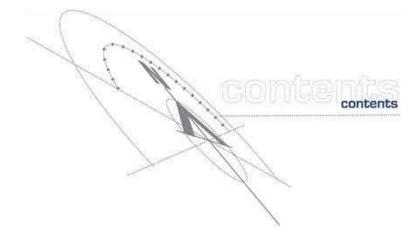

Engineering Services Report


Newton Denny Chapelle

P D Box 1138, Lismore, N.S.W. 2480 • Phone (02) 6622 1011 • Fax (02) 6622 4088 DX7779 Lismore
 Email office@newtondennychapelle.com.au • Also at: Cassino Court, 10D Barker St., Casino N.S.W. 2470 • Phone/Fax (02) 6662 5000

REVISION #	DATE	DESCRIPTION	ORIGINATOR	APPROVED
А	15/08/2018	Issued for DA	СР	DC
В	27/09/2018	Issued for Approval	СР	DC
				5
may conta retransmis document by	in confidential a ssion, disclosure, persons or entit ed, sold, transferr	thin this document is for the u nd/or legally privileged mater dissemination or other use of ies other than the intended re red, copied or reproduced in v	ial. Any reproduction, pu the information contain cipient is prohibited. Th vhole or in part in any w	ublication, ned in this nis document
may conta retransmis document by	in confidential a ssion, disclosure, persons or entit ed, sold, transferr	nd/or legally privileged mater dissemination or other use of ies other than the intended re	ial. Any reproduction, pu the information contain cipient is prohibited. Th vhole or in part in any w	ublication, ned in this nis document
may conta retransmis document by may not be use	in confidential a ssion, disclosure, persons or entit ed, sold, transferr	nd/or legally privileged materi dissemination or other use of ies other than the intended re red, copied or reproduced in v vritten consent of Newton De	ial. Any reproduction, pu the information contain cipient is prohibited. Th vhole or in part in any w	ublication, ned in this nis document
may conta retransmis document by may not be use	in confidential a ssion, disclosure, persons or entit ed, sold, transferr prior v ABN: 18 094 685	nd/or legally privileged materi dissemination or other use of ies other than the intended re red, copied or reproduced in v vritten consent of Newton De 9845	ial. Any reproduction, pu the information contain cipient is prohibited. Th vhole or in part in any w	ublication, ned in this nis document
may conta retransmis document by may not be use	in confidential a ssion, disclosure, persons or entit ed, sold, transferr prior v	nd/or legally privileged mater dissemination or other use of ies other than the intended re red, copied or reproduced in v vritten consent of Newton De 9 845	ial. Any reproduction, pu the information contain cipient is prohibited. Th vhole or in part in any w	ublication, ned in this nis document

http://www.newtondennychapelle.com.au

+ JOHN NEWTON & Surv. M.I.S. Aust + TONY DENNY & Surv. (Henu): M.I.S. Aust. + DAMIAN CHAPELLE STP.

Table of Contents Executive Summary

		-	
E	xecutive	Summary	1
1	Intro	oduction	2
2	Repo	ort Scope	3
	2.1	Reference Documents	3
3	Site l	Description	3
4	Bulk	Earthworks	4
	4.1	Acid Sulfate Soils	4
5	Road	d Layout and Site Access	5
-	5.1	Intersection Analysis	
6	• • •	fic Assessment	
Ŭ	6.1	Background Information	
	6.2	Daily Traffic Generation	
		-	
	6.3	Local Road Network	
7	Storr	mwater Management	7
	7.1	Stormwater Quality	8
	7.2	Stormwater Attenuation	10
	7.2.1	Drains Model	13
	7.2.2		-
	7.3	Summary of Stormwater Devices	15
8	Sewe	er Services	16
9	Wate	er Reticulation	16
	9.1	Potable Water Reticulation	16
	9.2	Recycled Water Reticulation	17
1	0 Se	ediment and Erosion Control	17

i

Appendices

Appendix A

Concept Engineering Plans

Plan Number	Plan Name
14351-S5-DA-CI-00	Site Plan
14351-S5-DA-BE-00	Bulk Earthworks Plan
14351-S5-DA-BE-11	Bulk Earthworks – Section A & B
14351-S5-DA-BE-12	Bulk Earthworks – Section C & D
14351-S5-DA-CI-01	Civil Works Plan
14351-S5-DA-CI-11	Civil Works Longsection – MC01
14351-S5-DA-CI-12	Civil Works Longsection – MC01 & MC02
14351-S5-DA-CI-13	Civil Works Longsection – MC03
14351-S5-DA-CI-14	Civil Works Longsection – MC04
14351-S5-DA-CI-21	Civil Services Plan
14351-S5-DA-CI-22	Civil Services Plan – Sewer Rising Main

Appendix B Acid Sulfate Soil Management Plan - Geolink

Appendix C Access Assessment – Bitzios Consulting

Appendix D MUSIC Model

Appendix E Engineering Advice Sewer Pump Station – Willow + Sparrow Engineering

Appendix F H2One – Hydraulic Assessment of the Dual Reticulation Network

Executive Summary

This Engineering Services Report is to accompany the Modification to Major Project 07_0026 to secure approval to change the land use designation from a retirement village to a 145 lot integrated residential subdivision upon Lot 5 DP 1239938 forming part of the Estate known as Epiq Lennox. The site is known as Super Lot 5 and covers an area of approximately 4.17Ha to the east of Montwood Drive and the south of Snapper Drive.

The development has been previously approved (Department of Planning approval 07_0026) with several stages constructed, approved or pending approval on the site. This report details the engineering design elements required for the development to comply with the relevant polices, standards and regulations required for a residential development in the Ballina Shire Council Local Government Area. Significant engineering design has previously been undertaken for the site as part of greater development approval. The following components have been assessed:

- Bulk Earthworks The development has been filled as part of previous stages of the development. 2,220m³ of fill is expected with retaining walls required along the northern and western boundaries of the site. The maximum retaining wall height is expected to be 2.2m.
- Traffic Based on the previously approved and constructed stages of the Epiq Lennox development the surrounding road network has sufficient capacity for the proposed development (4,110vpd capacity vs 2,174vpd expected traffic).
- Road Layout and Pedestrian Access Road reserve and carriageway widths are at or above the minimum widths specified in the Northern Rivers Local Government Standards. A 1.35m wide footpath connection will be installed throughout the development.
- Stormwater Additional Gross Pollutant Traps have been installed throughout the greater Epiq Estate to ensure the stormwater treatment targets are achieved for the development. Additional stormwater pipes will be installed underneath Montwood Drive to cater for the peak storm flows generated from the site.
- Potable and Recycled Water Reticulation Water connections will be supplied to all lots with connection to the greater Lennox Head. Water mains and connection points will be provided generally in accordance with water reticulation modelling conducted by H2One.
- Sewer Reticulation All lots will be provided with a gravity sewer connection to a new pump station in the South West Corner of the site. The rising main from this pump station will discharge into the existing gravity sewer network adjacent to Snapper Drive.

1 Introduction

Newton Denny Chapelle has been engaged by Clarence Property Corporation Ltd to prepare an Engineering Services Report to accompany the application for 145 Torrens Title Residential Lot Subdivision. The site is located in Lennox Head and has previously been known as the Pacific Pines Estate, now referred to as Epiq Lennox.

The total development site is approximately 80.5ha in size with this application relating specifically to the area known as Super Lot 5 (refer Figure 1-1). The site is approximately 4.17Ha in size.

Figure 1-1 – Epiq Estate Development Site

This report relates to the bulk earthworks, traffic, stormwater and servicing requirements of the site. Several elements of the engineering design have already been completed as part of previous approvals (eg stormwater) for the Estate. This report is intended to append the original designs where necessary and also demonstrate that the proposed engineering modifications meet the relevant concept approval conditions.

2 Report Scope

This report focuses on providing sufficient concept engineering design details to facilitate a thorough understanding of the proposed works. The works covered by this report include new infrastructure for traffic, stormwater (quality and attenuation) and servicing provisions for the proposed development.

It is recognised that a subsequent submission of detailed engineering design plans and specifications are required to be made before final approval of the development by Ballina Shire Council. At this stage any minor amendments of the design elements proposed will be addressed to meet any of the concerns raised through the approvals process. The concepts and calculations outlined in this report and associated plans shall not be used for construction without the written permission of Newton Denny Chapelle.

2.1 Reference Documents

The following documents have been used in the preparation of this report:

- Gilbert + Sutherland, Revised Stormwater Assessment & Management Plan, Pacific Pines Estate, Montwood Drive & Hutley Drive, Lennox Head, New South Wales, July 2014
- Ballina Shire Council, Ballina Development Control Plan 2012 Chapter 3 Urban Development
- Cardno Eppell Olsen, Pacific Pines Estate, Traffic and Transport Statement, November 2011
- Ballina Shire Council Stormwater Management Standards for Development 2015
- Ardill Payne and Partners, Project Application Stage 1, Engineering Report Pacific Pines Subdivision
- Water Services Association of Australia, Sewerage Code of Australia, WSA 02-2002
- Geolink, Water Reticulation Hydraulic Analysis Addendum Report
- Geolink, Investigation of Gravity Sewer Augmentation on Hutley Drive
- Cardno Eppell Olsen, Pacific Pines Estate, Traffic & Transport Statement, November 2011
- Northern Rivers Local Government Development Design Manual
- Ballina Shire Council, Development Control Plan Chapter 13 Stormwater Management 2006
- SMEC Urban, Pacific Pines Estate Water Reticulation Hydraulic Analysis, March 2012
- SMEC Urban, Pacific Pines Estate Dual Reticulation Analysis, Letter Dated 30 March 2012
- Newton Denny Chapelle, *Engineering Services Report (Modification 5 to Concept approval 07_0026)*, Dated November 2016

3 Site Description

The site consists of a vacant development lot created as part of the subdivision works. The site has been previously filled and is currently being used for Erosion and Sediment control and storage for the Release 3 site (immediately to the north of Super Lot 5).

The areas surrounding the development site can be summarised as:

- Northern Boundary Is formed with the extension of Snapper Drive. This is currently being constructed as part of the Release 3 works. Upon completion the adjacent land will be higher than the site.
- Eastern Boundary Is formed with the Conservation Management Zone. The adjoining land is generally lower than the site.

- Southern Boundary Is formed with the Conservation Management Zone. The adjoining land is generally lower than the site.
- Western Boundary Is formed with Montwood Drive. The site is generally higher than Montwood Drive.

4 Bulk Earthworks

The site has been filled as part of previous stages of Epiq Lennox. The Release 3 temporary sediment basin is currently located on the northern portion of the site. Upon completion of Release 3 this basin will be backfilled to a Level 1 Standard. All building sites will be filled to a level greater than 3m AHD above the prescribed level of 2.65m AHD for flooding. Filling to this level is not expected to have adverse effects on upstream properties.

The only lots potentially affected by a higher fill height are those directly north of the site. These lots form part of Epiq Release 3 with the boundary between the development stages formed by the extension of Snapper Drive. The SL5 site is lower than the adjacent Snapper Drive. Provision has been made within SL5 for the 100 year ARI overland flow path from the adjacent Release 3 stage.

Retaining walls will be required along the northern and western boundaries of the site. The walls along the northern boundary will be in cut to a maximum depth of 2.2m expected. The retaining walls along the western boundary will be in fill to a maximum height of 1.6m. The site is expected to require 2,220m³ of additional fill (excluding remediating the temporary sediment basin) with a maximum fill depth of 2.0m and cut depth of 1.75m.

4.1 Acid Sulfate Soils

The site is mapped as having Class 2 and Class 5 Acid Sulfate Soils (Ballina LEP 2012), refer to Figure 4-1.

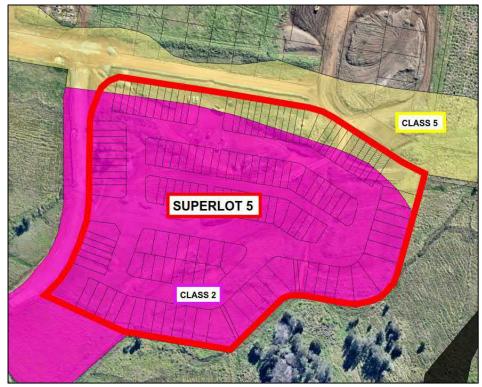


Figure 4-1 - Acid Sulfate Soils

The site has previously been filled as part of previous stages of the Epiq Lennox Development. Any excavation below the original natural surface level will be will be undertaken in accordance with the Acid Sulfate Soil Management Plan – Pacific Pines Stage 1B plan prepared by Geolink (dated 27/08/2014). This plan is attached in Appendix B.

5 Road Layout and Site Access

The site will have two access points to the surrounding Road Network (being Montwood Drive and Snapper Drive). The proposed development will involve the construction of four new Roads. A summary of the proposed Roads is presented in Table 5-1:

Road	Length (m)	Carriageway Width (m)	Reserve Width (m)	Road Hierarchy	Maximum Grade
Road 1 (B)	515	Variable 7 – 10m	Variable 15 – 20m	Local Street	<5%
Road 2 (A)	44	10	20	Local Street	9%
Road 3 (D)	190	7	15	Local Street	<5%
Road 4 (C)	182	6	8	Access Lane	<5%
Total:	931				

Table 5-1 - Summary of Proposed Roads

A 1.35m wide footpath will be provided along one side of all public Roads (with the exception of the access lane) with connection to the surrounding footpath network in Montwood and Snapper Drives. Bus stops are located within 400m of the site along Snapper Drive. These have been constructed as part of previous stages of the Epiq Development.

5.1 Intersection Analysis

An analysis of the immediate surrounding road network has been undertaken by Bitzios Consulting. Bitzios recommend a that a BAR and BAL treatment is provided at the Montwood Drive access. An alternate CHR(s) treatment only is also suggested. This assessment is attached in Appendix C.

6 Traffic Assessment

6.1 Background Information

Previous studies of the traffic generated by the greater Epiq development site have been undertaken by Carndo Eppell Olsen and updated by Newton Denny Chapelle as part of the Modification 5 to Concept Approval 07_0026. These studies have identified that the extension of Hutley Drive is needed to service the fully developed site. Without the extension of Hutley Drive the existing surrounding Road network has an approved capacity of 7,456vpd. This daily traffic volume has been approved in the Ballina Shire Council Ordinary Council meeting on the 23rd October 2014 (refer Figure 6-1).

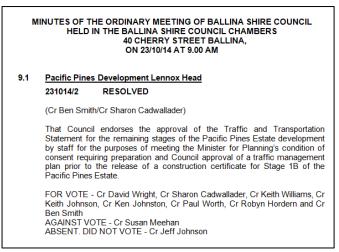


Figure 6-1 - Excerpt from Council Meeting Minutes 23/10/2014

The approved traffic capacity relates to the available capacity of the surrounding road network being Montwood Drive and Henderson Lane. The existing road network has a surveyed volume of 1,712 for Montwood Drive and 1,634vpd for Henderson Lane leaving an excess of 4,110vpd for the Epiq development to utilise.

6.2 Daily Traffic Generation

The daily traffic generation for the proposed development has been estimated based on the traffic generation rates for medium density developments outlined in the *Ballina Shire Council, Ballina Road Contribution Plan – Version 4*. The total daily vehicle trips for the development are outlined in Table 6-1:

			Traffic Genera	ation Rates
Land Use	Qty	Units	Daily Vehicle Trip Rate	Total Daily Vehicle Trips
Medium Density Residential	145	Dwellings	6.45	936

Table 6-1 - Traffic Generation Rates

Local trip generation rates for the residential component of the development are considered appropriate for the estimation of traffic generated and have been previously accepted as part of Modification 5 to the Concept Plan. Averaging the data for all regional sites (Coffs Harbour, Lismore, Orange, Wagga Wagga and Wollongong) investigated the RMS Technical Direction 2013/04a results in an average daily trip rate of 6.33. The adopted local rate of 6.45 vpd is considered appropriate when applying the aggregate survey data as suggested by the RMS.

6.3 Local Road Network

As detailed in Modification 5 to the Concept Approval 07_0026 the surrounding Road network has insufficient capacity to service the entire Epiq Lennox development until the northern connection of Hutley Drive is constructed. The surrounding Road network has an approved capacity of 7,456vpd.

The existing Road network has a surveyed volume of 3,346vpd leaving and excess of 4,110vpd for the Epiq Estate to utilise. The previously approved and constructed stages of Epiq are expected to generate 2,174vpd (including this development, refer Table 6-2). These volumes have been determined from the traffic generation rates outlined in the Ballina Shire Roads Contributions Plan (6.45/dwelling). In accordance with the RMS recommendations, 25% of the trips are internal with the 75% of the total trips generated utilising the surrounding external Road network.

Epiq Releases	Resid	dential	(vpd)	Medium Density (vpd) [*]			
	۱ ¹	E ²	T ³	۱ ¹	E ²	T ³	
$1A^+$	82	247	329	0	0	0	
$1B^+$	-	-	-	-	-	-	
2 (SL8+ST3) ⁺	132	397	528.9	0	0	0	
3 (ST2+ST6) ⁺	194	581	774	0	0	0	
4 ⁺	56	169	225.8	26	79	105	
Super Lot 5 (this application)	0	0	0	234	702	936	
Totals:	464	1393	1858	260	781	1041	
External Traffic Total:			21	74			
*The number of dwellings has been based on the maximum density allowed for the zoning (1 dwelling/250m ² - total area 6,906m ²) * Previously approved or constructed stage ¹ Internal Trips ² External Trips							
³ Total Trips							

Table 6-2 - Daily	Vehicle Trips Generated by the Dev	velopment

Based on the previously approved and constructed stages of the Epiq Lennox development the surrounding Road network has sufficient capacity for the proposed development (4,110vpd capacity vs 2,174vpd expected traffic). In accordance with the concept approval an assessment of the surrounding road network to confirm there is sufficient capacity for the development will be undertaken prior to the issue of a Subdivision Certificate.

6.4 Road Contributions

Estimated traffic contributions for the site have been calculated in accordance with the Ballina Shire Road Contribution Plan Version 4.1 and the Ballina Shire Council Fees and Charges 2018/2019. Based on the current Road Contribution rate of \$12,061 and Road Administration Contribution \$181 per equivalent residential lot the contributions for the development are expected to be approximately \$1.775 million.

7 Stormwater Management

The site has been previously modelled by Gilbert and Sutherland ('Revised Stormwater Assessment & Management Plan' dated July 2014) to determine the quality treatment and attenuation requirements

for the site. The stormwater objectives for the site are defined in Condition B6 of the Pacific Pines – Concept Approval (MP 07_0026), see Figure 7-1 below:

B6 Stormwater Management Plan

The proponent is to prepare a stormwater management plan for the entire site, prepared by a suitable qualified person(s) that includes detailed modelling for both water quality and quantity. The plan shall demonstrate:

- 1) That the project does not concentrate or lead to an increase in the volume or rate of flow of stormwater discharged from the site over and above pre-development flow conditions; and
- 2) That the project does not increase the average annual load of key stormwater pollutants in stormwater discharged from the site over and above pre-development conditions.

3) that all stormwater infrastructure is located outside the conservation zone area.

The plan is to be prepared in accordance with the Water Sensitive Urban Design requirements of *Ballina Shire Combined* Development Control Plan Chapter 13 – Stormwater Management.

The stormwater plan is to be submitted to and approved by Council prior to the issue of a Construction Certificate for Stage 1A.

Figure 7-1 - Excerpt from Concept Approval (MP 07_0026) - Stormwater Management Plan

The previously approved SWMP has been used as a first preference for the basis of this assessment. Where the proposed development differs from the original assumptions contemporary stormwater management standards have been applied.

7.1 Stormwater Quality

The stormwater from the site will be discharged to the WQCP (via the CMZ) in accordance with the Gilbert and Sutherland Stormwater Management Plan. Super Lot 5 forms part of Catchment 10 (refer Figure 7-2).

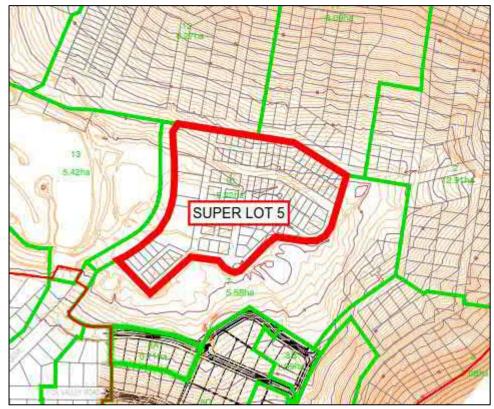


Figure 7-2 - Excerpt from G+S MUSIC Model Catchment Plan - DWG 10734-1.3-D

The stormwater quality modelling has been previously undertaken by Gilbert and Sutherland. This modelling shows that the development can achieve the required stormwater quality targets, refer Figure 7-3.

	Load reduction (%)			
	Suspended Solids	Total Nitrogen	Total Phosphorus	
Existing	370,000	2,700	355	
Developed	189,000	2,500	338	
Change%	-48.9%	-7.4%	-5.0%	

Figure 7-3 - G+S Modelling Results

The Gilbert and Sutherland MUSIC Model has been modified to reflect the changes to the greater Development. These include:

- Increase in Neighbourhood Shopping Centre as Part of MOD 5
- Actual impervious areas modelled in Super Lot 5
- Additional allowances added to Super Lot 7 for future development

Catchment	Area	Forest	Rural	Urban	Commercial	Townhouse
10	5.22	0.00	1.45	3.77	0.00	0.00
11	6.10	0.00	1.76	4.34	0.00	0.00
12	8.45	0.00	0.98	7.02	0.45	0.00
15	13.73	0.00	0.00	11.92	1.81	0.00
16	4.79	0.00	0.78	2.90	1.11	0.00

The Catchments detailed by Gilbert and Sutherland have been modified as outlined in Figure 7-4;

Figure 7-4 - Revised Water Quality Catchments

In addition to the original treatment devices proposed by Gilbert and Sutherland Gross Pollutant Traps have been installed or designed throughout the greater Epiq Development. These include:

- 3x Humegard Units installed as part of Release 2 (G+S Catchment 15);
- 1x Humegard Unit designed in Release 3 (G+S Catchment 11);
- 1x Humegard designed in the Neighbourhood Shopping Centre (G+S Catchment 15);
- 1x Humegard to be allowed for in the future design of Super Lot 7 (G+S Catchment 16).

The MUSIC model has been run with the revised information (shown in Appendix D). The results of the model are summarised in Table 7-1.

_	Table 7-1 - MUSIC Model Results						
		Suspended Solids	Total Nitrogen	Total Phosphorus			
	Developed	181,000	2430	315			

As shown above the revised treatment train for the greater Epiq Development results in less total annual pollutant loads than previously modelled by Gilbert and Sutherland. The proposed treatment levels are considered to satisfy the pollutant reduction targets approved in the greater Epiq Stormwater Management Plan.

7.2 Stormwater Attenuation

Stormwater attenuation for the site has been remodelled based on the actual impervious areas for the Super Lot 5 site. The Gilbert and Sutherland assumptions in relation to the impervious areas within Catchment 10 are considered to underestimate the actual stormwater runoff based on the current development layout. In remodelling the site, the new Ballina Shire Council Stormwater Management Standards for Development (SMSD) have been applied.

The catchment areas within Super Lot 5 have been determined from the design plans and are summarised in Table 7-2 (also refer to the attached Stormwater Catchment Plan):

able 7-2 - Super Lot 5 Catchments							
Catchment	Surface Type	Area (m²)	Impervious Area (m ²)				
North West	Roads	1075	1075				
North West	Roof 257		2573				
North West	Other Imp	720	720				
North West	Vegetation	1592	0				
	Sub Total:	5960	4368				
West	Roads	1675	1675				
West	Roof	1677	1677				
West	Other Imp	540	540				
West	Vegetation	1996	0				
	Sub Total:	5888	3892				
South	Roads	3810	3810				
South	Roof	11560	11560				
South	Other Imp	3090	3090				
South	Vegetation	11395	0				
	Sub Total:	29855	18460				
	Total:	41703	8260				

The Greenfield Development Method 1 from the has SMSD been applied to ensure there are no adverse impacts on downstream users. Attenuation of the stormwater generated by the site is not proposed, with investigation of the capacity of the downstream flow paths investigated.

Super Lot 5 ultimately drains to the Water Quality Control Pond (WQCP) to the west of Montwood Drive. As part of the previous stages of the Epiq development three existing Road crossings have been provided beneath Montwood Drive, refer to Figure 7-5 below:

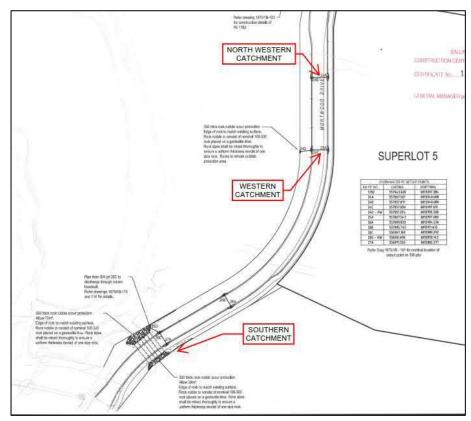


Figure 7-5 - Existing Culverts under Montwood Drive (Source: Geolink Plan 1675/1B 079)

The existing crossings beneath Montwood Drive can be summarised as:

- 24A-24B existing Ø525mm RCP,
- 25A-24C existing Ø525mm RCP,
- Box Culverts Three existing 2100mmx750mm RCBC with two link slabs.

The two existing Ø525mm pipes under Montwood Drive capture small localised catchments along Montwood Drive. These catchments have been modelled as outlined in the Geolink Stage 1B design calculations. It is proposed to drain the North Western and Central Western portions of the site through these pipes.

The surrounding eastern catchments draining into the Box Culverts have been based on the WBNM Developed Catchments outlined by G+S, the current drainage design and Councils Works as Executed information for surrounding developments. The impervious areas for the surrounding catchments are based on housing density as outlined in the Drains user manual. The impervious areas for SL5 have been determined from the design plans. The stormwater catchments are outlined in Table 7-3 and Figure 7-6 below:

Catchment	Area	Lots/Ha	Paved Area (%)	Supplementary Area (%)	Grassed (%)
Release 3	4.59	8.5	35.50	2.94	61.56
CMZ	12.2	0	0.00	0.00	100.00
Release 5	12	7.3	24.00	2.37	73.63
External Catchment 1	17.68	2.77	5.00	1.50	93.50
External Catchment 2	6.14	6.14	8.50	1.50	90.00
Stage 1A	4.73	9.3	48.00	3.50	48.50

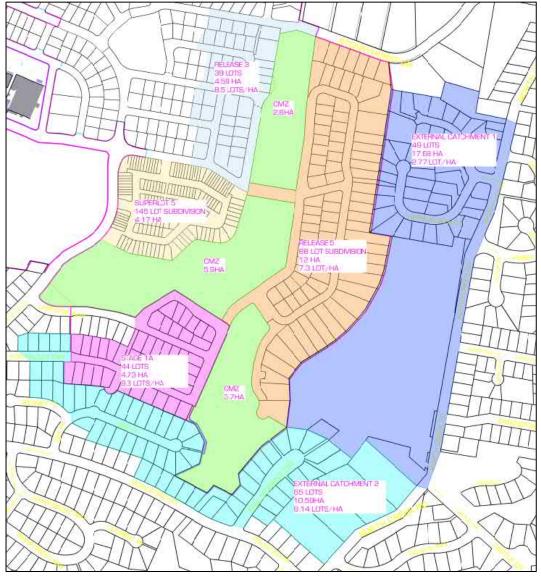
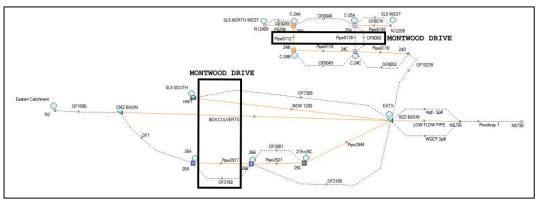



Figure 7-6 - Catchment Areas

For modelling purposes, the all the upstream catchments have been modelled as a single larger hybrid catchment. A time of concentration of 5 minutes for paved surfaces and 20 minutes for grassed areas has been adopted in the modelling.

7.2.1 Drains Model

The concept for the stormwater design is to utilise the spare capacity in the Ø525mm pipes under Montwood Drive by draining the northern and western portions of the site through these pipes. The capacity of the existing box culverts will be supplemented by the installation of a new Ø1050mm pipe to handle the flows generated by SL5.

The following Drains model has been developed for the site:

Figure 7-7 - Drains Model

The upstream low lying CMZ area and the low-lying area around the Sediment Basin to the west of Montwood Drive have been modelled as attenuation basins as they will provide storage during storm events. The area of these basins has been determined from site survey, LIDAR and design information. The Drains model considers the culverts from the CMZ basin as the low level. To this end Drains does not provide the functionality to provide blockage factors to the inlets with a loss factor of 0.5 being adopted instead.

The model has been run over the 5, 20 and 100 year ARI events with the results presented in Figure 7-8 to Figure 7-10:

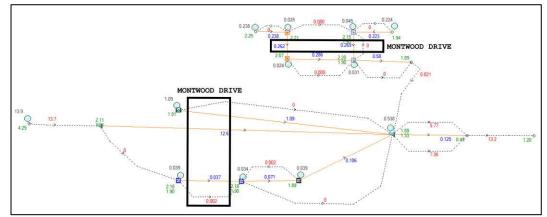


Figure 7-8 - Drains Results 5 Year ARI

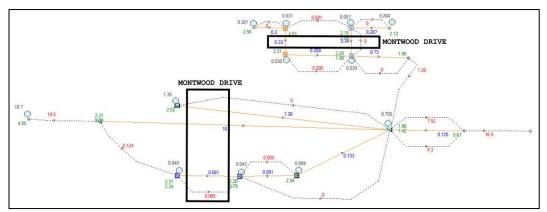


Figure 7-9 - Drains Results 20 Year ARI

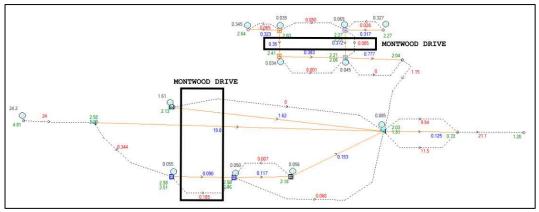


Figure 7-10 - Drains Results 100 Year ARI

As shown above the proposed downstream Ø525mm pipe network and the new Ø1050mm pipe have sufficient capacity to service SL5 for the 5, 20 and 100 year storm events. The existing Ø675mm outlet pipe (Pit 24C – 24D) downstream from the two Ø525mm pipes will be upgraded to a Ø900mm pipe to ensure it does not constrict the flows in the pipe network. It is noted that the Ø525mm pipe network surcharges in the 100 year storm event (eg $0.005m^3/s$ occurs across Montwood Drive between pits 25A to 24C). This flow is less than 200mm deep with a depth*velocity product of less than $0.3m^2/s$ (below the major event limits specified in QUDM Section 7.4).

The proposed new Ø1050mm pipe beneath Montwood Drive has sufficient capacity to handle the 100 year storm flows generated by SL5. It is noted that box culverts have been previously sized by Geolink for the 100 year storm event with no Road flow. The Drains model estimates the approach flow at 24m³/s above that of 22m³/s by Geolink. It is considered that the flow through the box culverts can be ignored when assessing the cross drainage under Montwood Drive in relation to SL5. This is because the new Ø1050mm pipe has sufficient capacity to convey all flows generated by SL5. The adjacent eastern catchment that drains through the box culverts has been primarily modelled to assess the capacity of other downstream assets, refer Section 7.2.2.

7.2.2 Downstream Assets

The Water Quality Control Pond (WQCP) is located immediately downstream of the box culverts under Montwood Drive. The water from upstream is first received in a smaller sediment basin. This basin has three outlets being:

- Primary outlet 225mm FRC pipe with vertical inlet riser,
- Lower level spillway Allows lower level flows into the deep water zone and the greater WQCP treatment area,
- Higher level spillway Provides a bypass around the WQCP for higher level flows. Flows discharge into floodway one and then to the Ballina Nature Reserve.

Once the water passes through the WQCP it enters a floodway that discharges to adjacent reserve and North Creek. A downstream water level of 1.2m has been assumed in the modelling for the 100 year event. The spillways have been modelled as overland flow paths with the cross section of the weir outlets determined from the design plans. The maximum water level observed over the spillway weirs in the modelling is 1.84m. This is below the top spillway level of 2.10m. The downstream assets (being the outlets spillways and floodway) are considered to have sufficient capacity in the 100 year event to handle the proposed storm flows.

7.3 Summary of Stormwater Devices

The stormwater devices required for the site are outlined in Table 7-4.

Location	Quality	Attenuation
Public Devices		
Release 2*	3x Humegard GPT	-
Release 3*	1x Humegard GPT	-
Shopping Centre*	1x Humegard GPT	-
Super Lot 7*	1x Humegard GPT	-
Montwood Drive Culverts	-	Ø1050mm Pipe
Outlet Pipe 24C-24D	-	Ø900mm upgraded outlet Pipe
Private Devices		
None Proposed	-	-

Table 7-4 - Stormwater Management Devices

*These devices have been installed or are to be installed in addition to those originally proposed by Gilbert and Sutherland

8 Sewer Services

The development cannot be drained to the existing surrounding gravity sewer network. A new sewer pump station will be installed in the south west corner of the site adjacent to Montwood Drive. All lots within this development will be provided with a gravity sewer connection to the new pump station.

The expected sewer equivalent demand for the development is outlined in Table 8-1:

Type of Development	Quantity	Units	Rate	Equivalent Tenements
Multi-Residential Lots (3 Bdrm)	145	Lot	1	145
Existing Entitlement	1	Lot	-1	-1
		Т	otal ET:	144

Table 8-1 - Expected Potable Water Demand

A new rising main will be installed to connect the proposed pump station to the existing gravity sewer main running along Snapper Drive. The capacity of the downstream network is sufficient and has been addressed in the Letter Report from Willow + Sparrow Engineering attached to this report.

9 Water Reticulation

9.1 Potable Water Reticulation

Each residential lot will be provided with a potable and water connection. Super Lot 5 will have three connection points to the surrounding water reticulation network. These are:

- The North West corner of the site from the 200mm main within Snapper Drive;
- The North East corner of the site from the 200mm main within Snapper Drive;
- The South West corner of the site from the 200mm main within Montwood Drive.

Modelling of the capacity of the surrounding potable water network has been undertaken by H2One (assessment attached to this report). This report details sufficient ET allowance for the proposed development. The connection points detailed in this report are generally in accordance with those of the proposed development. This model can be updated during the subsequent design phases as required by Ballina Shire Council.

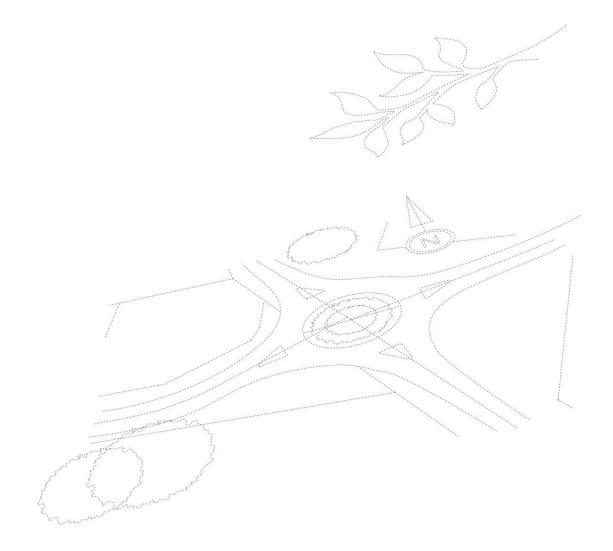
The expected potable water demand for the development is outlined in Table 9-1

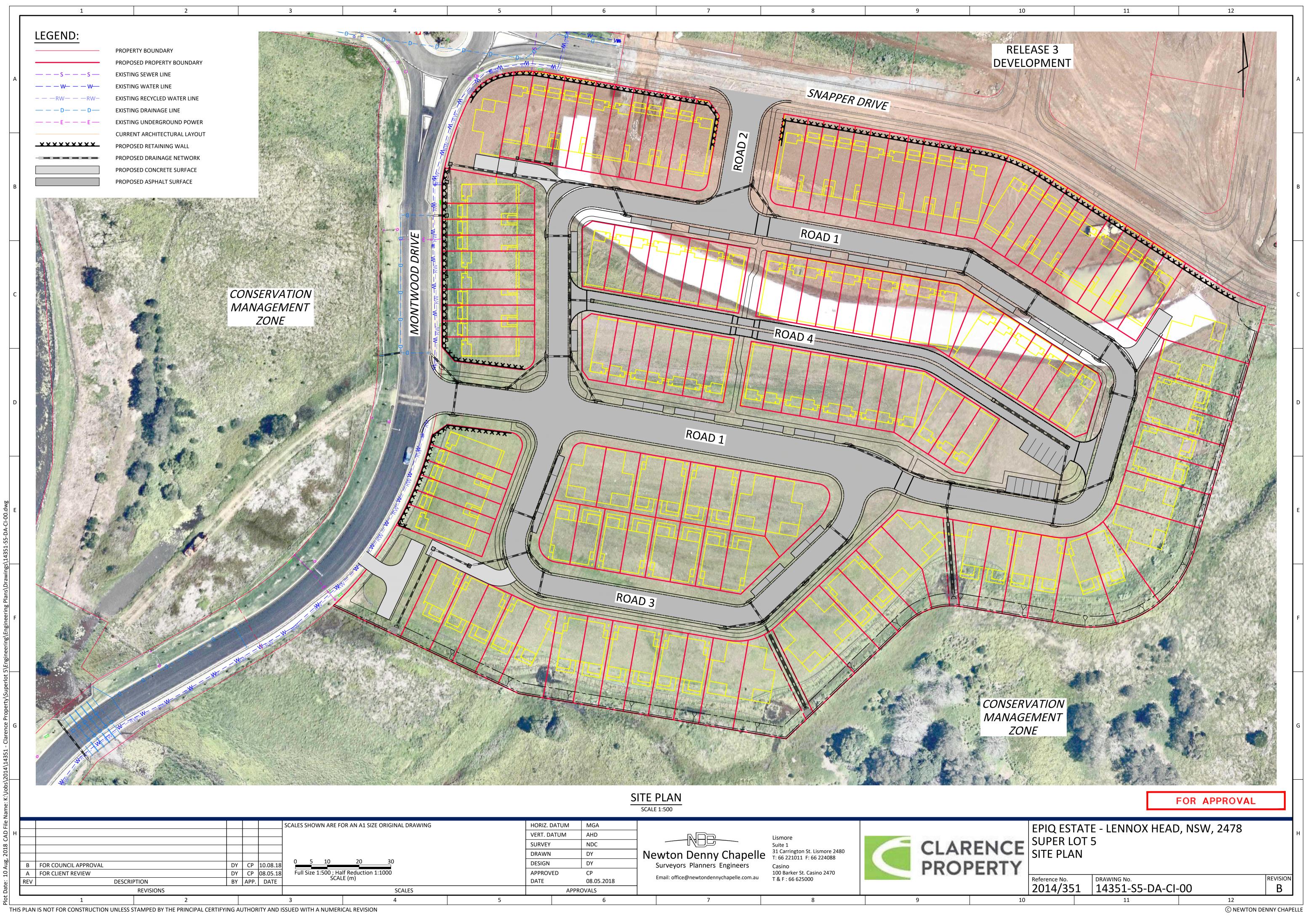
Table 9-1 - Expected Water Demand

Type of Development	Quantity	Units	Rate	Equivalent Tenements
Multi-Residential Lots (3 Bdrm)	145	Lot	0.8	116
Existing Entitlement	1	Lot	-1	-1
		т	otal ET:	115

9.2 Recycled Water Reticulation

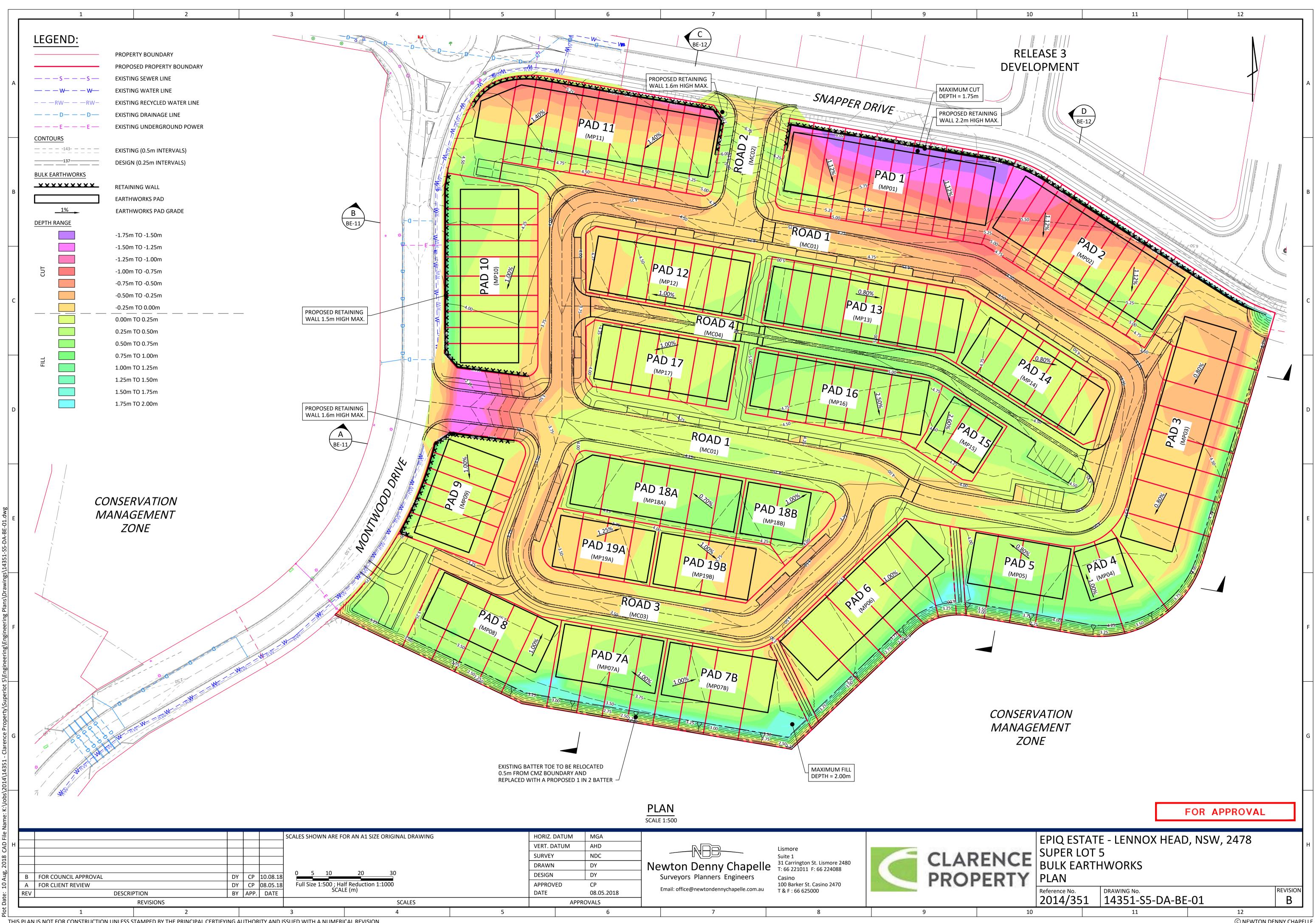
Each residential lot will be provided with a recycled water connection. Super Lot 5 will have three connection points to the surrounding water reticulation network. These are:

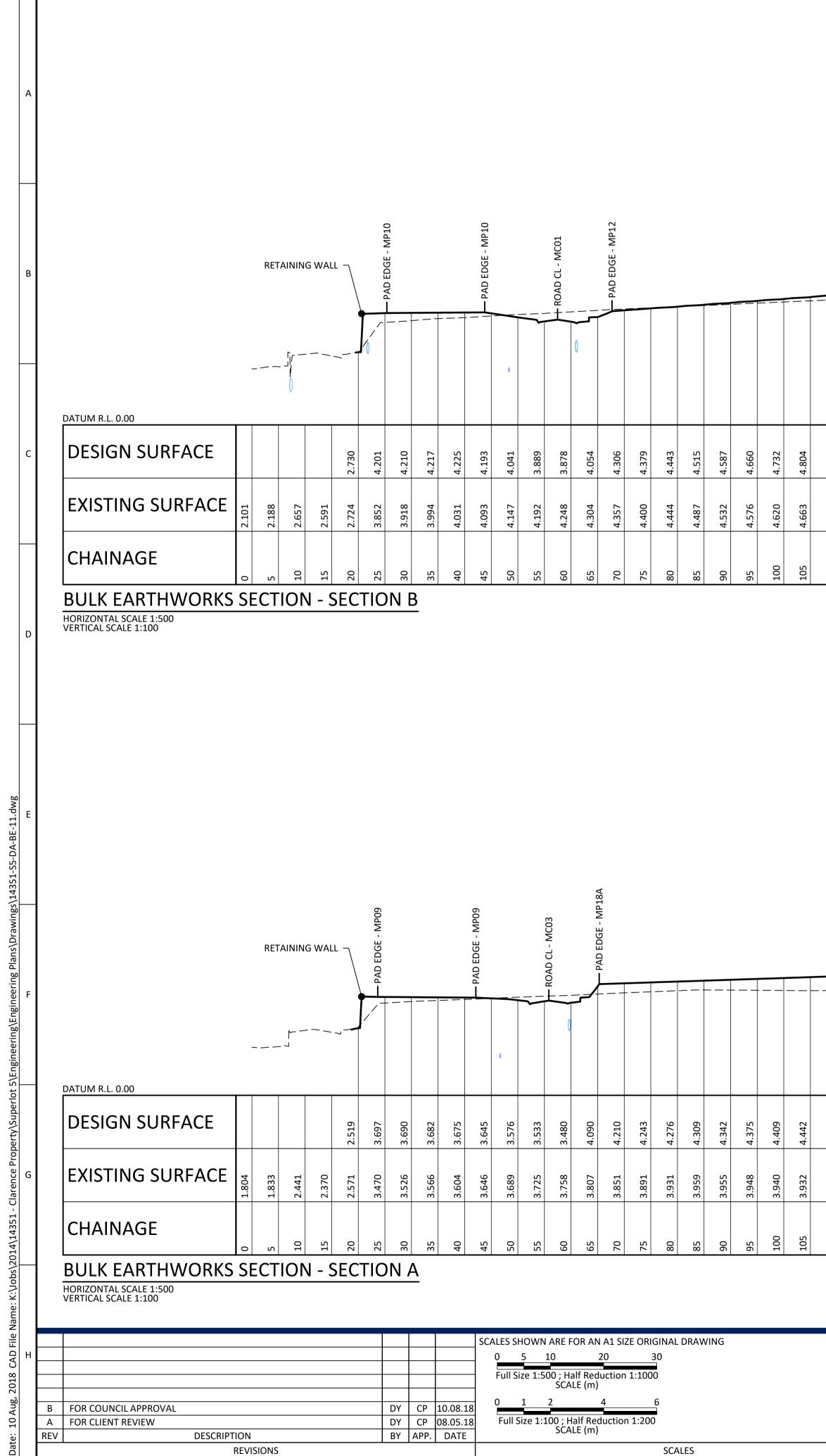

- The North West corner of the site from the 200mm main within Snapper Drive;
- The North East corner of the site from the 200mm main within Snapper Drive;
- The South West corner of the site from the 250mm main within Montwood Drive.


Modelling of the capacity of the surrounding recycled water network has been undertaken by H2One (assessment attached to this report). This report details sufficient ET allowance for the proposed development. The connection points detailed in this report are generally in accordance with those of the proposed development. This model can be updated during the subsequent design phases as required by Ballina Shire Council.

10 Sediment and Erosion Control

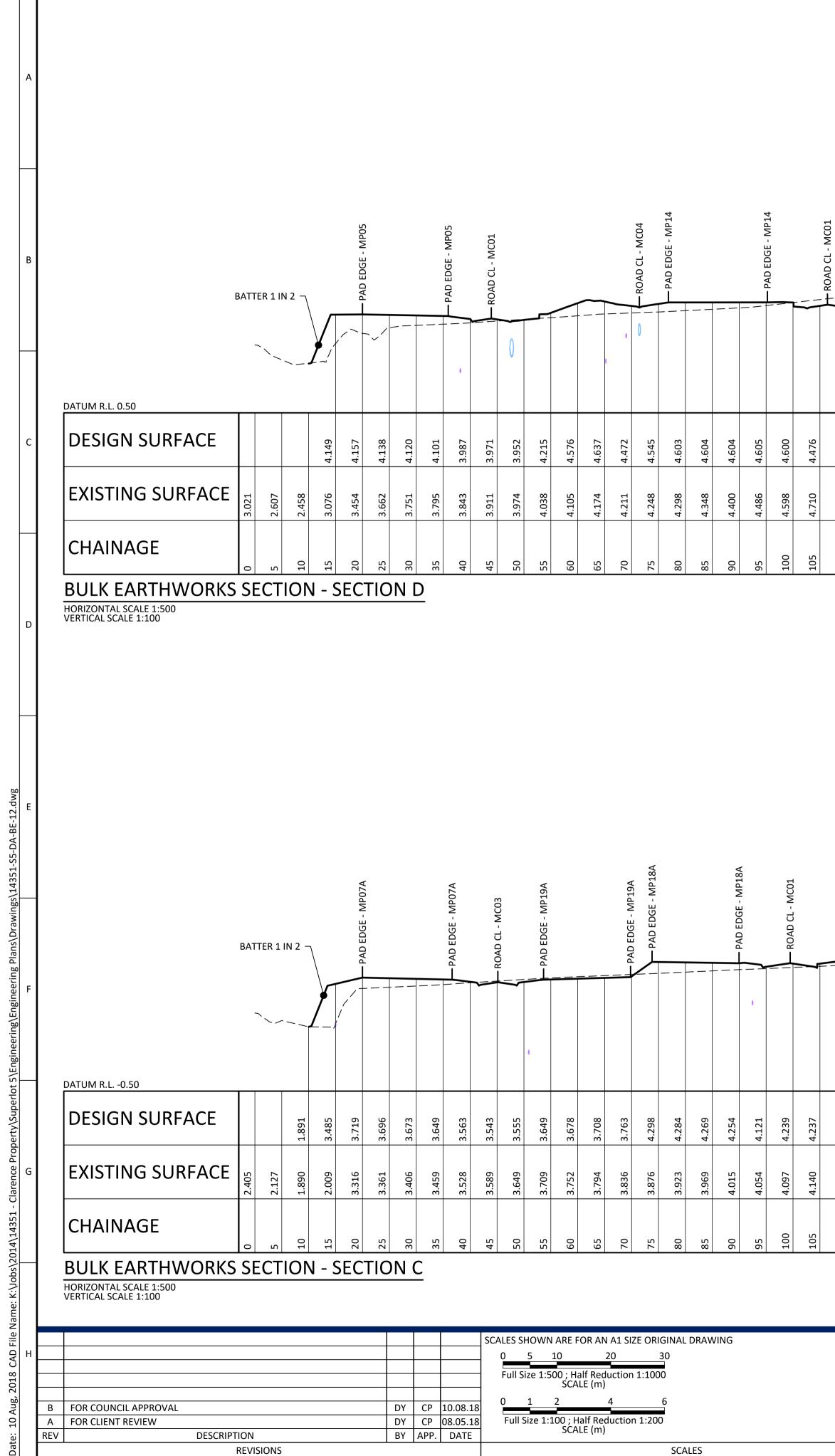
During construction sediment and erosion control measures will be installed to ensure the loss of soil from the site is minimised. All control measures will be installed prior to the commencement of construction and be in accordance with Managing Urban Stormwater-Soils & Construction Volume 1 (2004) by Landcom.


Appendix A Concept Engineering Plans



		1	l .		
					SCALES SHOWN ARE FOR AN A1 SIZE ORIGINAL DRAWING
					о <u>г</u> 10 - 20 - 20
В	FOR COUNCIL APPROVAL	DY	СР	10.08.18	
А	FOR CLIENT REVIEW	DY	СР	08.05.18	Full Size 1:500 ; Half Reduction 1:1000 SCALE (m)
REV	DESCRIPTION	BY	APP.	DATE	SCALE (III)
	REVISIONS				SCALES

5	APPROVED DATE	CP 08.05.2018 APPROVALS 6	Email: office@newtondennychapelle.com.au	100 Barker St. Casino 2470 T & F : 66 625000 8	9	LIN
	VERT. DATUN SURVEY DRAWN DESIGN	NDC DY DY	Newton Denny Chapelle Surveyors Planners Engineers	Casino		PERT
	HORIZ. DATU	JM MGA				


THIS PLAN IS NOT FOR CONSTRUCTION UNLESS STAMPED BY THE PRINCIPAL CERTIFYING AUTHORITY AND ISSUED WITH A NUMERICAL REVISION

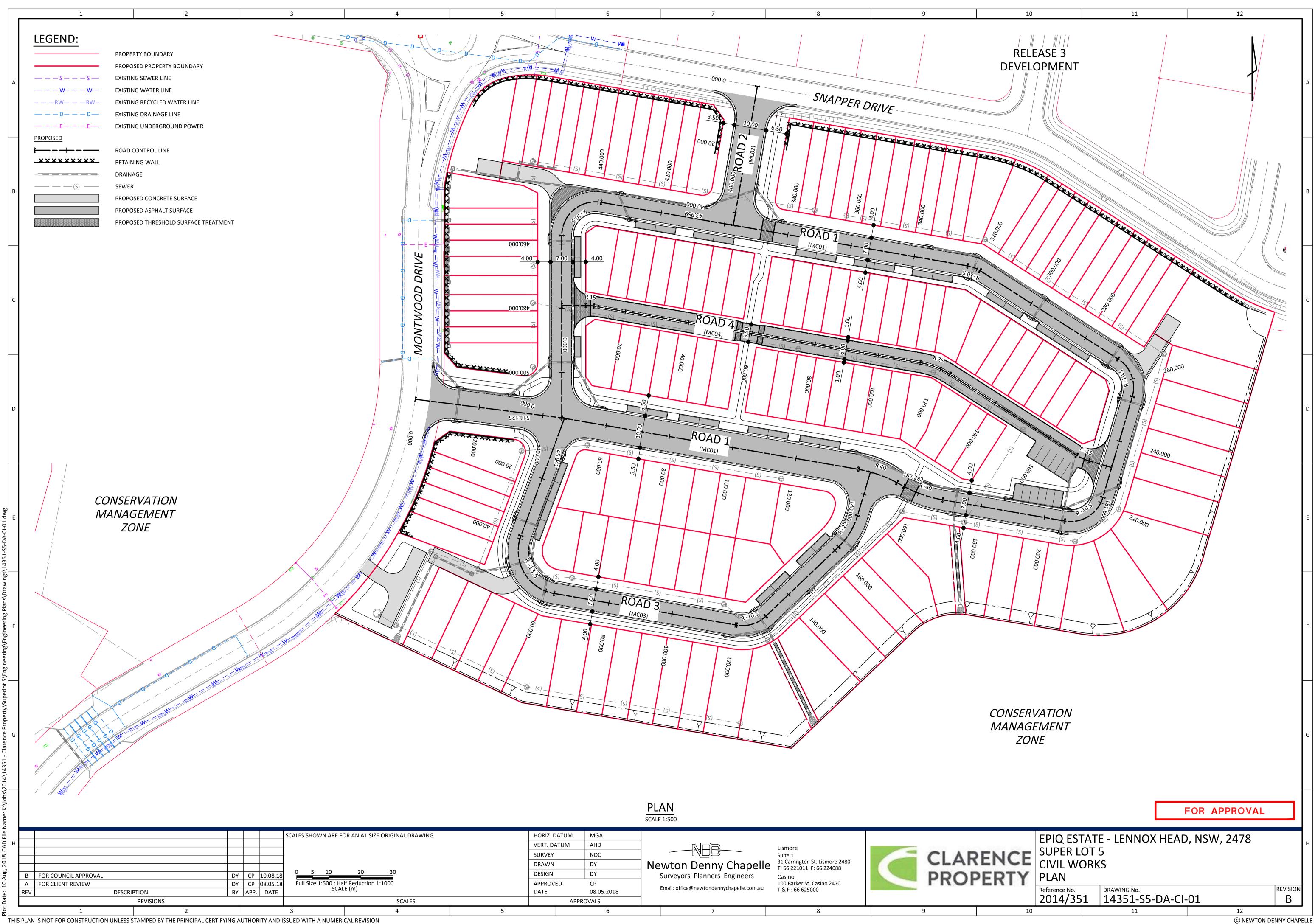
- 3

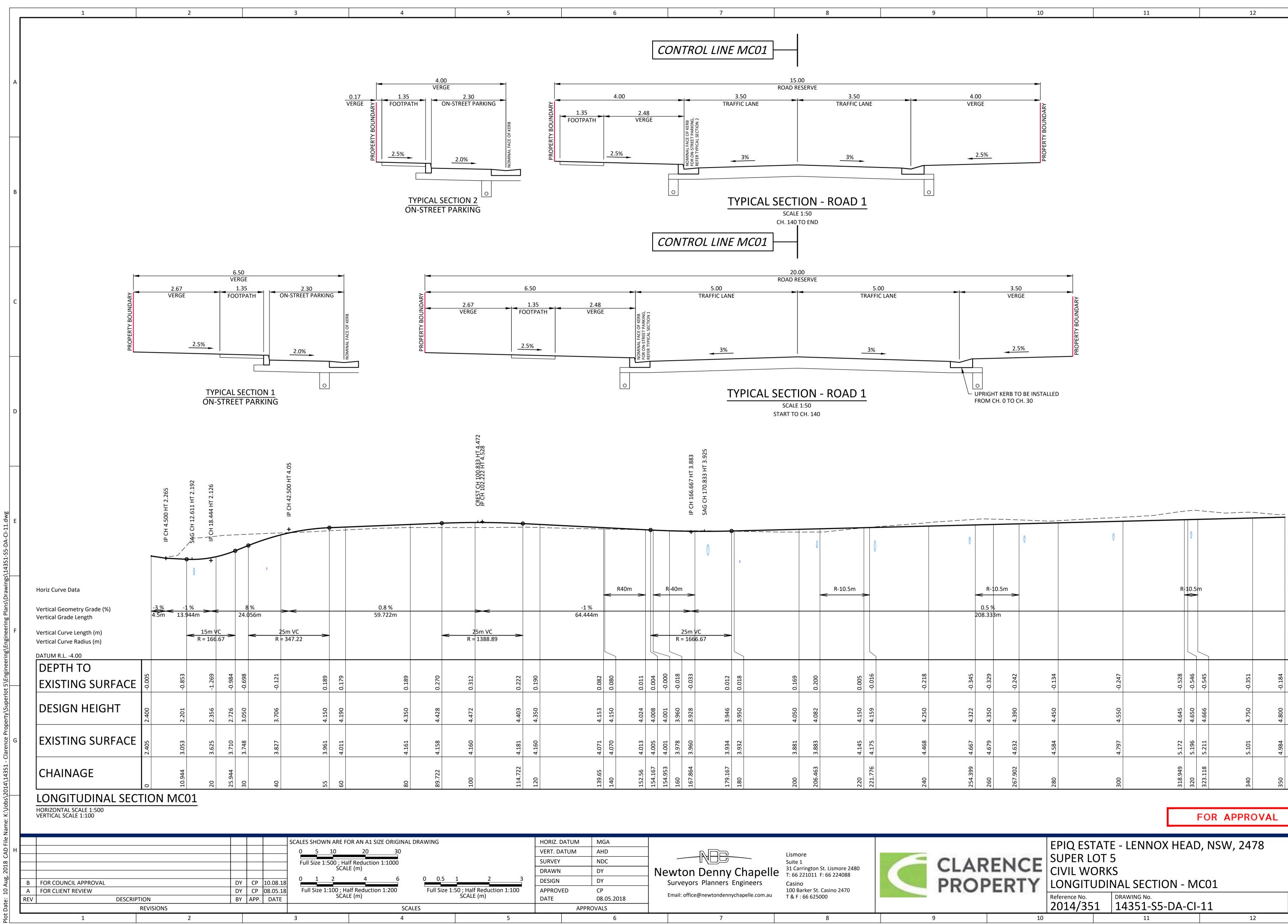
5						6						7						8					9)					10					11			12	2		_
																																								А
	E - MP12	GE - MP13											- MP13		- MP14	MP14					C01				MP03			MP03		с ВА	TER 1 IN	2								
	PAD EDG			+	-						-+-				H PAD EDGE	H PAD EDGE]				<mark> </mark> - 				PAD EDGE -			- PAD EDGE	^`\											в
																						0 0			•															
4.889	4.957 E 126		2.02.c 7.775					5.025					4.791		4.728	4.688		4.608								4.659			4.719											с
4.707								6 4.771) 4.61/ 5 4.599		5 4.557) 4.551) 4.579 4.579								5 4.856 4.918) 4.834 4.992	241									
110	115	<u>эст</u>	021 021	135	140	145	150	155	160	165	170	175	180	190	195	200	205	210	220	225	230	235	240	245	250	255 260	265	270	275	280	287									
																																								D
																																								E
	IP18A	P18B			MP18B					Q		16			Ь					05	5		04																	
	- PAD EDGE - MP18A	– PAD EDGE - M			- PAD EDGE - MF			ROAD CL - MC03		AD EDGE - MP06		PAD EDGE - MP06			PAD EDGE - MP05					- PAD EDGE - MP05 - PAD EDGE - MP04			- PAD EDGE - MP04				∫ [−] B	ATTER :	1 IN 2											
														0													/ 													F
										•																				I										
4.475	4.508	0000-1-	104.4	4.384	4.245	3.835	3.635	3.721	3.813	3.972	4.063	4.101	4.05/ 3.913	4.004	4.064	4.099	4.135	4.170	4.241	4.251	4.275	4.298	4.322	4.322	4.304	4.287 3.323														
3.941	3.950	202.0	676.6 579.8	3.964	3.953	3.936	3.919	3.902	3.883	3.863	3.842	3.827	3.803	3.746	3.737	3.747	3.767	3.771	3.770	3.807	3.883	3.963	4.042	4.088	4.301	3.213 3.500	3.491		259 3.626											G
110	115	125	130 130	135	140	145	150	155	160	165	170	175	180	190	195	200	205	210	220	225	230	235	240	245	250	255 260	265	270	270.2											
			IZ. DAT		M																									EPIC	EST	ATE -	LEN	INO	X HE			78		
		VERT SUR DRA DESI	WN	JM	AH NE DY DY	DC			Vew			enny	/ Ch	- ape	lle	Lismor Suite 1 31 Carr T: 66 22 Casino	ington S 21011 F	t. Lismor 66 2240	e 2480 88			C		C	LA	R	EN	VC	E	SUP BUL	ER LO K EAF)T 5 RTHV	VOR	KS				-		H
			ROVED		CP	.05.20: .S	18						nychapel				ker St. (70						RC	DP	Ch	K I		Reference 2014	e No.	DR	AWING	^{No.} 1-S5	-DA-)	revisio B	N
5						6						/						8					9						10					11			12		DENNY CHA	

5						6						7						8							9					10)				11	L			12			
																																										A
CLOIM	- 1415 1.2	GE - MP13											- MD13		- MP14		MP14					01				MP03			MP03		_	BATTER	1 IN 2									
		PAD EDO													- PAD EDGE		- Pad Edge -					- ROAD CL - M(PAD EDGE -			 - PAD EDGE -	ـ^ــ			1 111 2									В
													·										0 ()			,					je i											
4.889 4.957	5.136	5.265	5.225	5.185	5.145	5.105	5.065	5.025	4.985	4.945	4.905	4.865	4.825	4./91 1 766	4.728	4.688	4.645	4.608	4.408	4.372	4.407	4.383	4.302	4.393	4.472	4.648	4.659	4.672 1 685	100.4 107 h	4.719												С
4.707 4.726	4.733	4.740	4.760	4.782	4.772	4.759	4.758	4.771	4.746	4.712	4.678	4.643	4.617	4.599 A E 7 E	4.557	4.551	4.561	4.579	4.574	4.554	4.552	4.599	4.648	4.699	4.751	4.802	4.856	4.918 4.987	7.00/ 7.050	4.277	4.834	4.992 5.014										
110	120	125	130	135	140	145	150	155	160	165	170	175	180	100	195	200	205	210	215	220	225	230	235	240	245	250	255	260 265	070	275	280	285 287 241										
																																										D
																																										E
	MP18A MP18B				MP18B			~		MP06		P06			PO5						APO5 APOA			MPD4																		
	 PAD EDGE - MP18A PAD EDGE - MP18B 				— PAD EDGE - MP18B			ROAD CL - MC03		PAD FDGF - M		- PAD EDGE - MP06			· PAD EDGE - MP05						– PAD EDGE - MP05 – PAD EDGE - MP04	- -		- PAN FNGF -	- דאט נוסטנ				BATTE	R 1 IN 2												
						~		<u> </u>																			`\	×		-												F
										1																					7											
4.475	4.500	4.461	4.422	4.384	4.245	3.835	3.635	3.721	3.813	3.972	4.063	4.101	4.057	3.913 4 004	4.064	4.099	4.135	4.170	4.206	4.241	4.251	4.275	4.298	4.322	4.322	4.304	4.287	3.323														
3.941 3.950	3.961	3.973	3.973	3.964	3.953	3.936	3.919	3.902	3.883	3.863	3.842	3.827	3.803	3./03	3.737	3.747	3.767	3.771	3.770	3.770	3.807	3.883	3.963	4.042	4.088	4.301	3.213	3.500	10+.0 2.616		-											G
<u>110</u> 115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	195	200	205	210	215	220	225	230	235	240	245	250	255	260 265		270.259												
		ioriz. I		1	MG	٨																																	AVO	L		
	V S D	(ERT. D. URVEY DRAWN	ATUM		AHD NDC DY)			lev	vto	n De	DE enn	y Cł	napo	elle	T: 66	1 rringto 221011	n St. Lis L F: 66	smore 2 224088	2480 3		(-		C	L		E	N	CE	SL Bl	JPER JLK E	LOT EART	5 HW	ORK	S	(HEA		1/8			н
5	A	DESIGN APPROV DATE	/ED	APPRC	DY CP 08.0 DVALS)5.2018 6					ors Pla						i0 arker S : 66 62		10 2470)					P	R	OF	Έ	R1	10 10	Refe 20	CTIC rence No 14/3).	DRA	WING No	₀. -S5-	& SE DA-E	 	12	RE	evision B	
5			I			5						/						0							-					10					1					ON DENN		

5							6						7	,						8						9)						10					11						12			
																																															A
	0		13																																												
	EDGE - MP13		D EDGE - MP												DGE - MP13	DGE - MP14		DGE - MP14						L - MC01				JGE - MP03					/	_ ват	TER 1 IN	2											
+																	- + -											PAD EC	·					~ I													В
																									0 0			•																			
4.889	4.957	5.136	5.265	5.225	5.185	5.145	5.105	5.065	5.025	4.985	4.945	4.905	4.865	4.825	4.791	4.766	4.728	4.688	4.645	4.608	4.408	4.372	4.407	4.383	4.302	4.393	4.472	4.648	4.659	4.672	4.685	4.701	4./19														с
4.707 4.		4.733 5.	4.740 5.	4.760 5.	4.782 5.	4.772 5.	4.759 5.	4.758 5.	4.771 5.	4.746 4.		4.678 4.	4.643 4.	4.617 4.										4.599 4.				4.802 4.					4.277 4.	4.992	5.014												
110 4.			125 4.	130 4.	135 4.	140 4.	145 4.	150 4.	155 4.	160 4.		170 4.	175 4.	180 4.										230 4.			245 4.	250 4.					2/2 2/2 4. 280 4.		287.241 5.												
11	1	12	1	11	11	17	17	11	11	16	16	11	17	18	18	10	10	50	50		21	22	22	53	53	57	5/	56	25	2(26	5	28 7	28	28												
																																															D
																																															Е
		í m																																													
	DGE - MD187	PAD EDGE - MP18B				AD EDGE - MP18B			MC03		E - MP06			PAD EDGE - MPU6		E - MP05						PAD EDGE - MP05	PAD EDGE - MP04			PAD EDGE - MP04				/	– BAT	TER 1 IN	2														
		- PAD E				PAD ED			- Road CL -		- PAD EDGE -					- PAD EDGE						- PAD ED	- PAD ED																								
	+ -									~												_							``_~																		F
											1																																				
4.475	4.508	4.500	4.461	4.422	4.384	4.245	3.835	3.635	3.721	3.813	3.972	4.063	4.101	4.057	3.913	4.004	4.064	4.099	4.135	4.170	4.206	4.241	4.251	4.275	4.298	4.322	4.322	4.304	4.287	3.323																	
3.941 4			3.973 4	3.973	3.964	3.953 4	3.936	3.919	3.902	3.883	3.863	3.842	3.827 4	3.803 4										3.883 4			4.088	4.301 4			3.491	3.616 3.626															G
110 3			125 3	130 3	135 3	140 3	145 3	150 3		160 3		170 3	175 3	180 3																		270 3 270.259 3															
<u> </u>	H		1	<u> </u>	-H	1,	1	11		1(1(H	H	18	11			50	50	2	5	2	22	53	5	2	5/	5	5	5(2(<u>7</u> 7															
		НС	DRIZ. I	DATUI	Л	MG	A																										r-		ECT	ᇫᆍᄃ	1 1			ᄕᆞ				179	L		
		VE SU		ATUM ′		AHE NDC DY) C			lew	vtor		enr	<u>ה</u> ש זע (Chap)ell#	Su	more ite 1 Carrin	gton St 011 F:	. Lismo	ore 248	30		1	-		С	L	AR	RE	N	CE			EST R LC E EAI					ΠEA	ע, ו	VCV	v, Z ^z	+/ð			н
		DE AP	ESIGN PPROV ATE	/ED		DY CP 08.0)5.2018	3		Su	irveyo	ors Pl	lanne	ers En	apelle.co	S	Ca 10	isino 0 Barko	011 F: er St. C 62500	asino 2				-	-		Ρ	R	OF	PE	R	TY	S Re	EC1	ION e No.	S - S		NG No.	A I				В				
5					APPR	OVALS	6						7	,						8						9)						10 2	υτ	/35	L	<u>1</u> 43	51-S	32-L	DA-E	SE-1	L		12		B NNY CHAF	J

rty\Sup


- 3


								Г	RETAI	NING \	NALL	
	0	1	PAD EDGE - MP02				– PAD EDGE - MP02					RELEASE 3 DESIGN SURFACE. TO BE BUILT PRIOR TO THIS DEVELOPMENT
4.417	4.658	5.222	5.384	5.439	5.495	5.551						
4.816	4.954	5.110	5.506	5.916	6.312	6.504	6.686	6.818	7.979	8.400	8.652	
110	115	120	125	130	135	140	145	150	155	160	163.405	

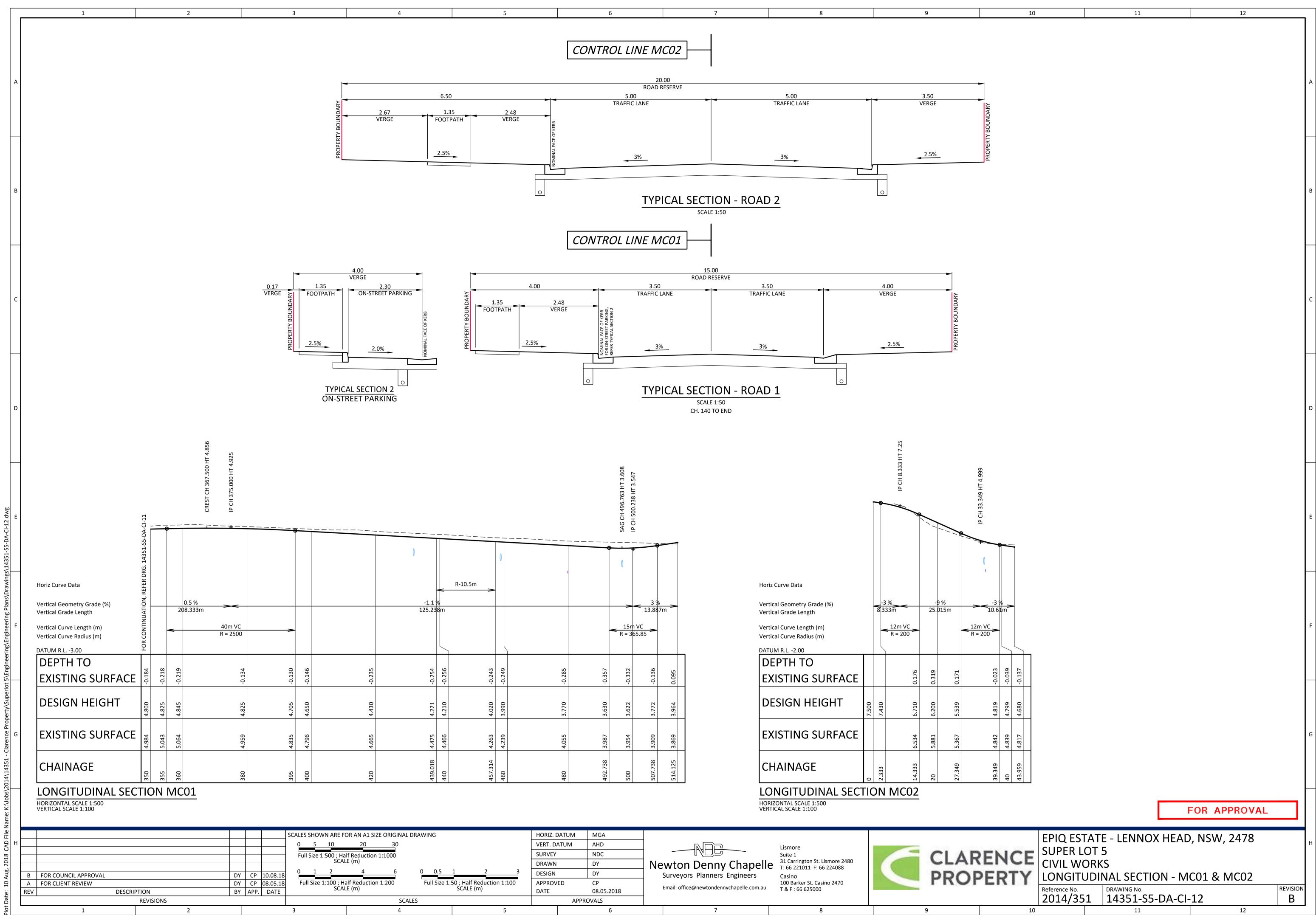
	PAD EDGE - MP17					ROAD CL - MC04	PAD EDGE - MP12			- PAD EDGE - MP12	-	ROAD CL - MC01	0		PAD EDGE - MP11			PAD EDGE - MP11			ΓΑΙΝΙΝ 	G WAI	LL RELEASE 3 DESIGN SURFACE. TO BE BUILT PRIOR TO THIS DEVELOPMENT
4.362	4.413	4.432	4.451	4.470	4.262	4.447	4.545	4.565	4.586	4.573	4.375	4.390	4.525	5.234	5.455	5.505	5.555	5.609					
4.183	4.210	4.230	4.249	4.268	4.334		4.463		4.560	4.603	4.650	4.746	4.841	4.937	5.242	5.593	5.958	6.547	6.972	8.118	8.448	8.795	
110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200	205	210	215	219.703	

	ROVALS			
APPROVED DATE	CP 08.05.2018	Email: office@newtondennychapelle.com.au	100 Barker St. Casino 2470 T & F : 66 625000	FROFLA
DESIGN	DY	Surveyors Planners Engineers	Casino	PROPER
DRAWN	DY	Newton Denny Chapelle	31 Carrington St. Lismore 2480 T: 66 221011 F: 66 224088	CLAREN
SURVEY	NDC		Suite 1	
VERT. DATUM	AHD		Lismore	
HORIZ. DATUM	MGA			

10			11		12	,
						А
						В
						с
						D
						E
						F
						G
NCE RTY	SUPER L BULK EA	OT 5 RTHWOR IS - SECTIO DRAWING 1435	INOX HEAD KS DN C & SEC	TION D -12		Н

5

DATE 08.05.2018 APPROVALS	3 on 1:100			Newton Denny Chapelle Surveyors Planners Engineers Email: office@newtondennychapelle.com.au	Lismore Suite 1 31 Carrington St. Lismore 2480 T: 66 221011 F: 66 224088 Casino 100 Barker St. Casino 2470 T & F : 66 625000	CL. PR	AR OP	E
-------------------------------------	---------------	--	--	---	--	-----------	----------	---


REVISION

В

EPIQ ESTATE - LENNOX HEAD, NSW, 2478 NCE SUPER LOT 5 CIVIL WORKS LONGITUDINAL SECTION - MC01 DRAWING No. Reference No. 2014/351 14351-S5-DA-CI-11 11

FOR APPROVAL

							12
0	0		0				-S5-DA-CI-
							kg. 14351
		R	-10.5	m			, REFER DF
							INUATION
							FOR CONTINUATION, REFER DRG. 14351-55-DA-CI-12
134	247	528	546	545	351	184	
-0.	Ģ	Ģ	ې ې	Ģ	Ģ	- O	
4.450	4.550	4.645	4.650	4.666	4.750	4.800	
4.584	4.797	5.172	5.196	5.211	5.101	4.984	
280	300	318.949	320	323.118	340	350	
	4.584 4.450 -0.134	4.584 4.450 -0.134 4.584 4.450 -0.134 1 1 -0.134 1 1 -0.134	4.584 4.450 -0.134 4.797 -0.134 4.797 -0.247 5.172 4.645 -0.528	4.584 4.450 -0.134 4.582 -0.134 -0.134 4.797 4.550 -0.247 4.797 4.550 -0.247 949 5.172 4.645 5.172 4.650 -0.528 949 5.172 -0.528 5.196 -0.546 -0.546	4.584 4.450 -0.134 4.797 4.550 -0.134 4.797 4.550 -0.247 4.797 4.550 -0.247 949 5.172 4.645 5.196 -0.528 118 5.211 4.666 -0.545	4.584 4.450 -0.134 4.584 4.450 -0.134 4.797 4.550 -0.247 4.797 4.550 -0.247 4.797 4.550 -0.247 949 5.172 4.645 5.106 4.650 -0.246 5.111 4.666 -0.546 118 5.211 4.650 5.101 4.750 -0.351	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

5

© NEWTON DENNY CHAPELLE

A											
В									0.17 VERG	7 GE	PERTY BOUNDA
С											2.5% 2.0% OR OR OR OR OR OR OR OR OR OR OR OR OR
D	,				42						92 1.3.68
					– – – – – – – – – – – – – – – – – – –	•			•		P CH 46.364 HT 3.224 SAG CH 47.500 HT 3.292 SAG CH 47.500 HT 3.292 CH 47.500 HT 3.292 CREST CH 98.571 HT 3.746
		Horiz Curve Data Vertical Geometry Grade (%) Vertical Grade Length Vertical Curve Length (m) Vertical Curve Radius (m) DATUM R.L4.50 DEPTH TO		-1:	-3 % 1.499m -3 % -3 %		-1.2 34.86	5m	<		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	_	EXISTING SURFACE DESIGN HEIGHT	3.987 0.111	3.867 0.026		3.540 -0.177		3.374 -0.224	3.324 -0.226	3.317 -0.224	
Garcier 1 oper		EXISTING SURFACE				3.717 3.		3.598 3.	3.549 3.	3.540 3.	
100/14/14/04/00		CHAINAGE	 TI(3.999 DN	1	20		33.864	39.012	40	40 58.864 60 62.694 80 86.071 100
	B A REV	HORIZONTAL SCALE 1:500 VERTICAL SCALE 1:100 FOR COUNCIL APPROVAL FOR CLIENT REVIEW DESCRIP	TION				DY DY BY	CP CP APP.	10.08 08.05 DAT	.18	Full Size 1:100 ; Half Reduction 1:200 Full Size 1:50 ; Half Reduction

2

3

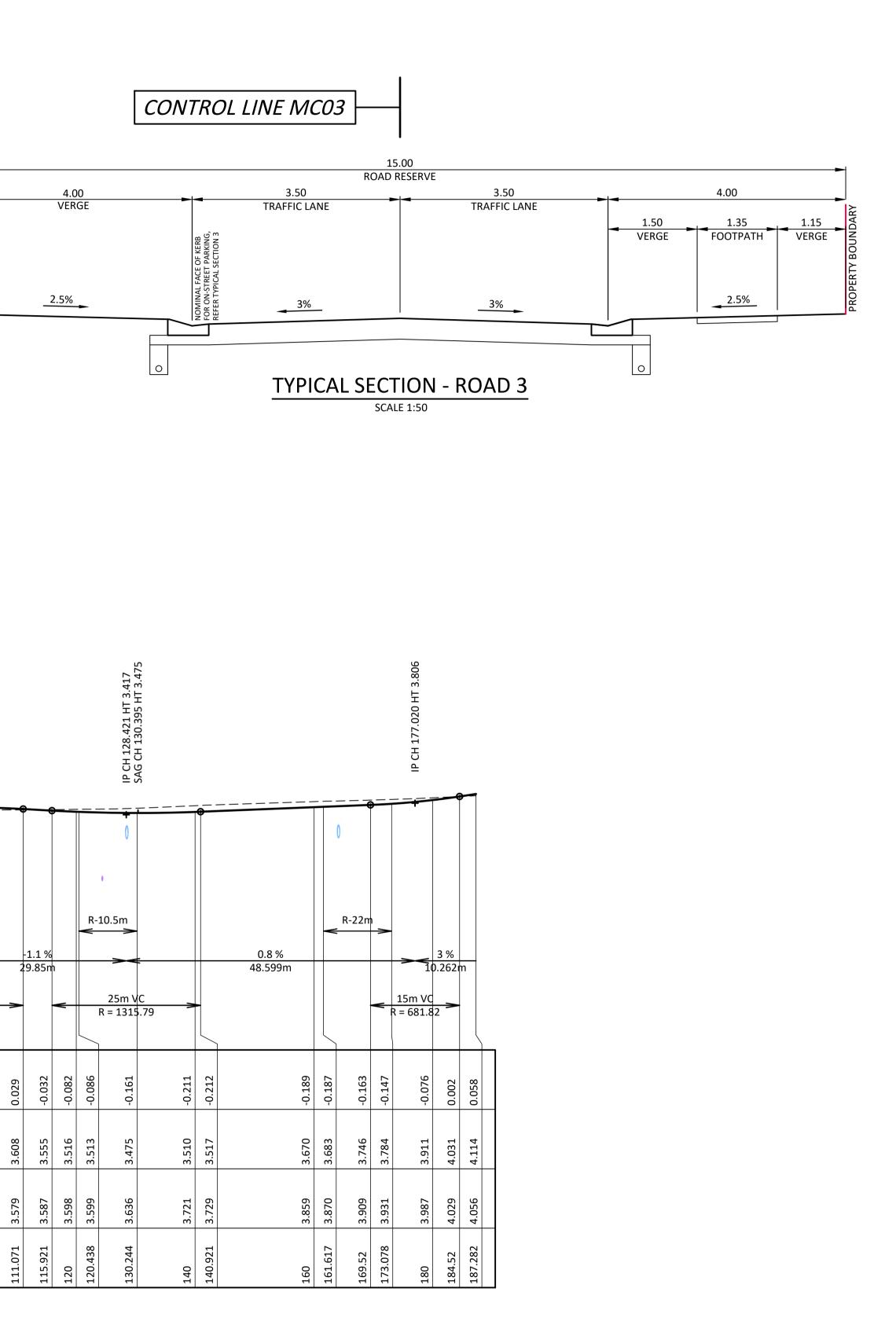
1

4

6

5

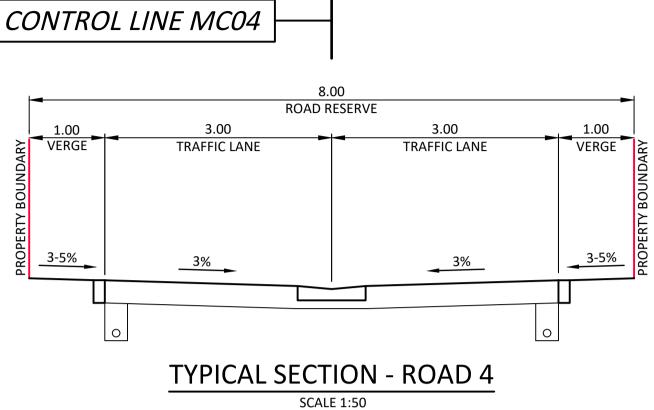
7

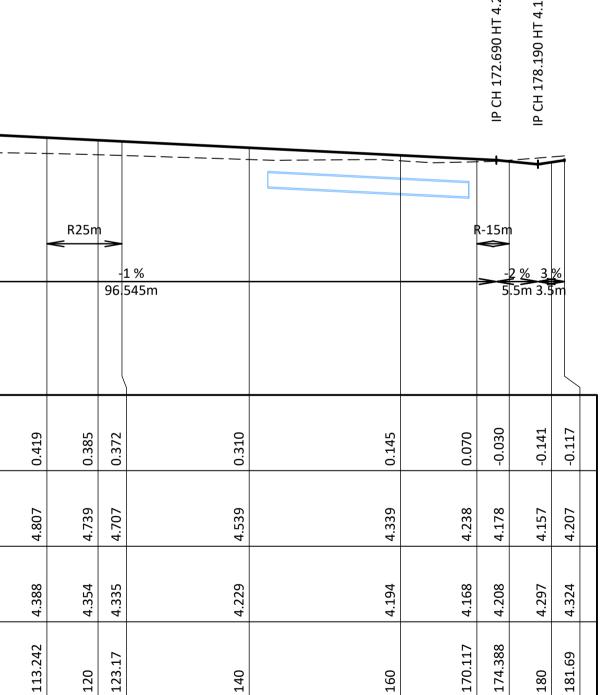

8

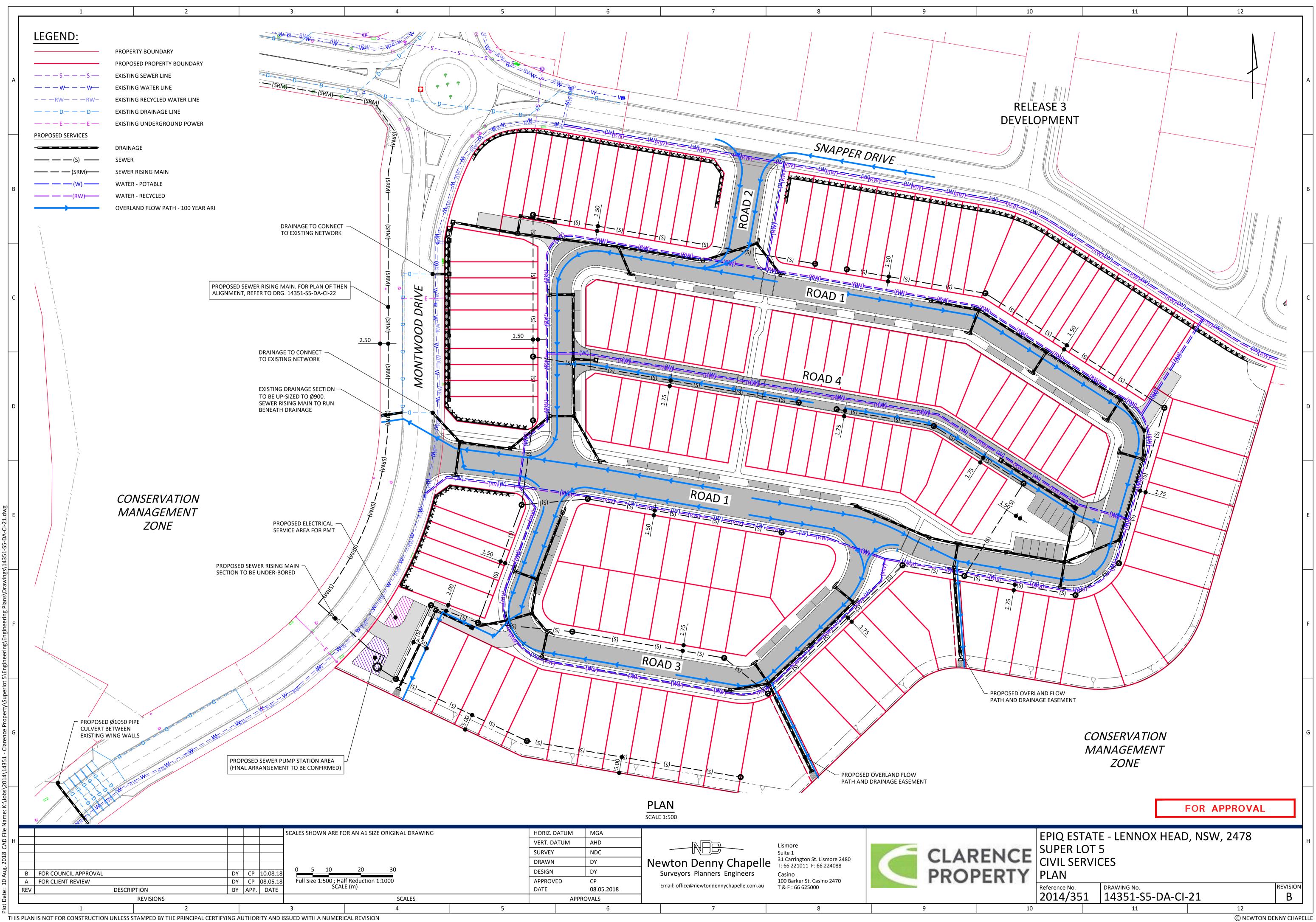
9

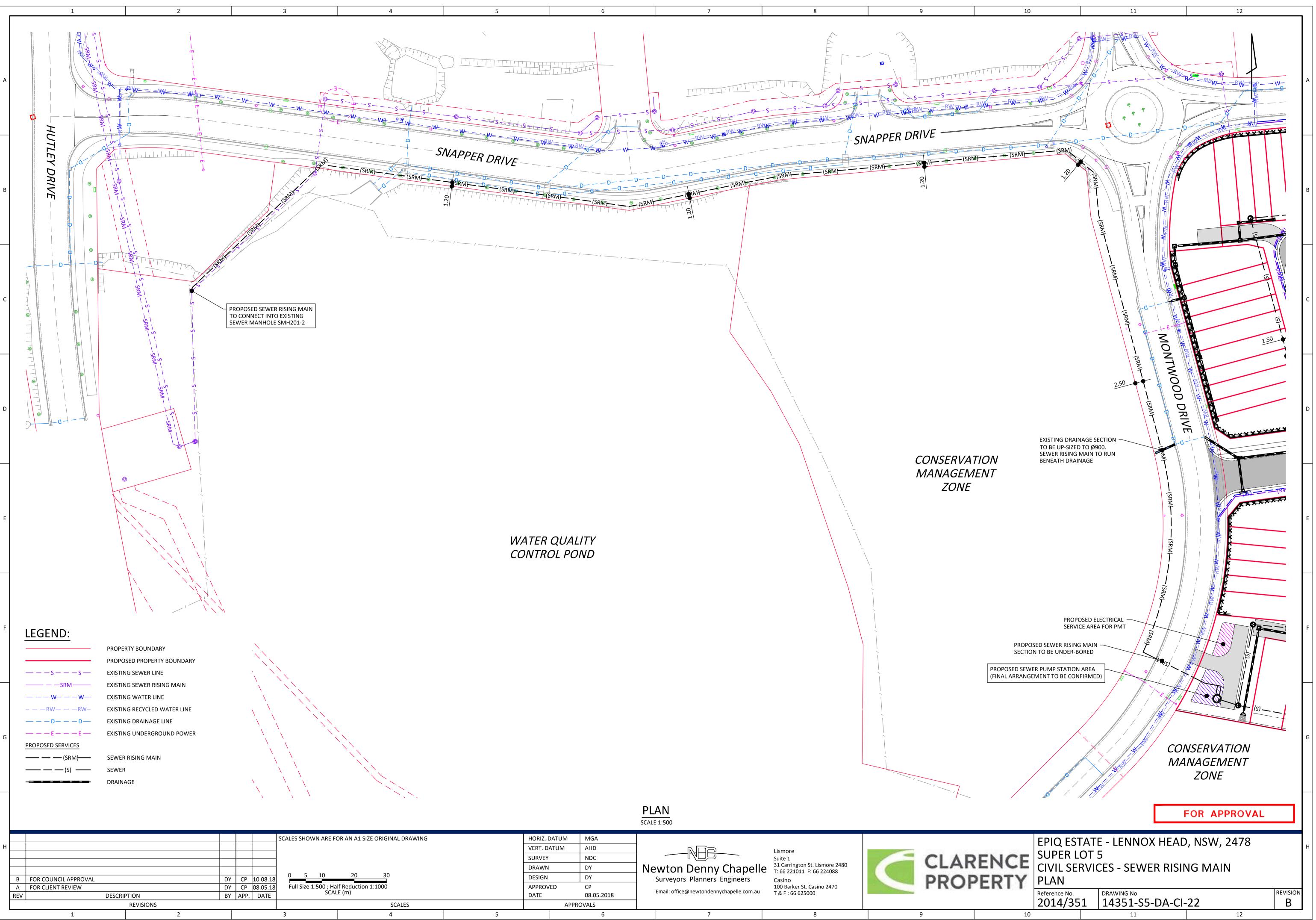
10 Aug, 2018 CAD File Name: K:\Jobs\2014\14351 |

-CI-13.

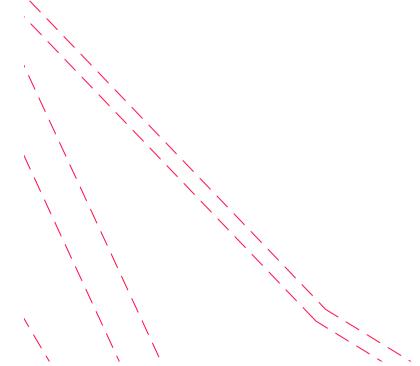

s\14351-S5-DA




3 n 1:100	HORIZ. DATUM VERT. DATUM SURVEY DRAWN DESIGN APPROVED DATE APPR	MGA AHD NDC DY DY CP 08.05.2018 ROVALS	Newton Denny Chapelle Surveyors Planners Engineers Email: office@newtondennychapelle.com.au	Lismore Suite 1 31 Carrington St. Lismore 2480 T: 66 221011 F: 66 224088 Casino 100 Barker St. Casino 2470 T & F : 66 625000	CLAR PROF	2 EP
5		6	7	8	9	


10			1	.1			1	.2		
										A
										В
										с
										D
										E
										F
										G
CE TY	EPIQ EST SUPER L CIVIL WO LONGITU Reference No. 2014/35	OT 5 DRKS JDIN		CTIO)N - N	D, NS 1C03	APPR W, 24		REVISION	н
10		<u> </u>		55-			1	2		

1 2	3 4	5 6 7 8	9 10 11 12
A			
		CONTROL LINE MC04	
		8.00 ROAD RESERVE	
В		1.00 3.00 3.00 1.00 VERGE TRAFFIC LANE TRAFFIC LANE VERGE	
		DPERTY BOUL	
с		TYPICAL SECTION - ROAD 4	
		SCALE 1:50	
D			
	L78 T 5.011		
3.824	5.145 HT 5.1 CH 84.478 H	0 HT 4.212 0 HT 4.102	
-CI-14.dwg a 13.502 HT () H 8.476 HT	IP CH 76 CREST 0	CH 172.69 CH 178.190	
4351-S5-DA			
Horiz Curve Data		R25m	
SuppleVertical Geometry Grade (%)-3 % 3 %With Wertical Grade Length3.502 m 973 m	2 % >< 67.669m	-1 % -2 % 3 % 96.545m 5.5m 3.5m	
Beilding F Vertical Curve Length (m) Vertical Curve Radius (m) Vertical Curve Radius (m) DATUM R.L2.00 DATUM R.L2.00	S0m VC R = 1666.67		
DEPTH TO -0.212 -0.323 -0.323 -0.282		0.513 0.505 0.419 0.310 0.372 0.372 0.372 0.372 0.310 -0.030 -0.030	
DESIGN HEIGHT 3.793 -	331 0 005 0	4.939 0 4.939 0 4.928 0 4.928 0 4.928 0 4.928 0 4.939 0 4.739 0 4.739 0 4.178 0 4.157 0 4.157 - 4.157 -	
	59 4.' 59 4.' 59 4.' 56 5.'		
51 - Clare 41.1 5 4.1 4.2	45 45 4.5 4.5 4.5 4.5	4 4	
CHAINAGE 0 CHAINAGE 0 LONGITUDINAL SECTION MC04	40 51.1 80	100 101.145 101.145 113.242 120 120 120 120 123.17 123.17 120.117 123.17 123.169 181.69	
HORIZONTAL SCALE 1:500 VERTICAL SCALE 1:100			FOR APPROVAL
H H	SCALES SHOWN ARE FOR AN A1 SIZE ORIGINAL DRAWING 0 5 10 20 30 Full Size 1:500 ; Half Reduction 1:1000 SCALE (m)	HORIZ. DATUM MGA VERT. DATUM AHD SURVEY NDC	EPIQ ESTATE - LENNOX HEAD, NSW, 2478 SUPER LOT 5
3107 B FOR COUNCIL APPROVAL 01 A FOR CLIENT REVIEW		DRAWN DY Newton Denny Chapelle 31 Carrington St. Lismore 2480 1 2 3 DESIGN DY Surveyors Planners Engineers Casino 1:50 : Half Beduction 1:100 CP OP	CLARENCE PROPERTY SUPER LOT 5 CIVIL WORKS LONGITUDINAL SECTION - MC04
REV DESCRIPTION REVISIONS	BY APP. DATE SCALE (m) SCALES	SCALE (m) DATE 08.05.2018 APPROVALS 6	Reference No. DRAWING No. REVISION 2014/351 14351-S5-DA-CI-14 B 9 10 11 12

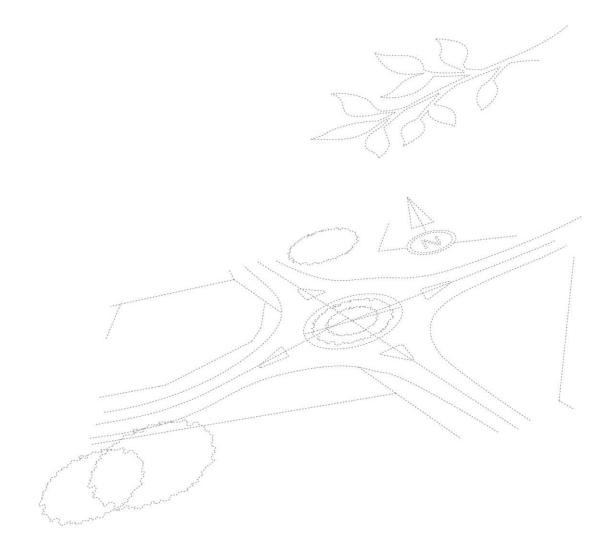

s\14351-S5-DA

ۍ ا

\2014\14351

Ś

ss_
w_
— — — D— — — D—
— — — E — — — E —
PROPOSED SERVICES
<u> </u>
(S)



							SCALES SHOWN ARE FOR AN A1 SIZE ORIGINAL DRAWING
Н							
							0 5 10 20 30
	В	FOR COUNCIL APPROVAL		DY	СР	10.08.18	
	Α	FOR CLIENT REVIEW		DY	СР	08.05.18	Full Size 1:500 ; Half Reduction 1:1000 SCALE (m)
	REV	DESCRI	PTION	BY	APP.	DATE	SCALE (III)
			REVISIONS	SCALES			
			2				

THIS PLAN IS NOT FOR CONSTRUCTION UNLESS STAMPED BY THE PRINCIPAL CERTIFYING AUTHORITY AND ISSUED WITH A NUMERICAL REVISION

[©] NEWTON DENNY CHAPELLE

Appendix B Acid Sulfate Soil Management Plan

Acid Sulfate Soil Management Plan

Pacific Pines Stage 1B

Prepared for: Royal Bank of Scotland © GeoLINK, 2014

PO Box 119 Lennox Head NSW 2478 T 02 6687 7666

PO Box 1446 Coffs Harbour NSW 2450 T 02 6651 7666

info@geolink.net.au

UPR 1675-1321

Description First issue

Table of Contents

1.	Background 1						
	1.1	Introduction	.1				
	1.2	The Site	.1				
	1.3	The Approved Development	.1				
	1.4	Acid Sulfate Soil Assessment	.2				
2.	Man	agement Plan	3				
	2.1	Acid Sulfate Sampling and Analysis	.3				
	2.2	Acid Sulfate Soil Treatment	.4				

Background

1.1 Introduction

This Acid Sulfate Soil Management Plan (ASSMP) has been prepared by GeoLINK for the Royal Bank of Scotland and its development partner Lend Lease, for the approved residential development known as Pacific Pines, Lennox Head.

The ASSMP details strategies to mitigate potential environmental impacts associated with the disturbance of acid sulfate soils during construction of Stage 1B of the Pacific Pines development.

This Acid Sulfate Soil Management Plan specifically addresses Condition E3 of the Project Plan approval, which requires:

An Acid Sulfate Soil Management Plan shall be prepared by a suitably qualified person in accordance with the Acid Sulfate Soil Assessment Guidelines (Acid Sulfate Soil Management Advisory Committee, 1998). The Management Plan shall be submitted to and approved by the Certifying Authority prior to the issue of a Construction Certificate.

1.2 The Site

The Stage 1B residential subdivision is located at Montwood Drive, Lennox Head, on land known as Lot 234 DP 1104071. The whole of this property has an area of approximately 80.5 hectares, with Stage 1B occupying the lower western part of the lot.

1.3 The Approved Development

Stage 1B is part of a larger residential subdivision approved by the NSW State Government under MP_0026, which includes a *Concept Approval* for the whole of the Pacific Pines estate and a *Project Approval* for Stage 1.

The development subject to the Project Approval is described as:

- A 61 lot residential subdivision comprising:
- 1. Fifty one residential lots ranging in size from 600 m^2 to 900 m^2 .
- 2. Seven super lots for future development as follows:
 - a) Super Lot 1 (1.44 ha).
 - b) Super Lot 3 (0.21 ha).
 - c) Super Lot 4 (0.18 ha).
 - d) Super Lot 5 (4.2 ha).
 - e) Super Lot 6 (0.24 ha).
 - f) Super Lot 7 (5.59 ha).
 - g) Super Lot 8 (4.98 ha).
- 3. Two open space lots of 910 m^2 and 641 m^2 .
- 4. Earthworks.
- 5. Associated roads and civil works.
- 6. Landscaping.

Stage 1B of the approved subdivision is described in Condition A2 of the project Approval as:

Stage 1B – Subdivision of Super Lots 1, 3, 4, 5, 6, 7 and 8, the extension of Montwood Drive, the construction of Main Street, construction of internal roads adjoining the east and north boundaries of Super Lot 1, the construction of Hutley Drive and the western link for the playing fields adjacent to the site and revegetation of the 100 metre buffer to littoral rainforest in the north west of the site.

1.4 Acid Sulfate Soil Assessment

Gilbert & Sutherland Pty Ltd (G&S) previously prepared *The Soil Survey, Acid Sulfate Assessment, Stormwater Management Plan, Surface Water Assessment and Environmental Management Plan Pacific Pines, Lennox Head* (G&S 2001).

The purpose of the assessment was to determine the presence, extent and nature of acid sulfate soils at the site. The assessment focused on the area of the water quality control pond, but is considered relevant to the adjacent Stage 1B.

Potential acid sulfate soils were identified at the site. These were generally of a moderate severity for coarse sands to fine silty sands and of high severity for silty clays.

G&S advised that "excavated material should be reinterred below the water table or treated with lime. This would involve sampling every 1,000 m³ of excavated material to determine appropriate liming rates."

Management Plan

2.1 Acid Sulfate Sampling and Analysis

 \sim

Person Responsible	Contractor's Site Manager, Environmental Consultant					
Objective	To identify any ASS and PASS during Stage 1B earthworks at the site and determine their acid generating potential prior to treatment.					
Performance Criteria	All AASS & PASS material is identified and appropriate treatment procedures are determined prior to excavation.					
Implementation Strategy	Initial acid sulfate soil investigations indicate that ASS and PASS are likely to be encountered during the Stage 1B works.					
	Prior to excavation commencing, sampling and testing of material is to be undertaken in proposed excavation areas, where the depth of excavation will go below 5 mAHD, in accordance with the following protocol:					
	Frequency : Chromium Suite analysis will be conducted for each soil colour or texture change encountered below 5 mAHD, with a minimum sample frequency of one test per 1000 m ³ of material to be excavated.					
	Sample size: Soil samples should be more than 0.3 kg in weight with a brief soil texture description accompanying each sample.					
	Sampling: Soil samples will be collected in sealed containers that exclude air.					
	Handling and storage: Samples to be sent to a laboratory for analysis ASAP. Samples to be frozen if storage is required.					
	Laboratory analysis: Samples to be analysed using the Chromium Suite method, with the liming rate specified (where required).					
Monitoring	The sampling and analysis of material shall be tracked by the Environmental Consultant and Site Manager. Records shall be kept of volumes to be excavated, location of sampling and laboratory results.					
Auditing	The Environmental Consultant to audit the sampling and analysis process every three months.					
Reporting	ASS analytical results including interpretation and liming rates shall be reported to the Site Manager and kept on site.					
Identification of Incident or Failure	Insufficient sampling or failure to sample as identified by material tracking records and/or test results and/or procedures.					
Potential Corrective Actions	Undertake additional sampling as required to the thoroughly identify the nature of the material to be disturbed. Consultation with an Environmental Consultant to determine appropriate rates for additional sampling.					

2.2 Acid Sulfate Soil Treatment

Person Responsible	Contractor's Site Manager, Environmental Consultant.
Objective	No acidic or potentially acidic soils are to be disturbed or excavated without appropriate testing and/or treatment by neutralisation of the acid generation potential of the material.
Performance Criteria	All ASS material has been appropriately neutralised and verified prior to final placement.
Implementation Strategy	Acid sulfate soil excavation to be conducted according to the following treatment measures.
	Lime treatment
	Soils requiring treatment will be placed in spatially tracked lots within bunded areas that have an impermeable base. Materials used to construct the bund areas will be free from acid sulfate soils. The bunded areas will be prepared with surface liming at the rate of 0.2 x average net acid generating potential per square metre or at the minimum rate of 1 kg/m ² .
	The bunded areas shall have a leachate collection system. Any water discharged from the bunded areas must comply with the water quality criteria listed in the Stormwater Works Process Strategy.
	Soils selected for treatment will be treated with lime at the rate specified by the laboratory, including a mixing factor of safety of 1.5. Uniform mixing must be achieved. A potential approach is to spread material to a depth of <300 mm, apply lime at the determined rate and mix with a rotary hoe or disc plough.
	Stockpiling of untreated ASS material within the bunded areas should be kept to a minimum and in general accordance with the requirements for Short Term Stockpiling as per the ASSMAC guidelines.
	A layer of lime slurry shall be applied to exposed cut faces immediately following the excavation to the maximum depth to neutralise the soils exposed to oxidation.
	Validation testing
	Following lime treatment, verification testing shall be performed at the rate of one sample per 250 m ³ of treated material.
	Any material that exceeds TAA thresholds but does not exceed oxidisable sulfur concentrations (e.g. material that is high in organic matter or iron oxides) shall be treated with lime at the appropriate application rate, but will not require validation testing to be undertaken.
	Excavation works and timing of stockpiling/treatment
	All excavation works and stockpiling of untreated acid sulfate materials shall be carried out in such a manner that:
	 The surface area of materials exposed to oxidation is minimised.
	• The length of time the untreated materials are exposed to air is minimised.
	 Provides for a system of suitable diversion drains or embankments to divert surface waters away from the stockpiles and the excavation area.
	 Ensures that any unforeseen groundwater seepage and/or leachate and/or stormwater runoff within the excavation area is collected and not released from the site, untested and untreated to any stormwater drain or waters (including groundwater).
	 Ensures that any leachate and/or stormwater runoff which has been in contact with acid sulfate materials or contaminants is collected and not released from the site, untested and untreated to any stormwater drain or waters (including groundwater).

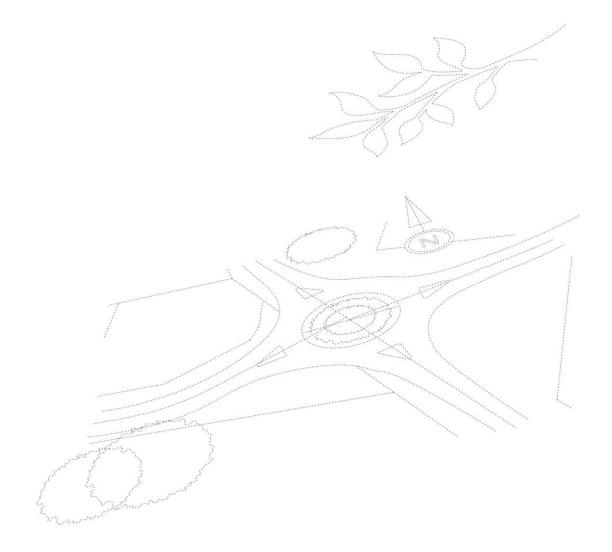
	Supply of neutralising agent A supply of neutralising agent or agricultural lime shall be kept onsite at all times for treatment of acid sulfate soils. The supply shall be stored in a covered and bunded area to prevent accidental release to the environment.
	A supply of hydrated lime shall be kept onsite at all times for treatment of acidic waters (if encountered). Storage requirements for hydrated lime shall be as specified for a neutralising agent or agricultural lime and in accordance with the manufacturer's MSDS.
Monitoring	The treatment of ASS material shall be tracked by the Environmental Consultant and Site Manager. Records shall be kept of actual volumes excavated, liming rates applied, and validation testing results.
Auditing	The Environmental Consultant to audit the ASS treatment process every three months. Alternatively, auditing may be carried out by an independent consultant.
	The audit should include an inspection of site activities, complaints, corrective actions and reporting to assess compliance with the provisions outlined within the ASSMP.
Reporting	Records including testing results and material tracking are to be kept on site during the construction phase and should be available for inspection at all times.
Identification of	Further investigation would only be required if:
Incident or Failure	 Verification sampling tests fail, indicating the insufficient application of lime. The formation of jarosite in exposed or excavated soils was observed. Areas of green-blue water or extremely clear water occurred.
	 Rust-coloured deposits on plants and on the banks of drains or water bodies were noted.
	 A sulfurous odour was detected.
	 The pH of related water bodies dropped substantially below background levels.
Potential	Retesting of materials in the vicinity of excavation.
Corrective Actions	Any need for additional lime in specific lots would be assessed and applied with thorough mixing.

Copyright and Usage

©GeoLINK, 2014

 $\widehat{}$

This document, including associated illustrations and drawings, was prepared for the exclusive use of the Royal Bank of Scotland and Lend Lease to support a Construction Certificate application for Stage 1B of the Pacific Pines development, Lennox Head. It is not to be used for any other purpose or by any other person, corporation or organisation without the prior consent of GeoLINK. GeoLINK accepts no responsibility for any loss or damage suffered howsoever arising to any person or corporation who may use or rely on this document for a purpose other than that described above.


This document, including associated illustrations and drawings, may not be reproduced, stored, or transmitted in any form without the prior consent of GeoLINK. This includes extracts of texts or parts of illustrations and drawings.

This page has been intentionally left blank

Appendix C Access Assessment

Gold Coast Office

- S: Suite 26, 58 Riverwalk Avenue Robina QLD 4226
- M: PO Box 5102 Q Super Centre Mermaid Waters QLD 4218
- **P:** (07) 5562 5377
- **F:** (07) 5562 5733
- W: www.bitziosconsulting.com.au

Our Reference: P3518.004L Your Reference:

22 May 2018

Newton Denny Chapelle PO Box 1138 Lismore NSW 2480

Attention: Chris Pickford Sent via email: cpickford@newtondennychapelle.com.au

Dear Chris

RE: SUPER LOT 5 MONTWOOD DRIVE – TOWNHOUSE DEVELOPMENT – ACCESS ASSESSMENT

1.0 INTRODUCTION

1.1. Background

Bitzios Consulting has been commissioned by Clarence Property Corporation Pty Ltd to prepare an access assessment for the proposed townhouse development located on the corner of Montwood Drive and Snapper Drive (Super Lot 5) as shown in Figure 1.1.

Source: Near Maps 2018
Figure 1.1: Site Location

Brisbane Office

- S: Level 2, 428 Upper Edward Street Spring Hill QLD 4000
- M: Level 2, 428 Upper Edward Street Spring Hill QLD 4000
- **P:** (07) 3831 4442
- F: (07) 3831 4455
- E: admin@bitziosconsulting.com.au

S: Studio 203, 3 Gladstone Street Newtown NSW 2042

- M: Studio 203, 3 Gladstone Street
- Newtown NSW 2042
- **P:** (02) 9557 6202
- F: (02) 9557 6219

1.2. Proposed development

The proposed development includes 146 townhouses with 350 on-site car parking spaces. The subject site is accessible via Montwood Drive and Snapper Drive as shown in Figure 1.2.

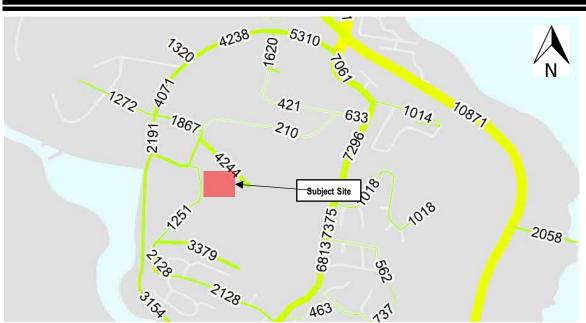
Source: TVS Architects

Figure 1.2: Site Accesses

Development Plans are provided in Attachment 1.

1.3. Existing Conditions

The existing road network surrounding the subject site (including sections of Montwood Drive and Snapper Drive) is presently under-construction and not open to traffic. As such, no background traffic volumes can be obtained from the surrounding road network for inclusion in this assessment.


2.0 TRAFFIC ASSESSMENT

2.1. Forecast Traffic Volumes

Given that background traffic volumes cannot be obtained, the traffic assessment will rely on forecast background traffic volumes for the surrounding road network.

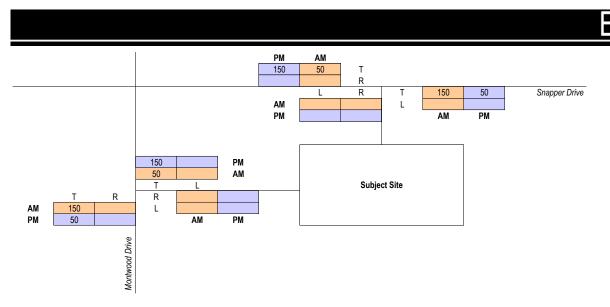
As a part of the *Ballina Shire 2014 Strategic Model* prepared by Cardno for Ballina Shire Council, traffic modelling was conducting using TRACKS modelling software. The report provides year 2036 daily traffic volumes from the TRACKS model for the entire Ballina LGA, including the subject site. Figure 2.1 illustrates the subject site location and surrounding forecast traffic volumes.

Source: Ballina Shire Council Section 94 Update Daily Total Volume

Figure 2.1: Ballina LGA 2036 Forecast Daily Traffic Volumes

Based on the daily traffic volumes outlined in this model, it is estimated that Montwood Drive and Snapper Drive will accommodate approximately 2,000 vehicles per day (vpd) in the year 2036.

However, the southern link of Hutley Drive connecting the Hutley Drive / Snapper Drive intersection and Skennars Head Road is not expected to be constructed for several years. It is also unclear when the northern Hutley Drive extension will be constructed. As such, it is expected that traffic volumes on Montwood would be significantly higher than outlined in the TRACKS model prior to the construction of these links. Traffic demand and capacity analysis of the road network without the construction of the Hutley Drive links was conducted by Cardno in the *Pacific Pines Concept and Project Approval Response to Ballina Shire Council Request for Further Information* (2014). As per this report, expected daily traffic on Montwood Drive is 4,070vpd for Network Option 2 (access via Montwood Drive and Henderson Lane only).


It should be noted that Scenario 2 traffic volumes are expected future volumes only and may not be a true indication of actual traffic. Furthermore, it is possible that the additional network links will be constructed prior to complete development of the area. As such, these forecasted future traffic volumes may not be realised. As such, a sensitivity test is proposed considering 3,400vpd on Montwood Drive.

As such, the following site access assessment will be conducted considering the following scenarios:

- Scenario 1 (Strategic Model): 2,000vpd on Montwood Drive;
- Scenario 2 (Cardno Network Option 2): 4,070vpd on Montwood Drive; and
- Sensitivity Test: 3,400vpd on Montwood Drive.

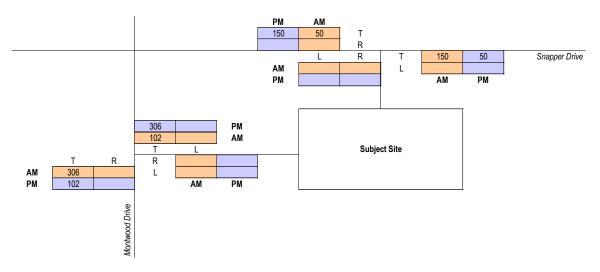

In all scenarios, it is expected that daily traffic volumes on Snapper Drive in the vicinity of the proposed access will be similar, at an estimated 2,000vpd for the year 2036. It is expected that 10% of the total daily trips occur in both the AM and PM peak hour volumes. The Traffic Management Plan for the Pacific Pines Estate Lennox Head prepared by Cardno for Lendlease, advises the distribution for development traffic to be 75% from the north and 25% from the south.

Figure 2.2 illustrates the 2036 forecast AM and PM peak hour volumes for Hutley Drive and Snapper Drive for Scenario 1 (2,000vpd).

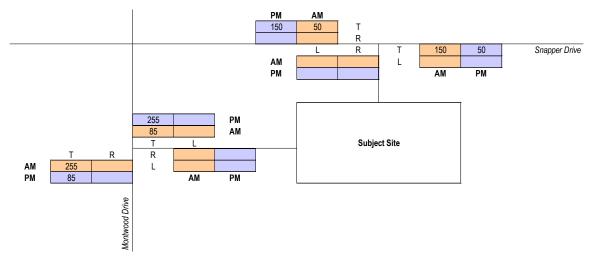

Figure 2.2: 2036 Forecast AM and PM Peak Hour Volumes

Figure 2.3 illustrates the 2036 forecast AM and PM peak hour volumes on Hutley Drive and Snapper Drive for Scenario 2 (4,070 vpd).

Figure 2.3: Scenario 2 - 2036 Forecast AM and PM Peak Hour Volumes

Figure 2.4 illustrates the 2036 forecast AM and PM peak hour volumes on Hutley Drive and Snapper Drive for the Sensitivity Test (3,400 vpd).

BITZIOS

2.2. Development Traffic

Traffic generation rates for the proposed development were sourced from the Roads and Maritime Services (RMS) *Guide to Traffic Generating Developments (2002)*. The rates applicable to the proposed development and resultant traffic generation are shown in Table 2.1.

 Table 2.1:
 Peak Hour Development Trip Generation

Land Use	Source	Quantity	AM Trip Rate	PM Trip Rate	AM Trips	PM Trips
Medium- density Residential	RMS (2002)	146	0.65	0.65	95	95

The development is anticipated to generate 96 trips during the AM and PM peak hours. The IN:OUT trips splits during AM and PM peak hours would be in line with those typically expected for a residential land use. The traffic splits and resultant trips for this development are shown in Table 2.2.

 Table 2.2:
 Development Traffic Directional Split

	AM Split %		PM Split %		AM Split Trip		PM Split Trip	
Land Use	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Medium- density Residential	20%	80%	70%	30%	19	76	67	29

The distribution of development traffic has been based on the assumed Pacific Pines Estate distribution as illustrated in Figure 2.5.

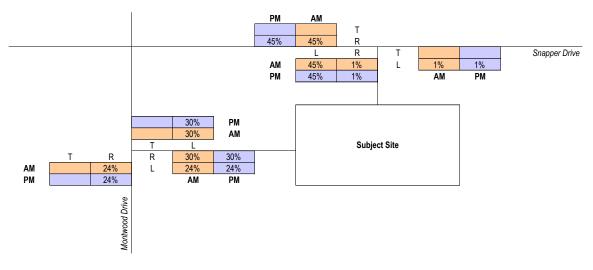
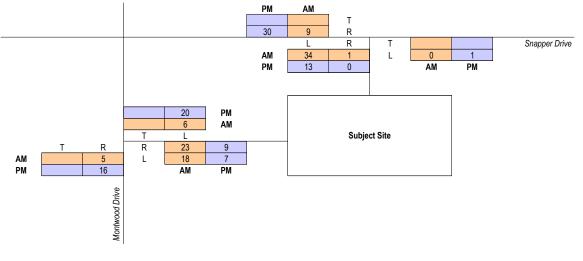



Figure 2.5: Development Traffic Distribution

Estimated development traffic volumes are provided in Figure 2.6.

Figure 2.6: Development Traffic Volumes

2.3. Design Traffic Volumes

The design traffic volumes are calculated by combining the forecast background traffic and the proposed development traffic. The year 2036 design traffic volumes for Scenario 1, Scenario 2 and the Sensitivity Test are summarised in Figure 2.7, Figure 2.8 and Figure 2.9 respectively.

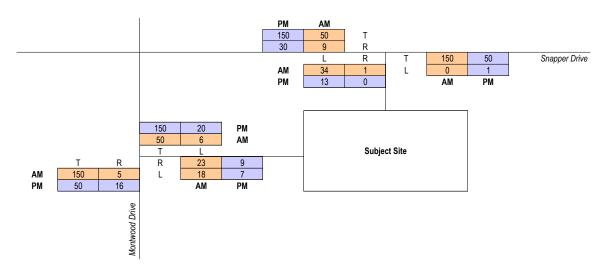


Figure 2.7: Scenario 1 - 2036 Design Traffic Volumes

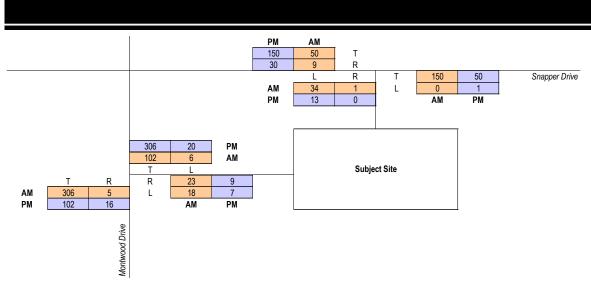


Figure 2.8: Scenario 2 - 2036 Design Traffic Volumes

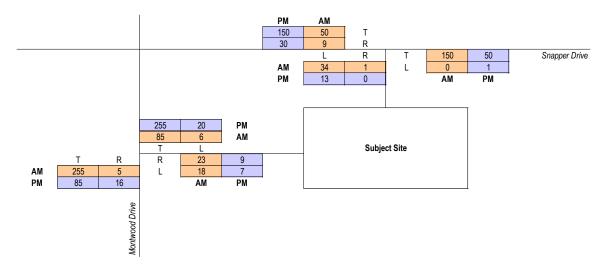


Figure 2.9: Sensitivity Test - 2036 Design Traffic Volumes

2.4. Turn Warrants Assessment

A turn warrants assessment was undertaken for the proposed accesses on Montwood Drive and Snapper Drive in accordance with the *Austroads Guide to Road Design Part 4 Intersections and Crossings: General.*

Snapper Drive Access

Figure 2.10 and Figure 2.11 respectively show the eastbound right and westbound left turn warrants assessment on Snapper Drive for the 2036 development traffic volumes for all scenarios.

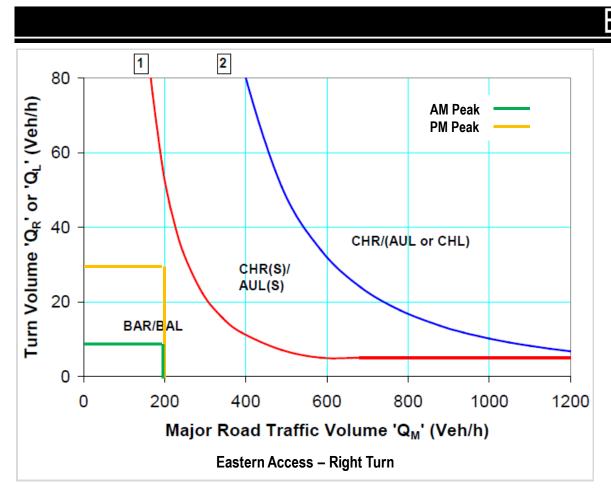


Figure 2.10: 2036 Turn Warrants Assessment – Snapper Drive Eastbound Right Turn

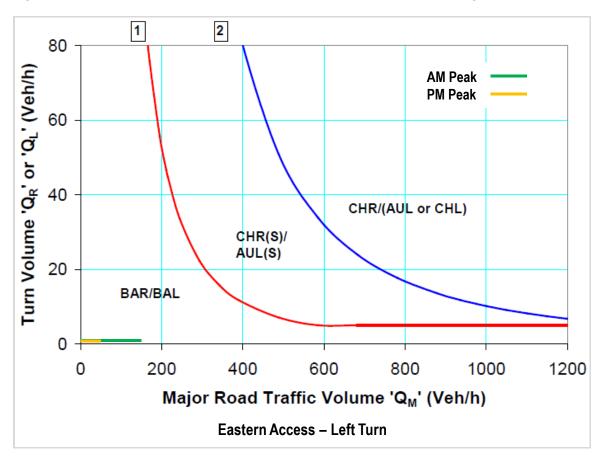


Figure 2.11: 2036 Turn Warrants Assessment – Snapper Drive Westbound Left Turn

As shown in Figure 2.10 and Figure 2.11, the proposed development requires a basic right (BAR) turn treatment for Snapper Drive eastbound and basic left (BAL) for Snapper Drive westbound into the subject site.

Western Access

Figure 2.12 and Figure 2.13 respectively show the northbound right and southbound left turn warrants assessment on Montwood Drive for the Scenario 1 (2,000 vpd) 2036 development traffic volumes.

Figure 2.12: Scenario 1 2036 Turn Warrants Assessment – Montwood Drive Southbound Right Turn

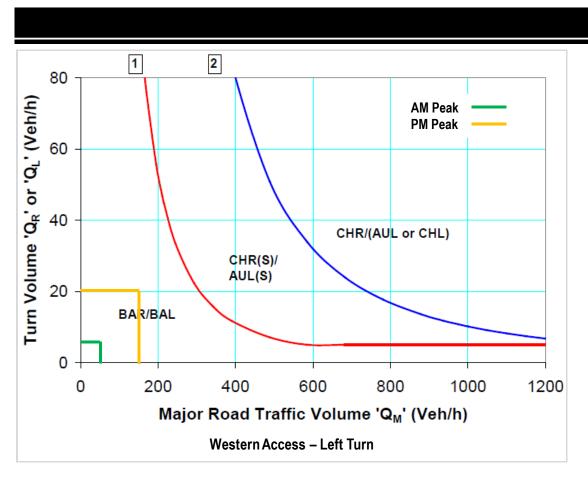


Figure 2.13: Scenario 1 2036 Turn Warrants Assessment – Montwood Drive Southbound Left Turn

Figure 2.14 and Figure 2.15 respectively show the northbound right and southbound left turn warrants assessment on Montwood Drive for the Scenario 2 (4,070vpd) 2036 development traffic volumes.

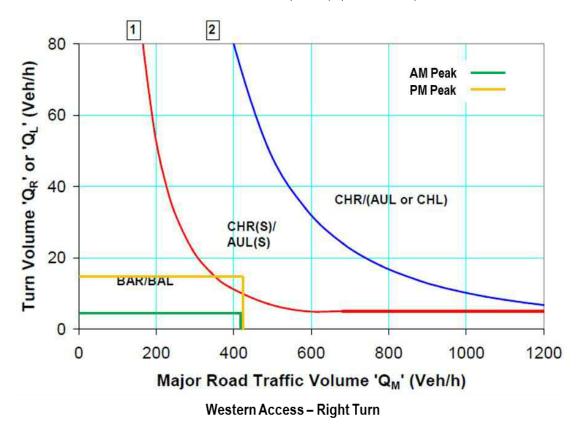


Figure 2.14: Scenario 2 2036 Turn Warrants Assessment – Montwood Drive Northbound Right Turn

Figure 2.15: Scenario 2 2036 Turn Warrants Assessment – Montwood Drive Southbound Left Turn

Figure 2.16 and Figure 2.17 respectively show the northbound right and southbound left turn warrants assessment on Montwood Drive for the Scenario 3 (3,500vpd) 2036 development traffic volumes.

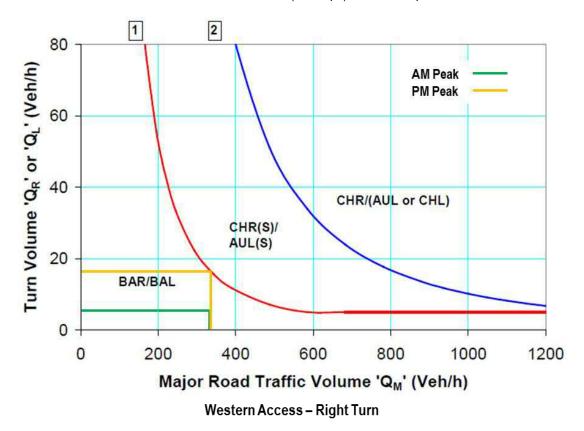
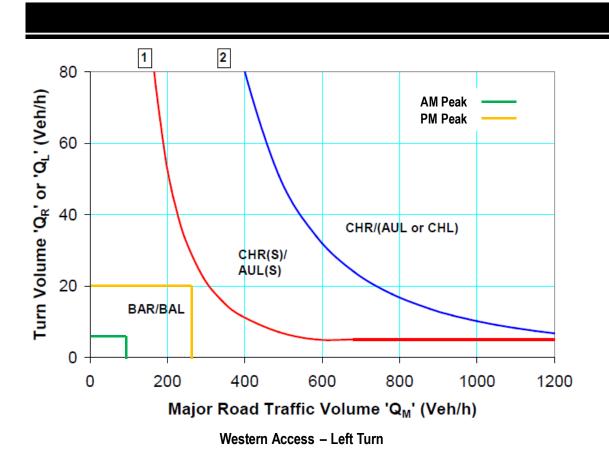



Figure 2.16: Sensitivity Test 2036 Turn Warrants Assessment – Montwood Drive Northbound Right Turn

Figure 2.17: Sensitivity Test 2036 Turn Warrants Assessment – Montwood Drive Southbound Left Turn

<u>Summary</u>

As per the turn warrants assessment above the required turn treatments for each movement under each traffic scenario are summarised in Table 2.3. It is noted that the turn warrants assessment indicates that the need for a CHR(s) treatment for the Montwood Drive right-turn is triggered approximately with Sensitivity Test traffic volumes (3,400vpd).

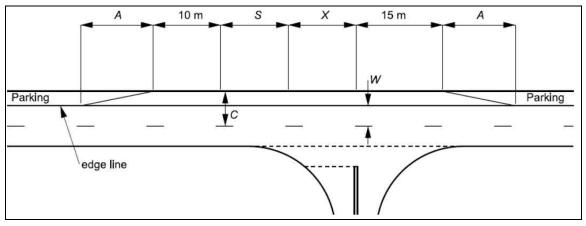
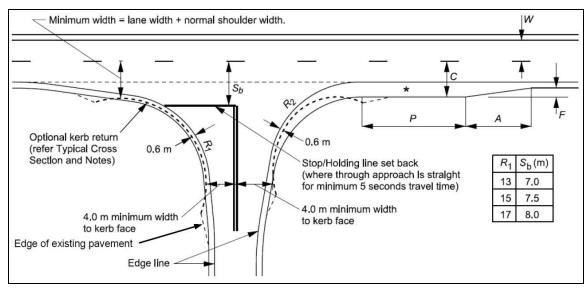
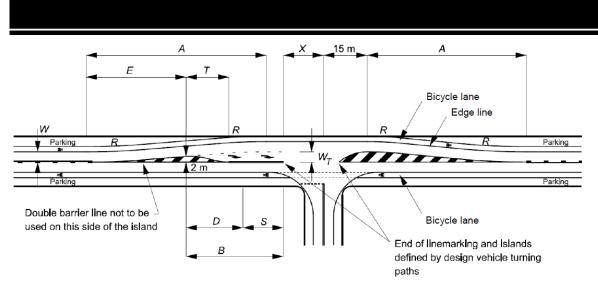

Access	Scenario	Daily Traffic Volume	Left-turn Treatment	Right-turn Treatment
Eastern (Snapper Drive)	All	2,000vpd	BAL	BAR
	1	2,036vpd	BAL	BAR
Western	2	4,070vpd	BAL	CHR(S)
(Montwood Drive)	Sensitivity Test	3,400vpd	BAL	BAR

 Table 2.3:
 Required Turn Treatment Summary

3.0 RECOMMENDED TURN TREATMENTS


3.1. Typical Turn Treatments

Basic Right (BAR), Basic Left (BAL) and Short Channelised Right (CHR(s)) turn treatments are recommended for this development with typical turn treatment designs shown below in Figure 3.1, Figure 3.2 and Figure 3.3 respectively.


Source: Austroads Guide to Road Design Part 4A

Source: Austroads Guide to Road Design 4A

Figure 3.2: Typical Basic Left Turn Treatment

Source: Austroads Guide to Road Design 4A

Figure 3.3: Typical Short Channelised Right Turn Treatment

3.2. Snapper Drive Turn Treatments

Noting that Snapper Drive has a roadway width of 7.5m with no provision for on-street parking or sufficient road reserve width for widening, BAR and BAL turn treatments cannot not be accommodated at the proposed northern development access. Notwithstanding this, it is recommended that 'No Stopping' zones are provided along the Snapper Road frontage to ensure vehicles do not stop or park within proximity to the proposed northern development access. The length of this "No Stopping" zone shall as shown for the recommended BAL/BAR treatment for Montwood Drive as shown in Figure 3.4.

3.3. Montwood Drive Turn Treatments

Montwood Drive Basic Right Turn Treatment

A basic right-turn treatment for the proposed Montwood development access considers the following parameters:

- Roadway width Montwood Drive = 9.0m
- Actual Carriageway width, C_A = 4.5m
- Minimum Required Carriageway width, C_M = 6.0m
- Lane width, W = 3.5m
- Design vehicle speed, V = 60km/h
- Storage length, S = 12.5m
- Design vehicle turning path (based on 10.2m Refuse Collection Vehicle), X = 15.0m
- Taper Length, A = 21.0m (based on C_M and W)

A basic left-turn treatment for the proposed Montwood development access considers the following parameters:

- Roadway width Montwood Drive = 9.0m
- Actual Carriageway width, C_A = 4.5m
- Minimum Required Carriageway width, C_M = 6.0m
- Lane width, W = 3.5m
- Formation width, F = 1.0m
- Design vehicle speed, V = 60km/h
- Minimum Length of Parallel Widened Shoulder, P = 5.0m
- Design vehicle turning path (based on 10.2m Refuse Collection Vehicle), R₂ = 15m
- Taper Length, A = 29.0m (based on C_m and W)

Montwood Drive Short Channelised Right Turn Treatment

A short channelised right-turn treatment for the proposed Montwood development access considers the following parameters:

- Roadway width Montwood Drive = 9.0m
- Through lane width, W = 3m
- Turning lane width, Wt = 3m
- Design speed of major road approach, V = 60km/h
- Total auxiliary lane length, B = 30m
- Lateral movement length, A = 50m
- Length from start of taper to 2m taper width, E = 33m
- Diverge / deceleration distance, D = 25m
- Storage length to cater for one design turning vehicle, S = 10.2m
- Total length of auxiliary lane, B = 33.8m
- Taper length, T = 15m
- Desirable turning radius, R = 175m
- Design vehicle turning path (based on 10.2m Refuse Collection Vehicle), X = 15.0m

3.4. Montwood Drive Recommended Turn Treatment

Noting that Montwood Drive is constructed with a carriageway width of 9m and insufficient road reserve width for widening, a CHR(s) and a BAL turn treatment cannot both be accommodated at the proposed western development access (as per the turn warrants assessment for Scenario 2).

As such, it is recommended that a BAR and a BAL treatment be provided at the Montwood Drive access. This treatment is deemed to be sufficient as the development fronts low-speed roads in a residential environment. Furthermore, traffic volumes are only large enough to trigger the warrant for a CHR(s) under worst case forecasted traffic volumes (Scenario 2) and volumes are just large enough to trigger this treatment in the PM peak hour only. This indicates that any safety or efficiency impacts associated with providing a BAR treatment as opposed to a CHR(s) treatment is expected to be negligible.

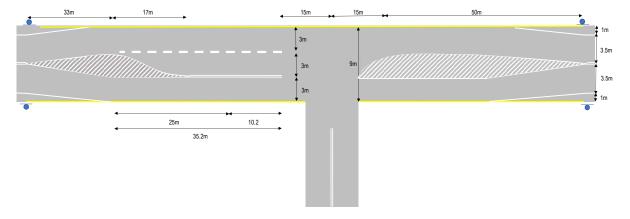

A sketch of the recommended Montwood Drive access layout (not to scale) is provided in Figure 3.4.

Figure 3.4: Montwood Drive Access Arrangement (recommended)

An alternate option is to provide a CHR(s) treatment and no left-turn treatment, as shown in Figure 3.5. However, it is noted that a CHR(s) treatment at the access location would direct traffic around the turn pocket in a way that could increase the risk to pedestrians, particularly considering an existing shared path is constructed directly adjacent to the kerb. The lateral movement of through traffic also poses a hazard to on-road cyclists. Finally, no escape route is available for southbound through traffic behind a left turning vehicle increasing the risk of rear-end or off-path type crashes. However, it is noted that the increased risk to southbound vehicles is expected to be low as vehicle speed will be reduced due to the proximity of the Montwood Drive / Snapper Drive roundabout.

Figure 3.5: Montwood Drive Alternate Access Arrangement

3.5. Signage and Linemarking Requirements

No stopping zones are to be provided to ensure sufficient width is provided for through traffic and vehicles performing turn manoeuvres into the development accesses. 'No Stopping' zones extending past driveway accesses along the development frontage also ensure sight lines to approaching vehicles are maintained. The 'No Stopping' zone should be provided through the installation of No Stopping (R5-400) signs, with supplementary continuous yellow edge lines as shown in Figure 3.4 and Figure 3.5. All other delineation at the Montwood Drive access shall be in accordance with the relevant typical BAR/BAL/CHR(s) turn treatments outlined in the Austroads Guide to Road Design Part 4.

To mitigate any risk of rear-end type crashes that occur as a result of vehicles slowing or stopping to turn right into the development, it is also recommended that warning signage be provided in advance of the access for northbound vehicles. In accordance with AS1742.2 a "Side Road Intersection" (w2-4) is recommended to be placed 60-80m from the proposed access fronting northbound traffic. If not already implemented a "Roundabout Ahead" (w2-7) warning sign is also recommended to be placed approximately 80m from the Montwood Drive / Snapper Drive roundabout.

Should you require any further information, do not hesitate to call me.

Yours faithfully

abito

Adrian Bitzios Principal Traffic Engineer and Transport Planner BITZIOS CONSULTING

ATTACHMENT 1

DEVELOPMENT PLANS

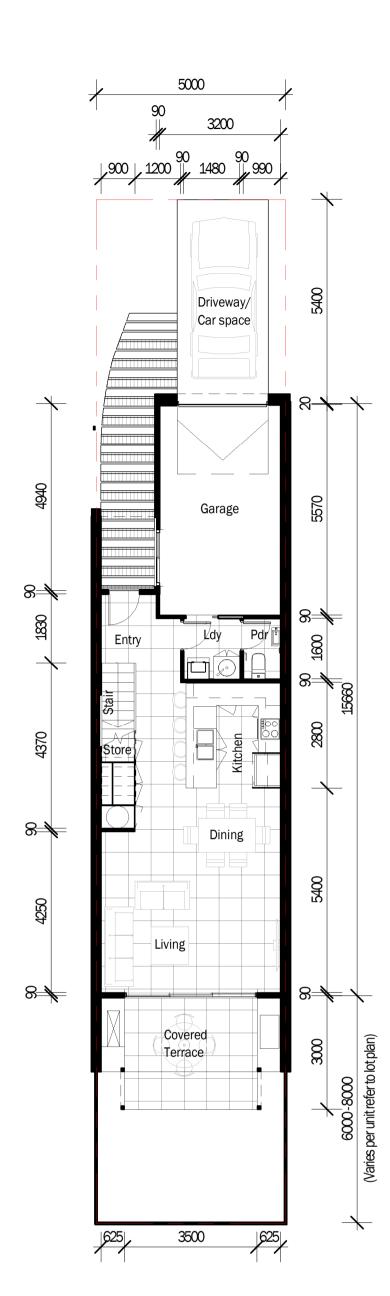
02	SITE PLAN
03	SITE LAYOUT PLAN - GROUND FLOOR
04	SITE LAYOUT PLAN - LEVEL I
05	STREET ELEVATIONS
06	INTERNAL STREET ELEVATIONS & SECT
07	INTERNAL STREET ELEVATIONS & SECT
80	SECTIONS
09	MATERIAL PALETTE
10	TYPICAL UNITS TYPE A & B
н	TYPICAL UNITS TYPE C & D

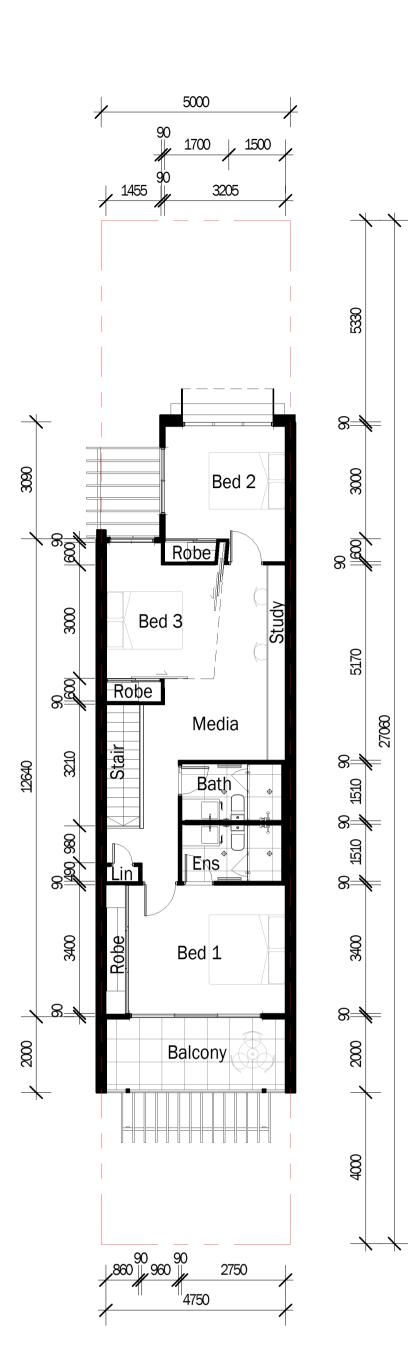
TERRACES HOMES AT PACIFIC PINES ESTATE

FIONS FIONS

Туре
e A - 5m
e B - 6m
e C - 7m
e D - 9.9m
al

 \square




Legend					
	Type A - Living Area				
	Type B - Living Area				
	Type C - Living Area				
	Type D - Living Area				
	Garage				
	Wet Area				
	Bedroom				
	Terrace/Balcony				

18/05/2018 12:26:49 PM

Legend					
	Type A - Living Area				
	Type B - Living Area				
	Type C - Living Area				
	Type D - Living Area				
	Garage				
	Wet Area				
	Bedroom				
	Terrace/Balcony				

+

R

8000

g

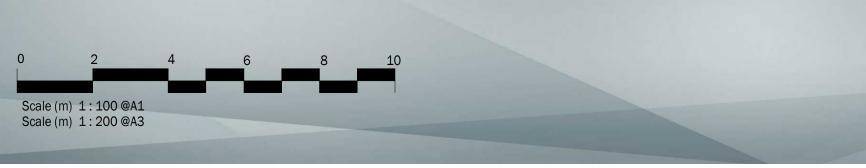
1510

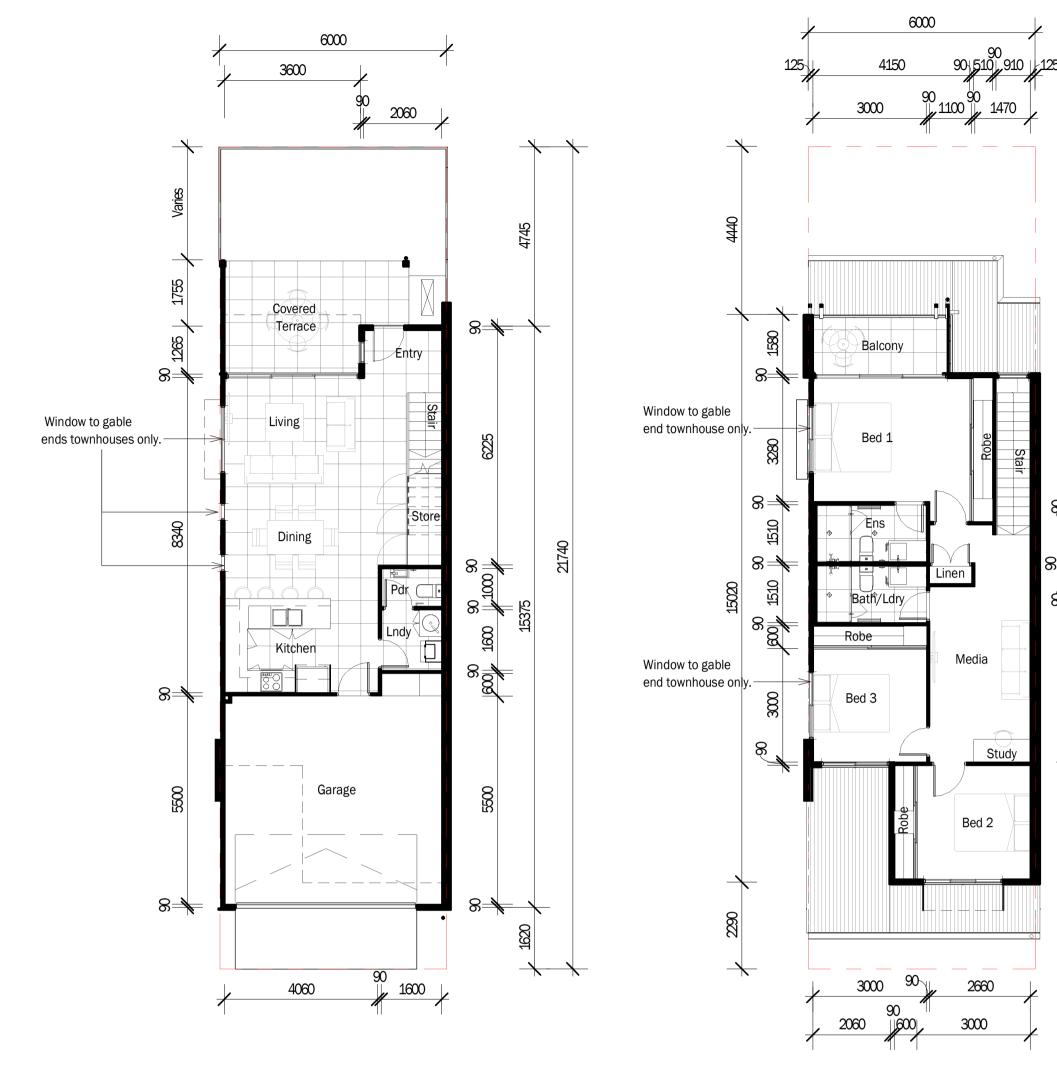
1510

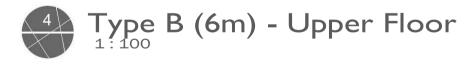
8¥

2000

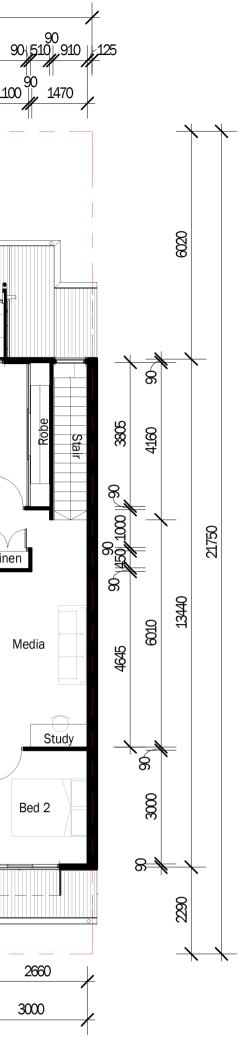
<u>400</u>



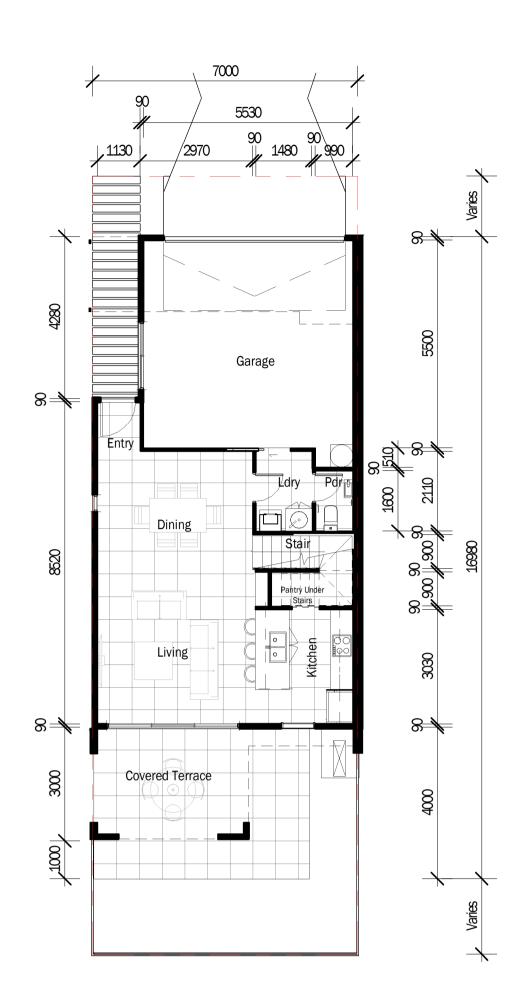

Type A (5m) - Ground Floor

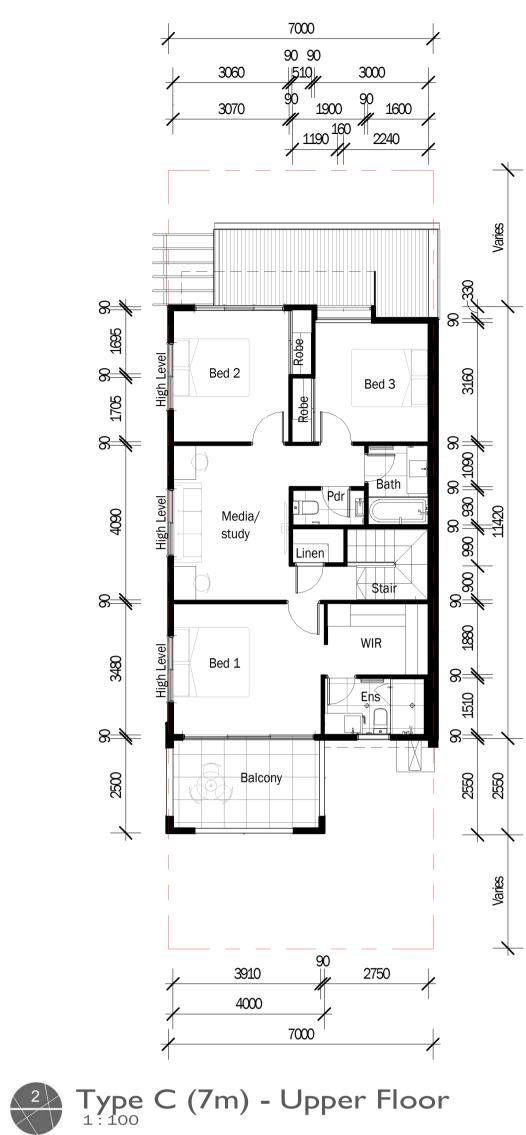

² Type A (5m) - Upper Floor

Type A - 5m Townhouse			
Name	Area		
Garage	19.03 m ²		
GF Living	51.44 m ²		
Terrace	11.14 m ²		
L1 Living	70.46 m ²		
Balcony	10.00 m ²		
	162.07 m²		

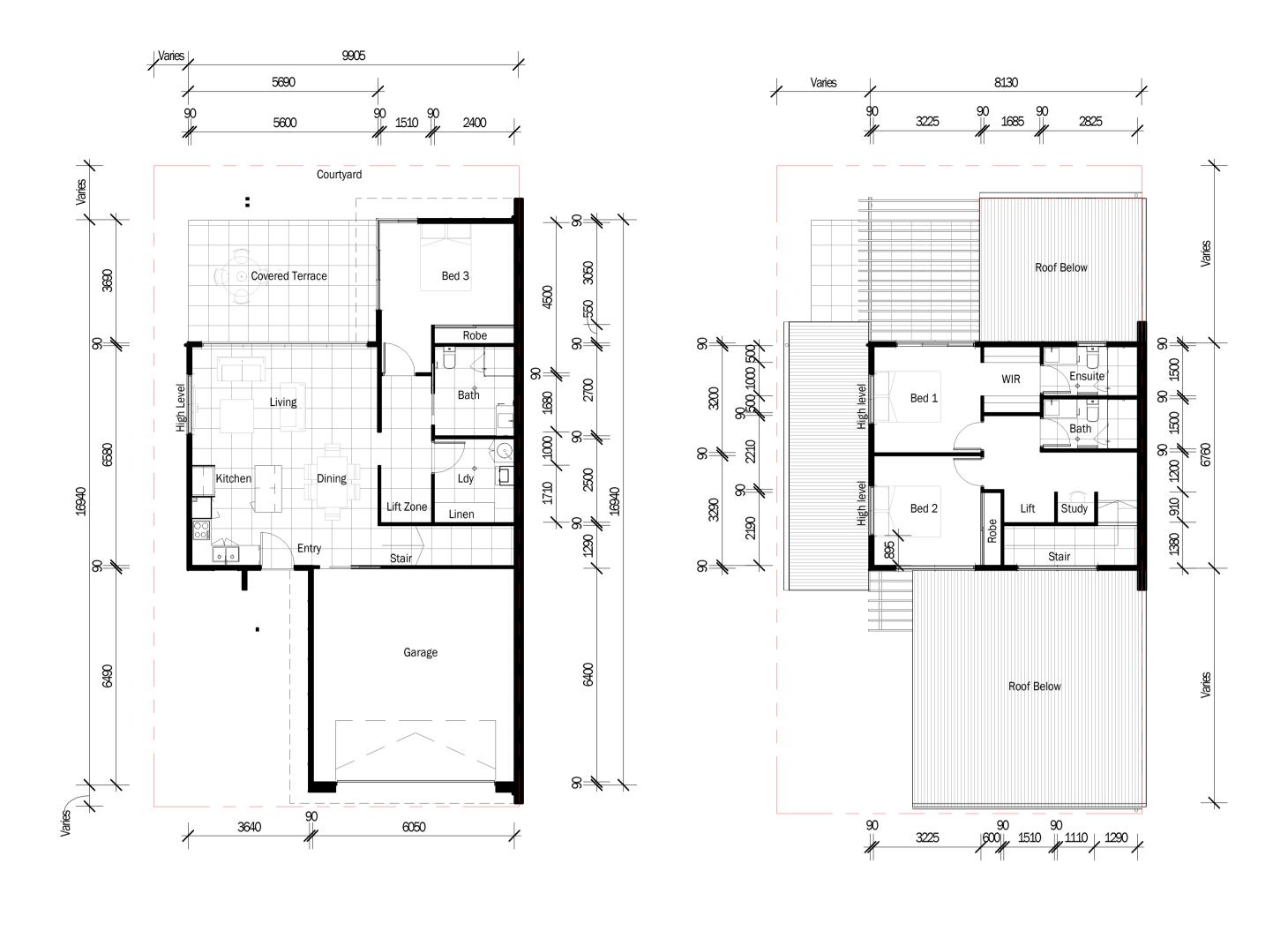

Type B (6m) - Ground Floor

Type B - 6m Townhouse		
Name	Area	
Terrace	13.53 m²	
GF Living	52.96 m ²	
Garage	34.58 m ²	
L1 Living	69.49 m²	
Balcony	5.59 m ²	
	176.15 m ²	


Terrace Homes Development Pacific Pines Estate – Lennox Heads


Typical Units Type A & B 5551.15.10.B

No.	Unit Type
33	Type A - 5m
63	Type B - 6m
35	Type C - 7m
15	Type D - 10.3m
146	Total



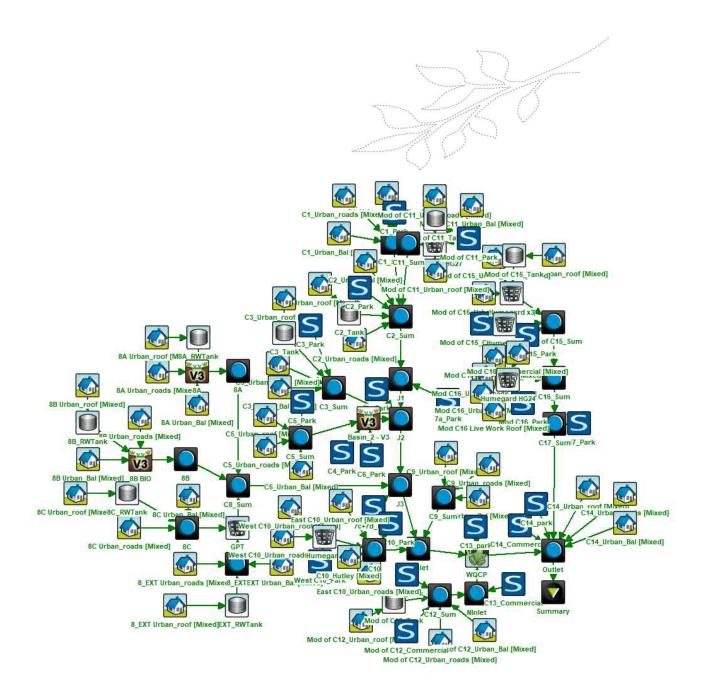
Type C (7m) - Ground Floor

Type C - 7m Townhouse		
Name	Area	
Garage	32.57 m²	
GF Living	52.92 m²	
Terrace	22.90 m ²	
L1 - Living	75.41 m²	
Balcony	10.31 m ²	
	194.11 m ²	

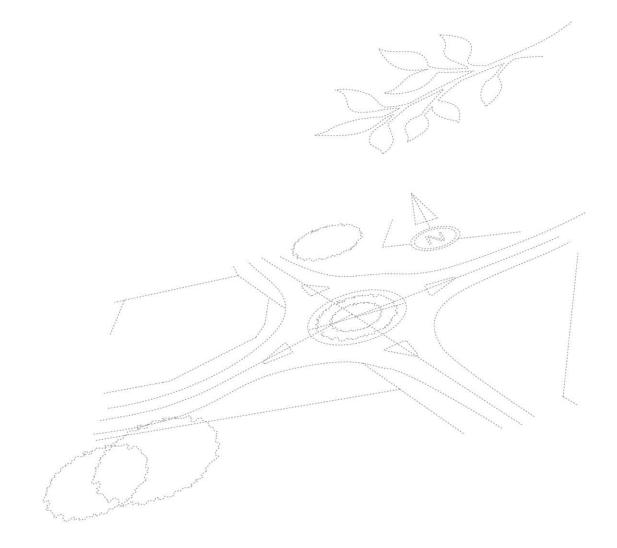
Type D (9.9m) - Ground Floor

Type D - 9.9m Townhouse			
Name	Area		
Terrace	21.00 m ²		
GF Living	82.51 m ²		
Garage	40.66 m ²		
_1 - Living	48.64 m ²		
	192.81 m ²		

Terrace Homes Development Pacific Pines Estate – Lennox Heads


Typical Units Type C & D 5551.15.11.B

Type D (9.9m) - Upper Floor


 No.	Unit Type
33	Type A - 5m
63	Type B - 6m
35	Type C - 7m
15	Type D - 10.3m
146	Total

Appendix D MUSIC Model

Appendix E Sewer Rising Main Assessment

10 May 2018

Newton Denny Chapelle Pty Ltd PO Box 1138 Lismore NSW 2480

ENGINEERING ADVICE AND DETAILED DESIGN OF SEWER PUMP STATION – EPIQ ESTATE, LENNOX HEAD

Dear Chris Pickford,

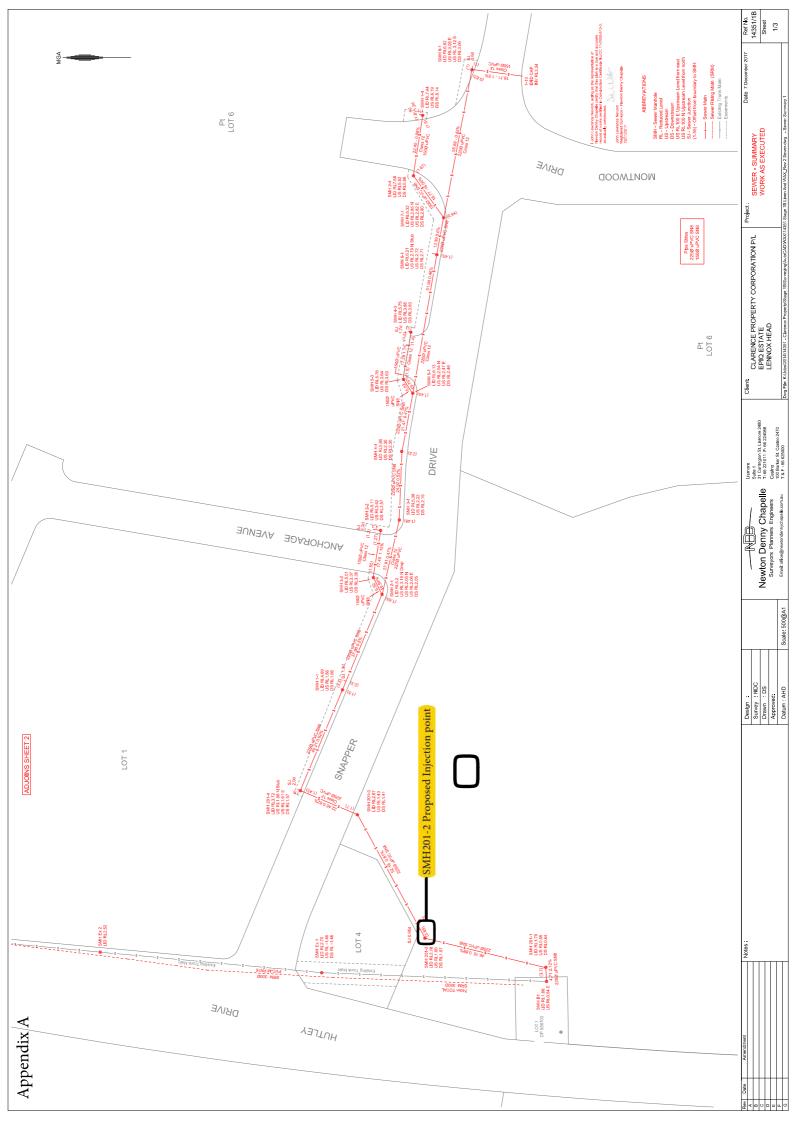
Further to my previous advice dated 7 May 2018, and the provision of additional as-constructed information (from your office) concerning the existing DN225 gravity sewer, I note that the steeper downstream grades of the gravity sewer enable additional flows. A grade of 0.89% enables approximately 400 ET. Therefore, injection of flows from 'Super Lot 5' into the sewer at SMH201-2 as shown on the plan in Appendix A provides a suitable option, given that the catchment, including 'Super Lot 5', totals 393 ET.

Investigation was also undertaken as to the adequacy of the existing DN300 rising main along Hutley Drive from Byron Street in Lennox Head as an alternative injection point. There is available capacity in the main, however it is required to accommodate the additional loading from the future growth of Lennox Head and is therefore not an available option.

No further investigation was carried out on the trunk gravity sewer along Hutley Drive due to the downstream suitability of the existing DN225 main to accommodate flows. Injecting at this point would also appear to be a slightly cheaper option due to length and location.

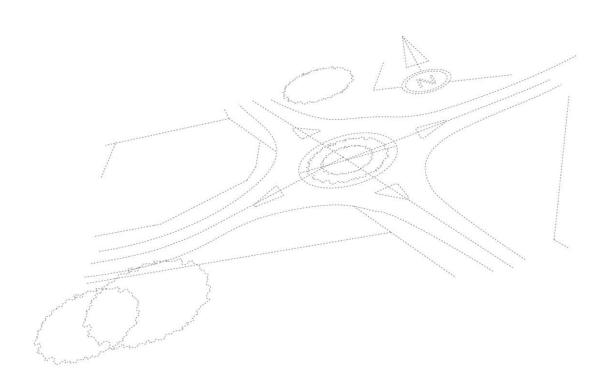
Please do not hesitate to contact me if you wish to discuss further.

Kind Regards,



MICHAEL CHAMBERLAIN

Bch. App Sc., BEng (hon), RPEng, RPEQ


+061 401 415 220 michael@waseng.com.au

waseng.com.au

Appendix F

H2One - Hydraulic Assessment of the Dual Reticulation Water Supply Network Epiq Estate – Lennox Head

EPIQ Estate All Stages Lennox Head NSW 2478

Hydraulic Assessment of the Dual Reticulation Water Supply Network

For Ballina Shire Council Approval

FINAL Report V2 - 12 May, 2017

H2One Pty Ltd

Water, Sewer and Stormwater Engineering Specialists

H2One Pty Ltd

ABN 20 130 354 764

- P 07 5503 0044
- E info@H2One.com.au
- W h2one.com.au

Reviewed by RPEQ	Reg. No.	Signed	Date
Joshua May	18064		12 May, 2017

Version	Date	Author	Reviewer
DRAFT - V1	28 April, 2017	D Colledge	J May
DRAFT - V2	3 May, 2017	D Colledge	J May
FINAL - V1	10 May, 2017	D Colledge	J May
FINAL - V2	12 May, 2017	D Colledge	J May

Copyright in the whole and every part of this document belongs to H2One Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written approval of H2One Pty Ltd.

TABLE OF CONTENTS

1	INTR	ODUCTION	2
	1.1	Background	2
	1.2	Objectives	2
	1.3	Potable Water Supply Strategy	2
	1.4	Recycled Water Supply Strategy	3
2	MET	HODOLOGY	4
	2.1	Desired Standards of Service	4
	2.2	Demand Assessment	4
	2.3	Hydraulic Model Assessment	5
3	RESU	JLTS	6
	3.1	Potable Water	6
	3.2	Recycled Water	6
4	CON	CLUSION	8
5	REFE	RENCES	9
6	APP	ENDICES	10
	Append	lix 1. EPIQ Estate Site Layout	11
	Append	lix 2. Potable Water Supply Pipe Reticulation Layout (Node Labels)	12
	Append	lix 3. Potable Water Supply Pipe Reticulation Layout (Pipe Labels)	13
	Append	lix 4. Recycled Water Supply Pipe Reticulation Layout (Node Labels)	14
	Append	lix 5. Recycled Water Supply Pipe Reticulation Layout (Pipe Labels)	15
	Append	lix 6. Screenshot of Hydraulic Modelling Results	16
	Append	dix 7. Raw Modelling Results	18

1 INTRODUCTION

1.1 Background

EPIQ Estate is a Master Planned urban development located in Lennox Head, NSW, approximately 30 km's south of Byron Bay. The site has an estimated land area of 80 hectares and is proposed for residential, commercial, retail, open space and conservation land use. The development is scheduled for completion via a number of stages, with ultimate development projected within the next three - five years. Stage 1A, comprising of 51 residential freehold lots, has been constructed with Stage 1B and Super Lot 8 (Release 2) currently under construction. All remaining stages are currently in the planning or Development Application (DA) phase. The remaining development stages (including those currently under construction) are expected to consist of the following.

- 503 x residential freehold allotments
- 27 x medium density dwellings
- 4.4 x Ha community sporting field with community centre
- Child care centre
- 5,500 m² Gross Floor Area (GFA) of commercial and retail precinct
- Park, conservation area and open space throughout the site.

A potable water and recycled water service strategy has previously been developed for EPIQ Estate, with connection to Ballina Shire Council's (BSC) existing network at the southern and northern site boundaries. To confirm the proposed strategy and associated infrastructure sizing, H2One Pty Ltd was engaged to complete a hydraulic modelling analysis of the dual reticulation system, in accordance with BSC's adopted Design Standards; *New South Wales Development Design Specification, D11, Water Supply* (2009).

The results of the assessment and confirmed reticulation layout plans are presented in this report.

1.2 Objectives

The key objectives of the project were as follows:

- 1. Estimate ultimate potable water and recycled water demands for EPIQ Estate.
- 2. Develop potable water and recycled water hydraulic models for the proposed distribution systems.
- 3. Complete a standard flow and fire flow hydraulic analysis to confirm infrastructure sizing/layout, in accordance to BSC's Design Standards.
- 4. Issue an RPEQ certified hydraulic assessment report and associated concept design layout plans.

1.3 Potable Water Supply Strategy

The potable water supply service strategy for EPIQ Estate consists of a High Level Zone (HLZ) and Low Level Zone (LLZ) supply regime, with the ultimate construction of a 1.5 ML storage tank at the northern end of the development site. The construction of this storage tank will be undertaken by BSC sometime after the completion of the EPIQ Lennox Estate, as the demand in the greater Lennox Head area increases. In the interim, a pressure reducing valve will be installed at this location to reduce the pressures to acceptable levels for the LLZ. This was previously developed in liaison with BSC as a long-term strategy to rectify storage deficiencies in the region.

The HLZ will be located at the northern end of the site and is directly serviced by BSC's existing Basalt Court tank (RL 73.4 m AHD), via an encircled trunk system of DN450 and DN300 mains along North Creek Road, Henderson Lane and Montwood Drive. The HLZ will service approximately 167 residential allotments with elevated ground levels west and south of the proposed tank.

The LLZ water tank will be constructed on elevated ground levels to the north-east of the site (RL 48 m AHD), with upstream supply from the Basalt Court tank via an existing DN200 trunk main along Stoneyhurst Drive. The LLZ tank will service majority of the development and neighbouring properties to the north and south.

Note BSC's hydraulic model was not available for the project and the LLZ boundary has yet to be determined. For these reasons, the proposed storage volume of the tank (1.5 ML) could not be assessed with the information available. It is therefore recommended BSC confirm the LLZ boundary and tank storage volume prior to detailed design.

1.4 Recycled Water Supply Strategy

EPIQ Estate's recycled water network will be serviced from the south, via BSC's future proposed storage tank and DN250/200 trunk mains along Montwood Drive. The development's internal trunk infrastructure will be sized to provide adequate service to downstream customers, north of the site.

2 METHODOLOGY

2.1 Desired Standards of Service

The Design Standards of BSC's *New South Wales Development Design Specification, D11, Water Supply* (2009) were adopted for the project. Where assessment criteria was not available within BSC's Design Standards, the Water Services Association of Australia (WSAA) *Water Supply Code of Australia, WSA 03* (2011) was assumed. A summary of relevant provisions are presented in Table 1 below.

Table 11 Design operations duopted for the unarysis					
Provision	Specification				
Residential peak instantaneous potable demand	0.12 L/s/ET				
Residential peak instantaneous recycled demand	0.03 L/s/ET				
Minimum standard flow network pressure	20 m				
Maximum standard flow network pressure	78 m				
Maximum pipe velocity	3.0 m/s				
Maximum head loss	5 m head/km for <=DN150				
Maximum nead loss	3 m head/km >=DN200				
Minimum fire flow network pressure	12 m at peak demand				
Fire flow at hydrant	11 L/s				
Llazan Williams ning fristion og offisiont	<= 150 diameter, 100				
Hazen Williams pipe friction co-efficient	>150 <300 diameter, 110				

Table 1. Design	specifications	adopted f	or the analysis
-----------------	----------------	-----------	-----------------

2.2 Demand Assessment

A demand assessment of the development was undertaken to estimate peak flows attributed to the proposed land use type and density, for both potable and recycled water supply. This was calculated using BSC's adopted peak instantaneous unit rates for potable water (0.12 L/s/ET) and recycled water (0.03 L/s/ET), in conjunction with demand rates adopted from Water Directorate's *Section 64, Determinations of Equivalent Tenements Guidelines* (2009).

Refer below for a summary of the demand estimation for the EPIQ Estate, at ultimate development.

Site Land Use and Density	Demand Rate	ET	Potable Peak Flow (L/s)	Recycled Peak Flow (L/s)
503 + 51 x residential freehold lots	1 ET/Lot	554.0	66.5	16.6
25 x medium density dwellings (west of Hutley Dr)	1 ET/dwelling	25.0	3.0	0.8
Commercial precinct (5,500 m ² GFA)	0.6 ET/100m ²	33.0	4.0	1.0
Child care centre (90 children)	0.06 ET/child	5.4	0.7	0.2
5 x park/open space	1 ET/lot	5.0	0.6	0.2
Community Centre (23 flushing units)	1.1 ET/flushing unit	25.3	3.0	NA
Sports fields (4.4 Ha)	20 ET/Ha	88.0	NA	2.6
	TOTAL	735.7	77.8	21.4

Table 2. Demand estimation for the proposed development

Note: The 5 park allotments were allocated 1 ET to account for potential water usage from public toilets, taps, wash down etc.

2.3 Hydraulic Model Assessment

The methodology adopted for the hydraulic assessment is as follows.

- An InfoWater dual reticulation hydraulic model was developed for EPIQ Estate, based on the service supply strategies determined from previous consultant studies, refer Appendix 1. The pipe layouts were introduced to a base model as a background layer, and model node/hydrant elements drawn manually.
- 2. All pipes were initially allocated the minimum allowable size (DN100) and assigned the relevant Hazen Williams Roughness co-efficient.
- 3. The following data was subsequently introduced to the hydraulic model.
 - a. Potable water valve and tank arrangement for the proposed LLZ and HLZ systems
 - b. Potable water boundary conditions:
 - i. HLZ standard flow and fire flow, peak hour: 71.0 m head at both Henderson Lane (north-east) and Fieldcrest Drive (south-east), assuming Fieldcrest Drive will be directly serviced from the Basalt Court reservoir.
 - ii. LLZ standard flow and fire flow, peak hour: 50.0 m head, based on the Minimum Operating Level (MOL) of the proposed supply tank with a ground level of RL 48 m AHD.
 - c. Recycled water boundary conditions:
 - i. Standard flow, peak hour: 74.0 m head at Montwood Drive. The development's network was also required to meet downstream boundary conditions of 70.0 m head @ 10.6 L/s and 69.0 m head @ 21.5 L/s, for Henderson Lane and Hutley Drive respectively. This was to ensure adequate service is achieved for downstream connections.
- 4. A standard flow and fire flow hydraulic analysis was undertaken on the potable water reticulation layout, where pipe sizes were systematically increased and/or connections adjusted to achieve relevant Design Standards.
- 5. A standard flow hydraulic analysis was undertaken on the recycled water reticulation layout, where pipe sizes were systematically increased and/or connections adjusted to achieve relevant Design Standards. Note a fire flow analysis was not completed on the recycled water network, as BSC has allocated this service to the potable system only.
- 6. Modelling results were then verified and deliverables prepared.

3 RESULTS

3.1 Potable Water

As per the methodology described in Section 2.3 of this report, a standard flow and fire flow hydraulic analysis was undertaken on the proposed potable water service strategy. The analysis identified that the infrastructure presented in Table 3 and Appendix 2 achieved BSC's Design Standards. Refer to Appendices 2 through 7 for detailed modelling results.

Description	Location	Diameter (DN)	Length (m)
Potable water reticulation pipe	Throughout site	100	6,420
Potable water reticulation pipe	Throughout site	150	1,390
Potable water reticulation pipe	Montwood Dr and Stoneyhurst Dr	200	2,460
Potable water trunk pipe	Centre of the site	300	420
Potable water tank (1.5 ML)	Northern end of site	NA	NA

Table 3. Summary of potable water infras	tructure
--	----------

Note: Potable water tank volume to be confirmed by BSC

A summary of the hydraulic modelling results is as follows.

- The HLZ presented a standard flow and fire flow minimum pressure of 22.5 m and 19.6 m respectively, at node J112.
- The HLZ presented a standard flow maximum pressure of 55 m (node J168), at the eastern boundary of the site.
- The LLZ presented a standard flow and fire flow minimum pressure of 26.0 m and 19.5 m respectively, at node J64.
- The LLZ presented a standard flow maximum pressure of 46 m (node J198).

In summary, the service strategy provided adequate supply to the potable network receiving an average network pressure of 38 m. Due to varied elevations across the site, isolated areas received pressures marginally above and below 22 m and 70 m, respectively.

3.2 Recycled Water

As per the methodology described in Section 2.3 of this report, a standard flow hydraulic analysis was undertaken on the proposed recycled water service strategy. The analysis identified that the infrastructure presented in Table 4 and Appendix 4 achieved BSC's Design Standards. Refer to Appendices 4 through 7 for detailed modelling results.

Description	Location	Diameter (DN)	Length (m)
Recycled water reticulation pipe	Throughout site	100	7,800
Recycled water reticulation pipe	Southern end of site	150	50
Recycled water reticulation pipe	Throughout site	200	2,145
Recycled water trunk pipe	Montwood Dr	250	520

Table 4. Summary of recycled water infrastructure

A summary of the hydraulic modelling results is as follows.

- The network presented a standard flow minimum pressure of 22.5 m, at node J112.
- The network presented a standard flow maximum pressure of 69 m, at node J216.
- A pressure differential was unable to be maintained in favour of the potable system, to reduce the risk of potential cross-contamination.

Similarly to the potable water system, the service strategy provided adequate supply to the recycled water network receiving an average network pressure of 54 m. Due to varied elevations across the site, isolated areas received pressures marginally above and below 22 m and 70 m, respectively.

4 CONCLUSION

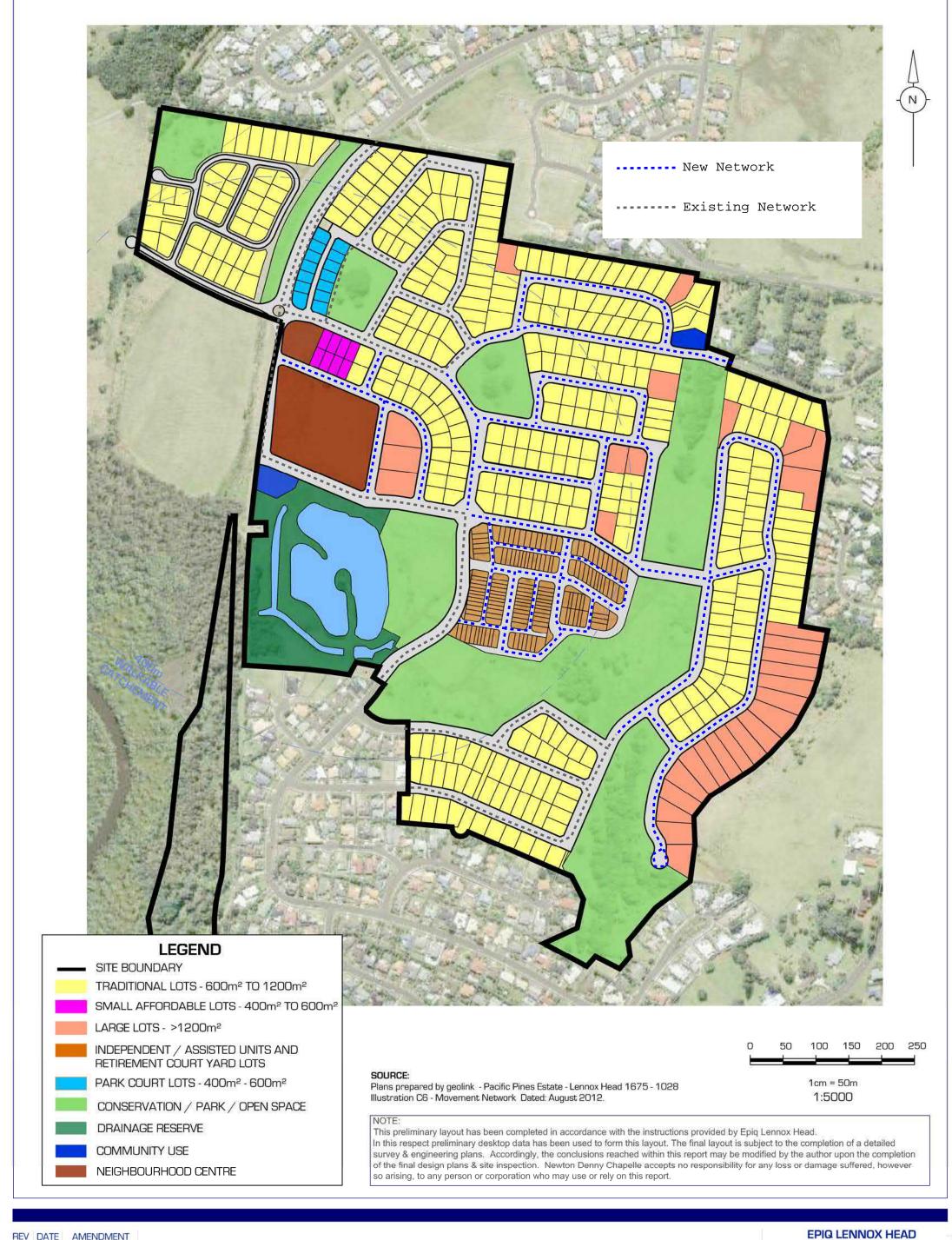
EPIQ Estate is a Master Planned urban development located in Lennox Head, NSW, approximately 30 km's south of Byron Bay. The development is scheduled for completion via a number of stages, with ultimate development projected within the next three - five years. The remaining development stages will consist of the following.

- 503 x residential freehold allotments
- 27 x medium density dwellings
- 4.4 x Ha community sporting field with community centre
- Child care centre
- 5,500 m² Gross Floor Area (GFA) of commercial and retail precinct
- Park, conservation area and open space throughout the site.

H2One Pty Ltd was engaged to confirm the proposed potable water and recycled water service strategy, in accordance with Ballina Shire Council's (BSC) adopted Design Standards; *New South Wales Development Design Specification, D11, Water Supply* (2009), to service EPIQ Estate at ultimate development.

The hydraulic analysis determined that the dual reticulation service strategy presented in Appendices 2 and 4 satisfies the minimum Design Standards and is therefore recommended for BSC approval. Detailed modelling results can be observed in Appendices 2 through 7.

5 REFERENCES


Water Directorate (2009) "Section 64, Determinations of Equivalent Tenements Guidelines" Ballina Shire Council (2009) "New South Wales Development Design Specification, D11, Water Supply"

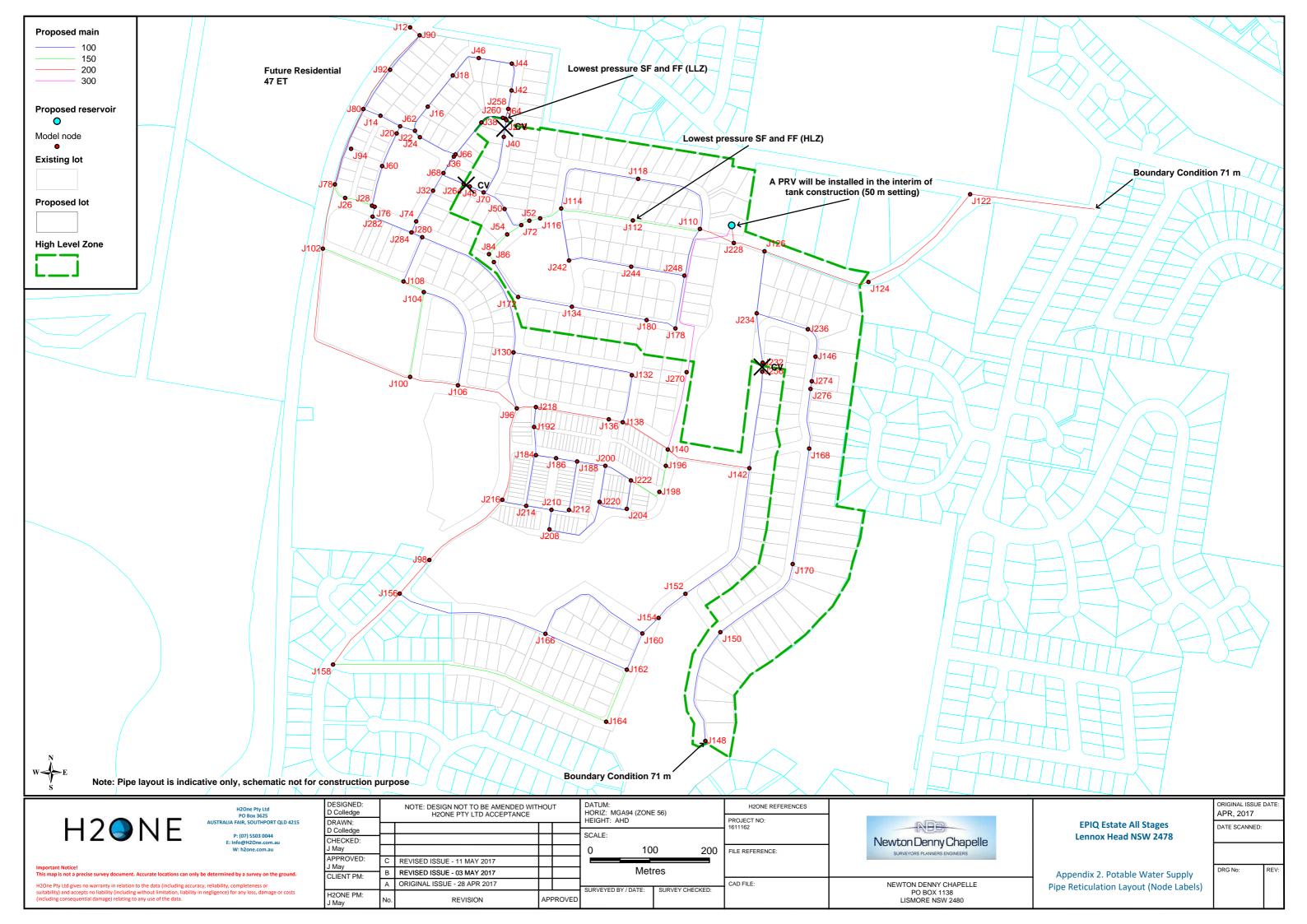
APPENDICES

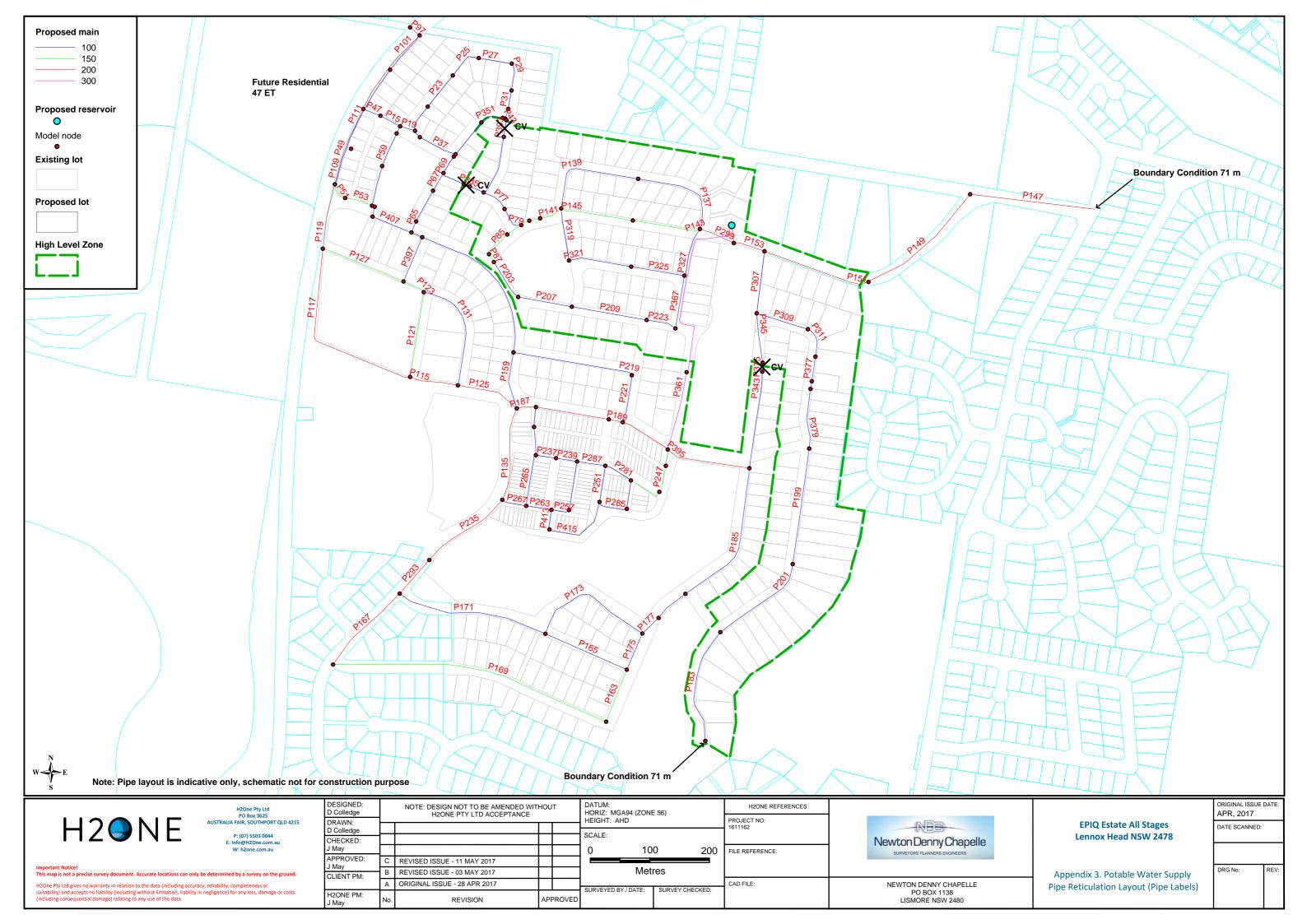
Appendix 1. EPIQ Estate Site Layout

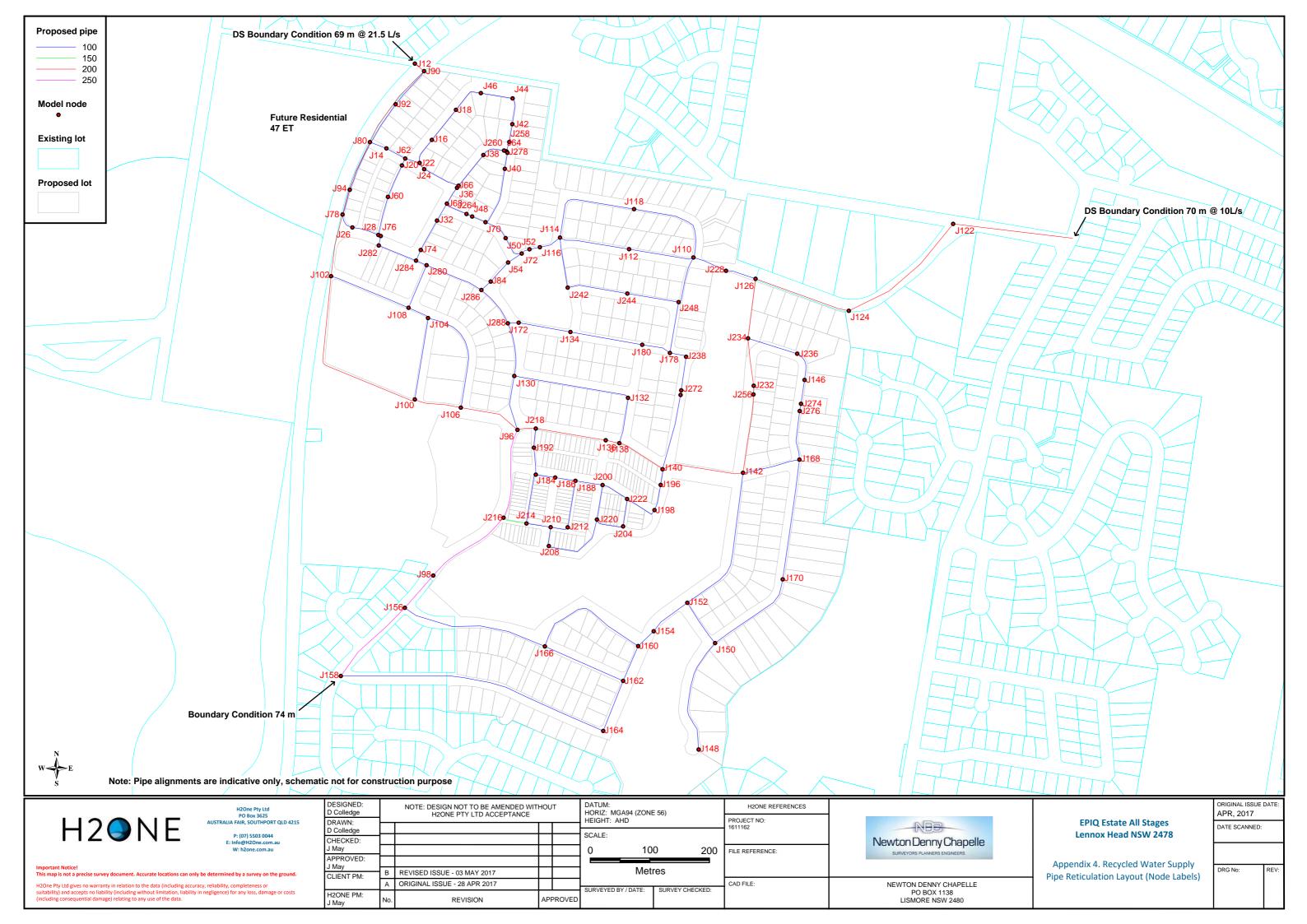
REV DATE AMENDMENT ABCDE

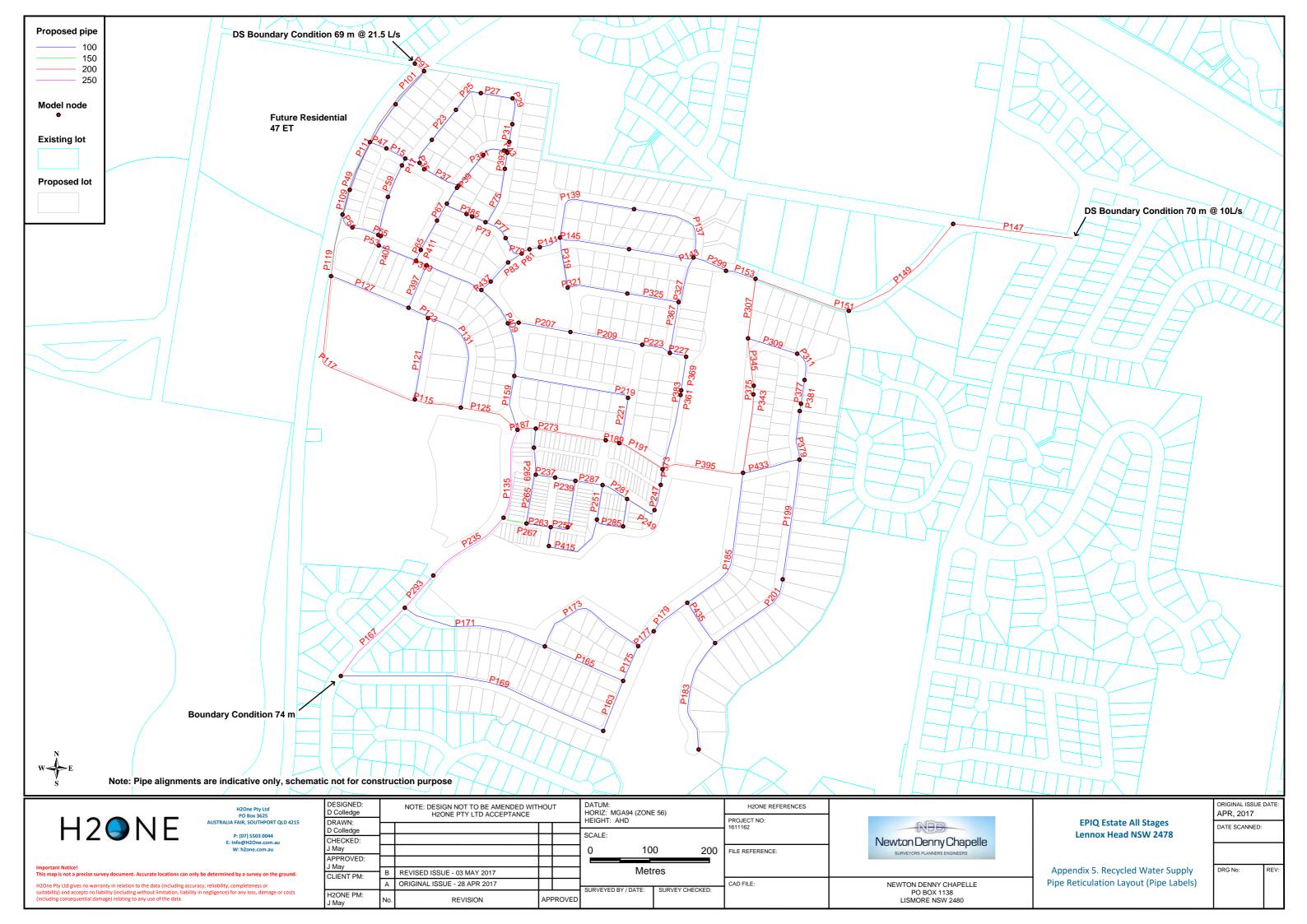
SOURCE PLAN: www.maps.six.nsw.gov.au - accessed 14.11.16

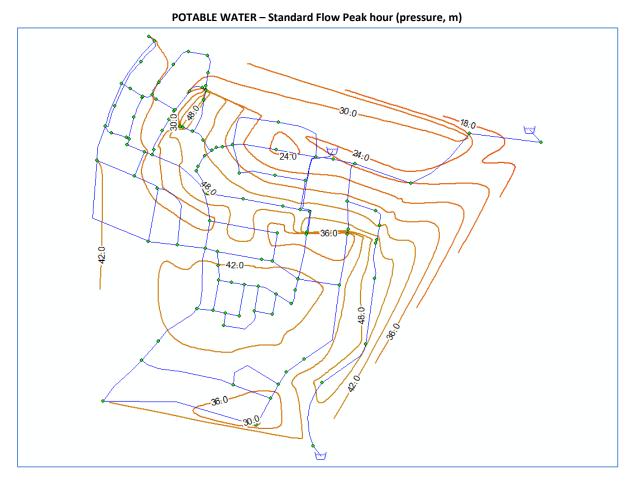
12 jobe 2014 14351 - clarence property masterfile: planning planning plans inde plans, cad files, geo link update, ges link plan setchag, c8- lut uppgraphies

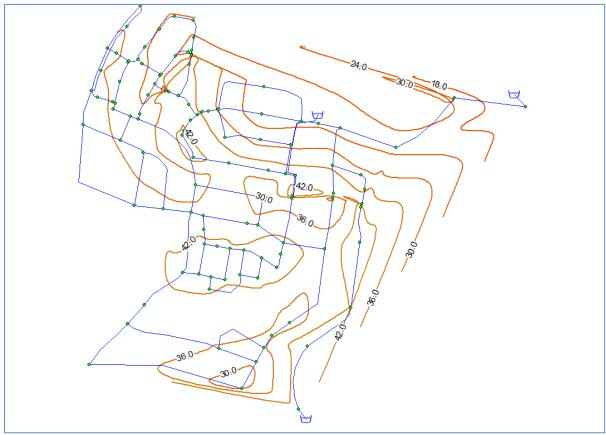



ILLUSTRATION


C8 - LOT TOPOGRAPHIES


REF: 14/351 DRAWN: bk


LENNOX HEAD NSW



Appendix 6. Screenshot of Hydraulic Modelling Results

POTABLE WATER - Fire Flow Peak hour (pressure, m)

RECYCLED WATER - Standard Flow Peak hour (pressure, m)

Appendix 7. Raw Modelling Results

	Pipes - Potable Water							
Pipe ID	Pipe DN (mm)	HW Co- efficient	Length (m)	SF PH Flow Rate (L/s)	SF PH Velocity (m/s)	SF PH Head loss (m/km)		
P101	200	110	144.5	0.5	0.02	0.0		
P103	100	100	71.4	0.5	0.07	0.1		
P109	100	100	64.8	1.2	0.15	0.6		
P111	100	100	141.2	0.3	0.04	0.0		
P115	200	110	79.4	18.3	0.58	2.7		
P117	200	110	320.5	10.2	0.33	0.9		
P119	200	110	95.3	7.0	0.22	0.5		
P121	150	110	146.5	5.7	0.32	1.3		
P123	150	110	72.3	5.6	0.32	1.2		
P125	200	110	75.9	23.0	0.73	4.2		
P127	150	110	109.9	2.2	0.13			
P131 P135	100 200	100 110	191.6 167.2	2.3 1.6	0.30 0.05	2.1		
P135 P137	100	110	167.2	2.2	0.05	1.8		
P137 P139	100	100	182.9	0.4	0.05	0.1		
P139 P141	150	110	28.7	3.3	0.19	0.5		
P141	150	110	109.0	6.9	0.39	1.8		
P145	150	110	118.4	5.1	0.29	1.1		
P145	200	110	194.4	16.8	0.54	2.3		
P149	200	110	211.0	16.8	0.54	2.3		
P15	100	100	39.6	1.7	0.22	1.2		
P151	200	110	160.1	16.8	0.54	2.3		
P153	200	110	60.2	12.4	0.39	1.3		
P159	100	100	74.2	0.1	0.02	0.0		
P163	150	110	82.8	0.3	0.02	0.0		
P165	100	100	107.9	0.2	0.02	0.1		
P167	200	110	151.3	1.9	0.06	0.0		
P169	150	110	422.9	1.9	0.10	0.2		
P17	100	100	4.4	1.0	0.13	0.5		
P171	100	100	259.6	0.7	0.10	0.2		
P173	100	100	173.1	0.6	0.08	0.1		
P175	100	100	42.6	1.4	0.18	0.8		
P177	100	100	39.6	3.5	0.45	4.5		
P179	100	100	59.2	3.5	0.45	4.5		
P183	100	100	182.6	3.0	0.38	3.3		
P185	100	100	239.7	4.3	0.54	6.4		
P187	200	110	33.8	24.5	0.78	4.7		
P189	200	110	28.7	30.4	0.97	7.0		
P19	100	100	28.2	2.8	0.35	2.8		
P191	200	110	85.0	36.1	1.15	9.6		
P199	100	100	180.0	1.2	0.16	0.6		
P201	100	100	160.8	2.1	0.26	1.7		
P203	100	100	68.0	1.4	0.17	0.8		
P207	100	100	98.1	1.2	0.16	0.6		
P209	100	100	108.6	0.5	0.06	0.1		
P21	100	100	39.8	2.1	0.26	1.7		
P219	100	100	186.3	3.1	0.39	3.4		
P221	100	100	77.0	4.4	0.56	6.7		
P223	100	100	48.2	0.5	0.06	0.1		
P227	100	100	28.1	0.0	0.00	0.0		
P23	100	100	61.9	1.1	0.14	0.5		
P235	200	110	138.4	2.6	0.08	0.1		
P237	100	100	35.6 35.7	1.7 1.7	0.21	1.1		
P239 P247	100 150	100 100	35.7	1.7	0.21 0.72	6.7		
P247 P249	150	100	48.8	12.8	0.65	5.5		
P249 P25	150	100	48.8 57.0	0.5	0.06	0.1		
P251	100	100	67.2	0.5	0.05	0.1		
P251 P257	100	100	39.1	0.4	0.03	0.1		
P259	100	100	86.6	1.8	0.08	1.3		
1233	100	100	50.0	1.0	0.27	1.5		

P263	100	100	33.8	1.1	0.13	0.4
P265	100	100	84.0	1.3	0.17	0.7
P267	100	100	44.5	1.1	0.14	0.5
P269	100	100	40.5	0.9	0.11	0.3
P27	100	100	51.7	0.1	0.02	0.0
P273	200	110	122.4	29.2	0.93	6.4
P275	100	100	38.1	23.2	0.33	1.8
P281	100	100	53.2	6.4	0.81	13.5
P283	100	100	55.5	5.0	0.64	8.6
P285	100	100	49.1	3.8	0.48	5.1
P287	100	100	37.6	4.8	0.61	7.8
P29	100	100	49.3	0.1	0.02	0.0
P293	200	110	69.3	2.6	0.08	0.1
P299	200	110	48.2	12.4	0.39	1.3
P307	100	100	108.2	3.7	0.47	4.8
P309	100	100	82.2	2.0	0.26	1.6
P31	100	100	35.2	0.7	0.09	0.2
P311	100	100	44.8	1.2	0.15	0.6
P319	100	100	79.8	0.6	0.07	0.2
P321	100	100	98.2	0.6	0.07	0.2
P325	100	100	83.4	1.1	0.15	0.6
P323 P327	100	100	74.2	3.3	0.13	4.1
P327 P343	100	100	140.4		0.43	0.3
				0.8		
P345	100	100	75.8	0.8	0.10	0.3
P35	100	100	16.2	0.7	0.09	0.2
P351	100	100	41.2	0.9	0.12	0.4
P361	300	120	122.3	57.2	0.81	2.6
P365	150	110	16.0	3.3	0.19	0.5
P367	100	100	79.8	2.2	0.28	1.9
P369	100	100	54.4	0.0	0.00	0.0
P37	100	100	57.7	0.2	0.03	0.0
P373	150	100	31.5	14.0	0.79	8.0
P375	100	100	13.9	0.0	0.00	0.0
P377	100	100	39.5	0.4	0.05	0.1
P379	100	100	95.0	0.4	0.05	0.1
P381	100	100	10.4	0.4	0.05	0.1
P383	100	100	7.4	0.0	0.00	0.0
P385	100	100	7.8	0.0	0.00	0.0
P387	100	100	11.6	0.0	0.00	0.0
P389	100	100	10.0	0.7	0.09	0.2
P39	100	100	3.9	1.4	0.18	0.9
P393	100	100	25.4	0.0	0.00	0.0
P395	200	110	112.3	5.8	0.18	0.3
P397	100	100	71.9	1.0	0.12	0.3
P399	100	100	22.1	0.3	0.04	0.0
P401	300	120	295.3	57.2	0.81	2.6
P405	100	100	17.3	1.3	0.16	0.6
P407	100	100	51.5	1.3	0.16	0.6
P409	100	100	257.3	2.9	0.37	3.2
P41	100	100	63.6	1.7	0.21	1.1
P411	100	100	15.4	2.6	0.32	2.4
P413	100	100	33.4	1.7	0.21	1.1
P415	100	100	117.6	2.9	0.37	3.2
P43	100	100	1.2	0.0	0.00	0.0
P43	100	100	27.2		0.22	
				1.7		1.2
P49	200	110	124.8	5.3	0.17	0.3
P51	150	100	25.8	0.6	0.03	0.0
P53	150	110	43.9	0.6	0.03	0.0
P55	150	110	8.5	0.6	0.03	0.0
P57	100	100	61.5	1.9	0.24	1.4
P59	100	100	56.2	1.0	0.13	0.5
P65	100	100	57.6	2.6	0.34	2.6
P67	100	100	34.2	2.2	0.28	1.8
P69	100	100	27.3	1.4	0.18	0.9
P71	100	100	35.5	0.0	0.00	0.0
	100	100	27.5	0.4	0.05	0.1
P/3						
P73 P75	100	100	93.8	0.8	0.11	0.3

P77	100	100	39.4	1.4	0.18	0.9
P79	100	100	39.1	1.9	0.24	1.5
P81	150	110	14.3	3.3	0.19	0.5
P83	150	110	24.5	1.4	0.08	0.1
P85	150	110	34.4	1.4	0.08	0.1
P87	150	110	14.1	1.4	0.08	0.1
P97	200	110	19.1	0.0	0.00	0.0

Note 1: "SF" is "standard flow", "PH" is "peak hour" and "HW" is "Hazen-Williams"

Note 2: A small number of pipes presented minimum head loss (m/km) failures while remaining well below the 3 m/s maximum flow velocity standard. Further investigation revealed that upsizing these pipes didn't significantly improve system pressures as the pipe lengths were too low to have a meaningful impact on head loss. As a result, the head loss (m/km) "failures" were disregarded.

Pipe ID	Pipe DN (mm)	HW Co- efficient	Length (m)	SF PH Flow Rate (L/s)	SF PH Velocity (m/s)	SF PH Head loss (m/km)
P101	200	110	144.5	19.3	0.6	3.0
P103	100	100	71.4	2.4	0.3	2.2
P109	100	100	64.8	2.7	0.3	2.6
P111	100	100	141.2	2.7	0.3	2.6
P115	200	110	79.4	21.2	0.7	3.6
P117	200	110	320.5	18.4	0.6	2.7
P119	200	110	95.3	17.2	0.5	2.4
P121	100	100	146.5	2.2	0.3	1.8
P123	100	100	72.3	4.3	0.6	6.6
P125	200	110	75.9	24.5	0.8	4.7
P127	100	110	100.0	2.0	0.3	1.4
P131	100	100	191.6	2.8	0.4	2.9
P135	250	110	167.2	39.1	0.4	3.7
P137	100	100	168.7	1.1	0.0	0.5
P139	100	100	182.9	0.6	0.1	0.2
P139 P141	100	100	28.7	2.0	0.3	1.6
P141 P143	100	100	109.0	1.3	0.3	0.7
P143 P145	100	100	118.4	0.9	0.2	0.3
P145 P147	200	110	118.4	0.9		0.0
					0.0	-
P149	200	110	211.0	10.6	0.3	1.0
P15	100	100	39.6	3.4	0.4	4.1
P151	200	110	160.1	10.6	0.3	1.0
P153	100	100	60.2	1.5	0.2	1.0
P159	100	100	74.2	3.5	0.4	4.5
P163	100	100	82.8	2.8	0.4	2.8
P165	100	100	107.9	0.9	0.1	0.3
P167	250	110	151.3	50.3	1.0	6.0
P169	100	100	422.9	3.1	0.4	3.6
P17	100	100	4.4	0.9	0.1	0.4
P171	100	100	259.6	3.0	0.4	3.2
P173	100	100	173.1	1.7	0.2	1.1
P175	100	100	42.6	3.3	0.4	3.9
P177	100	100	39.6	4.6	0.6	7.2
P179	100	100	59.2	4.6	0.6	7.2
P183	100	100	182.6	0.2	0.0	0.0
P185	100	100	239.7	2.1	0.3	1.7
P187	200	110	33.8	11.0	0.4	1.1
P189	200	110	28.7	12.3	0.4	1.3
P19	100	100	28.2	2.5	0.3	2.2
P191	200	110	85.0	10.8	0.3	1.0
P199	100	100	180.0	1.6	0.2	0.7
P201	100	100	160.8	1.8	0.2	1.0
P203	100	100	66.6	3.8	0.5	5.1
P207	100	100	98.1	0.5	0.1	0.1
P209	100	100	108.6	0.1	0.0	0.0
P21	100	100	39.8	0.5	0.1	0.1
P219	100	100	186.3	0.8	0.1	0.3
P221	100	100	77.0	1.2	0.1	0.5

Pipes - Recycled Water

	1		1	1	1	1
P223	100	100	48.2	0.1	0.0	0.0
P227	100	100	28.1	2.5	0.3	2.4
P23	100	100	61.9	0.8	0.1	0.2
P235	250	110	138.4	47.3	1.0	5.3
P237	100	100	35.6	0.7	0.1	0.2
P239	100	100	35.7	0.7	0.1	0.2
P247	100	100	39.8	2.6	0.3	2.5
P249	100	100	48.8	2.9	0.4	3.1
P25	100	100	57.0	0.9	0.1	0.3
P251	100	100	67.2	0.1	0.0	0.0
P257	100	100	39.1	1.9	0.2	1.5
P259	100	100	86.6	1.6	0.2	1.1
P263	100	100	33.8	4.4	0.6	6.7
P265	100	100	84.0	3.5	0.4	4.4
P267	150	100	44.5	8.2	0.5	3.0
P269	100	100	40.5	2.5	0.3	2.3
P27	100	100	51.7	1.0	0.1	0.4
P273	200	110	122.4	12.6	0.4	1.4
P275	100	100	38.1	2.2	0.3	1.8
P281	100	100	53.2	1.8	0.2	1.3
P283	100	100	55.5	1.1	0.1	0.5
P285	100	100	49.1	1.4	0.2	0.8
P287	100	100	37.6	2.0	0.3	1.6
P29	100	100	49.3	1.1	0.1	0.5
P293	250	110	69.3	47.3	1.0	5.3
P299	100	100	48.2	1.5	0.2	1.0
P307	200	100	108.2	12.3	0.4	1.6
P309	100	100	82.2	1.4	0.2	0.7
P31	100	100	35.2	1.2	0.2	0.6
P311	100	100	44.8	1.6	0.2	0.9
P319	100	100	79.8	0.9	0.1	0.4
P321	100	100	98.2	0.9	0.1	0.4
P325	100	100	83.4	1.4	0.2	0.8
P327	100	100	74.2	0.8	0.1	0.3
P343	200	100	140.4	11.5	0.4	1.4
P345	200	100	75.8	11.1	0.4	1.3
P35	100	100	16.2	1.9	0.2	1.5
P351	100	100	41.2	0.3	0.0	0.1
P361	100	100	122.3	2.5	0.3	2.4
P365	100	100	16.0	2.0	0.3	1.6
P367	100	100	79.8	2.2	0.3	1.9
P369	100	100	54.4	2.5	0.3	2.4
P37	100	100	57.7	2.1	0.3	1.7
P373	100	100	31.5	2.3	0.3	1.9
P375	200	100	13.9	11.3	0.4	1.3
P377	100	100	39.5	1.8	0.2	1.2
P379	100	100	95.0	2.0	0.3	1.5
P381	100	100	10.4	1.8	0.2	1.2
P383	100	100	7.4	2.5	0.3	2.4
P385	100	100	7.8	1.2	0.2	0.6
P387	100	100	11.6	1.2	0.2	0.6
P389	100	100	10.0	0.4	0.1	0.1
P39	100	100	3.9	2.0	0.3	1.5
P393	100	100	25.4	1.8	0.2	0.9
P395	200	110	112.3	10.2	0.3	0.9
P397	100	100	71.9	1.7	0.2	1.1
P399	100	100	22.1	1.3	0.2	0.7
P405	100	100	17.3	3.0	0.4	3.3
P407	100	100	51.5	3.0	0.4	3.3
P409	100	100	117.9	2.5	0.3	2.4
P41	100	100	63.6	0.1	0.0	0.2
P411	100	100	15.4	1.2	0.1	0.6
P413	100	100	33.4	2.1	0.3	1.8
P415	100	100	117.6	1.8	0.2	1.3
P429	100	100	7.2	0.6	0.1	0.1
P43	100	100	1.2	1.8	0.2	0.9
P431	100	100	74.1	4.4	0.6	6.6

P433	100	100	98.3	0.6	0.1	0.1
P435	100	100	80.3	2.3	0.3	1.7
P437	100	100	32.1	1.2	0.2	0.5
P47	100	100	27.2	3.4	0.4	4.1
P49	200	110	124.8	15.9	0.5	2.1
P51	100	100	25.8	1.3	0.2	0.7
P53	100	100	43.9	1.3	0.2	0.7
P55	100	100	8.5	1.3	0.2	0.7
P57	100	100	61.5	0.9	0.1	0.4
P59	100	100	56.2	0.9	0.1	0.4
P65	100	100	57.6	1.2	0.1	0.6
P67	100	100	34.2	1.0	0.1	0.4
P69	100	100	27.3	2.2	0.3	1.8
P71	100	100	35.5	1.2	0.2	0.6
P73	100	100	27.5	1.2	0.2	0.6
P75	100	100	93.8	1.8	0.2	0.9
P77	100	100	39.4	3.0	0.4	3.1
P79	100	100	39.1	3.0	0.4	3.1
P81	100	100	14.3	1.8	0.2	1.3
P83	100	100	24.5	1.2	0.2	0.5
P85	100	100	34.4	1.2	0.2	0.5
P97	200	110	19.1	21.5	0.7	3.7

Note: A small number of pipes presented minimum head loss (m/km) failures while remaining well below the 3 m/s maximum flow velocity standard. Further investigation revealed that upsizing these pipes didn't significantly improve system pressures as the pipe lengths were too low to have a meaningful impact on head loss. As a result, the head loss (m/km) "failures" were disregarded

Nodes - Potable Water

Node ID	Demand (ET)	RL AHD (m)	SF PH Demand (L/s)	SF PH Pressure (m)	Fire Flow (L/s)	FF PH Pressure (m)
J100	20.0	5.0	2.40	40.9	11	38.8
J102	45.3	4.0	5.44	41.6	11	39.1
J104	20.0	12.0	2.40	33.7	11	31.3
J106	20.0	7.0	2.40	39.1	11	37.3
J108	20.0	9.0	2.40	36.6	11	34.2
J110	0.0	46.0	0.00	24.5	11	22.5
J112	14.3	48.0	1.72	22.3	11	19.6
J114	14.3	38.0	1.72	32.2	11	29.2
J116	0.0	33.0	0.00	37.2	11	34.1
J118	14.3	46.0	1.72	24.2	11	19.7
J12	0.0	10.0	0.00	35.5	11	32.6
J122	0.0	40.0	0.00	31.5	11	31.0
J124	0.0	48.0	0.00	23.1	11	22.0
J126	6.8	48.0	0.82	22.7	11	21.3
J130	0.0	13.0	0.00	33.5	11	31.0
J132	11.0	16.0	1.32	31.3	11	28.7
J134	14.3	25.0	1.72	45.1	11	39.2
J136	10.3	7.0	1.24	40.6	11	39.7
J138	11.0	7.0	1.32	40.9	11	40.0
J14	0.0	6.0	0.00	39.5	11	36.3
J140	10.3	5.0	1.24	43.9	11	43.5
J142	6.3	9.0	0.76	39.9	11	39.3
J146	6.8	29.0	0.82	41.0	11	34.0
J148	6.8	26.0	0.82	45.0	11	45.0
J150	7.8	20.0	0.94	50.4	11	47.4
J152	6.3	11.0	0.76	36.0	11	32.4
J154	0.0	8.0	0.00	38.6	11	35.2
J156	0.0	5.0	0.00	41.4	11	39.5
J158	0.0	5.0	0.00	41.4	11	39.4
J16	8.0	10.0	0.96	35.3	11	30.1
J160	12.6	8.0	1.51	38.4	11	35.3
J162	12.8	14.0	1.54	32.4	11	29.4
J164	12.8	18.0	1.54	28.4	11	25.5

J166	12.8	8.0	1.54	38.4	11	35.0
J168	6.8	16.0	0.82	54.0	11	46.4
J170	6.8	21.0	0.82	49.1	11	42.2
J170	0.0		0.00	49.1	11	44.3
		21.0				
J178	14.3	26.0	1.72	44.1	11	38.9
J18	5.0	10.0	0.60	35.3	11	29.1
J180	0.0	25.0	0.00	45.1	11	39.5
J184	10.3	2.0	1.24	44.4	11	42.0
J186	0.0	2.0	0.00	44.3	11	41.7
J188	10.3	3.0	1.24	43.3	11	40.6
J192	10.3	5.0	1.24	41.4	11	39.2
J196	10.3	3.0	1.24	45.1	11	43.2
J198	11.3	2.0	1.36	45.3	11	42.5
J20	0.0	8.0	0.00	37.5	11	33.9
J200	10.3	3.0	1.24	43.4	11	40.7
J204	10.3	2.0	1.24	44.4	11	41.1
J208	10.3	2.0	1.24	44.3	11	41.1
J210	10.3	2.0	1.24	44.3	11	41.5
J212	10.3	2.0	1.24	44.3	11	41.1
J214	10.3	2.0	1.24	44.3	11	42.0
J216	1.0	2.0	0.12	44.4	11	42.7
J218	21.3	6.0	2.56	40.6	11	39.2
J210	0.0	10.0	0.00	35.4	11	31.3
J220	10.3	2.0	1.24	44.4	11	41.3
J222	0.0	2.0	0.00	44.6	11	41.9
J228	0.0	46.0	0.00	24.6	11	23.0
J232	6.8	20.0	0.82	50.1	11	41.9
J234	6.8	32.0	0.82	38.2	11	35.0
J236	6.8	32.0	0.82	38.0	11	31.6
J238	0.0	24.0	0.00	46.1	11	39.8
J24	4.0	10.0	0.48	35.4	11	31.1
J242	0.0	32.0	0.00	38.2	11	34.0
J244	14.3	38.0	1.72	32.2	11	27.6
J248	0.0	38.0	0.00	32.2	11	28.6
J256	6.3	18.0	0.76	30.8	11	29.3
J258	0.0	18.0	0.00	27.3	11	20.8
J26	0.0	6.0	0.00	39.6	11	36.9
J260	2.0	18.0	0.24	27.3	11	21.0
J264	0.0	18.0	0.00	27.4	11	21.8
J270	0.0	16.0	0.00	33.2	11	32.9
J272	0.0	17.0	0.00	53.1	11	
J274			0.00	33.1	11	44.8
J276	0.0					
	0.0	20.0	0.00	50.0	11	42.7
1270	6.8	20.0 18.0	0.00 0.82	50.0 52.0	11 11	42.7 44.6
J278	6.8 0.0	20.0 18.0 20.0	0.00 0.82 0.00	50.0 52.0 50.1	11 11 11	42.7 44.6 38.2
J28	6.8 0.0 0.0	20.0 18.0 20.0 8.0	0.00 0.82 0.00 0.00	50.0 52.0 50.1 37.6	11 11 11 11 11	42.7 44.6 38.2 34.8
J28 J280	6.8 0.0 0.0 0.0	20.0 18.0 20.0 8.0 9.0	0.00 0.82 0.00 0.00 0.00	50.0 52.0 50.1 37.6 36.6	11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8
J28	6.8 0.0 0.0	20.0 18.0 20.0 8.0	0.00 0.82 0.00 0.00	50.0 52.0 50.1 37.6	11 11 11 11 11	42.7 44.6 38.2 34.8
J28 J280	6.8 0.0 0.0 0.0	20.0 18.0 20.0 8.0 9.0	0.00 0.82 0.00 0.00 0.00	50.0 52.0 50.1 37.6 36.6	11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8
J28 J280 J282 J284	6.8 0.0 0.0 0.0 0.0 0.0 0.1	20.0 18.0 20.0 8.0 9.0 8.0 12.0	0.00 0.82 0.00 0.00 0.00 0.00 0.12	50.0 52.0 50.1 37.6 36.6 37.6 33.6	11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6
J28 J280 J282 J284 J32	6.8 0.0 0.0 0.0 0.0 0.1 4.0	20.0 18.0 20.0 8.0 9.0 8.0 12.0 14.0	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5	11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4
J28 J280 J282 J284 J32 J36	6.8 0.0 0.0 0.0 0.1 4.0 0.0	20.0 18.0 20.0 8.0 9.0 8.0 12.0 14.0 15.0	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4	11 11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0
J28 J280 J282 J284 J32 J36 J38	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0	20.0 18.0 20.0 8.0 9.0 8.0 12.0 14.0 15.0 16.0	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48 0.00 0.72	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3	11 11 11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5
J28 J280 J282 J284 J32 J36 J38 J40	6.8 0.0 0.0 0.0 0.1 4.0 0.0 7.0	20.0 18.0 20.0 8.0 9.0 8.0 12.0 14.0 15.0 16.0 22.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1	11 11 11 11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2
J28 J280 J282 J284 J32 J36 J38 J40 J42	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0	20.0 18.0 20.0 8.0 9.0 8.0 12.0 14.0 15.0 16.0 22.0 16.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3	11 11 11 11 11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6
J28 J280 J282 J284 J32 J36 J38 J40	6.8 0.0 0.0 0.0 0.1 4.0 0.0 7.0	20.0 18.0 20.0 8.0 9.0 8.0 12.0 14.0 15.0 16.0 22.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1	11 11 11 11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2
J28 J280 J282 J284 J32 J36 J38 J40 J42	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0	20.0 18.0 20.0 8.0 9.0 8.0 12.0 14.0 15.0 16.0 22.0 16.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3	11 11 11 11 11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 0.0 3.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84 0.84 0.00 0.36	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3	11 11 11 11 11 11 11 11 11 11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J44 J46 J48	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 0.0 3.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84 0.84 0.00 0.36 0.36	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J50	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 3.0 3.0 4.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84 0.84 0.84 0.00 0.36 0.36 0.48	$\begin{array}{r} 50.0\\ 52.0\\ 50.1\\ 37.6\\ 36.6\\ 37.6\\ 33.6\\ 31.5\\ 30.4\\ 29.3\\ 48.1\\ 29.3\\ 48.1\\ 29.3\\ 34.3\\ 35.3\\ 50.1\\ 42.1\\ \end{array}$	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J48 J50 J52	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 3.0 3.0 4.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84 0.84 0.00 0.36 0.36 0.48 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J50 J52 J54	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 3.0 3.0 4.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0 28.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84 0.84 0.84 0.00 0.36 0.36 0.48 0.00 0.36 0.48 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2 42.2	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J48 J50 J52	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 3.0 3.0 4.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84 0.84 0.00 0.36 0.36 0.48 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J44 J46 J48 J50 J52 J54	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 3.0 3.0 4.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0 28.0	0.00 0.82 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.84 0.84 0.84 0.00 0.36 0.36 0.48 0.00 0.36 0.48 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2 42.2	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J44 J46 J48 J50 J52 J54 J60 J62	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 0.0 3.0 3.0 4.0 0.0 3.0 3.0 7.0 0.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0 28.0 8.0 8.0	0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.00 0.36 0.36 0.48 0.00 0.84 0.00 0.36 0.48 0.00 0.84 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2 42.2 37.5	11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8 33.9 34.0
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J48 J50 J52 J54 J54 J60 J62 J64	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 0.0 3.0 3.0 4.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0 28.0 8.0 8.0 20.0	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.00 0.36 0.36 0.48 0.00 0.36 0.48 0.00 0.36 0.48 0.00 0.00 0.84 0.00 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2 42.2 37.5 25.3	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8 33.9 34.0 18.9
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J46 J48 J50 J52 J54 J50 J52 J54 J60 J62 J64 J66	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 0.0 3.0 3.0 4.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0 28.0 8.0 8.0 20.0 15.0 15.0 16.0 11.0 10.0	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.00 0.36 0.36 0.48 0.00 0.36 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2 42.2 37.5 25.3 30.4	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8 33.9 34.0 18.9 26.0
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J44 J46 J48 J50 J52 J54 J50 J52 J54 J60 J62 J64 J66 J68	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 0.0 3.0 3.0 4.0 0.0 3.0 3.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 20.0 28.0 32.0 28.0 32.0 28.0 8.0 20.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 10.	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.00 0.36 0.36 0.48 0.00 0.36 0.36 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2 42.2 37.5 25.3 30.4 30.4	11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8 33.9 34.0 18.9 26.0 26.1
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J46 J48 J50 J52 J54 J50 J52 J54 J60 J62 J64 J66 J68 J70	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 0.0 3.0 3.0 4.0 0.0 3.0 3.0 0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 10.0 20.0 28.0 32.0 28.0 8.0 8.0 20.0 15.0 15.0 15.0 24.0	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.00 0.36 0.36 0.48 0.00 0.36 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24	$\begin{array}{r} 50.0\\ 52.0\\ 50.1\\ 37.6\\ 36.6\\ 37.6\\ 33.6\\ 31.5\\ 30.4\\ 29.3\\ 48.1\\ 29.3\\ 48.1\\ 29.3\\ 34.3\\ 35.3\\ 50.1\\ 42.1\\ 38.2\\ 42.2\\ 37.5\\ 37.5\\ 37.5\\ 25.3\\ 30.4\\ 30.4\\ 30.4\\ 46.1\\ \end{array}$	11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8 33.9 34.0 18.9 26.0 26.1 39.1
J28 J280 J282 J284 J32 J36 J38 J40 J42 J44 J46 J48 J46 J48 J50 J52 J54 J50 J52 J54 J60 J62 J64 J66 J68	6.8 0.0 0.0 0.0 0.0 0.1 4.0 0.0 6.0 7.0 7.0 0.0 3.0 3.0 4.0 0.0 3.0 3.0 0.0	20.0 18.0 20.0 8.0 9.0 12.0 14.0 15.0 16.0 22.0 16.0 11.0 20.0 28.0 32.0 28.0 32.0 28.0 8.0 20.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 10.	0.00 0.82 0.00 0.00 0.00 0.00 0.12 0.48 0.00 0.72 0.84 0.00 0.36 0.36 0.48 0.00 0.36 0.36 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	50.0 52.0 50.1 37.6 36.6 37.6 33.6 31.5 30.4 29.3 48.1 29.3 34.3 35.3 50.1 42.1 38.2 42.2 37.5 25.3 30.4 30.4	11 11 11 11	42.7 44.6 38.2 34.8 33.8 34.6 30.6 27.4 26.0 23.5 37.2 22.6 27.5 28.6 42.1 37.0 35.0 38.8 33.9 34.0 18.9 26.0 26.1

J76	0.0	8.0	0.00	37.6	11	34.8
J78	0.0	6.0	0.00	39.6	11	37.0
J80	25.0	6.0	3.00	39.5	11	36.8
J84	0.0	24.0	0.00	46.2	11	42.7
J86	0.0	23.0	0.00	47.2	11	43.7
J90	0.0	10.0	0.00	35.5	11	32.6
J92	7.0	6.0	0.84	39.5	11	35.5
J94	7.0	6.0	0.84	39.5	11	35.6
J96	0.0	7.0	0.00	39.5	11	37.9
J98	0.0	5.0	0.00	41.4	11	39.6

Nodes - Recycled Water

Node ID	Demand (ET)	RL AHD (m)	SF PH Demand (L/s)	SF PH Pressure (m)	Fire Flow (L/s)	FF PH Pressure (m)
J100	20.0	5.0	0.60	65.7	N/A	N/A
J102	108.0	4.0	3.24	65.8	N/A	N/A
J104	20.0	12.0	0.60	58.4	N/A	N/A
J106	20.0	7.0	0.60	64.0	N/A	N/A
J108	20.0	9.0	0.60	60.9	N/A	N/A
J110	0.0	46.0	0.00	24.3	N/A	N/A
J112	14.3	48.0	0.43	22.2	N/A	N/A
J114	14.3	38.0	0.43	32.2	N/A	N/A
J116	0.0	33.0	0.00	37.1	N/A	N/A
J118	14.3	46.0	0.43	24.2	N/A	N/A
J12	716.7	10.0	21.50	58.8	N/A	N/A
J122	353.3	40.0	10.60	30.0	N/A	N/A
J124	0.0	48.0	0.00	22.2	N/A	N/A
J126	6.7	48.0	0.20	22.4	N/A	N/A
J130	0.0	13.0	0.00	58.0	N/A	N/A
J130	11.0	16.0	0.33	55.0	N/A	N/A
J132	14.3	25.0	0.43	45.5	N/A	N/A
J134 J136	10.3	7.0	0.31	64.1	N/A N/A	N/A
J130	11.0	7.0	0.33	64.0	N/A	N/A
J138 J14	0.0	6.0	0.00	63.4	N/A	N/A
J140	10.3	5.0	0.31	66.0	N/A	N/A
J140 J142	6.3	9.0	0.19	61.9	N/A N/A	N/A
J142 J146	6.7	29.0	0.19	41.6	N/A N/A	N/A
J146 J148	6.7		0.20	41.6		-
	7.7	26.0			N/A	N/A
J150 J152	6.3	20.0	0.23	51.1 60.3	N/A N/A	N/A N/A
J152 J154	0.0	11.0	0.19	63.7	N/A N/A	N/A N/A
		8.0			· · · · · · · · · · · · · · · · · · ·	
J156	0.0	5.0	0.00	68.1	N/A	N/A
J158	0.0	5.0	0.00	69.0	N/A	N/A
J16	8.0	10.0	0.24	59.6	N/A	N/A
J160	12.7	8.0	0.38	64.0	N/A	N/A
J162	12.7	14.0	0.38	58.2	N/A	N/A
J164	12.7	18.0	0.38	54.4	N/A	N/A
J166	12.7	8.0	0.38	64.2	N/A	N/A
J168	6.7	16.0	0.20	54.8	N/A	N/A
J170	6.7	21.0	0.20	50.0	N/A	N/A
J172	1.0	21.0	0.03	49.5	N/A	N/A
J178	14.3	26.0	0.43	44.5	N/A	N/A
J18	5.0	10.0	0.15	59.6	N/A	N/A
J180	0.0	25.0	0.00	45.5	N/A	N/A
J184	10.3	2.0	0.31	69.3	N/A	N/A
J186	0.0	2.0	0.00	69.3	N/A	N/A
J188	10.3	3.0	0.31	68.2	N/A	N/A
J192	10.3	5.0	0.31	66.3	N/A	N/A
J196	10.3	3.0	0.31	68.0	N/A	N/A
J198	11.3	2.0	0.34	69.0	N/A	N/A
J20	0.0	8.0	0.00	61.6	N/A	N/A
J200	10.3	3.0	0.31	68.2	N/A	N/A
J204	10.3	2.0	0.31	69.2	N/A	N/A
J208	10.3	2.0	0.31	69.3	N/A	N/A
J210	10.3	2.0	0.31	69.3	N/A	N/A

J212	10.3	2.0	0.31	69.3	N/A	N/A
J214	10.3	2.0	0.31	69.5	N/A	N/A
J216	1.0	2.0	0.03	70.0	N/A	N/A
J218	21.3	6.0	0.64	65.3	N/A	N/A
J22	0.0	10.0	0.00	59.6	N/A	N/A
J220	10.3	2.0	0.31	69.2	N/A	N/A
J222	0.0	2.0	0.00	69.1	N/A	N/A
J228	0.0	46.0	0.00	24.3	N/A	N/A
J232	6.7	20.0	0.20	50.6	N/A	N/A
J234	6.7	32.0	0.20	38.5	N/A	N/A
J236	6.7	32.0	0.20	38.6	N/A	N/A
J238	0.0	24.0	0.00	46.5	N/A	N/A
J24	4.0	10.0	0.12	59.6	N/A	N/A
J242	0.0	32.0	0.00	38.2	N/A	N/A
J244	14.3	38.0	0.43	32.2	N/A	N/A
J248	0.0	38.0	0.00	32.3	N/A	N/A
J256	6.3	18.0	0.19	52.7	N/A	N/A
J258	0.0	18.0	0.00	51.7	N/A	N/A
J26	0.0	6.0	0.00	63.6	N/A	N/A
J260	2.0	18.0	0.06	51.7	N/A	N/A
J264	0.0	18.0	0.00	51.8	N/A	N/A
J270	0.0	16.0	0.00	54.7	N/A	N/A
J272	0.0	17.0	0.00	53.6	N/A	N/A
J274	0.0	20.0	0.00	50.7	N/A	N/A
J276	6.7	18.0	0.20	52.7	N/A	N/A
J278	0.0	20.0	0.00	49.7	N/A	N/A
J28	0.0	8.0	0.00	61.6	N/A	N/A
J280	0.0	9.0	0.00	60.8	N/A	N/A
J282	0.0	8.0	0.00	61.7	N/A	N/A
J284	0.0	12.0	0.00	57.9	N/A	N/A
J286	4.0	22.0	0.12	48.1	N/A	N/A
J288	0.0	20.0	0.00	50.5	N/A	N/A
J32	6.0	14.0	0.18	55.8	N/A	N/A
J36	7.0	15.0	0.21	54.7	N/A	N/A
J38	7.0	16.0	0.21	53.7	N/A	N/A
J40	0.0	22.0	0.00	47.8	N/A	N/A
J42	3.0	16.0	0.09	53.7	N/A	N/A
J44	3.0	11.0	0.09	58.7	N/A	N/A
J46	4.0	10.0	0.12	59.7	N/A	N/A
J48	0.0	20.0	0.00	49.8	N/A	N/A
J50	0.0	28.0	0.00	42.0	N/A	N/A
J52 J54	7.0 0.0	32.0 28.0	0.21 0.00	38.1 42.1	N/A N/A	N/A N/A
J60 J62	0.0	8.0 8.0	0.00	61.6 61.6	N/A N/A	N/A N/A
J64 J66	6.0 2.0	20.0 15.0	0.18 0.06	49.7 54.7	N/A N/A	N/A N/A
	0.0	15.0	0.00	54.7		
J68 J70	0.0	24.0	0.00	45.8	N/A N/A	N/A N/A
J70 J72	0.0	30.0	0.00	40.1	N/A N/A	N/A N/A
J72 J74	0.0		0.00	57.8	N/A N/A	N/A N/A
	0.0	12 0		57.0	N/A	
176	0.0	12.0		61.6	Ν/Δ	N/A
J76 178	25.0	8.0	0.75	61.6 63.6	N/A N/A	N/A N/A
J78	25.0 0.0	8.0 6.0	0.75 0.00	63.6	N/A	N/A
J78 J80	25.0 0.0 25.0	8.0 6.0 6.0	0.75 0.00 0.00	63.6 63.3	N/A N/A	N/A N/A
J78 J80 J84	25.0 0.0 25.0 0.0	8.0 6.0 6.0 24.0	0.75 0.00 0.00 0.00	63.6 63.3 46.1	N/A N/A N/A	N/A N/A N/A
J78 J80 J84 J90	25.0 0.0 25.0 0.0 7.0	8.0 6.0 6.0 24.0 10.0	0.75 0.00 0.00 0.00 0.21	63.6 63.3 46.1 58.9	N/A N/A N/A N/A	N/A N/A N/A N/A
J78 J80 J84 J90 J92	25.0 0.0 25.0 0.0 7.0 7.0	8.0 6.0 24.0 10.0 6.0	0.75 0.00 0.00 0.00 0.21 0.21	63.6 63.3 46.1 58.9 63.0	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
J78 J80 J84 J90	25.0 0.0 25.0 0.0 7.0	8.0 6.0 6.0 24.0 10.0	0.75 0.00 0.00 0.00 0.21	63.6 63.3 46.1 58.9	N/A N/A N/A N/A	N/A N/A N/A N/A