 for Duration (hours)	successive ellipses i for Duration (hours)	siandi-1				
	(km²)	(km²)	0.25 0.50	50 0.75	⊢	1.0	1.5	2.0	2.5	3.0	4.0	6.0	0.9	0.25	0.50	0.75	1.0	1.5	2:0	2.5	3.0	4.0	6.0	6.0
۷	2.6	2.6	386	559	208	821	1059	1239	1367	1500	1715	1890	1998	386	699	208	821	1059	1239	1367	1500	1715	1890	1998
ω	12.5	15.1	1981	2928	3721	4359	22.22	6524	7200	7867	8888	9878	10506	1595	2369	3013	3538	4518	5285	5833	6367	7273	7988	8208
υ	4.5	19.6	2533	3725	4728	9229	7111	8315	9193	10020	11437	12553	13381	552	962	1007	11197	1534	1791	1992	2153	2449	2676	2875
۵																								
ш																								
ш																								
9																								
I																								
7																								

Der 2011 "ITI 98 Dannast Technical Wetninev DNP Felimation (PRPD LIDTR 9 Dannas - PAVP Felimation (Froad Analysis) Summer (2011-1.11.47) vleep

Report No.752/42 Appendix 1

801-00139

	sutject Cortona Resources	Made by TML	Jub No. PE801-00139
Knight Piesold	Dargues Reef Gold	Checked	Date 07/11/2011
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMP Estimation (Summer): Impact Analysis	Approved	

				6.0	208	681	640							
				6.0	727	639	969							
				4.0	099	582	545							
sen				3.0	2.29	510	479							
/ CBtn) va	: MRD	siandi-1	(g	2.5	526	467	444							
ND = (VBtn	Depth (mr.	sive ellipse	for Duration (hours)	2.0	476	423	366							
Step 8: Determine MRD, = (VBtn, / CBtn,) values	Mean Rainfall Depth (mm): MRD	between successive ellipses i and i - 1	for Dura	1.5	407	362	342							
Step 8: Def	Me	petwe		1.0	316	283	266							
				0.75	272	241	224							
				0.50	215	190	177							
				0.25	149	128	123							
eas	t Area	Enc.	CEnc	(km²)	2.6	15.1	19.6							
Designated Sub-Areas	Catchment Area	Œ.	CBtn	(km²)	2.6	12.5	4.5							
Designa	Ellipse	Lapel			٧	8	ပ	۵	ш	ш	9	I	-	7

ĸ
Φ
문
Œ
Σ̈́
짂
ö
ĕ
ē
Έ
ā
B
2
facto
9
ž
≗
5
ř
9
듰
ž
В
ಕ್ಷ
픙
9
å
2
þe
nee
- (Se
æ
퓽
.>
8
9
ъ
ᇹ
ã
ĕ
õ
₽
8
g
£
8
£
ž
3
ω
8
ಥ
ε
£
80
an le
3
Q
뚲
ē
£
e
£
ď
Š
ă
E
Š
ā
>
Ē
2
9
형
/ani
≥
£
mom
Ξ
=

	April seasonal in Rainfall Deption Successive election for Duration (2.0	4	3	9							easonal	all Dept	essive e	for Duration	2.0	2	2	2					
	April seasonal Mean Rainfall Depti between successive ef	1.5	346	307	230							June seasonal	Mean Rainfall Deptl	between successive el	ρ	1.5	253	224	212					
	pet 1	1.0	268	241	227								_	pet		1.0	196	176	165			Ī	Ī	
		0.75	231	205	191											0.75	169	150	139			Ī	Ī	
		0.50	183	161	151											0.50	133	118	110					Ī
		0.25	126	109	104											0.25	85	62	92			Ī	Ī	
		0.9	768	681	640							r				0.9	199	497	467					
Dec 100%		5.0	727	623	969											6.0	531	467	435				Ī	
Nov 82%		4.0	099	582	545											4.0	482	425	398			Ī		
Oct 72%	nes of	3.0	222	510	479									-		3.0	421	372	320				Ī	
Sep 61%	rasonal valu nm): MRDi ses i and i - urs)	2.5	526	467	444							es of	m): MRD	ses i and i -	ırs)	2.5	384	341	324				Ī	Ī
Aug 56%	rch (inclusive) seaso Rainfall Depth (mm): successive ellipses for Duration (hours)	2.0	476	423	399							May seasonal values of	all Depth (n	essive ellip	for Duration (hours)	2.0	348	309	291					Ī
Jul 58%	January - March (Inclusive) seasonal values of Mean Rainfall Depth (mm): MRDI between successive ellipses i and i - 1 for Duration (hours)	1.5	407	362	342							Mayse	Mean Rainfall Depth (mm): MRD	between successive ellipses i and i - 1	δ	1.5	297	264	249				Ī	
Jun 62%	January I bet	1.0	316	283	286								_	pet		1.0	230	207	195					
May 73%		0.75	272	241	224											0.75	199	176	164					
Apr 85%		0.50	215	190	177											0.50	157	138	129					
Mar 100%		0.25	149	128	123											0.25	108	93	06					
Feb 100%	Areas ent Area Enc. CEnc.	(km ²)	2.6	15.1	19.6							Areas	int Area	Enc.	CEnc	(km ²)	2.6	15.1	19.6					
Jan 100%	Designated Sub-Areas pse Catchment Area bel Btn. Enc. CBtn CEnc.	(km²)	2.6	12.5	4.5							Designated Sub-Areas	Catchment Area	Btn.	CBtn	(km²)	2.6	12.5	4.5					
Month Factor	Design Ellipse Label		¥	8	O	۵	В	ш	5	I	ſ	Desig	Ellipse	Label			٧	8	U	Q	Ш	ш	9	I

. 2011 Barquest Technical Hydrology PMP Estimation PEBD1-00139 Darques - PMP Estimation (Impact Analysis) Summer (2011-11-07), sism

E801-00139

Knight Picsold Degues Reel Gold Inpact Analysis Invest That the head Official Control (1700)

Estimation of Probable Maximum Precipitation in Australia: GSDM For Short Duration PWP (Spatial Distribution)

			ш		_	_	_		_							_							_					ш	_	_							
			5.0	407	358	334	I	I	Ι		I	l				6.0	523	460	429		l		I					ç	727	639	969				I	I	I
			4.0	369	326	305	Ī	Ī	Ī		Ī					4.0	475	419	393	Ī	Ī		T	Ī				Ę	999	582	545				Ī	Ī	Ī
	,		3.0	323	285	268	Ī	Ī	T	Ī	Ī	l				3.0	415	367	345	Ī	Ī		Ī	T			_	5	577	510	479				Ī	Ī	İ
Jo sar	m): MRD	rs)	2.5	294	192	248	İ	Ť	t	Ī	İ	ı	Jo san	m): MRD	rs)	5.5	379	336	319	Ì	Ť		Ť	Ī	lues of	m): MRDi	es i and i -	, 2	526	467	444				İ	İ	t
August seasonal values of	l Depth (m	for Duration (hours)	2.0	267	237	223	t	İ	t	Ī	İ	ı	asonal va	l Depth (m	for Duration (hours)	2.0	343	305	287	İ	Ť		t	İ	easonal va	I Depth (m	successive ellipses for Duration (bours)	,	476	423	399				İ	İ	t
August se	Mean Rainfall Depth (mm): MRD,	for Dur	1.5	228	203	191	t	t	t	Ī	t	ı	October seasonal values of	Mean Rainfall Depth (mm): MRD	for Dur	1.5	293	260	246	Ì	t		t	t	December seasonal values of	Mean Rainfall Depth (mm): MRDI	between successive ellipses i and i -1	1.6	407	362	342				t	t	t
	ă și	2000	1.0	177	138	149	t	t	t		t	l	:	Ž	2000	0.1	227	204	192	Ì	t		t	t		ž	petwo	Ę	316	283	266				1	t	t
			0.75	152	135	126	t	t	t		t	l				0.75	196	174	161	t	t		t	t				0.75	272	241	224				1	t	t
			09:0	120	106	86	t	t	ŀ		t	l				0.50	155	137	128	ł	t		t	l				050	2	190	12.1				+	t	ł
			0.25	83	1/2	69	t	t	H		t	ł				0.26	107	92	88	+	t		t	H				0.25	100	128	123				+	t	ł
			6.0 0.0	446	393	37.1	ł	ł	H		+	ł				6.0	469	415	391		ł		$^{+}$	H	ŀ			0	30	228	525				+	ł	ł
			5.0	422	377	346	ł	ł	H		+	ł				6.0	443	390	363	+	+		+	H				0.5	8	524	489				+	ł	ł
			4.0 5	383	338	316	+	ł	H		+	ł				4.0	402	355	333	+	ł		+	H				40	14	477	447				+	ł	ł
			Н	335	296	278	+	ł	H		+	ł				H	352	311	292	+	+		+	H				ŀ	7.3	418	393				+	ł	ł
	A PO		3.0	305	27.1	257	+	ł	ŀ		+	ł	s of	180 190 190 190 190 190 190 190 190 190 19	-	3.0	321	285	271	+	+		+	H	٥	8	ndi-1	30	3.1	383	364				+	+	ł
I values of	oth (mm): N	(hours)	2.5	276	245	231	+	ļ	ŀ		+	ł	onal values	oth (mm): N	(hours)	2.5	291	258	243		+		+	H	anal values	oth (mm): N	ellipses i a	25	160	347	327				+	ł	1
July seasonal values of	Mean Rainfall Depth (mm): MRD	for Duration (hours)	2.0	536	210	88	+	ļ	ŀ		+	l	September seasonal values of	Mean Rainfall Depth (mm): MRD	for Duration (hours)	5.0	248	221	508	+	+		+	H	November seasonal values of	Mean Rainfall Depth (mm): MRD	between successive ellipses i and i - 1	٥٥	8	297	580				+	ł	
3 '	Mean	t company	1.5	183	64	991	+	ļ	ŀ		1	l	Septe	Mean	T T T T T T T T T T T T T T T T T T T	-	193	173	163		+		+	H	Nove	Mean	betweens	F	69	232	219				+	ļ	1
			1.0	158	40	130					1					0.1	991						1					5	83	198	184						
			0.75	25	2	8										0.75	31 1	16					1					0.75	92	26	45						
			0.50	1	74	7	1									0.50	9.1	78	75									050	2	1	10				1		
_	_		0.25	9		9							_	_		0.25	3	1	9						L			2,2	9	=	11						
Areas	Catchment Area	Gine S	(km ²)	6	D.	19.							-Areas	Catchment Area	G E	(km ₂)	6 2.	5 15.	19.						-Areas	Catchment Area	Enc.	(km ²)	9	5 15	5 19.						
		GBt.	(km²)	2	12.	4							毕	_	G E	(km ₂)	2.0	12.0	4.						Designated Sub-Areas	⊢	Btn.	(km ²)	2	12	4.0						
Desi	Ellipse	Labor		A	20	U	اد	ш	U	н	-	,	Desi	Ellipse	Labor		٧	В	O	ام	ш	O	Ι-	- 7	Desi	Ellipse	Label		٨	m	0	٥	3	ш	o :	-	-

nber 2011 11-00139 Darguest Technical Hydrology PMP Estimation PEBO1-00139 Dargues - PMP Estimation (Impact Analysis) Summer (2011-11-07), ulem

Report No.752/42 Appendix 1

> PE801-00139 Page 6 of 14

7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Subject Cortona Resources	TIML 69 Agent	Jub No. PE801-0	00139
Knight Piesold	Dargues Reef Gold	Checked	Date 07/11/20	12011
000000000000000000000000000000000000000	PMP Estimation (Summer): Impact Analysis	peroved	Sheet No. 6	of 14

Estimation of Probable Maximum Precipitation in Australia: GSDM For Short Duration PMP (Temporal Distribution): Spatial Ellipse A
Estimated PMP values for various durations (duplicated below) are distributed into hydrographs using the design temporal distribution for short quiration PMP given in GSDM, Table 1. PMP values for all durations

	ths.	
	dept	
	Ž	
	T.	
	ij	
	eren	
	ij,	
	ž.	
	Sed	
	ě	
	regior	
	atial	
	78/	
	eson.	
	(seas	
	ation	
	pina	
	COM	
	each	
	for e	
	essary	
	Ges	
	e ne	
	Ψ.	
	eet	
	orksh	
	8 W0	
	ill lie	
	copy	
	9 00	
,	yed,	
	oldme	
	œ.	
,	oth) an	
	or bol	
	ariatio	
	n va	
	9880	
	or se	
	ig a	
	gg	
	2	
	Ē	
	est 1	
	earest	
	then	
	d to th	
	ф	
	rour	
	g are	
	values	
	put ve	
	ᆵ	

1.5	- Comple	E E	(mm)	0.0	19.0	48.0	82.8	114.5	146.2	177.8	206.4	237.1	260.7	287.4	310.0	332.6	353.4	369.3	382.8	393.3	402.3	407.3			Ī		Ī		0.9	Septh	Cum.	0	25.6	61.5	107.6	156.3	201.1	245.9	290.7	333.0	3/6.5	450.8	491.8	530.2	563.5	595.6	627.6	658.3	683.9	703.1	787.7	750.5	762.1	768.5
ration (h)	Dainfall	Instant	(mm) (mm)	0.0	19.0	29.0	34.8	31.7	31.7	31.7	28.5	30.8	23.5	26.7	22.6	22.6	20.8	15.8	13.6	10.4	6	5.0			T		T		ration (h)	-		9	25.6	35.9	46.1	48.7	44.8	44.8	44.8	44.8	41.0	40.8	32.0	38.4	33.3	32.0	32.0	30.7	25.6	19.2	15.4	128	11.5	6.4
Storm Duration (h)	Planet		(min)	0	S	10	15	20	25	30	35	40	45	20	22	09	92	102	75	80	85	06	l		T		T		Storm Duration (h)	Elapsed	e E	c	0.00	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.20	300	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5 25	5.50	5.75	6.00
0.1	O confer	L G	(mm)	0.0	25.3	8	101.0	137.9	171.5	202.1	231.5	257.8	281.0	296.8	308.3	315.7					Ī	Ī	l	l	Ī		Ī		0	П		90	8	72.7	130.8	181.7	232.6	283.5	334.3	3/80	476.8	400.2 608.8	545.1	581.5	617.8	646.9	668.7	690.5	705.0	719.6	7.000	Ī		П
Storm Duration (h)	Daing	Instant Cim	(mm)	0.0	25.3	38.9	36.8	36.8	33.7	30.5	29.5	26.3	23.2	15.8	11.6	7.4					Ī	Ī	ľ	l	T		T			I=I	Instant.	90	20.0	43.6	58.1	50.9	6.03	50.9	50.9	43.6	90.9	43.6	8,98	36.3	36.3	29.1	21.8	21.8	14.5	14.5	0	T	l	Г
Storm Du	Posses	Time	(min)	0	ιO	10	15	20	25	30	35	40	45	20	22	09					Ī		l		T		T		Storm Duration (h)	⊏		c	0.00	0.50	0.75	1.00	1.25	1.50	1.75	2.00	97.72 07.72	2.30	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	00.0	Ī		
0.75	٠	_	_	0.0	32.1	76.5	118.8	158.5	192.0	222.3	246.8	262.8	272.2								Ī		Ī	Ī	T		Ī			Depth		9	30 P	818	141.2	195.2	249.2	303.2	351.8	404.2	444.3	409.0 508.4	567.0	602.5	629.5	652.6	670.4	685.8	694.3	1		Ī		Г
Storm Duration (h)	Doing	Inetant	(mm) (mm)	0.0	32.1	44.5	42.3	39.6	33.6	30.2	24.5	16.0	9.4								Ī		Ī		Ī		Ī		Storm Duration (h)	Rainfall	Instant.	90	30.4	49.4	59.4	54.0	54.0	24.0	48.6	52.5	40.1	200	38.6	35.5	27.0	23.1	17.7	15.4	8.5			Ī		
Storm Di	Popula	Time	(min)	0	2	10	15	8	33	30	35	40	45								l		l						Storm D	Elapsed	Hime E	8	8 5	090	0.75	1.00	1.35	8:	1.75	2.00	200	2.75	308	322	3.50	3.75	4.00	4.25	4.50			Ī		
0.50	4		(mm)	0.0	43.8	94.0	137.7	175.7	202.3	215.2																				Depth	Cum.	00	36.3	92.3	153.4	211.1	268.8	323.2	377.6	422.1	470.0	5.FC A	587.0	611.8	633.2	649.7	659.6							
Storm Duration (h)			(mm) (mm)	0.0	43.8	50.2	43.8	38.0	26.5	12.9																			Storm Duration (h)	Rainfall	Instant.	00	36.3	56.1	61.0	57.7	57.7	54.4	54.4	44.5	47.8	41.2	346	24.7	21.4	16.5	6.6							
Storm	Promo	Time	(min)	0	S	10	15	20	25	30																			ш	Elapsed	E (4)	000	0.00	0.50	0.75	1.00	1.25	1.50	1.75	2.00	27.7	2.30	3 00	3.25	3.50	3.75	4.00							
0.417	Š	LI Cebru	(mm)	0.0	48.8	101.5	146.4	179.6	195.2																				3.0		Cum.		46.2	117.3	184.6	252.0	313.5	369.3	423.1	4/1.2	013.0	562 E	577.0											
Storm Duration (h)	Doing	Instant	(mm)	0.0	48.8	52.7	44.9	33.2	15.6																				15				26.2		67.3	67.3	61.5	929	53.9	48.	47.00	24.0	13.5											
ΙL	ľ	Time	(min)	0	40	10	15	20	25												L								Storm	Elapsed	Tme		0.05	0.50	0.75	1.00	1.25	1.50	1.75	200	27.7	2 77	3.00											
0.333	å	E Control	(mm)	0.0	227	110.9	154.2	173.3													L								2.5	Ľ	Cum.	L	20 62	131.4	205.0	273.4	336.6	394.5	446.9	483.7	5000	07070												
Storm Duration (h)	Н	_	(mm)	0.0		10 55.4	43.	19.													L				L		L		ura		u u		200	282	2 73	989	63.	27.	25.0	99	0 4			L								L		
Storm	ľ	<u>-</u>	(min)	0	0	-	9	5						L					L			L		L		L		Ц	Storm	Elapsed	e a	Ö	Ċ	1 0.50	7 0.75	0.1	7 1.25	1.50	7.1	2.0	277	Z 4 8	a	7	4	2	-	2	0	D C	0 40	1 00	2	4
0.256	Doneth	all Deptu	(mm) (mm)	0.0	9	5 121.3	148.												L			L							2.0	Ш	_	L	15.	38	99	2 96.	124.	152.	180.	208	255	285	304	328	6 349	369	389	1 408	9 424.	435.	5 447	465	1 472	0 476
Storm Duration (h)	Palad	Inetant	(mm)	0.0	5	0 56.	27.																						Ž	_	=	ľ	15.0	0	5 28.0	30	5 27.	27.	27.	22,0	S V	26.0	19	5	0 200	19:	0 19.	19.	15.	5	o lo		2	0
Storm	L one of	Time	(min)			÷	Ë																						Storm	Elapsed	Time		ľ	F	ľ	Ñ	2:	rő i	eo (4	4 G) li	Ĭ.	9	Ĭ.	7	8	80	ō	95	101	111	11	12(

Report No.752/42 Appendix 1

PE801-00139 Page 7 of 14

PMP Estimation (Summer); Impact Analysis ***	percent dy	Sheet No.	of 14
Estimation of Probable Maximum Precipitation in Australia: GSDM	M For Short Duration PMP	(Temporal Distribution	i): Spatial Ellipse B

ed, with different input PMP depths.	
en (uoiti	
/ spatial reg	6.0
on (season	5.0
h combinati	4.5
ssary for eac	4.0
will be neces	3.0
worksheet w	2.5
opy of this v	2.0
employed, a c	1.5
both) are er	1.0
rariation (or	92'0
or season v	9.0
i.) If spatial o	0.417
arest 10 mm	0.333
ed to the ne.	0.250
t values are round	m Duration (h) =

	uratio	æ	Insta (mr																						╝
	Storm Duration	Elapsed	Time (min)	0	5	10	15	20	25	30	35	40	45	20	22	60	92	70	75	80	85	90			
	1.0	Depth	Cum.	0.0	22.7	57.6	90'6	123.7	153.9	181.3	207.7	231.3	252.1	266.2	276.6	283.2									1
	ration (h)	Rainfall Depth	Instant. (mm)	0.0	22.7	34.9	33.0	33.0	30.2	27.4	26.4	23.6	20.8	14.2	10.4	6.6									1
8	Storm Duration (h)	Elapsed	Time (mir.)	0	c)	10	15	20	25	30	35	40	45	20	22	09									1
639	0.75	h	Cum.	0.0	28.4	67.8	105.3	140.4	170.2	197.0	218.7	232.9	241.2												1
612	ration (h)	Rainfall Depth	Instant. (mm)	0.0	28.4	39.4	37.5	35.1	29.7	26.8	21.7	14.2	8.3												1
282	Storm Duration (h)	Elapsed	min)	0	2	10	15	20	52	30	32	40	45												1
510	0:20	П	Cum.	0.0	38.6	82.8	121.4	154.9	178.3	189.6															1
467	ration (h)	Rainfall Depth	Instant. (mm)	0.0	38.6	44.2	38.6	33.5	23.4	11.4															1
423	Storm Duration (h)	Elapsed	mir.	0	2	10	15	20	25	30															1
362	0.417	Depth	Cum.	0.0	42.7	88.9	128.2	157.2	170.9																1
283	Storm Duration (h)	Rainfall	Instant. (mm)	0.0	42.7	46.1	39.3	29.1	13.7																
241	Storm Du	Elapsed	min)	0	2	10	15	20	25																1
190	0.333	Depth	Cum.	0.0	48.1	96.3	133.9	150.5											_						1
171	Storm Duration (h)	Rainfall Depth	Instant. (mm)	0.0	48.1	48.1	37.6	16.6																	
150	Storm Di	Elapsed	Time (min)	0	5	10	15	20																	1
128	0.250	Depth	Cum.	0.0	55.8	104.3	127.7																		1
PMP Depth (mm) =	Storm Duration (h)	Rainfall Depth	Instant. (mm)	0.0	55.8	48.5	23.4																		1
PMP Depth (mm) =	Storm D	Elapsed	Time (min)	0	5	10	15																		

6.0	ے	<u>ج</u> ج	0.0	22.7	54.5	95.3	38.5	78.2	17.9	257.7	97.4	33.7	20.0	07.5	35.9	669	99.4	27.8	56.2	83.4	06.1	23.1	40.2	53.8	65.1	75.4	
	Rainfall Depth	Cum.	L	L		L		-	2	2	7	<u>~</u>	9	4	4	4	4	9	40	9	9	9	9	9 9	9	9	ľ
Storm Duration (n)	Rainfa	Instant. (mm)	Ö	22.7	31.8	40.8	43.1	39.7	39.7	39.7	39.7	36.3	36.3	37.6	28.4	34.1	29.6	28.7	28.4	27.2	22.7	17.0	17.0	13.6	117	10.2	
Storm	Elapsed	Ē Œ	00.0	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	900
9.0	Depth	Cum.	0.0	25.6	63.9	115.1	159.9	204.6	249.4	294.1	332.5	377.3	409.2	447.6	479.6	511.5	543.5	569.1	588.3	607.4	620.2	633.0	639.4				l
ration (h)	Rainfall Depth	Instant. (mm)	0.0	25.6	38.4	51.2	44.8	44.8	44.8	44.8	38.4	44.8	32.0	38.4	32.0	32.0	32.0	25.6	19.2	19.2	12.8	12.8	6.4				İ
Storm Duration (h)	Elapsed	E G	00:0	0.25	09:0	0.75	1.00	1.25	1.50	1.75	2:00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	2.00				l
4.5	Depth	Cum. (mm)	0.0	28.5	72.0	124.4	172.0	219.5	267.1	309.9	356.2	391.5	431.6	465.6	499.6	530.9	554.6	575.0	2005	604.3	611.7						ŀ
ation (h)	Rainfall D	Instant. (mm)	0.0	28.5	43.5	52.3	47.6	47.6	47.6	42.8	46.2	35.3	40.1	34.0	34.0	31.3	23.8	20.4	15.6	13.6	7.5						ŀ
Storm Duration (h)	Elapsed	E E E	00:00	0.25	0.50	0.75	1.00	1.35	1.50	1.75	2.00	5.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50						ŀ
4.0	Ŀ	Cum. (mm)	0.0	32.0	81.5	135.4	186.3	237.3	285.3	333.3	372.6	414.8	451.2	487.6	518.2	540.0	558.9	573.5	582.2								ŀ
(h) uoiti	Rainfall Depth	Instant. (mm)	0.0	32.0	49.5	53.9	50.9	6009	48.0	48.0	39.3	42.2	36.4	36.4	30.6	21.8	18.9	14.6	8.7								
Storm Duration (h)	Elapsed		00.0	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00								-
3.0	r	Cum.	0.0	40.8	103.6	163.1	222.6	276.9	326.2	373.8	416.2	453.6	479.1	497.8	208.7												
tion (h)	Rainfall Depth	Instant. (mm)	0.0	40.8	62.9	28.5	59.5	54.4	49.3	47.6	42.5	37.4	25.5	18.7	11.9												-
Storm Duration (h)	Elapsed	Tme Tr	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2:00	2.25	2.50	2.75	3.00												
2.5	H	Cum.	0.0	46.7	116.7	182.1	242.8	598.9	350.2	396.9	429.6	452.9	467.0	-	-	-	-	H					H	H	H	-	-
ion (h)	Rainfall Depth	Instant. ((mm) (0.0	46.7	20.0	65.4	60.7	26.0	51.4	46.7	32.7	23.3	14.0										ŀ		-	-	-
Storm Duration (h)	Elapsed	al (f)	00:00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50					-					ŀ		ŀ	_	-
2.0	H	Cum.	0.0	14.1	33.8	59.2	0.38	110.7	135.4	160.1	184.7	207.3	229.9	253.1	270.8	291.9	310.2	327.9	345.5	362.4	376.5	387.1	397.7	406.1	413.2	419.5	4004
ion (h)	Rainfall Depth	Instant. C (mm) (i	0.0	14.1	19.7	25.4	26.8	24.7	24.7	24.7	24.7	22.6	22.6	23.3	17.6	21.2	18.3	17.6	17.6	16.9	14.1	10.6	10.6	8.5	7.1	6.3	40
Storm Duration (h)	Elapsed	Time Ins	0	22	10	15	20	25	30	35	40	45	20	55	09	92	102	75	80	85	06	35	100	105	110	115	455
ž	Elab	ÈĒ																									

Report No.752/42 Appendix 1

PE801-00139 Page 8 of 14

	Subject Cortona Resources	TIML 69 Agent	Jub No. PE801-0013
Knight Piesold	Dargues Reef Gold	Checked	Date 07/11/201
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMP Estimation (Summer): Impact Analysis	peroved	Sof 1

Distribution): Spatial Ellipse C
(Temporal
uration PMP
For Short D
: GSDM
in Australia
Precipitation
le Maximum
n of Probab
matio

		uration	Rair	Instan (mm)	l	٦	2	2	Š	2	2	2	2	÷	2.	Ĺ	٣	_	_	1				L	L		
		Storm Duration	Elapsed	min)	0	r0	10	15	20	25	30	35	40	45	20	55	9	99	70	75	80	85	90				
		1.0	Depth	Cum.	0.0	21.3	54.2	85.3	116.4	144.8	170.5	195.4	217.6	237.2	250.5	260.3	266.5										
		Storm Duration (h)	Rainfall Depth	Instant. (mm)	0.0	21.3	32.9	31.1	31.1	28.4	25.8	24.9	22.2	19.5	13.3	8.6	6.2										
6.0	640	Storm Du	Elapsed			ιΩ	10	15	20	25	30	35	40	45	20	22	09										
0.0	596	0.75	Depth	Cum.	0.0	26.4	63.0	97.9	130.5	158.2	183.1	203.3	216.5	224.2													
4.5	571	Storm Duration (h)	Rainfall Depth	Instant. (mm)	0.0	26.4	36.6	34.9	32.6	27.7	24.9	20.2	13.2	7.7													
4.0	545	Storm D	Elapsed		0	ın	10	15	8	32	30	32	40	45													
0.0	479	0:20	h		0.0	36.0	77.4	113.5	144.8	166.6	177.3																
2.5	444	Storm Duration (h)	Rainfall Depth	Instant. (mm)	0.0	36.0	41.4	36.0	31.3	21.9	10.6																
Z:U	399	Storm Du	Elapsed	_	0	ιO	10	15	20	25	30																
0.0	342	0.417	Depth	Cum.	0.0	40.2	83.7	120.7	148.1	161.0																	
1.0	266	ration (h)	Rainfall Depth	Instant. (mm)	0.0	40.2	43.5	37.0	27.4	12.9																	
0.7.0	224	Storm Duration (h)	Elapsed	_	0	Ω.	10	15	20	25																	
0.0	177	0.333	Depth	Cum.	0.0	45.8	91.6	127.3	143.1																		
0.417	161	Storm Duration (h)	Rainfall Depth	Instant. (mm)	0.0	45.8	45.8	35.8	15.7																		
0.000	143	Storm Du	Elapsed	Time (min)	•	ιΩ	10	15	20																		
0.200	123	0.250	Depth	Cum.	0.0	53.7	100.4	122.9																			
- (u) uon	th (mm) =	Storm Duration (h)	Rainfall Depth	Instant. (mm)	0.0	53.7	46.7	22.5																			
storm Duration (n) =	PMP Depth (mm) =	Storm Du	Elapsed	_	0	ro.	10	15																			

in in	Instant. Cum. (mm)	0.0	21.3	29.9	38.4 8	40.5	37.3 16	37.3 20	37.3	37.3	34.1	34.1	35.2	26.7 40	32.0 44	27.7 46	26.7 496	26.7 52	25.6 548	21.3 56	16.0 55	16.0 60	12.8 61	10.7 62	89
₹.	Time Ins	00'0	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	22.5
3	- 6.2	0.0	23.8	59.6	107.2	149.0	190.7	232.4	274.1	309.8	351.5	381.3	417.1	446.9	476.7	506.5	530.3	548.2	566.0	678.0	589.9	595.8			
Storm Daration (ri)	Instant. Cun (mm) (mm	0.0	23.8	35.7	47.7	41.7	41.7	41.7	41.7	35.7	41.7	29.8	35.7	29.8	29.8	29.8	23.8	17.9	17.9	11.9	11.9	0.9			
ľ	Time (h)	00'0	0.25	0.50	92'0	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00			
	Cum.	0.0	7 26.7	67.3	116.2	160.6	205.1	249.5	289.5	332.7	365.7	5 403.2	434.9	466.7	495.9	518.1	537.1	551.7	564.4	571.4					
ŧ.	Instant.	0.0	5 26.7	0 40.6	5 48.9	0 44.4	.25 44.4	0 447	5 40.0	0 43.2	33.0	37.5	31.7	31.7	29.7	0 22.3	19.0	14.6	12.7	0 7.0					
ď	Time (h)	00'0	0.25	3 0.50	97.0	1.00	7	1.50	1.75	0 5.00	2.25	.6 2.50	7 2.75	3.00	3.25	3.50	3.75	.3 4.00	4.25	4.50					Ļ
	Cum.	0 0	.0 30	.3 76.	4 126	.7 174.	.7 222.:	.0 267.	.0 312.	.8 349	.5 388	.1 422	.1 456.	.6 485	.4 505	.7 523.	.6 537	.2 545							
3	Instant.	00	0.25 30	50 46.3	0.75 50	.00	.25 47.	.50 45.0	1.75 45.0	36.8	2.25 39.	50 34	2.75	28.	25 20	20 17	3.75 13.6	90							L
3	Time (1)	0.0	38.4 0.3	0.50	4	3	1	8	Ì	2.00	_	1,6	2	3,00	3.25	3.50	60	4.00							
	Cum.	0	38.4 38	1.1	55.9 153.	.902	.1 260.	46.3 306.	7 351.5	39.9	.2 426.	.0 450.	.6 468	.2 479											L
ŧL	Instant.	00	0.25	0.50	0.75 56	.00	.25 51.	.50 46	1.75	2.00	2.25	2.50 24	2.75	3.00											L
2	Time (h)	0.0	4	0.9	0	7	1	7	0	3.1	60	9	2	6								L			
	stant. Cum.	0.0	44.4	36.5	62.1 173	7.7 230	53.2 283.	18.8	44.4	1.1 40	2.2 430	3.3 443													
1	= -	00'0	0.25	0.50	0.75	00'1	1.25	1.50	1.75	2.00	2.25	2.50													
₹,	n. Time	0.0	13.3	31.9	929	11.18	04.3	27.6	50.9	74.1	95.4	16.7	238.6	255.2	75.1	292.4	309.0	325.6	341.6	354.9	364.9	374.8	382.8	389.4	205 A
	stant. Cum.	0.0	13.3	18.6	23.9	25.3	23.3 10	23.3	23.3 16	23.3	21.3 15	21.3	21.9	16.6	19.9 27	17.3	16.6	16.6	16.0	13.3 36	10.0	10.0	8.0	6.6 38	8.0
₹	= -	0	2	10	15	20		30	35	40	45	20	55	09	. 99	70	. 22	80	. 82	06	36	100	105	110	115
5	Elapsed Time (min)																								

PE 801-00139

07/11/201

Report No.752/42 Appendix 1

Estimation of Probable Maximum Precipitation in Australia: GSAM For Long Duration PMP (Depth)

Estimation of long duration Probable Maximum Precipitation (PMP) in Australia is performed using procedures taken from the following

- publications of the Australian Bureau of Meteorology (BOM):
 "Development of the Generalised Southeast Australia Method for Estimating Probable Maximum Precipitation, HRS Report No.4",

 - August 1996 ← (GSAM) for long (> 24 hr) duration PMP.

 "Guidebook to the Estimation of Probable Maximum Precipitation, GENERALISED SOUTHEAST AUSTRALIA METHOD", October 2006

			Loc	ation Informat	ion			
Catchment	Catchment	Located	Catchment	Catchment	PMP	Consider	Summer (S)	Mean
ID	Area	in	Latitude	Longitude	Convergence	Seasons?	or	Catchment
		Aus.		_	Application		Autumn (A)	Elevation
	(km²)	State	O	0	Zone		Storm?	(m)
Majors Creek	19.593	NSW	-35.5475	149.7482	CAZ	Yes	S	721

Computation	n of Convergen	ce PMP Adjustr	nent Factors
Precipitable Water EPW _{Itd}	Extreme Cat. Precipitable Water EPW _{catch}	Moisture Adjusment Factor MAF	Topographic Adjustment Factor TAF
, ,	, ,	0.020	1 770
E PW _{rtd} (mm) 80.8	EPW _{catch} (mm) 66.920	MAF 0.828	

E stimatio	n of Depth-Dura	tion PMP (Long	j D uration)
Duration	Base Convergence PMP	Catchment PMP Estimate	R ounded PMP E stimate
(h)	(mm)	(mm)	(mm)
24	858.3	1,258.2	1,260
36	960.5	1,408.1	1,410
48	1,012.0	1,483.6	1,480
72	1,057.9	1,550.8	1,550
96	1,093.8	1,603.5	1,600

If the overall catchment area exceeds 1 $\mbox{km}^{\,2}$ and the required level of calculations warrant the effort, estimated PMP rainfall may be varied spatially using the procedures given in GSAM CD 2006 Guidebook, Section 3. However, spatially-distributing PMP is generally not required unless the contributing catchment area exceeds 5 km².

To spatially-distribute PMP, it is necessary to multiply each of the "Catchment PMP Estimate" values by the ratio of area-averaged TAF values (Spatially-distributed PMP is considered for TSF design. Subcatchment specific PMP estimates are made for each sub-catchment at a selected duration: TSF Spillway Critical Duration.)

$$PMP_{so,d} = PMP_{o,d} \times (TAF_{so}/TAF_o)$$

where:

PMP_{c,d} = catchment (c) average PMP for duration (d);

PMP so, d = sub-catchment (sc) average PMP for duration (d);

TAF c = areal-average topographic adjustment factor for catchment (c); and

T AF so = areal-average topographic adjustment factor for sub-catchment (sc)

Estimation of	of Depth-Durati	on PMP (Comb	ined Curve)
PMP Estimation Procedure	Duration (h)	Catchment PMP Estimate (mm)	Rounded Final PMP Depth (mm)
	0.250	129.4	130
	0.333	#N/A	150
[0.417	#N/A	170
[0.500	190.2	190
[0.750	241.4	240
[1.0	283.7	280
GSDM	1.5	363.1	360
OSDIMI [2.0	424.6	420
	2.5	469.4	470
	3.0	511.7	510
l l	4.0	584.0	580
	4.5	#N/A	610
	5.0	641.0	640
	6.0	683.3	680
Interpolated	9.0	#N/A	820
from Final	12.0	#N/A	930
Envelope	18.0	#N/A	1,110
	24.0	1,258.2	1,260
ſ	30.0	#N/A	1,340
GSAM	36.0	1,408.1	1,410
USAM	48.0	1,483.6	1,480
[72.0	1,550.8	1,550
İ	96.0	1,603.5	1,600

Once the scaled "Catchment PMP Estimate" values are derived for the sub-catchment, a smooth envelope curve is drawn and the final PMP depths (rounded to the nearest 10 mm) are extracted.

The Annual Exceedance Probability (AEP) associated with a PMP storm is estimated based on the area of the catchment it occurs within; see ARR 1999 - Volume 1, Book 6, Section 3,6, Figure 6,

PMP Fr	equency
AEP	ARI
	(1 in X ут)
1.0E-07	10000000

Knight Piésold Pty. Ltd. November 2011 P:/PE801-00139 Dargues\Technical\Hydrology\PMP Estimation\PE801-00139 Dargues - PMP Estimation (Impact Analysis) Summer (2011-11-07)xlsm PE801-00139

PE801-00139 Page 3 of 5

Report No.752/42 Appendix 1

11 / 11 / 11	subject Cortona Resources	Madeby TML	Jub No. PE801-00139
Knight Piesold	Dargues Reef Gold	Checked	Data 07/11/2011
0 2	PMP Estimation (Summer): Impact Analysis	ptwooddy	

Estimation of Probable Maximum Precipitation in Australia: GSAM For Long Duration PWP (Temporal Distribution)

d PMP values for various durations (duplicated below) are distributed into hyelographs using the design temporal distributions for long duration PMP given in GSAM CD 2006 Guidebook. PMP values for all durations are taken from an envelope curve fitted to the computed for the sement of the pMP is estimated via interpolation between bounding distributions (24h and 36h). Temporal distributions for PMP rainfall between 6h and 24h are not available, see note below for a procedure to use with this sometic 9, 12 and 18h PMP.

Standard Project Area =

PMP Convergence Application Zone =

	1+1	Fraction of Storm	PMP	1.50%	4.50%	8.40%	14.00%	22.70%	33,30%	47.20%	56.60%	63.20%	9609.69	77,70%	85.40%	90.80%	95.40%	98.80%	100.00%	
on PMP	Position i+1	Fraction 1	_	6.25%	12.50%	18.75%	25.00%	31.25%	37.50%	43.75%	9600.03	56.25%	62.50%	98.75%	75.00%	81.25%	87.50%	93.75%	100.00%	
48-h Duration PMP	į u	Fraction of Storm		9600.0	1.50%	4.50%	8.40%	14.00%	22.70%	33.30%	47.20%	56.60%	63.20%	9609.69	77.70%	85.40%	90.80%	95.40%	98.80%	
,	Position	Fraction 1		9600.0	6.25%	12.50%	18.75%	25.00%	31.25%	37.50%	43.75%	50.00%	56.25%	62.50%	68.75%	75.00%	81.25%	87.50%	93.75%	
	1+1	Fraction I		2.80%	7.80%	15.10%	24.30%	33.90%	43.00%	51.50%	66.20%	78.30%	86.90%	96.80%	100.00%					
on PMP	Position i+1	Fraction of Storm	_	8.33%	16.67%	25.00%	33.33%	41.67%	9600.09	58.33%	9629.99	75.00%	83.33%	91.67%	100.00%					
36-h Duration PMP	j u	Fraction F		0.00%	2.80%	7.80%	15.10%	24.30%	33.90%	43.00%	51.50%	66.20%	78.30%	96.90%	36.80%	100.00%				
,	Position i	Fraction I	_	%00.0	8.33%	16.67%	25.00%	33.33%	41.67%	20:00%	58.33%	96.67%	75.00%	83.33%	91.67%	100.00%				
	1+1	Fraction F		1.98%	4.18%	7.13%	10.85%	14.80%	20.40%	26.04%	32,34%	39.12%	45.85%	51.80%	58.37%	962639	72.84%	79.45%	84.25%	
on PMP	Position i+1	Fraction F		9600'9	10.00%	15.00%	20.00%	25.00%	30.00%	35.00%	40.00%	45.00%	9600009	9600'99	960:009	9600'99	%00.07	75.00%	80.00%	
30-h Duration PMP	j u	Fraction F		%00.0	1.98%	4.18%	7.13%	10.85%	14.80%	20.40%	26.04%	32.34%	39.12%	45.85%	51.80%	58.37%	92.97%	72.84%	79.45%	
,	Position i	Fraction F		%00.0	2:00%	10.00%	15.00%	20.00%	25.00%	30.00%	35.00%	40.00%	45.00%	20.00%	25.00%	%00:09	9600:99	%00:02	75.00%	
	1+1	Fraction I		5.70%	14.50%	28.70%	48.70%	65.70%	80.60%	91.70%	100.00%		ľ							
on PMP	Position i+1	Fraction 1		12.50%	25.00%	37.50%	9600.09	62.50%	75,00%	87.50%	100.00%									
24-h Duration PMP	į u	Fraction		9600.0	5.70%	14.50%	28.70%	48.70%	962,7096	80.60%	91.70%	100.00%								
	Position	Fraction	ration	9600.0	12.50%	25.00%	37.50%	20.00%	62.50%	75.00%	87.50%	100.00%								
				_		_							•							
48.0	Depth	Cum.	0.0	14.8	37.0	9'99	105.1	151.9	207.2	293.0	388.3	492.8	630.0	744.9	837.7	902.8	6.996	1030.1	1110.0	
ration (h)	Rainfall	Instant.	0.0	14.8	22.2	29.6	38.5	46.9	65.3	85.8	95.2	104.6	137.1	114.9	92.7	1,59	64.1	63.1	79.9	
Storm Duration (h)	Elapsed	Tine E	•	2	4	9	00	10	12	14	16	18	20	22	24	26	28	30	32	
36.0	Depth	Cum.	0.0	26.3	63.0	110.0	178.6	256.2	342.6	432.9	520.8	606.3	686.2	795.2	933.4	1047.2	1144.5	1225.3	1318.4	
ration (h)	Rainfall	Instant.	0.0	26.3	36.7	47.0	9.89	77.6	86.5	90.2	87.9	85.5	79.9	109.0	138.2	113.7	97.3	80.8	93.1	
30.0 Storm Duration (h)	Elapsed	i a	0	2	4	9	00	10	12	14	16	18	20	22	24	26	28	30	32	
	Depth	Cum.	0.0	36.4	82.4	145.4	223.3	323.7	433.4	554.3	92.99	782.2	914.7	1035.1	1129.0	1216.9	1290.2	1340.0		ĺ
ration (h)	Rainfall Depth	Instant.	0.0	36.4	46.0	63.0	77.9	100.4	109.6	120.9	113.3	114.6	132.5	120.4	93.8	88.0	73.3	49.8		ĺ

Employ rainfail rundf model to estimate the hydrographs resulting from 6-h PAPF (GSDM) and from 24-h PAPF (GSDM).
 Determine the peak flow for both of these hydrographs. D_{ip} and D_{ips}.
 Estimate peak flows for infamematic actuations. Q_{ips}. O_{ips} and Q_{ips} using a weighted average (i.e. with linear interpolation) as shown Q_{ips} = Q_{ips} + (Q_{ips} - O_{ips}) *(D - 6) / (24 - 6)

where D_0 = peak flow rate for intermediate duration PAP design flood (m²/s), Q_0 = peak flow rate for 6-h duration PAP design flood (m²/s), $Q_{\rm PA}$ = peak flow rate for 2-h duration PAP design flood (m²/s), and D = intermediate duration (6-h < D < 24-h).

Knight Piésold Pty. Ltd.

Knight Piésold

Report No.752/42 Appendix 1

Pege 4 of 5

r OD 2006 Guidebook. PMP values for all durations are taken from an envetope purve fitted to the computed PMP values. por all distributions for PMP rainfall between 6 h and 24-h are not available, see note below for a propedure to use with this spenario 9, 12 and 18-h PMP. Esti

Knight Présold Dargues Reef Gold	Dargues Re	sef Gold		Ohe	Decked	Data 07/11/201	1110
	PMP Estim	PMP Estimation (Summer): Impact Analysis Approved	x): Impact A	nalysis Apr	рвиох		
Estimation of Probable Maximum Precipitation in Australia: GSAM For Long Duration PMP (Temporal Distribution)	Maximum Pr	ecipitatior	in Austr	alia: GSA	M For Long Duration Pl	AP (Temporal Distribution	۔ ا
Estimated PAP values for various durations (outplicated below) are distributed into hyetographs using the design temporal distributions for long duration PAP payen in SSAM (PAPP depths are rounded to the nearest 10 mm). The temporal distribution for 30 h PAP is estimated via interpolation between bounding distributions (24 h and 36 h). Temporal	ous durations (d e nearest 10 mr	uplicated beld n.) The temp	w) are distr	buted into h	nyetographs using the design t PMP is estimated via interpoli	Esmaled PMP values for various durations (dublicated below) are distributed into hyelographs using the design temporal distributions for long duration PMP given in SSAM C (PMP distribuse rounded to the nearest 10 mm.) The temporal distribution for 30 h PMP is estimated via interpolation between bounding distributions (24-h and 36-h). Tempor	ation PMP given in GSAM C ins (24-h and 36-h). Tempo
	0.00	0	* **	0.00			
Storm Duration (h) = 2-	4.0 30.0	30.0 36.0 48.0	48.0	72.0	96.0		Standard Proje
PMP Depth (mm) = 12	1260 1340	1410	1480	1550	1600		

	72-h Dura	72-h Duration PMP	ſ		96-h Dura	96-h Duration PMP	
Position	tion i	Position i+1	n i+1	Position	j uoj	Positi	Position #1
Fraction of Storm	Fraction of Storm	Fraction of Storm	Fraction of Storm	Fraction of Storm	Fraction of Storm	Fraction of Storm	Fraction of Storm
Duration	PMP	Duration	PMP	Duration	PMP	Duration	PMP
9600.0	0	4.17%	906.0	%00.0	%00:0	3.13%	0.80%
4.17%	0	8.33%	2.50%	3.13%	0.80%	6.25%	1.70%
8.33%	Ш	12.50%	5.30%	6.25%	1.70%	9.38%	2.80%
12.50%		16.67%	8.30%	9.38%	2.80%	12.50%	4.30%
16.67%	8.30%	20.83%	10.50%	12.50%	4.30%	15.63%	9600'9
20.83%	10.50%	25.00%	14.20%	15.63%	6.00%	18.75%	7.10%
25.00%	14.20%	29.17%	19.60%	18.75%	7.10%	21,88%	8.00%
29.17%	ш	33.33%	26.20%	21.88%	8.00%	25.00%	10.00%
33.33%	Ш	37.50%	35.50%	25.00%	10.00%	28.13%	13.90%
37.50%	35.50%	41.67%	47.00%	28.13%	13.90%	31.25%	18.90%
41.67%	Ш	45.83%	54.90%	31.25%	18.90%	34,38%	25.70%
45.83%		9600'09	61.90%	34.38%	25.70%	37.50%	32.70%
20.00%	61.90%	54.17%	68.70%	37.50%	32.70%	40.63%	39.10%
54.17%		96833%	73.30%	40.63%	39.10%	43,75%	44,40%
58.33%	73	62.50%	77.70%	43.75%	44.40%	46.88%	48.60%
62.50%	9602'22	9629399	82.90%	46.88%	48.60%	%00'09	53,30%
96.67%	82	70.83%	87.00%	20.00%	53.30%	53.13%	58.60%
70.83%	87.00%	9600'92	89.90%	53.13%	58.60%	56.25%	63.50%
75.00%	89.90%	79.17%	92.10%	56.25%	63.50%	59.38%	67.70%
79.17%	92	83.33%	93.90%	59.38%	67.70%	62.50%	72.40%
83.33%		87.50%	95.40%	62.50%	72.40%	65.63%	78.20%
		91.67%	97.20%	65.63%	78.20%	%52'89	83.30%
91.67%	97.		99.00%	68.75%	83.30%	71.88%	86.80%
95.83%	99	100.00%	100.00%	71.88%	86.80%	75.00%	89.60%
100.00%	100.00%			75.00%	89.60%	78.13%	91.90%
				78.13%	91.90%	81.25%	93.50%
				81.25%	93.50%	84.38%	94.40%
				84.38%	94.40%	87.50%	94.90%
				87.50%	94.90%	90.63%	96.10%
				90.63%	96.10%	93,75%	97.60%
				93.75%	97.60%	96.88%	99.00%
				96.88%	99.00%	100.00%	100.00%
				400 000k	400 00K		

	Dal ation (ii)			ou attor (iii)	8
Elapsed	Rainfall	미	Elapsed	Rainfall	Depth
E E	Instant. (mm)	Cum (mm)	ĒĒ	Instant. (mm)	O E
0	0:0	0.0	0	0.0	0
6	14.0	14.0	е	12.8	12
9	24.8	38.8	9	14.4	27
6	43.4	82.2	ō	17.6	44
12	46.5	128.7	12	24.0	89
15	34.1	162.8	15	27.2	96
18	57.4	220.1	18	17.6	113
21	83.7	303.8	21	14.4	128
75	102.3	406.1	24	32.0	160
27	144.2	550.3	27	62.3	222
8	178.3	728.5	30	80.1	302
33	122.5	851.0	33	108.6	411
38	108.5	969.5	36	112.2	523
33	105.4	1064.9	39	102.2	625
42	71.3	1136.2	42	85.0	710
45	68.2	1204.4	45	67.1	777
48	9.08	1285.0	48	75.3	852
51	63.6	1348.5	51	84.7	937
22	45.0	1393.5	25	78.5	1016.
25	34.1	1427.6	25	67.1	1083
99	27.9	1455.5	09	75.3	1158
83	23.3	1478.7	63	92.7	1251
99	27.9	1506.6	99	81.7	1332
69	27.9	1534.5	69	55.9	1388
72	15.5	1550.0	72	44.9	1433
			75	36.7	1470
			78	25.7	1496
			81	14.4	1510
			28	8.0	1518
			87	19.2	1537
			06	24.0	1561
			93	22.4	1584

Knight Piésold Pty. Ltd.
November 2011
P:VPE801-00139 Dargues\Technical\Hydrology\PMP Estimation\PE801-00139 Dargues - PMP Estimation (Impact Analysis) Summer (2011-11-07).xIsm Knight Piésold Pty. Ltd.

	Subject		Made by	TML	Job No.	PE801-00139
Knight Piésold	Dargues Re	ef Gold	Checked		Date 12/11/2011	
	TSF Breach	Impact Analysis	Approved			

Dam Breach Modelling - Empirical Methods (Froehlich)

Froehlich (1995a, 2008) empirical methods for estimating breach width, breach side-slope ratio, breach formation time and peak breach outflow are reproduced below:

 $\overline{B} = 0.27 \cdot k_o \cdot V_w^{0.32} \cdot H_b^{0.04}$ (1)

where:

B = average ultimate breach width (m);

 k_{o} = failure mode parameter (1.3 for overtopping failures,

1.0 for other modes);

V_w = water volume about the ultimate breach invert at start of dam failure (m3); and

H_b = ultimate breach height (m).

(2) z = breach side-slope ratio (1.0 H:1V for overtopping failures, 0.7 H:1V for other failure modes).

 $t_f = 63.2 \cdot (V_w / (g \cdot H_b^2))^{0.5}$ (3)

where:

t_f = breach formation time (s) and

g = gravitational acceleration (9.81 m/s²)

(4)
$$Q_p = 0.607 \cdot (V_w^{0.295} \cdot H_w^{1.24})$$

where:

 Q_p = peak dam breach discharge at the dam (m³/s) and

H_w = height of water over ultimate breach invert at initiation (m).

Figure 1. Typical Breach Cross Section

Table 1. Froehlich (1995a, 2008) Empirical Breach Parameter Estimation Results

Selected	Dam	Ultimate	Initial	Initial	Failure	Average	Breach	Bre	ach	Peak
Failure	Failure	Breach	Water	Water	Mode	Breach	Side-	Form	ation	Breach
Mechanism	Initiating	Height	Height	Volume	Parameter	Width	Slope	Tir	me	Outflow
	Event	Н _ь	H _w	V _w	k _o	Ē	z	t	t _f	Q_p
		(m)	(m)	(m ³)		(m)	(H:1V)	(s)	(h)	(m³/s)
Overtopping	PMPDF	6.0	5.4	180,856	1.3	18.1	1.0	1,430.4	0.4	174.7
Overtopping	SD	6.0	5.0	144,508	1.3	16.9	1.0	1,278.6	0.4	148.6
Piping	PMPDF	6.0	5.4	180,856	1	14.0	0.7	1,430.4	0.4	174.7
Piping	SD	6.0	5.0	144,508	1	13.0	0.7	1,278.6	0.4	148.6

Knight Piésold Pty. Ltd.

Froehlich, D.C. (1995a). Peak Outflow from Breached Embankment Dam, Journal of Water Resources Planning and Management, Vol. 121, No. 1, January/February, pages 90-97.

Froehlich, D.C. (2008). *Embankment Dam Breach Parameters and Their Uncertainti*es, ASCE Journal of Hydraulic Engineering, Vol. 134, No. 12, May, pages 1708-1720.

Knight Piésold

	Subject	Contona Resources	Made by	TML	Job No.	PE801-00139
Knight Piésold	Dargues Reef Gol	d	Checked		Date	12/11/2011
	TSF Breach Impa	ct Analysis	Approved			

Dam Breach Modelling - Empirical Methods (Von Thun and Gillette)

Von Thun and Gillette (1990) empirical methods for estimating breach width, breach side-slope ratio, and breach formation time are reproduced below:

 $(1) \overline{B} = 2.5 \cdot H_w + C_b$

where:

B = average ultimate breach width (ft);

H_w = height of water over ultimate breach invert at initiation (ft);

 C_b = breach width factor (ft), which varies according to V_w (see Table 1); and

 $V_{\rm w}$ = water volume about the ultimate breach invert at start of dam failure (acre-ft).

(2) $z = \hbox{breach side-slope ratio } (1.0 \hbox{ H:1V for non-cohesive } \\ \hbox{dams, } 0.33 \hbox{ H:1V for cohesive dams)}.$

(3) $t_f = \overline{B} / (4 \cdot H_w + c_t)$

where:

 $t_{\rm f}$ = breach formation time (h) and

 C_{t} = breach time factor (200 ft for easily eroded dams,

0 ft for erosion resistant dams)

Figure 1. Typical Breach Cross Section

Table 1. Breach Width Factor

V _w (acre·ft)	C _b (ft)
< 1,000	20
1,000 - 5,000	60
5,000 - 10,000	140
> 10,000	180

Table 2. Von Thun and Gillette (1990) Empirical Breach Parameter Estimation Results

Dam	Selected	Selected	Initial	Initial	Breach	Average	Breach	Breach	Breach
Failure	Dam Shell	Dam Fill	Water	Water	Width	Breach	Side-	Time	Formation
Initiating	Material	Material	Height	Volume	Factor	Width	Slope	Factor	Time
Event			H _w	V _w	C _b	B	z	Ct	t,
			(ft)	(acre·ft)		(ft)	(H:1V)	(ft)	(h)
PMPDF	Non-cohesive	Erosion resistant	17.7	146.6	20	64.3	1.00	0	0.9
SD	Non-cohesive	Erosion resistant	16.4	117.2	20	61.0	1.00	0	0.9

Source

Von Thun, J.L., and Gillette, A.M. (1990). *Guidance on Breach Parameters*, Unpublished internal document, U.S. Bureau of Reclamation, Denver, Colorado, March 13, 1990.

	Subject		Made by	TML	Job No.	PE801-00139
Knight Piésold	Dargues Reef Gold		Checked		Date	12/11/2011
	TSF Breach	Impact Analysis	Approved			

Dam Breach Modelling - Empirical Methods (USBR)

USBR (1982, 1988) empirical methods for estimating breach width, breach formation time and peak breach outflow are reproduced below:

(1)

where:

 \overline{B} = average ultimate breach width (m);

H_w = height of water over ultimate breach invert at initiation (m).

(2) z = breach side-slope ratio (undefined with USBR methods.)

(3) $t_f = 0.011 \cdot \overline{B}$

where:

t_f = breach formation time (h)

 $Q_p = 75 \cdot H_w^{-1.85}$

where:

 Q_p = peak dam breach discharge at the dam (ft³/s) and

H_w = height of water over ultimate breach invert at initiation (ft).

Figure 1. Typical Breach Cross Section

Emprical routing of the resulting peak breach outflow may be estimated (at the Screening level) with:

 $Q_r = 10^{(log(Qp) - 0.01X)}$

where:

X = distance downstream of the dam along the flood plain (mi); $Q_r = \text{peak attenuated dam breach discharge at distance } X (ft^3/s);$ and

 Q_p = peak dam breach discharge at the dam (ft³/s).

Table 1. USBR (1982, 1988) Empirical Breach Parameter Estimation Results

Dam	Init	tial	Average	Breach	Peak		Peak Distance		Peak Att	enuated		
Failure	ilure Water		Breach	Formation	Breach		Downstream of		Downs	stream		
Initiating	Hei	ght	Width	Time	Out	flow	Da	ım	Breach Outflow			
Event	Н	w	В	t _f	Q_p		Q _p X		X		G	l _r
	(m)	(ft)	(m)	(h)	(m³/s)	(ft³/s)	(km)	(mi)	(m³/s)	(ft³/s)		
PMPDF	5.4	17.7	16.2	0.2	433.1	15,295	6.3	3.9	395.9	13,983		
SD	5.0	16.4	15.0	0.2	375.6	13,266	6.3	3.9	343.4	12,127		

Sources

United States Bureau of Reclamation (USBR). (1982). Guidelines for defining inundated areas downstream from Bureau of Reclamation dams, Reclamation Planning Instruction No. 82-11, U.S. Department of the Interior, Bureau of Reclamation, Denver, Colorado. (25 pages).

United States Bureau of Reclamation (USBR). (1988). Downstream hazard classification guidelines, ACER Technical Memorandum, Report No. 11, U.S. Department of the Interior, Bureau of Reclamation, Denver, Colorado. (57 pages).

Knight Piésold

		Subject	Cortona Resources	Made by	TML	Job No.	PE801-00139
Knight Piésold	Dargues Reef Gold		Checked		Date	12/11/2011	
ſ		TSF Breach Impact A	nalysis	Approved			

Dam Breach Modelling - Empirical Methods (MacDonald and Langridge - Monopolis)

MacDonald and Langridge - Monopolis (1984) empirical methods for estimating breach volume (and consequently width), breach side-slope ratio, breach formation time and peak breach outflow are reproduced below:

(1) $V_{er} = K_c \cdot (V_w \cdot H_w)^{Ke}$

where:

V_{er} = final volume of embankment eroded by breach (m³);

K_c = dam type coefficient (0.02610 for earthfill dams,

0.00348 for non-earthfill dams);

V_w = water volume about the ultimate breach invert at start of dam failure (m³);

H_w = height of water over ultimate breach invert at initiation (m); and

K_e = dam type exponent (0.769 for earthfill dams,

0.852 for non-earthfill dams).

(3)
$$t_f = 0.0179 \cdot V_{er}^{0.364}$$

where

t_f = breach formation time (h).

(4)
$$Q_p = 1.154 \cdot (V_w \cdot H_w)^{0.412}$$

where:

 Q_p = peak dam breach discharge at the dam (m³/s).

Figure 1. Typical Breach Cross Section

Figure 2. Typical Breach Long Section

The average breach width employed in other empirical methods can determined using the geometry of the final breach through the given embankment. The following equations show how this may be done for the breach geometry shown in Figures 1 and 2.

(5)
$$V_{er} = ((B + z \cdot H_b) \cdot H_b) \cdot ((H_b \cdot z_{us})/2 + W + (H_b \cdot z_{ds})/2)$$

where:

B = ultimate breach bottom width (m);

H_b = ultimate breach height (m);

 z_{us} = upstream embankment slope (H:1V); and

z_{ds} = downstream embankment slope (H:1V).

Equation (5) may be algebraically manipulated to yield the following expression for directly calculating the ultimate breach bottom width:

(6)
$$B = (V_{er} / ((z_{us} + z_{ds}) \cdot (H_b^2)/2 + W \cdot H_b)) - (z \cdot H_b)$$

Which then gives the average ultimate breach width through Equation (7):

(7)
$$\overline{B} = B + z \cdot H_b$$

Table 1. MacDonald and Langridge - Monopolis (1984) Empirical Breach Parameter Estimation Results

Dam	Selected	Dam	Dam	Initial	Initial	Final	Breach	Breach	Peak
Failure	Dam	Туре	Type	Water	Water	Eroded	Side-	Formation	Breach
Initiating	Type	Coefficient	Exponent	Volume	Height	Volume	Slope	Time	Outflow
Event		K _c	K _e	V _w	H _w	V _{er}	z	t _r	Q _р
				(m ³)	(m)	(m ³)	(H:1V)	(h)	(m³/s)
PMPDF	Non-earthfill	0.00348	0.852	180,856	5.4	441	0.5	0.2	338.8
SD	Non-earthfill	0.00348	0.852	144,508	5.0	341	0.5	0.1	299.3

At first, the assumed ultimate breach height from the tailings run-out analysis is used to compute the bottom breach width that will satisfy the estimated final eroded volume. If the resulting bottom breach width estimate is negative (not possible), it is necessary to determine the ultimate breach height that will yield a bottom breach width of 0.0 m, thereby satisfying the other relationships.

Such a scenario was found for the Dargues Reef TSF embankment. The ultimate breach height predicted by the tailings run-out analysis is greater than that indicated by the final eroded volume predicted by this methodology for the SD scenario.

November 2011

Knight Piésold Pty. Ltd.

P\PE801-00139 Dargues\Technical\Hydrology\Breach Analysis\PE801-00139 DR Dam Breach Parameters.xlsm

PE801-00139

Page 4 of 8

	Subject Cortona Resources	Made by	TML	Job No.	PE801-00139
Knight Piésold	Dargues Reef Gold	Checked		Date	12/11/2011
	TSF Breach Impact Analysis	Approved			

Dam Breach Modelling - Empirical Methods (MacDonald and Langridge - Monopolis)

Table 1. (continued)

Table 1. (co	nunucu)					
Dam	Ultimate	Embk.	US	DS	Bottom	Average
Failure	Breach	Crest	Embk.	Embk.	Breach	Breach
Initiating	Height	Length	Slope	Slope	Width	Width
Event	H _b	w	Z _{us}	Z _{ds}	В	Ē
	(m)	(m)	(H:1V)	(H:1V)	(m)	(m)
PMPDF	6.0	6.0	3.0	3.0	0.1	3.1
SD	5.5	6.0	3.0	3.0	0.0	2.8

Source:

MacDonald, T.C., and Langridge-Monopolis, J. (1984). Breaching Characteristics of Dam Failures, ASCE Journal of Hydraulic Engineering, Vol. 110, No. 5, May, pages 567-586.

Knight Piésold

PE801-00139 Page 5 of 8

	Subject Cortona Resources	Made by TML	Job No.	PE801-00139
Knight Piésold	Dargues Reef Gold	Checked	Date	12/11/2011
	TSF Breach Impact Analysis	Approved		

Dam Breach Modelling - Empirical Methods Summary

Wahl (2004) studied the uncertainty of predictions of embankment breach parameters. Through statistical analysis of a comprehensive database of dam failures and various empirical breach parameter estimation methods, Wahl formulated a means for computing an approximate 95% confidence interval about the estimated breach parameters with:

(1) $CL_{L} = \hat{X} \cdot 10^{(-e-2Se)}$

and

 $CL_U = \hat{X} \cdot 10^{(-e + 2Se)}$

where:

 CL_{\perp} = Lower 95% confidence interval limit about \hat{X} ;

 CL_U = Upper 95% confidence interval limit about \hat{X} ;

 \hat{X} = Predicted value (\overline{B} , V_{er} , t_f or Q_p)

ਵ = Mean of prediction errors; and

 S_e = Standard deviation of prediction errors:

As given in Wahl (2004), the uncertainty in the four selected empirical methods are given in Table 1. A summary of results are given in Table 2.

Table 1. Wahl (2004) Empirical Breach Parameter Prediction Uncertainty Parameters

Breach	Empirical	Mean of	Std. Dev of	Width of	
Parameter	Breach	Prediction	Prediction	Uncertainty	
Type	Parameter	Errors	Errors	Band	
	Estimation	ē	S _e	±2S _e	
	Method	(log cycles)	(log cycles)	(log cycles)	
V _{er} (Eroded Volume)	MacDonald et. al (1984)	-0.01	0.410	±0.82	
B	Froehlich (2008)	0.01	0.195	±0.39	Note: uncertainty parameters
(Average Width)	Von Thun and Gillette (1990)	0.09	0.175		from Froehlich (1995b) were
	USBR (1988)	-0.09	0.215	±0.43	assumed to apply (as an
	Froehlich (2008)	-0.22	0.320	±0.64	approximation) to the
t_f	Von Thun and Gillette (1990)	-0.38	0.420	±0.84	improved methods in
(Breach Formation Time)		-0.40			Froehlich (2008).
	MacDonald et. al (1984)	-0.21	0.415	±0.83	
\mathbf{Q}_{p}	Froehlich (1995a)	-0.04	0.160	±0.32	
(Peak Breach Outflow)	USBR (1982)	0.19	0.250	±0.50	
·	MacDonald et. al (1984)	0.13	0.350	±0.70	

		Made by	TML	Job No.	PE801-00139
Knight Piésold	Dargues Reef Gold	Checked		Date	12/11/2011
	TSF Breach Impact Analysis	Approved			

Dam Breach Modelling - Empirical Methods Summary

Table 2. Summary of Empirical Breach Parameter Predictions with 95% Confidence Interval

Breach Parameter Type	Empirical Breach Parameter Estimation Method along with Dam Failure Initiating Event and	Predicted Breach Parameter	Lower 95% Confidence Limit	Upper 95% Confidence Limit	
	Selected Failure Mechanism	Ŷ	CLL	CL _U	
	(if applicable)	(m³, m, h or m³/s	5)	
V _{er} (Eroded Volume)	MacDonald et. al (1984) - PMPDF	441	68	2,984	
Ver (Erodod Volumo)	MacDonald et. al (1984) - SD	341	53	2,308	
	Froehlich (2008) - PMPDF, Overtopping	18.1	7.2	43.5	
	Froehlich (2008) - PMPDF, Piping	16.9	6.7	40.5	
	Froehlich (2008) - SD, Overtopping	14.0	5.6	33.5	
	Froehlich (2008) - SD, Piping	13.0	5.2	31.2	
B	Von Thun and Gillette (1990) - PMPDF	19.6	7.1	35.7	
	Von Thun and Gillette (1990) - SD	18.6	6.8	33.8	
(Average Width)	USBR (1988) - PMPDF	16.2	7.4	53.6	
	USBR (1988) - SD	15.0	6.9	49.7	
	MacDonald et. al (1984) - PMPDF	3.1	2.8	24.1	derived from V _{er} values
	MacDonald et. al (1984) - SD	2.8	2.8	18.6	
	Froehlich (2008) - PMPDF, Overtopping	0.4	0.2	2.9	
	Froehlich (2008) - PMPDF, Piping	0.4	0.1	2.6	
	Froehlich (2008) - SD, Overtopping	0.4	0.2	2.9	
	Froehlich (2008) - SD, Piping	0.4	0.1	2.6	
t_f	Von Thun and Gillette (1990) - PMPDF	0.9	0.3	15.1	
	Von Thun and Gillette (1990) - SD	0.9	0.3	15.4	
(Breach Formation Time)	USBR (1988) - PMPDF	0.2	0.0	4.7	
ĺ,	USBR (1988) - SD	0.2	0.0	4.3	
	MacDonald et. al (1984) - PMPDF	0.2	0.0	1.8	
	MacDonald et. al (1984) - SD	0.1	0.0	1.6	
	Froehlich (2008) - PMPDF, Overtopping	174.7	91.7	400.2	
	Froehlich (2008) - PMPDF, Piping	148.6	78.0	340.5	
	Froehlich (2008) - SD, Overtopping	174.7	91.7	400.2	
	Froehlich (2008) - SD, Piping	148.6	78.0	340.5	
Q_{ρ}	Von Thun and Gillette (1990)	#N/A	#N/A	#N/A	
(Peak Breach Outflow)	USBR (1982) - PMPDF	433.1	88.4	884.3	
	USBR (1982) - SD	375.6	76.7	1,395.6	
	MacDonald et. al (1984) - PMPDF	338.8	50.1	1,258.8	
	MacDonald et. al (1984) - SD	299.3	44.3	1,111.9	

A simulation testing grid, consisting of the Expected values (as predicted) of average breach width and breach formation time will be formulated and employed for assessing potential dam breach failures under both PMPDF and SD initiating conditions and for both Overtopping (OT) and Piping (PI) failure modes.

Source:
Wahl, T.L. (2004). Uncertainty of Predictions of Embankment Dam Breach Parameters, ASCE Journal of Hydraulic Engineering, Vol. 130, No. 5, May, pages 389-397.

Knight Piésold Pty. Ltd. November 2011 P.\PE801-00139 Dargues\Technical\Hydrology\Breach Analysis\PE801-00139 DR Dam Breach Parameters.xlsm PE801-00139 Page 7 of 8

	Subject Cortona Resources	TWL /4 PPV/	Job No. PE801-00139
ŝ	t Piesold Dargues Reef Gold	Checked	Date 12/11/2011
	TSF Breach Impact Analysis	Approved	

Dam Breach Modelling - Testing Grid (Failure and Non-Failure Scenarios)

Flood (PMPDF) or Sunny Day (SD) There are five primary variables which may be varied in setting up a testing grid:

1) Dam Failure Initiating Event:

b) <u>Best-case</u> failure scenarios employ the lover 95% confidence limit breach vidths, B_{Lis} and the upper 95% confidence limit formation times, t_{Liss} as given by each parameter estimation method.

Viorst-case failure scenarios employ the upper 95% confidence limit breach vidths, B_{Lis} and the lover 95% confidence limit formation times, t_{Liss} as given by each parameter estimation method.

5) Breach Progression: Linear or Sine-wave. For this analysis, the only breach progression model that will be employed is the Linear model

These variable combinations, along with the necessary inputs to the HEC-HMS breach model are given in the following test matrix:

_	_	_		_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_
IEC-HMS)	0+000+0	Time	to-Max	(H)	12.43	17.07	0.70	17.47	1.08	16.90	0.52	12.43	0.85	16.98	0.65	17.20	0.80	16.88	0.48	12.43	0.87
sults (from h	at CP01 (0+000.0)	Peak Flow	Q	(m ₃ /s)	431.47	515.83	112.21	458.30	90.75	522.81	122.07	431.47	21.79	502.01	102.95	475.93	96.45	525.31	125.81	431.47	21.94
Key Breach Routing Results (from HEC-HMS)	+528.5)	Time	to-Max	(h)	12.27	16.93	0.47	17.30	0.88	16.73	0.28	16.78	0.25	16.80	0.35	17.08	0.58	16.73	0.23	16.80	0.27
Key Breach	at CP05 (4+528.5)	Peak Flow	Quan	(m ³ /s)	208.99	369.05	147.88	285.58	98.79	391.55	183.20	212.49	27.43	351.07	124.71	317.11	121.17	379.71	172.46	213.82	27.64
	Formation	Time	+3-	(F)	W/V#	0.4	0.4	0.0	0.9	0.2	0.2	0.2	0.1	0.4	0.4	6.0	0.9	0.2	0.2	0.2	0.1
	Failure	Trigger	Elevation	(m)	W/W#	711.4	711.0	711.4	711.0	711.4	711.0	711.4	711.0	711.4	711.0	711.4	711.0	711.4	711.0	711.4	711.0
	Piping	Coefficient			#N/A	#N/A	A/N#	#N/A	#N/A	#N/A	W/V#	W/V#	#N/A	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
HEC-HMS)	Piping	Elevation	γ	(m)	W/N#	#N/A	A/N#	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	706.0	706.0	706.0	706.0	706.0	706.0	706.0	706.5
Breach Development Parameters (for HEC-HMS)	Right	Side Slope	ZR	(H:1V)	#N/A	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.7	0.7	1.0	1.0	0.7	0.7	0.5	0.5
lopment Par	Left	Side Slope	'n	(H:1V)	W/N#	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.7	0.7	1.0	1.0	0.7	0.7	0.5	0.5
Breach Deve	Bottom	Width	Вуь	(m)	#N/A	12.1	8.0	13.6	12.6	10.2	9.0	0.1	0.0	12.7	8.8	13.6	12.6	12.0	10.8	0.1	0.0
	Average	Width	m	(m)	W/V#	18.1	14.0	19.6	18.6	16.2	15.0	3.1	2.8	16.9	13.0	19.6	18.6	16.2	15.0	3.1	2.8
	Bottom	Elevation	Ybmin	(m)	#N/A	706.0	706.0	706.0	706.0	706.0	706.0	706.0	706.5	706.0	706.0	706.0	706.0	706.0	706.0	706.0	706.5
	Тор	Elevation	Ybmin + Hb	(m)	W/W#	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0	712.0
Breach	Progression				#N/A	inear	inear	inear	Linear	inear	inear	Linear	Linear	Linear	Linear	inear	Linear	inear	Linear	inear	Linear
Failure	Parameters	Combination			#N/A	Expected	Expected	Expected	Expected	Expected	Expected	Expected	Expected	Expected	Expected	Expected	Expected	Expected	Expected 1	Expected	Expected
Parameter	Estimation	Method			# W/V#	Froehlich (2008)	Froehlich (2008)	Von Thun and Gillette (1990)	Von Thun and Gillette (1990)	USBR (1988) E	USBR (1988) E	MacDonald et. al (1984)	MacDonald et. al (1984)	Froehlich (2008)	Froehlich (2008)	Von Thun and Gillette (1990)	Von Thun and Gillette (1990)	USBR (1988) E	USBR (1988) E	MacDonald et. al (1984)	MacDonald et. al (1984)
Selected	Failure	Mode			#N/A	TO	OT	OT N	OT 10	OT TO	OT TO	OT I	OT I	ld ld	Ы	l Id	ld ld	l Id	PI II	Ы	Id
Dam	Failure	Initiating	Event		PMPDF	PMPDF	SD	PMPDF	SD	PMPDF	SD	PMPDF	SD	PMPDF	SD	PMPDF	SD	PMPDF	SD	PMPDF	SD
Simulation	Q				NF	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16

November 2011 P:/PE801-00139 Dargu

1	Sample of	Cortona Resources	Madeby	TML	Job No.	PE801-00139
ı	Dargues Reef (Gold	Checked		Dale	12/11/2011
	TSF Breach Im	pact Analysis	Approved		Sheel No.	1 of 9

Runoff Estimation: 1.0E-07 AEP, Breach Impact Analysis (Rainfall / Runoff Model Input - 1)

Peak runoff for the PMP storm (having an Annual Exceedance Probability, AEP of 1.0E-07) is estimated for a portion of the Majors Creek catchment (including the proposed Dargues Reef Gold WFSF) for purposes of breach impact assessment.

- a) PMP (Probable Maximum Precipitation) rainfall depths for various durations at the Dargue's Reef site are determined by using procedures discussed in "The Estimation of Probable Maximum Precipitation in Australia", June 2003 (GSDM) and "Development of the Generalised Southeast Australia Method for Estimating Probable Maximum Precipitation, HRS Report No.4", August 1996 (GSAM). This step results in the creation of a depth-duration-frequency (DDF) curve for the PMP frequency, which was estimated as 1.0E-07 (1 in 10,000,000) AEP for the Majors Creek Catchment (including the Project site) to the downstream point of analysis.
- b) The rainfall depth for a critical duration (2 hours for short-duration PMP, 24 hours for long-duration PMP) at a 1.0E-07 AEP frequency is used with a template pattern derived from GSDM and GSAM to derive a time distributions of rainfall (hyetograph). This potential design storm is the primary hydrologic input to outflowest imation. Depths are spatially-varied to reflect expected changes in intensity over the area of the design storm.
- c) Rainfall excess is estimated in HEC-HMS software for the Dargues Reef Diversion channel sizing using the Initial Loss / Constant Loss (IL/CL) model as discussed in Book 2, Section 3 and Book 6, Section 4 of Australian Rainfall and Runoff (ARR), 1999. Specific values for NSW are calculated from Book 2. Table 3.2.

AEP =	1.0E-07	⇔ assigned for PMP over the Majors Creek catchment of 19.6 km²
IL (mm) =	0.1	
		_
CL (mm/b) -	1	

d) Rainfall excess is transformed to runoff hydrographs using the Clark synthetic unit hydrograph method. As formulated in the HEC-HMS model, the two primary inputs for this method are the time of concentration (t.a) and a basin storage coefficient (K). For Eastern New South Wales, times of concentration may be estimated using the following relationship, taken from ARR 1999, Volume 1, Book 4, Section 1.4.1:

$$t_c = \textbf{0.76} \cdot \textbf{A}^{0.38} \qquad \qquad \text{where:} \qquad \qquad t_o = \text{time of concentration (h) and} \\ \text{A = catchment area } (\text{km}^2). \\$$

The basin storage coefficient may be estimated using the following relationship, taken from ARR 1999, Volume 1, Book 5, Section 2.6.2:

$$K$$
 = 0.7 · $L^{0.57}$ where: K = storage coefficient (h) and L = main stream length (km).

e) The assembled data is then used to compute the estimated outflow hydrographs at various locations for the selected storm duration and frequency (in this case, AEP = 1.0E-07).

The various catchment configuration parameters used for constructing the HEC-HMS model are given below

Sub-Catchment	Sub-Cat.		atial-Distributio		Sub-Cat.	Sub-Cat.	Time of	Storage
ID I	Area		ll for Short-Dur o-Catchment in		Topo. Adj. Factor	Length	Concentration	Coefficient
	(km²)	A	B B	C C	TAF o	(km)	(h)	n (h)
SC01	2.9997	0.00%	60.92%	39.08%	1.800	3,5358	1.1537	1,4379
SC02	3.2088	19.30%	62.12%	18.57%	1.790	3.0708	1.1836	1.3269
SC03	3.4216	30.59%	52.23%	17.18%	1.770	3.4913	1.2129	1.4276
SC04	0.3963	83.44%	16.56%	0.00%	1.770	0.9727	0.5346	0.6890
SC05	0.7246	11.85%	86.25%	1.90%	1.760	2.3504	0.6724	1.1393
SC06	0.9020	0.00%	100.00%	0.00%	1.750	1.5565	0.7308	0.9008
SC07	0.3094	0.00%	100.00%	0.00%	1.740	1.0514	0.4867	0.7203
SC08	0.8528	0.00%	32.47%	67.53%	1.730	1.3028	0.7154	0.8139
SC09_DC001	0.0564	0.00%	100.00%	0.00%	1.740	0.1744	0.2549	0.2587
SC09_DC002	0.0587	0.00%	100.00%	0.00%	1.750	0.2789	0.2588	0.3380
SC09_POND	0.0851	0.00%	100.00%	0.00%	1.750	0.2691	0.2980	0.3312
SC10	0.1197	68.86%	31.14%	0.00%	1.770	0.7424	0.3392	0.5907
SC11	2.0705	2.01%	87.76%	10.23%	1.750	2.7317	1.0021	1.2413
SC12	1.7703	22.37%	77.63%	0.00%	1.770	2.3487	0.9442	1.1389
SC13	2.0847	0.00%	39.38%	60.62%	1.770	2.3168	1.0047	1.1300
SC14	0.5318	0.00%	86.73%	13.27%	1.760	1.5601	0.5978	0.9020

S	Short Duration PMP (≤6+h)	r PMP (≤6⊣	(u
Position	jon i	Position	1440
Fraction	Fraction	Fraction	Fraction
of Storm Duration	of Storm PMP	of Storm Duration	of Storm PMP
%0	%0	5%	4%
2%	4%	10%	10%
10%	10%	15%	18%
15%	18%	20%	75%
20%	25%	25%	32%
25%	32%	30%	39%
30%	39%	35%	46%
35%	46%	40%	25%
40%	52%	45%	%69
45%	%69	%09	64%
20%	64%	25%	%02
22%	%02	%09	%52
%09	75%	65%	%08
95%	%08	%02	%58
%02	85%	75%	86%
75%	%68	%08	82%
80%	82%	85%	%96
82%	82%	%06	%16
%06	81%	95%	%66
32%	%66	100%	100%
100%	100%		

Position	i uoi	sition i Position i+	DHH1
Fraction	Fraction	Fraction	Fraction
of Storm Duration	of Storm PMP	of Storm Duration	of Storm PMP
%0	%0	2%	4%
2%	4%	10%	10%
10%	10%	15%	18%
15%	18%	20%	32%
20%	25%	25%	32%
25%	32%	%0E	%6E
30%	39%	32%	46%
35%	46%	40%	25%
40%	52%	45%	29%
45%	%69	%09	84%
20%	64%	25%	%02
22%	%02	%09	%52
%09	75%	65%	80%
929	80%	70%	82%
20%	85%	75%	86%
75%	%68	80%	85%
80%	95%	85%	35%
85%	32%	%06	%26
%06	81%	95%	%66
32%	%66	100%	100%
100%	100%		

MP values.	1.5	Cum.	19.0	82.8	146.2	206.4	260.7	310.0	332.6	369.3	393.3	402.3			П	0:9	Depth	Cum.	25.6	61.5	156.3	201.1	290.7	335.6	417.5	491.8	530.2	595.6	627.6	658.3	703.1	722.4	750.5	768.5	
Control Public Control Public Control Public Control Public Control Public Control Public Control Public Control Public Control Public Control Public Control Cont	Storm Duration (h)	Instant.	19.0	34.8	31.7	30.8	23.5	22.6	20.8	15.8	10.4	9.1		\parallel	\parallel	Storm Duration (h)	Rainfall	Instant. (mm)	25.6	35.9	48.7	44.8	44.8	44.8	41.0	32.0	38.4	33.3	32.0	30.7	19.2	19.2	12.8	11.5	
uted Rainfall welope curve fitted to the computed Show thyetographs for <u>Ellipse A</u>	Storm Du	Time (min)	100	15	30	35	45	22	99	70	80	82	Ħ	Ħ	\parallel	Storm Du	Elapsed	(h)	0.00	0.50	1.00	1.25	1.75	2.25	2.50	3.00	3.25	3.75	4.00	4.25	4.75	5.00	5.50	6/.c	
ed Rainfal lope curve f	ə	(mm)	25.3	101.0	171.5	231.5 257.8	281.0	308.3	315./	T			Ħ	Ħ	Ħ	9:0	unde	Cum.	29.1	72.7	181.7	232.6	334.3	378.0	465.2	545.1	581.5	646.9	668.7	690.5 705.0	719.6	726.8			
Distribut om an erve sh	H	Instant.	25.3	36.8	33.7	29.5	23.2	11.6	4.7				H	H	\dagger	ation (h)	Rainfall D	nstant. (mm)	29.1	43.6	50.9	50.9	50.9	43.6	36.3	36.3	36.3	36.3	21.8	21.8	14.5	7.3			
Spatially s are taken fi	ᆖᆔᆙ	Time II	100	15	30	35	45	55	09	+	H		H	\dagger	\dagger	Storm Duration (h) 5:0	Elapsed	Time (h)	0.25	0.50	1.00	1.25	1.75	2.25	2.50	3.00	3.25	3.75	4.00	4.50	4.75	2.00			1
utions for all durations	တ္တမ္း	Cum.	32.1	118.8	192.0	246.8 767.8	272.2	H	\dagger	\dagger	H		H	\dagger	\dagger	1 6	Н	\dashv	32.4	81.8	195.2	303.2	351.8	404.2	489.8	526.4	602.5	629.5	670.4	694.3		\dagger		t	ł
al Distribu P values for 4.5	612 571 tion (h)	stant. (32.1	42.3	33.6	24.5	9.4			1			H	\parallel	\parallel	(h) noti	Rainfall De	Instant. Cum. (mm) (mm)	32.4	49.4	54.0	54.0 54.0	48.6	40.1	45.5	38.6	35.5	27.0	17.7	15.4		+			-
PMP, Tempor 100, Table 1. PM 4.0 660	582 545 Storm Durat	Time Instant.	1020	120	30	35	45		+	+			H		\parallel		Ľ	Time (h)	0.00	0.50	1.00	1.25	1.75	2.25	2.50	3.00	3.25	3.75	4.00	4.25		+			
12/11/2011 12/11/2011 aution PMP, Terr in GSDM, Table 1. 3.0 577 680		1	43.8	137.7	202.3	+	\prod	H	+	+	H		H	$^{\rm H}$	$^{+}$	┨┟	Н	\dashv	36.3	92.3	211.1	323.2	377.6	470.0	511.2	587.0	611.8	649.7	659.6	+	H	+		+	$\frac{1}{1}$
Short Dur 1 PMP given 2.5	467 444 on (h)	ant Cum.	43.8	43.8	12.9	+			+	+	H		H	\parallel	$^{\rm H}$	(u) uo	ainfall Dep	Time Instant Cum. (h) (mm) (mm)	36.3	56.1	57.7	57.7	54.4	44.5	41.2	34.6	24.7	16.5	6.6	ł		+			ł
SDM For §	423 399 orm Duratio	Time Instant (min)	100	15	30	+	$\frac{ }{ }$		+	+			H	\parallel	\parallel	orm Duratic	sed R	ie inst	0.00	0.50	1.00	1.25	1.75	2.25	2.50	3.00	3.25	3.75	4.00	Ŧ		+			
TML out - 2): G\$ ibution for st 1.5 407	42 17 17	<u> </u>	48.8	46.4	95.2	4	\coprod	H	+	4	H		H	\parallel	\parallel	┨┢	Ϊ,	\dashv	0.0	17.3	52.0	13.5	23.1	13.5	42.4	77.0		+	H	+	H	+		+	$\frac{1}{1}$
Model Inp mporal distr 1.0		nt. Cum.	18.8	14.9	15.6			H	+	4			H	\parallel	$\frac{\parallel}{\parallel}$	(<u>P</u>)	infall Depth	m Cun	0.0	11.2	37.3	31.5 35.8	3.9 4	12.3 5	38.8	13.5		+	\prod	ļ		+			-
Approved Approved / Runoff / Runoff / Runoff / Runoff / Runoff	241 224 rm Duration	Instant.	10 2	15	25	ļ		H	+	4			\prod	\parallel	\parallel	rm Duration	ed Ra	Time Instant. Cum. (h) (mm) (mm)	25	20	00.	25	75	25	.50	2,00		+	\prod	1	H	+		-	-
is (Rainfall raphs using the 0.05	30 77 33 83	Time (min)	2.4	12			Щ	H	_	4			\coprod	\coprod	\parallel	┨┢	Н	\dashv	26 0	1.4	3.4	3.5	3.9	3.7	5.8	3 8		+	\coprod	\downarrow	H	\downarrow		1	ļ
Analysis act Analysis act Analysis 1417		Cum.	11	15			Щ		-					\coprod	\parallel		fall Depth	nstant. Cum. (mm) (mm)	9 6	13	13 27	33	9.6	13 51	6.8 52			1	Ц	1		1			
Cortona Resources Sagues Reel Gold ISF Breach Impact Analysis P. Breach Impact Analysis and Sagan Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Con	3 1 3 1 Duration (Time Instant.	2 2 2	200										\parallel			Ц	-	57 6	92 22	99	59 65	29	26 36	16				Ц	1		1			
Dargues E TSF Brea AEP, Brea are turations are unations.	шш	Time (min)	5 00 m	0			Ц			1				Ц		Stom	Elapsed	E (c)	0.0	0.0	9 1.0	7 1.2	3	5 2.0	9 2.6	0	1	2		0 2	0	9	00	0 4	
450ld (1.0E-07 A for various du 149)		Cum.	12.64	148												7	II Depth	nstant. Cum. (mm) (mm)	15.	38.	96	124.	180	233	258.	304	328	369	389	424	435	447	465	47.6	
Action Part	Ellipse B Ellipse C Duration (h)	Time Instant. (min)	56.6	27.										\prod		Storm Duration (h)	Rainf	Instant. (mm)	15.5	22.	30.7	27.8	27.8	27.1	25.4	19.5	23 (201	19.8	18.	11.5	11.8	7.8	4.0	
Knig	mm) E	Time (min)	766	15												Storm	Elapsed	Time (min)	210	10	20	30	35	45	20	200	65	75	80	90	95	105	110	110	

8	œ
Ξ	ā
8	ĕ
ш	α
回	

Ę
äin
P P
þū
stri
Ž
tia
Spa
٥
suc
ij
ţ,
ä
oral
emp
Ļ.
PMP,⊤
r F
atic
٥
ro L
rs.
Ē
Σ
gs
-5
ă
Ξ
g
∑ ⊬
in of
Ä
[a]
ai
S.
lysi
۸na
act
mpa
년 당
reac
o. O
AEP, B
o. O
o. O
E-07 AEP, B
ation: 1.0E-07 AEP, B
ilmation: 1.0E-07 AEP, B
ation: 1.0E-07 AEP, B
ilmation: 1.0E-07 AEP, B
off Estimation: 1.0E-07 AEP, B

	0		Dargues Keer	eer cold			Townson or the same			-		17/11/7011											
				TSF Breach Impact Analysis	alvsis		Approved																
Runoff	Runoff Estimation: 1.0E-07 AEP, Breach Impact Analysis (Rainfall / Runoff Model Input - 2); GSDM For Short Duration PMP, Temporal Distributions for Spatially-Distributed Rainfall	1.0E-07 A	EP, Breac	th Impact,	Analysis (Rainfall / F	Ranoff Mo	del Input -	-2): GSDM	For Shor	t Duration	PMP, Tem	poral Dist	inbutions:	for Spatia	Illy-Distrib	uted Rain	fall					
Total out of	Chinesed DLF state for such as described and into the described with the desire to account distribution for described with for described and the described and the described with the described and the described	and or so or so	to and another	distrainment in	or burntaneous	on the section of	danian tanan	on distribution	on for obout	DMC action	oi an in	OM Toble 4	DMG	items II de se	and and own	an de many an	a cool or a	a fished to the	Checking	MD colons			
nanaman	LIMIL VAIDES	nn sannas an	all annuils alle c	nisninginen illi	in inyetingi ap	am fillen sil	ndilla ilifikan	mai distributi	DILIO SIOIL	Juli audii P Mr	co III II an	DM, Table 1.	FIME VAIDE	o ioi all ool at	Julis alle tarr.		iverupe curv	a litted to tile	rolliputeu r	MF values.			
Design X-P The total s	The control of the co	(2-h shown) h	nyetographs fall depths ar	for PMP are re then tempor	then formula porally distribu	ated for each	sub-catchme e design tem	ant by compu	uting areal-we	sighted avers t duration PN	iges of the th	eir respective SDM. Table	e total PMP n 1.	ainfall. The p	previously-co	omputed area	al averages s	are employec					
	Sub-Catchment	5C01	te J Hilly	Catchment	3008	S I	Suh-Catchment	6005	di S	Sub-Catchment	SCM	4	Sub-Catchment	5005	Į.	Sub-Catchment	SCOR	, dire	Sub-Catchment	2003	J-qii S	Sub-Catchment	- 1
Storm	Storm Duration (h)	L	ž	Duration (h)	2.000	Storm	Storm Duration (h)		š	Storm Duration (h)	2.000	Storm D	Storm Duration (h)	2.000	Storm D	Storm Duration (h)	2.000	Storm D	Storm Duration (h)	2.000	Storm Duration	ration (h)	1
() 4: c	Ellipse A	476	ų:	Ellipse A	476	ų:	Ellipse A	476	ų:	Ellipse A	476	(i 4: c	Ellipse A	476	() 4: 6	Ellipse A	476	ų:	Ellipse A	476	ų:	Ellipse A	ı
uuu də dWd	ш	423	uuu də Mo	ш	423	uuu də Wd	Ellipse B	423	uuu də Mo	Ellipse B	423	uuu də iWd	EllipseB	423	uuu gdə dWd	Ellipse B	423	uuu də iWa	Ellipse B	423	uuu gdə gWa	Ellipse B	П
4		388) a H	Ellipse C	386	a١	Ellipse C	399	a	Ellipse C	399	a١	Ellipse C	399	a١	Ellipse C	399	a	Ellipse C	399	a١	Ellipse C	
D-	Ellipse A	%00.0	Se Se	Ellipse A	_	D-	_	30.59%	:n-	_	83.44%	-C.		11.85%	-C.		0.00%	-C.	Ellipse A	0.00%	.o-	Ellipse A	-
qns	E ipse B	60.92%	dille ui qns	Ellipse B	62.12%	dille	Ellipse B	52.23%	dille qns	Ellipse B	16.56%	dille qns	Ellipse B	4 00%	dili ui qns	Ellipse B	100.00%	dille ui qns	Ellipse B	100.00%	dille ui qns	Ellipse B	mile
Area Av	areal ave PMP (mm)	414	Area Ave	PMP (mm)	207	Area Ave	۳.	435	Area Ave	۳.	468	ě	PMP (mm)	479	Area Ave		473	Ľ	D MP (mm)	473	9,4	MP (mm)	1
	,															,							L
Flapsed	Rainfall Deoth	II Depth	Elabsed	Rainfa	Rainfall Depth	Elabsed	Rainfal	Rainfall Depth	Elabsed	Rainfa	Rainfall Depth	Elapsed	Rainfall Depth	Depth	Elapsed	Rainfal	Rainfall Depth	Elabsed	Rainfall Depth	Depth	Flapsed	Rainfall Dept	a
Time	Г	Cum.	Time	Instant.	L	Time	Instant.	Cum.	Time	Instant	Cum.	Time	Instant.	Cum.	Time	Instant.	Cum.	Time	Instant.	Cum.	Time	Instant.	ಠ
(h)	_	(mm)	(h)	(mm)	(mm)	(h)	(mm)	(mm)	(h)	(mm)	(mm)	(J)	(mm)	(mm)	(h)	(mm)	(mm)	(h)	(mm)	(mm)	(h)	-	Ξ
00:0	0.0	0.0	0.000	0.0	0.0	0.000	0.0	0.0	200:0	0.0	0.0	0.000	0.0	0.0	0.000	0.0	0.0	0.000	0.0	0.0	0.000	0.0	П
0.083	13.8	13.8	0.083	14.3	3 14.3	3 0.083	14.5	14.5	0.083	15.6	15.6	0.083	14.3	14.3	0.083	14.1	14.1	0.083	14.1	14.1	0.083	13.6	П
0.16	37 19.3	33.1	0.167	7 20.0	94.3	3 0.167	20.3	34.8	0.167	21.8	37.4	0.167	20.0	34.3	0.167	19.7	33.8	0.167	19.7	33.8	0.167	19.0	
0.250		57.9	0.250	25.7	7 60.0	0.250	7 26.1	60.9	0.250	28.1	65.5	0.250	25.7	60.0	0.250	25.4	59.2	0.250	25.4	59.2	0.250	24.4	
0.333	3	84.1	0.333	3 27.2	2 87.2	0.33%	3 27.6	88.5	0.333	29.6	95.1	0.333	27.2	87.2	0.333	26.8	86.0	0.333	26.8	86.0	0.333	25.8	
0.41	7 24.1	108.2	0.417	7 25.0	112.2	0.417	25.4	113.9	0.417	27.3	122.4	0.417	25.0	112.2	0.417	24.7	110.7	0.417	24.7	110.7	0.417	23.7	П
0.50		132.3	0.500	7 25.0	137.2	0.500	25.4	139.3	0.500	27.3	149.6	0.500	25.0	137.3	0.500	24.7	135.4	0.500	24.7	135.4	0.500	23.7	П
0.583			0.583	3 25.0	0 162.2	0.583	3 25.4	164.7	0.583	27.3	176.9	0.583	25.0	162.3	0.583	24.7	160.1	0.583	24.7	160.1	0.583	23.7	
0.667		180.6	0.667	7 25.0	0 187.3	3 0.667	25.4	190.0	0.667	27.3	204.2	0.667	25.0	187.3	0.667	24.7	184.7	0.667	24.7	184.7	0.667	23.7	
0.75			0.750	22.9	9 210.5	0.750	23.2	213.3	0.750	24.9	229.1	0.750	22.9	210.2	0.750	22.6	207.3	0.750	22.6	207.3	0.750	21.7	- 1
0.833			0.833	3 22.9	9 233.0	0.833	3 23.2	236.5	0.833	24.9	254.1	0.833	22.9	233.0	0.833	22.6	229.9	0.833	22.6	229.9	0.833	21.7	-
0.91	72.7	247.4	0.917	23.6	256.6	0.917	23.9	260.4	0.917	25.7	279.8	0.917	23.6	256.6	0.917	23.3	253.1	0.917	23.3	253.1	0.917	22.4	1
1.00	1/2	7.04.7	1.000	3/1	274.0	1.000	18.1	2/8.5	1.000	081	299.3	1.000	17.9	274.5	1.000	17.6	2/0.8	1.000	17.6	2/0.8	1.000	16.9	-
1.083	20.7	285.4		21.4	7827	1.08	21.8	300.3	1.083	23.4	322.6	1.083	21.4	796.0	1.083	21.2	291.9	1.083	21.2	291.9	1.083	20.3	1
1,116,1	17.9	303.3		18.6	3143	1.16.	16.9	319.2	1.16.	50.7	342.9	1.16/	18.0	314.5	1.167	16.3	310.2	1.167	16.3	310.2	1.167	17.0	1
1.25	1/2	320.5	1.250	37.5	332.4	1.25(18.1	337.3	1.25	18:2	362.4	1.250	17.9	332.4	1.250	17.6	327.9	1.250	17.6	377.8	1.250	16.9	1
1.333	20		1.333	3/1	350.2	1.33.	18.1	355.4	1.333	18.5	381.9	1.333	97.	350.3	1.333	17.6	345.5	1.333	17.6	345.5	1.333	16.9	
141		354.3	1,417	17.2	2 367.4	1,417	17.4	372.6	1.417	18.7	400.6	1.417	17.2	367.4	1,417	16.9	362.4	1.417	16.9	362.4	1.417	16.3	- 1
1.500	13.8	368.1	1.500	14.3	381.	1.500	14.5	387.3	1.500	15.6	416.2	1.500	14.3	381.7	1.500	14.1	376.5	1.500	14.1	376.5	1.500	13.6	
1.583	10.3	378.4	1.583	10.7	7 392.4	1.583	10.9	398.2	1.583	11.7	427.9	1.583	10.7	392.5	1.583	10.6	387.1	1.583	10.6	387.1	1.583	10.2	- 1
1.667			1.667	7 10.7	7 403.)	1.667	10.9	409.1	1.667	11.7	439.5	1.667	10.7	403.2	1.667	10.6	397.7	1.667	10.6	397.7	1.667	10.2	
1.75(1.750	8.6	5 411.5	1.750	8.7	417.8	1.750	9.4	448.9	1.750	8.6	411.8	1.750	8.5	406.1	1.750	8.5	406.1	1.750	8.1	ı
1.833		403.9	1.833	172	418.6	1.833	7.3	425.1	1.833	7.8	456.7	1.833	7.1	418.9	1.833	7.1	413.2	1.833	7.1	413.2	1.833	6.8	H
1.917	7 6.2			6.4	425.3	1.917	6.5	431.6	1.917	7.0	463.7	1.917	6.4	425.4	1.917	6.3	419.5	1.917	6.3	419.5	1.917	6.1	ı
2.00	3.4	413.6	2.000	3.6	5 428.8	2.000	3.6	435.2	2.000	3.9	467.6	2.000	3.6	428.9	2.000	3.5	423.1	2.000	3.5	423.1	2.000	3.4	

> PE801-00139 Page 4 of 9

Estimated PMP values for various durations are distributed into hyetographs using the design temporal distribution for short duration PMP given in GSDM, Table 1. PMP values for all durations are taken from an envelope curve fitted to the computed PMP values. Runof Estimation: 1.0E-07 AEP, Breach Impact Analysis (Rainfall / Runoff Model Input. - 2]: GSDM For Short Duration PMP, Temporal Distributions for Spatially-Distributed Rainfall

SC14	2.000	476	423 399	0.00%	86.73%	420		Depth	Cum. (mm)	0.0	14.0	33.6	58.8	85.4	109.9	134.3	158.8	183.3	205.7	228.1	251.2	268.7	289.7	307.9	325.4	342.9	359.7	373.7	384.1	394.6	403.0	410.0	416.3	419.8
Sub-Catchment	Storm Duration (h)	Ellipse A	Ellipse C	Ellipse A	Ellipse B	MP (mm)		Rainfall	Instant. (mm)	0.0	14.0	19.6	25.2	26.6	24.5	24.5	24.5	24.5	22.4	22.4	23.1	17.5	21.0	18.2	17.5	17.5	16.8	14.0	10.5	10.5	8.4	7.0	6.3	3.5
Sub-C	Storm Du	ų:	uuu) də 🛮	o	idillE ui -qns	≝		Elapsed	E @	0.000	0.083	0.167	0.250	0.333	0.417	0.500	0.583	0.667	0.750	0.833	0.917	1.000	1.083	1.167	1.250	1.333	1.417	1.500	1.583	1.667	1.750	1.833	1.917	2 000
SC13	2.000	476	399	0.00%	39.38%	408	H		Cum.	0.0	13.6	32.7	57.2	83.0	106.8	130.7	154.5	178.3	200.1	221.9	244.3	261.3	281.7	299.4	316.5	333.5	349.8	363.4	373.6	383.8	392.0	398.8	404.9	408.3
Sub-Catchment	ation (h)	Ellipse A	Ellipse B	Ellipse A	Ellipse B	PMP (mm)		Rainfall Depth	Instant. (mm)	0.0	13.6	19.1	24.5	25.9	23.8	23.8	23.8	23.8	21.8	21.8	22.5	17.0	20.4	17.7	17.0	17.0	16.3	13.6	10.2	10.2	8.2	6.8	6.1	3.4
Sub-Ca	Storm Duration (h)		um)	es C	dille ui	Ave		Elapsed	Time (h)	0.000	0.083	0.167	0.250	0.333	0.417	0.500	0.583	1990	0.750	0.833	0.917	1.000	1.083	1.167	1.250	1.333	1.417	1.500	1.583	1.667	1.750	1.833	1.917	2 000
SC12	2.000	476	399	22.37%	77.63% 0 M	435 A	Ш		Cum. (mm)	0.0	14.5	34.8	6.09	88.5	113.8	139.2	164.6	190.0	213.2	236.4	260.3	278.4	300.2	319.0	337.1	355.3	372.7	387.2	398.0	408.9	417.6	424.9	431.4	435.0
hment	tion (h)	Ellipse A	Ellipse B	Ellipse A	Ellipse B	P (mm)		Rainfall Depth	Instant.	0.0	14.5	20.3	26.1	27.6	25.4	25.4	25.4	25.4	23.2	23.2	23.9	18.1	21.8	18.9	18.1	18.1	17.4	14.5	10.9	10.9	8.7	7.3	6.5	3.6
Sub-Catchment	Storm Duration (h] 0 3	uuu) də 🛛	əs	dille ui	Ave.		Elapsed	Time h	0.000	0.083	0.167	0.250	0.333	0.417	0.500	0.583	0.667	0.750	0.833	0.917	1.000	1.083	1.167	1.250	1.333	1.417	1.500	1.583	1.667	1.750	1.833	1.917	2 000
SC11	2.000	476 n.	423 399 PM		87.76% 10.3%	422 Areal	Ш		Cum.	0.0	14.1	33.7	59.0	85.7	110.3	134.9	159.5	184.1	206.6	229.1	252.3	269.9	290.9	309.2	326.8	344.3	361.2	375.3	385.8	396.3	404.8	411.8	418.1	4216
ment	(h) nc	Ellipse A	Ellipse B	Ellipse A	Ellipse B	(mm)		Rainfall Depth	Instant. C (mm) (r	0.0	14.1	19.7	25.3	26.7	24.6	24.6	24.6	24.6	22.5	22.5	23.2	17.6	21.1	18.3	17.6	17.6	16.9	14.1	10.5	10.5	8.4	7.0	6.3	3.5
Sub-Catchment	Storm Duration (h)	(95	dilE ui	Ave.	Ш		Time Ins	0.000	0.083	0.167	0.250	0.333	0.417	0.500	0.583	199.0	0.750	0.833	0.917	1.000	1.083	1.167	1.250	1.333	1.417	1.500	1.583	1.667	1.750	1.833	1.917	2 000
SC10	3.000 St		999 PM	86%	% 0 % -qns	460 Areal	H			0.0	15.3	36.8	64.4	93.5	120.3	147.1	174.0	8.003	25.3	349.8	175.1	394.3	317.3	337.2	356.4	375.5	993.9	409.2	120.7	432.2	441.4	449.1	156.0	8 691
L	(h)	ьA	B C	e.A 68	eB 31	(mm)		Rainfall Depth	nt Cum.	00	15.3	21.5	27.6	29.1	. 26.8	. 26.8	. 26.8	26.8	24.5	24.5	25.3	19.2	23.0	19.9	19.2	19.2	18.4	15.3	11.5	11.5	9.2	7.7	6.9	38
Sub-Catchment	Storm Duration (h)	Н	minse B	əs	Ellipse B	Ē	Ш		histant (mm)	000	0.083	167	.250	0.333	0.417	0.500	0.583	199.0	0.750	0.833	0.917	000	083	167	250	.333	417	.500	.583	799.	220	.833	.917	UUU
Ĺ	00	ų)	20 80 80 90 90 90 90	l·o	ui -dus			Elapsed	E Œ	0	1.1	.0	3.2 0.3	9	0.7	5.4 0.3	11	- 1	7.3 0.	3.9	L	1.8	9.	1.2	1.9	9	4	9	1.	1 2	3.1		3.5	3.1
SC09 PON	0.2	t 4)O'O	100.00	4	1 1	fall Depth	Cum.	0	17	.7 33	4 58	98 89	111	136	190	184	.6 20	.6 22	.3 253	.6 270	.2 291	.3 310	.6 32	.6 345	.9 362	.1 376	98.	266 97	.5 406	.1 413.	.3 418	5 42
Sub-Catchment	Storm Duration (P	Н	Ellipse C		Ellipse B	e. PMP (mm)	Ш	Rainfall	Instant. (mm)	0.	14	.61 19.	0 25		7 24.	10 24	3 24.	7 24	0 22	3 22	7 23	17	3 21	18	17	17	7	14.	3 10	21 10	9 0	3 7	7	٠ ا
Sub-C	Storm	ų)	uuu) də⊡ Wd	c.	ui -dus	≝		Elapsed	ĒŒ	0.00	0.083	3 0.167	0.250	0.333	0.41	005:0	0.583	199'0	3 0.750	3 0.833	0.917	1.000	1.083	1,167	1.250	1.333	1,417	1.500	1.583	1.667	1.750	1.833	1.917	2006
C09 DC00	2.000	470	396	%00°0	100.00%	42		II Depth	Cum. (mm)	0	14.)	33.6	59.7	98.0	110.5	135.4	160.	184	207.3	229.8	253.1	270.5	291.6	310.2	327.8	345.5	362.4	376.	387.	397.	406.	413.	419.0	493 \
shment S	Storm Duration (h)	EllipseA	Ellipse C	-	Ellipse B	PMP (mm)		Rainfal	Instant. (mm)	970	14.1	19.7	25.4	26.6	24.7	24.7	24.7	24.7	22.6	22.6	23.3	17.6	21.2	18.3	17.6	17.6	16.9	14.1	10.6	10.6	8.5	171	6.3	3.5
Sub-Catchment	Storm D	цą	uuu) Wa	C.	dille	M		Elapsed	E G	0.000	0.083	0.167	0.250	0.333	0.417	00500	0.583	199.0	0.750	0.833	0.917	1.000	1.083	1.167	1.250	1.333	1.417	1.500	1.583	1.667	1,750	1.833	1.917	2 000
09 DC001	2.000	476	423 399	0.00%	100.00%	423		Depth	Cum. (mm)	0.0	14.1	33.8	59.2	86.0	110.7	135.4	160.1	184.7	207.3	229.9	253.1	270.8	291.9	310.2	327.9	345.5	362.4	376.5	387.1	397.7	406.1	413.2	419.5	423.1
ment SC09	orm Duration (h)	Ellipse A	Ellipse B	Ellipse A	Ellipse B	Ave. PMP (mm)		Rainfall Depth	Instant. (mm)	0.0	14.1	19.7	25.4	26.8	24.7	24.7	24.7	24.7	22.6	22.6	23.3	17.6	21.2	18.3	17.6	17.6	16.9	14.1	10.6	10.6	8.5	7.1	6.3	35
o-Catchment	rm Du	Н	 uw)	əs	dilE ui	Ave.	H	sed	<u> </u>	000	0.083	1.167	0.250	333	1417	0.500	1.583	1.667	0.750	1.833	1.917	000'	1.083	191	1.250	.333	1417	1.500	.583	1991	1.750	1.833	1917	000

November 2011
P:VE801-00139 Dargues/Technical/Hydrology/Breach Analysis/PE801-00139 DR Dam Breach Hydrology

Knight Piésold Pty. Ltd.

			paigno	Cortona Resources	seonices		Made by	IMI			7	PE801-00139						
Kmg	Knight Piesold		Dargues Reef Gold	eef Gold			Checked			Date		12/11/2011						
	2	2	TSF Bread	TSF Breach Impact Analysis	alysis		Approved											
Princiff	Pund Estimation (NEJY &EP Resach Imnact Analosis (Painfall / Bundf Model Innst . 3: GSAM En I and Duration BMD Tamores Distributions for Snatishly Distributions	1 OE-07	AFP Bro	enm doe	of Analysi	e (Bainfa	ourie / II	* Model Ir		SAM E	one la	Iration P	MP Tem	Poral Diet	ributione	for Snaf	ally. Dietri	į
			i	-					. /s								·	5
Estimated	Estimated PA/P values for various durations (duplicated below) are distributed into hyviographs using the design temporal distributions for long duration PA/P given in GSAM CD 2006 Guidebook. PMP values for all c	forvarious	durations (o	tuplicated be	elow) are dist	ributed into	hyetograph	s using the	design temp	ooral distrib	utions for lo	ng duration	PMP given	in GSAM C	⊃ 2006 Guid	debook. PN	1P values for	<u>e</u>
Storm Du	Storm Duration (h) =	24.0	30.0	36.0	48.0	72.0	96.0											
PMP De	PMP Depth (mm) =	1260	1340	1410	1480	1550	1600	Note: these are PMP values for the entire catchment, spatially-distributed values are derived below	se are PMP	values for	the entire co	atchment, s	patially-distr	ibuted value	s are derive	ed below.		
Storm	Z.		Storm	Storm Duration (h)	30.0	Storm D	Storm Duration (h)	36.0	Storm Dt	Storm Duration (h)		Storm	Storm Duration (h)	72.0	Storm D	Storm Duration (h)		
Elapsed	Rainfall	미	Elapsed	Rainfa	Rainfall Depth	Elapsed	Rainfal	Rainfall Depth	Elapsed	Rainfal	믜	Elapsed	Rainfall	ч.	Elapsed	Rainfall	미	
£	(mm)	(mm)	(min)	(mm)	(mm)	(F)	(mm)	(mm)	Œ	(mm)	(mm)	£	(mm)	(mm)	(F)	(mm)	(mm)	
	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0'0	0	0'0	0.0	
	1 23.9	23.9	2	36.4	36.4	2	26.3	26.3	2	14.8	14.8	8	14.0	14.0	3	12.8	12.8	
	23.9	47.9	4	46.0	82.4	A	36.7	63.0	4	22.2	37.0	9	24.8	38.8	9	14.4	27.2	
. ,	23.9	71.8	9	63.0	145.4	9	47.0	110.0	9	29.6	9'99	6	43.4	82.2	6	17.6	44.8	
,	37.0	108.8	8	77.9	223.3	8	68.6	178.6	8	38.5	105.1	12	46.5	128.7	12	24.0	68.8	
	37.0	145.7	10	100.4	323.7	10	77.6	256.2	10	46.9	151.9	91		162.8	15	27.2	0.96	
_	37.0	182.7	12	109.6	433.4	12	86.5	342.6	12	55.3	207.2	18	57.4	220.1	18	17.6	113.6	
	29.6	242.3	14	120.9	554.3	14	90.2	432.9	14	85.8	293.0	21	83.7	303.8	21	14.4	128.0	
	9 29.6	302.0	16	113.3	667.5	16	87.9	520.8	16	95.2	388.3	54	102.3	406.1	24	32.0	160.0	
	9 29.6	361.6	18	114.6	782.2	18	85.5	606.3	18	104.6	492.8	27	144.2	550.3	27	62.3	222.3	
10	0 84.0	445.6	20	132.5	914.7	20	79.9	686.2	20	137.1	630.0	90	178.3	728.5	30	80.1	302.4	
1	1 84.0	529.6	22	120.4	1085.1	22	109.0	795.2	22	114.9	744.9	33	122.5	851.0	33	108.6	411.0	
12	2 84.0	613.6	24	93.8	1129.0	24	138.2	933.4	24	92.7	837.7	96	108.5	959.5	36	112.2	523.2	
13	71.4	685.0	26	88.0	1216.9	26	113.7	1047.2	26	65.1	902.8	66	105.4	1064.9	39	102.2	625.4	
14	71.4	756.4	28	73.3	1290.2	28	87.3	1144.5	28	64.1	6'996	ZÞ	71.3	1136.2	42	0'58	710.4	
15	71.4	827.8	30	49.8	1340.0	30	80.8	1225.3	30	63.1	1030.1	45	68.2	1204.4	45	67.1	777.5	
16	5 62.6	890.4				32	93.1	1318.4	32	79.9	1110.0	48	80.6	1285.0	48	25.3	852.8	
17	7 62.6	953.0				34	61.6	1379.9	34	77.9	1187.9	51	63.6	1348.5	51	84.7	937.5	
18	8 62.6	1015.6				36	30.1	1410.0	36	76.0	1263.9	20	45.0	1393.5	54	78.5	1016.0	
19	9 46.6	1062.2							38	53.3	1317.2	25	34.1	1427.6	57	67.1	1083.1	
20	16.6	1108.8							40	49.3	1366.5	8	27.9	1455.5	90	75.3	1158.4	
2	1 46.6	1155.4							42	45.4	1411.9	88	23.3	1478.7	63	92.7	1251.1	
22	34.9	1190.3							44	33.5	1445.5	99	27.9	1506.6	99	81.7	1332.8	
23	34.9	1225.1							46	22.7	1468.2	69	27.9	1534.5	69	55.9	1388.7	
24	34.9	1260.0							48	11.8	1480.0	72	15.5	1550.0	72	44.9	1433.6	
															22	2'98'	1470.3	
															78	25.7	1496.0	
															81	14.4	1510.4	
															84	8.0	1518.4	
															28	19.2	1537.6	
															06	24.0	1561.6	
															93	22.4	1584.0	

Runoff Estimation: 1.0E-07 AEP, Breach Impact Analysis (Rainfall / Runoff Model Input - 3): GSAM For Long Duration PMP, Temporal Distributions for Spatially-Distributed Rainfall

alnes
P y
Ž.
onte
Jul S
the
d to
it e
'nΝ
e e
nvelo
an e
E O
den f
e tak
ns an
ıratio
ᆲ
ē
alues
ĕ.
£
Š
idet
6
2 2006
8
SSA.
=
giver
₩
6
durati
ong o
ē
ions
tribut
ő
mporal
2
asign.
pe de
sing th
Sns
raph
retogr
5
ed in
tribut
dis
ı) are
(pelow)
8
jic Si
₫
ations
큥
ious
rvario
es for
valn
PM PM
ated F
stima
ш

Particular Par	Positional Fraction Positional Fraction Practical Pra	Ę	24-h Duration PMP			30-h Duration PMP	tion PMP		L	36-h Dur	36-h Duration PMP			48-h Duration PMP	tion PMP			72-h Duration PMP	tion PMP			96-h Duration PMP	tion PMP	
Red of Starm of Star Start Star Star Star Star Star Sta	Red of Starm of Star Start of Star Start of Star Start of Star Star Star Star Star Star Star Star	L	Positi	on i+1	Positi	i uo	Posit	ion i+1	Pos	i tion i	Positi	on 1+1	Posít	i noi	Positic	1+10	Positi	ino	Positio	n 1+1	Positi	, uo	Positic	1+1
1,250 1,25	COUNTY C	Stori		Fraction of Storm PMP		Fraction of Storm PMP	Fraction of Storm			_	_		_	Fraction of Storm PMP	Fraction of Storm	_	$\overline{}$	_	-	Fraction of Storm		Fraction of Storm PMP		Fraction of Storm
5.00% 4 (30% 20 kg	5.00% 10.5% 25.0% 25.0% 15.0% 12.5% 12.0% 12.5% 12.0% 12.5% 12.0% 12.5% 12.0%	000	%	┸	96000	0.00%	5.00%	┸	0.00%		8.33%	┸	0.00%	0.00%	6.25%	1.50%	%00.0	0.00%	4.17%	0.90%	9600.0	0.00%	3.13%	0.80
0.000 7138	Compact Comp	5.70	96 25.00%	14.50%	5.00%	1.98%	10.00%	4.18%	8.33%		16.67%	7.80%	6.25%	1.50%	12.50%	4.50%	4.17%	0.90%	8.33%	2.50%	3, 13%	0.80%	6.25%	1.70
5.00% 10.5% 22.0% 22.0% 22.0% 22.0% 25.00% 14.00% 21.50% 12.50% 14.00% 21.50% 12.50% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 15.00% 14.00% 21.50% 21.50% 14.00% 21.50% 21.50% 14.00% 21.50% 21.50% 14.00% 21.50% 2	5.000m 10.580m 22.500m 14.500m 22.500m 14.000m 22.500m 14.000m 22.500m 14.000m 22.500m 14.500m 14.500m 22.500m 14.500m 22.500m 14.500m 22.500m 14.500m 22.500m 14.500m 22.500m 14.500m 22.500m 14.500m 22.500m	14.50	96 37.50%	28.70%	10.00%	4.18%	15.00%	7.13%	6 16.679a		25.00%	15.10%	12.50%		18.75%	8.40%	8.33%	2.50%	12.50%	5.30%	6.25%	1.70%	9.38%	2.80
2 0.00% 20 0.00% 4 1 0.00% 5 2 0.00% 4 1 0.00% 5 2 0.00% 4 1 0.00% 5 2 0.00% 1 0.00% 5	8. 28. 28. 28. 28. 28. 28. 28. 28. 28. 2	28.70	% 50.00%	48.70%	15.00%	7.13%	20.00%	10.85%	\$ 25.00%	ľ	33,33%	24.30%	18.75%	8.40%	25.00%	14.00%	12.50%	5.30%	16.67%	8.30%	9.38%	2.80%	12.50%	4.306
5.00% 20.04% 43.09% 50.00% 43.09% 50.00% 31.55% 22.75% 51.50% 20.00% 43.00% 20.04% 43.00% 14.00% 20.04% 43.00% 14.00% 20.04% 43.00% 14.00% 20.04% 43.00% 14.00% 20.04% 43.00% 14.00% 20.04% 14.00% 20.04% 14.00% 20.04% 14.00% 20.04% 14.00% 20.04% 14.00% 20.04% 14.00% 20.00% 14.00% 20.	5.00% 20.24% 60.00% 14.00% 51.00% 14.00% 15.00% 14.00% 14.00% 20.10% 14.00% 14.00% 14.00% 14.00% 14.00% 15.00% 14.00% 15.00% 15.00% 14.00% 15.00% 14.00% 15.00% 14.00% 15.00% 14.00% 15.00% 14.00% 15.00% 14.00% 15.00% 15.00% 14.00% 15.00% 14.00% 15.	48.70	% 62.50%	65.70%	20.00%	10.85%	25.00%	14.80%	33.33%	L	41.67%	33.90%	25.00%	14.00%	31.25%	22.70%	16.67%	8.30%	20.83%	10.50%	12.50%	4.30%	15.63%	6.00
0.000 25 GATM 50 COWA 4 COWA 51 STOWN 41 STOWN 41 STOWN 50 COWA 41 TOWN 50 COWA 52 STOWN 50 COWA 41 TOWN 50 COWA 52 STOWN 50	0.000s 22 cars 85 28% 51 Co.0 kg 4.0 cars 82 cars 85 c	65.76	% 75.00%	80.60%	25.00%	14.80%	30.00%	20.40%	6 41.679s		50.00%	43.00%	31.25%	22.70%	37.50%	33.30%	20.83%	10.50%	25.00%	14.20%	15.63%	6.00%	18.75%	7,109
5.00% 25.24% 6.07% 6.00% 26.00% 50.00% 50.00% 50.00% 50.00% 23.24% 6.10% 50.00% 24.56% 6.00% 24.	5.00% 29.24% 66.07% 66.07% 6.00% 20.00% 50.00% 50.00% 20.0	80.60	96 87,50%	91,70%	30.00%	20.40%	35.00%	7 26.04%	\$0.00%	L	58,33%	51,50%	37.50%	33,30%	43.75%	47,20%	25.00%	14.20%	29.17%	19.60%	18,75%	7.10%	21,88%	8.00
Compact Comp	Compact Comp	91.70	96 100.00%	100.00%	35.00%	26.04%	40.00%	32.34%	58.33%	L	66.67%	66.20%	43.75%	47.20%	50.00%	56.60%	29.17%	19.60%	33,33%	26.20%	21.88%	8.00%	25.00%	10.00
5.00% 51.00% 10.	5.00% 51.00% 15.00% 15.00% 10.	100.00	%		40.00%	32.34%	45.00%	39.12%	66.679	L	75.00%	78.30%	900.009	56.60%	56.25%	63.20%	33.33%	26.20%	37,50%	35.50%	25.00%	10.00%	28.13%	13.909
0.0000 51.5000 41.5000 62.5000 42.5000	Company Comp				45,00%	39,12%	900'09	45,85%	75.00%	Ĺ	83,33%	96,96,98	56.25%	63.20%	62.50%	9609.69	37,50%	35,50%	41,67%	47,00%	28.13%	13,90%	31,25%	18,90
5 50% 5 50%	55 China China Signal (100 China 100				9600009	45.85%	55.00%	51,80%	83,33%	L	91.67%	96.80%	62.50%	69.60%	68.75%	77,70%	41.67%	47.00%	45.83%	54.90%	31.25%	18.90%	34,38%	28.70
27.20% 8.0 50.9% 100.00% 12.2% 20.00% 8.5.2% 20.00% 100.00% 12.2% 20.00% 100.0	21 20% 20 20% 21 20% 21 20% 20 20% 21 20% 2				960099	51.80%	800.09	58.379	91.67%	L	100.00%	100.00%	68.75%	77.70%	75.00%	85.40%	45.83%	54.90%	900.00	61.90%	34.38%	25.70%	37.50%	32.70
87 55% 30 75% 30	Strict S				9600'09	58.37%	65.00%	65.97%	100.00%	Γ			75.00%	85.40%	81.25%	90.80%	20.00%	61.90%	54.17%	68.70%	37.50%	32.70%	40.63%	39.10
83.75% 65.00% 72.42% 73.00% 72.42% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 73.00% 72.52% 72.50% 72.52% 72.50% 72.50% 72.52% 72.50% 72.52% 72.50% 72.52% 72.50% 72.52% 72.50% 72.52% 72	82 75% 65 60 80 80 80 80 80 80 80 80 80 80 80 80 80				960039	65.97%	70.00%	72.84%	,0				81.25%	90.80%	87.50%	95.40%	54.17%	68.70%	58.33%	73.30%	40.63%	39.10%	43.75%	44.40
5.00% 594.7% 100.00% 100.00% 100.00% 100.00% 100.00% 25.50	5.50 We 84.29% 19% 100 00% 100				9600:02	72.84%	75.00%	79.45%	Ş				87.50%	95.40%	93.75%	98.80%	58.33%	73.30%	62.50%	77.70%	43.75%	44.40%	46.88%	48.60
70 05% 94 95 97% 65 05 95% 65 05 95% 65 25 95%	TO GREATH TO GOOD				75.00%	79.45%	80.00%	84.25%	Ç				93.75%	98.80%	100.00%	100.00%	62.50%	77.70%	96.999	82.90%	46.88%	48.60%	20.00%	53.30
7.0 0.0% GP 93.0% TO MAN TO MA	77 0.03% 67 24 20% 62 24 24 24 24 24 24 24 24 24 24 24 24 24				80.00%		85.00%	89.18%	9				100.00%	100.00%			96.67%	82.90%	70.83%	87.00%	20.00%	53.30%	53.13%	58.60
5.00% 87.28% 65.25% 65.	75 GOW 97 28% 65 25% 65 25% 50				85.00%	89.18%	300:00%	94.09%	9							Γ	70.83%	87.00%	75.00%	89.90%	53.13%	58.60%	56.25%	63.50
73 1749 62 237	73 17% 8 27 10% 8 27 10% 8 27 20% 9 23 50% 100 00% 100				900'06	94.09%	95.00%	97.389	اور								75.00%	89.90%	79.17%	92.10%	56.25%	63.50%	59.38%	67.70
85 33-98	82 83.9% 62 60% 72 60% 62 60% 73 20% 62 60% 73 20% 62 60% 73 60%				95.00%	97.38%	100.00%	4 100.009k	·o								79.17%	92.10%	83.33%	93.90%	59.38%	67.70%	62.50%	72.409
87 50% 6 540% 100 00%	8 5 50% 6 54 60% 10 00%				100.00%	100.00%											83.33%	93.90%	87.50%	95.40%	62.50%	72.40%	65.63%	78.209
91 67 W 95 (20 W) 95 (20 W	91 67 W 95 85 85 W 95 75 0 W 75 0 W 100 0 W 10																87.50%	95.40%	91.67%	97.20%	65.63%	78.20%	68.75%	83.30
59,53% 93,00% 100,00% 100,00% 175,00% 850% 75,00% 850% 75,00% 850% 75,00% 850% 75,00% 850% 75,00% 850% 75,00% 850% 75,00% 850% 85,00% 850% 850% 850% 850% 850% 850% 850% 8	55. S39b 80.000b 100.000b 100.000b 100.000b 80																91.67%	97.20%	96.83%	99.00%	68.75%	83.30%	71.88%	96.80
100 00% 100 00% 778 13% 91 25% 81 25%	100.00% 100.00% 778.13% 91.95% 81.93%																95.83%	99.00%	100.00%	100.00%	71.88%	86.80%	75.00%	89.60
81 20% 81	81 23 49 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6																100.00%	100.00%			75.00%	89.60%	78.13%	91.909
81 25% 65% 812% 65% 8	84 30% 94 470% 87 50% 84 30% 94 470% 87 50% 84 30% 94 470% 94 50 60% 84 30% 94 470% 94 50 60% 94	stribute	PMP, it is ne.	cessary to m		of the															78.13%	91.90%	81,25%	38,509
8.7 50% 94.90% 97.50% 94.00% 94.00% 95.20% 9	87 50 78 50 50 50 50 50 50 50 50 50 50 50 50 50	MP Es	imate" values	by the ratio.		aged TAF ∨	ralues:														81.25%	98.50%	84.38%	94.40
8 75 75 96 96 96 96 96 96 96 96 96 96 96 96 96	8.87.50% 94.90% 50.53% 50.03%																				84.38%	94.40%	87.50%	94.90
90.02% 90.03% 90.	00.1 (80.00 00.1) 05 (90.83 9/6) 05 (90.83 9/6) 06 (90.80 9/6)	× 8.9	TAFse / TAFe)																		87.50%	94.90%	90.63%	96.109
1 (0,000 O) 1 (1,0	83.758 86.6889 140.0009																			_	90.63%	96.10%	93.75%	97.60
(988.98) (1.00.000)	1 400 000%																				93.75%	97.60%	96.88%	99.00
100.00%	100.00%																				96.88%	38.00%	100.00%	100.009
catchment (s) average PMP for duration (d); errane tocororiclic adustment factor or catchment (c) and	catchment(so) average PMP for duration (d); rerage topographic adjustment factor for catchment (c); and	ment	(c) average Pl	MP for durati	ion (d);																100.00%	100.00%		
erease bocorrachic adustment factor for catchment (c) and	verage bopgraphic adjustment lador for catchment (c), and	catchi	nent (sc) aver.	age PMP for	r duration (d)															•				
		Nerade) topographic s	adjustment fa	actor for cato	thment (c):	and																	

PE801-00139 Page 7 of 9

KNIBBUL PIEROIM DATUS Reaf Gold Demonst Date 12/11/2011
TSF Breach Impact Analysis were

Runoff Estimation: 1.0E-07 AEP, Breach Impact Analysis (Rainfal / Runoff Model Input - 3): GSAM For Long Duration PMP, Temporal Distributions for Spatially-Distributed Rainfall

	_		_	_	_	 _	_	_	_		_	_	_		_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_
SC08	24.0	1.770	1,730	1260	1232	Depth	Cum.	00	23.4	46.8	70.2	106.3	142.4	178.6	236.9	295.2	353.4	435.5	517.7	599.8	689.5	739.3	809.1	870.3	931.4	992.6	1038.2	1083.7	1129.3	1163.4	1197.5	1231.5
Sub-Catchment	ation (h)	TAF	TAFsc	PMP.	PMP _{sc}	Rainfall Depth	Instant.	0.0	23.4	23.4	23.4	36.1	36.1	36.1	58.3	58.3	58.3	82.1	82.1	82.1	8.69	69.8	8.69	61.2	61.2	61.2	45.6	45.6	45.6	34.1	34.1	34.1
Sub-Ca	Storm Duration (h)	14.	<u> </u>	PMP	(mm)	Elapsed	E E	0.0	1.0	5.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0
2005	24.0	1.770	1.740	1260	1239	П	Cum.	0.0	23.5	47.1	9.07	106.9	143.3	179.6	238.2	296.9	355.5	438.1	520.6	603.2	673.4	743.6	813.8	875.3	8'986	998.3	1044.2	1090.0	1135.8	1170.1	1204.4	1238.6
hment	on (h)	TAF	.AF₅	PMP _c	PMP _{sc}	Rainfall Depth	Instant.	0.0	23.5	23.5	23.5	36.3	36.3	36.3	58.6	9'89	58.6	82.6	82.6	82.6	70.2	70.2	70.2	61.5	61.5	61.5	45.8	45.8	45.8	34.3	34.3	34.3
Sub-Catchment	Storm Duration (h)	- 44	Ľ	PMP	mm)	닞	Time	0.0	1.0	2:0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0
SC06	24.0	1.770	1.750	1260 F	1246 (П	Cum.	0.0	28.7	47.3	71.0	107.6	144.1	180.6	239.6	298.6	357.5	440.6	523.6	2.909	677.3	747.9	818.5	880.3	942.2	1.004.1	1050.2	1096.3	142.4	1176.8	1211.3	1245.8
nent	n(h)	ı,	TAF _{sc}	PMP _c	PMP₅	Rainfall Depth	Instant. Ci	9	23.7	23.7	23.7	36.5	36.5	36.5	29.0	9.0	59.0	83.1	83.1	83.1	20.6	20.6	9.07	61.9	61.9	61.9	46.1	46.1	46.1	34.5	34.5	34.5
Sub-Catchment	Storm Duration (h)	TAF	Ч	Н	Ч	Ц		0.0	1.0	2.0	3.0	4.0	5.0	0.0	7.0	8.0	9.0	10.01	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0
SC05	24.0 Stor	770	160	260 PMP	253 (mm)	╗	Time	9	23.8	17.6	71.4	38.2	44.9	81.7	11.0	00.3	9.69	13.1	26.6	10.2	381.1	52.1	23.1	35.4	17.6	9.8	56.2	02.5	18.9	33.6	18.2	52.9
L	L	-	1.	-	1	Rainfall Depth	it. Cum.	9	3.8	3.8	3.8	6.8	1.	6.8	9.3	9.3	9.3	3.5	3.5	3.5	1.0	1.0	1.0 82	2.2	2.2	2.2	16.4 108	46.4 110	46.4 114	4.7 118	4.7 12	4.7 128
Sub-Catchment	Storm Duration (h)	TAF	Ĺ	Н	PMPso	Ц	Instant.	0	0.	2	0.1	3	0.0	0''	0.	0''	0.0	0.1	0.	12.0	13.0	0.1	15.0	9 01	9 0'21	0.81	19.0	20.0		3	23.0	24.0
L	0	0	0	PMP	(mm)	Elapsed	il a	0	6	00	80	8	2	9	3	0	9	9	-	12	13	14.0	15	16.0	41 0	91	16	8	21.0	3 22.	1 23	0 24
SC04	24.	1.77	1.77	126	126	Rainfall Depth	Cum.	0	23.	47.	71.	108	145.	182	242.	302	361.	445.	529	613	685	756.	827.	980	953	1015.	1062	1108	1155.	1190	1225.	1260.
Sub-Catchment	Storm Duration (h)	TAF	TAF	PMP	PMPsc	Rainfa	Instant.	ŏ	23.6	23.6	23.6	37.0	37.0	37.0	59.6	9'69	9.69	84.0	84.0	84.0	712	712	712	9779	9759	62.6	9'97	46.6	9'91'	34.8	34.8	34.8
-qns	StormD	14	Ĭ	PMP	(mm)	Elapsed	E E	0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0
SC03	24.0	1.770	1.770	1260	1260	Depth	Cum.	0.0	23.9	47.9	71.8	108.8	145.7	182.7	242.3	302.0	361.6	445.6	529.6	613.6	685.0	756.4	827.8	890.4	953.0	1015.6	1062.2	1108.8	1155.4	1190.3	1225.1	1260.0
Sub-Catchment	ation (h)	TAF	TAFso	PMP	₽MP∞	Rainfall Depth	Instant.	0.0	23.9	23.9	23.9	37.0	37.0	37.0	9769	9'69	9769	84.0	84.0	84.0	71.4	71.4	71.4	62.6	62.6	62.6	46.6	46.6	46.6	34.9	98.9	34.9
Sub-Ca	Storm Duration (h)	144	_	PMP	(mm)	Elapsed	E G	0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0
SC02	24.0	1.770	1,790	1260	1274	Ē	Cum.	0.0	24.2	48.4	72.6	110.0	147.4	184.8	245.1	305.4	365.7	450.7	535.6	620.6	692.8	765.0	837.2	9000	2'896	1027.0	1074.2	1121.3	1168.5	1203.7	1239.0	1274.2
chment	tion (h)	TAF	TAFsc	PMP	PMP _{sc}	Rainfall Depth	nstant.	0.0	24.2	24.2	24.2	37.4	37.4	37.4	60.3	60.3	60.3	84.9	84.9	84.9	72.2	72.2	72.2	63.3	63.3	63.3	47.1	47.1	47.1	35.3	35.3	35.3
Sub-Catchment	Storm Duration (h)	14	Ĺ	PMP	(mm)	Ų	Time (4)	0.0	1.0	2:0	3.0	4.0	5.0	0.9	7.0	8:0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0
SC01	24.0 S	1.770	1.800	1260	1281	П	Cum.	0.0	24.3	48.7	73.0	110.6	148.2	185.8	246.4	307.1	367.7	453.2	538.6	624.0	9.969	769.2	841.9	905.5	969.1	1032.8	1080.2	1127.6	1175.0	1210.5	1245.9	1281.4
ment)n (h)	TAF	TAF	PMP _c	PMP _{sc}	Rainfall Depth	Instant. C	0	24.3	24.3	24.3	37.6	37.6	37.6	60.7	2.09	60.7	85.4	85.4	85.4	72.6	72.6	72.6	63.6	63.6	63.6	47.4	47.4	47.4	35.5	35.5	35.5
b-Catchment	Duration (h)	Ľ	ŕ	ā	ď	لًا	sul .		0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0	0.	0.

Knight Piésold Pty. Ltd.

				#400				chmen	ıration	TAF	TAF	PME	PM H		Ra	msta (mn																								
				2000	Alpha edol			Sub-Catchmen	Storm Duration	TAE	<u> </u>	PMP	(mm)		Elapsed	Ē Œ	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0
				oven enve	5	Ð		SC13	24.0	1.770	1.770	1260	1260	Ì	Т	E (E	0.0	23.9	47.9	71.8	108.8	145.7	182.7	242.3	302.0	361.6	445.6	529.6	613.6	685.0	756.4	827.8	890.4	953.0	1015.6	1062.2	1108.8	1155.4	1190.3	1225.1
				acuj uezte.	and in	employe		Ļ	£	ı,º	9	o°	90	l	믦		0.0	23.9	23.9	23.9	37.0	37.0	37.0	59.6	59.6	59.6	84.0	84.0	84.0	71.4	71.4	71.4	62.6	62.6	62.6	46.6	46.6	46.6	34.9	34.9
			Rainfall	ione aroi	0100	rages are		Sub-Catchment	Storm Duration (h)	TAF	TAF	Н	PMP	ļ	Ŀ	(mm)	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0,	0.	0.	0:	0.	0.	0:	0.	0.	0.	0,	0
			ibuted	10		areal ave		Sub-C	Storm	EV.	-	PMP	(mm)	l	Elapsed	ĒŒ	°	_	2	8	Þ	9	9	7	00	0	9	11	12	13.	14	15.	16.	21	18.	19	20.	21	22	23
			Ily-Distr	values fo	values	computed		SC12	24.0	1.770	1,770	1260	1260	l	Pepth	E GE	0.0	23.9	47.9	71.8	108.8	145.7	182.7	242.3	302.0	361.6	445.6	529.6	613.6	685.0	756.4	827.8	890.4	953.0	1015.6	1062.2	1108.8	1155.4	1190.3	1225.1
			r Spatia	700	NO.	reviously-		nent	tion (h)	TAF	TAF	PMP	₽MP∞	l	Rainfall Depth	(mm)	0.0	23.9	23.9	23.9	37.0	37.0	37.0	59.6	9.69	59.6	84.0	84.0	84.0	71.4	71.4	71.4	62.6	62.6	62.6	46.6	46.6	46.6	34.9	34.9
			tions fo	J. Guideb	naninan na dalinan	all. The p		Sub-Catchment	Storm Duration (h)		Ц	Н	(mm)	ł	ᆜ	Ē E	0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0
			Distribu	M CD 20		PMP rainf		C11	24.0 St	770	750	1260 P	1246 (n	ł	Т		0.0	23.7	47.3	71.0	9.70	44.1	90.6	39.6	98.6	57.5	40.6	23.6	06.7	77.3	47.9	18.5	80.3	42.2	04.1	50.2	96.3	42.4	76.8	11.3
			mporal	an in GSA	99	stive total	θ J.	S	Ē	1	1	`		l	計	. (E. E.)	0.0	3.7	3.7	3.7	1.5	1.5	3.5	3.0	3.0	3.0	3.1	3.1	9.1	9.6	7 2.6	9.0	8	6 6	.9	3.1 10	3.1 10	3.1	115	1.5
~1			` MP,Te	ON AD City	NA L	eirrespec	SDM, Tab	Sub-Catchment	Storm Duration (h)	TAF	TAFsc	PMP	PMP	ŀ	ŀ	(mm)		23	23	1 23	36	36	36	98	95	98	88	88	88	×	2	20	9	.9	.9	46	46	46	3	37
PE801-00139	12/11/2011		ration F	o duration	n aniano	s of the th	iiven in G	Sub-Ca	Storm D	Į,	Ĭ	PMP	(mm)		Elapsed	ĒŒ	0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	90.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0
Ü	_		Long Di	one for loa	5	d average	ion PMP o	SC10	24.0	1.770	1.770	1260	1260	Ì	epth -	i (iii	0.0	23.9	47.9	71.8	108.8	145.7	182.7	242.3	302.0	361.6	445.6	529.6	613.6	685.0	756.4	827.8	890.4	953.0	1015.6	1062.2	1108.8	1155.4	1190.3	1225.1
			AM For	detribut	maningin	al-weighte	hort durat	ent	on (h)	TAF	TAF	МР°	PMP _{sc}	l	Rainfall Depth	Instant. (mm)	0.0	23.9	23.9	23.9	37.0	37.0	37.0	59.6	59.6	59.6	84.0	84.0	84.0	71.4	71.4	71.4	62.6	62.6	62.6	46.6	46.6	46.6	34.9	34.9
Job No.	Date		-3): GS	tempore	a composition	outing are	ution for s	Sub-Catchment	Storm Duration (h)	۲	Ц	Н	Н	Į.		_	0.0	1.0	2.0	3.0	4.0	5.0	0.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0
TML			l Input	the decid	n e cesa	it by comp	oral distrib	L	4.0 Sto	70	.20	90 PMP	(mm)	ŀ	Ī		0.0	3.7	7.3	1.0	9.7	4.1	9.0	9.6	9.6	7.5	9.6	3.6	3.7	7.3	7.9	8.5	0.3	2.2	4.1	0.2	5.3	5.4	9.8	1.3
			off Mode	be neigh	Sillen elk	catchmer	ign tempo	COS POND	Š	1.7	1.7	12	12	l	밝	E E		2	4	2	.01	14.	5 18	23	290	32	44	1 25	8	9	74	810	88	94	100	105	109	114	117	121
dade by	Checked	panoside	I / Runc	hymetogran	iiyetogi a	each sub	ig the des	nent	ration (h)	TAF	TAFso	PMP	₽MP®	l	Rainf	(mm)	ŏ	23	23	23.	36.	36.0	36.	281	. 59.0	281	83	88	83	20	70.0	70.6	61.5	61.8	613	46.	46.	46.	8	38
			(Rainfa	otto dinto	onied iii.	ulated for	buted usir	Sub-Catchment	Storm Duration (h)	Į	ł	PMP	(mm)	Ī	Elapsed	ĒŒ	0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0
ces		S	nalysis	are dietri	alle distill	then form	rally distri	DC002 St	24.0	1.770	1,750	1260	1246	ł	Т	E GE	0.0	23.7	47.3	71.0	107.6	144.1	180.6	239.6	298.6	357.5	440.6	523.6	606.7	677.3	747.9	818.5	880.3	942.2	1004.1	1050.2	1096.3	1142.4	1176.8	1211.3
Cortona Resources	p	ISF Breach Impact Analysis	mpact A	Conclosed Dec	ed Delowy	PMP are	nen tempo	800S	Ē	F _c	e _{so}	ے ا	PMP _{sc}	l	밝		0.0	23.7	23.7	23.7	36.5	36.5	36.5	59.0	59.0	59.0	83.1	83.1	83.1	20.6	9.07	9.07	61.9	61.9	61.9	46.1	46.1	46.1	34.5	34.5
Corto	argues Reef Gold	each Imps	3reach	togical to	(auplical	graphs for	oths are th	DC001 Sub-Catchment	Storm Duration (h)	Н	Ц	۲	н	L	ŀ	(mm)	0:0	1.0	2.0	3.0	4.0	5.0	0.0	7.0	8.0	0.0	0:0	1.0	2.0	3.0	4.0	15.0	0.9	0.7	0.8	0.61	20.0	1:0	2.0	3.0
Subject	Dargues	TSF Bre	, AEP, E	durations	dulation	vm) hyeto	ainfall de	1 Sub-Ca	Storn	147	-	PMP	(mm)		Elapsed	ĒŒ		10		9	. 6	3	9	2	9	10	_	-	-	_	en en		-	3	3	1	2	2	2	2
	resold	z	1.0E-0.	or verious	o valous	(24-h sho	specific		24	1.77	1.74	126	123	l	Depth	E E	ō	23	47.	70.	106	143.	179.	238.	296.	355.	438	520.	903	673	743.	813.	875.	936	988.	1044	1090	1135.	1170	1204
		e z	mation	- solutor O	- Address	duration	satchmen	9008	tion (h)	TAF	TAF	PMP	PMPsc	l	Rainfall Depth	(mm)	0.0	23.5	23.5	23.5	36.3	36.3	36.3	58.6	58.6	58.6	82.6	82.6	82.6	70.2	70.2	70.2	61.5	61.5	61.5	45.8	45.8	45.8	34.3	34.3
	K night F	5	Runoff Estimation: 1.0E-07 AEP, Breach Impact Analysis (Rainfall / Runoff Model Input - 3): GSAM For Long Duration PMP, Temporal Distributions for Spatially-Distributed Rainfall	Eliminate DAD culture for various a relations of halow) and destributed into handocreative Listen the destructions for from duration DAD culture for control and relations of the following for the control of the contr	liated FIN	Design X-hour duration (24h strown) hyebographs for PMP are then formulated for each sub-catchment by computing a real-weighted averages of the their respective total PMP rainfall. The previously-computed areal averages are employed	The total sub-catchment specific rainfall depths are then temporally distributed using the design temporal distribution for short duration PMP given in GSDM, Table 1.	Sub-Catchment	Storm Duration (h)	<u>الإ</u>	Ч	Н	(mm)	l	_	ĒŒ	0:0	1.0	2.0	3.0	4.0	5.0	0.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0
È	Y		⊉	ij	5	Se i	Ple L	Sub	ĺű	ľ		"	٦	ı	ij,	- "	ĺ						П										П	Ц				П		

Report No.752/42 Appendix 1

PE801-00139 Page 9 of 9

LI 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	O realises	ortona Resources	manaeby TML		OB No.
Anight Flesoid	Dargues Reef Gol	q	Checked	Eg	æ
CONSULTING	TSF Breach Impac	ct Analysis	penouddy	£	heel No.

Runoff Estimation: Breach Impact Analysis (Rainfall / Runoff Model Output - 4)

A HEC-HMS hydrology model was created to assess the peak runoff and channel attenuation resulting from the various failure (F) and mon-failure (NF) scenarios. (An initial screening of tests from the full grid was performed to identify the most representative possibilities under the various initial conditions and dam breach failure modes.) The following are results from those tests:

	JIIIID.		NF PMPUF	FUI PM	FUT PMPUF OI	HUZ SU	10.0
HE C-HIMS	HE C-RAS	Peak Flow	Time	Peak Flow	Time	Peak Flow	Time
=	Station (m)	O _{MAX} (m²/s)	tomax (h)	O _{mex} (m²/s)	t _{o-max} (h)	O _{MAX} (m²/s)	^t ⊊шах (h)
0+230.0	230.0	364.56	12.43	461.12	17.05	112.49	
0+530.0	0.068	364.56	12.42	461.62	17.05	112.74	29:0
0+830.0	0.058	364.56	12.42	462.20	17.03	112.77	29:0
+130.0	1130.0	364.56	12.40	462.64	17.03	113.07	0.65
1+430.0	1430.0	364.57	12.40	462.96	17.02	113.42	69'0
+730.0	1730.0	364.57	12.38	463.74	17.02	113.54	0.62
2+330.0	2330.0	292.86	12.37	406.12	17.00	114.15	09:0
2+630.0	2630.0	292.87	12.37	406.51	17.00	114.25	09'0
2+930.0	2930.0	292.87	12.37	406.52	17.00	114.67	0.58
20+750.0	20750.0	46.73	12.40	46.73	12.40	00:00	00'0
21+050.0	21 050.0	46.73	12.38	46.73	12.38	00'0	00'0
21+350.0	21350.0	46.74	12.35	46.74	12.35	00'0	00'0
21+650.0	21650.0	46.74	12.32	46.74	12.32	00'0	00'0
3+230.0	3230.0	217.88	12.32	345.59	16.98	115.06	25'0
3+530.0	3530.0	217.89	12.32	346.82	16.97	115.44	0.55
3+830.0	3830.0	217.90	12.30	351.60	16.95	119.64	0.53
30+284.5	30284.5	12.04	12.15	12.04	12.15	0.00	00'0
30+584.5	30584.5	12.04	12.13	12.04	12.13	0.00	0.00
4+280.0	4280.0	208.99	12.28	367.96	16.93	146.11	0.48
4+880.0	4880.0	46.29	12.15	241.25	16.92	148.95	0.45
5+330.0	0.055	26.01	12.13	229.30	16.90	152.07	0.43
5+630.0	0.0638	26.01	12.12	231.02	16.88	152.87	0.42
6+080.0	6080.0	19.04	12.12	19.04	12.12	0.00	00:0
CP01	0.0	431.47	12.43	515.83	17.07	112.21	02'0
CP02	1986.9	364.57	12.38	463.78	17.00	113.76	0.62
CP03	3146.6	292.87	12.35	407.41	16.98	114.75	0.58
CP04	4091.4	217.91	12.28	356.98	16.95	124.23	0.50
CP05	4528.5	208.99	12.27	369.05	16.93	147.88	0.47
CP06	5119.9	46.29	12.15	242.82	16.90	150.92	0.45
CP07	5903.3	26.01	12.10	232.31	16.88	156.07	0.42
CP08	6365.0	19.04	12.10	19.04	12.10	00:00	00'0
CP09	10250.0	2.93	18.37	220.32	16.87	159.53	0.40
CP10	20207.6	143.95	12.33	143.95	12.33	0000	0.00
CP11	20431.6	98.39	12.32	98.39	12.32	0.00	0.00
CP12	21950.0		12.27	46.74	12.27		00:0
0013	3 188UE	12 D4	12.10	12.04	12.10	00:00	00'0

Note: (All storm results taken at a duration of 24 h.) HEC-HMS output was filtered to provide junction output only. In addition, a minimum value of 0.01 m² is was enforced.

Knight Piésold Pty. Ltd.

November 2011 P.º E80 I-00139 Dangues Technical NHydrologyldreach Analysis (PE01-00139 DR Dam Breach Hydrologyxlsm

Report No.752/42 Appendix 1

> PE801-00139 Page 1 of 2

Knight Piésold Darques Reef Gold TSF Breach Impact Analysis

Breach Impact Analysis (Inundation Model Results Summary)

AHEC-RAS hydraulics model was created to a ssess the inundation resulting from the various failure (F) and non-failure (NF) scenarios selected from the HEC-HMS hydrologic routing results of the full testing grid. (Selected scenarios represent the most representative possibilities under the various initial conditions and dam breach failure modes.)

	Inundation Ana	Inundation Analysis Scenario:	HODAL DIVIDOR					
	HEC-RAS			WS Elev.	Peak Flow		Peak Flow	WS Elev.
River ID	Reach ID	Station (1000 m)	О _{ид.х} (m³/s)	WSEq.#AX (m)	Q _{Mex} (m²/s)	WSEQMAX (m)	Q _{u AX} (m²/s)	WSE _{Q-MAX} (m)
WFSF	MAIN	10.2500	2.93		220.32			681.94
WFSF	MAIN	10.2000	2.93	680.14	220.32	682.08	159.53	679.93
WFSF	MAIN	10.1500	2.93	12.873	220.32	88'089	159.53	677.87
WFSF	MAIN	10.1000	2.93	676.15	220.32	678.48	159.53	675.72
ANE SE	MAIN	10.0500	2.93	10.479	220.32	26'529	159.53	673.69
WFSF	MAIN	10.0000	2.93	672.10	220.32	674.50	159.53	671.68
MCVVT	MAIN	30.8845	12.04	680.44	12.01	680.44	10.0	00:089
MCWT	MAIN	30.7345	12.04	670.91	12.01	670.91	10.0	670.65
MCWT	MAIN	30.5845	12.04	09:299	12.04		0.01	665.00
MCWT	MAIN	30.4345	12.04	653.99	12.04	653.99	10.0	653.27
MCVVT	MAIN	30.2845	12.04	647.34	12.04	647.34	10:0	646.59
MCVVT	MAIN	30.0946	12.04	638.13	12.04	638.13	10.0	9635.96
MCVVT	MAIN	30.000	12.04	638.04	12.04	638.04	10:0	633.99
MCW	UPPER	21.9500	46.74	668.40	46.74	668.40	10:0	667.74
MOM	UPPER	21.8000	46.74	88'599	46.74	88:599	10.0	664.73
MCW	UPPER	21.6500	46.74	665.53	46.74	665.53	10.01	664.28
MCVV	UPPER	21.5000	46.74	664.77	46.74	664.77	0.01	664.00
MCW	UPPER	21.3500	46.74	660.64	46.74	660.64	10.0	660.01
MCVV	UPPER	21.2000	46.74	656.23	46.74	656.23	0.01	655.00
MCW	UPPER	21.0500	46.73	654.43	46.73	654.43	0.01	653.38
MCW	UPPER	20.9000	46.73	646.51	46.73	646.51	10.0	645.44
MCW	UPPER	20.7500	46.73	642.61	46.73	642.61	10.0	642.00
MCVV	UPPER	20.6120	46.73	638.27	46.73	638.27	0.01	635.96
MOM	UPPER	20.5070	46.73	637.10	46.73	637.10	10.0	633.99
MCVV	LOWER	20.3920	98.39	635.62	98.39	635.62	0.01	633.92
MCVV	LOWER	20.3000	98.39	634.76	98.39	634.76	0.01	633.75
MCVV	LOWER	20.1500	98.39	633.00	98.39	633.00	0.01	631.91
MCM	LOWER	20.0000	98.39	631.49	98.39	631.49	10.0	629.95
MC	UPPER	6.3650	19.04	680.71	19.04	680.71	0.01	679.99
MC	UPPER	6.2300	19.04	678.55	19.04	678.55	0.01	677.91
MC	UPPER	6.0800	19.04	96.979	19.04	676.36	10:0	675.22
OM	UPPER	6.0100	19.04	672.93	19.04	672.93	10.0	671.87
MC	MID	5.8300	26.01	664.93	232.31	19:999	156.07	663.97
MC	MID	5.7800	26.01	664.09	232.31	665.05	156.07	663.59
MC	MID	5.6300	26.01	06.038	231.02	661.18	152.87	659.72
MC	MID	5.4800	26.01	656.34	231.02	658.43	152.87	655.61
MC	MID	5,3300	26.01	651.49		652.77	152.07	650.00
MC	MID	5.1800	26.01	648.02	229.30	649.20	152.07	647.22

November 2011 P.9E80 1-00139 Dargues VI echnical/Hydrology, Breach Analysis (PE801-00139 DR Dam Breach Hydraulics xism

Knight Plésold Pty, Ltd.

Report No.752/42

Appendix 1

PE801-00139 Page 2 of 2

CONSULTING TSF Breach Impact Analysis	peoudde	Sheliko.	of 1
Breach Impact Analysis (Inundation Model Results Summary)]
AHEC-RAS hydraulics model was created to assess the inundation resulting from the various failure (F) and non-failure (NF) scenarios selected from the HEC-HMS hydrologic routing results of the full testing grid. (Selected scenarios represent the most representative possibilities under the various initial conditions and dam breach failure modes.)	re (F) and non-failure (NF) scena e various initial conditions and da	arios selected from the HE am breach failure modes.)	C-HMS hydrologic routing results

	Inundation Analysis Scenario:	/SIS SCENARO:	NI PMPUF	PUF	FUT PIMPUL OF	UF_UI	F 0.2 SI	30 01
	HE C-RAS		PeakFlow	WS Eleu.	Peak Flow	WS Elev.	Peak Flow	WS Elev.
RiverID	Reach ID	Station (1000 m)	Q _{MAX} (m³/s)	WSE _{QMAX} (m)	О _{мех} (m³/s)	WSE _{Q-##} ex (m)	О _{м эх} (m³/s)	WSE _{Q-MAX} (m)
MC	MID	5.0300	46.29	642.98	242.82	644.19	150.92	641.92
MC	MID	4.8800	46.29	636.51	241.25	637.34	148.95	635.90
MC	MID	4.7300	46.29	630.72	241.25	631.66	148.95	629.98
MC	LOWER	4.5200	208.99	628.94	369.05	630.21	147.88	627.52
MC	LOWER	4.4300	208.99	628.66	369.05	630.14	147.88	625.90
MC	LOWER	4.2800	208.99	628.64	367.96	630.12	146.11	623.99
MC	LOWER	4.1300	208.99	628.04	367.96	629.34	146.11	623.91
MC	LOWER	3.9800	217.91	627.36	356.98	628.55	124.23	623.27
MC	LOWER	3.8300	217.90	626.56	351.60	627.56	119.64	622.64
MC	LOWER	3.6800	217.90	626.46	351.60	627.70	119.64	622:00
MC	LOWER	3.5300	217.89	625.17	346.82	626.03	115.44	621.50
МС	LOWER	3.3800	217.89	622.77	346.82	623.13	115.44	621.00
MC	LOWER	3.2300	217.88	619.65	345.59	620.11	115.06	617.66
MC	LOWER	3.0800	292.87	615.31	407.41	615.78	114.75	613.00
MC	LOWER	2.9300	292.87	599.56	406.52	599.78	114.67	598.04
MC	LOWER	2.7800	292.87	574.04	406.52	574.43	114.67	571.29
MC	LOWER	2.6300	292.87	525.76	406.51	525.93	114.25	524.91
MC	LOWER	2.4800	292.87	493.78	406.51	493.97	114.25	492.02
MC	LOWER	2.3300	292.86	479.17	406.12	479.39	114.15	477.43
MC	LOWER	2.1800	292.86	449.68	406.12	449.85	114.15	448.77
MC	LOWER	2.0300	292.86	424.80	406.12	425.10	114.15	423.00
MC	LOWER	1.8800	364.57	418.79	463.78	418.70	113.76	416.37
MC	LOWER	1.7300	364.57	398.17	463.74	398.31	113.54	397.15
MC	LOWER	1.5800	364.57	386.40	463.74	386.53	113.54	385.38
MC	LOWER	1.4300	364.57	374.54	462.96	374.81	113.42	372.44
MC	LOWER	1.2800	364.57	367.00	462.96	367.11	113.42	366.00
MC	LOWER	1.1300	364.56	352.76	462.64	353.00	113.07	350.44
MC	LOWER	0.9800	364.56	348.48	462.64	348.68	113.07	346.41
MC	LOWER	0.8300	364.56	332.74	462.20	332.90	112.77	331.45
MC	LOWER	0.6800	364.56	318.37	462.20	318.63	112.77	316.19
MC	LOWER	0.5300	364.56	311.56	461.62	311.77	112.74	309.00
MC	LOWER	0.3800	364.56	303.62	461.62	303.79	112.74	301.92
MC	LOWER	0.2300	364.56	291.79	461.12	291.95	112.49	290.07
MC	LOWER	0.0800	364.56	288.03	461.12	288.16	112.49	286.72
MC	LOWER	000000	431.47	286.03	515.83	286.16	112.21	284.51

Comparison of the results show that the difference between inundation results caused by overtopping and piping (all other assumptions being equal) are minimal. Accordingly, the most conservative values (those for overtopping) were selected for final results analysis for the PMP Design Flood and Sunny Day initiating events (along with the non-failure scenario).

Knight Piésold Pty. Ltd.

November 2011 P.PEB0 1-00139 Dargues Technical NHydrology-Breach Analysis PEB01-00139 DR Dam Breach Hydraulics. xIsm