Appendix 7

Tailings Storage Facility Final Design Update

(Total No. of pages including blank pages = 164)

(Note: A colour version of this Appendix is available on the Project CD)

This page has intentionally been left blank

UNITY MINING LIMITED DARGUES GOLD PROJECT

TAILINGS STORAGE FACILITY FINAL DESIGN UPDATE

PREPARED FOR:

Unity Mining Limited Level 10, 350 Collins Street Melbourne, Victoria AUSTRALIA

PREPARED BY:

Knight Piésold Pty Limited Level 1, 184 Adelaide Terrace East Perth, WA 6004, AUSTRALIA p. +61 9223 6300 • f. +61 9223 6399

PE801-00139/10 Rev 0 July, 2015

DOCUMENT CONTROL PAGE

UNITY MINING LIMITED

DARGUES GOLD PROJECT

TAILINGS STORAGE FACILITY FINAL DESIGN UPDATE

KP Job No. PE801-00139/11

KP Report No. PE801-00139/10

		CON	TRACT		
		PROJECT	CONTRACT #	ŧ	
		DOCUMENT	INFORMATIC	DN	
REV	DESCRIPTION	PREPARED	REVIEW	KNIGHT PIESOLD APPROVAL	DATE
A	Issued as Draft	SIS	. <u> </u>		0306/15
0	Issued as Final	SIS	SIS	DITM	01/07/15
		DOCUMENT	DISTRIBUTIO	N	
REV	DESTINATION	2 C C C MAIN		RDCOPY	ELECTRONIC COPY
A	UNITY MINING LIMITED, L COLLINS STREET, MELBO	EVEL 10, 350 DURNE			1
0	UNITY MINING LIMITED, LEVEL 10, 350 COLLINS STREET, MELBOURNE			•	1

CONTENTS

PAGE

1.	INTRODUCTION	1
	1.1 GENERAL	1
	1.2 PROJECT DESCRIPTION AND LOCATION	2
	1.3 LOCAL GEOLOGY	3
	1.4 DESIGN PARAMETERS	4
	1.5 SITE SELECTION AND CONSTRAINTS	4
2.	DESIGN CRITERIA	5
	2.1 HAZARD RATING	5
	2.1.1 General	5
	2.1.2 Dam Break Assessment2.1.3 Population at Risk (PAR) Assessment	5
	2.1.4 Selection of Severity of Damage and Loss	8 7
	2.1.5 Consequence Category	8
	2.1.6 Design Category and Design Criteria	9
	2.2 SEISMIC DESIGN PARAMETERS	10
	2.3 DESIGN STANDARDS	11
3.	TAILINGS CHARACTERISTICS	13
4.	WATER MANAGEMENT	14
	4.1 GENERAL	14
	4.2 WATER BALANCE MODELLING PARAMETERS	14
	4.2.1 General	14
	4.2.2 Climatic Conditions 4.2.3 Run-off Coefficients	14 16
	4.2.3 Run-on Coencients 4.2.4 Tailings Beach Slope	16
	4.2.5 Additional Modelling Parameters	17
	4.3 TSF WATER BALANCE	17
	4.3.1 Model	17
	4.3.2 Modelling Runs	17
	4.3.3 Results of Modelling Runs	17
	4.3.3.1 Average Climatic Conditions 4.3.3.2 1 in 100 AEP Wet Sequence	17 20
	4.3.3.3 Storm Events	20
	4.3.3.4 1 in 100 AEP Dry Sequence	21
	4.4 DILUTION MODELLING	24
	4.5 SURFACE WATER MANAGEMENT	28
5.	TAILINGS FACILITY DESIGN	29
	5.1 GENERAL DESCRIPTION	29

CONTENTS

PAGE

5.2	EMBAN	NKMENT CONSTRUCTION	29
5.3	SEEPA	GE CONTROL	32
	5.3.1	Cut-Off Trench	32
	5.3.2	Low Permeability Liner	32
	5.3.3	Geosynthetic Liner	33
	5.3.4	Basin Underdrainage Collection System	33
	5.3.5	Underdrainage Collection Sump	34
	5.3.6	Leak Collection System	34
	5.3.7	Embankment Upstream Toe Drain	35
5.4	ADDITI	ONAL SEEPAGE CONTROL MEASURES	35
5.5	DECAN	IT AND RETURN WATER SYSTEM	35
5.6	EMERC	GENCY SPILLWAY	36
5.7	TAILING	GS AND DECANT RETURN TRENCH	36
5.8	SEEPA	GE ASSESSMENT	37
	5.8.1	General	37
	5.8.2	Geometry	37
	5.8.3	Material Types and Properties	38
	5.8.4	Scenarios Modelled	38
	5.8.5	Boundary Conditions	38
	5.8.6	Results of Seepage Assessment	39
	5.8.7	Conclusions	40
5.9	STABIL	LITY ASSESSMENT	40
	5.9.1	Embankment Stability	40
	5.9.2	Material Properties	41
	5.9.3	Embankment Stability	42
	5.9.4	Deformation Analysis	43
	5.9.5	Liquefaction Assessment	45
5.10	TAILING	GS STORAGE FACILITY MANAGEMENT	46
	5.10.1	Tailings Deposition System	46
	5.10.2	Deposition Technique	46
CON	ISTRUC	CTION QUANTITIES	48
REF	ERENC	ES	50

KP_svr\...\PE801-139_10 Dargues Gold Project TSF Final Design Update Rev 0.docx

6.

7.

CONTENTS

PAGE

FIGURES

DRAWINGS

APPENDIX A Copy of Appendix B of ANCOLD "Guidelines on the Consequence Categories for Dams"

APPENDIX B Copy of KP memorandum PE801-139 EMEM-KP005

APPENDIX C Copy of KP memorandum PE14-00923

1

1. INTRODUCTION

1.1 GENERAL

Knight Piésold is an international firm of consulting engineers with Australian managed offices in Perth, Brisbane, Sydney, Singapore and Vietnam, which provide specialised services to the mining industry in the fields of environmental, geotechnical, geological, hydrogeological, waste management, and water resources engineering. The Knight Piésold Group is an international organisation with over 90 years of experience in the fields of mining, power, water, transport and environmental engineering. In addition to the Australian offices, the Knight Piésold Group has offices in the USA, Canada, Africa, South America and the UK.

Knight Piésold has been involved in the design of tailings management facilities for many hundreds of mining projects throughout the world. The Company has extensive experience with all types of tailings management systems, and has pioneered the development of alternative tailings management technologies such as drained subaerial systems, thickened/ultra-thickened/paste tailings disposal, and dewatered 'dry stack' tailings systems. Knight Piésold has also been responsible for the development of innovative concepts in the field of mine waste management and environmental protection, specifically with respect to geotechnical engineering, tailings disposal systems and heap leach facilities, construction, and in situ testing of soil and synthetic liners, hydrogeological and site water management systems, storage of acidgenerating materials and environmental protection.

Knight Piésold has extensive recent and current experience conducting site investigations, tailings management and heap leach projects in Australia, including the following projects:

- Northparkes, NSW (Rio Tinto) Feasibility design, detailed design, construction supervision and auditing for all three tailings storage facilities at the project comprising two conventional paddock facilities and an integrated pit backfill / above ground storage facility. Knight Piésold's involvement with the project extends over a period of 25 years.
- Cadia Project, NSW (Newcrest Mining) Design and construction supervision of the main tailings facility to store 17 Mtpa of copper tailings, including tailings testing, basin preparation and embankment designs.
- Hillgrove Gold / Antinomy Project, NSW (Hillgrove Mines) Feasibility study, final design, construction supervision and dam safety inspections for two tailings storage facilities at the site. Recent work includes detailed design and

2

construction of a Stage 2 raise for TSF2 and conceptual designs for a third tailings storage facility.

- Ulan Coal Project (Ulan Coal), NSW Knight Piésold was commissioned to design a 450 ML storage facility for saline water resulting from underground dewatering at this project. The shallow surface aquifers at the water storage site were of high value and were an emotive issue for the local community. Knight Piésold therefore adopted Nevada State standards which require the facility to be designed to achieve nominal zero discharge, whereby no undesirable constituents are detected above background levels.
- Kempfield Silver Project, NSW (Argent Minerals) Bankable feasibility study for tailings and waste rock management, surface water management and sediment control.
- Rocklands Copper Project, QLD (Cudeco). Completed in mid-2011 with mining lease granted in late 2011, Knight Piésold was involved in the design and environmental impact assessment for the Rocklands Copper Project. Knight Piésold conducted the feasibility and detailed design of the tailings storage facility, waste rock dumps (including detailed geochemical characterisation and PAF waste management), plant site geotechnics, surface water management (including creek diversion) and access and haul roads.
- Tropicana Gold Project, WA (Anglogold Ashanti / Independence Gold) -Feasibility study, final design and construction supervision for tailings storage (integrated waste landform), access road, airstrip and plant site investigation.
- Boddington Gold Mine, WA (Newmont Mining) Feasibility study, final design and construction supervision for residue disposal area. On-going technical support, Stage 8 construction in progress.
- Granny Smith Gold Mine, WA (Barrick Mining) Feasibility study for Cell 3. Ongoing technical support to the operation over the past twelve years.

Knight Piésold carried out the final design of the flotation tailings storage facility (TSF) for the Dargues Gold Project in 2011. This is presented in KP report PE801-00139/5 (Ref. 1). Subsequently, Unity Mining Limited (Unity) has taken ownership of the project and the project design criteria have been amended. This report presents a Final Design Update reflecting the change in design criteria.

1.2 PROJECT DESCRIPTION AND LOCATION

The Dargues Gold Project is a gold prospect located in New South Wales approximately 12 km south-south-west of the town of Braidwood and approximately

3

60 km east-south-east of Canberra, as shown on Drg. No. 801-139-A201-002. The operation has approval to mine up to 355,000 tonnes per annum using underground open stope mining methods via a decline. A paste fill process will be used in the stoped out areas and waste rock will also be used as stope backfill allowing maximum orebody extraction and limiting haulage of waste to surface.

The processing plant will utilise a gravity circuit to extract coarse gold, a flotation circuit to produce a gold concentrate and a conventional carbon-in-leach process to produce gold doré.

The proposed infrastructure for the mine comprises the following:

- A plant site located approximately 500 m to the west-north-west of the TSF and orientated north-south.
- The mine entrance portal will be situated approximately 400 m to the westsouth-west of the TSF and will be orientated south to north. The portal is located at approximately 20 m below surrounding ground level.
- A decline falls in an east-west direction at a gradient of 1 in 7 from the portal to the orebody. The mine workings extend in a near vertical direction from between approximately 70 m below ground surface at the highest point to 500 m below ground surface at the lowest point.
- The tailings storage facility (TSF) will be located relative to the plant site and boxcut and is situated on an unnamed ephemeral creek and surrounding agricultural land.
- A paste hole, vent riser and escapeway are located approximately 150 m, 200 m and 200 m respectively south of the TSF embankment. The highest point of the underground mine workings are offset both horizontally and vertically approximately 200 m to the south of the downstream toe of the TSF.

1.3 LOCAL GEOLOGY

The Dargues mine occurs in the western part of a large granitic pluton, the Braidwood Granodiorite, that trends approximately north-south and extends from north of Braidwood to well south of Majors Creek. Major mineralisation occurs on the northern side of a diorite dyke which crops out in Spring Creek a short way downstream of the confluence of the unnamed creek beneath the TSF footprint with Spring Creek. It is possible that the dyke and the mine workings will intercept any seepage that originates from the TSF. However, a review of the available structural geology by Unity indicates that there is limited potential for a direct structural connection between the TSF and the underground workings.

4

Knight Piésold

The proposed TSF site is typically underlain by residual soils derived from weathering of the underlying granite to a depth of 2 m to 3 m. The residual soils are clayey in the upper metre, but are essentially non-plastic below this layer.

1.4 DESIGN PARAMETERS

The process design parameters provided by Unity for design of the TSF are summarised in Table 1.1, and are discussed in detail in Section 2.

Design tonnage ¹	1.22 Mt
Life of mine ¹	65 months
Tailings throughput ¹	145,000 to 324,000 tonnes per annum
Tailings beach slope	1V:80H
Average concentrate tailings ratio ¹	10%
Tailings % solids ¹	64%

Table 1.1: Design parameters

provided by Unity

1.5 SITE SELECTION AND CONSTRAINTS

Site selection for the TSF was carried out prior to the bankable feasibility study, taking account of land ownership, the proximity of borrow for construction materials and the exploration potential within the existing leases. Options on land not owned by Unity's predecessor, Cortona Resources, were not assessed because the land was not available for sale or use by the Company. Two potential TSF sites were assessed:

- Option 1 Nominal square / rectangular paddock facility to the south of the plant area.
- Option 2 Valley storage to the east of the plant site.

Both of the options selected were considered to be viable tailings storage areas. Option 2 was considered to be a more efficient facility in terms of embankment fill per unit of storage capacity and was selected as the preferred location for the tailings storage facility. The final design and final design update were carried out on the Option 2 location as the preferred location of the tailings storage facility.

5

2. DESIGN CRITERIA

2.1 HAZARD RATING

2.1.1 General

The consequence assessment and consequence category for the Dargues Gold Project tailings storage facility (TSF) have been assessed in accordance with the following guidelines:

- Dams Safety Committee of New South Wales "DSC3A Consequence Categories for Dams" (Ref. 2)
- Dams Safety Committee of New South Wales "DSC3F Tailings Dams" (DSC3F) (Ref. 3)
- ANCOLD "Guidelines on the Consequence Categories for Dams (Ref. 4).

The guideline DSC3A notes that the DSC has adopted the ANCOLD guidelines, with qualifications noted in DSC3A, to assist dam owners in providing information for the DSC to make an initial determination on the consequence category for a dam.

The consequence category of the flotation TSF was previously prescribed by the DSC as "significant". The following sections provide details of the re-assessment of the consequence category to take account of the amended design parameters.

2.1.2 Dam Break Assessment

A comprehensive dam breach assessment was performed as part of the flotation TSF final design in order to assess the effects of a dam failure downstream of the facility. The assessment is detailed in KP report "*Dargues Reef Gold Project, Tailings Storage Facility, Dam Breach Assessment*", PE801-000139/8 (Ref. 5) and is summarised herein.

There are two types of consequence categories, which indicate the conditions that exist in the vicinity of the facility immediately prior to onset of a dam breach:

- Sunny Day Consequence Category (SDCC), which refers to failures that occur without any attendant natural flooding;
- Flood Consequence Category (FCC), which refers to failures that occur in association with a natural flood.

Three major failure scenarios were assessed through the implementation of dam breach modelling:

• An overtopping water breach occurring during a sunny day (i.e. without coincident precipitation) - the initial decant pond level for this scenario

6

corresponds with the invert elevation of the main spillway, which defines the SDCC;

- An overtopping water breach initiated by a Probable Maximum Precipitation Design Flood (PMPDF) - the initial decant pond level for this scenario corresponds with average conditions during the last month of planned operations, which defines the FCC;
- An embankment failure which precipitates a tailings run-out, which is expected to occur *in addition to* either of the other two major failure scenarios.

Analysis of breach formation parameters led to the selection of the overtopping breach mechanism over the piping breach mechanism because it resulted in more extensive breach outflows.

Water inundation maps were prepared as a result of the first two major failure scenarios and a tailings run-out map was prepared for the third failure scenario. These maps were inspected and compared to determine the incremental consequences associated with each failure scenario. The results of this assessment indicate that any decant release and potential tailings run-out following a dam breach would not be expected to impact the downstream mine infrastructure (box cut entrance to underground workings, process plant site, offices, labs, workshops, paste hole, vent riser and escape way). Additionally, the town of Majors Creek is not expected to be impacted by a breach of the TSF.

The consequence assessment and TSF hazard rating are discussed in the following sections.

2.1.3 Population at Risk (PAR) Assessment

An assessment of the Population at Risk (PAR) and Potential Loss of Life (PLL) was undertaken as part of the calculation of the consequence category. The Total PAR is defined as the PAR within the total flood inundation zone. The total flood inundation zone includes that area affected by a natural flood event and any additional area flooded as a consequence of a dam break event. The adopted PAR range is then used in combination with the severity assessment to determine a consequence category. The incremental PLL is considered to measure "PLL with dam failure" minus the "PLL without dam failure" and can be influenced by factors including:

- Warning time for people exposed to life threatening flood waters;
- Severity of the flood event and types of failure scenarios used in the evaluation;
- Time of failure, including day, night, season;
- Inability to precisely determine the fatality rate.

7

The TSF is designed as a cross-valley storage facility which will be constructed as a downstream embankment at each stage using mine waste and local borrow. Whilst a dam breach could theoretically occur at any location around the facility perimeter, failure against natural ground due to surface run-off erosion is unlikely and has been eliminated in this assessment. The primary impact would arise if a breach occurred along the main embankment.

The dam breach assessment indicated that none of the infrastructure downstream of the embankment (box cut entrance to underground workings, process plant site, offices, labs, workshops, paste hole, vent riser and escape way) are likely to be inundated in an unlikely event of embankment failure. On this basis, the population at risk (PAR) category is defined as ≥ 1 to <10.

The PLL without dam failure is considered to be 0. During operations there will be regular routine inspections of the TSF by operating personnel, mine staff will be trained to recognise signs of potential failure mechanisms, and monitoring systems will be in place to provide early warning mechanisms. It is unlikely therefore that a dam failure could occur without any warning. The PLL with dam failure is assessed to be <1. Therefore the incremental PLL is <1.

2.1.4 Selection of Severity of Damage and Loss

A risk assessment was conducted to determine the severity level of damage and losses resulting from a large scale failure of the facility, in accordance with the classifications of severity of damage and loss provided in Appendix B of the ANCOLD guideline (Ref. 4) and the DSC additions to the ANCOLD guideline provided in Appendix A of DSC3A. The findings of this assessment are summarised in Table 2.1. A copy of Appendix B of the ANCOLD "Guidelines on the Consequence Categories for Dams" is presented in Appendix A.

Table 2.1	Selection of severit	y of damage and loss ((ANCOLD 2012)
	Oelection of Sevenit	y of damage and loss i	

DAMAGE TYPE	SEVERITY
Total Infrastructure Costs	
Damage to the TSF itself would be expected to be repairable and at an earthworks cost of less than \$5M. However, in addition to this there could be damage to the project infrastructure and clean-up costs associated with the dam break, as well as the opportunity cost of a temporary shutdown of the process plant. On this basis the overall costs would be expected to be in excess of \$10M but less than \$100M.	Medium

Appendix 7

8

Table 2.1 (Contra). Delection of sevently of damage and loss (ANOOLD 201	<i></i> /
Impact on Business A failure of the TSF would cause a major impact on the business as it is an essential part of the minerals processing infrastructure and directly impacts on the ability of the process plant to operate. There would likely be some to severe reaction from the regulatory authorities and local community with significant loss of business credibility. The financial implications would be significant. On this basis the impact on the owner's business is considered to be major.	Major
Health and Social Impacts In terms of human health and loss of services to the community, it is possible that 100 to 1000 people may potentially be affected as a result of an uncontrolled release of tailings. There could be some contamination of habitable areas and groundwater could be impacted. However, impacts associated with emergency management, dislocation of people and business, employment affected, loss of cultural heritage and loss of recreational facility are considered to be minor. On this basis the health and social impact of a dam break would be expected to be Medium. In recognition of community concerns a classification of Major has been adopted.	Major
Environmental Impact The area of impact would be contained within the creek lines downstream in a relatively narrow contained flow path. An impacted area less than 5 km ² is expected. As the composite tailings solids are classified as "Potentially Acid Forming", it is possible that it would require between 5 years and 20 years for the environment to return to original conditions after initial clean up. Discharge from a dam break could contaminate water supplies used by stock and fauna, and may have significant impact on ecosystems, albeit that remediation should allow for natural recovery over several wet seasons. There is potential for localised impacts in river connectivity. On this basis the environmental impact of a dam break would be expected to be Major.	

In accordance with the ANCOLD and DSC guidelines, the worst case severity level of damage and loss should be used to select a consequence category. Due to the potential impacts on the business, community, and the environment the severity level is assessed to be Major.

2.1.5 Consequence Category

The severity of damage and loss resulting from the dam failure together with the assessed population at risk and probable loss of life are used to determine the consequence category. Based on a severity level of Major (Table 2.1) and a PLL of <1 the resulting consequence category would be "High C" for the design of the TSF, in accordance with the recommendations of Table 1 (DSC3A) and Table 4 (ANCOLD). For a PAR of \geq 1 to <10 the resulting consequence category would be "High C" also, in accordance with the recommendations of Table 2 (DSC3A) and Table 3 (ANCOLD).

9

2.1.6 Design Category and Design Criteria

On the basis of the assessment provided in the sections above, the composite TSF is rated as a 'HIGH C' consequence category facility. The design criteria applicable to this category are drawn from the ANCOLD "Guidelines on Tailings Dams" (Ref. 6) and the DSC guideline "DSC3F - Tailings Dams" (Ref. 3). The design criteria are summarised in tables 2.2 and 2.3.

Table 2.2: ANCOLD design criteria summary

Guideline Requirement	Description of requirements	Guideline Reference
Extreme storm storage	1 in 100 year AEP 72 hour duration storm with no release, evaporation or decant*	ANCOLD 2012 Table 4
Contingency freeboard	Wave run-up associated with a 1:10 AEP wind velocity and an additional freeboard of 0.5 m	ANCOLD 2012 Table 5
Spillway capacity	1 in 100,000 year Annual Exceedance Probability (AEP) design flood with freeboard allowance to suit wave run-up for 1:10 AEP wind velocity	ANCOLD 2012 Table 6
Design earthquake loading	OBE 1 in 1,000 year MDE 1 in 10,000 year Post Closure MCE	ANCOLD 2012 Table 7
Stability minimum factor of safety	Long term drained1.5Short term undrained• Potential loss of containment1.5• No potential loss of containment1.3• Post seismic1.0 – 1.2	ANCOLD 2012 Table 8
Dam safety/ inspection frequency	Inspection by Dam Designer or equivalent qualified Engineer - Annual inspections. Routine inspections – daily to 3 times per week	ANCOLD 2012 Tables 9 and 10

* in light of community concern the Proponent has elected to increase the facility storm capacity by one order of magnitude to 1 in 1000 year AEP 72 hour duration

Table 2.3: DSC flood design criteria summary

Guideline	Design requirement
Beach Freeboard (AEP 72 hr storm) - min	1 in 100
Pond Recovery Time (days) – max	7
Operational Freeboard (mm) – min	500
Environmental Freeboard (AEP 72 hr storm) - indicative	1 in 100*
Total freeboard (AEP critical duration) - min	1 in 10,000

* in light of community concern the Proponent has elected to increase the facility storm capacity by one order of magnitude to 1 in 1000 year AEP 72 hour duration

10

The definitions of the flood design criteria specified in Table 2.3 are as follows:

- Beach freeboard the vertical distance between the top of the tailings abutting the upstream face of the dam, and the tailings pond level which will contain the rainfall volume of a 72-hour storm (AEP as defined in Table 2.3) after inflow of a 1 in 100 AEP, 72-hour rainfall event on top of normal operating pond level.
- Pond recovery time facilities should be available that will allow recovery of the pond level formed by inflow of a 1 in 100 AEP, 72-hour rainfall event, back to the Operational Pond Limit (maximum extent of the pond under normal operating conditions) within a specified period.
- Operational Freeboard the vertical distance between the top of the tailings and the adjacent embankment crest.
- Environmental Containment Freeboard this is the vertical distance between the Operational Pond Limit and the spillway crest level.
- Total Freeboard this is the vertical distance between the Operational Pond Limit and the crest of the dam, and represents the capacity of the dam to pass an extreme storm by combination of storage and spillway discharge, and prevent overtopping of the dam.

2.2 SEISMIC DESIGN PARAMETERS

An assessment of the seismicity of south-eastern Australia has been carried out and probabilistic seismic hazard analyses have been completed for the Dargues Gold Project site. Existing information and historical data, including earthquake catalogues and technical publications on the tectonics and seismicity of the region have been reviewed. The most prominent seismic source in the region that defines the seismic hazard for the project is the Lachlan Fold Belt, an areal source zone thought to be capable of causing earthquakes up to Magnitude 6.1. The Dalton-Gunning zone, located approximately 30 km to the north of the site, is another areal source zone that contributes significantly to the seismic hazard at the Dargues site. This seismic source zone is also thought to be capable of causing earthquakes of up to M6.1.

The computer program EZ-FRISK was used to develop a seismic hazard model for the Dargues project site. Seismic sources defined in the hazard model include shallow crustal earthquake sources such as the Lachlan Fold Belt and Dalton-Gunning zone, but also those located within the wider Sydney Basin area and Tasman Sea Margin. Appropriate attenuation models defining the relationship between earthquake magnitude, source to site distance and peak ground acceleration have been used in the probabilistic analysis.

11

Seismic design parameters have been determined for use in the design of the TSF. Seismic ground motion parameters (including peak ground acceleration, earthquake magnitude and response spectra) have been determined using the results of the probabilistic seismic hazard analysis.

Based on the assessed consequence category it is recommended that the 1 in 1,000 year earthquake equivalent peak ground acceleration of 0.11 g is adopted as the Operating Basis Earthquake (OBE) for the TSF. For a design operating life of 65 months the probability of exceedance for the OBE event is 0.5%. The TSF and appurtenances are expected to remain functional and any damage from the occurrence of earthquake shaking not exceeding the OBE would be readily repairable.

The recommended Maximum Design Earthquake (MDE) for the TSF is 0.34g, which is equivalent to an annual exceedance probability (AEP) of 1 in 10,000. Considerable damage to the tailings dam is acceptable under seismic loading from the MDE, provided that there is no uncontrolled loss of storage due to partial or complete failure of the dam.

2.3 DESIGN STANDARDS

The design criteria and standards presented in Table 2.4 have been adopted for design of the TSF.

HYDRAULIC DESIGN	
Diversion channel capacity	 Stage 1 - 1:10 AEP. Final – 1 in 100 AEP
TSF storm storage capacity	The more onerous of the following scenarios apply:
	 1:100 AEP, 72 hour storm event in addition to the maximum pond operating volume for average climatic conditions without the pond abutting the embankment wall.
	 1:1000 AEP, 72 hour storm event in addition to the maximum pond operating volume for average climatic conditions without the emergency spillway operating.
	 1:10,000 AEP, critical duration storm event in addition to the maximum pond operating volume for average climatic conditions without exceeding the capacity of the emergency spillway.
TSF spillway	• Operation – 1:100,000 AEP
	 Closure - TSF basin will be graded to be free-draining and the emergency spillway will be designed for a PMF storm event.

Table 2.4: Design criteria

12

EMBANKMENT STABILITY/EARTHQUAK	E CRITERIA
Earthquake Loading	
- Operating Basis Earthquake (OBE)	• 0.11g (1000 yr event)
- Maximum Design Earthquake (MDE)	• Maximum Credible Earthquake (MCE) – 0.34 g
Stability Factors of Safety	
- Static	• 1.5 (minimum) (ANCOLD Guidelines (2012))
- Seismic (OBE)	• 1.1 (minimum) (ANCOLD Guidelines (2012))
- Seismic (MDE)	Damage and deformation allowed (<freeboard allowance)<br="">No release of tailings or water</freeboard>
OPERATIONS	
Capacity - Final	• 1.22 Mt of dry tails over 65 months.
- Starter	 234,000 t of dry tails – 1 year initial capacity.
Design factor for pipes and pumps	• 20%
Slurry Characteristics	64% solids by weight.
	• Slurry settled density = 1.35 to 1.50 t/m ³ .
	 Supernatant release – 17% of water in slurry.
	• Underdrainage release – 5 to 10% of water in slurry.
	Potentially Acid Forming.
Fluid Management	Partial basin drainage system which gravity drains to a sump and is then pumped back to the supernatant pond.
	 Decant tower removal of supernatant solution via a pumping system and pressure pipeline back to the plant.
PRIMARY EMBANKMENT	
General	Deposition from main embankment crest.
	Minimum tailings freeboard of 0.5 m.
	 The supernatant pond will form at the head of the valley. Decant structures will be constructed at Stage 1 and final stage to permit removal of water from the pond.
Construction	Upstream toe cut-off key trench and drain.
	 Zoned starter embankment constructed from mine waste and local borrow, comprising an upstream low permeability zone (with HDPE lining on the upstream face) and downstream structural zone.
	6 m crest width.
Materials	Remove unsuitable foundation soils from embankment footprint. Structural fill won from mine waste and local borrow.
	 Low permeability material won from selected local borrow areas within and near to the basin.
TAILINGS BASIN	
Basin Lining	• In situ soils, scarified, moisture conditioned and compacted to form a soil liner.
	Composite liner (compacted in situ soil plus 1.5 mm smooth HDPE liner).
Basin Underdrainage	 Partial basin underdrainage system comprising main collector drains along the basin spine and branch/finger drains across the basin area.

13

3. TAILINGS CHARACTERISTICS

Physical and geochemical testing of the flotation tailings was carried out as part of the original final design. The findings of this testing are presented in Section 4 of the final design report, reference PE801-00139/5 Rev. 0 (Ref. 1). Subsequently, physical and geochemical testing of a sample of the concentrate tailings was carried out and reported under separate technical memoranda, reference PE801-139-EMEM-KP005 and PE14-00923. Copies of these memoranda are presented as Appendices B and C.

A composite tailings sample was not available for physical and geochemical testing at the time of the final design update. Tailings characteristics for the composite tailings were therefore generated based on the findings of the previous testing programmes for the flotation and concentrate tailings, as follows:

- Water (supernatant) release will be in the order of 17% of the water in slurry, not accounting for rainfall and evaporation.
- Underdrainage release should typically average around 5 to 10% depending on the arrangement of underdrainage collection and basin treatment.
- Assuming that the TSF is operated efficiently, a settled density of between 1.35 t/m³ and 1.50 t/m³ is expected.
- The composite tailings solids are assumed to be "Potentially Acid Forming" based on the concentrate tailings geochemical characteristics (Potentially Acid Forming High Capacity). It should be noted that the flotation tailings were classified as "Non Acid Forming".

It is considered that the TSF will require a composite basin liner and drainage system due to the acid generating potential of the tailings and the potentially low pH of the supernatant.

14

4. WATER MANAGEMENT

4.1 GENERAL

Management of water for the project site is critical in terms of the TSF design and decant return water pumping requirements. A site water management model was developed in order to understand and control the flow of water around the site and to determine design embankment crest levels to cater for extreme storm events.

Water management of the TSF consists of three major components:

- Tailings storage facility.
- External stormwater run-off.
- Plant site.

The model uses the design tailings throughput together with estimated settled tailings densities to determine the tailings level at various stages in the facility life. The model then examines a range of extreme rainfall events to determine supernatant pond volumes and the required embankment stage crest levels. A range of extreme dry rainfall events was also analysed to determine the water shortfall that could potentially occur.

The model was run on a monthly time-step for the duration of the operating life. Modelled flows do not represent the design duties for pumps and pipelines or peak flows for rainfall as they are averaged over the month and do not take into account efficiency and availability of the infrastructure.

4.2 WATER BALANCE MODELLING PARAMETERS

4.2.1 General

The water management model requires a number of input parameters. The following sub-sections outline the selection of parameters used for the water management modelling.

4.2.2 Climatic Conditions

Climatic data for the site were obtained from the Australian Bureau of Meteorology (BOM) "*Climatic Atlas of Australia*" (Ref. 7). The rainfall data used are from the Braidwood weather station (Wallace Street – 069010) which is located approximately 12 km north-north-east of the site. Climate data are available from 1920 to 2009 with some minor gaps. The data were analysed and design monthly rainfall parameters were generated as summarised in Table 4.1.

15

Month	Average Rainfall (mm)	1 in 100 AEP ^{∖1} Wet Year (mm)	1 in 100 AEP Dry Year (mm)
January	65	91	9
February	43	69	78
March	64	261	69
April	38	300	23
May	48	164	17
June	52	42	14
July	63	104	6
August	80	49	19
September	54	71	24
October	70	19	8
November	74	260	10
December	73	140	48
Total	724	1570	326

Table 4.1: Summary of rainfall data

\1 AEP = Annual Exceedance Probability

The evaporation data utilised are presented in Table 4.2.

Table 4.2: Evaporation data

Month	Average Evaporation (mm)
January	230
February	180
March	150
April	100
Мау	80
June	65
July	80
August	90
September	110
October	130
November	165
December	235
Total	1615

Precipitation intensity-duration-frequency (IDF) data were derived for the Dargues Reef site using procedures given in *"Australian Rainfall and Runoff, Volume 1 – A Guide to Flood Estimation"* (ARR) (Ref. 8) for Frequent to Large storms. IDF data for Rare to Extreme storms were derived using storm interpolation procedures given in ARR between the 1:100 AEP storm and the Probable Maximum Precipitation (PMP) storm

16

Knight Piésold

event. PMP was estimated using procedures given in "*The Estimation of Probable Maximum Precipitation in Australia; Generalised Short-Duration Method (GSDM)*" (Ref. 9) and "*Generalised Southeast Australia Method (GSAM) for Estimating Probable Maximum Precipitation*" (Ref. 10). A summary of resulting IDF data is presented in Table 4.3, and IDF curves are shown in figures 4.1 and 4.2.

Storm	Storm Freq	uency		Point Ra	infall Intens	sity (mm/h))
Category	Return	AEP		for giv	/en Storm [Duration	
	Period (yrs)	%	6 min	1 h	12 h	24 h	72 h
	5	20	116	38	9.3	6.1	3.0
Frequent	10	10	133	43	11	7.1	3.5
	20	5	155	51	13	8.4	4.2
Lorgo	50	2	185	60	15	10	5.2
Large	100	1	209	68	17	12	6.1
	200	0.5		78	20	14	7.0
Rare	500	0.2		94	24	16	8.6
	1,000	0.1		107	28	19	10
	2,000	0.05		121	31	21	11
	10,000	0.01		156	41	27	13
Extreme	50,000	2E-03		199	52	34	16
	200,000	5E-04		241	64	40	18
PMP	10,000,000	1E-05		360	96	58	24

Table 4.3: Storm intensity-duration-frequency data

4.2.3 Run-off Coefficients

The area around the facility is cleared ground currently used for agricultural purposes. The adopted run-off coefficients used in the modelling for various ground surface conditions were calculated using the rational method in accordance with the guidelines given in ARR. The run-off coefficients used for water balance modelling are presented in Table 4.4.

Table 4.4: Adopted run-off coefficients

Condition	Run-off Coefficient
Undisturbed Bush	0.09
Cleared Agricultural Land	0.2
Topsoil Stripped Areas within Basin	0.5
Drying Tailings Beach	0.8
Active Tailings Beach (Supernatant Producing Areas)	1.0
Ponds	1.0

17

4.2.4 Tailings Beach Slope

The viscous nature of the tailings and high slurry density means that the tailings flow will generally be laminar with minimal segregation of material. The adopted beach slope used for design is $1.25\% \pm 0.4\%$, based on observed tailings beach slopes at other sites and calculations from the viscosity data.

4.2.5 Additional Modelling Parameters

The tailings slurry design parameters are provided in Section 1.3. The modelling parameters such as tailings properties and facility design characteristics are discussed elsewhere.

4.3 TSF WATER BALANCE

4.3.1 Model

The TSF water balance has been modelled using specially developed computer software. The program is a computer model written in Visual Basic/Excel specifically for tailings storage facilities and incorporates a database of information derived from both laboratory and field data accumulated over the past 20 years by KP Australia. The program calculates tailings densities achieved in the storage, and determines the volume of water available for return to the process plant taking into account rainfall, evaporation, and supernatant and underdrainage release from the tailings due to consolidation.

4.3.2 Modelling Runs

The model was run under average climatic conditions. In addition, the effects of 1 in 100 Annual Exceedance Probability (AEP) wet and dry years were assessed. The effects of storm events on the facility were also examined.

4.3.3 Results of Modelling Runs

Four different conditions were modelled as follows:

4.3.3.1 Average Climatic Conditions

The model was run with a repeating sequence of average conditions. The estimated water balance for average conditions is summarised on a monthly basis in Table 4.5. The plots of tailings density and rate of rise are presented in Figure 4.3. Pond volume and percent recycle are plotted on Figure 4.4.

Based on the modelling the following conclusions can be made:

The tailings storage facility operates with a water deficit under average conditions. The pond remains at or close to minimum pond size (specified in the modelling as 5,000 m³), except in Year 6 of operation, when the pond increases to a maximum of 14,800 m³. The average make-up water required in Year 1 is

18

76% of the initial water in the slurry, and ranges from 2,800 m^3 to 14,300 m^3 per month.

- The recycle from the TSF back to the Process Plant in Year 1 varies from 0% to 48% of water in slurry and from 15% to 85% in Year 2. The average recycle volume over the life of the facility is 41% of the water in slurry. The supernatant contributes approximately 14% of this volume with rainfall providing the remaining 86%. The low rate of recycle is due to the low supernatant release as a result of the high percent solids of the tailings and the high evaporation losses relative to rainfall.
- The initial tailings dry density is approximately 1.22 t/m³. The average settled dry density gradually increases as a result of consolidation of the underlying tailings, achieving a final average density of approximately 1.45 t/m³.

19

´ear	Month	Rainfall	Evaporation	Oumulative	Tailings	Tailings		Water in	Supernatant	Rainfall	Evaporation	Pond	Consolidation	Availab		Discharge	Make U
				Tonnage	Level	Layers	Mass	Slurry	Runoff	Runoff	Losses	Volume	Volume	Recy			Requirem
	1 10	mm	m	t	RLm	t/m³	t/m²	m²	m²	m²	กร์	m²	m²	ហ	%	m²	ហឹ
	Jan-16 Feb-16	-	-	-	-	•	-	-	-	-	-	-	-	-			
	Mar-16	-	-	-	-			-	-	-	-			-			
	Apr-16	-	-	-	-	-	-	-	-	-	-	-	-	-			
	May-16	-	-	-	-	-	-	-	-	-	-	-	-	-			
1	Jun-16	-	-	-	-	-	-	-	-	-	-	-	-	-			
·	Jul 16	-	-	-	-		1.	-	-	-	-	-	-	-			
	Aug-16	80	90	4,975	689.5	1.22	1.22	2,796	498	2,332	136	5,150	-	-	-		2
	Sep-16	54	110	15,671	692.4	1.37	1.32	6,010	1,071	1,708	418	5,139	-	2,373	39		3
	Oct-16 Nov-16	70 74	130 165	25,044 45,724	693.6 695.3	1.37	1.34	5,267 11,621	939 2,071	2,333	669 1,182	5,211 5,413		2,531 3,311	48 28		2
	Dec-16	73	235	62,635	696.5	1.37	1.35	9,503	1,694	2,814	2,299	5,477		2,145	20		7
	Jan-17	65	230	92,466	698.1	1.37	1.36	16,763	2,988	2,640	2,200	5,295		2,945	18		13
	Feb-17	43	180	98,373	698.3	1.37	1.36	3,319	592	1,745	2,394	5,000	-	253	8		3
	Mar-17	64	150	124,713	699.2	1.37	1.37	14,802	2,638	2,607	1,966	5,139	-	3,174	21		11
	Apr-17	38	100	143,864	699.9	1.37	1.37	10,762	1,903	1,588	1,268	5,077	-	2,297	21		8
	May-17	48	80	171,388	700.6	1.36	1.37	15,467	2,709	2,058	998	5,121	-	3,890	25		11
2	Jun-17	52	65	198,030	701.3	1.35	1.37	14,971	2,608	2,314	803	5,115	-	4,200	28		10
	Jul-17	63	80	233,106	702.3	1.34	1.37	19,710	3,389	2,920	1,001	5,141	-	5,364	27		14
	Aug-17 Sep-17	80 54	90 110	263,934 277,486	703.0 703.3	1.35 1.39	1.37	17,323 7,615	2,949 1,277	3,791 2,556	1,137 1,402	5,142 5,028	-	5,714 2,704	33 36		11
	Oct-17	54	130	304,046	703.3	1.39	1.38	14,925	2,474	3,362	1,402	5,028		4,278	36		4
	Nov-17	70	165	328,849	704.0	1.37	1.38	13,938	2,474	3,582	2,180	5,004	-	3,821	23		10
	Dec-17	73	235	355,301	704.8	1.40	1.39	14,864	2,263	3,626	3,229	5,000	-	2,912	20		11
	Jan-18	65	230	377,857	705.2	1.41	1.39	12,675	1,916	3,311	3,142	5,000	-	2,260	18		10
	Feb-18	43	180	405,196	705.6	1.39	1.39	15,363	2,358	2,222	2,385	5,000	-	2,335	15		13
	Mar-18	64	150	431,115	706.0	1.39	1.40	14,565	2,311	3,404	1,949	5,000	-	3,901	27		10
	Apr-18	38	100	460,250	706.4	1.38	1.40	16,372	2,689	2,089	1,254	5,046	-	3,612	22		12
	May-18	48	80	479,242	706.7	1.38	1.40	10,672	1,783	2,660	991	5,053	-	3,560	33		7
3	Jun-18	52	65	483,504	706.7	1.45	1.40	2,395	405	2,900	823	5,596	-	2,036	85		
	Jul-18	63	80	504,348	707.0	1.38	1.40	11,713	1,957	3,575	1,028	5,076	-	5,098	44		6
	Aug-18	80	90	551,533	707.6	1.35	1.40	26,515	4,372	4,692	1,132	5,135	-	7,913	30		18
	Sep-18	54	110	577,989	708.0	1.39	1.40	14,867	2,391	3,225	1,402	5,035	-	4,369	29		10
	Oct-18 Nov-18	70 74	130 165	592,764 608,010	708.3	1.44 1.46	1.41	8,303 8,567	1,311 1,297	4,240 4,483	1,667 2,160	5,000 5,000	-	4,129 3,731	50 44		4
	Dec-18	74	235	638,875	708.7	1.40	1.41	17,344	2,443	4,497	3,219	5,000	-	3,861	22		13
-	Jan-19	65	230	668,682	709.1	1.44	1.42	16,750	2,365	4,066	3,139	5,000	-	3,416	20		13
	Feb-19	43	180	704,927	709.6	1.41	1.42	20,367	2,969	2,705	2,382	5,000	-	3,437	17		16
	Mar-19	64	150	739,526	710.0	1.40	1.42	19,442	2,985	4,104	1,948	5,000	-	5,265	27		14
	Apr-19	38	100	768,694	710.3	1.39	1.42	16,391	2,640	2,484	1,252	5,023	-	3,965	24		12
	May-19	48	80	786,952	710.5	1.41	1.42	10,260	1,691	3,132	989	5,043	-	3,917	38		6
4	Jun-19	52	65	805,305	710.7	1.40	1.42	10,313	1,722	3,419	797	5,064	-	4,406	43		5
	Jul 19	63	80	827,805	711.0	1.40	1.42	12,644	2,082	4,190	994	5,070	-	5,334	42		7
	Aug-19	80	90	850,305	711.2	1.40	1.42	12,644	2,060	5,365	1,128	5,083	-	6,334	50		6
	Sep-19	54	110	869,403	711.4	1.43	1.42	10,732	1,704	3,634	1,395	5,010	-	4,062	38		6
	Oct-19 Nov-19	70	130 165	886,871 907,526	711.8	1.48 1.47	1.43 1.43	9,816 11,607	1,529 1,725	4,763 5,042	1,664 2,160	5,000 5,000	-	4,682 4,646	48 40		6
	Dec-19	74	235	916,920	711.9	1.47	1.43	5,279	725	4,996	3,232	5,000	-	2,522	40		2
	Jan-20	65	230	933,660	712.1	1.47	1.43	9,407	1,299	4,498	3,127	5,000		2,322	29		6
	Feb-20	43	180	942,306	712.1	1.47	1.43	4,859	696	2,953	2,368	5,000	-	1,305	27		3
	Mar-20	64	150	959,007	712.3	1.48	1.43	9,385	1,425	4.461	1,943	5,000	-	3,967	42		5
	Apr-20	38	100	979,783	712.5	1.42	1.43	11,675	1,868	2,698	1,251	5,003	-	3,329	29		6
	May-20	48	80	992,631	712.6	1.45	1.44	7,220	1,184	3,398	987	5,033	-	3,584	50		3
5	Jun-20	52	65	1,005,283	712.7	1.43	1.44	7,110	1,182	3,704	796	5,057	-	4,088	57		0
	Ju⊦20	63	80	1,016,057	712.8	1.47	1.44	6,054	993	4,519	993	5,073	-	4,520	75		1
	Aug-20	80	90	1,019,508	712.8	1.48	1.44	1,939	316	5,790	1,328	8,220	-	1,649	85		
	Sep-20	54	110	1,030,268	712.9	1.46	1.44	6,047	965	3,928	1,757	6,231	-	5,140	85		
	Oct-20 Nov-20	70	130 165	1,064,159 1,079,908	713.3 713.4	1.41 1.48	1.44	19,044 8,850	2,959 1,304	5,162 5,432	1,795 2,159	5,006 5,000	-	7,555 4,592	40 52		4
	Dec-20	74	235	1,079,909	713.4	1.40	1.44	- 0,000	1,304	5,393	3,579	6,835	-	4,082	52		
	Jan-21	65	230	1,096,557	713.5	1.47	1.44	9,355	1,289	4,862	3,481	5,000		4,524	48		4
	Feb-21	43	180	1,119,888	713.7	1.48	1.44	13,111	1,859	3,202	2,373	5,000	-	2,696	21		10
	Mar-21	64	150	1,131,006	713.8	1.48	1.44	6,247	942	4,812	1,945	5,000	-	3,824	61		2
	Apr-21	38	100	1,157,304	714.1	1.42	1.44	14,778	2,353	2,918	1,251	5,007	-	4,030	27		10
	May-21	48	80	1,160,051	714.1	1.48	1.44	1,544	253	3,667	1,077	6,552	-	1,312	85		
6	Jun-21	52	65	1,164,911	714.1	1.47	1.44	2,731	455	4,009	995	7,717	-	2,321	85		
-	Ju⊧21	63	80	1,166,907	714.1	1.47	1.44	1,122	186	4,914	1,443	10,429		954	85		
	Aug-21	80	90	1,177,193	714.2	1.46	1.45	5,780	952	6,308	1,824	10,957	-	4,913	85		
	Sep-21	54	110	1,178,628	714.2	1.46	1.45	806	130	4,258	2,379	12,283	-	685	85		
	Oct-21	70	130	1,178,629	714.2	1.45	1.45	-	0	5,592	3,130	14,747	-	0			
	Nov-21	74	165	1,199,924	714.4	1.45	1.45	11,966	1,831	5,875	3,703	8,580	-	10,171	85		1
	Dec-21	73	235	1,213,601	714.5	1.47	1.45	7,686	1,054	5,711	3,974	5,101	-	6,271	82	I	1

Table 4.5: Water balance – Average conditions

20

4.3.3.2 1 in 100 AEP Wet Sequence

The effects of a 1 in 100 AEP Wet year were analysed by inserting a wet year independently into each year of the model. As the pond level can return to a minimum each year, the water balance impact is independent of the previous year's rainfall.

The maximum pond volume of 44,200 m³ was generated by inserting a 1 in 100 AEP Wet year towards the end of the operation as shown in Table 4.6. The storage volume available on the tailings without encroaching on the embankment at that time is 66,000 m³ and the maximum pond level for the 1 in 100 AEP Wet year precipitation is only 40% of the capacity available on the tailings. The maximum recycle rate of 85% of water in slurry occurs in 38 of the 65 modelled months. No spillway flows are expected under these conditions. The size of the pond and the effect on the recycle rate are shown in Figure 4.5.

4.3.3.3 Storm Events

The design elevation of the TSF embankment is a function of the required storm capacity of the facility in excess of the tailings beach level. DSC guideline DSC3F was noted as defining various freeboard requirements related to the flood handling capacity of the facility. A rainfall-run-off model was employed to model various storm scenarios for the purpose of verifying that the proposed design meets DSC3F freeboard criteria. These are discussed below:

- Beach Freeboard beach freeboard was not considered as the facility will be constructed fully downstream, i.e. it will not have any upstream or modified centreline lifts.
- Pond Recovery Time the decant pumping system should be designed such that the 1:100 AEP, 72 hour storm event can be removed within 7 days. The 1:100 AEP, 72 hour storm run-off added to the maximum pond operating volume under average climatic conditions gives a resulting total decant pond volume of 70,232 m³, which corresponds to a pond level of RL714.2 m.
- Operational Freeboard this is the vertical distance between the top of the tailings (RL714.6 m) and the adjacent embankment crest (RL716.0 m). The minimum recommended value suggested by DSC3F is 500 mm. The TSF design provides 1,400 mm of Operational Freeboard, far exceeding the specified minimum value.
- Environmental Containment Freeboard this is the vertical distance between the Operational Pond Limit (RL712.9 m) and the spillway crest (RL715.1 m). This is normally set to contain the rainfall run-off volume produced by a 72-hour

21

storm of a certain AEP without discharging from the facility. For a High C category dam the design storm is a 1:100 AEP, 72 hour storm. For a High B category dam the design storm is a 1:1000 AEP, 72 hour storm. The modelling shows that for a 1:100 AEP 72 hour storm the resulting pond level is RL714.2 m, and for a 1:1000 AEP 72 hour storm the resulting pond level is RL714.9 m, both of which lie *below* the proposed final stage spillway level (RL715.1 m). Consequently, Environmental Containment Freeboard is satisfied for both High C and High B category dams and the facility should not discharge under storm events up to and including a 1 in 1000 AEP 72-hour magnitude event.

 Total Freeboard – this is the vertical distance between the Operational Pond Limit (RL712.9 m) and the crest of the embankment (RL716.0 m). The design storm event for a *High C* consequence category is the 1:100,000 AEP, critical duration storm. Starting with a pond level of RL714.8 m (that is 0.6 m above the pond level resulting from a 1:100 AEP 72 hour storm event), the peak decant pond level during passage of a 1:100,000 AEP, 72 hour storm is RL715.6 m, that is 0.5 m below the final crest level. Accordingly, Total Freeboard is satisfied.

4.3.3.4 1 in 100 AEP Dry Sequence

The results for the 1 in 100 AEP Dry year simulations are summarised in Table 4.7. The table summarises the results of multiple individual modelling runs for a single 1 in 100 AEP Dry event. Each year is independent, as the pond level reverts to its minimum volume each year, allowing multiple individual modelling runs for the Dry event to be carried out without impacting on one another. The 1 in 100 AEP Dry year precipitation is 326 mm. The average recycle volume under 1 in 100 AEP Dry year conditions is 19% of the water in slurry, which yields 570,000 m³ shortfall in total, ranging between 220 m³ and 22,200 m³ per month during the operation.

There may be periods of several months when no water return should be expected from the TSF and during which time all process water will have to be supplied from alternative sources.

22

			Evaporation		ative Tailings Tailings density Water in Supernatant Rainfall Evaporation Pond Consolidation Available TSF Discharge Make												
				Tonnage	Level	Layers	Mass	Slurry	Runoff	Runoff	Losses	Volume	Volume	Recy			Requirement
		mm	m	t	RLm	t/m³	t/m²	m²	m²	m²	m²	m²	m²	m²	%	m²	m²
	Jan-16	-	-	-	-	-	-	-	-	-	-	-	-	-			-
1	Feb-16	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	Mar-16	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	Apr-16	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	May-16	-	-	-	-	-	-	-	-	-	-	-	-	-			-
1	Jun-16	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	Jul-16	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	Aug-16	49	90	4,975	689.5	1.22	1.22	2,796	498	1,428	136	5,114	-	-	-		2,796
	Sep-16	71	110	15,671	692.4	1.37	1.32	6,010	1,071	2,256	418	5,182	-	2,842	47		3,169
	Oct-16	19	130	25,044	693.6	1.37	1.34	5,267	939	631	668	5,083	-	1,001	19		4,266
	Nov-16	260	165	45,724	695.3	1.37	1.35	11,621	2,071	9,258	1,182	5,952	-	9,278	80		2,343
	Dec-16	140	235	62,635	696.5	1.37	1.36	9,503	1,694	5,407	2,299	5,739	-	5,017	53		4,487
	Jan-17	91	230	92,466	698.1	1.37	1.36	16,763	2,988	3,688	2,875	5,398	9	4,150	25		12,612
	Feb-17	69	180	98,373	698.3	1.37	1.36	3,319	592	2,824	2,408	5,114	15	1,308	39		2,012
	Mar-17	261	150	124,713	699.2	1.37	1.37	14,802	2,638	10,766	2,031	5,582	34	10,940	74		3,862
	Apr-17	300	100	143,864	699.9	1.37	1.37	10,762	1,918	13,456	1,530	10,291	12	9,148	85		1,614
	May-17	164	80	171,388	700.6	1.37	1.37	15,467	2,757	7,452	1,333	6,183	163	13,147	85		2,320
2	Jun-17	42	65	198,030	701.3	1.36	1.37	14,971	2,620	1,890	856	5,100	76	4,813	32		10,159
	Jul-17	104	80	233,106	702.3	1.34	1.37	19,710	3,390	4,791	1,004	5,194	77	7,161	36		12,549
	Aug-17	49	90	263,934	703.0	1.35	1.37	17,323	2,949	2,321	1,138	5,100	117	4,343	25		12,981
1	Sep-17	71	110	277,486	703.3	1.39	1.38	7,615	1,277	3,375	1,400	5,053	154	3,453	45		4,162
1	Oct-17	19	130	304,046	704.0	1.37	1.38	14,925	2,473	909	1,670	5,003	156	1,919	13		13,006
1	Nov-17	260	165	328,849	704.4	1.38	1.38	13,938	2,259	12,674	2,283	5,911	105	11,847	85		2,091
\vdash	Dec-17	140	235	355,301	704.8	1.39	1.39	14,864	2,289	6,990	3,429	5,000	248	7,009	47		7,855
1	Jan-18 Eob. 10	91	230	377,857	705.2	1.41	1.39	12,675	1,916	4,614	3,148	5,000	135	3,517	28		9,158
	Feb-18	69	180	405,196	705.6	1.39	1.39	15,363	2,359	3,578	2,390	5,000	156	3,703	24		11,659
	Mar-18	261	150	431,115	706.0	1.39	1.40	14,565	2,340	13,984	2,161	6,921	138	12,380	85		2,185
	Apr-18	300	100	460,250	706.4	1.37	1.40	16,372	2,767	16,755	1,794	10,868	136	13,916	85		2,456
	May-18	164	80	479,242	706.7	1.38	1.40	10,672	1,841	9,465	1,660	11,510	69	9,071	85		1,601
3	Jun-18	42	65	483,504	706.7	1.41	1.40	2,395	415	2,456	1,344	11,018	16	2,036	85		359
	Jul-18	104	80	504,348	707.0	1.38	1.40	11,713	1,996	6,023	1,474	7,619	12	9,956	85		1,757
	Aug-18	49	90	551,533	707.7	1.35	1.40	26,515	4,404	2,896	1,303	5,082	8	8,542	32		17,973
	Sep-18	71	110	577,989	708.0	1.39	1.40	14,867	2,390	4,260	1,399	5,060	121	5,395	36		9,472
	Oct-18	19	130	592,764	708.2	1.44	1.40	8,303	1,311	1,147	1,663	5,000	298	1,154	14		7,149
	Nov-18	260	165	608,010	708.3	1.46	1.41	8,567	1,344	16,157	2,975	12,397	152	7,282	85		1,285
	Dec-18	140	235	638,875	708.7	1.41	1.41	17,344	2,578	8,826	4,631	5,231	171	14,110	81		3,234
	Jan-19	91	230	668,682	709.1	1.44	1.41	16,750	2,369	5,673	3,191	5,000	48	5,130	31		11,620
	Feb-19	69	180	704,927	709.6	1.41	1.42	20,367	2,969	4,359	2,387	5,000	205	5,146	25		15,221
	Mar-19	261	150	739,526	710.0	1.40	1.42	19,442	3,003	16,822	2,102	6,367	170	16,526	85		2,916
	Apr-19	300	100	768,694	710.3	1.39	1.42	16,391	2,704	19,957	1,897	13,346	147	13,932	85		2,459
	May-19	164	80	786,952	710.5	1.39	1.42	10,260	1,749	11,256	1,968	15,761	98	8,721	85		1,539
4	Jun-19	42	65	805,305	710.8	1.38	1.42	10,313	1,763	2,901	1,472	10,217	30	8,766	85		1,547
	Jul-19	104	80	827,805	711.0	1.39	1.42	12,644	2,112	7,024	1,412	7,214	21	10,747	85		1,897
	Aug-19	49	90	850,305	711.2	1.40	1.42	12,644	2,070	3,307	1,273	5,028	41	6,331	50		6,313
	Sep-19	71	110	869,403	711.4	1.43	1.42	10,732	1,703	4,801	1,392	5,036	64	5,168	48		5,564
	Oct-19	19	130	886,871	711.6	1.46	1.42	9,816	1,529	1,289	1,660	5,000	81	1,276	13		8,540
1	Nov-19	260	165	907,526	711.8	1.47	1.43	11,607	1,776	18,125	2,950	12,147	62	9,866	85		1,741
\vdash	Dec-19	140	235	916,920	711.9	1.44	1.43	5,279	790	9,985	5,711	12,773	50	4,487	85		792
1	Jan-20 Feb-20	91 69	230 180	933,660 942,306	712.1	1.44 1.46	1.43 1.43	9,407 4,859	1,379 710	6,447 4,813	4,955 2,933	7,658	10	7,996 4,130	85 85		1,411 729
1	Heb-20 Mar-20	261	180	942,306	712.2	1.40	1.43	4,859 9,385	1,479	4,813	2,933 3,064	15,333	24	4,130	85		1,408
1	Mar-20 Apr-20	300	150	979,783	712.3	1.47	1.43	9,385	1,479	22,643	3,064	26,928	24	9,977	85		1,408
1	May-20	164	80	979,783	712.5	1.40	1.43	7,220	1,982	12,830	3,136	31,773	4	6,137	85		1,751
1	Jun-20	42	80 65	1,005,283	712.8	1.39	1.43	7,220	1,201	3,329	2,542	27,765	2	6,043	85		1,083
5	Jul-20	42	65 80	1,005,283	712.8	1.38	1.43	6,054	1,240	3,329	3,043	28,787	1	5,146	85		1,066
1	Aug-20	49	80 90	1.019.508	712.9	1.40	1.43	1,939	336	3,871	3,043	28,787	3	1,649	85		908 291
1		49	90 110	1,019,508	712.9	1.40	1.43	6,047	1,034	5,607	4,078	27,903	3	5,140	85		291
1	Sep-20 Oct-20	19	130	1,050,208	713.3	1.40	1.43	19,044	3,123	1,469	3,696	10,041	2	16,187	85		2,857
1	Nov-20	260	185	1,079,908	713.4	1.38	1.43	8,850	1,390	20,078	4,237	19,752	4	7,523	85		1,328
1	Dec-20		235	1,079,909	713.4	1.40	1.43	- 0,000	1,380	11,088	7,978	22,900	39	7,023	0.0		1,320
\vdash	Jan-21	91	235	1,078,808	713.6	1.43	1.43	9,355	1,447	7,187	7,876	16,173		7,952	85		- 1,403
1	Feb-21	91 69	180	1,119,888	713.8	1.42	1.43	13,111	1,447	5,341	4,182	8,161	5	11,144	85		1,403
1	Mar-21	261	150	1,131,006	713.9	1.44	1.44	6,247	1,988	20,516	4,182	20,676	19	5,310	85		937
1	Apr-21	300	100	1,157,304	714.1	1.47	1.44	14,778	2,512	24,778	3,628	31,828	51	12,561	85		2,217
1	May-21	164	80	1,160,051	714.1	1.40	1.44	1,544	2,512	14,011	3,588	41,216	7	1,312	85		2,217
1	Jun-21	42	65	1,160,051	714.1	1.40	1.44	2,731	482	3,654	3,566	39,918	4	2,321	85		410
6	Jul-21	104	80 80	1,166,907	714.2	1.30	1.44	1,122	482	3,654 8,990	3,116	44,208	4	954	85		168
1	Aug-21	49	80 90	1,177,193	714.2	1.39	1.44	5,780	1,018	4,266	3,940 4,468	44,208	1	4,913	85		867
1	Sep-21	49	90 110	1,178,628	714.3	1.30	1.44	5,780	1,018	4,200	4,468 5,337	40,112	1	4,913	85		121
1	Oct-21	19	130	1,178,628	714.3	1.39	1.44		0	1,638	6,142	35,897	1	000			-
		260	165	1,178,023	714.3	1.38	1.44	- 11,966	2,058	22,589	8,010	42,363	1	10,171	85		- 1,795
	Nov-21		100	1,100,024	714.4	1.40	1.44	7,686	2,058	12,255	11,916	42,363	1	6,533	85		1,795

Table 4.6: Water balance - 1 in 100 AEP Wet conditions

23

'ear	Month	Rainfall	Evaporation	Cumulative	Tailings	Tailings	density	Water in	Supernatant	Rainfall	Evaporation	Pond	Consolidation	Availab	le TSF	Discharge	Make U
				Tonnage	Level	Layers	Mass	Slurry	Runoff	Runoff	Losses	Volume	Volume	Recy	rcle		Requirem
		mm	nm	t	RLm	t/m²	t/m²	m²	m²	m²	m²	m²	m²	m²	%	m²	m²
	Jan-16 Feb-16	-	-	-	-	•	-	-	-	-	-	-	-	-			
	Mar-16	-	-	-						-	-			-			
	Apr-16	-	-	-	-		-	-	-	-	-	-		-			
	May-16	-	-	-	-	-	-	-	-	-	-	-	-	-			
1	Jun-16	-	-	-	-	-	-	-	-	-	-	-	-	-			
·	Jul-16	-	-	-	-	-		-	-	-	-		-	-			
	Aug-16	19	90	4,975	689.5	1.22	1.22	2,796	498	555	135	5,079	-	-	-		2,
	Sep-16	24	110	15,671	692.4	1.37	1.32	6,010	1,071	775	416	5,067	-	1,443	24		4,5
	Oct-16	8	130	25,044	693.6	1.37	1.34	5,267	939	263	666	5,056	-	546	10		4,
	Nov-16	10	165	45,724	695.3	1.37	1.35	11,621	2,071	346	1,182	5,228	-	1,063	9		10,6
	Dec-16	48 9	235 230	62,635 92,466	696.5 698.1	1.37 1.37	1.36 1.36	9,503 16,763	1,694 2,988	1,853 355	2,299 2,875	5,380 5,083	- 9	1,096 775	12 5		8,4
	Jan-17 Feb-17	78	180	98,373	698.3	1.37	1.36	3,319	2,800	3,202	2,365	5,140	15	1,387	42		1.5
	Mar-17	69	150	124,713	699.2	1.37	1.37	14,802	2,638	2,809	1,985	5,147	34	3,489	24		11,3
	Apr-17	23	100	143,864	699.9	1.37	1.37	10,762	1,903	970	1,267	5,057	12	1,707	16		9,0
	May-17	17	80	171,388	700.6	1.36	1.37	15,467	2,709	748	994	5,081	163	2,602	17		12,
2	Jun-17	14	65	198,030	701.3	1.35	1.37	14,971	2,607	604	799	5,064	76	2,505	17		12,
-	Jul-17	6	80	233,106	702.3	1.34	1.37	19,710	3,387	283	994	5,068	83	2,755	14		16,
	Aug-17	19	90	263,934	703.0	1.35	1.37	17,323	2,947	902	1,126	5,061	112	2,842	16		14,
	Sep-17	24	110	277,486	703.3	1.39	1.37	7,615	1,276	1,160	1,391	5,000	160	1,266	17		6
	Oct-17	8	130	304,046	704.0	1.37	1.38	14,925	2,472	379	1,663	5,000	160	1,348	9		13
	Nov-17	10	165	328,849	704.4	1.38	1.38	13,938	2,240	472	2,160	5,000	110	662	5		13
_	Dec-17	48	235	355,301	704.8	1.40	1.39	14,864	2,263	2,387	3,223	5,000	250	1,678	11		13
	Jan-18	9	230	377,857	705.2	1.41	1.39	12,675	1,916	448	3,130	5,000	174	-	-		12
	Feb-18	78 69	180	405,196	705.6	1.39	1.39	15,363	2,358	4,082	2,391	5,000	140	4,189	27		11
	Mar-18	23	150 100	431,115 460,250	706.0 706.4	1.39 1.38	1.40 1.40	14,565	2,311 2,689	3,657	1,950 1,253	5,004 5,025	135 135	4,148 2,825	28 17		10 13
	Apr-18 May-18	17	80	479,242	706.4	1.30	1.40	16,372 10,672	1,783	1,276 967	987	5,025	135	1,894	18		8
	Jun-18	14	65	483,504	706.7	1.45	1.40	2,395	404	756	791	5,000	97	474	20		1
	Jul-18	6	80	504,348	707.0	1.38	1.40	11,713	1,953	346	985	5,000	75	1,389	12		10
	Aug-18	19	90	551,533	707.6	1.35	1.40	26,515	4,370	1,116	1,121	5,053	50	4,363	16		22
	Sep-18	24	110	577,989	708.0	1.39	1.40	14,867	2,389	1,463	1,391	5,000	54	2,569	17		12
	Oct-18	8	130	592,764	708.2	1.44	1.41	8,303	1,311	478	1,654	5,000	207	341	4		7
	Nov-18	10	165	608,010	708.3	1.46	1.41	8,567	1,297	591	2,148	5,000	109	-	-		8
	Dec-18	48	235	638,875	708.7	1.43	1.41	17,344	2,443	2,961	3,214	5,000	140	2,330	13		15
	Jan-19	9	230	668,682	709.1	1.44	1.42	16,750	2,365	550	3,126	5,000	122	-	-		16
	Feb-19	78	180	704,927	709.6	1.41	1.42	20,367	2,969	4,971	2,389	5,000	145	5,696	28		14
	Mar-19	69	150	739,526	710.0	1.40	1.42	19,442	2,985	4,409	1,949	5,000	124	5,568	29		13
	Apr-19	23	100	768,694	710.3	1.39	1.42	16,391	2,639	1,517	1,251	5,002	116	3,020	18		13
	May-19	17	80	786,952	710.5	1.41	1.42	10,260	1,691	1,139	985	5,000	100	1,946	19		8
	Jun-19	14	65	805,305	710.7	1.40	1.42	10,313	1,721	893	792	5,006	80	1,897	18		8
	Jul-19	6	80	827,805	711.0	1.40	1.42	12,644	2,082	406	985	5,000	60	1,569	12		11
	Aug-19	19	90	850,305	711.2	1.40	1.42	12,644	2,059	1,276	1,116	5,000	49	2,268	18		10
	Sep-19	24	110	869,403	711.4	1.43	1.42	10,732	1,703	1,649	1,384	5,000	47	2,016	19		8
	Oct-19 Nov-19	8 10	130 165	886,871 907,526	711.6 711.8	1.48 1.47	1.43 1.43	9,816 11,607	1,529 1,725	537 664	1,654 2,149	5,000 5,000	44	456 279	5		9
	Dec-19	48	235	916,920	711.9	1.47	1.43	5,279	725	3,290	3,196	5,000	33	852	16		4
-	Jan-20	9	230	933,660	712.1	1.47	1.43	9,407	1,299	608	3,133	5,000	32		-		9
	Feb-20	78	180	942,306	712.1	1.47	1.43	4,859	697	5,427	2,406	5,081	24	3,661	75		1
	Mar-20	69	150	959,007	712.3	1.47	1.43	9,385	1,426	4,793	1,954	5,000	23	4,369	47		5
	Apr-20	23	100	979,783	712.5	1.42	1.43	11,675	1,868	1,648	1,249	5,000	18	2,284	20		9
	May-20	17	80	992,631	712.6	1.45	1.44	7,220	1,184	1,236	984	5,000	19	1,454	20		5
	Jun-20	14	65	1,005,283	712.7	1.43	1.44	7,110	1,182	967	791	5,000	21	1,379	19		5
	Jul-20	6	80	1,016,057	712.8	1.47	1.44	6,054	993	438	983	5,000	18	465	8		5
	Aug-20	19	90	1,019,508	712.8	1.48	1.44	1,939	314	1,365	1,114	5,000	17	582	30		1
	Sep-20	24	110	1,030,268	712.9	1.48	1.44	6,047	954	1,762	1,382	5,000	15	1,349	22		4
	Oct-20	8	130	1,064,159	713.3	1.41	1.44	19,044	2,948	580	1,657	5,000	11	1,882	10		17
	Nov-20	10	165	1,079,908	713.4	1.48	1.44	8,850	1,304	716	2,147	5,000	12	-	-		8
	Dec-20 Jap 21	48	235 230	1,079,909	713.4	1.48	1.44	-	0	3,535 654	3,306	5,248 5,000	20	0			9
	Jan-21 Feb-21	9 78	230	1,096,557 1,119,888	713.5	1.48 1.48	1.44 1.44	9,355 13,111	1,277	5,884	3,163 2,380	5,000	17	- 5,373	- 41		8
	Hep-21 Mar-21	78 69	180	1,119,888	713.7	1.48	1.44	6,247	942	5,884	2,380	5,000	11	4,175	67		2
	Mar-21 Apr-21	23	100	1,131,006	713.8	1.48	1.44	6,247 14,778	2,353	1,782	1,950	5,000	14	2,901	20		11
	May-21	17	80	1,160,051	714.1	1.42	1.44	14,778	2,353	1,762	984	5,000	10	2,901	39		
	Jun-21	14	65	1,164,911	714.1	1.48	1.44	2,731	453	1,035	791	5,000	14	715	26		2
	Jul-21	6	80	1,166,907	714.1	1.48	1.45	1,122	183	466	982	5,000	12	-	-		1
	Aug-21	19	90	1,177,193	714.2	1.48	1.45	5,780	934	1,460	1,115	5,000	10	1,289	22		4
	Sep-21	24	110	1,178,628	714.2	1.48	1.45	806	127	1,872	1,389	5,032	8	586	73		
	Oct-21	8	130	1,178,629	714.2	1.48	1.45	-	0	606	1,660	5,000	8	-			
	Nov-21	10	165	1,199,924	714.4	1.48	1.45	11,966	1,754	751	2,148	5,000	6	363	3		11
	Dec-21	48	235	1,213,601	714.5	1.48	1.45	7,686	1,034	3,725	3,197	5,000	5	1,566	20		6

Table 4.7: Water balance - 1 in 100 AEP Dry conditions

24

4.4 DILUTION MODELLING

KP undertook an assessment of the anticipated stormwater volumes that would enter the facility under the following extreme rainfall events. The rainfall depth associated with each event is presented in parenthesis.

- 1 in 200 year, 72-hour event magnitude (507mm).
- 1 in 500 year, 72-hour event magnitude (616mm).
- 1 in 1,000 year, 72-hour event magnitude (705mm).
- 1 in 2,000 year, 72-hour event magnitude (789mm).
- 1 in 5,000 year, 72-hour event magnitude (890mm)
- 1 in 10,000 year, 72-hour event magnitude (936mm)
- 1 in 50,000 year, 72-hour event magnitude (1 152mm).
- 1 in 200,000 year, 72-hour event magnitude (1 296mm).
- 1 in 10 million year, 72-hour event magnitude (1 728mm).

In estimating the stormwater volumes that would enter the facility, Knight Piésold conservatively assumed that the clean water diversion around the facility may fail and stormwater run-off from upslope of the facility would not be diverted around the facility. As a result, the assumed volume of stormwater is likely to be a conservative overestimate.

Based on the above, Knight Piésold determined, on a month-by-month basis for each of the above rainfall scenarios:

- whether the facility had sufficient capacity to store the anticipated stormwater; and, if not;
- the volume of water that would be expected to discharge from the facility and the anticipated dilution factor.

Table 4.8 presents the results of the TSF stormwater event and dilution assessment, which may be summarised as follows.

- The minimum stormwater storage capacity, and thus the period of greatest risk of overtopping in the event of an extreme rainfall event, occurs in month 41, immediately prior to the construction of Lift 4 when approximately 137,396 m³ of stormwater storage capacity would be available.
- Of the rainfall events considered, the event that would result in the lowest dilution and thus the highest concentration of cyanide being discharged via the emergency spillway would be a 1 in 10,000 year-72 hour event. This event

25

would result in approximately 186,000 m³ of water being deposited within the facility. Based on an operating supernatant pond volume of approximately 14,800 m³, this would result in a dilution rate of approximately 13 times. Other rainfall depth events would result in greater dilution as a result of the higher volume of water that would be deposited within the facility relative to pond volume at the time of the event. For example, a 1 in 10 million year or Maximum Probable Precipitation rainfall event would result in a dilution rate of approximately 22 times.

- A 1 in 2,000 year rainfall event would result in overtopping of the tailings storage facility during 4 months of the modelled 65 month life of the facility. The probability of overtopping the facility once during the 65 month life under a 1 in 2,000 rainfall event is 0.05%.
- A 1 in 10 million year or Maximum Probable Precipitation rainfall event would result in discharge from the facility in 59 of the modelled 65 month life of the facility. The probability of discharge from the facility once during the 65 month life under a 1 in 10,000,000 rainfall event is 0.00005%.
- As a result, the scenario with the greatest risk of occurring (0.05%) would be a 1 in 2,000 year rainfall event. The minimum dilution under this scenario would be approximately 28 times.

ENVIRONMENTAL ASSESSMENT – MODIFICATION 3

Report No. 752/38 – July 2015 Appendix 7

Knight Piésold

Table 4.8: Summary of TSF stormwater run-off and dilution assessment

	1 in :	10 year, 72 hr				1 in 100 year, 7	72 hr			1 in 200 yea	ar, 72 hr		1 in 500 year, 72 hr		1 in 1,00	year, 72 hr			1 in 2,000 year, 7	72 hr		1 in 6,000 year	, 72 hr		11	in 10,000 year, 72	hr	1 in 50,000 y	ear, 72-hr		1 in 100,000 ye	sar, 72-hr		1 in 200,000	year, 72-hr		1 in 10 million y	year, 72-hr	
Year Month Runoff Po		Available aits page Dis o	harge Dik	ntion Rune		Available airs	page Disich	narge Dilutio		Available airspac		Dilution Runof	Available airspace Discharg	e Dilution Runo	ff Available air.	pace Discha	rge Dilution F		Available airs pace	Discharge I	Dilution Runoff	Available airs pace	Discharge				charge Dilution F	noff Available airs pa		n Runoff	Available airspac	e Discharge		Available airsp		Dilution Runoff	Available aits pao		Dilution
Volume Volu	ume Elevation	at spilw ay invert		Volur	ne Volume	at spilw ay in:	nvert		Volume	atspillway inver	rt	Volume	ats pillo ay invert	Volun	ne atspillwayi	ivert	V	olume a	at spilw ay invert		Volume	atspillway invert		Vo	olume atsp	pillw ay invert	V	ume at spillway inve	rt	Volume	ats pillway inver	t	Volume	atspillway inv	ert	Volume	at spillway inver	rt	(
m ² m	n fr	i śn	τř	fm f	fπ	ŝ	mi		mř	ŕn	m ³	fm (mi mi	šn l	m²	rn?		m³	m ²	πř	fm (m	rr?		τř	m ²	m ³	άπ šπ	rn ²	fm -	rn?	m²	m ³	ŕn	rn ^a	m ²	rr?	fπ	
Jap 16																_																							
Feb 16	_			_	_				_		-																			_					_			-	
Mar-16	-		_	-	-		-		-		-		+		-	_	-											-	-	-		-			-			-	
Apr-16	_		_	_			_				_		-		_	_	_													_		-			_			-	<u> </u>
Apr-10			_						_							_																_			_			_	←
May-16									_																							_			_				
1 Jun-16																																							<u> </u>
' Jul 16														1 1																									(I
Aug 16 20,836 25	,986	189,499	No N	/A 32,1	20 37,270	178	215 N	lo N/A	97,931	112,40	4 No	N/A 117,87	3 92,457 No	N/A 134,1	66 7	(170 No	N/A 1-	49,537	60,798	No	N/A 168,020	42,315	No	N/A 171	6,438	33,897	No N/A 2	966 None	5,631 4	2 227,741	None	17,406	44 242,318	None	31,983	47 321,374	None	111,039	62
Sep-16 20.825 25	964	181 707	No N	/A 32 ·	09 37.248	170	1423 N	o NA	97.920	104.61	2 No	N/A 117.86	7 84665 No	N/A 134.1	54 B	378 No	N/A 1-	49.526	53,006	No	N/A 168.009	34.523	No	N/A 17	6 427	26 105	No N/A 2	955 None	13.423 4	2 227 730	None	25 198	44 242.307	None	39.775	47 321 383	None	118.831	63
Oct-16 20.897 26		174,715	No N	YA 32 '	81 37 392	163			97,992			N/A 117.93					N/A 1				N/A 168,081			N/A 17		19.113			20.415 4	1 227,802	None	32.100	44 242 379	None	46,767	47 321 435		125,823	62
Nov-16 21,099 26.					83 37,796				98,194			N/A 118,14		N/A 134,4		.874 No					N/A 168,283	12,010		N/A 17		2,601	No NO 2	220 None	26,007 4	229.004	None	02,100	42 242,010	None	62,270	46 221,60	None	141.335	50
																.415 No			30,002			12,019		31 17		3,001	8.858 32 2	2.29 None	48.286 3	228,004	None	47/02	42 242,081	None	74739	40 321,037	None	163,794	
Deo-16 21,163 26.					447 37,925				98,258		0 No								18,043		N/A 168,347	None					8,808 32 2	2143 None		228,008	None	60,161	42 242,040	None		44 321,701	None		
Jan-17 20,981 26,					365 37,559				98,076			N/A 118,02				.045 No			None		28 168,165	None	21,810		0,000	None 3	30,228 33 2	111 None	69,756 4	1 20,000	None	81,531			96,108	46 321,519	None	175,184	V.
Feb-17 20,686 25.					36,970				. 97,781		0 No		3 24,733 No	N/A 134,0		.446 No		49,387	None		30 167,870	None	25,409				33,827 35 2			3 227,591	None	85,130			99,707	48 321,224	None	178,763	
Mar-17 20,825 25,	964	333,237	No N	/A 32,1	109 37,248				. 97,920		2 No	N/A 117,86		N/A 134,1			N/A 1-				N/A 168,009			N/A 171	6,427		No N/A 2			227,730	126,33	2 No	N/A 242,307	111,7	55 No	N/A 321,363			N/A
Apr 17 20,763 25	,840	319,837	No N	/A 32,0	37,124	308	0,563 N	lo N/A	97,858	242,74	2 No	N/A 117,80	5 222,795 No	N/A 134,0	92 20	.508 No	N/A 1-	49,464	191,138	No	N/A 167,947	172,653	No	N/A 171	6,365	164,235	No N/A 2	893 124,7	7 No N/A	227,668	112,93	2 No	N/A 242,245	98,3	56 No	N/A 321,301	19,290	0 No	N/A
May 17 20.807 25	827	299,688	No N	/A 32.0	91 37,211	298	0.404 N	o N/A	97 902	222.59		N/A 117,84	9 202,646 No	N/A 1341	36 18	359 No	N/A 1	49.508	170,987	No	N/A 167 991	152 504	No	N/A 17	6.409	144,086	No N/A 2	937 104.5	8 No N/A	227 712	92.78	3 No	N/A 242289	78.2	06 No	N/A 321.345	None	850	63
Jun 17 20.801 25					85 37,201				97,896		0 No						N/A 1				N/A 167,985			N/A 17			No N/A 2						N/A 242,283			N/A 321,339		20.343	
2 Jul 17 20,827 25	068				111 37,252				97,922	177 27	7 No	N/A 117,85	9 157,330 No		56 44	.043 No	N/A 1				NA 168,011	107 400		N/A 17			No N/A 2				47 /AR	7 No	NA 242,309		90 No	N/A 321,308	None	46 166	
Aug 17 40,056 46,				/A 65,1						400.00	7 No 1 No	N/A 117,80										00,100		N/A 17							-7,40		NA 242,309	32,0	74 No	N/A 321,305	None	80,700	
Aug 1/ 40,000 40,	000					193	1000 N	IO NEA	. 97,923		1 NO 8 No		0 140,714 No			(427 No					N/A 168,012					02,104	No N/A 2	42,0	6 No N/A		30,80	NO NO		10,2	74 No 91 No	N/A 321,300		71.995	0.3
Sep 17 39,942 44					58 70,086				97,809			N/A 117,75				.344 No					N/A 167,898			N/A 17			No N/A 2				21,76	B No	N/A 242,198			N/A 321,252	None		64
Oct-17 39,985 46,				/A 65,1					97,852		3 No	N/A 117.79			85 9	(259 No	N/A 1-				N/A 167,941			N/A 17			No N/A 2				2,68	3 No	N/A 242,239		11,894	48 321,295	None	90,950	63
Nov-17 39,918 44,		173,280	No N	/A 65.0	34 70,038				97,785		3 No	N/A 117.73	2 95,466 No		19 7	.179 No	N/A 1-	49,391			N/A 167,874			N/A 171		36,906	No N/A 2	820 None		3 227,595		14,397			28,974		None	108,030	
Dec-17 39,914 44,		154,895							. 97,781			N/A 117.72					N/A 1-				N/A 167,870	28,939		N/A 171			No N/A 2		21,007 4	3 227,591	None	32,782			47,359	48 321,224	None	126,415	
Jan-18 39,914 44,					30 70,030		1,313 N	lo N/A	. 97,781	81,563	2 No	N/A 117,72	8 61,615 No	N/A 134,0		.328 No			29,956	No	N/A 167,870	11,473	No	N/A 17	6,288		No N/A 2		36,473 4	3 227,591	None	48,248	46 242,168	None	62,825	48 321,224	None	141,881	64
Feb 18 39,914 44	914	120,349	No N	/A 65.0	30 70,030	95	5,233 N	lo N/A	97,781	62,48	2 No	N/A 117.72	3 42,535 No	N/A 134,0	15 2	(248 No	N/A 1	49,387	10,876	No	N/A 167,870	None	7,607	34 17	6,288	None	16,025 35 2	S16 None	55,553 4	3 227,591	None	67,328	46 242,168	None	81,905	48 321,224	None	160,961	64
Mar-18 39,914 44	914	102.364	No N	7A 65.0	30 70,030	77	248 N	o Né	97,781	44.40	7 No	N/A 117.72	3 24.550 No	N/A 134,0	16	263 No	N/A 1	49.387	None	7 109	30 167 870	None	25.592	34 17	6 2 9 8	None 2	34.010 35 2	816 None	73.538 4	3 227 591	None	85313	48 242 168	None	99,890	48 321 224	None	178.946	64
Apr-18 39,960 46,	005	314.327	No N	7A 85.0	76 70,121	200			97,827		0 No		4 238,513 No		84 22	226 No	N/A 1-		204.854	No	N/A 167,918	198,371	No	N/A 17	6 2 24	177,963	No N/A 2	862 138.4		227.637	126.64	D No	N/A 242,214		73 No	N/A 321,270	33,01	7 No	N/A
May-18 39,967 46					83 70,137	200			97,834		8 No	N/A 117,78				,104 No					N/A 167,923			N/A 17			No N/A 2		3 No N/A			B No	NA 242.221	98.5		N/A 321,277	10.994		
		297,729							98,377			N/A 118,32					N/A 1				N/A 168,466			N/A 17			No N/A 2		7 No N/A				N/A 242,764			N/A 321,2/7			
3 Jun-18 40,510 48,	,105																					109,773															10,419		
³ Jul 18 39,990 46,					106 70,181				97,857		7 No	N/A 117,80		N/A 134,0	91 18	.903 No			174,531	No	N/A 167,946	166,048	No	N/A 17	6,364	147,630	No N/A 2	892 108,1	2 No N/A	227.667		7 No	N/A 242,244			N/A 321,300			
Aug 18 40,049 45	,184	257,354							97,916			N/A 117,85					N/A 1-				N/A 168,005		No	N/A 17	6,423		No N/A 2		2 No N/A	227,728			N/A 242,303		00 No	N/A 321,359			
Sep 18 39,949 44,		239,439	No N	/A 65,0	05 70,100	214,	1,323 N	lo N∕A	. 97,816			N/A 117,76			50 14	.338 No	N/A 1-	49,422	129,900	No	N/A 167,905			N/A 171		103,065	No N/A 2	851 63,5	7 No N/A	227,626	51,76	Z No	N/A 242,203	37,1	85 No	N/A 321,259	None	41,871	64
Oct-18 39,914 44,	,914	229,864						lo N/A		171,98	7 No	N/A 117.72		N/A 134,0	16 13	.753 No	N/A 1-	49,387			N/A 167,870			N/A 171			No N/A 2		2 No N/A		42,17	7 No	N/A 242,168	27,6	00 No	N/A 321,224	None	51,458	64
Nov-18 39,914 44	,914	220,017	No N	/A 65,0	30 70,030	194,	1,901 N	lo N/A	97,781	162,15	0 No	N/A 117,72	3 142,203 No	N/A 134,0	15 12	.916 No	N/A 1-	49,387	110,544	No	N/A 167,870	92,061	No	N/A 17	6,288	83,643	No N/A 2	816 44,1	5 No N/A	227,591	32,34	D No	N/A 242,168	17,7	63 No	N/A 321,224	None	61,293	64
Dec-18 39,914 44,	914	199,105	No N	/A 65.0	30 70.030	173	1989 N	lo N/A	97 781	141.23	8 No	N/A 117.72	3 121,291 No	N/A 134.0	15 10	.004 No	N/A 1-	49.367			N/A 167,870	71.149	No	N/A 17	6.288	62,731	No N/A 2	815 23.2	3 No N/A	227,591	11.42	3 No	N/A 242.168	None	3.149	48 321 224	None	82,205	64
Jan 19 39,914 44					30 70.030				97,781		D No						N/A 1				N/A 167,870			N/A 17			No N/A 2		5 No N/A		None	8.470	46 242.168		23.047	48 321 224	None	102.103	64
Feb 19 39,914 44	014	154.118	Ho N	(A 65.0	30 70,030	101	000 N	lo NVA	07 791		0 No	N/A 117.72		N/A 134,0	16 8	015 No	N/A 1	10 207			N/A 167,870			N/A 17			No N/A 2		21,786 4		None	33,581	46 242,168		48,138	49 224 224	None	127 104	84
Mar 19 39.914 44	014				30 70,030	100	000 10	100	97,781		G No	N/A 117.72		N/A 134,0	10 0	0010 10	N/A 1	40,007			N/A 167,870			N/A 17		None				3 227.591	None	57,507	46 242.168		72 084	40 021,224	None	151.140	04
Apr-19 39,914 444					30 70,030						B No					009 No	N/A 1	49,38/					NO	N/A 17							None	57,507				48 321,224		101,140	04
									97,804					N/A 134,0		(744 No	N/A 1	49,410	372	NO	N/A 167,893	None	18,111	33 1/		None 2				3 227,614	None	11,832	45 242,191		92,409	48 321,24/	None	171,465	64
May-19 39,957 44,	,999	97,439							97,824			N/A 117,77					N/A 1-				30 167,913			33 17			8,935 35 2		78,463 4			90,238			104,815	48 321,267	None	183,871	64
4 Jun- 19 39,978 46.					094 70,158				97,846			N/A 117.79					N/A 1-				N/A 167,934			N/A 17			No N/A 2		4 No N/A				N/A 242,232			N/A 321,288	None	31,094	63
⁴⁴ Jul 19 39,984 45,	,054	234,665					0,549 N	o NA	97,851			N/A 117,79		N/A 134,0			N/A 1-				N/A 167,940			N/A 171			No N/A 2		3 No N/A	227,661			N/A 242,238	32,4	11 No	N/A 321,294	None	46,645	63
Aug-19 39,997 46,	,060	228,251	No N	/A 65,1	113 70,198	203,			97,864	170,38	4 No	N/A 117,81	1 150,437 No				N/A 1-	49,470	118,778	No	N/A 167,953			N/A 17		91,877	No N/A 2	,899 52,3	9 No N/A	227,674	40,574	4 No	N/A 242,251	25,9	97 No	N/A 321,307	None	53,059	63
Sep 19 39,924 44	.934	215.640	No N	/A 65.0	040 70.050	190	0.524 N	o N/A	97,791	157.77	3 No	N/A 117.73	3 137,826 No	N/A 134.0	25 12	,539 No	N/A 1	49.397	106.167	No	N/A 167,880	87.684	No	N/A 17	6.298	79,266	No N/A 2	826 39.7	8 No N/A	227.601	27.96	3 No	N/A 242,178	13.3	86 No	N/A 321,234	None	65.670	64
Oct 19 39.914 44					30 70.030				97,781	148.24	5 No	N/A 117.72					N/A 1-				N/A 167,870			N/A 17			No N/A 2	948 29.2	0 No N/A				N/A 242,168		59 No.	N/A 224 224	None	77.098	84
Nov-19 39,914 44		190,640				185	524 N	o NA	97,781		3 No	N/A 117.72	112.828 No	N/A 1940	15 9	539 No	N/A 1	49.387	81 167	No	N/A 167,870	B2 R94	No	N/A 17	6.288		No NA 2		B No NA		2.06	3 No	N/A 242,168	None	11 614	48 324 224	None	90.670	
Dec-19 39,914 44,					30 70,030			lo N/A			4 No	N/A 117.72				(200 No					N/A 167,870			N/A 17		48,427			0 10 104	227,591	None	2 976	46 242,108		17,463	49 224 224	None	95,570	64
					30 70,030				97,781		7 No						N/A 1							N/A 17			No N/A 2		2.138 4		None	13.913	46 242,168		28,400	40 000 000	None	107.546	<u> </u>
Jan-20 39,914 44,																					N/A 167,870																		
Feb-20 39,914 44,	914				30 70,030			o NA			5 No						N/A 1				N/A 167,870			N/A 17			No N/A 2			3 227,591	None	19,385			33,982		None	113,018	
Mar-20 39,914 44,					30 70,030				97,781		2 No	N/A 117.72					N/A 1-				N/A 167,870			N/A 17			No N/A 2			3 227,591	None	30,478	46 242,168		46,055		None	124,111	
Apr-20 39,917 44,					33 70,036				97,784	85,05		N/A 117.73	1 05,104 No				N/A 1				N/A 167,873			N/A 171			No N/A 2			3 227,594	None	44,759	45 242,171	None	59,336		None	138,392	64
May-20 39,947 44,		134,333	No N	/A 65.0				lo N/A	97,814			N/A 117.76	1 56,519 No	N/A 134,0	48 4	(232 No	N/A 1-	49,420	24,860	No	N/A 167,903	6,377	No	N/A 17	6,321	None	2,041 35 2	849 None	41,569 4	3 227,624	None	53,344	45 242,201	None	67,921	48 321,257	None	146,977	64
Jun-20 39,971 46	,027	125,702	No N	/A 65,0	87 70,143	100,),596 N	lo N/A	97,838	67,83	5 No	N/A 117,78	5 47,888 No	N/A 134,0	72 3	,601 No	N/A 1-		16,229	No	N/A 167,927	None	2,254	33 17	6,345	None	10,672 35 2	873 None	50,200 4	3 227,648	None	61,975	45 242,225	None	76,552	48 321,281	None	155,608	64
6 Jul 20 39.987 46					03 70.176				97 854	60,77		N/A 117.80	1 40,829 No				N/A 1				N/A 167,943	None	9,313	33 17	6.361		17.731 35 2			3 227,004	None	69.034			83,011	48 321 297	None	162.667	63
Aug 20 43,134 51	353				50 76,469	220	.536 N		101,001	196.79	5 No	N/A 120,94	3 176,838 No	N/A 137.2	35 19	1561 No	N/A 1	52.607			N/A 171,090		No	N/A 17		118.278	No N/A 2		0 No N/A	230.811	65.07	5 No			98 No	N/A 324,444		26.658	30
Sep 20 41,145 47					361 72,492			lo NVA			7 No	N/A 118,95					N/A 1				NA 169,101	123,428		N/A 17		115.010	No N/A 2	047 75.4	2 No N/A		60.70	7 No	N/A 243,399			N/A 322.455		29,928	
Sep-20 41,146 4/, Oct-20 39,920 44	000	201,384							90,012			N/A 118,05					N/A 1				NA 169,101 NA 167,876						No N/A 2		2 NO N/A 1 No N/A		03,70	- No			30 No 19 No	N/A 322,405		29,920	
Nov-20 39,920 44,	,820										6 No 5 No													N/A 17			No N/A 2 No N/A 2				42,38	- NO	N/A 242,174			14/74 021,200		61,24/	
					30 70,030				97,781								N/A 1-				N/A 167,870	91,985		N/A 17							32,26	D No	N/A 242,108			N/A 321,224	None		
Dec-20 41,749 48.		216,551	No N	/A 66,8	55 73,700				99,616			N/A 119,55					N/A 1				N/A 169,705			N/A 17			No N/A 2				28,874	4 No	N/A 244,003		97 No	N/A 323.059		64,759	
Jan-21 39,914 44,					30 70,030				97,781			N/A 117.72	3 131,172 No				N/A 1				N/A 167,870			N/A 171			No N/A 2				21,30	D No	N/A 242,168		32 No	N/A 321,224	None	72,324	
Feb-21 39,914 44					30 70,030			lo N/A			B No						N/A 1-				N/A. 167,870			N/A 171		57,821			3 No N/A		6,318	B No	N/A 242,168	None	8,259	48 321,224	None	87,315	
Mar-21 39,914 44,	,914	186,859	No N	/A 65.0	30 70,030	161.	,743 N	lo N/A	97,781	128,98	2 No	N/A 117,72	3 109,046 No	N/A 134.0	15 9	.758 No	N/A 1-	49,387	77,386	No	N/A 167,870	58,903	No	N/A 17	6,288	50,485	No N/A 2	,816 10.9	7 No N/A	227,591	None	818	46 242,168	None	15,395	48 321.224	None	94,451	64
Apr-21 39.921 44					37 70,043			lo N/A		110.66	7 No	N/A 117.73				433 No			59,061	No	N/A 167,877			N/A 17			No N/A 2		7,368 4	3 227.509	None	19,143	45 242 175	None	33,720	48 321 231	None	112,776	64
May 21 41.466 48.			No N	/A 88.7	82 73,134	130		o NA		108.12	3 No	N/A 119,28			67 6	(-800 No	N/A 1		54,517	No	NA 169,422			N/A 17			No NA 2		11,912 3	3 229.143	None	23,897	35 243720	None	38,264	37 322 778	None	117.320	
Jun-21 42,831 50,		158,481							100,333	100.04	4 No	N/A 120,44					N/A 1				N/A 170,587			N/A 17		27,010	No NA 2		17.421 2	8 230 300	None	20,007	30 244.095	Non÷	43.773	32 322 014	None	122,829	-10
6 Jul 21 42,031 50,		151,958							103,466			N/A 123.15			22 D	OFT No	N/A 1	54,104 E4,048			N/A 170,587			N/A 18			No NA 2		23.944 2	4 200,000	None	29,190	22 247,500	None	40,773	24 325,041		122,829	
											1 NO					.007 NO	N/A 1	04,010											201011	1 203,020		00,110				24 320,003			
Aug-21 45,871 66.			No N		87 81,943				103,738						72 4	(841 No	N/A 11	55,344			N/A 173,827			N/A 18:			No N/A 2		31,960 2	0 233,548	None	43,735	21 248,125		68,312	23 327,181	None	137,368	
Sep-21 47,197 59.	480	140,522	No N	/A 72,3	94,596	115	5,406 N	lo NA	105,064			N/A 125,01			98 4	.421 No	N/A 1	56,670			N/A 175,153			N/A 18:			No N/A 2			8 234,874	None	47,155	19 249,451		61,732	20 328,507		140,788	
Oct-21 49,661 64					77 89,525				107,528			N/A 127,47					N/A 1				NA 177,617			N/A 18		None	716 13 2			5 237,338	None	52,019			66,596			145,852	22
Nov-21 43,494 52,				/A 68,6					. 101,361		6 No			N/A 137,5		.202 No			23,830	No	N/A 171,450					None	3,071 21 2	,396 None	42,599 2	6 231,171	None	54,374	27 245,748		68,951			148,007	38
Dec-21 40,015 46	116	131,357	No N	A 65.1	131 70,232	106	3,241 N	lo N/A	97,882	73,49	0 No	N/A 117,82	0 53,543 No	N/A 134,1			N/A 1	49,488	21,884	No	N/A 167,971	3,401	No	N/A 17	6,389	None	5,017 35 2	,917 None	44,545 4	2 227,692	None	56,320	45 242,269	None	70,897	47 321,325	None	149,953	63

Table 4.9: Summary of calculated dilution factors downstream of TSF

Rainfall Event	Minimum	Spillway	CPO	07	CP0	5	CPO	D1
(ARI 72-hour)	dilution in TSF	Flow (m ³)	Flow (m ³)	Dilution Factor ¹	Flow (m ³)	Dilution Factor ¹	Flow (m ³)	Dilution Factor ¹
2,000	28	3,327	833,460	486	6,716,610	4,086	13,906,920	8,432
10,000	13	716	1,033,120	18,220	8,325,590	146,739	17,238,320	303,813
10 million	22	145,652	1,903,590	316	15,340,430	2,386	31,762,670	4,917

Note 1 - including dilution in TSF

KP_svr\...\PE801-139_10 Dargues Gold Project TSF Final Design Update Rev 0.docx

BIG ISLAND MINING PTY LTD

Dargues Gold Mine

26

This page has intentionally been left blank

27

In addition, Knight Piésold also undertook an analysis of dilution of water discharged from the emergency spillway to Spring Creek and downstream. This assessment was undertaken using the stream flow model established by KP as part of the dam break assessment (Ref. 5). The model identifies 14 sub-catchments within and surrounding the Project Site (refer Figure 4.6), including:

- Spring Creek upstream of the Tailings Storage Facility emergency spillway (Catchments SC07 and SC08);
- Spring Creek downstream of the spillway and upstream of Major Creek (SC05 and SC06);
- Majors Creek upstream of Spring Creek (SC10 to SC14); and
- Majors Creek downstream of Spring Creek (SC01 to SC04).

Table 4.9 presents the modelled flows and resulting dilutions at the following key locations downstream of the TSF.

- CP07 Confluence of the emergency spillway and Spring Creek.
- CP05 Confluence of Spring and Majors Creeks.
- CP01 downstream limit of the hydrological model, approximately 3.5km downstream of the Project Site boundary.

Knight Piésold notes the following points in relation to the modelling.

- The rainfall events assessed were 72-hour duration events at fixed annual recurrence intervals. These events may not be the critical duration or recurrence events, with events that just result in spillway flow potentially resulting in marginally less dilution. It is noted that the minimum dilution within the TSF that would coincide with a potential discharge via the emergency spillway would be approximately 13 times and would occur during month 70 of the facility operation when the volume of the supernatant pond would be approximately 14,800 m³ and the available stormwater storage capacity would be approximately 185,320 m³. For consistency with other hydrological modelling undertaken for the facility, the selected duration and annual recurrence intervals have been used.
- The Hydrologic Modelling System HECHMS Model was un-calibrated.
- Initial loss (0.1 mm) and constant loss (1 mm/hr) used for all model runs was that for a PMP or 1 in 10 million year event.
- Areal reduction and spatial patterning of the precipitation was not considered for any of the model runs. Point precipitation depth was assumed.

28

 The end result of the model is the comparison of the total run-off that passes a control point in the model and the total spillway flow. The calculation does not calculate instantaneous dilution, just the volume to volume dilution. The actual dilution factor is likely to vary during a storm event.

4.5 SURFACE WATER MANAGEMENT

Following discussions with the client it was agreed that the catchment area of the TSF would be kept as small as practicable and on this basis catchment diversion channels would be utilised. The total catchment area reporting to the facility is approximately 23 Ha, and of this total approximately 6.7 ha and 9.1 ha lie within the perimeters defined by the Stage 1 and final diversion channels respectively. From a design perspective, it was assumed that the run-off from the upstream catchment is diverted during the various water balance simulations. For the storm storage and freeboard calculations, i.e. for extreme flood events, it was conservatively assumed that the diversion channels were not operational.

Run-off is expected to sheet across the landscape rather than form discrete watercourses; hence the diversion channels have been designed to intercept surface run-off along their entire lengths. The diversion channels will be triangular in shape, a minimum of 1 m deep, with side slopes of 2:1 (H:V) and a channel gradient of 0.5%. The channels are sited to drain to existing natural drainage channels on either side of the TSF embankment abutments. The diversion channels are designed to have sufficient capacity to convey the peak run-off from 1:10 AEP (Stage 1 diversion) and 1:100 AEP (final diversion), critical duration (2 hours) storm event using the solution of Manning's equation for normal depth, with an additional freeboard allowance of 200 mm.

The hydraulic results (critical velocities) predicted during passage of the 1:100 AEP, 2 hour storm indicate that erosion protection is not required within the diversion channels except at the respective outfalls where rip-rap could be justified. However, no erosion protection is provided for, and it is assumed that any erosion will be repaired as necessary and that sediment run-off associated with these channels will be captured by facilities in place downstream of the TSF.

General arrangements of the proposed surface water management layout at Stage 1 and Stage 5 are shown in Drg. Nos. 801-139-A501-011 and 801-139-A501-015. Sections and details of the diversion channels are presented in Drg. No 801-139-A501-021.

29

5. TAILINGS FACILITY DESIGN

5.1 GENERAL DESCRIPTION

The facility will comprise a cross-valley storage with a zoned embankment. The design incorporates a basin underdrainage system to reduce seepage, and a toe drain located at the upstream toe to lower the phreatic surface adjacent to the embankment. The upstream toe drains and underdrainage system drain by gravity to a collection sump located at the upstream toe of the embankment. Supernatant water will be decanted from the facility via a decant tower located at the head of valley. Solution recovered from the underdrainage and decant systems will be pumped back to the plant for re-use in the process circuit. An emergency spillway will be constructed for each raise to control the discharge of any extreme storm events exceeding the design event.

Tailings will be discharged into the facility by sub-aerial deposition methods, via spigots spaced at regular intervals along the embankment crest, so as to maximise tailings density and evaporation of water. Deposition will occur mainly from the embankment towards the valley in order to form a supernatant pond towards the north-eastern perimeter.

The general layout and typical details of the TSF are shown on Drg. Nos. 801-139-A201-011 to 801-139-A201-091.

5.2 EMBANKMENT CONSTRUCTION

The TSF embankment will be constructed in five stages. Stage 1 will be constructed initially and will provide for the first 12 months of operation. All of the five stages will be constructed by downstream construction to achieve the final embankment height. The typical embankment cross-section is shown on Drg. No. 801-139-A201-022. A more detailed description of the embankment is outlined below.

Embankment construction will comprise a zoned embankment constructed of selected local borrow. The embankment consists of an upstream low permeability zone (Zone A) and a downstream structural zone (Zone C). Typical material specifications for the embankment are summarised below:

- Zone A material will be selected local borrow with an average hydraulic conductivity not greater than 3 x 10⁻⁸ m/s. Zone A material will comprise a combination of mine waste from the box cut and cut material from excavation of the diversion channels and re-shaping of the valley spine, and will comprise extremely weathered granite.
- Zone C material for Stage 1 construction will also comprise a combination of mine waste from the box cut and cut material from excavation of the diversion channels

30

and re-shaping of the valley spine, supplemented by local borrow, if required. Zone C material for subsequent stages will comprise mine waste, or material borrowed locally.

The initial embankment will have upstream and downstream slopes of 1V:3H with a crest width of 6 m. The same crest width will be adopted for subsequent stages. It is expected that the tailings will not be suitable as a construction material and the design is based on all lifts being constructed using mine waste and local borrow.

Construction of the stage raises will commence before the current stage is full so that there is adequate storage volume available throughout the life of mine and to minimise construction delays. A summary of the proposed embankment staging is provided in Table 5.1.

able 5.1: Staged embankment construction
Tabl

Stage	Duration	Cumulative Tailings	Cumulative Tailings Embankment Design Crest	Construction Schedule
		Production		
	(months)	(t) ¹	(m RL) ²	
1	12	233,106	704.0	February to June 2016
7	12	504,348	709.0	Dec 2016 to Feb 2017
ю	12	827,805	712.5	Jan 2018 to Mar 2018
4	12	1,016,057	714.5	Mar 2019 to May 2019
Final	17	1,213,601	716.0	May 2020 to July 2020
Notes: 1. Product	tion based on the l	Notes: 1. Production based on the Unity mining plan (May 2015).		

Embankment crest levels based on tailings beach slope of 1 in 80. c,i

ENVIRONMENTAL ASSESSMENT – MODIFICATION 3

Report No. 752/38 - July 2015 Appendix 7

Construction Schedule

ő

32

5.3 SEEPAGE CONTROL

In order to mitigate seepage losses through the basin area and increase the settled density of the deposited tailings, a number of seepage control and underdrainage collection features have been integrated into the design. The seepage control and underdrainage collection systems will consist of the following components:

- i. Cut-off trench.
- ii. Low permeability soil liner.
- iii. Geosynthetic liner.
- iv. Basin underdrainage collection system.
- v. Underdrainage collection sump.
- vi. Leak collection system.
- vii. Embankment upstream toe drain.

5.3.1 Cut-Off Trench

Primary seepage control from the tailings facility will comprise the construction of a cutoff trench excavated into the foundation soils and backfilled with low permeability fill to reduce seepage loss through the embankment foundation.

The cut-off trench will be located beneath the upstream toe of the embankment and will be cut to a depth of approximately 2 m to 3 m (depending on ground conditions). The cut-off trench will be constructed continuously along the upstream toe of the embankment to the full deposition elevation to limit potential seepage at any level. If the cut material is suitable as Zone A fill it may be replaced in the excavation in compacted layers; alternatively, suitable low permeability material will be won, conditioned, placed and compacted in the trench.

The location and details of the embankment cut-off trench are shown on Drg. No. 801-139-A201-021.

5.3.2 Low Permeability Liner

The deeply incised creek will be widened to approximately 5 m width and the creek banks cut back to a slope of 1V:3H. The surplus material will be used for embankment construction. The basin will be compacted to form a low permeability soil liner to tie into the low permeability zone of the embankment. The liner will be constructed by scarifying the surface soils, moisture conditioning, and re-compacting to a target permeability of 3×10^{-8} m/s. Some cross movement of material may be required for areas with insufficient fines in the subgrade.

33

5.3.3 Geosynthetic Liner

The complete basin area and embankment upstream face will be lined with a 1.5 mm HDPE geomembrane liner in order to reduce any seepage from the tailings and the supernatant pond. The HDPE liner will be placed on top of the compacted soil liner forming a composite liner system. Smooth geomembrane will be utilised except at the location of the decant towers, where a textured geomembrane will be placed to provide additional stability to the causeway and decant towers.

Drg. No. 801-139-A201-015 shows the proposed extent of the HDPE geomembrane.

5.3.4 Basin Underdrainage Collection System

The underdrainage collection system is designed to reduce the phreatic surface on the tailings basin area under the decant pond and immediately upstream of the embankment. The underdrainage has several benefits as follows:

- Reduces seepage through the basin and under/through the embankment;
- Drains the tailings mass, thus increasing the density of the tailings and providing a more efficient facility in terms of storage;
- Increases the strength of the tailings mass immediately adjacent to the embankment.

The design of the underdrainage system takes advantage of the natural fall of the ground to reduce re-shaping of the basin. The underdrainage system will consist of three drainage networks, namely the main collector drains, branch drains and finger drains.

The collector drain will be constructed along the main drainage line. The drain will consist of a 7 m wide sand layer (Zone F) with a nominal thickness of 300 mm, with 4 no. 160 mm draincoil pipes running for the entire underdrainage length. The sand will be covered by an erosion protection layer (Zone E) of 150 mm thickness in order to reduce erosion losses and damage to the drains. The collector drain pipes will feed directly into the underdrainage collection sump located at the upstream toe of the embankment.

The branch drains will be constructed across the basin along the minor drainage lines and finger drains will be constructed across the HDPE lined area at approximately 25 metre spacings. Both branch and finger drains will be of triangular profile, with a 100 mm draincoil pipe along the centreline and a sand layer (Zone F) wrapped by geotextile, and will be held in place by welding HDPE straps to the geomembrane liner. The branch drains will feed directly to the collector drains and the finger drains will connect into the branch and collector drains.

34

The layout of the facility underdrainage system is shown on Drg. No. 801-139-A201-050 and relevant sections and details are shown on Drg. Nos. 801-139-A201-051 and 801-139-A201-052.

5.3.5 Underdrainage Collection Sump

An underdrainage collection sump will be constructed against the upstream toe of the TSF embankment. This sump will collect solution from the toe drains and underdrainage system and consists of the following components:

- An excavated sump, filled with clean gravel wrapped in geotextile. The sump will be located on top of the geomembrane liner.
- A 630 mm diameter HDPE (SDR26) solid riser pipe, slotted only at the base. The pipe is located on top of the geomembrane liner (protected with a wearsheet) and runs up the upstream embankment face.
- A submersible pump.
- A hoist and pulley to raise and lower the pump.

The underdrainage system details are shown on Drg. Nos. 801-139-A201-053 and 801-139-A201-054.

5.3.6 Leak Collection System

A leak collection drain will be constructed at the base of the valley within the TSF basin area to intercept seepage through the basin liner during operation. The drain will comprise a 50 mm diameter draincoil pipe situated at the base of a 1 m deep trench, backfilled with clean sand/gravel (Zone F) to 700 mm depth, wrapped with geotextile, overlain by a 300 mm thick low permeability material cap. The leak collection drain will feed directly into the leak collection sump which will incorporate the following components:

- An excavated sump, filled with clean gravel wrapped in geotextile. The sump will be located below the underdrainage sump and below the geomembrane liner.
- A 630 mm diameter HDPE (SDR26) solid riser pipe, slotted only at the base. The pipe is located below the geomembrane liner in a trench that runs up the upstream embankment face.
- A submersible pump.
- A hoist and pulley to raise and lower the pump.

Collected solution will be pumped back onto the tailings beach, with flows reporting to the supernatant pond for recycling back to the process plant. The leak collection system details are shown on Drg. Nos. 801-139-A201-053 and 801-139-A201-054.

5.3.7 Embankment Upstream Toe Drain

In addition to the basin drainage system, a toe drain will be constructed along the upstream toe of the embankment. The toe drain has two purposes. The main purpose is to increase the stability of the embankment by providing drainage of the tailings and hence lowering the phreatic surface adjacent to the embankment. The second purpose of the toe drain is to act as an underdrainage collection pipe.

The toe drain will be similar in design to the collector drains and will comprise a 160 mm draincoil pipe laid at the base of the drain within 300 mm of drainage material (Zone F) wrapped by geotextile. The toe drain will drain into the underdrainage collection sump for recycling back into the facility.

Details of the embankment toe drain are shown in Drg. No. 801-139-A201-021 and 801-139-A201-050.

5.4 ADDITIONAL SEEPAGE CONTROL MEASURES

The facility is designed with a number of seepage control measures. If the designed seepage control measures do not provide sufficient seepage control, there are a number of additional seepage control measures which can be incorporated into the facility at a later stage. The two main additional seepage control measures are:

- Downstream seepage interception trench (0 5 m zone). The trenches can be either open or closed (i.e. backfilled with drainage material) with sumps to collect the seepage and return it into the facility.
- Water recovery bores these are used to intercept seepage flows at depths greater than 5 m.

5.5 DECANT AND RETURN WATER SYSTEM

The TSF will operate with two decant towers, both located towards the top of the valley. An initial decant tower will be constructed for Stage 1. It is expected that it will take approximately 3 to 6 months for the tailings beach to develop sufficiently for the pond to come into contact with the Stage 1 decant tower, at which stage it can become operational and water can be returned to the plant. The Stage 1 decant tower will become redundant later in the life of the TSF as the pond level rises and migrates further up the valley. The base of the second decant tower will be constructed as part of Stage 1 construction but the tower will be commissioned only once the Stage 1 decant becomes redundant. The second decant will operate for the remainder of the

36

life of the facility. The decant towers will be raised as required with each embankment lift and will consist of the following components:

- An access causeway constructed of Zone C material;
- A slotted concrete decant tower consisting of a 1.8 m diameter slotted concrete pipe surrounded by clean waste rock (Zone G) with a minimum size of 100 mm;
- A submersible pump with float control switches mounted on a lifting hoist.

The decant pump will be raised on a regular basis to ensure that no tailings enters the pump intake.

The location of the decant towers are shown on Drg. Nos. 801-139-A201-011 and 801-139-A201-015; sections and details are shown on Drg. No. 801-139-A201-031.

5.6 EMERGENCY SPILLWAY

The tailings storage facility has been designed to completely contain storm events during operation up to and including an annual exceedance probability (AEP) of 1:1000 on top of the predicted maximum pond level under average climatic conditions, without the emergency spillway operating. Consequently, exceeding the storm storage capacity of the facility at any stage of operation is unlikely. Regardless, in the event that the storage capacity of the facility is exceeded, water which cannot be stored within the facility will discharge via an engineered spillway. The emergency spillway during operation is designed to convey run-off from a 1:100,000 AEP critical duration storm, assuming that the decant pond level is at the spillway invert level at commencement of the storm event.

A new spillway will be constructed at each stage of construction and will be excavated adjacent to the southern TSF embankment. The general layout and channel dimensions are shown in Drg. Nos. 801-139-A201-060 and 801-139-A201-061. Channel revetment will be placed in the excavated channel where the spillway crosses the embankment crest, and will be omitted downstream of the embankment where the spillway traverses natural ground (due to the transient nature of the spillway). At closure, the spillway will be deepened, widened and extended into the facility, and channel revetment will be placed as shown. Under closure conditions the emergency spillway has sufficient capacity to control the discharge from a PMPDF (or DCF) without overtopping the TSF embankment.

5.7 TAILINGS AND DECANT RETURN TRENCH

The tailings delivery and decant return pipelines will be located within a bunded corridor between the process plant and the TSF in order to contain spillage of tailings

37

or decant water. The paste delivery pipeline will also be contained within the same trench between the process plant and the paste fill holes. Typical sections and details are shown in Drg. No. 801-139-A201-071.

5.8 SEEPAGE ASSESSMENT

5.8.1 General

Seepage analyses were undertaken on the TSF to assess the following aspects of the design:

- Estimate the position of the phreatic surface within the embankment. This
 indicates how much of the embankment material could be saturated and is
 therefore a consideration for slope stability. A high phreatic surface (and
 consequent high pore water pressures) is a key consideration in the
 assessment of embankment stability.
- Estimate the total seepage losses from the TSF. It is common to estimate the maximum possible seepage loss by making conservative assumptions. This result has implications for the potential environmental impact of the TSF.
- Estimate the influence of the basin underdrainage system on the phreatic surface within the TSF. This modelling indicates how critical the underdrainage system is to the performance of the TSF and what the consequences would be if the underdrainage system were to fail.

5.8.2 Geometry

The seepage model used for this analysis was based on a south-west to north-east aligned long section through the TSF. The section was aligned with the main creek along the valley floor. The sub-surface conditions beneath the facility are based on the geotechnical information derived from the site investigations. Beneath the spine of the valley the layer of alluvial sand at the surface has some impact on the seepage flows. The depth of this alluvial layer varies along the creek, as does the underlying soil profile. Embankment zoning is based on the design geometry shown in Drg. No. 801-139-A201-022.

In the TSF basin there are two separate underdrainage systems. The basin underdrainage system is above the geosynthetic liner and reports to the underdrainage sump. This system extends along the creek to the sump located at the toe of the TSF embankment. The seepage collection system is located at the upstream toe of the TSF embankment. The full length of the upstream toe drain reports to the underdrainage sump.

38

Knight Piésold

The seepage analysis program Seep/W was used to evaluate seepage losses for the TSF.

5.8.3 Material Types and Properties

The assumed cross-section through the facility is illustrated in Figure 5.1 and the adopted material properties of the facility are summarised in Table 5.2.

Material Type	Permeability, k (m/s)	Source
Zone C – Structural Fill	1.0 x 10 ⁻⁷	Assumed
Zone A – Low Permeability	3.0 x 10 ⁻⁸	Assumed
Alluvial/Colluvium	5.0 x 10 ⁻⁵	In Situ Field Data
HDPE Geomembrane*	1.0 x 10 ⁻¹¹	Specification
Compacted Soil Liner	3.0 x 10 ⁻⁸	Assumed
Weathered Rock	8.0 x 10 ⁻⁷	In Situ Field Data
Granite	1.0 x 10 ⁻⁹	Assumed
Tailings	5.0 x 10 ⁻⁷	Laboratory Data

Table 5.2: Adopted material types and properties used in seepage model

* HDPE geomembrane is used in combination with a compacted soil liner.

The water table was based on observations made during the site investigation and was modelled at 2.0 to 2.5 m below natural ground level at the base of the valley.

5.8.4 Scenarios Modelled

Seepage from the facility at the end of the operation was modelled as the critical scenario. This model was used to determine seepage levels and pressures at the maximum tailings and pond levels. The scenario was broken down into two cases as follows:

• Case 1 – Expected Operational Conditions

This model assumes an operational basin underdrainage system and HDPE liner. The decant pond is assumed to be that arising from average rainfall conditions. The results of this case are shown in Figure 5.2.

• Case 2 - Underdrainage System Not Operational

The purpose of this model was to examine the effect of the underdrainage system on the performance of the TSF. The model is identical to Case 1 but with no underdrainage system. The results of this case are shown in Figure 5.3.

5.8.5 Boundary Conditions

The following boundary conditions were assumed in the analysis:

• The supernatant pond is represented by a constant head boundary condition, where the head is equal to the elevation of the pond surface.

- 39
- At the left edge of the model (i.e. at the embankment) the water level was set at 2.5 m below ground level.
- At the right side of the model the water level was set at 2 m below ground level.
- Drainage systems were modelled as a series of free draining points (or zero pressure nodes). These nodes were placed at the design underdrainage spacing to account for the infiltration rate.
- The downstream toe was modelled using flux (Q) review nodes, by maximum pressure (seepage may pass through the downstream toe).

5.8.6 Results of Seepage Assessment

The seepage modelling results are summarised in Table 5.3. The seepage rates tabled do not include discharge from the drainage systems (i.e. the rates listed are actual seepage losses from the TSF rather than water circulated through the tailings mass). The seepage through the basin is pro-rated by the ratio of the basin area to the length of the model.

Case	Water flow through basin	Water flow through basin	No. of Times Case 1	Equivalent permeability	Figure No.
	(L/s/m)	(L/s)		(m/s)	
Underdrainage Functioning Partially Saturated Tailings	1.53 x 10 ⁻⁴	0.031	-	3.2 x 10 ⁻¹⁰	5.2
Underdrainage Not Functioning Partially Saturated Tailings	9.25 x 10 ⁻⁴	0.187	6	2.0 x 10 ⁻⁹	5.3

Table 5.3: Results of seepage modelling for final stage

The results of the two cases are discussed below:

Case 1 – Expected Operational Conditions

Case 1 was modelled with the basin underdrainage system operational. At the left side of the model (i.e. at the main embankment) the phreatic surface is at the level of the underdrainage system, and thus the tailings in this area are unsaturated. In the area beneath the decant pond the tailings are saturated. However, the underdrains reduce the pressure at the HDPE liner, indicating that the drainage is effective in lowering the pressure on the liner and reducing the seepage loss.

The seepage collection system at the TSF embankment upstream toe acts to capture seepage and mitigates seepage into the downstream environment. The seepage rate of 0.031 L/s is equivalent to a basin permeability of 3.2×10^{-10} m/s.

40

• Case 2 – Underdrainage System Not Operational

The impact of having the underdrainage non-operational is that the phreatic surface extends to the upstream toe of the embankment. Over the liner itself the pressure head is equal to the height of the pond. The increase in pressure results in an increase in seepage rate to 0.187 L/s, which is equivalent to a basin permeability of 2.0×10^{-9} m/s.

As shown in Table 5.3 the seepage rate increases by 6 times when the basin underdrainage system is non-operational. This indicates that water previously collected by the underdrainage now seeps through to the TSF embankment. At the embankment, the basin liner and seepage collection system largely intercept this seepage and the increased flow rate is within the capacity of the seepage collection system.

5.8.7 Conclusions

The results of the seepage modelling provide the following conclusions:

- The phreatic surface will remain well away from the TSF embankment under expected operational conditions.
- The proposed arrangement of the basin HDPE geomembrane liner with underdrainage system will result in significantly reduced seepage from the facility, by about 80% compared to the case where the underdrainage system is not operational.
- Inevitably some seepage will occur through the TSF basin. However, the seepage rates are equivalent to an overall basin permeability of between 2.0×10^{-9} m/s and 3.2×10^{-10} m/s.

5.9 STABILITY ASSESSMENT

5.9.1 Embankment Stability

The stability of the tailings storage facility embankment was assessed in order to confirm the factors of safety against shear failure under the range of possible operating conditions. In accordance with Australian National Committee on Large Dams (ANCOLD) guidelines on tailings dams (Ref. 6), the assessment covered the following steps:

- Analysis under static (drained and undrained) conditions.
- Analysis under post seismic conditions.
- Deformation analysis under earthquake loading (Swaisgood method and Pells and Fell method).
- Liquefaction potential assessment.

41

The computer program, SLOPE/W, was used for the analyses which were carried out using the modified Morgenstern-Price method. SLOPE/W calculates the magnitude of the de-stabilising forces in the embankment slope and compares this to the total strength of the soil structure. The calculated ratio of these two parameters is the factor of safety against slope failure. When the de-stabilising forces are equal to the strength of the structure, this ratio (the factor of safety) is equal to one and the embankment is said to be "just stable". As the factor of safety increases, the probability of an embankment failure is reduced.

Pseudo-static analysis is no longer recommended by the ANCOLD "Guidelines for Design of Dams for Earthquake" (Ref. 11) for assessment of embankment performance under seismic loading. The stability of the embankments under earthquake loading conditions was assessed using post-seismic stability analysis and empirical seismic deformation analysis. A horizontal ground acceleration of 0.11g was adopted as the operating basis design acceleration (OBE) based on the seismicity assessment for the site area. An event of this magnitude is calculated to have a return period of 1 in 1000 years or, in effect, a 5% probability of occurring in 50 years.

In addition to the above the stability of the facility was examined by applying a 1 in 10,000 year return period maximum design earthquake (MDE) acceleration of 0.34g in the analysis.

The stability of the embankments was measured under each load case against the minimum recommended factors of safety against failure, as provided in the ANCOLD guideline (Ref. 11). These factors are summarised in Table 5.4.

Long-term drained stability	1.5
Short-term undrained stability (no potential loss of containment Post seismic stability	1.3 1.0-1.2

Table 5.4: Minimum factors of safety for design

5.9.2 Material Properties

The properties of the materials to be used for embankment construction are based on the results of the site investigation and laboratory testing of typical samples. The strength properties selected are considered to be representative of the various types of materials identified during the site geotechnical investigation and proposed to be used in the embankment, and are based on laboratory test data where this is available. Soft/loose alluvial clay/sand was observed within the creek during the site investigation

programme. Undrained shear strength parameters were adopted to check the short term undrained stability of the TSF embankment. The adopted shear strength parameters for the various material horizons are defined in Table 5.5. The embankment material and soil are considered to be non-liquefiable. However, certain materials may be subject to strength loss and strain softening after an earthquake event. The post seismic residual strength is adopted as 80% of the static shear strength. The tailings are considered potentially liquefiable and the post-seismic shear strength is assumed to be 5°.

Table 5.5:	Shear	strength	parameters
------------	-------	----------	------------

Material	γmoist	γsat	c'	Ø'	Undrained
	(kN/m ³)	(kŇ/m³)	(kPa)	(°)	
Zone A low permeability fill	18	19	5	28	s _u =0.3σ' _v , min =50kPa
Zone C structural fill	18	18	0	30	-
Tailings	14	16	0	20	-
Alluvium/ Colluvium	18	20	0	30	s _u =0.3σ' _v , min =30kPa
Weathered rock	21	22	0	33	-
Granite	23	24	0	40	-

5.9.3 Embankment Stability

The stability of the TSF embankment was assessed under drained, undrained and post seismic conditions, at both Stage 1 and final height. The models were analysed using conservative assumptions regarding the level of the tailings and the phreatic surface. For example, when downstream stability was being considered, the model assumed that the TSF was at full capacity. In addition, the effect of the pore water pressures on embankment stability was also modelled very conservatively by incorporating high phreatic surfaces in order to analyse the worst case scenario. In practice, it is expected that the decant pond will be located well away from the TSF embankment and that, even in the event of a storm event, the rise in pond level will be temporary only and should not cause a permanent rise in the phreatic surface. On this basis the analysed phreatic surfaces are considered to be higher than would be experienced in practice. Obviously, this will be monitored and the stability of the embankments will be reviewed regularly as part of ongoing monitoring of the facility.

The analysed sections were derived from Drg. Nos. 801-139-A201-021 and 801-139-A201-022 and represent the critical sections where the embankment height is greatest. The results of the stability analyses are presented in Table 5.6. The modes of failure and the geometry of the analysed sections are shown on figures 5.4 through 5.11.

KP_svr\...\PE801-139_10 Dargues Gold Project TSF Final Design Update Rev 0.docx

42

43

Case	Description	Drained Factor of Safety	Undrained Factor of Safety	Post Seismic Factor of Safety	Figure
1	Starter, High Pond	1.72	1.3	1.05	5.6, 5.7, 5.8
2	Final, High Pond	1.85	1.4	1.12	5.9, 5.10, 5.11

Table 5.6: Summary of TSF embankment stability results

Comparison of the results with the ANCOLD minimum factors of safety indicates that the embankment sections are stable under both static and post seismic loadings.

5.9.4 Deformation Analysis

The empirical Swaisgood (1998) (Ref. 12) and Pells and Fell (2003) (Ref. 13) methods recommended in the ANCOLD guidelines were used to estimate the crest deformation under the OBE and MDE design earthquake scenarios.

The relative crest settlement approximation by Swaisgood is based on the embankment height, embankment type, depth of alluvium in the foundation, earthquake magnitude, peak ground acceleration, and focal distance of the embankment to the earthquake.

The vertical crest settlement (as a percentage) can be approximated by:

RF is calculated based on the dam type as follows:

RF = 2.0 D^{-0.35} (for earthfill dams) RF = 8.0 D^{-0.35} (for hydraulic fill dams) RF = 0.12 D^{0.61} (for rockfill embankments) *Where*:

D = distance between seismic energy source and embankment (km)

44

SEF is calculated based on the earthquake parameters as follows:

SEF = e^(0.72 M + 6.28 PGA - 9.1)

Where:

M = *earthquake magnitude*

PGA = peak horizontal ground acceleration as a fraction of gravity

The Damage Classification System was developed by Pells and Fell. Data from 305 dams, 95 of which reported cracking, were gathered and classified for damage according to the system shown in the Table 5.7.

Dam	nage Class	Maximum Longitudinal Crack Width (mm)	Maximum Relative Crest			
Number	Description	Crack Width (mm)	Settlement (%)			
0	No or Slight	< 10	< 0.03			
1	Minor	10 – 30	0.03 – 0.2			
2	Moderate	30 – 80	0.2 – 0.5			
3	Major	80 – 150	0.5 – 1.5			
4	Severe	150 – 500	1.5 – 5			
5	Collapse	> 500	> 5			

 Table 5.7: Damage Classification System (Pells and Fell, 2003)

The crest settlement after the OBE and MDE events according to the above empirical methods are summarised in Table 5.8.

Method	Settlement S	stage 1 (mm)	Settlemen	t Final (mm)
	OBE	MDE	OBE	MDE
Swaisgood 1998	5	20	5	30
Pells and Fell 2003	10	10-50	10	10-75

Table 5.8: Maximum Crest Settlement using empirical methods

The estimated deformation is less than 0.1 m, well below the embankment freeboard, and therefore the potential for uncontrolled loss of storage is insignificant.

Relating satisfactory dam performance to earthquake induced deformation can be very subjective, and generally depends on dam specific criteria about the allowable loss of freeboard, or the tolerable extent of horizontal displacements. Whilst the calculated magnitude of displacements is fairly insignificant, there are a number of additional

45

reasons why the stability of the embankment under earthquake loading conditions is considered to be acceptable:

- Historically, even at short distances from an earthquake epicentre, there have been no complete failures of embankments built of clay soils, but several dams have come close to failure.
- Dams which have suffered complete failure as a result of earthquake shaking have been constructed primarily with saturated sandy materials or on saturated sand foundations. Liquefaction was a major contributing factor in these failures.
- Well-constructed dams of clay soils on clay or rock foundations not susceptible to strain weakening can withstand extremely strong shaking resulting from earthquakes of up to magnitude 8.25 with peak ground acceleration ranging from 0.35g to 0.8g.
- The foundation soils and proposed embankment construction materials are not subject to strain softening, and are not liquefiable. The static factor of safety of the critical failure surfaces involving loss of crest elevation are greater than 1.5 under working conditions expected prior to an earthquake.
- The minimum horizontal thickness of the constructed embankment will be 6 m, which is relatively thick in relation to potential movements of the embankment.
- There are no outlet works or low strength seams passing through the embankment or foundation which could produce leakage or potential piping erosion in the embankment.

In addition, it should be noted that under most conditions there will only be a limited amount of water in the facility.

5.9.5 Liquefaction Assessment

The embankment foundation comprises weathered rock and the embankment construction materials comprise clay and rock materials, and therefore neither are considered to be liquefiable.

The liquefaction potential of the tailings may be classified according to its particle size distribution. In general terms, saturated sands, silty sands, silts and gravelly sands are most susceptible to liquefaction, whilst finer grained soils are usually less susceptible. However, experience has shown that even soils with small amounts of clay may liquefy. In addition, mine tailings are more susceptible to liquefaction than natural soils, possibly reflecting their uniform size and recent deposition. There is some evidence that tailings will "age" and develop greater resistance to liquefaction with time.

46

Figure 5.12 shows the particle size distributions of the flotation and concentrate tailings samples in comparison to the particle size envelopes for slimes with low resistance to liquefaction and potentially liquefiable soils. This shows that the particle size distribution of both tailings samples lie predominantly within the boundaries of either potentially or most liquefiable soils.

Following the guidance provided in "Ground Motions and Soil Liquefaction During Earthquakes" (Ref. 14), liquefaction can only occur if all three of the following conditions are met:

- The clay content (particles less than 5 microns) is less than 15% by weight.
- The liquid limit is less than 35%.
- The moisture content is no less than 0.9 times the liquid limit.

Based on Atterberg Limit tests, the liquid limits of the flotation and concentrate tailings are 27% and 25% respectively. According to the particle size distribution tests, the clay-sized particle fraction of both tailings types is approximately 7% by weight. In addition, it is estimated that the moisture content of the tailings will generally remain above the liquid limit. Thus, the tailings properties for both types of tailings fulfil all three criteria for liquefaction potential. This analysis together with the tailings particle size distributions, suggests that liquefaction of the combined tailings is a possibility.

Regardless of the liquefaction potential of the combined tailings, each raise of the TSF will be constructed downstream and therefore the potential impact of tailings liquefaction is inconsequential.

5.10 TAILINGS STORAGE FACILITY MANAGEMENT

5.10.1 Tailings Deposition System

The deposition of tailings into the storage facility will be primarily from the TSF embankment. The tailings delivery pipeline will be routed from the process plant up to the crest of the TSF embankment. The tailings distribution pipeline will be located on the embankment crest and will be raised with each stage.

Deposition will occur from single offtakes inserted along the tailings distribution pipeline. The deposition location will be moved on a daily basis to one of the deposition points, or as required to control the location of the supernatant pond. All of the valves in the deposition system will be provided with pneumatic actuators for ease of operation.

5.10.2 Deposition Technique

Tailings deposition will be carried out using the sub-aerial technique in order to promote the maximum amount of water removal from the facility by the formation of a

KP_svr\...\PE801-139_10 Dargues Gold Project TSF Final Design Update Rev 0.docx

47

large beach for drying and draining. Together with keeping the pond size to a minimum, sub-aerial deposition will increase the settled density of the tailings and hence maximise the storage potential and efficiency of the facility.

The tailings will be deposited into the facility from the embankment in such a way as to encourage the formation of beaches over which the slurry will flow along the spine of the basin in a laminar non-turbulent manner. Limited settlement and water release will occur. The released water will form a thin film on the surface of the tailings. This water will flow to the supernatant pond from where it will be removed from the storage area via a decant tower. The Stage 1 decant tower is located such that it will first receive water approximately 3 to 6 months after commissioning the facility.

Deposition of the tailings will be carried out on a cyclic basis with the tailings being deposited over one area of the storage until the required layer thickness has been built up. Deposition will then be moved to an adjacent part of the storage to allow the deposition layer to dry and consolidate. This will facilitate maximum storage to be achieved across the whole valley.

After deposition on a particular area of beach ceases and settling of the tailings has been completed, further de-watering will take place due partly to drainage into the underdrainage system, but mainly due to evaporation. As water evaporates and the moisture content drops, the volume of tailings will reduce to maintain a condition of full saturation within the tailings. This process will continue until interaction between the tailings particles negates volume reduction.

48

6. CONSTRUCTION QUANTITIES

On the basis of the design presented, operating parameters supplied and/or assumed, construction quantities for the life of the facility have been determined. The quantities given are deemed accurate enough for an overall accuracy of $\pm 10\% - 15\%$.

Life of operation quantities for construction of the tailings storage facility are presented in Table 6.1. The following assumptions were made:

- Zone A will be obtained from mine waste (box cut) and construction earthworks for Stage 1, and from mine waste or local borrow for subsequent construction stages.
- Zone C will be obtained from mine waste (box cut) and construction earthworks for Stage 1, and from mine waste or local borrow for subsequent construction stages.
- Zone D will be obtained from mine waste (box cut).
- Zone E will be selected material from mine waste (box cut).
- Zone F will be imported from a local borrow source.
- Zone G will be selected material from mine waste (box cut).

Report No. 752/38 – July 2015 Appendix 7

Knight Piésold

Table 6.1: Tailings Storage Facility, Bill of Quantities - Final Design Update

49

ITEM	Table 6.1: Tailings Storage Facility, Bill of Quantities – Final Design Update Description	Unit	Stage 1 Qty	Stage 2 Qty	Stage 3	Stage 4	Stage 5 Qty	Total Qty
1	Preliminary and General Mobilise to site	14						
1.1	De-mobilise from site	item item	1	1	1	1	1	5
1.3	Fixed costs while established on site	weeks	20	12	12	12	12	68
1	TOTAL FOR PRELIMINARY AND GENERAL (nominal 15%) Foundation Preparation							
2.1	Clear and grub embankment footprint	sqm	17,064	15,506	16,534	11,921	10,194	71,220
2.2	Strip topsoil (300 mm nominal) from embankment foundation and stockpile	sq m	17,064	15,506	16,534	11,921	10,194	71,220
2.3	Excavate embankment cut-off trench, haul, place and spread excavated material in Zone C Scarify, moisture condition and compact embankment foundation (includes cut-off trench plus 5 m)	cum sqm	6,700 17,064	2,300 15,506	2,200 16,534	1,500 11,921	700 10,194	13,400 71,220
2.5	Win from borrow area, spread, moisture condition and compact Zone A material in cut-off trench	cum	6,700	2,300	2,200	1,500	700	13,400
2	TOTAL FOR FOUNDATION PREPARATION General Embankment Earthworks							
3.1	Win from borrow, load, haul, spread, moisture condition and compact Zone A material in embankment zones	cu m	8,470	8,170	7,598	5,204	4,257	33,699
3.2	Win from mine waste, load, haul, spread, moisture condition and compact Zone C material in embankment	cu m	102,571	127,728	159,922	127,201	118,128	635,550
3.3	Supply and install 160 mm dia class 400 slotted CPT draincoil, with tees, bends and joints inclusive for toe Win from local borrow, haul and place Zone F sand material to upstream toe drain	m cum	319 220	108 80	102 70	68 50	31 30	627 450
3.5	Supply and install geotextile to upstream toe drain	sqm	1,230	420	400	270	120	2,440
3.6	Supply and install 1.5 mm (60 mil) smooth HDPE geomembrane to embankment upstream face	sq m	6,805	6,309	5,857	4,092 700	3,309	26,372
3.8	Win from local borrow, load, haul, place and compact wearing course onto embankment crest (150mm thick) Win from local borrow, load, haul, and place Zone D fill as crest safety berm	cum cum	300 200	500 300	600 300	400	700	2,800
3	TOTAL FOR GENERAL EMBANKMENT EARTHWORKS							
4	Spillway Clear vegetation from spillway area	На	0.20	0.23	0.26	0.29	0.33	1.31
4.2	Grub spillway area	Ha	0.20	0.23	0.26	0.29	0.33	1.31
4.3	Strip topsoil (300 mm) from spillway foundation, load and haul to stockpile	cu m	300.0	400	400	500	500	2100
4.4	Excavate emergency spillway, load, haul and place excavated material to embankment Zone C Win from local borrow and place Zone E rip rap to spillway channel	cum cum	3,717 991	4,001	4,285 1,310	4,569	4,853 1,628	21,425 6,548
4	TOTAL FOR SPILLWAY			,	,	,	,	-,- /
5.1	Basin Construction Clear and grub basin area	sqm	40,081	19,847	17,351	11,579	11,709	100,566
5.2	Re-shape basin area along valley spine (nominal allowance)	cum	150	-	-	-	-	150
5.3	Strip topsoil (300 mm nominal) and stockpile	sqm	40,081	19,847	17,351	11,579	11,709	100,566
5.5 5.6	Scarify, moisture condition and compact basin in situ materials to form basin liner Prepare basin subgrade for HDPE lined area	sq m sq m	40,081 40,081	19,847 19,847	17,351 17,351	11,579 11,579	11,709 11,709	100,566 100,566
5.7	Supply and install 1.5 mm HDPE liner to basin underdrainage area	sqm	40,081	19,847	17,351	11,579	11,709	100,566
5	TOTAL FOR BASIN CONSTRUCTION Underdrainage System							
6.1	Proof roll basin area	На	4.0	2.0	1.7	1.2	1.2	10.1
6.2	Excavate Main Collector drain and LCRS drain to Zone C or designated local stockpile	cum cum	330 160	-	-	-	-	330
6.4	Win from local borrow, load, haul, place and spread Zone F drainage sand for main collector drains Win from local borrow, load, haul, place and spread Zone F drainage sand for branch drains	cum	90	-	-	-	-	90
6.5	Win from local borrow, load, haul, place and spread Zone F drainage sand for finger drains	cu m	80	-	-	-	-	80
6.6	Win from local borrow, haul and place Zone E erosion protection layer (150 mm thick) to main collector drains and tailings flow channel	cu m	130	-	-	-	-	130
6.7	Win from local borrow, load, haul, place and spread Zone A protection layer to decant tower	sq m	3,280	-	-	-	-	3,280
6.8 6.9	Supply and Install Geotextile (Bidim A14 or equivalent) to main collector drains	sqm	6,600 1,200	-	-	-	-	6,600 1,200
6.10	Supply and Install Geotextile (Bidim A14 or equivalent) to branch drains Supply and Install Geotextile (Bidim A14 or equivalent) to finger drains	sq m sq m	1,200	-	-	-	-	1,200
6.11	Supply and Install Geotextile (Bidim A14 or equivalent) to LCRS drains	sqm	400	-	-	-	-	400
6.12	Supply and install 160 mm class 400 CPT draincoil to main collector drain, with filter sock, tees, bends and joints (includes connector pipes)	m	470	-	-	-	-	470
6.13	Supply and install 100 mm class 400 CPT draincoil to branch drain, with tees, bends and joints	m	470	-	-	-	-	470
6.14	Supply and install 100 mm class 400 CPT draincoil to finger drain, with tees, bends and joints Supply and install 50 mm class 400 CPT draincoil to LCRS drain, with tees, bends and joints	m m	820 120	-	-	-	-	820 120
6	TOTAL FOR UNDERDRAINAGE SYSTEM		120		-			120
7	Underdrainage Collection Sump							
7.1	Excavate underdrainage collection sump to Zone C or designated spoil stockpile Win from local borrow, load, haul, place and compact Zone A soil liner for underdrainage sump	cum cum	245 60	-	-	-	-	245 60
7.3	Win from local borrow, load, haul and place clean gravel backfill to underdrainage sump	cu m	409	-	-	-	-	409
7.4	Win from local borrow, load, haul and place clean gravel backfill to LCRS sump Supply and install geotextile (Bidim A24 or equivalent) to underdrainage sump and LCRS sump	cum sqm	40 420	-	-	-		420
7.6	Supply and install 1.5 mm HDPE liner to underdrainage sump and LCRS sump	sqm	310	-	-	-	-	
7.7	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (slotted) including all fittings	m	5.0	-	-	-	- 9.5	5
7.0				04.0				206
7.8 7.9	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe	m No	129.8	31.6	22.1	12.6	-	2
7.9 7.10	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump	m No cu m	129.8 2.0 130	- 30	- 20	- 10	- 10	2 200
7.9 7.10 7.11	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and Install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes.	m No cum cum	129.8 2.0 130 220	- 30 50	- 20 40	- 10 20	- 10 20	200
7.9 7.10 7.11 7.12 7.13	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe	m No cum cum sqm sqm	129.8 2.0 130 220 300 210	- 30	- 20	- 10	- 10	
7.9 7.10 7.11 7.12 7.13 7.14	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boot (includes two steel band clamps)	m No cum cum sqm	129.8 2.0 130 220 300	- 30 50 70	- 20 40 50	- 10 20 30	- 10 20 20	200 470
7.9 7.10 7.11 7.12 7.13	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe	m No cum cum sqm sqm	129.8 2.0 130 220 300 210	- 30 50 70	- 20 40 50	- 10 20 30	- 10 20 20	200 470
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System Spread, moisture condition and compact Zone A protective layer as base of decant causeway	m No cum cum sqm No No	129.8 2.0 130 220 300 210 1.0 984	- 30 50 70 50 -	- 20 40 50 40 -	- 10 20 - -	- 10 20 20 -	200 470 340 1 984
7.9 7.10 7.11 7.12 7.13 7.14 7 8	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System	m No cum cum sqm Sqm No	129.8 2.0 130 220 300 210 1.0	- 30 50 70 50 -	- 20 40 50	- 10 20 30	- 10 20 20	200 470 340 1
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3 8.4	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean roctifil decant surround Supply and install 25 MPA concrete base including formwork and reinforcement	m No cum sqm Sqm No Cum cum cum	129.8 2.0 130 220 300 210 1.0 984 1.333 6,201 12.0	- 30 50 70 - - - - - -	- 20 40 50 40 - - 450 2,457 -	- 10 20 - - - 345 1,886 -	- 10 20 20 - - 1.211 513 -	200 470 340 1 984 3,339 11,057 12
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean rockfill decant surround Supply and install 260 PM accurete base including formwork and reinforcement Supply and install 2600 mm square slotted reinforced concrete decant tower	m No cum sqm No Cum cum cum cum cum	129.8 2.0 130 220 300 210 1.0 984 1,333 6,201	- 30 50 70 - - - -	- 20 40 50 - - 450 2,457 - 13.5	- 10 20 30 20 - 345	- 10 20 20 - - 1,211 513 - 17.0	200 470 340 1 984 3,339 11,057 12 66
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.8.1 8.2 8.3 8.4 8.5 8.6	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sant to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boct (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decart System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean rockfil decant surround Supply and install 25 MP a concrete base including formwork and reinforcement Supply and install 2600 mm square slotted reinforced concrete decant tower Supply and install 2600 mm square slotted reinforced concrete decant tower Supply and install 3600 king and compact Zone C regulater to decant access causeway Zone D / rockfill transition Win from local stockpile, load, haul, jare and compact waaring course to decant access causeway (150 mm	m No cum sqm sqm No cum cum cum cum sqm	129.8 2.0 1300 220 300 210 1.0 984 1.333 6,201 12.0 10.0 285	- 30 50 70 - - - - - -	- 20 40 50 40 - - 450 2,457 - 13.5 121	- 10 20 20 - - 345 1,886 - 15.5 90	- 10 20 20 - - - 1,211 513 - 17.0 77	200 470 340 1 984 3,339 11,057 12 66 573
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7	Supply and install 500 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone C decant access causeway Zone D / rockfill transition Supply and Install 260 the system Supply and Install Sectextile (Bidm A24 or equivalent) to decant access causeway Zone D / rockfill transition Win from local stockpile, load, haul, place and compact wearing course to decant access causeway (150 mm thick)	m No cum sqm No Cum cum cum cum cum cum cum cum	129.8 2.0 130 220 300 210 1.0 984 1.333 6,201 12.0 10.0 285 60	- 30 50 70 50 - - - - - - - - - - - - - - - - - -	- 20 40 50 40 - - 450 2,457 - 13.5 121 50	- 10 20 20 - - - - - - - - - - - - -	- 10 20 20 - - 1,211 513 - 17.0 77 75	200 470 340 1 984 3,339 11,057 12 66 573 247
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.8.1 8.2 8.3 8.4 8.5 8.6	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sant to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boct (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decart System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean rockfil decant surround Supply and install 25 MP a concrete base including formwork and reinforcement Supply and install 2600 mm square slotted reinforced concrete decant tower Supply and install 2600 mm square slotted reinforced concrete decant tower Supply and install 3600 king and compact Zone C regulater to decant access causeway Zone D / rockfill transition Win from local stockpile, load, haul, jare and compact waaring course to decant access causeway (150 mm	m No cum sqm sqm No cum cum cum cum sqm	129.8 2.0 1300 220 300 210 1.0 984 1.333 6,201 12.0 10.0 285	- 30 50 70 - - - - - -	- 20 40 50 40 - - 450 2,457 - 13.5 121	- 10 20 20 - - 345 1,886 - 15.5 90	- 10 20 20 - - - 1,211 513 - 17.0 77	200 470 340 1 984 3,339 11,057 12 66 573
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3 8.4 8.5 8.6 8.5 8.6 8.7 8.8 8 8 9	Supply and install 630 mm die HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean rockfill decant surround Supply and install 260 MP square stockpile, load, haul and place Zone G selected clean rockfill decant surround Supply and install 260 MP aconcrete base including formwork and reinforcement Supply and install 260 MP aconcrete base including formwork and reinforcement Supply and install 260 MP aconcrete decant tower Supply and install Gedextile (Bidm A24 or equivalent) to decant access causeway Zone D / rockfill transition Win from local stockpile, load, haul, place and compact weating course to decant access causeway (150 mm thick) Win from local borrow, load, haul and place Zone D material as safety berm on decant access causeway TOTAL FOR DECANT SYSTEM Diversion Channels	m No cu m sq m Sq m No cu m cu m cu m cu m cu m cu m	129.8 2.0 1300 2200 3000 210 1.0 984 1.333 6.201 12.0 10.0 285 60 24	- 30 50 70 50 - - - - - - - - - - - - - - - - - -	- 20 40 50 40 - - 450 2,457 - 13.5 121 50	- 10 20 20 - - - - - - - - - - - - -	- 10 20 20 - - 1,211 513 - 17.0 77 75	200 470 340 1 984 3,339 11,057 12 66 573 247 92
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3 8.4 8.5 8.6 8.5 8.6 8.7 8.8 8	Supply and install 630 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Exeavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe Supply and install 1.5 mm (60 mil) textured HDPE upper wear-sheet for underdrainage sump and riser pipe Install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean rockfill decant surround Supply and install 2600 mm square slotted reinforced concrete decant tower Supply and install 2600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install e300 mm duare slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slotted reinforced concrete decant tower Supply and install 600 mm square slo	m No cum sqm No Cum cum cum cum cum cum cum cum	129.8 2.0 130 220 300 210 1.0 984 1.333 6,201 12.0 10.0 285 60	- 30 50 70 50 - - - - - - - - - - - - - - - - - -	- 20 40 50 40 - - 450 2,457 - 13.5 121 50	- 10 20 20 - - - - - - - - - - - - -	- 10 20 20 - - 1,211 513 - 17.0 77 75	200 470 340 1 984 3,339 11,057 12 66 573 247
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.6 8.7 8.8 9 9.1 9 9	Supply and install 630 mm die HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decart System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean rockfill decant surround Supply and install 260 MP acquere teniforced concrete decant lower Supply and Install 260 MP acquere teniforced concrete decant access causeway (150 mm tinck) Win from local stockpile, load, haul, place and compact weating course to decant access causeway (150 mm tinck) Win from local borrow, load, haul and place Zone D material as safety berm on decant access causeway TOTAL FOR DECANT SYSTEM Diversion Channels, haul and place to embankment Zone C ToTAL FOR DIVERSION CHANNELS Miscellanaous	m No cum sqm sqm No cum cum cum cum cum cum cum cum	129.8 2.0 1300 2200 3000 2100 1.0 984 1.333 6.201 12.0 10.0 285 60 24 24 3,400	- 300 500 - - - - - - - - - - - - - - - - -	- 200 400 50 400 - - - 13.5 121 50 19	- 10 20 30 20 - - - - - - - - - - - - -	- 10 20 20 - - - 1,211 513 - 1,211 513 - 1,211 513 - 77 75 27 -	200 470 340 1 984 3,339 11,057 12 66 573 247 92 5,900
7:9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.7 8.8 8 9 9.1 9 9.1 9 10 10.1	Supply and install 500 mm dia HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Exeavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sant to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe finstall HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decant System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haui and place Zone G selected clean rockfill decant surround Supply and install 25 MP a concrete base including formwork and reinforcement Supply and install 26 MP a concrete base including formwork and reinforcement Win from local stockpile, load, haui and place Zone C material as safety berm on decant access causeway (150 mm thick) Win from local stockpile, load, haui, and place Zone D material as safety berm on decant access causeway TOTAL FOR DECANT SYSTEM Diversion channels, haui and place to embankment Zone C TOTAL FOR DIVERSION CHANNELS Miscellaneous Install FOR DIVERSION CHANNELS Miscellaneous Install FOR Diversion channels, haui and place to embankment Zone C	m No cu m sq m sq m No cu m cu m cu m cu m cu m cu m cu m cu m	129.8 2.0 1300 2200 3000 210 1.0 984 1.333 6.201 12.0 10.0 285 60 24	- 30 50 70 50 - - - - - - - - - - - - - - - - - -	- 20 40 50 40 - - 450 2,457 - 13.5 121 50	- 10 20 20 - - - - - - - - - - - - -	- 10 20 20 - - 1,211 513 - 17.0 77 75	200 470 340 1 984 3,339 11,057 122 66 573 247 92 92 5,900 5,900
7.9 7.10 7.11 7.12 7.13 7.14 7 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.8 8.7 8.8 8 9 9.1 9 10 10.1 10.2	Supply and install 630 mm die HDPE (SDR 11) riser pipe (un-slotted) including all fittings Supply and install solid end cap to riser pipe Excavate riser pipe channel for LCRS sump Supply, place and compact Cement Stabilised Sand to riser pipes. Supply and install 1.5 mm (60 mil) textured HDPE lower wear-sheet for underdrainage sump and riser pipe install HDPE pipe boot (includes two steel band clamps) TOTAL FOR UNDERDRAINAGE COLLECTION SUMP Decart System Spread, moisture condition and compact Zone A protective layer as base of decant causeway Spread, moisture condition and compact Zone C decant access causeway fill Win from adjacent stockpile, load, haul and place Zone G selected clean rockfill decant surround Supply and install 260 mm square slotted reinforced concrete decant lower Supply and Install 260 mm square slotted reinforced concrete decant access causeway (150 mm tinck) Win from local stockpile, load, haul, place and compact weating course to decant access causeway (150 mm tinck) Win from local borrow, load, haul, place Zone D material as safety berm on decant access causeway TOTAL FOR DECANT SYSTEM Diversion Channels, haul and place to embankment Zone C ToTAL FOR DIVERSION CHANNELS Miscellanaous	m No cum sqm sqm No cum cum cum cum cum cum cum cum	129.8 2.0 1300 2200 3000 2100 1.0 984 1.333 6.201 12.0 10.0 285 60 24 24 3,400	- 300 500 - - - - - - - - - - - - - - - - -	- 200 400 50 400 - - - 13.5 121 50 19	- 10 20 30 20 - - - - - - - - - - - - -	- 10 20 20 - - - 1,211 513 - 1,211 513 - 1,211 513 - 77 75 27 -	200 470 340 1 984 3,339 11,057 12 66 573 247 92 92 5,900

50

7. **REFERENCES**

- Knight Piésold Pty Ltd (October 2010) "Dargues Reef Gold Project, Tailings Storage Facility, Final Design", Ref. PE801-000139/5 Rev. 0, December 2011.
- New South Wales Dams Safety Committee (DSC). "DSC3A Consequence Categories for Dams", June 2010 (updated May 2014).
- New South Wales Dam Safety Committee (DSC). "DSC3F Tailings Dams", June 2012.
- 4. Australian National Committee on Large Dams Inc. (ANCOLD). "Guidelines on the Consequence Categories for Dams". October 2012.
- 5. Knight Piésold Pty Ltd (November 2011) "*Dargues Reef Gold Project, Tailings Storage Facility, Dam Breach Assessment*", Ref. PE801-000139/8.
- Australian National Committee on Large Dams Inc. (ANCOLD). "Guidelines on Tailings Dams". May 2012.
- 7. Australian Bureau of Meteorology (BOM). "Climatic Atlas of Australia", 1988.
- Institute of Engineers Australia (IEAUST). "Australian Rainfall and Runoff, Volume 1 – A Guide to Flood Estimation", May 2003.
- 9. Australian Bureau of Meteorology (BOM). "The Estimation of Probable Maximum Precipitation in Australia; Generalised Short-Duration Method (GSDM)", June 1993.
- Australian Bureau of Meteorology (BOM). "Generalised Southeast Australia Method (GSAM) for Estimating Probable Maximum Precipitation", HRD Report No. 4, August 1996.
- Australian National Committee on Large Dams Inc. (ANCOLD). "Guidelines on Design of Dams for Earthquake". 1998.
- Swaisgood, J.R. (1998). Seismically-induced deformation of embankment dams. 6th US National Conference on Earthquake Engineering, Seattle, Washington.
- Pells, S. and Fell, R. (2003). Damage and cracking of embankment dams by earthquake and the implications for internal erosion and piping. Proceedings 21st International Congress on Large Dams, Montreal. ICOLD, Paris Q83– R17, International Commission on Large Dams, Paris.

51

 Seed and Idriss. "Ground Motions and Soil Liquefaction During Earthquakes", Earthquake Engineering Research Institute, 1982.

FIGURES

Knight Piésold

Report No. 752/38 – July 2015 Appendix 7

Knight PiésoldDARGUES GOLD PROJECTRef: PE801-139/10COMPOSITE TSF WATER BALANCEFigure 4.3TAILINGS DENSITY AND RATE OF RISE - AVERAGE CONDITIONS

Composite TSF - Pond Volumes

 Knight Piésold
 DARGUES GOLD PROJECT
 Ref: PE801-139/10

 COMPOSITE TSF WATER BALANCE
 Figure 4.4

 POND VOLUME AND PLANT RECYCLE - AVERAGE CONDITIONS

01/2019 -

01/2020 -

01/2018 -

01/2017 -

01/2016

01/2022 -

01/2021

Composite TSF - Recycle to Plant from TSF

Knight PiésoldDARGUES GOLD PROJECTRef: PE801-139/10COMPOSITE TSF WATER BALANCEFigure 4.5POND VOLUME AND PLANT RECYCLE- 1 IN 100 YEAR (AEP) WET SEQUENCE

