Appendix A: Emission Estimation

Point Source Emissions

Source	Units	Oxy-cutter ⁽¹⁾	Hammermill ⁽²⁾
Easting	m	306 613	306 567
Northing	m	6 263 608	6 263 613
Elevation	m	44.73	44.21
Start time	hh:mm	09:00	06:00
End time	hh:mm	15:00	21:00
Stack height	m AGL	1	16.7
Diameter at point of discharge	m ID	0.05	0.440
Emission temperature	°C	31	27
Emission velocity	m·s⁻¹	14.00	44.06
Gas flow	Nm ³ ·s ⁻¹	0.1	6.7
ER (odour)	OU·m ³ ·s ⁻¹	6.0E-01	1.216E+04
ER (TSP)	g·s ⁻¹	1.37E-02	7.50E-02
ER (PM ₁₀)	g·s ⁻¹	-	5.33E-02
ER (PM _{2.5})	g·s⁻¹	-	3.33E-02
ER (NO _x)	g·s ⁻¹	5.50E-02	3.33E-02
ER (Ag)	g·s ⁻¹	1.500E-07	-
ER (Al)	g·s ⁻¹	2.833E-05	-
ER (As)	g·s⁻¹	3.333E-06	1.667E-05
ER (Ba)	g·s⁻¹	5.000E-05	-
ER (Be)	g·s⁻¹	1.333E-07	6.667E-06
ER (Ca)	g·s⁻¹	5.000E-05	-
ER (Cd)	g·s⁻¹	1.167E-07	5.000E-06
ER (Co)	g·s⁻¹	3.333E-07	6.667E-06
ER (CO II)	g·s⁻¹	6.333E-06	-
ER (Cr)	g·s⁻¹	1.267E-06	1.833E-05
ER (CrVI)	g·s⁻¹	-	3.333E-05
ER (Cu)	g·s ⁻¹	5.167E-06	2.000E-05
ER (Fe)	g·s ⁻¹	5.500E-03	2.333E-04
ER (FE II,III)	g·s ⁻¹	2.333E-02	-
ER (Hg)	g·s ⁻¹	8.333E-08	2.167E-05
ER (K)	g·s ⁻¹	3.333E-05	-
ER (Li)	g·s ⁻¹	1.500E-07	-
ER (Mg)	g·s ⁻¹	3.333E-05	-

Source	Units	Oxy-cutter ⁽¹⁾	Hammermill ⁽²⁾
ER (Mg IV)	g·s⁻¹	1.467E-04	-
ER (Mn)	g·s⁻¹	9.167E-05	2.000E-05
ER (Mo)	g·s⁻¹	8.333E-07	-
ER (Na)	g·s⁻¹	3.333E-05	-
ER (Ni)	g·s⁻¹	1.567E-06	1.667E-05
ER (P)	g·s⁻¹	1.517E-05	-
ER (Pb)	g·s⁻¹	3.333E-06	2.000E-05
ER (Sb)	g·s⁻¹	1.167E-06	5.000E-05
ER (Se)	g·s⁻¹	1.167E-06	5.000E-05
ER (Sn)	g·s⁻¹	5.333E-07	1.667E-05
ER (Ti)	g·s⁻¹	-	1.267E-05
ER (Th)	g·s⁻¹	5.000E-07	-
ER (V)	g·s⁻¹	-	3.333E-05
ER (W)	g·s⁻¹	-	1.167E-05
ER (Zn)	g·s⁻¹	1.833E-04	1.500E-03

Note: (1) Source data derived from Ektimo Emission Test Report (Ektimo, Sep 2019) as appended to (ERM, Sep 2019). The tests were performed in duplicate, and the maximum value has been used to quantify the emission rates

(2) Source data derived from Ektimo Emission Test Reports (Ektimo, May 2017), (Ektimo, Sep 2018), (Ektimo, Oct 2019), (Ektimo, Sep 2020). The maximum measured emission rate from all test reports has been adopted in this supplementary AQIA. Emission conditions, including flow rates, temperatures etc., were derived from (Ektimo, Sep 2020).

Volume Source Emissions

Material Handling

Emissions for material handling and transfer points have been estimated using the US EPA batch drop equations.

Sources modelled as wind speed dependent volume sources during hours of operation.

$$ER = EF \times A \times (1 - CF) \times \frac{1000}{3600}$$

$$EF = k \times 0.0016 \times \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$

where:ER= emission rate (g·s⁻¹)EF= emission factor (kg·t⁻¹)A= throughput (t·hr⁻¹)CF= control factork= particle size multiplier
(TSP: 0.74; PM₁₀: 0.35; PM_{2.5}: 0.053)U= hourly wind speed (m·s⁻¹) (ave 2.48 m·s⁻¹)

M = moisture content (assumed 2 %)

Wind Erosion Sources

Emissions for wind erosion sources (i.e. material stockpiles) have been modelled as wind speed varying volume sources using the NPI Wind Erosion equation.

$$ER_{TSP,hr} = WF_{hr} \times ER_{TSP}$$
$$ER_{PM10,hr} = WF_{hr} \times ER_{PM10}$$
$$ER_{PM2.5,hr} = WF_{hr} \times ER_{PM2.5}$$

$$WF_{hr} = \begin{cases} 0 \quad U \le 3.1 \\ \frac{(U^* - U_t^*)^3}{\sum_{hr=1}^{8760} (U^*_{hr} - U_t^*)^3} & U > 3.1 \end{cases}$$

where:

ER	=emission rate (g·s ⁻¹)
WF	=hourly weighting factor
U	= hourly wind speed ($m \cdot s^{-1}$) (ave 2.48 $m \cdot s^{-1}$)
U*	=threshold friction velocity (assumed $0.11 U$)
$U^{*_{t}}$	=threshold friction vel. (m·s ⁻¹) for 3.1 m·s ⁻¹

Paved Roads at Industrial Sites

$$E = k(sL)^{0.91} \times (W)^{1.02}$$

where:

E = particulate emission factor

k = particle size multiplier

W = average weight (15 t) of the vehicles

Controls

Material handling points MH1-MH14, truck dumping points TRKD01 and TRK02 and transfer points TP 01-08 have been assumed to be controlled by 70 % through water sprays.

Conveyor points CV1-CV33 are considered to be controlled by water sprays (50 %) and by enclosure (70 %).

Volume Source Emissions – Activity Rates

Source ID	Co-or	dinates	Description	Source Type	Emissions	Tii	me	Source Group	Ac	tivity Rates	
	mE	mS		туре		Start	Stop	Group	t.day ⁻¹	hr.day ⁻¹	t.hr ⁻¹
MH01	306,607	6,263,635	Non ferrous metal transferred to the non-ferrous processing building	volume	Constant	6am	9pm	MH	150	15	10.0
MH02	306,519	6,263,572	Transfer of raw material directly to the inspected stockpile of scrap metal (bypass pre-shredder)	volume	Constant	6am	9pm	MH	1500	15	100.0
MH03	306,503	6,263,664	Transfer of raw material directly to the inspected stockpile of scrap metal (bypass pre-shredder)	volume	Constant	6am	9pm	MH	1500	15	100.0
MH04	306,509	6,263,576	Transfer of raw material from stockpile to pre-shredder	volume	Constant	6am	9pm	MH	600	15	40.0
MH05	306,522	6,263,569	Transfer of raw material from stockpile to pre-shredder	volume	Constant	6am	9pm	MH	600	15	40.0
MH06	306,523	6,263,581	Transfer of pre-shredder output to a truck to inspected stockpile of scrrap metal close to the conveyor into the hammer mill	volume	Constant	6am	9pm	MH	600	15	40.0
MH07	306,503	6,263,664	Transfer of pre-shredder output to a truck to inspected stockpile of scrrap metal close to the conveyor into the hammer mill	volume	Constant	6am	9pm	MH	600	15	40.0
MH08	306,503	6,263,664	Transfer of the inspected stockpile of scrap metal close to the conveyor onto the hammer mill conveyor	volume	Constant	6am	9pm	MH	2100	15	140.0
MH09	306,483	6,263,652	Transfer of the inspected stockpile of scrap metal close to the conveyor onto the hammer mill conveyor	volume	Constant	6am	9pm	MH	2100	15	140.0
MH10	306,542	6,263,691	Ferrous metals are collected from the stockpile by FEL and loaded into trucks	volume	Constant	6am	9pm	MH	1050	15	70.0
MH11	306,533	6,263,680	Ferrous metals are collected from the stockpile by FEL and loaded into trucks	volume	Constant	6am	9pm	MH	1050	15	70.0
MH12	306,633	6,263,573	Heavy ferrous pick up	volume	Constant	6am	9pm	MH	384	15	25.6
MH13	306,561	6,263,643	Non ferrous material collected and loaded into trucks	volume	Constant	6am	9pm	MH	150	15	10.0
MH14	306,603	6,263,616	Heavy ferrous drop point	volume	Constant	6am	9pm	MH	384	15	25.6
TP01	306,525	6,263,577	Pre-shredder drop point	volume	Constant	6am	9pm	TP	600	15	40.0

Source ID	Co-or	dinates	Description	Source Type	Emissions	Tir	me	Source Group	Ac	tivity Rates	
	mE	mS				Start	Stop		t.day ⁻¹	hr.day ⁻¹	t.hr ⁻¹
TP02	306,517	6,263,691	The cleaned fragmented material (on a conveyor C1) passes under a	volume	Constant	6am	9pm	TP	1610	15	107.3
			drum magnet, where ferrous metals are dropped onto the picking conveyor (C2)								
TP03	306,529	6,263,701	Ferrous metals transferred from C2, where operators remove remaining non ferrous materials to C3	volume	Constant	6am	9pm	TP	1610	15	107.3
TP04	306,541	6,263,711	Ferrous metals are conveyed to the product stockpile	volume	Constant	6am	9pm	TP	1550	15	103.4
TP05	306,512	6,263,687	Non ferrous materials drop beneath the drum magnet to a conveyor (C4) that runs perpendicular to the ferrous product	volume	Constant	6am	9pm	TP	79	15	5.2
TP06	306,494	6,263,732	Transfer point at conveyor bend 1	volume	Constant	6am	9pm	TP	471	15	31.4
TP07	306,563	6,263,721	Transfer point at conveyor bend 2	volume	Constant	6am	9pm	TP	471	15	31.4
TP08	306,551	6,263,643	Transfer point at conveyor bend 3	volume	Constant	6am	9pm	TP	471	15	31.4
CV01	306,484	6,263,660	Material from the stockpiles is conveyed into the hammer mill (1/4)	volume	Constant	6am	9pm	Con	1800	15	120.0
CV02	306,486	6,263,672	Material from the stockpiles is conveyed into the hammer mill (2/4)	volume	Constant	6am	9pm	Con	1800	15	120.0
CV03	306,489	6,263,687	Material from the stockpiles is conveyed into the hammer mill (3/4)	volume	Constant	6am	9pm	Con	1800	15	120.0
CV04	306,489	6,263,694	Material from the hammer mill is carried upward by an incline conveyor and dropped into a chute (4/4)	volume	Constant	6am	9pm	Con	1800	15	120.0
CV05	306,513	6,263,691	The cleaned fragmented material from the cascade chute passes under the drum magnet and ferrous metals are removed (1/5)	volume	Constant	6am	9pm	Con	1354	15	90.3
CV06	306,520	6,263,693	Operators remove remaining non ferrous materials (2/5)	volume	Constant	6am	9pm	Con	1354	15	90.3
CV07	306,527	6,263,699	Operators remove remaining non ferrous materials (3/5)	volume	Constant	6am	9pm	Con	1354	15	90.3
CV08	306,534	6,263,704	Ferrous materials are taken and dropped onto a conveyor, which are conveyed to the product stockpile (4/5)	volume	Constant	6am	9pm	Con	1354	15	90.3
CV09	306,538	6,263,708	Ferrous materials are taken and dropped onto a conveyor, which are conveyed to the product stockpile (5/5)	volume	Constant	6am	9pm	Con	1354	15	90.3
CV10	306,514	6,263,695	Non-ferrous materials are dropped onto a conveyor, which transports material to the conveyor before the non-ferrous processing building (1/3)	volume	Constant	6am	9pm	Con	69	15	4.6

Source ID	Co-or	dinates	Description	Source Type	Emissions	Tir	me	Source Group	Ac	tivity Rates	
	mE	mS				Start	Stop		t.day ⁻¹	hr.day ⁻¹	t.hr ⁻¹
CV11	306,515	6,263,702	Non-ferrous materials are dropped onto a conveyor, which transports material to the conveyor before the non-ferrous processing building (2/3)	volume	Constant	6am	9pm	Con	69	15	4.6
CV12	306,516	6,263,711	Conveys non-ferrous material into the non-ferrous recovery plant (3/3)	volume	Constant	6am	9pm	Con	69	15	4.6
CV13	306,491	6,263,710	Floc product is transferred onto conveyor (1/3)	volume	Constant	6am	9pm	Con	377	15	25.1
CV14	306,492	6,263,718	Floc product is transferred onto conveyor (2/3)	volume	Constant	6am	9pm	Con	377	15	25.1
CV15	306,493	6,263,727	Floc product is transferred onto conveyor (3/3)	volume	Constant	6am	9pm	Con	377	15	25.1
CV16	306,503	6,263,732	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (1/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV17	306,512	6,263,731	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (2/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV18	306,522	6,263,729	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (3/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV19	306,533	6,263,727	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (4/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV20	306,542	6,263,726	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (5/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV21	306,551	6,263,725	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (6/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV22	306,558	6,263,724	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (7/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV23	306,558	6,263,713	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (8/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV24	306,556	6,263,703	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (9/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV25	306,555	6,263,693	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (10/18)	volume	Constant	6am	9pm	Con	411	15	27.4

Source ID	Co-or	dinates	Description	Source Type	Emissions	Tii	ne	Source Group	Ac	tivity Rates	
	mE	mS		туре		Start	Stop	Group	t.day ⁻¹	hr.day ⁻¹	t.hr ⁻¹
CV26	306,553	6,263,683	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (11/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV27	306,552	6,263,674	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (12/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV28	306,551	6,263,663	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (13/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV29	306,550	6,263,653	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (14/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV30	306,551	6,263,643	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (15/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV31	306,557	6,263,635	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (16/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV32	306,562	6,263,625	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (17/18)	volume	Constant	6am	9pm	Con	411	15	27.4
CV33	306,567	6,263,617	Conveyor transports floc product to the post shredder processing building. Conveyor is enclosed (18/18)	volume	Constant	6am	9pm	Con	411	15	27.4
TRKD01	306,502	6,263,580	Truck dumping at raw material delivery	volume	Constant	6am	9pm	Truck	2634	15	175.6
TRKD02	306,503	6,263,664	Truck carries pre-shredder output to the inspected stockpile of scrap metal close to the conveyor into the hammer mill.	volume	Constant	6am	9pm	Truck	600	15	40

Volume Source Emissions – Emission Rates

Source ID	Emissio (AP42 b	n Factor batch drop)		En	nission Rate	(Uncontro	lled)				Emi	ssion Rate (Controlled)		
	EF TSP	EF PM ₁₀	, EF PM _{2.5}	ERu TSP	ERu PM ₁₀	ERu PM _{2.5}	ERu TSP	ERu PM ₁₀	ERu PM _{2.5}	C F	ERc TSP	ERc PM ₁₀	ERc PM _{2.5}	ERc TSP	ERc PM ₁₀	ERc PM _{2.5}
	kg.t⁻¹	kg.t⁻¹	kg.t⁻¹	g.s ⁻¹	g.s⁻¹	g.s⁻¹	kg.yr ⁻¹	kg.yr ⁻¹	kg.yr⁻¹	%	g.s⁻¹	g.s ⁻¹	g.s ⁻¹	kg.yr ⁻¹	kg.yr⁻¹	kg.yr ⁻¹
MH01	0.0014	0.0007	0.0001	3.843E-03	1.818E-03	2.753E-04	7.575E+0 1	3.583E+01	5.425E+00	70	1.153E-03	5.453E-04	8.258E-05	2.272E+0 1	1.075E+01	1.628E+00
MH02	0.0014	0.0007	0.0001	3.843E-02	1.818E-02	2.753E-03	7.575E+0 2	3.583E+02	5.425E+01	70	1.153E-02	5.453E-03	8.258E-04	2.272E+0 2	1.075E+02	1.628E+01
MH03	0.0014	0.0007	0.0001	3.843E-02	1.818E-02	2.753E-03	7.575E+0 2	3.583E+02	5.425E+01	70	1.153E-02	5.453E-03	8.258E-04	2.272E+0 2	1.075E+02	1.628E+01
MH04	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	3.030E+0 2	1.433E+02	2.170E+01	70	4.612E-03	2.181E-03	3.303E-04	9.090E+0 1	4.299E+01	6.510E+00
MH05	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	3.030E+0 2	1.433E+02	2.170E+01	70	4.612E-03	2.181E-03	3.303E-04	9.090E+0 1	4.299E+01	6.510E+00
MH06	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	3.030E+0 2	1.433E+02	2.170E+01	70	4.612E-03	2.181E-03	3.303E-04	9.090E+0 1	4.299E+01	6.510E+00
MH07	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	3.030E+0 2	1.433E+02	2.170E+01	70	4.612E-03	2.181E-03	3.303E-04	9.090E+0 1	4.299E+01	6.510E+00
MH08	0.0014	0.0007	0.0001	5.380E-02	2.545E-02	3.854E-03	1.060E+0 3	5.016E+02	7.595E+01	70	1.614E-02	7.634E-03	1.156E-03	3.181E+02	1.505E+02	2.279E+01
MH09	0.0014	0.0007	0.0001	5.380E-02	2.545E-02	3.854E-03	1.060E+0 3	5.016E+02	7.595E+01	70	1.614E-02	7.634E-03	1.156E-03	3.181E+02	1.505E+02	2.279E+01
MH10	0.0014	0.0007	0.0001	2.690E-02	1.272E-02	1.927E-03	5.302E+0 2	2.508E+02	3.798E+01	70	8.071E-03	3.817E-03	5.780E-04	1.591E+02	7.524E+01	1.139E+01
MH11	0.0014	0.0007	0.0001	2.690E-02	1.272E-02	1.927E-03	5.302E+0 2	2.508E+02	3.798E+01	70	8.071E-03	3.817E-03	5.780E-04	1.591E+02	7.524E+01	1.139E+01
MH12	0.0014	0.0007	0.0001	9.838E-03	4.653E-03	7.046E-04	1.939E+0 2	9.172E+01	1.389E+01	70	2.952E- 03	1.396E-03	2.114E-04	5.817E+01	2.752E+01	4.167E+00
MH13	0.0014	0.0007	0.0001	3.843E-03	1.818E-03	2.753E-04	7.575E+0 1	3.583E+01	5.425E+00	70	1.153E-03	5.453E-04	8.258E-05	2.272E+0 1	1.075E+01	1.628E+00

Source		n Factor			En	nission Rate	(Uncontrol	lled)				Emi	ssion Rate ((Controlled)		
ID		atch drop														
	EF	EF	EF	ERu	ERu	ERu	ERu	ERu	ERu	С	ERc	ERc	ERc	ERc	ERc	ERc
	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	F	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
	kg.t⁻¹	kg.t⁻¹	kg.t⁻¹	g.s⁻¹	g.s⁻¹	g.s⁻¹	kg.yr⁻¹	kg.yr⁻¹	kg.yr⁻¹	%	g.s⁻¹	g.s⁻¹	g.s⁻¹	kg.yr⁻¹	kg.yr⁻¹	kg.yr ⁻¹
MH14	0.0014	0.0007	0.0001	9.838E-03	4.653E-03	7.046E-04	1.939E+0 2	9.172E+01	1.389E+01	70	2.952E- 03	1.396E-03	2.114E-04	5.817E+01	2.752E+01	4.167E+00
TP01	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	3.030E+0 2	1.433E+02	2.170E+01	0	1.537E-02	7.271E-03	1.101E-03	3.030E+0 2	1.433E+02	2.170E+01
TP02	0.0014	0.0007	0.0001	4.125E-02	1.951E-02	2.954E-03	8.130E+0 2	3.845E+02	5.823E+01	0	4.125E-02	1.951E-02	2.954E-03	8.130E+0 2	3.845E+02	5.823E+01
TP03	0.0014	0.0007	0.0001	4.125E-02	1.951E-02	2.954E-03	8.130E+0 2	3.845E+02	5.823E+01	0	4.125E-02	1.951E-02	2.954E-03	8.130E+0 2	3.845E+02	5.823E+01
TP04	0.0014	0.0007	0.0001	3.972E-02	1.879E-02	2.845E-03	7.830E+0 2	3.703E+02	5.608E+01	0	3.972E- 02	1.879E-02	2.845E-03	7.830E+0 2	3.703E+02	5.608E+01
TP05	0.0014	0.0007	0.0001	2.011E-03	9.513E-04	1.441E-04	3.964E+0 1	1.875E+01	2.839E+00	0	2.011E-03	9.513E-04	1.441E-04	3.964E+0 1	1.875E+01	2.839E+00
TP06	0.0014	0.0007	0.0001	1.207E-02	5.708E-03	8.643E-04	2.379E+0 2	1.125E+02	1.704E+01	0	1.207E-02	5.708E-03	8.643E-04	2.379E+0 2	1.125E+02	1.704E+01
TP07	0.0014	0.0007	0.0001	1.207E-02	5.708E-03	8.643E-04	2.379E+0 2	1.125E+02	1.704E+01	0	1.207E-02	5.708E-03	8.643E-04	2.379E+0 2	1.125E+02	1.704E+01
TP08	0.0014	0.0007	0.0001	1.207E-02	5.708E-03	8.643E-04	2.379E+0 2	1.125E+02	1.704E+01	0	1.207E-02	5.708E-03	8.643E-04	2.379E+0 2	1.125E+02	1.704E+01
CV01	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	2.272E+0 2	1.075E+02	1.628E+01	85	1.729E-03	8.180E-04	1.239E-04	3.409E+0 1	1.612E+01	2.441E+00
CV02	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	2.272E+0 2	1.075E+02	1.628E+01	85	1.729E-03	8.180E-04	1.239E-04	3.409E+0 1	1.612E+01	2.441E+00
CV03	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	2.272E+0 2	1.075E+02	1.628E+01	85	1.729E-03	8.180E-04	1.239E-04	3.409E+0 1	1.612E+01	2.441E+00
CV04	0.0014	0.0007	0.0001	1.153E-02	5.453E-03	8.258E-04	2.272E+0 2	1.075E+02	1.628E+01	85	1.729E-03	8.180E-04	1.239E-04	3.409E+0 1	1.612E+01	2.441E+00
CV05	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	1.368E+0 2	6.469E+01	9.796E+00	85	1.041E-03	4.923E-04	7.455E-05	2.052E+0 1	9.704E+00	1.469E+00
CV06	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	1.368E+0 2	6.469E+01	9.796E+00	85	1.041E-03	4.923E-04	7.455E-05	2.052E+0 1	9.704E+00	1.469E+00

Source		n Factor			En	nission Rate	(Uncontro	lled)				Emi	ssion Rate (Controlled)		
ID		atch drop														
	EF	EF	EF	ERu	ERu	ERu	ERu	ERu	ERu	С	ERc	ERc	ERc	ERc	ERc	ERc
	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	F	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
	kg.t⁻¹	kg.t⁻¹	kg.t⁻¹	g.s⁻¹	g.s⁻¹	g.s⁻¹	kg.yr ⁻¹	kg.yr ⁻¹	kg.yr ⁻¹	%	g.s⁻¹	g.s⁻¹	g.s⁻¹	kg.yr⁻¹	kg.yr⁻¹	kg.yr⁻¹
CV07	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	1.368E+0 2	6.469E+01	9.796E+00	85	1.041E-03	4.923E-04	7.455E-05	2.052E+0 1	9.704E+00	1.469E+00
CV08	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	1.368E+0 2	6.469E+01	9.796E+00	85	1.041E-03	4.923E-04	7.455E-05	2.052E+0 1	9.704E+00	1.469E+00
CV09	0.0014	0.0007	0.0001	6.940E-03	3.282E-03	4.970E-04	1.368E+0 2	6.469E+01	9.796E+00	85	1.041E-03	4.923E-04	7.455E-05	2.052E+0 1	9.704E+00	1.469E+00
CV10	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV11	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV12	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV13	0.0014	0.0007	0.0001	3.221E-03	1.523E-03	2.307E-04	6.348E+0 1	3.003E+01	4.547E+00	85	4.831E-04	2.285E-04	3.460E-05	9.523E+0 0	4.504E+00	6.820E-01
CV14	0.0014	0.0007	0.0001	3.221E-03	1.523E-03	2.307E-04	6.348E+0 1	3.003E+01	4.547E+00	85	4.831E-04	2.285E-04	3.460E-05	9.523E+0 0	4.504E+00	6.820E-01
CV15	0.0014	0.0007	0.0001	3.221E-03	1.523E-03	2.307E-04	6.348E+0 1	3.003E+01	4.547E+00	85	4.831E-04	2.285E-04	3.460E-05	9.523E+0 0	4.504E+00	6.820E-01
CV16	0.0014	0.0007	0.0001	1.054E-02	4.986E-03	7.550E-04	2.078E+0 2	9.827E+01	1.488E+01	85	1.581E-03	7.479E-04	1.132E-04	3.117E+01	1.474E+01	2.232E+00
CV17	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV18	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV19	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV20	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV21	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01

Source ID		n Factor batch drop)		En	nission Rate	(Uncontrol	lled)				Emi	ssion Rate (Controlled)		
	EF	EF	EF	ERu	ERu	ERu	ERu	ERu	ERu	С	ERc	ERc	ERc	ERc	ERc	ERc
	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	F	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
	kg.t⁻¹	kg.t⁻¹	kg.t⁻¹	g.s⁻¹	g.s⁻¹	g.s⁻¹	kg.yr⁻¹	kg.yr⁻¹	kg.yr⁻¹	%	g.s⁻¹	g.s⁻¹	g.s⁻¹	kg.yr⁻¹	kg.yr⁻¹	kg.yr⁻¹
CV22	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV23	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV24	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV25	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV26	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV27	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV28	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV29	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV30	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV31	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV32	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
CV33	0.0014	0.0007	0.0001	5.856E-04	2.770E-04	4.194E-05	1.154E+01	5.459E+00	8.267E-01	85	8.784E- 05	4.155E-05	6.291E-06	1.731E+00	8.189E-01	1.240E-01
TRKD01	0.0014	0.0007	0.0001	6.749E-02	3.192E-02	4.833E-03	1.330E+0 3	6.291E+02	9.527E+01	70	2.025E- 02	9.576E-03	1.450E-03	3.990E+0 2	1.887E+02	2.858E+01
TRKD02	0.0014	0.0007	0.0001	1.537E-02	7.271E-03	1.101E-03	3.030E+0 2	1.433E+02	2.170E+01	70	4.612E-03	2.181E-03	3.303E-04	9.090E+0 1	4.299E+01	6.510E+00

Open Area Wind Erosion Sources – Activity Rates

Source ID	Co-or	dinates	Description	Emissions	Tir	ne	Source Group	Activ	rity Rates
	mE	mS			Start	Stop		Area	hr.day ⁻¹
WE01	306,494	6,263,578	Scrap stockpile	Hourly varying	12am	12am	WE	653 sqm	24
WE02	306,507	6,263,543	Scrap stockpile	Hourly varying	12am	12am	WE	428 sqm	24
WE03	306,631	6,263,571	Post pre-shredder stockpile 1- at pre-shredder	Hourly varying	12am	12am	WE	2100 sqm	24
WE04	306,503	6,263,664	Post pre-shredder stockpile 2- at hammer mill	Hourly varying	12am	12am	WE	2562 sqm	24
WE05	306,542	6,263,709	Ferrous product stockpile.	Hourly varying	12am	12am	WE	303 sqm	24
WE06	306,544	6,263,695	Ferrous product stockpile.	Hourly varying	12am	12am	WE	303 sqm	24
WE01	306,494	6,263,578	Scrap stockpile	Hourly varying	12am	12am	WE	653 sqm	24
WE02	306,507	6,263,543	Scrap stockpile	Hourly varying	12am	12am	WE	428 sqm	24
WE03	306,631	6,263,571	Post pre-shredder stockpile 1- at pre-shredder	Hourly varying	12am	12am	WE	2100 sqm	24
WE04	306,503	6,263,664	Post pre-shredder stockpile 2- at hammer mill	Hourly varying	12am	12am	WE	2562 sqm	24
WE05	306,542	6,263,709	Ferrous product stockpile.	Hourly varying	12am	12am	WE	303 sqm	24
WE06	306,544	6,263,695	Ferrous product stockpile.	Hourly varying	12am	12am	WE	303 sqm	24

Open Area (Stockpile) Wind Erosion Sources – Emission Rates

Source ID	Emission Factor	kg.ha ⁻¹ .yr ⁻¹	kg.ha ⁻¹ .yr ⁻¹	kg.ha ⁻¹ .yr ⁻¹
WE01	NPI Mining	925.8	462.9	370.3
WE02	NPI Mining	925.8	462.9	370.3
WE03	NPI Mining	925.8	462.9	370.3
WE04	NPI Mining	925.8	462.9	370.3
WE05	NPI Mining	925.8	462.9	370.3
WE06	NPI Mining	925.8	462.9	370.3

Wheel Generated Dust – Activity Rates

Source	Gate in	Destination	Gate out	Dist. (m)	Veh·day⁻¹	VKT·day⁻¹	W (ave t)	sL
ROAD 1	Western	Shred/Floc	Eastern	457	92	42.044	15	9.7
ROAD 2	Cental	Non Ferrous	Eastern	336	103	34.608	15	9.7
ROAD 3	Western	Pre Shred	Eastern	604	24	14.496	15	9.7
ROAD 4	Western	Shear & Oxy	Eastern	564	23	12.972	15	9.7

Wheel Generated Dust – Emission rates

Source	EF TSP	EF PM ₁₀	EF PM _{2.5}	ERu (TSP)	ERu (PM ₁₀)	ERu (PM _{2.5})	CF	ERc (TSP)	ERc (PM ₁₀)	ERc (PM _{2.5})
ROAD 1	0.404369	0.077619	0.018779	17.001	3.263	0.790	30	11.901	2.875	0.767
ROAD 2	0.404369	0.077619	0.018779	13.994	2.686	0.650	30	9.796	2.423	0.634
ROAD 3	0.404369	0.077619	0.018779	5.862	1.125	0.272	30	4.103	1.079	0.269
ROAD 4	0.404369	0.077619	0.018779	5.245	1.007	0.244	30	3.672	0.970	0.241

Note: the annual estimates (kg·yr⁻¹) are based upon maximum daily emission rates and are therefore highly conservative.:

Appendix B: Modelling Results

The following section presents the results of the dispersion modelling exercise performed with the emission inventory presented in **Appendix A**.

This section presents the results of the dispersion modelling assessment and uses the following terminology:

- Incremental impact relates to the concentrations predicted as a result of the construction and operation of the Proposal in isolation.
- **Cumulative impact** relates to the incremental concentrations predicted as a result of the construction and operation of the Proposal PLUS the background air quality concentrations.

The results are presented in this manner to allow examination of the likely impact of the Proposal in isolation and the contribution to air quality impacts in a broader sense.

In the presentation of results, the tables included shaded cells which represent the following:

Model prediction	Pollutant concentration /	Pollutant concentration /
	deposition rate less than the	deposition rate equal to, or greater
	relevant criterion	than the relevant criterion

Where incremental impacts are predicts as less than (<) the relevant reporting range, the cumulative impact has been calculated at 100 % of the reporting threshold.

Annual Average TSP, PM₁₀ and PM_{2.5}

Incremental and cumulative annual average TSP, PM_{10} and $PM_{2.5}$ impacts are presented in **Table 5** for R1-R9 and R20-R33. R10-R19 are fenceline receptors and are therefore not relevant to assess annual average impacts. Similarly, R34 and R35 are on-site monitoring locations and are therefore not relevant to assess annual average impacts.

Note: Annual average predictions are based upon maximum daily throughputs and are therefore highly conservative.

	Annual Average Concentration (µg·m ⁻³)									
		TSP			PM ₁₀			PM _{2.5}		
Receptor	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact	Incremental Impact	Background	Cumulative Impact	
R1	1.2	44.8	46.0	0.4	21.8	22.2	0.1	8.5	8.6	
R2	1.1	44.8	45.9	0.4	21.8	22.2	<0.1	8.5	8.6	
R3	0.9	44.8	45.7	0.3	21.8	22.1	<0.1	8.5	8.6	
R4	0.6	44.8	45.4	0.2	21.8	22.0	<0.1	8.5	8.6	
R5	0.5	44.8	45.3	0.2	21.8	22.0	<0.1	8.5	8.6	
R6	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6	
R7	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6	
R8	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6	
R9	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6	
R20	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6	
R21	0.1	44.8	44.9	<0.1	21.8	21.9	<0.1	8.5	8.6	
R22	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6	
R23	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6	
R24	0.2	44.8	45.0	<0.1	21.8	21.9	<0.1	8.5	8.6	
R25	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6	
R26	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6	
R27	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6	
R28	0.4	44.8	45.2	0.1	21.8	21.9	<0.1	8.5	8.6	
R29	0.9	44.8	45.7	0.3	21.8	22.1	<0.1	8.5	8.6	
R30	0.5	44.8	45.3	0.2	21.8	22.0	<0.1	8.5	8.6	
R31	0.4	44.8	45.2	0.2	21.8	22.0	<0.1	8.5	8.6	
R32	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6	
R33	0.3	44.8	45.1	0.1	21.8	21.9	<0.1	8.5	8.6	
Criterion	-	9	0	-	2	5		8	3	

Table 5Predicted incremental and cumulative annual average TSP, PM10 and PM2.5concentrations

The results do not predict an exceedance of the annual average TSP or PM_{10} criteria. The annual average $PM_{2.5}$ criterion is predicted to be exceeded, but these impacts are associated with a background contribution already exceeding the criterion.

The assessment does not predict the operation of the Proposal would lead to any additional exceedances of the relevant criteria.

24-hour Average Incremental PM_{10} and $PM_{2.5}$

Maximum incremental 24-hour PM_{10} and $PM_{2.5}$ impacts are presented in **Table 6** for R1-R9 and R20-R33. R10-R19 are fenceline receptors and are therefore not relevant to assess 24-hour average impacts. Similarly, R34 and R35 are on-site monitoring locations and are therefore not relevant 24-hour average impacts as they do not evaluate potential exposure locations.

	Maximum 24-hour average concentration							
Receptor	(μg·	m ⁻³)						
	PM ₁₀	PM _{2.5}						
R1	4.7	1.2						
R2	6.2	1.6						
R3	4.5	1.2						
R4	2.1	0.6						
R5	1.8	0.5						
R6	1.9	0.5						
R7	1.9	0.5						
R8	1.9	0.5						
R9	1.9	0.5						
R20	1.4	0.4						
R21	1.2	0.3						
R22	3.6	0.9						
R23	2.0	0.5						
R24	1.9	0.5						
R25	1.8	0.5						
R26	1.6	0.5						
R27	2.1	0.6						
R28	2.1	0.6						
R29	4.3	1.2						
R30	2.7	0.7						
R31	2.4	0.6						
R32	1.4	0.4						
R33	1.1	0.3						

Table 6 Predicted incremental 24-hour average PM₁₀ and PM_{2.5} concentrations

The maximum incremental PM_{10} impact is predicted as 6.2 μ g·m⁻³ (R2).

The maximum incremental $PM_{2.5}$ impact is predicted as 1.6 μ g·m⁻³ (R2).

24-hour Average Cumulative PM₁₀ and PM_{2.5}

Cumulative impacts are assessed as incremental impact aggregated with the background concentration assumptions.

Results are presented for the receptor at which the highest incremental PM_{10} and $PM_{2.5}$ impacts have been predicted, and also for the receptors at which the highest cumulative impacts (increment plus background) have been predicted.

The left side of the tables show the predicted concentration on days with the highest background, and the right side shows the total predicted concentration on days with the highest predicted incremental concentrations. Correspondingly, **Table 7** presents impacts at R2 for PM₁₀ and PM_{2.5}.

The left side of the tables show the predicted concentration on days with the highest cumulative impacts (typically driven by high background concentrations), and the right side shows the total predicted concentration on days with the highest predicted incremental concentrations.

	24-hour av	erage PM ₁₀ con	centration		24-hour av	erage PM ₁₀ con	centration		
Date		R2 (μg⋅m⁻³)		Date	R2 (μg⋅m⁻³)				
Date	Incremental Impact	Background	Cumulative Impact	Date	Incremental Impact	Background	Cumulative Impact		
22/11/2018	1.4	113.3	114.7	12/07/2018	6.2	20.0	26.2		
19/03/2018	<0.1	70.2	70.3	13/06/2018	4.2	14.1	18.3		
28/05/2018	<0.1	65.8	65.9	21/05/2018	3.4	17.5	20.9		
18/07/2018	3.3	61.9	65.2	18/07/2018	3.3	61.9	65.2		
15/02/2018	<0.1	61.6	61.7	23/05/2018	2.9	29.3	32.2		
29/05/2018	<0.1	58.7	58.8	17/08/2018	2.9	20.0	22.9		
21/11/2018	0.7	55.7	56.4	4/08/2018	2.8	22.3	25.1		
19/07/2018	<0.1	54.4	54.5	14/06/2018	2.8	12.6	15.4		
18/03/2018	1.3	47.9	49.2	27/07/2018	2.8	31.2	34.0		
14/04/2018	<0.1	47.8	47.9	14/08/2018	2.5	18.6	21.1		
These data re	These data represent the highest Cumulative Impact 24-hour				These data represent the highest Incremental Impact 24-hour				
PM_{10} predictions outlined in red as a result of the operation				PM_{10} predictions outlined in blue as a result of the operation					
of the project.				of the project.					

 Table 7
 Predicted cumulative 24-hour average PM₁₀ concentrations

The results predict exceedances of the 24-hour PM_{10} criterion, although these are shown to be driven by elevated background concentrations already exceeding the criterion.

Critically, the assessment does not predict the operation of the Proposal would lead to any additional exceedances of the relevant 24-hour PM_{10} criterion.

	24-hour av	erage PM _{2.5} cor	ncentration		24-hour average PM _{2.5} concentration				
Date		R2 (µg⋅m⁻³)		Date	R2 (μg⋅m⁻³)				
Date	Incremental Impact	Background	Cumulative Impact		Incremental Impact	Background	Cumulative Impact		
29/05/2018	<0.1	47.5	47.6	12/07/2018	1.6	13.8	15.4		
28/05/2018	<0.1	42.5	42.6	13/06/2018	1.1	6.9	8.0		
6/05/2018	0.3	27.1	27.4	27/07/2018	0.8	19.5	20.3		
27/05/2018	<0.1	27.0	27.1	21/05/2018	0.8	7.4	8.2		
15/07/2018	0.4	23.1	23.5	23/05/2018	0.8	11.3	12.1		
9/05/2018	<0.1	21.7	21.8	18/07/2018	0.8	8.9	9.7		
25/04/2018	<0.1	20.6	<20.7	17/08/2018	0.8	9.4	10.2		
27/07/2018	0.8	19.5	20.3	14/06/2018	0.7	5.2	5.9		
8/05/2018	0.1	19.9	20.0	4/08/2018	0.7	9.2	9.9		
26/08/2018	0.6	18.4	19.0	22/06/2018	0.7	17.0	17.7		
These data re	These data represent the highest Cumulative Impact 24-hour				These data represent the highest Incremental Impact 24-hour				
PM ₁₀ predictio	PM_{10} predictions outlined in red as a result of the operation				PM_{10} predictions outlined in blue as a result of the operation				
of the project.				of the project.					

Table 8 Predicted cumulative 24-hour average PM_{2.5} concentrations

The results predict exceedances of the 24-hour $PM_{2.5}$ criterion, although these are shown to be driven by elevated background concentrations already exceeding the criterion.

Critically, the assessment does not predict the operation of the Proposal would lead to any additional exceedances of the relevant 24-hour $PM_{2.5}$ criterion.

Nitrogen Dioxide

Incremental and cumulative 1-hour and annual average NO₂ impacts are presented in **Table 9**. The results schedules report concentrations at R1-R33, as those receptor locations are relevant to a 1-hour averaging period. The industrial receptor locations are shown in slightly different shading to assist with interpretation. The results at R34 and R35 are not shown as they are on-site monitoring locations and are not representative of potential off-site exposure locations.

It is noted that the assessment assumes a 100 % conversion of NO_{\rm X} to NO_2.

	Nitrogen dioxide (NO ₂) concentration (μ g·m ⁻³)								
Rec.		1 hour			Annual Average				
	Increment	Background	Cumulative	Increment	Background	Cumulative			
R1	1.0	104.6	105.6	0.01	18.7	18.7			
R2	0.9	105.6	106.5	0.01	19.7	19.7			
R3	0.9	106.6	107.5	0.01	20.7	20.7			
R4	0.5	107.6	108.1	0.01	21.7	21.7			
R5	0.4	108.6	109.0	0.00	22.7	22.7			
R6	0.4	109.6	110.0	0.00	23.7	23.7			
R7	0.4	110.6	111.0	0.00	24.7	24.7			
R8	0.8	111.6	112.4	0.01	25.7	25.7			
R9	0.9	112.6	113.5	0.01	26.7	26.7			
R10	1.5	113.6	115.1	0.06	27.7	27.8			
R11	1.8	114.6	116.4	0.08	28.7	28.8			
R12	2.3	115.6	117.9	0.06	29.7	29.8			
R13	2.4	116.6	119.0	0.06	30.7	30.8			
R14	2.1	117.6	119.7	0.05	31.7	31.7			
R15	2.2	118.6	120.8	0.04	32.7	32.7			
R16	3.5	119.6	123.1	0.10	33.7	33.8			
R17	1.8	120.6	122.4	0.05	34.7	34.8			
R18	1.2	121.6	122.8	0.04	35.7	35.7			
R19	2.2	122.6	124.8	0.06	36.7	36.8			
R20	0.5	123.6	124.1	0.00	37.7	37.7			
R21	0.6	124.6	125.2	0.00	38.7	38.7			
R22	0.7	125.6	126.3	0.01	39.7	39.7			
R23	0.7	126.6	127.3	0.00	40.7	40.7			
R24	0.6	127.6	128.2	0.01	41.7	41.7			
R25	0.5	128.6	129.1	0.00	42.7	42.7			
R26	0.5	129.6	130.1	0.01	43.7	43.7			
R27	0.4	130.6	131.0	0.01	44.7	44.7			

Table 9 Predicted incremental 1-hour and annual average NO₂ concentrations

		Nitrogen dioxide (NO ₂) concentration (μ g·m ⁻³)							
Rec.		1 hour		Annual Average					
	Increment	Background	Cumulative	Increment	Background	Cumulative			
R28	0.6	131.6	132.2	0.01	45.7	45.7			
R29	0.9	132.6	133.5	0.01	46.7	46.7			
R30	0.6	133.6	134.2	0.01	47.7	47.7			
R31	0.9	134.6	135.5	0.01	48.7	48.7			
R32	0.5	135.6	136.1	0.00	49.7	49.7			
R33	0.5	136.6	137.1	0.01	50.7	50.7			
Criterion		24	46		6	2			

The results do not predict any exceedances of the 1-hour or annual average NO_2 criteria.

Annual Average Dust Deposition

Incremental and cumulative impacts are presented in Table 10.

Description	Annual Average Dust Deposition (g·m ⁻² ·month ⁻¹)							
Receptor	Incremental Impact	Background	Cumulative Impact					
R1	<0.1	2.0	2.1					
R2	<0.1	2.0	2.1					
R3	<0.1	2.0	2.1					
R4	<0.1	2.0	2.1					
R5	<0.1	2.0	2.1					
R6	<0.1	2.0	2.1					
R7	<0.1	2.0	2.1					
R8	<0.1	2.0	2.1					
R9	<0.1	2.0	2.1					
R20	<0.1	2.0	2.1					
R21	<0.1	2.0	2.1					
R22	<0.1	2.0	2.1					
R23	<0.1	2.0	2.1					
R24	<0.1	2.0	2.1					
R25	<0.1	2.0	2.1					
R26	<0.1	2.0	2.1					
R27	<0.1	2.0	2.1					
R28	<0.1	2.0	2.1					
R29	<0.1	2.0	2.1					
R30	<0.1	2.0	2.1					
R31	<0.1	2.0	2.1					
R32	<0.1	2.0	2.1					
R33	<0.1	2.0	2.1					
Criterion	2	-	4					

 Table 10
 Predicted incremental & cumulative dust deposition rates

The results do not predict any exceedances of the annual average dust deposition rate.

Other Pollutants

Metals and other pollutants (including Cl_2 and HF) for which there are a published criterion in the Approved Methods (NSW EPA, 2017) are summarised in **Table 11** and **Table 12**.

The predicted impacts are not predicted to exceed the relevant impact assessment criteria for any pollutants.

Table 11Predicted incremental impacts (1 of 2)

Receptor				Pre	dicted Impact (µg	·m⁻³)			
	Ag	As	Ва	Cd	Cl ₂	Cr(VI)	Cr	Cu	Fe
	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour
1	2.53E-06	4.92E-04	8.42E-04	1.47E-04	2.46E-03	9.82E-04	5.40E-04	5.90E-04	9.48E-02
2	2.46E-06	4.46E-04	8.21E-04	1.34E-04	2.22E-03	8.89E-04	4.89E-04	5.34E-04	9.24E-02
3	2.19E-06	4.35E-04	7.30E-04	1.30E-04	2.17E-03	8.68E-04	4.77E-04	5.21E-04	8.31E-02
4	7.13E-07	2.41E-04	2.38E-04	7.23E-05	1.20E-03	4.81E-04	2.64E-04	2.89E-04	2.73E-02
5	5.93E-07	2.09E-04	1.98E-04	6.24E-05	1.04E-03	4.16E-04	2.29E-04	2.50E-04	2.31E-02
6	5.73E-07	2.20E-04	1.91E-04	6.59E-05	1.10E-03	4.39E-04	2.41E-04	2.64E-04	2.24E-02
7	3.95E-07	2.21E-04	1.32E-04	6.62E-05	1.10E-03	4.41E-04	2.42E-04	2.65E-04	1.50E-02
8	5.17E-07	3.93E-04	1.72E-04	1.18E-04	1.96E-03	7.83E-04	4.30E-04	4.70E-04	1.97E-02
9	9.76E-07	4.42E-04	3.25E-04	1.32E-04	2.20E-03	8.81E-04	4.84E-04	5.29E-04	3.83E-02
10	8.14E-06	7.64E-04	2.71E-03	2.20E-04	3.67E-03	1.47E-03	8.06E-04	9.79E-04	3.07E-01
11	1.36E-05	9.05E-04	4.55E-03	2.71E-04	4.52E-03	1.81E-03	9.92E-04	1.14E-03	5.08E-01
12	1.74E-05	1.16E-03	5.81E-03	3.49E-04	5.81E-03	2.32E-03	1.28E-03	1.39E-03	6.43E-01
13	1.80E-05	1.21E-03	6.01E-03	3.61E-04	6.02E-03	2.41E-03	1.32E-03	1.45E-03	6.63E-01
14	2.04E-05	1.05E-03	6.79E-03	3.15E-04	5.25E-03	2.10E-03	1.15E-03	1.26E-03	7.47E-01
15	2.16E-05	1.12E-03	7.20E-03	3.34E-04	5.56E-03	2.22E-03	1.22E-03	1.36E-03	7.99E-01
16	1.26E-05	1.75E-03	4.21E-03	5.23E-04	8.71E-03	3.48E-03	1.91E-03	2.09E-03	4.66E-01
17	5.76E-06	8.81E-04	1.92E-03	2.64E-04	4.39E-03	1.76E-03	9.65E-04	1.06E-03	2.15E-01
18	3.27E-06	5.96E-04	1.09E-03	1.78E-04	2.97E-03	1.19E-03	6.53E-04	7.14E-04	1.23E-01
19	1.11E-05	1.15E-03	3.68E-03	3.31E-04	5.49E-03	2.19E-03	1.22E-03	1.39E-03	4.07E-01
20	3.44E-07	2.57E-04	1.15E-04	7.68E-05	1.28E-03	5.12E-04	2.81E-04	3.07E-04	1.29E-02
21	2.49E-07	2.97E-04	8.30E-05	8.89E-05	1.48E-03	5.92E-04	3.25E-04	3.55E-04	9.39E-03
22	8.85E-07	3.75E-04	2.95E-04	1.12E-04	1.87E-03	7.48E-04	4.11E-04	4.49E-04	3.33E-02

Receptor				Prec	licted Impact (µg	·m⁻³)			
	Ag	As	Ва	Cd	Cl ₂	Cr(VI)	Cr	Cu	Fe
	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour	1-hour
23	3.04E-07	3.38E-04	1.01E-04	1.01E-04	1.69E-03	6.74E-04	3.70E-04	4.05E-04	1.15E-02
24	2.42E-07	2.79E-04	8.08E-05	8.34E-05	1.39E-03	5.55E-04	3.05E-04	3.34E-04	9.27E-03
25	4.79E-07	2.41E-04	1.60E-04	7.20E-05	1.20E-03	4.80E-04	2.64E-04	2.88E-04	1.82E-02
26	5.32E-07	2.41E-04	1.77E-04	7.22E-05	1.20E-03	4.81E-04	2.64E-04	2.89E-04	2.10E-02
27	3.64E-07	1.98E-04	1.21E-04	5.93E-05	9.88E-04	3.95E-04	2.17E-04	2.37E-04	1.39E-02
28	5.20E-07	3.16E-04	1.73E-04	9.46E-05	1.58E-03	6.30E-04	3.46E-04	3.78E-04	1.97E-02
29	1.86E-06	4.55E-04	6.21E-04	1.36E-04	2.27E-03	9.08E-04	4.99E-04	5.45E-04	6.95E-02
30	6.61E-07	3.04E-04	2.20E-04	9.11E-05	1.52E-03	6.07E-04	3.33E-04	3.64E-04	2.51E-02
31	8.97E-07	4.29E-04	2.99E-04	1.28E-04	2.14E-03	8.55E-04	4.70E-04	5.13E-04	3.50E-02
32	3.77E-07	2.49E-04	1.26E-04	7.46E-05	1.24E-03	4.97E-04	2.73E-04	2.98E-04	1.44E-02
33	3.84E-07	2.30E-04	1.28E-04	6.89E-05	1.15E-03	4.59E-04	2.52E-04	2.76E-04	1.46E-02
34	2.64E-05	1.16E-03	8.79E-03	3.48E-04	5.80E-03	2.32E-03	1.27E-03	1.43E-03	9.68E-01
35	9.61E-06	1.57E-03	3.20E-03	4.69E-04	7.82E-03	3.13E-03	1.72E-03	1.88E-03	3.58E-01
Max	2.64E-05	1.75E-03	8.79E-03	5.23E-04	8.71E-03	3.48E-03	1.91E-03	2.09E-03	9.68E-01
Criterion	1.8	0.09	9	0.018	50	0.09	9	3.7	90
Max/Crit.	<0.1%	1.9%	0.1%	2.9%	<0.1%	3.9%	<0.1%	0.1%	1.1%

Table 12 Predicted incremental impacts (2 of 2)

Receptor				Pre	dicted Impact (µg	·m⁻³)			
	Fe (II,III)	Hg	Mg	Mn	Pb		н	IF	
	1-hour	1-hour	1-hour	1-hour	Annual	24-hour	7-day	30-day	90-day
1	3.92E-01	6.40E-04	5.61E-04	1.73E-03	8.17E-06	3.10E-05	1.22E-04	8.53E-05	6.33E-05
2	3.83E-01	5.80E-04	5.47E-04	1.69E-03	7.26E-06	2.73E-05	1.24E-04	7.71E-05	5.38E-05
3	3.40E-01	5.66E-04	4.86E-04	1.58E-03	5.64E-06	2.11E-05	1.11E-04	5.29E-05	3.88E-05
4	1.11E-01	3.14E-04	1.58E-04	5.40E-04	3.76E-06	1.49E-05	5.34E-05	2.46E-05	2.32E-05
5	9.21E-02	2.71E-04	1.32E-04	4.80E-04	2.71E-06	1.07E-05	5.57E-05	1.86E-05	1.76E-05
6	8.91E-02	2.86E-04	1.27E-04	4.66E-04	2.53E-06	1.00E-05	4.21E-05	1.60E-05	1.53E-05
7	6.13E-02	2.87E-04	8.76E-05	2.85E-04	2.81E-06	1.11E-05	4.34E-05	3.03E-05	1.95E-05
8	8.03E-02	5.10E-04	1.15E-04	4.70E-04	4.73E-06	1.86E-05	7.16E-05	3.76E-05	2.84E-05
9	1.52E-01	5.74E-04	2.17E-04	8.12E-04	4.74E-06	1.88E-05	9.17E-05	4.67E-05	3.72E-05
10	1.26E+00	9.56E-04	1.81E-03	5.68E-03	4.31E-05	1.61E-04	5.51E-04	3.25E-04	2.62E-04
11	2.12E+00	1.18E-03	3.03E-03	9.01E-03	5.37E-05	1.89E-04	6.98E-04	3.45E-04	2.56E-04
12	2.71E+00	1.51E-03	3.87E-03	1.12E-02	4.68E-05	1.50E-04	4.60E-04	2.70E-04	2.09E-04
13	2.80E+00	1.57E-03	4.01E-03	1.12E-02	4.00E-05	1.38E-04	4.98E-04	2.92E-04	2.20E-04
14	3.16E+00	1.37E-03	4.52E-03	1.25E-02	3.56E-05	1.20E-04	5.49E-04	3.16E-04	2.36E-04
15	3.36E+00	1.45E-03	4.80E-03	1.38E-02	3.09E-05	9.92E-05	4.28E-04	2.54E-04	1.81E-04
16	1.96E+00	2.27E-03	2.80E-03	7.95E-03	6.41E-05	2.37E-04	9.19E-04	3.70E-04	3.14E-04
17	8.94E-01	1.14E-03	1.28E-03	3.86E-03	3.55E-05	1.35E-04	4.66E-04	2.26E-04	1.87E-04
18	5.07E-01	7.75E-04	7.25E-04	2.30E-03	2.62E-05	1.01E-04	3.43E-04	2.01E-04	1.43E-04
19	1.72E+00	1.43E-03	2.45E-03	6.88E-03	4.09E-05	1.52E-04	5.86E-04	3.10E-04	2.56E-04
20	5.34E-02	3.33E-04	7.63E-05	3.07E-04	2.67E-06	1.07E-05	4.90E-05	3.66E-05	1.93E-05
21	3.87E-02	3.86E-04	5.53E-05	3.55E-04	1.77E-06	7.15E-06	3.73E-05	2.25E-05	1.56E-05
22	1.37E-01	4.87E-04	1.96E-04	6.13E-04	3.42E-06	1.29E-05	5.85E-05	2.92E-05	2.04E-05
23	4.72E-02	4.39E-04	6.74E-05	4.05E-04	1.93E-06	7.61E-06	5.49E-05	1.77E-05	1.20E-05

Receptor				Pre	dicted Impact (µg	·m⁻³)			
	Fe (II,III)	Hg	Mg	Mn	Pb		H	IF	
	1-hour	1-hour	1-hour	1-hour	Annual	24-hour	7-day	30-day	90-day
24	3.76E-02	3.62E-04	5.38E-05	3.34E-04	3.33E-06	1.32E-05	4.55E-05	2.85E-05	1.86E-05
25	7.44E-02	3.13E-04	1.06E-04	3.45E-04	2.94E-06	1.17E-05	4.69E-05	2.77E-05	1.82E-05
26	8.27E-02	3.13E-04	1.18E-04	4.51E-04	4.12E-06	1.61E-05	5.26E-05	2.43E-05	2.05E-05
27	5.65E-02	2.57E-04	8.08E-05	2.67E-04	3.41E-06	1.37E-05	4.00E-05	2.90E-05	2.21E-05
28	8.07E-02	4.10E-04	1.15E-04	3.78E-04	3.94E-06	1.51E-05	5.20E-05	3.75E-05	2.12E-05
29	2.89E-01	5.91E-04	4.13E-04	1.25E-03	7.84E-06	3.04E-05	1.20E-04	8.48E-05	5.50E-05
30	1.03E-01	3.95E-04	1.47E-04	4.88E-04	4.88E-06	1.90E-05	1.13E-04	3.51E-05	2.46E-05
31	1.39E-01	5.57E-04	1.99E-04	7.32E-04	4.42E-06	1.72E-05	8.83E-05	4.33E-05	3.03E-05
32	5.86E-02	3.24E-04	8.37E-05	2.98E-04	3.13E-06	1.24E-05	4.98E-05	2.58E-05	1.76E-05
33	5.97E-02	2.99E-04	8.53E-05	2.79E-04	3.23E-06	1.26E-05	4.35E-05	1.52E-05	1.43E-05
34	4.10E+00	1.51E-03	5.85E-03	1.62E-02	5.17E-05	1.47E-04	4.40E-04	2.27E-04	1.84E-04
35	1.49E+00	2.04E-03	2.13E-03	6.40E-03	6.04E-05	2.28E-04	8.46E-04	5.04E-04	3.40E-04
Max	4.10E+00	2.27E-03	5.85E-03	1.62E-02	6.41E-05	2.37E-04	9.19E-04	5.04E-04	3.40E-04
Criterion	90	0.18	180	18	0.5	1.5	0.8	0.4	0.25
Max/Crit.	4.6%	1.3%	<0.1%	0.1%	<0.1%	<0.1%	0.1%	0.1%	0.1%

Odour

Incremental 99th percentile odour impacts are presented in **Table 13** at receptors R1-R9 and R20-R33 representing locations where amenity impacts are to be managed. Results for R10-R19 (fenceline locations) are presented, although these should not be compared to the odour impact criterion of 2 OU with caution as they are not representative of typical sensitive exposure locations, although it is noted that the predictions are all lower than the odour criterion in any case.

Receptor	99th percentile nose response time odour concentration (OU)
R1	0.2
R2	0.2
R3	0.2
R4	0.1
R5	0.1
R6	0.1
R7	0.1
R8	0.1
R9	0.1
R10	0.8
R11	0.9
R12	0.9
R13	0.8
R14	0.8
R15	0.7
R16	0.8
R17	0.5
R18	0.4
R19	0.9
R20	0.1
R21	0.0
R22	0.1
R23	0.0
R24	0.1
R25	0.1
R26	0.1
R27	0.1
R28	0.1
R29	0.2
R30	0.1
R31	0.1
R32	0.1

 Table 13
 Predicted incremental 99th percentile odour impacts

Receptor	99th percentile nose response time odour concentration (OU)
R33	0.2
Criterion	2.0

The assessment does not predict any exceedance of the 2 OU odour impact criterion at any receptors, nor at any fenceline assessment locations.

In accordance with the requirements of the POEO odour is to be assessed and controlled from each premises to not give rise to offensive odour.

Correspondingly, odour is assessed as discrete emissions only although the potential cumulative impacts are discussed considering the AQIA supporting the neighbouring operations of Autorecyclers Pty Ltd.

Appendix C: Aggregated Impacts

Impacts aggregated with predicted impacts from Autorecyclers Pty Ltd, as reported in the AQIA Table 23 and Table 24 are presented below, updated with the results of the supplementary AQIA.

		Northstar (2020) (µg·m⁻³)						T	TAS (2019) (μg·m ⁻³) Estimated Aggregate (μg·m ⁻¹				e (µg·m⁻³)
Rec	TAS Rec	TSF)	Р	M ₁₀	PM2	2.5	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
		Incr	BG	Inc	BG	Inc	BG	Inc	Inc	Inc	Aggr	Aggr	Aggr
R1	R3	1.2	45	0.4	21.9	0.1	8.5	0.3	0.2	0.1	46.5	22.5	8.7
R2	R4	1.1	45	0.4	21.9	<0.1	8.5	0.4	0.2	0.1	46.5	22.5	8.7
R3	R5	0.9	45	0.3	21.9	<0.1	8.5	0.5	0.2	0.1	46.4	22.4	8.7
R4	R13	0.6	45	0.2	21.9	<0.1	8.5	0.4	0.2	0.1	46.0	22.3	8.7
R6	R12	0.4	45	0.2	21.9	<0.1	8.5	0.3	0.1	<0.1	45.7	22.2	8.7
R7	R11	0.3	45	0.1	21.9	<0.1	8.5	0.2	0.1	<0.1	45.5	22.1	8.7
R8	R9	0.4	45	0.2	21.9	<0.1	8.5	0.3	0.1	<0.1	45.7	22.2	8.7
R22	R2	0.4	45	0.2	21.9	<0.1	8.5	0.2	0.1	<0.1	45.6	22.2	8.7
R28	R1	0.4	45	0.1	21.9	<0.1	8.5	0.2	0.1	<0.1	45.6	22.1	8.7
R29	R6	0.9	45	0.3	21.9	<0.1	8.5	0.6	0.3	0.1	46.5	22.5	8.7
R30	R8	0.5	45	0.2	21.9	<0.1	8.5	0.3	0.1	<0.1	45.8	22.2	8.7
R31	R7	0.4	45	0.2	21.9	<0.1	8.5	0.3	0.2	0.1	45.7	22.3	8.7
R32	R10	0.3	45	0.1	21.9	<0.1	8.5	0.2	0.1	<0.1	45.5	22.1	8.7
R33	R15	0.3	45	0.1	21.9	<0.1	8.5	0.3	0.1	<0.1	45.6	22.1	8.7

Table 14 Aggregated annual average impacts with Autorecyclers Pty Ltd

			Northsta	ar (2020)		TAS	(2019)	Estimated Aggregate	
Rec	TAS Rec	F	PM ₁₀	P	PM _{2.5}	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
		Inc	BG	Inc	BG	Inc	Inc	Aggr	Aggr
R1	R3	4.7	20	1.2	13.8	3	1	27.7	16.0
R2	R4	6.2	20	1.6	13.8	3.4	1.2	29.6	16.6
R3	R5	4.5	20	1.2	13.8	3	1.1	27.5	16.1
R4	R13	2.1	22.9	0.6	10.7	2.3	0.8	27.3	12.1
R6	R12	1.9	18.4	0.5	13	2.4	0.9	22.7	14.4
R7	R11	1.9	22.1	0.5	13.3	2.1	0.8	26.1	14.6
R8	R9	1.9	13.9	0.5	6.6	1.9	0.7	17.7	7.8
R22	R2	3.6	8.9	0.9	6.8	1.5	0.5	14.0	8.2
R28	R1	2.1	58.7	0.6	47.5	1.8	0.5	62.6	48.6
R29	R6	4.3	18.9	1.2	16.1	2.9	0.9	26.1	18.2
R30	R8	2.7	11.3	0.7	7.7	2.1	0.8	16.1	9.2
R31	R7	2.4	20	0.6	6.9	2.4	0.8	24.8	8.3
R32	R10	1.4	22.1	0.4	13.3	1.4	0.6	24.9	14.3
R33	R15	1.1	17.9	0.3	11	1.7	0.6	20.7	11.9

 Table 15
 Aggregated 24-hour average impacts with Autorecyclers Pty Ltd

REC	TAS Rec	Northstar (2020)	TAS (2019)	Estimated Aggregate
REC	TAS Rec		OU (3-sec OU)	
R1	R3	0.2	0.2	0.4
R2	R4	0.2	0.2	0.4
R3	R5	0.2	0.2	0.4
R4	R13	0.1	0.3	0.4
R6	R12	0.1	0.2	0.3
R7	R11	0.1	0.2	0.3
R8	R9	0.1	0.2	0.3
R22	R2	0.1	0.1	0.2
R28	R1	0.1	0.1	0.2
R29	R6	0.2	0.3	0.5
R30	R8	0.1	0.2	0.3
R31	R7	0.1	0.2	0.3
R32	R10	0.1	0.2	0.3
R33	R15	0.1	0.1	0.2

Table 16 Aggregated 1-hour odour impacts with Autorecyclers Pty Ltd

Appendix D: Source Apportionment

Particulates (as PM₁₀)

As presented in **Appendix B**, the most affected source from emissions of particulates (as PM₁₀) is identified as Receptor 2.

The 10 highest incremental impact days has been disaggregated by source contributions, and presented below:

Date			Pro	edicted PM	Inpacts	at R2 (µg∙m	1 ⁻³)		
	All Sources	Paved Roads	Materials Handling	Conveyors	Transfer Points	Trucks Dumping	Hammer mill	Oxycutter	Wind Erosion
12/07/2018	6.20	3.47	0.68	0.58	1.17	0.16	0.14	<0.01	< 0.01
13/06/2018	4.15	2.39	0.40	0.38	0.79	0.09	0.11	<0.01	< 0.01
21/05/2018	3.37	1.71	0.48	0.35	0.70	0.13	<0.01	<0.01	<0.01
18/07/2018	3.27	1.48	0.38	0.40	0.82	0.07	0.11	<0.01	<0.01
23/05/2018	2.88	1.97	0.25	0.20	0.39	0.06	0.01	<0.01	<0.01
17/08/2018	2.85	1.71	0.30	0.24	0.50	0.08	0.03	<0.01	< 0.01
4/08/2018	2.83	1.41	0.33	0.29	0.59	0.08	0.13	<0.01	< 0.01
14/06/2018	2.83	1.57	0.32	0.25	0.50	0.08	0.11	<0.01	<0.01
27/07/2018	2.76	2.12	0.15	0.14	0.28	0.04	0.04	<0.01	< 0.01
14/08/2018	2.50	1.21	0.31	0.24	0.49	0.08	0.17	< 0.01	< 0.01
			Con	tribution b	y Source (%	6)			
12/07/2018	-	56%	11%	9%	19%	3%	2%	<1%	<1%
13/06/2018	-	57%	10%	9%	19%	2%	3%	<1%	<1%
21/05/2018	-	51%	14%	10%	21%	4%	<1%	<1%	<1%
18/07/2018	-	45%	12%	12%	25%	2%	3%	<1%	<1%
23/05/2018	-	68%	9%	7%	14%	2%	<1%	<1%	<1%
17/08/2018	-	60%	10%	8%	18%	3%	1%	<1%	<1%
4/08/2018	-	50%	12%	10%	21%	3%	5%	<1%	<1%
14/06/2018	-	55%	11%	9%	18%	3%	4%	<1%	<1%
27/07/2018	-	77%	5%	5%	10%	1%	1%	<1%	<1%
14/08/2018	-	48%	12%	10%	20%	3%	7%	<1%	<1%

Table 17 Source apportionment (PM₁₀)

Particulates (as PM_{2.5})

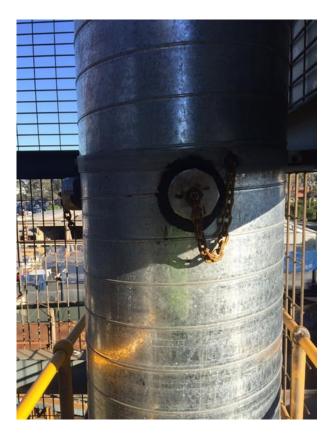
As presented in Appendix B, the most affected source from emissions of particulates (as $PM_{2.5}$) is identified as Receptor 2.

The 10 highest incremental impact days has been disaggregated by source contributions, and presented below:

Date			Pre	edicted PM	2.5 Impacts	at R2 (µg∙n	1 ⁻³)		
	All Sources	Paved Roads	Materials Handling	Conveyors	Transfer Points	Trucks Dumping	Hammer mill	Oxycutter	Wind Erosion
12/07/2018	1.61	1.15	0.11	0.09	0.19	0.02	0.05	<0.01	< 0.01
13/06/2018	1.09	0.79	0.06	0.06	0.13	0.01	0.04	< 0.01	< 0.01
27/07/2018	0.84	0.72	0.03	0.02	0.05	0.01	0.01	<0.01	< 0.01
21/05/2018	0.82	0.56	0.08	0.06	0.11	0.02	<0.01	< 0.01	< 0.01
23/05/2018	0.82	0.67	0.04	0.03	0.06	0.01	<0.01	< 0.01	< 0.01
18/07/2018	0.78	0.48	0.06	0.06	0.13	0.01	0.04	< 0.01	< 0.01
17/08/2018	0.75	0.57	0.05	0.04	0.08	0.01	0.01	<0.01	< 0.01
14/06/2018	0.74	0.52	0.05	0.04	0.08	0.01	0.03	<0.01	< 0.01
4/08/2018	0.72	0.47	0.05	0.05	0.10	0.01	0.04	<0.01	<0.01
22/06/2018	0.69	0.59	0.02	0.02	0.04	0.01	<0.01	<0.01	< 0.01
			Con	tribution b	y Source (%	6)			
12/07/2018	-	72%	7%	6%	12%	2%	3%	<1%	<1%
13/06/2018	-	72%	6%	6%	12%	1%	3%	<1%	<1%
21/05/2018	-	86%	3%	3%	6%	1%	1%	<1%	<1%
18/07/2018	-	68%	9%	7%	13%	2%	<1%	<1%	<1%
23/05/2018	-	82%	5%	4%	8%	1%	<1%	<1%	<1%
17/08/2018	-	62%	8%	8%	17%	1%	5%	<1%	<1%
4/08/2018	-	75%	6%	5%	11%	2%	1%	<1%	<1%
14/06/2018	-	70%	7%	5%	11%	2%	5%	<1%	<1%
27/07/2018	-	65%	7%	6%	14%	2%	6%	<1%	<1%
14/08/2018	-	85%	4%	3%	6%	1%	1%	<1%	<1%

Table 18 Source apportionment (PM_{2.5})

Appendix E: Emission Test Reports


Address (Head Office) 7 Redland Drive MITCHAM VIC 3132

Postal Address 52 Cooper Road COCKBURN CENTRAL WA 6164 Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 <u>www.ektimo.com.au</u> ABN: 86 600 381 413

Report Number R003396

Emission Testing Report Sell and Parker, Kings Park

This document is confidential and is prepared for the exclusive use of Sell and Parker and those granted permission by Sell and Parker.

Document Information

Client Name:	Sell and Parker
Report Number:	R003396
Date of Issue:	26 May 2017
Attention:	Howard Richards
Address:	46 Tattersall Road Kings Park NSW 2148
Testing Laboratory:	Ektimo (EML) ABN 98 006 878 342

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	R003396[DRAFT]	17/05/2017	JWe	ADa	ZXa
Final Report	R003396	26/05/2017	JWe	ADa	ZXa
Amend Report	-	-	-	-	-

Template Version: 170407

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	-	-	-	-

Report Authorisation

Aaron Davis

Client Manager

Zac Xavier Ektimo Signatory

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Table of Contents

1	Executive Summary	. 4
2	Results Summary	. 4
3	Results	. 5
3.2	L EPA 3 Hammer Mill	. 5
4	Plant Operating Conditions	. 8
5	Test Methods	. 8
6	Quality Assurance/ Quality Control Information	. 9
7	Definitions	10

1 EXECUTIVE SUMMARY

Ektimo was engaged by Sell and Parker to perform air emission testing for various analytes from the Hammer Mill exhaust duct.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 3 Hammer Mill	27 April 2017	Solid particles (TPM), fine particulates (PM_{10} and $PM_{2.5}$), type 1 and type 2 substances in aggregate, hexavalent chromium ($Cr6+$), silver, tungsten, iron, titanium, copper, zinc, hydrogen sulfide (H_2S), nitrogen oxides (NOx), sulfur dioxide, sulfuric acid mist and sulfur trioxide (as SO_3), carbon dioxide, oxygen

* Flow rate, velocity, temperature and moisture were determined unless otherwise stated

The sampling methodologies chosen by Ektimo are those recommended by the NSW Office of Environment and Heritage (as specified in the *Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales, January 2007*).

All results are reported on a dry basis at STP. Unless otherwise indicated, the methods cited in this report have been performed without deviation.

Plant operating conditions have been noted in the report.

2 **RESULTS SUMMARY**

The following comparison table shows that all analytes highlighted in green are below the limits prescribed by the *Protection of Environment Operations (Clean Air) Regulation 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).*

Location	Pollutant	Units	POEO Reg Limit (Gp 6)	Detected values
	Solid particles	mg/m ³	20	9.3
	Nitrogen oxides (NO _x)	mg/m ³	350	<3
	Sulfur dioxide (SO ₂)	mg/m ³	1000	<0.01
	Sulfuric acid mist and sulfur trioxide (SO $_3$)	mg/m ³	100	<0.01
	Hydrogen sulfide (H ₂ S)	mg/m ³	5	<0.006
EPA 3	Type 1 substances in aggregate (Sb, As, Cd, Pb, Hg)	mg/m ³	-	≤0.0072
Hammer Mill	Type 1 and 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, N, Se, Sn, V)	mg/m ³	1	≤0.017
	Cadimum (Cd)	mg/m ³	0.2	<0.0004
	Mercury (Hg)	mg/m ³	0.2	0.00069
	Silver (Ag), tungsten (W), iron (Fe), titanium (Ti), Copper (Cu), Zinc (Zn)	mg/m ³	-	see report

3 RESULTS

3.1 EPA 3 Hammer Mill

Date 27-04-2017	(Client	Sell & Parker
Report R003396		Stack ID	EPA 3 Hammer Mill Stack
Licence No. 11555		ocation	Kings Park
Ektimo Staff Aaron Davis / Steven		State	NSW
Process Conditions Please refer to client			
Sampling Plane Details			
Sampling plane dimensions	(680 mm	
Sampling plane area	C).363 m²	
Sampling port size, number	4"	' BSP (x2)	
Access & height of ports	Stairs 1	l5 m	
Duct orientation & shape	Vertical C	Circular	
Downstream disturbance	Exit 4	1 D	
Upstream disturbance	Bend 6	3 D	
No. traverses & points sampled	2 8	3	
Sample plane compliance to AS4323.1	Satis	sfactory	
Stock Boromotoro			
Stack Parameters	27/20trat-1)		
Moisture content, %v/v	3.7 (saturated)		20.0 (dr.)
Gas molecular weight, g/g mole	28.6 (wet)		29.0 (dry)
Gas density at STP, kg/m ³	1.28 (wet)		1.29 (dry)
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1000		
Temperature, °C	28		
Temperature, K	301		
Velocity at sampling plane, m/s	25		
Volumetric flow rate, discharge, m ³ /s	9.2		
Volumetric flow rate (wet STP), m ³ /s	8.3		
Volumetric flow rate (dry STP), m ³ /s	8		
Mass flow rate (wet basis), kg/hour	38000		
Velocity difference, %	<1		
	1		
Gas Analyser Results			erage
Sampling time		103	0-1129
		O	Mana Data
Combustion Coope		Concentration mg/m ³	Mass Rate g/min
Combustion Gases		-	-
Nitrogen oxides (as NO ₂)		<3	<2
		Concentration %	
Carbon dioxide		<0.3	
Oxygen		<0.3 20.9	
Oxygen		20.9	
Isokinetic Results		Re	esults
Sampling time		1010	D - 1115
		Concentration	Mass Rate
		mg/m³	g/min
Solid Particles		9.3	4.5
Fine particulates (PM10)		6.6	3.2
Fine particulates (PM2.5)		<4	<2
D50 cut size, 10µm			10.5
D50 cut size, 2.5µm			2.20
Sulfur dioxide		<0.01	<0.006
Sulfuric acid mist and sulfur trioxide (as SO_3)		<0.01	<0.005
Isokinetic Sampling Parameters		Isokinetic	PM 10&2.5
Sampling time, min		64	64
Isokinetic rate, %		93	88
	I	33	00

Date	27-04-2017	Client	Sell & Parker
Report	R003396	Stack ID	EPA3 Hammer Mill Stack
Licence No.	11555	Location	Kings Park
Ektimo Staff	Aaron Davis / Steven Weekes	State	NSW
Process Conditions	Please refer to client records.		
Sampling Plane De	etails		
Sampling plane dime	nsions	680 mm	
Sampling plane area		0.363 m ²	
Sampling port size, nu	ımber	4" BSP (x2)	
Access & height of po	rts	Stairs 15 m	
Duct orientation & sh	ape	Vertical Circular	
Downstream disturba	nce	Exit 4 D	
Upstream disturbance	e	Bend 6 D	
No. traverses & points	sampled	28	
Sample plane compli	ance to AS4323.1	Satisfactory	
Stack Parameters			
Moisture content, %v/	/	3.7 (saturated)	
Gas molecular weigh		28.6 (wet)	29.0 (drv)
Gas density at STP, k		1.28 (wet)	1.29 (dry)
Gas Flow Paramet	ers		
Flow measurement til	me(s) (hhmm)	1000	
Temperature, °C		28	
Temperature, K		301	
Velocity at sampling plane, m/s		25	
Volumetric flow rate, discharge, m ³ /s		9.2	
Volumetric flow rate (v	vet STP), m³/s	8.3	
Volumetric flow rate (lry STP), m³/s	8	
Mass flow rate (wet basis), kg/hour		38000	
Velocity difference, %		<1	

okinetic Results Results	
Sampling time	1230-1335
	Concentration Mass Rate mg/m³ g/min
Antimony	<0.004 <0.002
Arsenic	<0.004 <0.002 <0.001 <0.0007
Beryllium	<0.0007 <0.0004
Cadmium	<0.0004 <0.0002
Chromium	0.00061 0.00029
Cobalt	<0.0005 <0.0002
Copper	0.0026 0.0012
Iron	0.028 0.014
Lead	0.0011 0.00052
Manganese	<0.001 <0.0005
Mercury	0.00069 0.00033
Nickel	<0.0009 <0.0004
Selenium	<0.004 <0.002
Silver	<0.0005 <0.0002
Tin	<0.001 <0.0007
Titanium	0.0016 0.00076
Tungsten	<0.001 <0.0007
Vanadium	<0.0008 <0.0004
Zinc	0.19 0.09
Type 1 & 2 Substances	
Upper Bound	
Total Type 1 Substances	≤0.0072 ≤0.0034
Total Type 2 Substances	≤0.0096 ≤0.0046
Total Type 1 & 2 Substances	≤0.017 ≤0.0081
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	100

Date 27-04-2017		(Client	Sell & Parker
Report R003396		5	Stack ID	EPA3 Hammer Mill Stack
Licence No. 11555		L	ocation	Kings Park
Ektimo Staff Aaron Davis / Stev	en Weekes	S	State	NSW
Process Conditions Please refer to clie	ent records.			
Sampling Plane Details Sampling plane dimensions		680 n	om	
Sampling plane area		0.363		
Sampling port size, number		4" BSP		
Access & height of ports		4 BSF Stairs 1	· · /	
Duct orientation & shape		Vertical C		
Downstream disturbance		Exit 4		
Upstream disturbance		Bend 6		
		2 8		
No. traverses & points sampled				
Sample plane compliance to AS4323.1		Satisfa	CIOTY	
Stack Parameters				
Moisture content, %v/v		3.7 (saturated)		
Gas molecular weight, g/g mole		28.6 (wet)		29.0 (dry)
Gas density at STP, kg/m ³		1.28 (wet)		1.29 (dry)
Gas Flow Parameters				
Flow measurement time(s) (hhmm)		1000		
Temperature, °C		28		
Temperature, K		301		
Velocity at sampling plane, m/s		25		
Volumetric flow rate, discharge, m ³ /s		9.2		
Volumetric flow rate (wet STP), m ³ /s		9.2 8.3		
× 71		8.3		
Volumetric flow rate (dry STP), m ³ /s		o 38000		
Mass flow rate (wet basis), kg/hour				
Velocity difference, %		<1		
Hydrogen Sulfide			Res	sults
Sampling tin	ne		1130	0-1230
			Concentration	Mass Date
		(Concentration mg/m ³	Mass Rate g/min
Hydrogen sulfide			<0.006	<0.003
lastinatia Daguta				
Isokinetic Results				sults
Sampling tin	ne		1120)-1225
		(Concentration	Mass Rate
			mg/m ³	g/min
Hexavalent chromium			<0.004	<0.002
laskingtis Compling Description				
Isokinetic Sampling Parameters			0.4	
Sampling time, min			64	
Isokinetic rate, %			98	

4 PLANT OPERATING CONDITIONS

Unless otherwise stated, the plant operating conditions were normal at the time of testing. See Sell and Parker's records for complete process conditions.

5 TEST METHODS

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Accredited		
				Sampling	Analysis	
Sample plane criteria	NSW TM-1	NA	-	√	NA	
Moisture content	NSW TM-22	NSW TM-22	19%	✓	\checkmark	
Temperature	NSW TM-2	NA	2%	\checkmark	NA	
Flow rate	NSW TM-2	NA	8%	\checkmark	NA	
Velocity	NSW TM-2	NA	7%	\checkmark	NA	
Solid particles (TPM)	NSW TM-15	NSW TM-15	5%	\checkmark	\checkmark	
Particulate matter < 2.5μm (PM _{2.5})	USEPA 201A	USEPA 201A	9%	\checkmark	\checkmark	
Particulate matter < 10µm (PM ₁₀)	NSW OM-5	NSW OM-5	6%	✓	\checkmark	
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse	15%	✓	\checkmark^1	
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse	15%	√	\checkmark^1	
Total (gaseous and particulate) metals & compounds incl Ag, Fe, W, Ti, Cu, Zn	NSW TM-12, NSW TM-13, NSW TM-14	Envirolab inhouse	15%	✓	\checkmark^1	
Hexavalent chromium	NSW OM-4	Envirolab inhouse	16%	×	\checkmark^1	
Sulfur dioxide and sulfur trioxide	NSW TM-3	Ektimo (EML Air) 235	16%	✓	✓	
Hydrogen sulfide	NSW TM-5	NSW TM-5	19%	✓	✓	
Nitrogen oxides (NOx)	NSW TM-11	NSW TM-11	12%	✓	✓	
Carbon dioxide	NSW TM-24	NSW TM-24	13%	\checkmark	\checkmark	
Oxygen	NSW TM-25	NSW TM-25	13%	✓	✓	

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

1. Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 10 May 2017 in report number 166156.

6 QUALITY ASSURANCE/ QUALITY CONTROL INFORMATION

Ektimo (EML) and Ektimo (ETC) are accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo (EML) and Ektimo (ETC) are accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025. – General Requirements for the Competence of Testing and Calibration Laboratories. ISO/IEC 17025 requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Compliance Manager.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

7 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

- STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
- Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.
- VOC Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.
- TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.
- OU The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).
- PM_{2.5} Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (μm).
- PM₁₀ Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (μm).
- BSP British standard pipe
- NT Not tested or results not required
- NA Not applicable
- D_{50} 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
- D Duct diameter or equivalent duct diameter for rectangular ducts
- < Less than
- > Greater than
- ≥ Greater than or equal to
- Approximately
 CEM Continuous Emission Monitoring
- CEMS Continuous Emission Monitoring System
- DER WA Department of Environment & Regulation
- DECC Department of Environment & Climate Change (NSW)
- EPA Environment Protection Authority
- FTIR Fourier Transform Infra Red
- NATA National Association of Testing Authorities
- RATA Relative Accuracy Test Audit
- AS Australian Standard
- USEPA United States Environmental Protection Agency
- Vic EPA Victorian Environment Protection Authority
- ISC Intersociety committee, Methods of Air Sampling and Analysis
- ISO International Organisation for Standardisation
- APHA American public health association, Standard Methods for the Examination of Water and Waste Water
- CARB Californian Air Resources Board

X-ray Diffractometry

- TM Test Method
- OM Other approved method
- CTM Conditional test method
- VDI Verein Deutscher Ingenieure (Association of German Engineers)
- NIOSH National Institute of Occupational Safety and Health

XRD

Address (Head Office) 7 Redland Drive MITCHAM VIC 3132

Postal Address 52 Cooper Road COCKBURN CENTRAL WA 6164 Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 <u>www.ektimo.com.au</u> ABN: 86 600 381 413

Report Number R006468-1

Emission Testing ERM Australia Pty Ltd, Docklands

This document is confidential and is prepared for the exclusive use of ERM Australia Pty Ltd and those granted permission by ERM Australia Pty Ltd.

Document Information

Client Name:	ERM Australia Pty Ltd
Report Number:	R006468-1
Date of Issue:	27 September 2018
Attention:	lain Cowan
Address:	Level 3, Tower 3, World Trade Centre, 18-38 Siddeley Street DOCKLANDS VIC 3005
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By (1)	Reviewed By (2)
Preliminary Report	-	-	-	-	-
Draft Report	R006468-1[DRAFT]	21/09/2018	ADo	ADa	SCo
Final Report	R006468-1	27/09/2018	ADo	ADa	SCo
Amend Report	-	-	-	-	-

Template Version: 080818

Amendment Record

Document Number	Initiator	Report Date	Section	Reason
Nil	-	-	-	-

Report Authorisation

Aaron Davis

Client Manager

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Table of Contents

1	Executive Summary	4
2	POEO Results Comparison	4
3	Results	5
3.1	EPA 3 – Hammer Mill	. 5
4	Plant Operating Conditions	8
5	Test Methods	8
6	Quality Assurance/Quality Control Information	8
7	Definitions	9

Ektimo was engaged by ERM Australia Pty Ltd to perform emission testing at Sell and Parker, Kings Park NSW. Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 3 - Hammer Mill	11 September 2018	Total solid particles, type 1 and 2 substances, total fluoride, hydrogen chloride, chlorine, sulfur trioxide and sulfuric acid mist, hydrogen sulfide, nitrogen oxides, carbon dioxide, oxygen

* Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP

Plant operating conditions have been noted in the report.

2 POEO RESULTS COMPARISON

PROTECTION OF THE ENVIRONMENT OPERATIONS (CLEAN AIR) REGULATION 2010 - SCHEDULE 4							
GROUP 6							
Air Impurity	POEO Limit	Units	Detected Values				
			11/09/2018				
Total Solid Particles	50	mg/m ³	6.8				
Nitrogen dioxide (NO ₂) or Nitric oxide (NO) or both, as NO ₂ equivalent	350	mg/m ³	<3				
Sulfuric acid mist (H_2SO_4) or sulfur trioxide (SO ₃) or both, as SO ₃ equivalent	100	mg/m ³	<0.008				
Hydrogen sulfide	5	mg/m ³	<0.009				
Fluorine (F ₂) and any compound containing fluorine, as total fluoride (HF equivalent)	50	mg/m ³	<0.01				
Chlorine (Cl ₂)	200	mg/m ³	<0.01				
Hydrogen chloride (HCl)	100	mg/m ³	<0.01				
Type 1 substances (in aggregate)	NA	NA	≤0.011				
Type 1 substances and Type 2 substances (in aggregate)	1	mg/m ³	≤0.0076				
Cadmium (Cd)	0.2	mg/m ³	0.00047				
Mercury (Hg)	0.2	mg/m ³	0.0034				

Note: All analytes highlighted in green are below the Group 6 - Protection of the Environment Operations (Clean Air) Regulation 2010 limits.

Date

3 RESULTS

3.1 EPA 3 – Hammer Mill

11/09/2018

Report R006468-1 Licence No. 11555 Ektimo Staff Aaron Davis / Steve Process Conditions Please refer to client		Stack ID Location State	EPA3 - Ham Kings Park NSW	mer Mill	180831
Sampling Plane Details					
Sampling plane dimensions	59	5 mm			
Sampling plane area		78 m²			
Sampling port size, number		SP (x2)			
Access & height of ports	Elevated work platform	. ,			
Duct orientation & shape		l Circular			
Downstream disturbance	Exit cone	e 3 D			
Upstream disturbance	Bend	18D			
No. traverses & points sampled		2 8			
Sample plane compliance to AS4323.1	lo	leal			
Comments					
An exit cone has been installed on the stack	exit which measures 440mr	n in diameter			
Stack Parameters					
Moisture content, %v/v	3.1				
Gas molecular weight, g/g mole	28.6 (wet)		29.0 (dry)		
Gas density at STP, kg/m ³	1.28 (wet)		29.0 (dry) 1.29 (dry)		
	1.20 (wei)		<u></u> (ury)		
Gas Flow Parameters					
Flow measurement time(s) (hhmm)	0945 & 1115	5			
Temperature, °C	31				
Temperature, K	304				
Velocity at sampling plane, m/s	25				
Velocity at exit plane, m/s	46				
Volumetric flow rate, actual, m ³ /s	7				
Volumetric flow rate (wet STP), m ³ /s	6.3				
Volumetric flow rate (dry STP), m ³ /s	6.1 29000				
Mass flow rate (wet basis), kg/hour	29000				
	Average	Min	imum	Maxii	mum
Gas Analyser Results	Average				
Gas Analyser Results Sampling time	Average 1007 - 1110		- 1110	1007 -	1110
	•		- 1110	1007 -	- 1110
	•			1007 - Concentration	· 1110 Mass Rate
	e 1007 - 1110	1007			
Sampling time	2 1007 - 1110 Concentration Mass Rate	1007 Concentration	Mass Rate	Concentration	Mass Rate
Sampling time	 1007 - 1110 Concentration Mass Rate g/m³ g/min <3 <1 Concentration 	1007 Concentration mg/m ³ <3 Concentration	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂)	2 1007 - 1110 Concentration Mass Rate mg/m ³ g/min <3 <1 Concentration %	1007 Concentration mg/m³ <3 Concentration %	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration %	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 	1007 Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂)	2 1007 - 1110 Concentration Mass Rate mg/m ³ g/min <3 <1 Concentration %	1007 Concentration mg/m³ <3 Concentration %	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration %	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re:	Mass Rate g/min <1	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re:	Mass Rate g/min <1 sults	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re:	Mass Rate g/min <1 sults 3-1109	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m³ <3 Concentration % <0.1 20.9 Re: 1005	Mass Rate g/min <1 sults 2-1109	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration	Mass Rate g/min <1 sults D-1109 Mass Rate	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults 3-1109 Mass Rate g/min <0.003 sults 3-1110	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO ₂) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sampling time Sulfur trioxide and/or Sulfuric acid (as SO3)	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	Concentration % <0.1 20.9 Concentration % <0.1 20.9 Re: 1009 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sampling time Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.008	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters Sampling time, min	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.008	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters Sampling time, min Isokinetic rate, %	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.009	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min
Sampling time Combustion Gases Nitrogen oxides (as NO2) Carbon dioxide Oxygen Non-isokinetics Sampling time Hydrogen sulfide Isokinetic Results Sulfur trioxide and/or Sulfuric acid (as SO3) Isokinetic Sampling Parameters Sampling time, min	 1007 - 1110 Concentration Mass Rate mg/m³ g/min <3 <1 Concentration % <0.1 20.9 	1007 Concentration mg/m ³ <3 Concentration % <0.1 20.9 Re: 1005 Concentration mg/m ³ <0.009 Re: 1005 Concentration mg/m ³ <0.008	Mass Rate g/min <1 sults -1109 Mass Rate g/min <0.003 sults 3-1110 Mass Rate g/min	Concentration mg/m ³ <3 Concentration % <0.1	Mass Rate g/min

Client

ERM

NATA

Date	11/09/2018	Client	ERM	
Report	R006468-1	Stack ID	EPA3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Steven Weekes	State	NSW	
Process Conditions	Please refer to client records.			180831
Sampling Diana Dat				
Sampling Plane Det				
Sampling plane dimens	sions	595 mm		
Sampling plane area		0.278 m²		
Sampling port size, num	nber	4" BSP (x2)		
Access & height of ports	Elevated	work platform 20 m		
Duct orientation & shap	e	Vertical Circular		
Downstream disturband	ce	Exit cone 3 D		
Upstream disturbance		Bend 8 D		
No. traverses & points s	ampled	28		
Sample plane compliar	ice to AS4323.1	ldeal		
Comments				
An exit cone has been in	nstalled on the stack exit which mea	sures 440mm in diameter		
Stack Parameters				
Moisture content, %v/v		3.1		
Gas molecular weight, g	g/g mole	28.6 (wet)	29.0 (dry)	
Gas density at STP, kg/r	n³	1.28 (wet)	1.29 (dry)	

Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)
Gas Flow Parameters		
Flow measurement time(s) (hhmm)	1550 & 1705	
Temperature, °C	33	
Temperature, K	306	
Velocity at sampling plane, m/s	25	
Velocity at exit plane, m/s	46	
Volumetric flow rate, actual, m ³ /s	7	
Volumetric flow rate (wet STP), m ³ /s	6.3	
Volumetric flow rate (dry STP), m ³ /s	6.1	
Mass flow rate (wet basis), kg/hour	29000	

Isokinetic Results	Results
Sampling time	1557-1702
	Concentration Mass Rate
Solid Particles	6.8 2.5
Antimony	<0.003 <0.001
Arsenic	<0.001 <0.0005
Beryllium	<0.0007 <0.0003
Cadmium	0.00047 0.00017
Chromium	0.00068 0.00025
Cobalt	<0.0005 <0.0002
Lead	0.0018 0.00065
Manganese	<0.002 <0.0006
Mercury	0.0034 0.0013
Nickel	<0.0008 <0.0003
Selenium	<0.004 <0.001
Tin	<0.001 <0.0005
Vanadium	<0.0008 <0.0003
Type 1 & 2 Substances	
Upper Bound	
Total Type 1 Substances	≤0.011 ≤0.0039
Total Type 2 Substances	≤0.01 ≤0.0037
Total Type 1 & 2 Substances	≤0.021 ≤0.0076
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	99
Velocity difference, %	-1

NA

Date	11/09/2018		Client	ERM	
Report	R006468-1		Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555		Location	Kings Park	
Ektimo Staff	Aaron Davis / Steven Weeke	es	State	NSŴ	
Process Conditions	Please refer to client record	ls.			180831
Sampling Plane De	taila				
Sampling plane dimen		595	m m		
1 01	510115	0.278			
Sampling plane area					
Sampling port size, nu		4" BSF	. ,		
Access & height of port		evated work platform			
Duct orientation & sha	pe	Vertical	Circular		
Downstream disturbar	ice	Exit cone 3 D			
Upstream disturbance		Bend 8 D			
No. traverses & points	sampled	2 8			
Sample plane complia	nce to AS4323.1	Ideal			
Comments					
				_	
An exit cone has been	installed on the stack exit whic	n measures 440mm	in diametei	·	
Stack Parameters					
Moisture content, %v/v		3			
Gas molecular weight,	g/g mole	28.6 (wet)		29.0 (dry)	
Gas density at STP, kg		1.28 (wet)		1.29 (dry)	

Gas Flow Parameters		
Flow measurement time(s) (hhmm)	0945 & 1115	
Temperature, °C	31	
Temperature, K	304	
Velocity at sampling plane, m/s	25	
Velocity at exit plane, m/s	46	
Volumetric flow rate, actual, m3/s	7	
Volumetric flow rate (wet STP), m ³ /s	6.3	
Volumetric flow rate (dry STP), m ³ /s	6.2	
Mass flow rate (wet basis), kg/hour	29000	

Isokinetic Results	Results		
Sampling time	1003-1110		
	Concentration mg/m³	Mass Rate g/min	
Total fluoride (as HF)	<0.01	<0.005	
Chloride (as HCI)	<0.01	<0.005	
Chlorine	<0.01	<0.005	
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	102		
Velocity difference, %	<1		

NATA

4 PLANT OPERATING CONDITIONS

Unless otherwise stated, the plant operating conditions were normal at the time of testing. See ERM Australia Pty Ltd's records for complete process conditions.

5 TEST METHODS

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Uncertainty*	NATA Ad	credited
				Sampling	Analysis
Sample plane criteria	NSW TM-1	NA	-	✓	NA
Flow rate, temperature and velocity	NSW TM-2	NA	8%, 2%, 7%	✓	NA
Moisture content	NSW TM-22	NSW TM-22	8%	✓	✓
Carbon dioxide	NSW TM-24	NSW TM-24	13%	✓	✓
Nitrogen oxides (NO _x)	NSW TM-11	NSW TM-11	12%	~	✓
Oxygen	NSW TM-25	NSW TM-25	13%	✓	✓
Hydrogen sulfide	NSW TM-5	NSW TM-5	not specified	✓	\checkmark^{\dagger}
Chlorine	NSW TM-7	Ektimo 235	14%	✓	\checkmark^{\dagger}
		ALS Method QWI-EN/EA144	с		
Total fluoride	NSW TM-9	&	17%	\checkmark	✓ ^{#,†}
		Ektimo 235			
Hydrogen chloride	NSW TM-8	Ektimo 235	14%	✓	\checkmark^{\dagger}
Particulate matter	NSW TM-15	NSW TM-15	5%	✓	✓
Sulfuric acid mist (including sulfur trioxide)	NSW TM-3	Ektimo 235	16%	✓	\checkmark^{\dagger}
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse	15%	✓	√‡
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse	15%	√	√‡
					180

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

Analysis performed by Ektimo, NATA accreditation number 14601.
 Laboratory analytical results were reported on 17 September 2018 in report number R006468-H2S
 Laboratory analytical results were reported on 20 September 2018 in report number R006468-SOx_Halides_Halogens

- Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 20 September 2018 in report number 200664
- [#] Analysis (solid fluoride only) performed by Australian Laboratory Services Pty Ltd, NATA accreditation number 825. Results were reported to Ektimo on 21 September 2018 in report number EN1805880

6 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

The following symbols and abbreviations may be used in this test report: Approximately Less than < > Greater than ≥ Greater than or equal to APHA American public health association, Standard Methods for the Examination of Water and Waste Water AS Australian Standard BSP British standard pipe CARB Californian Air Resources Board CEM **Continuous Emission Monitoring** CEMS **Continuous Emission Monitoring System** CTM Conditional test method D Duct diameter or equivalent duct diameter for rectangular ducts **D**50 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie. half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D₅₀ of that cyclone and less than the D₅₀ of the preceding cyclone. DECC Department of Environment & Climate Change (NSW) Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter. DWER Department of Water and Environmental Regulation EPA **Environment Protection Authority** FTIR Fourier Transform Infra Red ISC Intersociety committee, Methods of Air Sampling and Analysis ISO International Organisation for Standardisation NA Not applicable NATA National Association of Testing Authorities NIOSH National Institute of Occupational Safety and Health NT Not tested or results not required OM Other approved method ΟU The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response). PM10 Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (μ m). Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less PM_{2.5} than approximately 2.5 microns (μ m). PSA Particle size analysis RATA **Relative Accuracy Test Audit** Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry STP basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified. TM **Test Method** TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives. USEPA United States Environmental Protection Agency VDI Verein Deutscher Ingenieure (Association of German Engineers) Vic EPA Victorian Environment Protection Authority VOC Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

REPORT NUMBER R008184

Annual Emission Testing Sell and Parker, Kings Park

www.ektimo.com.au

Document Information

Client Name:	Sell and Parker
Report Number:	R008184
Date of Issue:	11 October 2019
Attention:	Howard Richards
Address:	46 Tattersall Road Kings Park NSW 2148
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Aaron Davis Client Manager

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Sell and Parker and those granted permission by Sell and Parker. The report shall not be reproduced except in full.

Table of Contents

1	E	Executive Summary	4
	1.1	Background	4
	1.2	Project objectives	
	1.3	Licence Comparison	4
2	F	Results	5
	2.1	EPA 3 – Hammer Mill Stack	5
3	F	Plant Operating Conditions	7
4	٦	Fest Methods	7
5	(Quality Assurance/Quality Control Information	7
6	[Definitions	8

1 EXECUTIVE SUMMARY

1.1 Background

Ektimo was engaged by Sell and Parker to perform emission testing at their Kings Park plant. Testing was carried out in accordance with Environmental Licence 11555.

1.2 Project objectives

The objectives of the project were to conduct a monitoring programme to quantify emissions from one discharge point to determine whether it was in compliance with Sell and Parker's Environmental licence and the *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6)

Location	Test Date	Test Parameters*
EPA 3 – Hammer Mill Stack	26 September 2019	Solid particles, type 1 and 2 substances

* Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by:

- The *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).
- the NSW EPA as per licence 11555 (last amended on 10 December 2018).

Monitoring results are summarized in the following table:

Location	Pollutant	Units	POEO Reg Limit (Gp 6)	Environment Protection Licence Limit	Detected values
	Solid particles	mg/m ³	20	20	3.7
	Type 1 substances in aggregate (Sb, As, Cd, Pb, Hg)	mg/m ³	-	-	≤0.017
EPA 3 Hammer Mill	Type 1 and 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, N, Se, Sn, V)	mg/m ³	1	1	≤0.042
	Cadimum (Cd)	mg/m ³	0.2	-	<0.0009
	Mercury (Hg)	mg/m ³	0.2	-	0.0011

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

2 RESULTS

2.1 EPA 3 – Hammer Mill Stack

	26/09/2019	Client	Sell and Parker	
Report	R008184	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Hamish Proust	State	NSW	
Process Conditions	Normal operating conditions for	Hammer Mill		19090
Sampling Plane Det	ails			
Sampling plane din	nensions	595 mm		
Sampling plane are	a	0.278 m ²		
Sampling port size,	number	4" BSP (x2)		
Access & height of p	oorts Elevate	d work platform 20 m		
Duct orientation &	shape	Vertical Circular		
Downstream disturl	bance	Exit cone 3 D		
Upstream disturbar	nce	Bend 8 D		
No. traverses & poir	nts sampled	28		
Comple plane comp	bliance to AS4323.1	Ideal		
Comments An exit cone has be	en installed on the stack which meas sumed to be composed of dry air and	ures 440mm in diameter		
Comments An exit cone has be The discharge is as:	en installed on the stack which meas	ures 440mm in diameter		
Comments An exit cone has be The discharge is as Stack Parameters	en installed on the stack which meas sumed to be composed of dry air and	ures 440mm in diameter moisture		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, %	en installed on the stack which meas sumed to be composed of dry air and śv/v	ures 440mm in diameter moisture 2	20.0 (d-)	
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig	en installed on the stack which meas sumed to be composed of dry air and Sv/v ght, g/g mole	ures 440mm in diameter moisture 2 28.7 (wet)	29.0 (dry)	
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig	en installed on the stack which meas sumed to be composed of dry air and Sv/v ght, g/g mole	ures 440mm in diameter moisture 2	29.0 (dry) 1.29 (dry)	
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, %	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³	ures 440mm in diameter moisture 2 28.7 (wet)		
Comments An exit cone has be The discharge is as Stack Parameters Moisture content, % Gas molecular weig Gas density at STP,	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³ rs	ures 440mm in diameter moisture 2 28.7 (wet)		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, I Gas Flow Paramete Flow measurement	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³ rs	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet)		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C	en installed on the stack which meas sumed to be composed of dry air and sv/v ght, g/g mole kg/m ³ rs	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm)	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, i Gas Flow Paramete	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm) g plane, m/s	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36 309		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at samplin; Volumetric flow rate	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36 309 26		
Comments An exit cone has be The discharge is as: Stack Parameters Moisture content, % Gas molecular weig Gas density at STP, Gas Flow Paramete Flow measurement Temperature, °C Temperature, K Velocity at sampling	en installed on the stack which meas sumed to be composed of dry air and kv/v ght, g/g mole kg/m ³ rs time(s) (hhmm) g plane, m/s e, actual, m ³ /s e (wet STP), m ³ /s	ures 440mm in diameter moisture 2 28.7 (wet) 1.28 (wet) 1140 & 1255 36 309 26 7.1		

Date	26/09/2019	Client	Sell and Parker	
Report	R008184	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Hamish Proust	State	NSW	
Process Conditions	Normal operating conditions for Ham	mer Mill		190909
Isokinetic Results		Res	ults	
isonalie ne ne suns	Sampling time		-1250	
		Concentration	Mass Rate	
		mg/m³	g/min	
Solid Particles		3.7	1.4	
Antimony		<0.009	<0.003	
Arsenic		<0.004	<0.001	
Beryllium		<0.001	<0.0004	
Cadmium		<0.0009	<0.0003	
Chromium		<0.001	<0.0005	
Cobalt		<0.001	<0.0004	
Lead		0.0033	0.0012	
Manganese		<0.004	<0.001	
Mercury		0.0011	0.0004	
Nickel		<0.003	<0.001	
Selenium		<0.009	<0.003	
Tin		<0.004	<0.001	
Vanadium		<0.002	<0.0008	
Type 1 & 2 Substances				
Upper Bound				
Total Type 1 Substances	s	≤0.017	≤0.0065	
Total Type 2 Substances	s	<0.02	<0.009	
Total Type 1 & 2 Substa	nces	≤0.042	≤0.016	
Isokinetic Sampling Parar	neters			
Sampling time, min		64		
Isokinetic rate, %		93		
Velocity difference, %		<1		

3 PLANT OPERATING CONDITIONS

Normal operating conditions for Hammer Mill

4 TEST METHODS

All sampling and analysis will be performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Sampling Method Analysis Method		NATA Accredited	
				Sampling	Analysis
Sample plane criteria	NSW TM-1	NA	NA	✓	NA
Flow rate, temperature and velocity	NA	NSW TM-2	8%, 2%, 7%	NA	✓
Moisture content	NSW TM-22	NSW TM-22	8%	✓	✓
Molecular weight	NA	NSW TM-23	not specified	NA	✓
Solid particles (total)	NSW TM-15	NSW TM-15 ⁺⁺	5%	✓	✓
Total (gaseous and particulate) metals and metallic compounds	NSW TM-12, NSW TM-13, NSW TM-14	Envirolab inhouse Metals-006, Metals-022, Metals-021	15%	~	✓ [‡]
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse Metals-006, Metals-022, Metals-021	15%	✓	√ ‡
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse Metals-006, Metals-022	15%	~	✓‡

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

⁺⁺ Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.

Analysis performed by Envirolab, NATA accreditation number 2901.
 Results were reported to Ektimo on 8 October 2019 in report number 227343.

5 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio, dry or wet basis
~	Approximately
<	Less than
>	Greater than
ž	Greater than or equal to
APHA	American public health association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BSP	British standard pipe
CARB	Californian Air Resources Board
CEM	Continuous Emission Monitoring
CEMS	Continuous Emission Monitoring System
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D ₅₀	'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency ie.
	half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D ₅₀ method
	simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with
	a diameter equal to or greater than the D ₅₀ of that cyclone and less than the D ₅₀ of the preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This
	includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions,
	direction changes or changes in pipe diameter.
DWER	Department of Water and Environmental Regulation (WA)
DEHP	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FTIR	Fourier Transform Infra-red
ISC	Intersociety committee, Methods of Air Sampling and Analysis
ISO	International Organisation for Standardisation
Lower Bound	Defines values reported below detection as equal to zero.
Medium Bound	Defines values reported below detection are equal to half the detection limit.
NA	Not applicable
NATA	National Association of Testing Authorities
NIOSH	National Institute of Occupational Safety and Health
NT	Not tested or results not required
OM	Other approved method
OU	The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the
514	number of dilutions to arrive at the odour threshold (50% panel response).
PM10	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
DNA	10 microns (µm).
PM _{2.5}	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
PSA	2.5 microns (μm).
RATA	Particle size analysis Poloting Accuracy Test Audit
Semi-guantified VOCs	Relative Accuracy Test Audit Unknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the
Semi-quantineu vocs	chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%.
	An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable
	compound in the analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at
511	discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.
ТМ	Test Method
тос	The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its
	derivatives.
USEPA	United States Environmental Protection Agency
VDI	Verein Deutscher Ingenieure (Association of German Engineers)
Velocity Difference	The percentage difference between the average of initial flows and afterflows.
Vic EPA	Victorian Environment Protection Authority
VOC	Any chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a
	corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and
	other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and
	carbonate salts.
XRD	X-ray Diffractometry
Upper Bound	Defines values reported below detection are equal to the detection limit.
95% confidence interval	Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result
	is outside this range.

Address (Head Office) 7 Redland Drive Mitcham VIC 3132

Postal Address 52 Cooper Road Cockburn Central WA 6164

> Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 www.ektimo.com.au ABN 86 600 381 413

REPORT NUMBER R009653

Annual Emission Testing Sell and Parker, Kings Park

www.ektimo.com.au

Document Information

Client Name:	Sell and Parker
Report Number:	R009653
Date of Issue:	4 September 2020
Attention:	Howard Richards
Address:	46 Tattersall Road Kings Park NSW 2148
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

NATA Accredited Laboratory No. 14601

Aaron Davis Client Manager

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Sell and Parker and those granted permission by Sell and Parker. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation. This does not include comments, conclusions or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Template Version; 030620

Table of Contents

1	E	xecutive Summary	4
	1.1	Background	4
	1.2	Project Objectives	
	1.3	Licence Comparison	4
2	F	Results	5
	2.1	EPA 3 – Hammer Mill Stack	5
3	F	Plant Operating Conditions	7
4	Т	est Methods	7
5	C	Quality Assurance/Quality Control Information	7
6	0	Definitions	8

1 EXECUTIVE SUMMARY

1.1 Background

Ektimo was engaged by Sell and Parker to perform emission testing at their Kings Park facility. Testing was carried out in accordance with the requirements of their Environmental Protection Licence 11555.

1.2 Project Objectives

The objectives of the project were to conduct monitoring to quantify emissions from one discharge point to determine whether it was in compliance with Sell and Parker's Environmental Protection licence and the *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 3 – Hammer Mill Stack	21 August 2020	Solid particles
		Metals type 1 and 2 substances

* Flow rate, velocity, temperature and moisture were also determined as per EPL 11555 requirements

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

1.3 *Licence Comparison*

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by:

- The *Protection of Environment Operations (Clean Air) Regulation* 2010; Schedule 4 Standards of Concentration for Scheduled Premises: General Activities and Plant (Group 6).
- the NSW EPA as per licence 11555 (last amended on 24 April 2020).

Monitoring results are summarised in the following table:

Location	Pollutant	Units	POEO Reg Limit (Gp 6)	Environment Protection Licence Limit	Detected values
EPA 3 Hammer Mill	Solid particles	mg/m ³	20	20	<3
	Type 1 substances in aggregate (Sb, As, Cd, Pb, Hg)	mg/m ³	-	-	≤0.015
	Type 1 and 2 substances in aggregate (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, N, Se, Sn, V)	mg/m ³	1	1	≤0.035
	Cadimum (Cd)	mg/m ³	0.2	-	<0.0007
	Mercury (Hg)	mg/m ³	0.2	_	<0.0009

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

2 RESULTS

2.1 EPA 3 – Hammer Mill Stack

Date	21/08/2020	Client	Sell and Parker	
Report	R009653	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Joel Micale-Davi	d State	NSW	
Process Conditions	Normal operating conditions for	or Hammer Mill with expansi	on spray chamber system	
	operational during commission	ning.		200805
Sampling Plane Det				
Sampling plane dim		595 mm		
Sampling plane are		0.278 m²		
Sampling port size,	number	4" BSP (x2)		
Access & height of p	oorts Elevat	ed work platform 20 m		
Duct orientation &	shape	Vertical Circular		
Downstream distur	bance	Exit cone 3 D		
Upstream disturbar	nce	Bend 8 D		
No. traverses & poir	nts sampled	28		
Sample plane comp	liance to AS4323.1	Ideal		
Comments				
An exit cone has be	en installed on the stack which mea	sures 440mm in diameter		
The discharge is as:	sumed to be composed of dry air and	moisture		
Stack Parameters				
Moisture content, %	v/v	2.4		
Gas molecular weig	ht, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP,		1.28 (wet)	1.29 (dry)	
Gas Flow Paramete	~~			
	•			
Flow measurement	time(s) (nnmm)	0945 & 1055		
Temperature, °C		27		
Temperature, K		300		
Velocity at sampling		27		
Volumetric flow rate		7.6		
Volumetric flow rate		6.9		
		6.7		
Volumetric flow rate Mass flow rate (wet		32000		

Date	21/08/2020	Client	Sell and Parker	
Report	R009653	Stack ID	EPA 3 - Hammer Mill	
Licence No.	11555	Location	Kings Park	
Ektimo Staff	Aaron Davis / Joel Micale-David	State	NSW	
Process Conditions	Normal operating conditions for H	lammer Mill with expansion	s pra y chamber system	
	operational during commissionin	g.		200805
	<u>+</u>			
Isokinetic Results		Results		
	Sampling time	0946-1051		
		Concentration mg/m³	Mass Rate g/min	
Solid Particles		<3	<1	
Antimony		<0.007	<0.003	
Arsenic		<0.003	<0.001	
Beryllium		<0.0008	<0.0003	
Cadmium		<0.0007	<0.0003	
Chromium		0.0027	0.0011	
Cobalt		<0.001	<0.0004	
Lead		0.003	0.0012	
Manganese		0.003	0.0012	
Mercury		<0.0009	<0.0004	
Nickel		<0.002	<0.0007	
Selenium		<0.007	<0.003	
Tin		<0.003	<0.001	
Vanadium		<0.002	<0.0007	
Type 1 & 2 Substances				

Type 1 & 2 Substances	
Upper Bound	
Total Type 1 Substances	≤0.015 ≤0.0059
Total Type 2 Substances	≤0.021 ≤0.0084
Total Type 1 & 2 Substances	≤0.035 ≤0.014
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	107
Velocity difference, %	<1

3 PLANT OPERATING CONDITIONS

See Sell and Parker records for complete process conditions.

Low magnesium steels and general black iron were being processed at the time of testing.

4 TEST METHODS

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling Method	Analysis Method	Method Detection Limit	Uncertainty*	NATA Ac	NATA Accredited	
					Sampling	Analysis	
Sample plane criteria	NSW TM-1	NA	NA	NA	✓	NA	
Flow rate, temperature and velocity	NA	NSW TM-2	Location specific	8%, 2%, 7%	NA	~	
Moisture content	NSW TM-22	NSW TM-22	0.1%	8%	✓	~	
Molecular weight	NA	NSW TM-23	not specified	not specified	NA	~	
Solid particles (total)	NSW TM-15	NSW TM-15 ⁺⁺	0.001 g/m ³	5%	~	~	
Total (gaseous and particulate) metals and metallic compounds	NSW TM-12, NSW TM-13, NSW TM-14	Envirolab inhouse Metals-006, Metals- 022, Metals-021	Analyte specific	15%	~	\checkmark^{\ddagger}	
Type 1 substances (Sb, As, Cd, Pb, Hg)	NSW TM-12	Envirolab inhouse Metals-006, Metals- 022, Metals-021	not specified	15%	*	√‡	
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW TM-13	Envirolab inhouse Metals-006, Metals- 022	not specified	15%	~	✓‡	

* Uncertainty values cited in this table are calculated at the 95% confidence level (coverage factor = 2)

- ^{††} Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.
- Analysis performed by Envirolab, NATA accreditation number 2901.
 Results were reported to Ektimo on 1 September 2020 in report number 249772.

5 QUALITY ASSURANCE/QUALITY CONTROL INFORMATION

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APLAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised worldwide.

6 DEFINITIONS

The following symbols and abbreviations may be used in this test report:

Mathematical and the set of the	% v/v	Volume to volume ratio, dry or wet basis
cLess than2Greater than or equal to Greater than or equal to Greater than public health association, Standard Methods for the Examination of Water and Waste Water ASAPHAAmerican public health association, Standard Methods for the Examination of Water and Waste WaterASBritish standard pipCARIDCalifornian Air Resources BoardCARIDContinuous Emission MonitoringCEMContinuous Emission Monitoring SystemCTMContinuous Emission Monitoring SystemDater diameter or equivalent duct diameter for rectangular ductsDater diameter or equivalent duct diameter for rectangular ductsDater diameter or equivalent duct diameter for extangular ductsDecDuct diameter or equivalent duct diameter for system for the system of the system for the system of the system for the forw which may impede accurate flow determination. This in ductes are related by the cyclone and less than the Date of the presentinger NoreDECCDepartment of Swirommet & Elimater Chainty Ordean or dised dampers, louves, bends, connections, luncits in ductes are related by the cyclone and less than the Date of the presentinger NoreDWRRDepartment of Water and Evidence of the flow which may impede accurate flow determination. This inductes control and finas standard for the flow which may impede accurate flow determination. This inductes control and finas standard for standardis (finas dampers, louves, bends, connections, luncits).DWRRDepartment of Water and Evidence for the flow which may impede accurate flow determination. This inductes are related by the cyclone and less than the Da, of the particular acturate flow determination.DWRRDepartment of	~	
> Greater than or equal to APHA American public health association, Standard Methods for the Examination of Water and Waste Water AS Australian Standard BSP British Standard pipe CARB Continuous Emission Monitoring CEMS Continuous Emission Monitoring System CTM Conditional test method D Duct diameter or equivalent duct diameter for rectangular ducts Diameter or equivalent duct diameter for rectangular ducts Description Cut size' of a cyclone defined as the particle dismeter at which the cyclone stage captures all of the particles are related by the cycloce and laf are not and pass through it to the next stage. The Day method simplifies the capture efildency distribution by assuming that a given cyclone stage captures all of the particles are related by the cycloce of the the which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe dameter. DWR Department of Water and Environmental Regulation (WA) DEFP Department of fusionment and Heritage Protection (UD) EA Row obstructor on risking Authorities NTA Fourian of Environment and Heritage Protection (UD) EA Environment Protection Authority <	5	
2 Greater than or equal to APHA American public health association, Standard Methods for the Examination of Water and Waste Water AS Australian Standard pipe CRAB Californian Air Resources Board CRAM Continuous Emission Monitoring CRAM Continuous Emission Monitoring System CTM Conditionuos Emission Monitoring System CTM Conditionuos Emission Monitoring System Divert Construction Construction Monitoring System System Construction Constru		
APPEA American public health association, Standard Methods for the Examination of Water and Waste Water AS Austion Standard BSP British standard pipe CARB Confinna Air Resources Board CEMA Continuous Emission Monitoring CEMA Conditional text method Du Du dimeter or equivalent duct diameter for rectangular ducts Du Cut size' of a cyclone defined as the particle diameter at which the cyclone and lars strough it to the next stage. The D _e method a diameter equivalent duct diameter for rectangular ducts DECC Department of fervironment & Qui ob that cyclone and lars strough it to the next stage. The D _e method is includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or hop diameter. DURR Department of fervironment and Hertage Protection (LD) EA Eaviernment and Hertage Protection (LD)		
A Australian Standard jupe BFP Britis Standard jupe CABB Californian Air Resources Board CEM Continuous Emission Monitoring CEMS Continuous Emission Monitoring System CTM Continuous Emission Monitoring System Demotional test method Duct diameter or equivalent duct diameter for rectangular ducts Date: Duct diameter or equivalent duct diameter for rectangular ducts Date: California Air Resources during different distribution by assuming that a given cyclone schieves a SO% collection efficiency distribution by assuming that a given cyclone stage captures al of the particles with a given cyclone schieves a SO% collection efficiency distribution by assuming that a given cyclone distribution by assuming that a given cyclone distribution that a given cyclone distribution by assuming that a given cyclone distribution by assuming that a given cyclone distribution that a given cyclone distribution by assuming that a given cyclone distribution cyclone canders in proceeding cyclone. Defecc Department of Carinaro Lange (NSW) Distrubance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifician fram, suail fars, partially closed or closed dampers, lownes, bends, connections, junctions, direction changes or changes in pipe diameter. Distrubance A flow obstruction or instability. In the direction (RAN) Distrubance A flow obstruction or instability. Regultal Regultal NAN) Distrubance A flow obstruba		•
isse British standard pipe CABB Califormia AIr Resources Doard CEMS Continuous Emission Monitoring System CEMS Continuous Emission Monitoring System CTM Conditional test method Dia Duct diameter or equivalent duct diameter for rectangular ducts Dia Cut size' of a cyclone defined as the particle diameter at which the cyclone schelers as 50% collection efficiency ite, and and ess thomat the Day of the particles are related by the cyclone and haff are not and pass through it to the next stage. The Dumethod is implifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles are related by the cyclone and haff are not and pass through it to the next stage. The Dumethod is includes centrifugal fans, avail fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction of the flow which may impede accurate flow determinaton. This includes centrifugal fans, avail fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction at the flow which may impede accurate flow determinaton. This includes centrifugal fans, avail fans partially closed or closed dampers, louvres, bends, connections, junctions, direction at the direction of the flow which may impede accurate flow determinaton. This includes centrifugal fans, avail fas, partially closed or closed dampers, louvres, bends, connections, junctions, direction at the flow stage of a cyclosed dampers, louvres, bends, connections, junctions, direction at the flow detection at the direction of the flow detection flow. Distrubarden Defines values reported below detecti		
CABBCalifornia Air Resources BoardCEMContinuous Emission MonitoringCEMSContinuous Emission Monitoring SystemCTMContinuous Emission Monitoring SystemDesDuct diameter or equivalent duct diameter for rectangular ductsDesCut size of a cyclone defined as the garticle diameter at which the cyclone achieves a 50% collection efficiency (istribution by assuming that a given cyclone stage captures all of the particles are retained by the cyclone and haff are not and pass through it to the next stage. The D _{are} method simplifies the capture efficiency (istribution by assuming that a given cyclone stage captures all of the particles are retained by the cyclone and less than the D _a of the preceding cyclone.DECCDepartment of Environment A Ginate Change (NW)DisturbanceA flow obstruction or it not stability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, avail fans, partially closed or closed dampers, lowres, bends, connections, junctions, direction changes in pice diameter.DWERDepartment of Environment and Heritage Protection (QLD)EPAEnvironment Trotection AuthorityFTRFourier Transform Infra-redISCIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods I Saty and HealthNTNot tapplicableNATANational Institute of Occupational Safety and HealthNTNot tapplicableNATANational Association of Testing Authoriti		
CEMContinuous Emission Monitoring SystemCEMSConditional test methodDDuct diameter or quivalent duct diameter for rectangular ductsD_aConditional test methodD_aConditional test methodD_aConditional test methodD_aConditional test methodD_aConditional test methodD_aConditional test methodD_aConditional test and pass through it to the next stage. The D_a methodD_amethodDain test and and antibrough to the next stage. The D_a methodD_BisturbanceA flow obstruction or greater than the D_a of that cyclone and plats through it to the next stage.DECCDepartment of Environment 1 Regulation (WA)DisturbanceA flow obstruction or instability in the dimension. This includes centrifugal fans, partially closed or closed dampers, lowres, bends, connections, junctions, direction charges or charge input dimenset.DWERDepartment of Mater and Environmental Regulation (WA)DEFPDepartment of Materiand Environmental Regulation (WA)DERPDepartment of Environment fan diversition of CostandardistionIOMEDefines values reported below detection are equal to half the detection limit.MATANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTANot tapplicabileNMTA <td< td=""><td></td><td></td></td<>		
EMSContinuous Emission Monitoring SystemCTMContinuous Est methodDueDuct diameter or equivalent duct diameter for rectangular ductsDueStatisford a presented offend as the particle diameter at which the cyclone achieves a 50% collection efficiency (i.e.half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The Due methodsimplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles withDECCDepartment of Environment & Climate Change (NSW)DisturbanceA flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centribugal fans, asial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction thangs or othenges in pipe diameter.DWERDepartment of Environment and Heritage Protection (QLD)EPAEnvironment Protection AuthorityFTIREnvironment Protection AuthorityFTIREnvironment Protection are equal to zero.Medium BoundDefines values reported below detection are equal to the detection limit.NATANational Association of Testing AuthoritiesNIGSHNational Association of resting AuthoritiesNIGSHNational Association or resting AuthoritiesN		
CTM Conditional test method D Duct diameter or quivalent duct diameter for rectangular ducts Do_s 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency is Deb 'Cut size' of a cyclone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency is DECC Department of Environment & Climate Change (NSW) Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centritigal fras, sixal fans, partially cised or closed dampers, louves, bends, connections, junctions, direction changes or changes in pipe diameter. DWER Department of Environment and Heritage Protection (QLD) PEPA Environment Pactimatel Regulation (WA) DEFA Environment Pactimatel Regulation (WA) DEFA Environment Pactimate Regulation (WA) DEVER Department of Environment As Climate Regulation (WA) DEVER Department of Standardisation Lower Bound Defines values reported below detection as equal to zero. Medium Bound Defines values reported below detection as equal to zero. Medium Bound Decupation Bastitic addition as equal to zero. Not supplicable National Association of Testi		-
D Duct diameter or equivalent duct diameter for rectangular ducts D ₂₉ Cut size of a cylone defined as the particle diameter at which the cyclone achieves a 50% collection efficiency is half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D ₂₉ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D ₂₀ of the tyclone and less than the D ₂₀ of the preceding cyclone. Stage captures all of the obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, lowres, bends, connections, junctions, direction changes or changes in pipe diameter. DWER Department of Water and Environmental Regulation (WA) DEFP Department of Water and Environmental Regulation (WA) DEFR Environment Protection Authority FTIR Fourier Transform Infra-red ISC Intersociety committee, Methods of Air Sampling and Analysis ISO Intersociety committee, Methods of Air Sampling and Analysis ISO Intersociety committee, Methods of Air Sampling and Analysis ISO Intersociety committee, Methods of Air Sampling and Analysis ISO Intersociety committee, Methods of Air Sampling and Analysis ISO Interesociety committee, Methods of Air Sampling and Analysis		
Dase Name'Cut size' of a cyclone defined as the particle diameter at which the cyclone calibres a 50% collection efficiency i.e. b and the cyclone and less than the Dase of the cyclone and less the dapers, louves, bends, connections, junctions, and tertiage Protection (ULD)DEVERDepartment of Vater and Evironmental Regulation (WA) DEPADEVERDepartment of Cyclene And Jess of Air Sampling and AnalysisISCInternational Organisation for Standardisation Louver BoundDefines values reported below detection as equal to balf the detection limit. NANANot applicableNATANational Institute of Cyclenean dia Sets y and Health OULNTNot tested or results not requiredOMOther safters equal to balf the odyclenean dia set and organismic diameter of less than approximately 10 micros (jm).PMaAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 micros (jm). <t< td=""><td></td><td></td></t<>		
half of the particles are retained by the cyclone and half are not and pass through it to the next stage. The D _w methodDECCDepartment of Environment & Climate Change (NSW)DECCDepartment of Environment & Climate Change (NSW)DisturbanceA flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.DWERDepartment of Twironment al Regulation (WA)DEFPDepartment of trivronment and Heritage Protection (QLD)EFAEnvironment rotection AuthorityFTIRFourier Transform Infra aredISCIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisINOSHNational Institute of Occupational aredisationNATANot applicableNATANot applicableNATANot applicableOUThe number of dooru units per unit of volume. The numerical value of the odour concentration is equal to the number of diudro starive at the dooru threshold (50% panel response).PMaeAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately L0 microns (µm).PSAParticle size analysisSTICUnknown VOCS (those not matching a standard companud), are identified by matching the mass spectrum of the chromaber and prospin cess to the NIST Standard Reference Datasee (version 14.0), with a match qualit		
simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a dimeter equal to or greater than the D ₁₀ of the tycohe and less than the D ₁₀ of the type ceding cyclone.DECCDepartment of Environment & Climate Change (NSW)DisturbanceA flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugi fans, axial flams, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.DWERDepartment of Vater and Environmental Regulation (WA)DEHPDepartment of Vater and Environmental Regulation (WA)DEFAEnvironment Protection AuthorityFTIRFourier Transform Infra-redISCInternociety committee, Methods of Air Sampling and AnalysisISOInternational Organisation for StandardisationLower BoundDefines values reported below detection are equal to haff the detection limit.NATANational Association of Testing AuthoritiesNIOSHNational Association of Testing AuthoritiesNIOSAtmospheric suspeed aparticulate matter havi	50	
a diameter equal to or greater than the D ₂₀ of that cyclone and less than the D ₂₀ of the preceding cyclone.DECCA flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.DWERDepartment of Invironment al Regulation (WA)DEHPDepartment of Invironment al Regulation (WA)EPAEnvironment Trotection AuthorityFTIRFourier Transform Infra-redISCIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and A		
DECC Department of Environment & Climate Change (NSW) Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter. DWER Department of Environmental Regulation (WA) DEHP Department of Environmental Regulation (WA) DEIP Department of Environmental Regulation (WA) FTR Fourier Transform Infra-red ISC Internocitety committee. Methods of Air Sampling and Analysis ISO Internocitety committee. Methods of Air Sampling and Analysis ISO Internocitety committee. Methods of Air Sampling and Analysis ISO Internocitety committee. Methods of Air Sampling and Analysis ISO Internocitety committee. Methods of Air Sampling and Analysis ISO Internocitety comparisation for Standardisation Lower Bound Defines values reported below detection as equal to zero. Modium Bound Defines values reported below detection as equal to zero. NOT Not tested or results not required OM Other sapproxed method OU The number of dodour units part unit of volume		
DisturbanceA flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, savial fans, partially closed or closed dampers, lowres, bends, connections, junctions, direction changes or changes in pipe diameter.DWERDepartment of Water and Environment Regulation (WA)DEHPDepartment Protection AuthorityFTREnvironment Protection AuthorityFTREnvironment Protection AuthorityIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISODefines values reported below detection as equal to zero.Medium BoundDefines values reported below detection are equal to half the detection limit.NANational Institute of Occupational Safety and HealthNTNational Institute of Cocupational Safety and HealthNTNot estad or results not requiredOMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the dour concentration is equal to the number of dilutions to arrive at the dour threshold (S0% panel response).PMasRatrospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PMasRelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (Kobes not matching a standard compound), are identified by matching the mass spectrum of the An estimated concentration and anakytical calibration standardSPASandard temperature and pressure. Gas	DECC	
includes centrifugal fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction charges or changes in pipe diameter.DWERDepartment of Environment and Heritage Protection (QLD)DEHPDepartment of Environment and Heritage Protection (QLD)FTRFourier Transform Infra-redISCInternational Organisation for StandardisationLower BoundDefines values reported below detection are equal to half the detection limit.NATANot applicableNATANot applicableNATANational Association of Testing AuthoritiesNIOSHNational Association of Testing AuthoritiesNIOSNational Association of Testing AuthoritiesNIONNot tested or results not requiredOUThe number of dilutions to arrive at the odour threshold (S0% panel response).PMaAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximatelyPSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOC	Disturbance	
direction changes or changes in pipe diameter.DWERDepartment of Water and Environmental Regulation (WA)DEHPDepartment of Environment and Heritage Protection (QLD)EPAEnvironment Protection AuthorityFTIRCourier Transform Infra-redISCIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISODefines values reported below detection as equal to zero.Medium BoundDefines values reported below detection as equal to zero.NATANot applicableNATANational Institute of Occupational Safety and HealthNTTNot estated or results not requiredOMOther approved methodOUThe number of dodur units per unit of volume. The numerical value of the odour concentration is equal to the number of fluctions to arrive at the dodur threshold (S0K panel response).PMasAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PAtsaRelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (Hose not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard deference Datase (version 14.0) with a match quality exceeding 70%. A nestimated concentration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at derivatives. <td></td> <td></td>		
DVERDepartment of Water and Environmental Regulation (WA)DEHPDepartment of Environment and Heritage Protection (QLD)EPAEnvironment Protection AuthorityFTIRFourier Transform Infra-redISCIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisNOMDefines values reported below detection are equal to half the detection limit.NANot applicableNATANational Institute of Occupational Safety and HealthNTNot tested or results not requiredOUThe number of dodur units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (S0% panel response).PMaAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately to micros (um).PVacSimicro (Sumplicable)PSAParticle size analysisRATARelative Accuracy Test AduitSemi-		
DEHPDepartment of Environment and Heritage Protection (QLD)EPAEnvironment Protection AuthorityFTIRFourier Transform Infra-redISCIntersociety committee, Methods of Air Sampling and AnalysisISOInternational Organisation for StandardisationLower BoundDefines values reported below detection as equal to zero.Medium BoundDefines values reported below detection are equal to half the detection limit.NANot applicableNATANational Association of Testing AuthoritiesNIOSHNational Institute of Occupational Safety and HealthNTNot tested or results not requiredOMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (So% panel response).PMaoAtmospherics usepneded particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PMaoEleitve Accuracy Test AuditSami-quantified VOCsUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the compound in the analytical calibration standard mixture.STPSandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, An estimated concentration will be determined by matching the integrated area of the pask with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, An estimated concentration will be determined by ma	DWER	
EPAEnvironment Protection AuthorityFTIRFourier Transform Infra-redISCIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOIntersociety committee, Methods of Air Sampling and AnalysisISOInternational Organisation for StandardisationLower BoundDefines values reported below detection as equal to zero.Medium BoundNot applicableNAANational Association of Testing AuthoritiesNIOSHNational Institute of Occupational Safety and HealthNTNot tested or results not reguliredOMOther approved methodOUThe number of dour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PX2.5Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic paek to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. A restimated concentration will be determining the integrated area of the peak with the nearest suitable compound in the analytical calibration	DEHP	
ISCIntersociety committee, Methods of Air Sampling and AnalysisISOInternational Organisation for StandardisationISOInternational Organisation for StandardisationLower BoundDefines values reported below detection as equal to zero.Medium BoundDefines values reported below detection as equal to half the detection limit.NANot applicableNATANational Association of Testing AuthoritiesNIOSHNot tested or results not reguliredOMOther approved methodOUThe number of doour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PMasAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately a.10 microns (µm).PMasAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately a.2.5 microns (µm).PMasAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately a.2.5 microns (µm).PMasAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately a.2.5 microns (µm).PSARelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Meterence Database (version 14.0), with a match quality exceeding 70%. A ne stimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibrati	EPA	
ISOInternational Organisation for StandardisationLower BoundDefines values reported below detection as equal to zero.Medium BoundDefines values reported below detection as equal to haft the detection limit.NANot applicableNATANational Association of Testing AuthoritiesNIOSHNational Institute of Occupational Safety and HealthNTNot tested or results not requiredOMOther approved methodOUThe number of dolur units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PMaoAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PMazsAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0.0, with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration aden absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon wh	FTIR	Fourier Transform Infra-red
Lower BoundDefines values reported below detection as equal to zero.Medium BoundDefines values reported below detection are equal to half the detection limit.NANot applicableNATANational Association of Testing AuthoritiesNIOSHNational Institute of Occupational Safety and HealthNTNot tested or results not requiredOMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PM25Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest sultable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its d	ISC	Intersociety committee, Methods of Air Sampling and Analysis
Medium BoundDefines values reported below detection are equal to half the detection limit.NATANota papicableNATANational Association of Testing AuthoritiesNIOSHNational Institute of Occupational Safety and HealthNTNot tested or results not requiredOMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM25Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.VEPAUnited States Environmental Protection Agency </td <td>ISO</td> <td>International Organisation for Standardisation</td>	ISO	International Organisation for Standardisation
NANot applicableNATANational Association of Testing AuthoritiesNIOSHNational Institute of Occupational Safety and HealthNTNot tested or results not requiredOMOther approved methodOUThe number of dolur units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM25Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PM25Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle Size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. A nestimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at diskrage oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited St	Lower Bound	Defines values reported below detection as equal to zero.
NATANational Association of Testing AuthoritiesNICSHNational institute of Occupational Safety and HealthNTNot tested or results not requiredOMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (S0% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM25Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.ITMTest MethodUSEPAUnited States Environmental Protection Agency VOCVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Victorian Environment Protection Agency VOCVictorian Environment	Medium Bound	Defines values reported below detection are equal to half the detection limit.
NIOSHNational Institute of Occupational Safety and HealthNTNot tested or results not requiredOMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM25Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (thoos not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. A n estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Victorian Environment Protection AuthorityVOCVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a carbonati	NA	Not applicable
NTNot tested or results not requiredOMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM:0Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM2:5Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictoria Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may conta	NATA	National Association of Testing Authorities
OMOther approved methodOUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM2.5Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. A nestimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.VDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceVictorian Environmental Protection AgencyVDIVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compoun	NIOSH	National Institute of Occupational Safety and Health
OUThe number of odour units per unit of volume. The numerical value of the odour concentration is equal to the number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PM2.5Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)VOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a orresponding volatily under the particular conditions of use. These compounds and the particular conditions of use. These compounds and the particular conditions of use. These compounds and the relements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDXray DiffractometryVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa a	NT	Not tested or results not required
PM10number of dilutions to arrive at the odour threshold (50% panel response).PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM2.5Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCSUnknown VOCS (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)VOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon moxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.VDCAny chemical compound based on carbon w	OM	Other approved method
PM10Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 10 microns (µm).PM25Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknow NOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.VDIVerein Deutscher Ingenieure (Association of German Engineers)VDIVictorian Environment Protection AgencyVDIVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalDefines values reported below detection are equal to the detection limit.SRDX-ray Diffractometry	OU	The number of odour units per unit of volume. The numerical value of the odour concentration is equal to the
10 microns (µm).PM2sAtmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic FPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon winth a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.VRDX-ray DiffractometryUpper BoundDefines val		number of dilutions to arrive at the odour threshold (50% panel response).
PM2:5Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately 2.5 microns (µm).PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are e	PM10	Atmospheric suspended particulate matter having an equivalent aerodynamic diameter of less than approximately
 2.5 microns (µm). PSA Particle size analysis RATA Relative Accuracy Test Audit Semi-quantified VOCs Unknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture. STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified. TM Test Method TOC The sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives. USEPA United States Environmental Protection Agency VDI Verein Deutscher Ingenieure (Association of German Engineers) Velocity Difference The percentage difference between the average of initial flows and afterflows. Vic EPA Victorian Environment Protection Authority VOC Any chemical compound based on carbon winth a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts. XRD X-ray Diffractometry Upper Bound Defines values reported below detection are equal to the detection limit. 95% confidence interval 		10 microns (μm).
PSAParticle size analysisRATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Victorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that	PM _{2.5}	
RATARelative Accuracy Test AuditSemi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result <td></td> <td>2.5 microns (μm).</td>		2.5 microns (μm).
Semi-quantified VOCsUnknown VOCs (those not matching a standard compound), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result	PSA	
chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result	RATA	•
An estimated concentration will be determined by matching the integrated area of the peak with the nearest suitable compound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result	Semi-quantified VOCs	
STPcompound in the analytical calibration standard mixture.STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
STPStandard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0°C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
Mischarge oxygen concentration and an absolute pressure of 101.325 kPa, unless otherwise specified.TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
TMTest MethodTOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result	STP	
TOCThe sum of all compounds of carbon which contain at least one carbon to carbon bond, plus methane and its derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
derivatives.USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
USEPAUnited States Environmental Protection AgencyVDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result	TOC	
VDIVerein Deutscher Ingenieure (Association of German Engineers)Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
Velocity DifferenceThe percentage difference between the average of initial flows and afterflows.Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
Vic EPAVictorian Environment Protection AuthorityVOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
VOCAny chemical compound based on carbon with a vapour pressure of at least 0.010 kPa at 25°C or having a corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
 corresponding volatility under the particular conditions of use. These compounds may contain oxygen, nitrogen and other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts. XRD X-ray Diffractometry Upper Bound Defines values reported below detection are equal to the detection limit. 95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result 		·
other elements, but specifically excluded are carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result	VUC	
carbonate salts.XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
XRDX-ray DiffractometryUpper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
Upper BoundDefines values reported below detection are equal to the detection limit.95% confidence intervalRange of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result	מפע	
95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result		
is outside this fange.	5570 connuence inter Vdl	
		is outside this range.

Address (Head Office) 7 Redland Drive Mitcham VIC 3132

Postal Address 52 Cooper Road Cockburn Central WA 6164

> Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 www.ektimo.com.au ABN 86 600 381 413