Attachment 1 – Limitations

This report has been prepared for use by the client who commissioned the works in accordance with the project brief only and has been based in part on information obtained from other parties. The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS Environmental Pty Ltd accepts no liability for use or interpretation by any person or body other than the client. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS Environmental Pty Ltd, and should not be relied upon by other parties, who should make their own enquires.

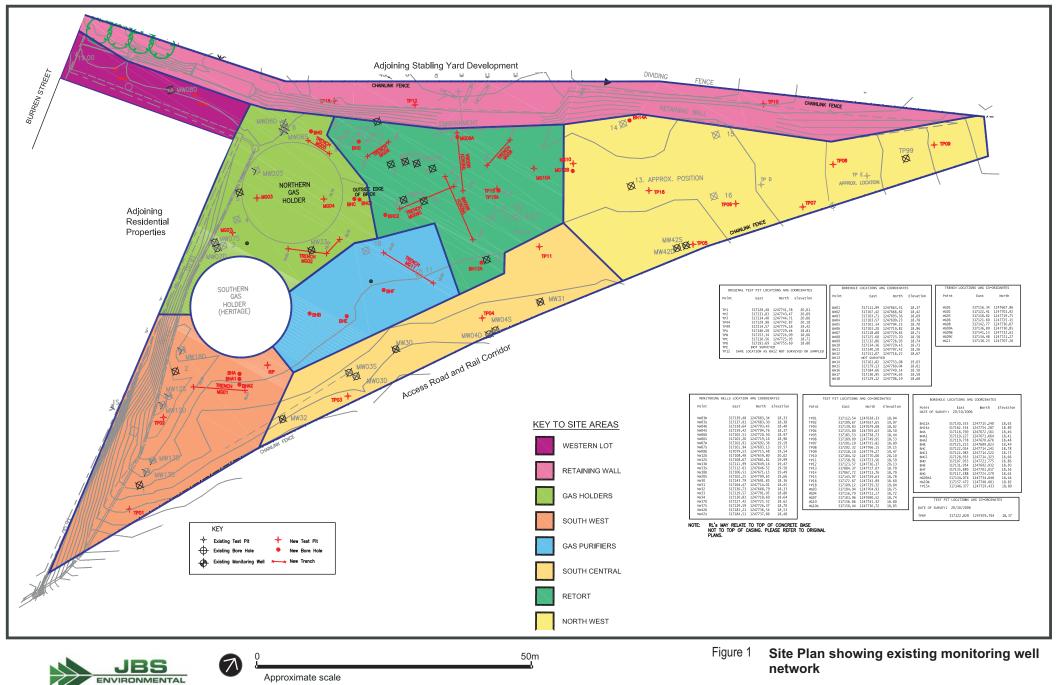
Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements and site history, not on sampling and analysis of all media at all locations for all potential contaminants.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

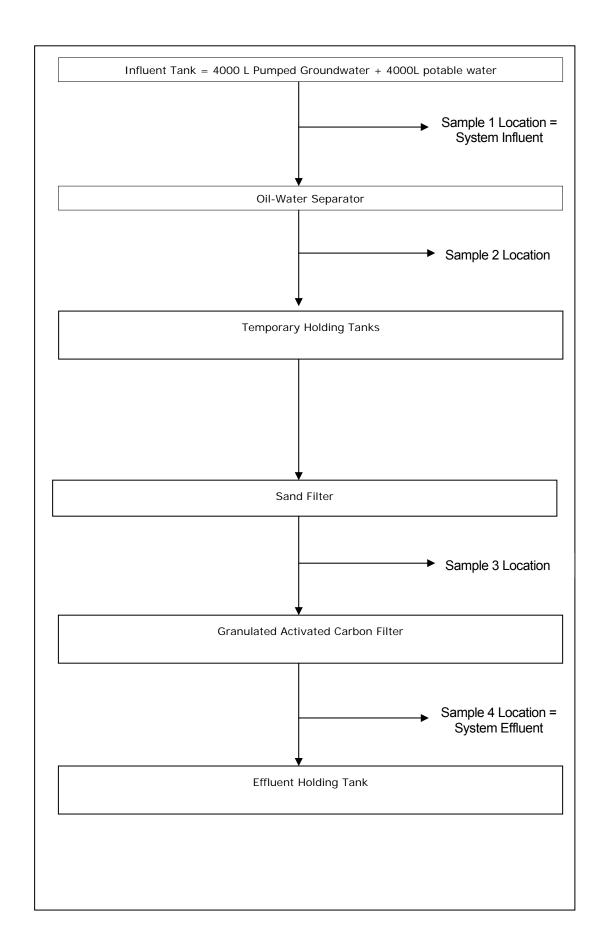
This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS Environmental Pty Ltd reserves the right to review the report in the context of the additional information.

Attachment 1 – Limitations

This report has been prepared for use by the client who commissioned the works in accordance with the project brief only and has been based in part on information obtained from other parties. The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.


JBS Environmental Pty Ltd accepts no liability for use or interpretation by any person or body other than the client. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS Environmental Pty Ltd, and should not be relied upon by other parties, who should make their own enquires.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements and site history, not on sampling and analysis of all media at all locations for all potential contaminants.


Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS Environmental Pty Ltd reserves the right to review the report in the context of the additional information.

Attachment 2 – Figures

CH2M Hill (2007) Note- All locations shown are approximate only

Figure 2: Water Treatment Trial - Sampling Strategy

Attachment 3 - Laboratory Results

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 43277

Client: JBS Environmental P.O. Box 940 MASCOT NSW 1460

Attention: Tim Davis / Sumi Dorairaj

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

40913, Macdonaldtown

15 Waters 09/07/10 09/07/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 20/07/10

 Date of Preliminary Report:
 Not issued

 Issue Date:
 23/07/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Sandra Taylor Senior Organic Chemist

Kluign Morgen

Rhian Morgan Metals Supervisor

Jacinta Hurst Laboratory Manager

Envirolab Reference: 432 Revision No: R 0

43277 R 01

Nick Sarlamis Inorganics Supervisor

Page 1 of 23

VOCs in water						
Our Reference:	UNITS	43277-1	43277-2	43277-3	43277-4	43277-5
Your Reference		Sample 1 -	Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -
		Run 1	Run 1	Run 1	Run 1	Run 2
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/2010
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/2010
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	µg/L	14	9.8	12	<1.0	12
2,2-dichloropropane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Cyclohexane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	µg/L	8.9	5.8	7.6	<1.0	7.1
trans-1,3-dichloropropene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	μg/L	2.7	1.7	2.2	<1.0	2.1
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
Styrene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
.,.,_,_ totaonioi ootilailo	۳9'۲	1.5				

VOCs in water						
Our Reference:	UNITS	43277-1	43277-2	43277-3	43277-4	43277-5
Your Reference		Sample 1 - Run 1	Sample 2 - Run 1	Sample 3 - Run 1	Sample 4 - Run 1	Sample 1 - Run 2
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
	μg/L	-	-	-	-	-
n-propyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tert-butyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Sec-butyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	96	104	99	108	104
Surrogate toluene-d8	%	108	109	115	110	108
Surrogate 4-BFB	%	105	103	106	105	106

VOCs in water						
Our Reference:	UNITS	43277-6	43277-7	43277-8	43277-9	43277-10
Your Reference		Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -	Sample 2 -
		Run 2	Run 2	Run 2	Run 3	Run 3
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/2010
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/2010
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	µg/L	11	9.7	<1.0	9.6	10
2,2-dichloropropane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Cyclohexane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	µg/L	6.6	6.3	<1.0	5.9	5.5
trans-1,3-dichloropropene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	μg/L	2.0	2.0	<1.0	1.8	1.7
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
Styrene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1, 1, ∠, ∠ ⁻ leu do noi 0eu idite	ру/L	\$1.0	\$1.0	\$1.0	51.0	51.0

ACCREDITED FOR TECHNICAL COMPETENCE

VOCs in water						
Our Reference:	UNITS	43277-6	43277-7	43277-8	43277-9	43277-10
Your Reference		Sample 2 - Run 2	Sample 3 - Run 2	Sample 4 - Run 2	Sample 1 - Run 3	Sample 2 - Run 3
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
	µg/L	-	-	-	-	_
n-propyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tert-butyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Sec-butyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	98	97	102	100	101
Surrogate toluene-d8	%	108	112	109	108	92
Surrogate 4-BFB	%	106	105	106	106	105

Client Reference: 40913, Ma

40913, Macdonaldtown

VOCs in water	UNITS	40077 44	40077 40	40077 40
Our Reference: Your Reference	UNITS	43277-11 Sample 3 -	43277-12 Sample 4 -	43277-13 MW04s
		Run 3	Run 3	111110-10
Date Sampled		9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water
Date extracted	-	13/07/2010	13/07/2010	13/07/2010
Date analysed	-	13/07/2010	13/07/2010	13/07/2010
Dichlorodifluoromethane	μg/L	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10
1,1-Dichloroethene	µg/L	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	µg/L	<1.0	<1.0	<1.0
1,1-dichloroethane	µg/L	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	µg/L	<1.0	<1.0	<1.0
Bromochloromethane	µg/L	<1.0	<1.0	<1.0
Chloroform	µg/L	11	<1.0	21
2,2-dichloropropane	μg/L	<1.0	<1.0	<1.0
1,2-dichloroethane	μg/L	<1.0	<1.0	<1.0
1,1,1-trichloroethane	µg/L	<1.0	<1.0	<1.0
1,1-dichloropropene	µg/L	<1.0	<1.0	<1.0
Cyclohexane	μg/L	<1.0	<1.0	<1.0
Carbon tetrachloride	µg/L	<1.0	<1.0	<1.0
Benzene	µg/L	<1.0	<1.0	<1.0
Dibromomethane	µg/L	<1.0	<1.0	<1.0
1,2-dichloropropane	μg/L	<1.0	<1.0	<1.0
Trichloroethene	µg/L	<1.0	<1.0	<1.0
Bromodichloromethane	µg/L	5.2	<1.0	ÁXXCÍ
trans-1,3-dichloropropene	µg/L	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	µg/L	<1.0	<1.0	<1.0
1,1,2-trichloroethane	µg/L	<1.0	<1.0	<1.0
Toluene	µg/L	<1.0	<1.0	<1.0
1,3-dichloropropane	µg/L	<1.0	<1.0	<1.0
Dibromochloromethane	µg/L	1.6	<1.0	18
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	µg/L	<1.0	<1.0	<1.0
Chlorobenzene	µg/L	<1.0	<1.0	<1.0
Ethylbenzene	µg/L	<1.0	<1.0	<1.0
Bromoform	µg/L	<1.0	<1.0	<1.0
m+p-xylene	µg/L	<2.0	<2.0	<2.0
Styrene	µg/L	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	µg/L	<1.0	<1.0	<1.0

_

VOCs in water				
Our Reference:	UNITS	43277-11	43277-12	43277-13
Your Reference		Sample 3 -	Sample 4 -	MW04s
		Run 3	Run 3	
Date Sampled		9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water
o-xylene	μg/L	<1.0	<1.0	<1.0
1,2,3-trichloropropane	µg/L	<1.0	<1.0	<1.0
Isopropylbenzene	µg/L	<1.0	<1.0	<1.0
Bromobenzene	μg/L	<1.0	<1.0	<1.0
n-propyl benzene	μg/L	<1.0	<1.0	<1.0
2-chlorotoluene	μg/L	<1.0	<1.0	<1.0
4-chlorotoluene	µg/L	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	µg/L	<1.0	<1.0	<1.0
Tert-butyl benzene	μg/L	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	μg/L	<1.0	<1.0	<1.0
1,3-dichlorobenzene	μg/L	<1.0	<1.0	<1.0
Sec-butyl benzene	μg/L	<1.0	<1.0	<1.0
1,4-dichlorobenzene	μg/L	<1.0	<1.0	<1.0
4-isopropyl toluene	μg/L	<1.0	<1.0	<1.0
1,2-dichlorobenzene	µg/L	<1.0	<1.0	<1.0
n-butyl benzene	μg/L	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	µg/L	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	µg/L	<1.0	<1.0	<1.0
Hexachlorobutadiene	μg/L	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	µg/L	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	95	100	101
Surrogate toluene-d8	%	77	76	108
Surrogate 4-BFB	%	105	105	104

Client Reference: 40913, Ma

40913, Macdonaldtown

vTPH & BTEX in Water						
Our Reference:	UNITS	43277-1	43277-2	43277-3	43277-4	43277-
Your Reference		Sample 1 - Run 1	Sample 2 - Run 1	Sample 3 - Run 1	Sample 4 -	Sample Run 2
Date Sampled		9/07/2010	9/07/2010	9/07/2010	Run 1 9/07/2010	9/07/20
Type of sample		Water	Water	Water	Water	Water
		13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/20
Date extracted	-					
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/20
TPH C6 - C9	µg/L	<10	<10	<10	<10	<10
Surrogate Dibromofluoromethane	%	96	104	99	108	104
Surrogate toluene-d8	%	108	109	115	110	108
Surrogate 4-BFB	%	105	103	106	105	106
vTPH & BTEX in Water						
Our Reference:	UNITS	43277-6	43277-7	43277-8	43277-9	43277-
Your Reference		Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -	Sample
Data Samplad		Run 2 9/07/2010	Run 2 9/07/2010	Run 2 9/07/2010	Run 3 9/07/2010	Run 3 9/07/20
Date Sampled Type of sample		Water	Water	Water	Water	9/07/20 Wate
Date extracted	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/20
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/20
TPH C6 - C9	µg/L	<10	<10	<10	<10	<10
Surrogate Dibromofluoromethane	%	98	97	102	100	101
Surrogate toluene-d8	%	108	112	109	108	92
Surrogate 4-BFB	%	106	105	106	106	105
vTPH & BTEX in Water						
Our Reference:	UNITS	43277-11	43277-12	43277-13	43277-14	43277-
Your Reference		Sample 3 - Run 3	Sample 4 - Run 3	MW04s	Trip Blank	Trip Spi
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/20
Type of sample		Water	Water	Water	Water	Wate
Date extracted	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/20
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/20
TPH C6 - C9	µg/L	<10	<10	<10	[NA]	[NA]
Benzene	µg/L	[NA]	[NA]	[NA]	<1.0	108%
Toluene	µg/L	[NA]	[NA]	[NA]	<1.0	129%
Ethylbenzene	μg/L	[NA]	[NA]	[NA]	<1.0	97%
m+p-xylene	μg/L	[NA]	[NA]	[NA]	<2.0	95%
o-xylene	μg/L	[NA]	[NA]	[NA]	<1.0	96%
Surrogate Dibromofluoromethane	%	95	100	100	96	91
Surrogate toluene-d8	%	77	76	107	109	124
Surrogate 4-BFB	%	105	105	104	105	103

43277 R 01

sTPH in Water (C10-C36)						
Our Reference:	UNITS	43277-1	43277-2	43277-3	43277-4	43277-5
Your Reference		Sample 1 -	Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -
		Run 1	Run 1	Run 1	Run 1	Run 2
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/2010
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/201
TPH C10 - C14	μg/L	<50	<50	<50	<50	<50
TPH C15 - C28	μg/L	FÊF€	170	810	<100	GÊ€€
TPH C29 - C36	μg/L	<100	<100	2,400	<100	FÉ€€
Surrogate o-Terphenyl	%	96	87	#	100	80
sTPH in Water (C10-C36)						
Our Reference:	UNITS	43277-6	43277-7	43277-8	43277-9	43277-10
Your Reference		Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -	Sample 2
		Run 2	Run 2	Run 2	Run 3	Run 3
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/201
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/201
TPH C10 - C14	μg/L	52	<50	<50	<50	<50
	µg/L	270	190	<100	HĨ€€	<100
TPH C15 - C28	P-3-					
TPH C15 - C28 TPH C29 - C36	μg/L	<100	<100	<100	GÊG€€	<100

sTPH in Water (C10-C36)				
Our Reference:	UNITS	43277-11	43277-12	43277-13
Your Reference		Sample 3 -	Sample 4 -	MW04s
		Run 3	Run 3	
Date Sampled		9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water
Date extracted	-	13/07/2010	13/07/2010	13/07/2010
Date analysed	-	13/07/2010	13/07/2010	13/07/2010
TPH C10 - C14	µg/L	<50	<50	<50
TPH C15 - C28	µg/L	410	<100	HÊ€€
TPH C29 - C36	µg/L	820	<100	GÊ€€
Surrogate o-Terphenyl	%	96	93	73

43277 R 01

PAHs in Water - Low Level						
Our Reference:	UNITS	43277-1	43277-2	43277-3	43277-5	43277-6
Your Reference		Sample 1 -	Sample 2 -	Sample 3 -	Sample 1 -	Sample 2 -
		Run 1	Run 1	Run 1	Run 2	Run 2
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/7/2010	13/7/2010	13/7/2010	13/7/2010	13/7/2010
Date analysed	-	13/7/2010	13/7/2010	13/7/2010	13/7/2010	13/7/2010
Naphthalene	µg/L	ÁKGÈG	0.3	0.2	ÁÁLÈ	0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.7	0.4	0.3	0.5	0.5
Fluorene	µg/L	0.5	0.4	0.2	0.4	0.5
Phenanthrene	µg/L	<0.1	0.4	0.1	<0.1	1.0
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	µg/L	<0.1	0.2	<0.1	<0.1	0.7
Pyrene	µg/L	<0.1	0.1	<0.1	<0.1	0.4
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	129	111	129	123	99

PAHs in Water - Low Level						
Our Reference:	UNITS	43277-7	43277-9	43277-10	43277-11	43277-13
Your Reference		Sample 3 -	Sample 1 -	Sample 2 -	Sample 3 -	MW04s
		Run 2	Run 3	Run 3	Run 3	
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/7/2010	13/7/2010	13/7/2010	13/7/2010	13/7/2010
Date analysed	-	13/7/2010	13/7/2010	13/7/2010	13/7/2010	13/7/2010
Naphthalene	µg/L	0.2	ÁÁHÈ	0.2	0.2	ÁÁÈ
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.4	0.8	0.6	0.6	<0.1
Fluorene	µg/L	0.4	0.6	0.5	0.5	<0.1
Phenanthrene	µg/L	0.5	<0.1	0.1	0.6	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	0.1	0.1	0.2
Pyrene	µg/L	<0.1	<0.1	<0.1	0.1	0.2
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	84	127	111	127	87

PAH low level in Water				
Our Reference:	UNITS	43277-4	43277-8	43277-12
Your Reference		Sample 4 -	Sample 4 -	Sample 4 -
		Run 1	Run 2	Run 3
Date Sampled		9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water
Date extracted	-	22/07/2010	22/07/2010	22/07/2010
Date analysed	-	23/7/2010	23/7/2010	23/7/2010
Naphthalene	µg/L	<0.01	<0.01	<0.01
Acenaphthylene	µg/L	<0.01	<0.01	<0.01
Acenaphthene	µg/L	<0.01	<0.01	<0.01
Fluorene	µg/L	<0.01	<0.01	<0.01
Phenanthrene	µg/L	<0.01	<0.01	<0.01
Anthracene	µg/L	<0.01	<0.01	<0.01
Fluoranthene	µg/L	<0.01	<0.01	<0.01
Pyrene	µg/L	<0.01	<0.01	<0.01
Benz(a)anthracene	µg/L	<0.01	<0.01	<0.01
Chrysene	µg/L	<0.01	<0.01	<0.01
Benzo(b)&(k)fluoranthene	µg/L	<0.02	<0.02	<0.02
Benzo(a)pyrene	µg/L	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	µg/L	<0.01	<0.01	<0.01
Dibenz(ah)anthracene	µg/L	<0.01	<0.01	<0.01
Benzo(ghi)perylene	µg/L	<0.01	<0.01	<0.01

Envirolab Reference: 43277 Revision No: R 01 ACCREDITED FOR TECHNICAL COMPETENCE

Total Phenolics in Water						
Our Reference:	UNITS	43277-1	43277-2	43277-3	43277-4	43277-5
Your Reference		Sample 1 -	Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -
		Run 1	Run 1	Run 1	Run 1	Run 2
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	14/7/2010	14/7/2010	14/7/2010	14/7/2010	14/7/2010
Date analysed	-	14/7/2010	14/7/2010	14/7/2010	14/7/2010	14/7/2010
Total Phenolics (as Phenol)	mg/L	<0.050	<0.050	<0.050	0.080	<0.050
Total Phenolics in Water						
Our Reference:	UNITS	43277-6	43277-7	43277-8	43277-9	43277-10
Your Reference		Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -	Sample 2 -
		Run 2	Run 2	Run 2	Run 3	Run 3
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	14/7/2010	14/7/2010	14/7/2010	14/7/2010	14/7/2010
Date analysed	-	14/7/2010	14/7/2010	14/7/2010	14/7/2010	14/7/2010
Total Phenolics (as Phenol)	mg/L	<0.050	<0.050	<0.050	0.12	<0.050
					7	
Total Phenolics in Water		10077.11	10077 10	10077 10		
Our Reference:	UNITS	43277-11	43277-12	43277-13		
Your Reference		Sample 3 - Run 3	Sample 4 - Run 3	MW04s		
Date Sampled		9/07/2010	9/07/2010	9/07/2010		
Type of sample		Water	Water	Water		
Date extracted		14/7/2010	14/7/2010	14/7/2010	=	
Date analysed	_	14/7/2010	14/7/2010	14/7/2010		
-						

< 0.050

< 0.050

< 0.050

mg/L

Total Phenolics (as Phenol)

HM in water - dissolved						
Our Reference:	UNITS	43277-1	43277-2	43277-3	43277-4	43277-5
Your Reference		Sample 1 -	Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -
- /		Run 1	Run 1	Run 1	Run 1	Run 2
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/2010
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/2010
Arsenic-Dissolved	µg/L	<1	<1	<1	16	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	<1	1	10	<1	3
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel-Dissolved	µg/L	1	2	8	<1	7
Zinc-Dissolved	μg/L	110	100	63	1	170
HM in water - dissolved						
Our Reference:	UNITS	43277-6	43277-7	43277-8	43277-9	43277-10
Your Reference		Sample 2 -	Sample 3 -	Sample 4 -	Sample 1 -	Sample 2
		Run 2	Run 2	Run 2	Run 3	Run 3
Date Sampled		9/07/2010	9/07/2010	9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/201
Date analysed	-	13/07/2010	13/07/2010	13/07/2010	13/07/2010	13/07/201
Arsenic-Dissolved	µg/L	<1	<1	17	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	4	7	<1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel-Dissolved	μg/L	9	8	<1	2	2
					100	

91

48

<1

160

Zinc-Dissolved

µg/L

ACCREDITED FOR TECHNICAL COMPETENCE 140

HM in water - dissolved				
Our Reference:	UNITS	43277-11	43277-12	43277-13
Your Reference		Sample 3 -	Sample 4 -	MW04s
		Run 3	Run 3	
Date Sampled		9/07/2010	9/07/2010	9/07/2010
Type of sample		Water	Water	Water
Date prepared	-	13/07/2010	13/07/2010	13/07/2010
Date analysed	-	13/07/2010	13/07/2010	13/07/2010
Arsenic-Dissolved	µg/L	<1	24	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1
Copper-Dissolved	µg/L	4	<1	9
Lead-Dissolved	µg/L	1	<1	<1
Mercury-Dissolved	µg/L	<0.5	<0.5	<0.5
Nickel-Dissolved	µg/L	2	<1	3
Zinc-Dissolved	µg/L	49	<1	45

Envirolab Reference: 43277 Revision No: R 01

Method ID	Methodology Summary
GC.13	Water samples are analysed directly by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		Recovery
Date extracted	-			13/07/2 010	[NT]	[NT]	LCS-W1	13/07/2010
Date analysed	-			13/07/2 010	[NT]	[NT]	LCS-W1	13/07/2010
Dichlorodifluoromethane	µg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	µg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	µg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	µg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	µg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	µg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trans-1,2-dichloroethen e	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	112%
Cis-1,2-dichloroethene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chloroform	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	110%
2,2-dichloropropane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	105%
1,1,1-trichloroethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	105%
1,1-dichloropropene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Cyclohexane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Benzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromomethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trichloroethene	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	114%
Bromodichloromethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	111%
trans-1,3-dichloropropen e	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Toluene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	113%
1,2-dibromoethane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	µg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	110%
1,1,1,2-tetrachloroethan e	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]

Envirolab Reference: 43277 **Revision No:**

R 01

Page 17 of 23

Client Reference: 4	C
---------------------	---

40913. Macdonaldtown

			ient Referen	ce: 4	0913, Macdon	alutown		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		
1,1,2,2-tetrachloroethan e	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromobenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3-chloropro pane	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		GC.13	102	[NT]	[NT]	LCS-W1	114%
Surrogate toluene-d8	%		GC.13	101	[NT]	[NT]	LCS-W1	107%
Surrogate 4-BFB	%		GC.13	101	[NT]	[NT]	LCS-W1	100%

ACCREDITED FOR TECHNICAL COMPETENCE

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water						Base II Duplicate II %RPD		-
Date extracted	-		T	13/07/2 010	[NT]	[NT]	LCS-W1	13/07/2010
Date analysed	-			13/07/2 010	[NT]	[NT]	LCS-W1	13/07/2010
TPH C6 - C9	µg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	113%
Benzene	µg/L	1	GC.16	<1.0	[NT]	[NT]	[NR]	[NR]
Toluene	µg/L	1	GC.16	<1.0	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	µg/L	1	GC.16	<1.0	[NT]	[NT]	[NR]	[NR]
m+p-xylene	µg/L	2	GC.16	<2.0	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	1	GC.16	<1.0	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		GC.16	102	[NT]	[NT]	LCS-W1	110%
Surrogate toluene-d8	%		GC.16	101	[NT]	[NT]	LCS-W1	104%
Surrogate 4-BFB	%		GC.16	101	[NT]	[NT]	LCS-W1	101%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			13/07/2 010	[NT]	[NT]	LCS-W2	13/07/2010
Date analysed	-			13/07/2 010	[NT]	[NT]	LCS-W2	13/07/2010
TPH C10 - C14	µg/L	50	GC.3	<50	[NT]	[NT]	LCS-W2	69%
TPH C15 - C28	µg/L	100	GC.3	<100	[NT]	[NT]	LCS-W2	83%
TPH C29 - C36	µg/L	100	GC.3	<100	[NT]	[NT]	LCS-W2	86%
Surrogate o-Terphenyl	%		GC.3	94	[NT]	[NT]	LCS-W2	100%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water - Low Level						Base II Duplicate II %RPD		
Date extracted	-			13/7/20 10	[NT]	[NT]	LCS-W2	13/7/2010
Date analysed	-			13/7/20 10	[NT]	[NT]	LCS-W2	13/7/2010
Naphthalene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-W2	96%
Acenaphthylene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-W2	112%
Phenanthrene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-W2	104%
Anthracene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]

Envirolab Reference: Revision No:

43277 R 01

QUALITY CONTROL	UNITS	PQL	ent Referen		0913, Macdon		Spike Sm#	Spike %
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Recovery
PAHs in Water - Low Level						Base II Duplicate II %RPD		
Fluoranthene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-W2	104%
Pyrene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-W2	110%
Benzo(a)anthracene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-W2	117%
Benzo(b+k)fluoranthene	µg/L	0.2	GC.12 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-W2	131%
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> p-Terphenyl-d ₁₄	%		GC.12 subset	75	[NT]	[NT]	LCS-W2	77%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
QUALITY CONTROL			METHOD	Diarik	Duplicate on #		opike onim	Recovery
PAH low level in Water						Base II Duplicate II %RPD		
Date extracted	-			22/07/2 010	[NT]	[NT]	LCS-W1	22/7/2010
Date analysed	-			23/07/2 010	[NT]	[NT]	LCS-W1	23/7/2010
Naphthalene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	LCS-W1	90%
Acenaphthylene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	LCS-W1	92%
Phenanthrene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	LCS-W1	89%
Anthracene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
Pyrene	µg/L	0.01	Ext-020	<0.01	[NT]	[NT]	[NR]	[NR]
				1		A 173		

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

Benz(a)anthracene

Chrysene Benzo(b)&(k)fluoranthen

е

Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene

Dibenz(ah)anthracene

Benzo(ghi)perylene

43277 R 01

0.01

0.01

0.02

0.01

0.01

0.01

0.01

Ext-020

Ext-020

Ext-020

Ext-020

Ext-020

Ext-020

Ext-020

<0.01

<0.01

< 0.02

<0.01

<0.01

<0.01

<0.01

[NT]

[NR]

LCS-W1

[NR]

LCS-W1

[NR]

LCS-W1

[NR]

[NR]

91%

[NR]

79%

[NR]

89%

[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
								Recovery
Total Phenolics in Water						Base II Duplicate II %RPD		
Date extracted	-			14/7/20 10	43277-1	14/7/2010 14/7/2010	43277-1	14/7/2010
Date analysed	-			14/7/20 10	43277-1	14/7/2010 14/7/2010	43277-1	14/7/2010
Total Phenolics (as Phenol)	mg/L	0.05	LAB.30	<0.050	43277-1	<0.050 <0.050	43277-1	87%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		,
Date prepared	-			13/07/2 010	43277-1	13/07/2010 13/07/201	0 LCS-W1	13/07/2010
Date analysed	-					13/07/2010 13/07/201	0 LCS-W1	13/07/2010
Arsenic-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	43277-1	<1 <1	LCS-W1	106%
Cadmium-Dissolved	µg/L	0.1	Metals.22 ICP-MS	<0.1	43277-1	<0.1 <0.1	LCS-W1	109%
Chromium-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	43277-1	<1 <1	LCS-W1	96%
Copper-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	43277-1	<1 <1	LCS-W1	93%
Lead-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	43277-1	<1 <1	LCS-W1	101%
Mercury-Dissolved	µg/L	0.5	Metals.21 CV-AAS	<0.5	43277-1	<0.5 <0.5	LCS-W1	117%
Nickel-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	43277-1	1 1 RPD: 0	LCS-W1	93%
Zinc-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	43277-1	110 110 RPD: 0	LCS-W1	99%
QUALITY CONTROL Total Phenolics in Water	UNITS	S	Dup. Sm#	Base +	Duplicate Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-		43277-11	14/7/2	2010 14/7/2010	43277-2	14/7/2010	
Date analysed	-		43277-11	14/7/2	2010 14/7/2010	43277-2	14/7/2010	
Total Phenolics (as Phenol	I) mg/L	-	43277-11	<0.	.050 <0.050	43277-2	98%	
QUALITY CONTROL	UNITS	S	Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	
HM in water - dissolved				Base +	Duplicate + %RPD)		
Date prepared	-		43277-11	13/07/2	2010 13/07/2010	43277-2	13/07/2010	
Date analysed	-		43277-11	13/07/2	2010 13/07/2010	43277-2	13/07/2010	
Arsenic-Dissolved	µg/L		43277-11		<1 <1	43277-2	116%	
Cadmium-Dissolved	µg/L		43277-11		<0.1 <0.1	43277-2	120%	
Chromium-Dissolved	µg/L		43277-11		<1 <1	43277-2	102%	
Copper-Dissolved	µg/L		43277-11	4	4 RPD: 0	43277-2	95%	
Lead-Dissolved	µg/L		43277-11		1 <1	43277-2	102%	
Mercury-Dissolved	µg/L		43277-11		<0.5 <0.5	43277-2	115%	

Envirolab Reference: 43277 Revision No: R 01 ACCREDITED FOR TECHNICAL COMPETENCE

Client Reference: 40913, Macdonaldtown										
QUALITY CONTROL HM in water - dissolved	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery					
Nickel-Dissolved	µg/L	43277-11	2 2 RPD: 0	43277-2	96%					
Zinc-Dissolved	µg/L	43277-11	49 49 RPD: 0	43277-2	105%					

Envirolab Reference: 43277 Revision No: R 01

Report Comments:

Total Petroleum Hydrocarbons in water (semivol):# Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

PAH's in water analysed by NMI. Report No.RN806180.

Asbestos was analysed by Approved Identifier: Not applicable for this job

Asbestos was authorised by Approved Signatory: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit <: Less than >: Greater than **RPD: Relative Percent Difference** NA: Test not required LCS: Laboratory Control Sample NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: Revision No:

43277 R 01

CHAIN OF CUSTODY - Client

ENVIROLAB SERVICES

					LATL		AD 3		TOP									
Client: JBS					Client Project Name and Number: Macdonaldtown					Envirolab Services 12 Ashley St, Chatswood, NSW, 2067								
Project Mgr: S. DORAIRAG Sampler: T. DAVIS																		
				PO No	.: 40	913												
Address: \	28 O'RIORDAN	51 1	<u> </u>	se or	Enviro	Envirolab Services Quote No. :				· · · ·		Phone: 02 9958 5801						
							require				;			Fax:		-	3 5803	
Email	15 allograpican.ov	sdor	alla	allosgrap.com	Or cho	· ·								E-mai	I: TNO	otara	is@en	virolabservices.com.au
	- 1			8 1700		nform lab de applie		nce if urg	ent turn	around is	s required ·			Conta	ict: Ta	inia	Notara	as
Phone: 82											€ 7 1 • • »							
	and the supervise of the supervise of the state of the supervise of the state of th	a c., yaya bashaka 19 1	and the second		a generator z de mare			Statisficient of the		and a state of the								
Envirolab Sample ID	Client Sample ID	Dat samp		Type of sample	8 HEAVY METALS	H	tow livel	VOCS	BTEX	granols	paths		Ĩ				4	Provide as much information about the sample as you can
	Sample 1 - RUNI	9/7/	10	WATER	\times	×	×	×		×								
1	Samplez - RUN 1	1		1	×	\times	X	×		\times								
3	sample 3 - Run 1				×	\times	\times	\times		\times								
¥	Sample 4 - Run 1				\times	\times	_	\mathbf{X}		\times	\times			\rightarrow				
5	Sample 1 - RUN 2-				\times	\times	\times	\times		\times			<u> </u>					
6	sample 2 - RUN 2				\mathbf{x}	\times	\times	\times		\times			_					Envirotab Services
]	Sample 3- RUN Z				\times	\times	\times	\times		\times								LIVIUU Chatswood NSW 2067
2	Sample 4 - Run 2				\times	\times		\times		Х	\times							Ph: 9910 6200
4	Sample 1 - Run 3				\times	\times	\times	\times		X							$\left \right $	100 No: 43277
(0)	Sample 2 - RUN 3				\times	\times	\times	\times		\times			_ _					
11	Sample 3 - Run 3				\times	\times	×	\times		×								Time received: 5 : 3 0
12	Sample 4-Run 3				\times	\times	<u> </u>	\times		×	×							Received by: Tomp: Cool/Ambient Cooling: Ce//Cepack
13	MWOUS				X	\times	X	\times		\times							┨	Becunty: Inter BrokeniNone
ιψ	TRIP BLANK			 	1		<u> </u>	<u> </u>	\times					╉			┣	
5	TRIP SPIKE	\vee		\checkmark	<u> </u>				\times									
Relinquishe	ed by (company): JBS			<u></u>	Recei	ved by	(comp	<u>рапу):</u>	EL	5								r Ambient (circle one)
	TONIS					Name		57	2					Temperature Recieved at: (if applicable) Transported by: Hand delivered / courier				
	e: 9/7/10				Date & Time: 9/2/.2						borted l	oy: H	and de	Page No:				
Signature:	hi				Signature:				rage no:									

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

Attachment 4 – WTP Filter Specifications

Automatic Multi Media Water Filters

For Removal Of Suspended Matter

MODELS: FMA-A, FMA-F, FMA-F40 & FMA-F50

The multi layered media filter has advantages over conventional filters :

- * Greater Dirt Holding Capacity
- * Higher Flow Rates
- * Greater ability to handle surges
- * Reduced Backwash Rates

SPECIFICATIONS:

All units automatically backwash and rinse on a periodic basis in order to cleanse and reclassify the filter media. This is normally accomplished by an adjustable timer.

Sediment filters incur an increase pressure loss between inlet and outlet as filtered particles collect in the bed.

OPTIONS:

- * Backwash Only
- * Flush after Backwash
- * Choice of Timers or Signal Start
- * Custom Design
- * Pressure Gauges
- * Pressure Limiting & Relief Valves

FMA 550F40

FMA - A & FMA - F PIPE SIZE: 25mm - Maximum Flowrate 110L/min

	FLOW	RATES				DIMENS	IONS	
Model	Difficult ⁽¹⁾ L/min	Normal ⁽²⁾ L/min	Maximum ⁽³⁾ L/min	Backwash ⁽⁴⁾ L/min	Bed Area m ²	Cylinder Dia. mm	Height mm	Shipping Weight
FMA 200A	12	16	28	19	0.032	200	1200	50
FMA 250A	19	24	44	29	0.050	250	1200	65
FMA 300F or	·A-P 29	36	65	43	0.074	300	1200	80
FMA 325F or	·A-P 33	42	75	50	0.086	325	1500	86
FMA 350F or	·A-P 39	49	87	58	0.100	350	1500	90
FMA 400F or	·A-P 49	62	110	74	0.126	400	1200	160
FMA 550F	97	110	110	120 ⁽⁵⁾	0.250	550	1400	200

FMA - F40 PIPE SIZE: 40mm - Maximum Flowrate 254L/min

						-						
		FLOW RAT	ES/PRESSURE	DIMENSIONS								
	Model	Difficult ⁽¹⁾ L/min/kPa	Normal ⁽²⁾ L/min/kPa	Maximum ⁽³⁾ L/min/kPa	Backwash ⁽⁴⁾ L/min	Bed Area m ²	Cylinder Dia. mm	Height mm	Shipping Weight			
	FMA 400F40	49/20	62/30	110/60	74	0.12	400	1900	150			
	FMA 550F40	97/50	122/60	219/140	146	0.25	550	1400	200			
	FMA 600F40	113/55	142/80	254/185	170	0.29	600	2200	350			
	FMA 750F40	175/100	220/140	254/185	182	0.45	750	2600	700			

FMA - F50 PIPE SIZE: 50mm - Maximum Flowrate 580L/min

FMA 900F50	257/50	323/120	577/200	380	0.66	900	2600	1000
		020/220	0, = 000	000	0.00	500	2000	2000

(1) Removal of compressible solids eg. Floc carryover at feed concentrations to 300gm/L.

Reduces pressure loss and increases period between backwashes. Based on 390L/min/m².

(2) Removal of incompressible suspended solids above 10 microns at feed concentrations to 300gm/L.

Based on 490L/min/m².

(3) Not recommended for continuous use. Based on 875L/min/m².

(4) Based on $585L/min/m^2$.

(5) Special limit minimum pressure 450 kPa.

* SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. IF ANY DIMENSIONS ARE CRITICAL CONFIRM WHEN PLACING ORDER.

Appendix D Sydney Water Trade Waste Acceptance Criteria Brochure

Sydney WATER

Industrial customers

Acceptance standards and charging rates for 2010-11

Sydney Water accepts trade wastewater to the sewer, if it meets certain acceptance standards.

What are acceptance standards?

Acceptance standards are generally limits to the concentration of substances, in composite samples of trade wastewater discharge. For substances that pose a particular health and safety risk, acceptance standards also apply to the concentration of substances in a discrete sample of trade wastewater discharge.

These substances are highlighted in **bold** print in the tables in this fact sheet.

The acceptance standards for domestic substances are listed in Table 1, and for non-domestic in Table 2. Table 1 also lists the value of the domestic equivalent concentrations, which we deduct when calculating charges.

The Independent Pricing and Regulatory Tribunal (IPART) determined that all trade waste fees and charges will be adjusted from 1 July (under Determination No.1, 2008)

Testing

Customers must make sure substances specified in trade waste agreements or permits are only analysed in laboratories registered by the National Association of Testing Authorities (NATA), for the class of test(s) or specific test(s).

The approved analytical methods may be downloaded from <u>sydneywater.com.au</u>

What are they based on?

Acceptance standards are based on:

- safe levels of substances that may otherwise pose a health risk to workers in and around the sewerage system
- safe levels of substances to protect public health
- pollution reduction targets and discharge licence conditions set by the Department of Environment, Climate Change and Water NSW (DECCW NSW)
- the need to protect our assets and treatment processes
- the capability of the sewerage system to transport 'domestic substances', ie suspended solids, grease and BOD
- concentrations obtainable by using proven pre-treatment technology (provision is made to trial new technology)
- quality specifications for biosolids and reuse water
- reuse considerations, including the need to provide wastewater that does not interfere with reuse treatment processes, or limit reuse opportunities
- national acceptance criteria published as *Guidelines for Sewerage Systems, Acceptance of Trade Waste (Industrial Waste)*, (ARMCANZ & ANZECC, November 1994).

•	· ·			
Substance	Acceptance standard (mg/L)	Domestic equivalent (mg/L)	Note	Charging rate (\$/kg)
Suspended solids	600	200		0.862
BOD5 - primary treatment		230	1	0.120 + {0.0178 x (BOD/600)}
BOD5 - secondary treatment		230	1	0.678 + {0.0178 x (BOD/600)}
Soluble BOD	100	Not applicable	15	0.120 + {0.0178 x (BOD/600)}
Grease – primary treatment	110	50	2	1.214
Grease – secondary treatment	200	50	2	1.214
Ammonia	100	35	3, 5	2.014
Nitrogen	150	50	4	0.170
Phosphorus	50	10	4	1.347
Sulphate	2000	50		0.133 x (SO ₄ /2000)
Total dissolved solids (ocean systems, no discharge limitation)	10000	450	12	0.0058
Total dissolved solids (inland and ocean systems with limitation)	500	450	12	0.0058
Total dissolved solids (inland and ocean systems with advanced treatment to remove TDS)	10000	450	12, 16	0.173 x fraction of average dry weather flow treated

Table 1: Acceptance standards, domestic equivalents and charging rates for domestic substances

Trade waste requirements

- Sydney Water will determine standards for colour and interference with ultra violet disinfection on a system-specific basis.
- There must be no fibrous material in the trade wastewater, if we believe it could obstruct or block the sewerage system.
- Non-faecal gross solids must have a maximum linear dimension of less than 20 mm, a maximum cross section of 6 mm and must have a quiescent settling velocity of less than 3 m/hr.
- Sydney Water will negotiate radioactive material activity rates for sewer discharge on a site-specific basis.

 The Manager, Business Customer Delivery will determine acceptance standards for substances other than those listed in Tables 1 and 2. Sydney Water does not accept substances (or mixtures of substances) that cannot mix with water.

Provisional standards

Where we determine that an additional substance should be included on our list of acceptance standards, the new acceptance standard will be declared provisional.

The substance will be provisional for six months. During this time, the customer must test for the substance, but no charges will be levied.

There are currently no provisional standards.

Substance	Acceptance standard (mg/L)	Note	Charging rate (\$/kg)
Acetaldehyde	5	5	13.502
Acetone	400	5	0.127
Aluminium	100		0.677
Arsenic	1		67.574
Barium	5		13.502
Boron	100		0.677
Bromine	5	5	13.502
Cadmium	1		67.574
Chlorinated phenolics	0.05	6	1351.675
Chlorine	10	5	6.756
Chromium	3	7	22.281
Cobalt	5		13.502
Copper	5		13.502
Cyanide	1	5, 8	67.574
Fluoride	20	4	3.346
Formaldehyde	30	5	2.234
General pesticides (excludes OC and OP)	0.1	9	675.811
Herbicides and defoliants	0.1	3	675.811
Iron	50		1.344
Lead	2		33.750
Lithium (specified systems only)	10	10	6.756
		10	
Manganese	10		6.756
Mercaptans			67.574
Mercury	0.03		2230.222
Methyl Ethyl Ketone	100	5	0.677
Molybdenum	100		0.677
Nickel	3		22.281
Organoarsenic compounds	0.1		675.811
pH	7-10 units	1	
Petroleum hydrocarbons (flammable)	10	<u>5, 11, 14,18</u>	6.756
- Benzene	0.1	5, 18	
- Toluene	0.5	5, 18	
- Ethylbenzene	1	5, 18	
- Xylene	1	5, 18	
Phenolic compounds (non-chlorinated)	1		67.574
Polynuclear aromatic hydrocarbons	5		13.502
Propionaldehyde	5	5	13.502
Selenium	5		13.502
Silver	5		13.502
Sulphide	5	5	13.502
Sulphite	50		1.344
Temperature	38°C	1	
Thiosulphate	300		0.243
Tin	10		6.756
Uranium	10		6.756
Volatile halocarbons	1	5, 13, 17	67.574
- Chloroform	0.1	5, 17	
- Perchloroethylene	0.3	5, 17	
- Trichloroethylene	0.1	5, 17	
Zinc	5	0, 17	13.502
	5		10.002

Table 2 Acceptance standards and charging rates for non-domestic substances

Notes to acceptance standards

- 1. Sydney Water will introduce acceptance standards for a substance on a sub-system specific basis as determined by:
 - how much the receiving system can transport and treat
 - how corroded the sub-system is
 - how sewage treatment products will be used.
- 2. Discrete oil, fat or grease must not be discharged.
- 3. Where ammonia is present with other nitrogenous compounds, the amount of nitrogen in the ammonia is deducted from the total nitrogen as measured by Total Kjeldahl Nitrogen, before calculating the charge for nitrogen.
- 4. Fluoride, phosphorus and nitrogen limits don't apply where the customer's sewerage system is connected to a sewage treatment plant that discharges to the ocean.
- 5. Acceptance standards also apply to concentrations of ammonia, benzene, bromine, chlorine, cyanide, formaldehyde, petroleum hydrocarbons, sulphide and volatile halocarbons in discrete samples.
- We will determine acceptance standards for individual chlorinated phenolics on a catchment basis, following pollution reduction targets set by the DECCW NSW for the sewage treatment plant effluent. The concentration limit is a guide only and we may set lower limits for individual chlorinated phenolic compounds.
- 7. We do not allow discharge from comfort air conditioning cooling towers and evaporative condensers using products containing hexavalent chromium (chromate) or organometallic algicides, if the blow down (or 'bleed-off') is connected to the sewer. Comfort cooling towers are defined as cooling towers dedicated to heating, ventilation, air-conditioning or refrigeration systems.
- 8. Cyanide is defined as labile cyanide amenable to alkaline chlorination. This includes free cyanide as well as those complex cyanides that are particularly dissociable, almost wholly, or in a large degree, and therefore potentially toxic in low concentrations.

- We will not consent to any discharge of organochlorine pesticides (including chlordane, dieldrin and heptachlor), or organophosphorus pesticides (including chlorpyrifos, diazinon and malathion) into the sewerage system.
- 10. The limit for lithium applies only to the Rouse Hill sewage catchment.
- 11. Where flammable and/or explosive substances may be present, the customer must demonstrate to us that there is no possibility of explosions, or fires in the sewerage system. We will discuss limits and charges with individual customers, before a trade waste agreement is negotiated. The flammability of the discharge must never exceed five per cent of the Lower Explosive Limit (LEL) of hexane at 25 °C. In some cases a customer may be required to install an LEL meter.
- 12. We will determine acceptance standards for total dissolved solids on a catchment-specific basis. A limit of 500 mg/L may apply to customers discharging to an inland sewage treatment plant or to a sewage treatment plant that is part of a designated reuse system. Acceptance standards will only apply to those customers discharging in excess of 100kg/d of total dissolved solids (TDS) or greater than one per cent of the total catchment TDS load (whichever is the lesser).
- 13. Analysis of volatile halocarbons must at a minimum include methylene chloride, chloroform, trichloroethylene and perchloroethylene.
- 14. This substance is made up of several substances including benzene, toluene, ethylbenzene, (m+p)-xylene and o-xylene.
- 15. As at 1 July 2010, the limit for soluble BOD applies only to the Smithfield sewage and SPS 67 catchments, due to corrosion.
- 16. This is a guide only. Exact \$/kg rates are determined on a system-specific basis.
- 17. Charges will apply for total volatile halocarbons
- 18. Charges will apply for total petroleum hydrocarbons (flammable)

Want to know more?

Visit sydneywater.com.au

Appendix E DECC Immobilisation Technical Note 1

You are here: <u>Home</u> > <u>Waste and resource recovery</u> > <u>Regulating waste in NSW</u> > <u>Waste immobilisation</u> > <u>Technical notes</u> > Note 1

A A 🗟

Immobilisation Technical Note 1

Process Equipment for Treatment of Contaminated Soil and Sludge Waste

In the context of hazardous waste treatment under the POEO Act, it is imperative that the responsible person uses proper process plant and equipment competently to conduct the treatment. This approach would help assure that the favourable treatment results achieved at the laboratory or pilot scale trials can be repeated consistently at the full scale treatment and high treatment standards are maintained at all times.

Industry may practise either or both of the following methods in the immobilisation treatment of contaminated soil and sludge waste:

- 1. <u>Chemical fixation</u>: Chemical reagents are used to convert the target contaminants contained in the waste to a chemically stable form(s) suitable for landfill disposal.
- 2. <u>Stabilisation/solidification</u>: Cement and/or pozzolans reagents are used to transform the waste into a stable monolithic substance suitable for landfill disposal.

Unlike washed and clean aggregates used in cement concrete, contaminated soil and sludge waste including river sediments can be very heterogeneous with a mixture of materials of different particle size distributions, shapes, densities and surface properties (eg clayey and plastic). Such dissimilar characteristics and rheological properties can compromise the immobilisation treatment.

The responsible person must use a properly designed and engineered treatment plant that is adequately equipped with automatic or semi automatic control in respect of waste and chemical reagents handling. Avoid or prohibit any manual operation which is prone to human error and may be unreliable. A typical process flow diagram for the treatment of contaminated soil and sludge waste is in <u>Annex A</u>.

The mechanical mixer functions as the chemical reactor of the immobilisation treatment process. It should be equipped with a stationary mixing compartment and an agitator fitted with heavy duty mixing paddles/blades; and it can perform the following mixing duties:

- Provide positive agitation/stirring of the mix and achieve rigorous mixing e.g. turbulent flow within the mixing compartment.
- Adequately handle homogeneous and heterogeneous solids including soil, aggregates and sludges, and materials exhibiting plastic properties e.g. silt and clay.
- · Capable of achieving a homogenous mix within minutes of mixing.

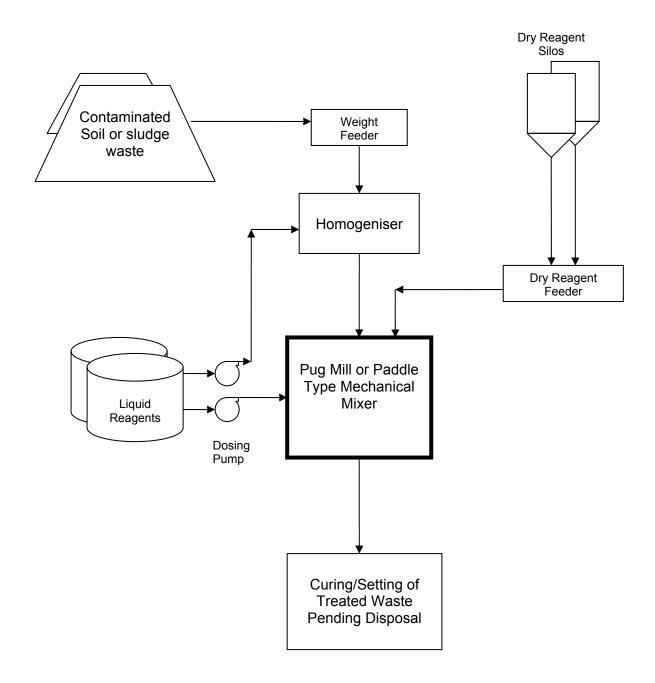
As a matter of DECC policy the tumbler type mixer e.g. small DIY rotating concrete mixer, rotating mixer mounted on a delivery truck, rotary hoe or bull dozer are not acceptable mixing devices for the immobilisation treatment of contaminated soil and sludge waste. Such machineries cannot discharge the above mixing duties for processing hazardous waste or sludge.

The following types of mixer (Perry, Chemical Engineers Handbook, McGraw Hill) could attain the above mixing duties and are considered suitable for the purposes of the immobilisation treatment of contaminated soil or sludge waste. They are commonly used in industry operations.

- 1. Pug mill mixer.
- 2. Paddle type mixer including Ribbon mixer and Turbine/Pan mixer.

However, the choice of mixer is a waste specific issue and the responsible person should conduct a test run before adopting the equipment for full scale treatment. The DECC would consider and approve other types of mechanical mixing device on merits.

Annex A: Typical Process Flow Diagram for Contaminated Soil Treatment Plant


Page last updated: 26 February 2008

NSW Government | jobs.nsw

Accessibility | Privacy | Disclaimer | Copyright | Feedback

DECC WASTE TECHINICAL NOTE 1: ANNEX A

Typical Process Flow Diagram for Contaminated Soil Treatment Plant

Appendix F

Laboratory Certificates of Analysis

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 42976

<u>Client:</u> JBS Environmental P.O. Box 940 MASCOT NSW 1460

Attention: Tim Davis / Sumi Dorairoj

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

40913, Macdonaldtown

21 Soils, 1 Water 02/07/10 02/07/10

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details: Date results requested by: 9/07/10 Date of Preliminary Report: Not issued Issue Date: 9/07/10 NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer/

Business Development & Quality Manager

Envirolab Reference:

Revision No:

42976

R 00

₹a, Sandra Taxlor Senior Organic Chemist

Kluign Morgen

Rhian Morgan Metals Supervisor

Nancy Zhang Chemist

M. Mauffell

Matt Mansfield Approved Signatory

Page 1 of 51

VOCs in soil						
Our Reference:	UNITS	42976-1	42976-2	42976-5	42976-6	42976-7
Your Reference		JBS TP1	JBS TP2	JBS TP2	JBS TP3	JBS TP4
Depth		0.3-0.4	0.4-0.5	1.4-1.5	1.7	0.5
Date Sampled		2/07/2010	2/07/2010	2/07/2010	2/07/2010	2/07/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/07/2010	06/07/2010	06/07/2010	06/07/2010	06/07/2010
Date analysed	-	07/07/2010	07/07/2010	07/07/2010	07/07/2010	07/07/2010
Dichlorodifluoromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Cyclohexane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5	1.4	0.9	<0.5
dibromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5	2.4	0.72	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0	26	22	<1.0
bromoform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	44	13	<2.0
styrene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0

Envirolab Reference: 42976 Revision No: R 00

VOCs in soil						
Our Reference:	UNITS	42976-1	42976-2	42976-5	42976-6	42976-7
Your Reference		JBS TP1	JBS TP2	JBS TP2	JBS TP3	JBS TP4
Depth		0.3-0.4	0.4-0.5	1.4-1.5	1.7	0.5
Date Sampled Type of sample		2/07/2010 Soil	2/07/2010 Soil	2/07/2010 Soil	2/07/2010 Soil	2/07/2010 Soil
o-Xylene	mg/kg	<1.0	<1.0	22	18	<1.0
1,2,3-trichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0	4.4	3.3	<1.0
bromobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0	5.7	3.2	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0	25	15	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	<1.0	54	36	<1.0
1,3-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0	2.7	2.5	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0	3.2	1.9	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluorometha	%	110	108	106	110	106
Surrogate aaa-Trifluorotoluene	%	110	112	90	109	122
Surrogate Toluene-d	%	89	83	69	86	86
Surrogate 4-Bromofluorobenzene	%	100	100	118	105	101

Client Reference: 40913, Macdonaldtown

Client Reference: 40913, Macdonaldtown

VOCs in soil						
Our Reference:	UNITS	42976-8	42976-9	42976-14	42976-16	42976-17
Your Reference		JBS TP4	JBS TP4	JBS TP5	JBS TP5	JBS TP5
Depth		1.0	1.6-1.7	0.5	1.5	2.0
Date Sampled		2/07/2010	2/07/2010	2/07/2010	2/07/2010	2/07/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/07/2010	06/07/2010	06/07/2010	06/07/2010	06/07/2010
Date analysed	-	07/07/2010	07/07/2010	07/07/2010	07/07/2010	07/07/2010
Dichlorodifluoromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Cyclohexane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
dibromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromoform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	5.3	<2.0
styrene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iiig/Kg	>1.0	NI.U	NI.U	NI.U	NI.U

R 00

VOCs in soil						
Our Reference:	UNITS	42976-8	42976-9	42976-14	42976-16	42976-17
Your Reference		JBS TP4	JBS TP4	JBS TP5	JBS TP5	JBS TP5
Depth		1.0	1.6-1.7	0.5	1.5	2.0
Date Sampled Type of sample		2/07/2010 Soil	2/07/2010 Soil	2/07/2010 Soil	2/07/2010 Soil	2/07/2010 Soil
o-Xylene	mg/kg	<1.0	<1.0	<1.0	3.3	<1.0
1,2,3-trichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	4.1	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	8.5	1.7
1,3-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluorometha	%	112	113	104	112	114
Surrogate aaa-Trifluorotoluene	%	104	92	87	90	108
Surrogate Toluene-da	%	76	66	66	66	78
Surrogate 4-Bromofluorobenzene	%	100	100	100	101	100

Client Reference: 40913, Macdonaldtown

Client Reference:

40913, Macdonaldtown

VOCs in soil Our Reference:	UNITS	42976-19	42976-21
Your Reference		QA2	JBS TP3
Depth		-	4.0-4.2
Date Sampled		2/07/2010	2/07/2010
Type of sample		Soil	Soil
Date extracted	-	06/07/2010	06/07/2010
Date analysed	-	07/07/2010	07/07/2010
Dichlorodifluoromethane	mg/kg	<1.0	<1.0
Chloromethane	mg/kg	<1.0	<1.0
Vinyl Chloride	mg/kg	<1.0	<1.0
Bromomethane	mg/kg	<1.0	<1.0
Chloroethane	mg/kg	<1.0	<1.0
Trichlorofluoromethane	mg/kg	<1.0	<1.0
1,1-Dichloroethene	mg/kg	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0
Cyclohexane	mg/kg	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5
dibromomethane	mg/kg	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0
bromoform	mg/kg	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0
styrene	mg/kg	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0

Client Reference:

40913, Macdonaldtown

VOCs in soil			
Our Reference:	UNITS	42976-19	42976-21
Your Reference		QA2	JBS TP3
Depth		-	4.0-4.2
Date Sampled		2/07/2010	2/07/2010
Type of sample		Soil	Soil
o-Xylene	mg/kg	<1.0	<1.0
1,2,3-trichloropropane	mg/kg	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0
bromobenzene	mg/kg	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	2.2
1,3-dichlorobenzene	mg/kg	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0
Surrogate Dibromofluorometha	%	116	110
Surrogate aaa-Trifluorotoluene	%	111	89
Surrogate Toluene-da	%	86	66
Surrogate 4-Bromofluorobenzene	%	101	100

Client Reference:

40913, Macdonaldtown

BTEX in Soil			
Our Reference:	UNITS	42976-11	42976-12
Your Reference		Trip Spike	Trip Blank
Depth		-	-
Date Sampled		2/07/2010	2/07/2010
Type of sample		Soil	Soil
Date extracted	-	06/07/2010	06/07/2010
Date analysed	-	07/07/2010	07/07/2010
Benzene	mg/kg	98	<0.5
Toluene	mg/kg	100	<0.5
Ethylbenzene	mg/kg	96	<1.0
m+p-xylene	mg/kg	96	<2.0
o-Xylene	mg/kg	100	<1.0
Surrogate aaa-Trifluorotoluene	%	132	137

Envirolab Reference: 42976 **Revision No:**

R 00

PAHs in Soil						
Our Reference:	UNITS	42976-1	42976-2	42976-5	42976-6	42976-7
Your Reference		JBS TP1	JBS TP2	JBS TP2	JBS TP3	JBS TP4
Depth		0.3-0.4	0.4-0.5	1.4-1.5	1.7	0.5
Date Sampled		2/07/2010	2/07/2010	2/07/2010	2/07/2010	2/07/2010
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/07/2010	06/07/2010	06/07/2010	06/07/2010	06/07/2010
Date analysed	-	07/07/2010	07/07/2010	07/07/2010	07/07/2010	07/07/2010
Naphthalene	mg/kg	0.6	13	350	310	0.3
Acenaphthylene	mg/kg	0.7	25	6.0	1.3	0.8
Acenaphthene	mg/kg	0.1	3.8	3.7	3.1	<0.1
Fluorene	mg/kg	0.5	22	9.9	2.7	0.2
Phenanthrene	mg/kg	3.4	110	23	4.6	1.4
Anthracene	mg/kg	0.8	32	6.7	1.3	0.5
Fluoranthene	mg/kg	4.4	110	14	1.8	3.1
Pyrene	mg/kg	4.9	130	19	2.3	5.1
Benzo(a)anthracene	mg/kg	2.6	75	7.5	0.7	2.8
Chrysene	mg/kg	2.6	63	6.2	0.7	3.1
Benzo(b+k)fluoranthene	mg/kg	3.8	79	8.0	0.7	5.6
Benzo(a)pyrene	mg/kg	3.0	64	7.7	0.6	4.4
Indeno(1,2,3-c,d)pyrene	mg/kg	1.3	20	2.6	0.2	2.5
Dibenzo(a,h)anthracene	mg/kg	0.3	6.4	0.7	<0.1	0.6
Benzo(g,h,i)perylene	mg/kg	1.1	17	2.7	0.2	2.8
Surrogate p-Terphenyl-d14	%	97	100	96	97	99

Client Reference: 40913, Macdonaldtown