Sustainable Irrigation Management Plan V16

Prepared for Veolia Environmental Services (Australia) Pty Ltd

Under direction of Raymond Choy. Jordan Gavel and Ines Fernandez

Prepared by

Dr Peter Bacon CPSS, CEnvP, CPSEC, Principal Natural Resource Scientist Woodlots and Wetlands Pty Ltd 220 Purchase Road, Cherrybrook, 2126 NSW

Consultancy	Veolia Environmental Services (Australia) Pty Ltd				
request	Under direction of				
	Raymond Choy, Jordan Gavel and Ines Fernandez				
Prepared By	Woodlots & Wetlands Pty Ltd				
	220 Purchase Road				
	Cherrybrook NSW 2126				
	Mobile: 0427905440				
	E mail:				
	woodlots3@bigpond.com				
Date Issued	6 May 2025				
Document File	Sustainable Irrigation Management Plan V17				
name					
Document	Sustainable Irrigation Management Plan				
Title					
Document	Peter Bacon				
Registered By	Principal Consultant				

Document Registration

Copyright ®

This Sustainable Irrigation Management Plan has been prepared for the express benefit of Veolia Pty Ltd to provide a viable plan to utilise excess treated leachate to irrigate lands at the Woodlawn Operations Site.

It is Copyright and time and site specific and must not be used for any other purpose.

The assistance of Raymond Choy, Jordan Gavel and Ines Fernandez is gratefully appreciated.

The anticipated permeate attributes were provided by Paul Mcparland

EXECUTIVE SUMMARY

The Veolia Woodlawn Operations Site processes over 40% of Sydney's 'red' bin waste. The treatment process results in excess water that leaches out of the processed product.

The treated leachate water contains elevated concentrations of sodium, chloride, nutrients and potentially toxic elements and compounds. It requires major reductions in salinity, the concentrations of nutrients and the concentrations of potentially toxic elements before the water can be safely returned to the environment.

It is proposed to use a double Reverse Osmosis (RO) process to remove a proportion of the contaminants¹. The feed water is pressurised and is forced through a semi permeable membrane. This process will produce water (hereafter referred to as permeate) that is suitable for pasture irrigation. The retentate that does not cross the semi permeable barrier consists of water with an increased contaminant load.

Table 1 shows the anticipated double Reverse Osmosis permeate attributes.

Table 1. The typical attributes of the double RO permeate and their compliance
compared with ANZG (2023a) long term irrigation threshold values.

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
рН	pH Units	>6.5		within range of 5 to 9	The 5 to 9 pH range helps prevent corrosion and fouling of irrigation equipment
Escherichia coli	CFU/ 100mL	0.002			Not an issue as no human contact is proposed.
Thermotolerant Coliforms	CFU/100 mL	0.002			Not an issue as no human contact is proposed.
Electrical Conductivity	µS/cm	600	Low and not an issue	Low and not an issue	OK for irrigation (0.6 dS/m or 384 mg/L of total dissolved solids ('salt')
Total dissolved solids	mg/kg	384			See above

¹ This is the same process used at Kurnell to produce potable water for Sydney from seawater.

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
Phosphorus - Total	mg/L	0.35	Up to 12	0.05	To minimise clogging of irrigation equipment only. 0.5mg/L in 1.83 ML of permeate irrigation /ha/y is 0.9 kg/ha/y. A typical 12 T/year Perennial pasture will accumulate 36 kg P/ha/y NSW Agriculture 1997). So, the permeate will supply <3% of the anticipated demand.
Total Nitrogen in water	mg/L	60	<125	<5	A perennial ryegrass pasture will accumulate an indicative 420 kg/ha/y of Nitrogen.(NSW Agriculture (1997). Applying 183 mm/year containing 60 mg/L N will supply 110 kg/ha/y of N. This is 26% of the pasture N demand.
Ammonia as N in water (operational max based on repeated sampling)	mg/L	0.10			Ensure there is no permeate runoff to streams. See above comment in relation to total N being 26% of pasture demand.
Nitrate as N in water (operational max based on repeated sampling)	mg/L	50			Ensure there is no permeate runoff to streams. See above comment in relation to total N being 26% of pasture demand.
Nitrite as N in water (operational max based on repeated sampling)	mg/L	11.25 ug/L			ОК
Sodium Adsorption Ratio	-	?	Water with an SAR>6 AND salinity <600 uS/cm can create structurally	Add dissolved Calcium to the permeate	Check soil Exchangeable Na % every 3 years. Add 5T/ha of gypsum to the soil if Exch Na%>5%.

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
			unstable soil following irrigation.		
Arsenic-Dissolved	µg/L	3.2	20000	100	OK
Aluminium-Dissolved	µg/L	20	20000	5000	OK for irrigation. Ensure that there is no permeate runoff.
Aluminium-Total	µg/L	24	20000	5000	OK for irrigation
Antimony-Dissolved	µg/L	0.8			OK for irrigation
Boron-Dissolved	µg/L	340	750 to 1500	500	OK for short term irrigation. Raising the soil pH to>7 and increase to soil organic matter content will increase sorption of B.
Cadmium-Dissolved	µg/L	<0.1	50	10	OK for irrigation
Calcium - Dissolved	mg/L	0.52			
Calcium - Total	mg/L	1.2			
Cobalt-Dissolved	µg/L	0.94	100	50	OK for irrigation
Copper-Total	µg/L	1.7	5000	200	OK for irrigation
Copper-Dissolved	µg/L	<1	5000	200	See above
Fluoride, F	mg/L	0.014	2	1	OK for irrigation
Lead-Dissolved	µg/L	0.24			
Lead-Total	µg/L	1.2	5000	2000	OK for irrigation
Manganese- Dissolved	µg/L	2.5			
Manganese-Total	µg/L	16	10000	200	OK for irrigation
Mercury-Dissolved	µg/L	0.005			
Mercury-Total	µg/L	0.005	2	2	OK for irrigation
Molybdenum- Dissolved	µg/L	0.1			
Molybdenum-Total	µg/L	0.13	50	10	OK for irrigation
Nickel-Dissolved	ug/L	3			
Nickel-Total	µg/L	3	2000	200	OK for irrigation
Selenium-Total	µg/L	0.1	50	20	OK for irrigation
Sodium - Dissolved	mg/L	18			OK for irrigation
Sodium - Total	mg/L	25			OK for irrigation
Vanadium-Dissolved	µg/L	<4			
Vanadium-Total	µg/L	1	500	100	OK for irrigation
Zinc-Total	µg/L	120	5000	2000	OK for irrigation
Zinc-Dissolved	µg/L	21			No runoff of permeate to local streamlines.

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
Free Chlorine	mg/L	0			Chlorine reacts with organic matter and is inactivated. The combination of pasture biomass and organic matter in soils will rapidly inactivate the chlorine so that it is not an issue.
Total Chlorine	mg/L	0.1			Not an issue

Based on the above results, it is reasonable to conclude that based on the chemicals tested, the double RO permeate is suitable for pasture irrigation.

The proposal

Veolia initially wish to apply the double RO permeate onto 16.8 ha of paddock to the west of their effluent ponds. A critical issue is how much irrigation can occur without salinisation or increased contaminant loss to the environment.

The double RO water attributes of the permeate also meet the ANZG (2023a) Irrigation Guidelines. The water is 'non-saline' so the risk of salinisation of the site, the groundwater or local streams is negligible. Further, the predicted annual irrigation rate is 183 mm/year (1.83ML/ha/y). This is less than the difference between average annual rainfall and the potential evapotranspiration (709 mm rainfall, and potential evapotranspiration (FAO 56). Of 1056 mm or a moisture deficit of 347 mm/year).

The proposed irrigation areas are on low hills. The geology is largely volcanic, with some surface rocks being metamorphosed siliceous bedrock (see Espade v2.2).

The initial development will be concentrated in area 2 within the NW portion of the Veolia Property. See Woodlots and Wetlands (2023).

A series of irrigation models were examined to address the impacts. These were then assessed to determine the most suitable strategy.

The difference between average annual rainfall and actual evapotranspiration is low (<1mm/day on average). In the typical winter there is only a small difference between potential evapotranspiration and rainfall. A fixed deficit irrigation, say 10mm trigger, does not 'work' under these conditions.

The recommended irrigation strategy is therefore to apply a small quantity of irrigation (0.5 mm) each day when the predicted rainfall is <10mm. The 10mm irrigation cutoff threshold for predicated rainfall is less than the rainfall runoff threshold of 17mm/day (USDA model). See Appendix 2 for MEDLI Model outputs.

The irrigation is to be applied via fixed sprinklers. A total of 16.8 ha of irrigation is expected to be installed in the first phase. Assuming 0.5 mm/day irrigation the volume of permeate required is 84.6 cubic m/day. This is a 24 hr flow rate of 0.97 L/sec. A 2 L/sec design flow would be provided in approximately 12 hrs. If the average daily irrigation was applied as per the modelling, the annualised rate would be 30.7 ML/y.

The recommended model has 12 days/year when irrigation will not occur due. Note that in summer, the irrigation rate can be doubled to 1mm/day on 12 dry warm days to 'make up' for the 12 days/ average year with zero irrigation. The total application rate would be still be 183 mm/year.

Water balance component	Zero irrigation	0.5mm/day if <10 mm of rain predicted	Change (mm/y)
Rainfall (1980 to 2023) mm/y	703	703	0
Permeate irrigation mm/y	0	183	+183
Soil evaporation. mm/y This assumes a thick pasture cover	0	0	0
Evapotranspiration mm/y	593	798	+205
Rainfall runoff mm/y	21	21	0
Irrigation runoff mm/y	0	0	0
Deep drainage mm/y	91	186	+95
Average available water (mm)	40	58	+18

Table 2. The water balance components with and without 183 mm of permeate irrigation in the average year.

The proposed irrigation protocols had no increase in surface runoff as table 2 shows. However deep percolation was increased from 91 mm/year without irrigation, to 186 mm/year for a scenario of 0.5 mm/day of permeate unless there was at least 10mm of rainfall predicted.

The key result from permeate irrigation is a 205mm/y increase in evapotranspiration and 95 mm/year increase in deep percolation. The average available water content increased from 40 mm to 58 mm.

The MEDLI modelling shows there is no accumulation of 'salt' anywhere in the profile. The reasons for this are that the soils are non - saline and there is a low concentration of salt in the permeate compared with typical Australian Irrigation Water. (see data in table 1, above).

Salt addition due livestock

Cows typically consume some 40 gm of 'salt' a day from salt licks and from stock watering points (Duran, 2020). Assuming 1 beast/ha and 90% of the 'salt' is lost in urine, faeces and sweat, the site will receive some 36 gm/ ha/day of dissolved 'salt'. This is equivalent to 13 kg/ha/y of 'salt'.

Salt addition via rainfall and dust

The MEDLI Model estimated salt addition via rainfall and dust to be 134 kg/ha/y (see MEDLI Model output in Appendices 2 and 3).

Total salt balance

The salt balance components are: Rainfall (134 kg/ha/y) PLUS Irrigation (702 kg/ha/y) PLUS stock watering and salt licks (13 kg/ha/y)

That is, an annual salt addition of 847 kg/ha/y of which 83% comes from the irrigated double RO permeate. See table 3.

Some buffer storage will be needed to ensure the supply of irrigation water can keep 'pace' with the irrigation demand of the proposed system.

The current MEDLI Model was used to assess salinisation. According to model outputs in Appendix 2, salinity is not an issue. Table 3 shows the salt balance components of irrigated and non-irrigated lands.

Table 3. Water, nutrient and salt balance components with and without the proposed irrigation regime 0.5 mm/day if there is <10mm of rain predicted). The anticipated salinity of the permeate is 600 uS/cm. See tables above. Data set : 1970 to 2021. Date Source: MEDLI model output in appendices 2 and 3.

Component (All in mm/y unless specified).	Zero irrigation	0.5 mm irrigation each day when the predicted rainfall is <10mm. Annual average irrigation is 1.83 ML/ha
Salt load (kg/ha/y) Assumes a permeate salinity of not more than 0.6 dS/m (or 600 uS/cm).	134 (in rainfall) PLUS Grazing animal	134 (in rainfall) PLUS Grazing animal addition (13 kg/ha/y)
Salt concentration is 384 mg/L (assuming 1000 uS/m= 640 mg/L of salt).	addition (13 kg/ha/y) =146 kg/ha/y.	PLUS Irrigation (1.83 mm/y, is 702 kg/ha/y) =850 kg/ha/y.
Nitrogen load (kg/ha/y) based on 60 mg/L and 183mm/year	<1	A perennial ryegrass pasture will accumulate an indicative 420 kg/ha/y of Nitrogen (NSW Agriculture (1997). Applying 183 mm/year containing 60 mg/L N will supply 110 kg/ha/y of N. This is 26% of the pasture N demand.
Phosphorus load (kg/ha/y Based on 0.5 mg/L and 183 mm/year	<0.1	0.5mg/L in 1.83 ML of permeate irrigation /ha/y is 0.9 kg/ha/y. A typical 12 T/ha/year Perennial pasture will accumulate 36 kg P/ha/y (NSW Agriculture 1997). So, the permeate will supply 3% of the anticipated demand.

The proposed irrigation regime increased transpiration by 205mm. Run off change is minimal (4mm additional loss in the average year). Note that the MEDLI modelling, below in Appendix 2, shows there is no prediction of phosphorus or nitrogen accumulation in the soil profile. Applying 183 mm/year containing 60 mg/L N will supply 110 kg/ha/y of N. This is 26% of the pasture N demand (420 kg N/ha/y, see table 3). The phosphorus application rate is 1 kg/ha/y (0.5mg/L*1.83 ML/ha/y), or <3% of the pasture demand for phosphorus.

That is, the contribution of the nitrogen and phosphorus in the irrigated permeate applied to the pasture will make a positive contribution to the pasture's nutrient demand. The pasture should be foraged harvested to ensure the demand is maintained in the long term.

Permeate irrigation increased salt load by 702 kg/ha/y. Over the 16.8 ha of irrigation, this is equivalent to approximately 0.145% of the salt load added to the Lake George Catchment in rainfall. That is, the proposed irrigation regime will have virtually no impact on the catchment salt load. Further, the MEDLI Modelling predicts that there will be little, if any, salt accumulation in the soil. Consequently, there is no impact of salt on pasture growth, and therefore none on pasture evapotranspiration rate.

Is the sodium concentration in the irrigation water 'toxic' to agricultural plants?

Sensitive <115	Moderately sensitive 115-230	Moderately tolerant 230-460	Tolerant >460
Almond	Pepper	Barley	Cauliflower
Apricot	Potato	Maize	Cotton
Citrus	Tomato	Cucumber	Sugarbeet
Plum		Lucerne	Sunflower
Grape		Safflower	
		Sesame	
		Sorghum	

 Table 4. Sodium concentration (mg/L) causing foliar injury in crops of varying sensitivity

^a After Maas (1990)

Table 1 shows that the predicted sodium concentration is approximately 25 mg/L. Table 4 shows that the most sensitive crops require sodium concentrations to be less than 115 mg/L to avoid foliar injury. That is, the predicted sodium concentration is less than 22% of the injury threshold for the most sensitive agricultural crops.

Rhodes (1992) identified various water classes based on salinity. Water with an electrical conductivity of less than 700 uS/cm is non saline. Table 1 shows that the salinity of the double RO water is predicted to be 600 uS/cm at 25°C. This is some 86% of the upper threshold for non saline water. The water is non-saline.

Forage harvesting will be essential to maintain pasture growth and evapotranspiration. External fertiliser will be needed to maintain satisfactory growth.

Contents

Е	xecutive summary	3
	The proposal	6
	Salt addition due livestock	7
	Salt addition via rainfall and dust	7
	Total salt balance	8
	Is the sodium concentration in the irrigation water 'toxic' to agricultural plants?	9
1.	BACKGROUND	. 12
	The project	. 12
	References consulted	. 12
	Report author	. 13
2	THE PROPOSED PERMEATE PRODUCTION RATES	. 14
	Reverse osmosis process	. 14
	RO production rates	. 14
	Permeate quality	. 14
	Potential for changes in the RO permeate quality	. 15
	Critical control points	. 16
3.	WATER BALANCE	. 17
	Minimising environmental risk from permeate irrigation	. 18
	Impact of the proposed permeate irrigation regime on the water balance components	; 20
	Irrigation threshold	. 22
	Available soil water quantity without irrigation	. 22
	Irrigation strategy	. 23
	The irrigation model components	. 24
	Zero irrigation	. 24
	Water balance when 0.5 mm of permeate irrigation is applied when there is not more than 10 mm of rainfall predicted.	
	The recommended approach for area 2	
	Calculation of soil salinisation	
	Irrigation management	
	Output of the MEDLI Model	
4		
5		
6		
7		
1	Soils	
	Management of pasture	
	Pasture species.	
	A. Select, assess and plan early - start at least 8-12 months before sowing	
	C. Pre-sowing cultivation or grazing	. 37

D. Absolute weed & pest control - the most important factor for success	37
E. Adequate soil moisture - enough for quick germination and survival of the sown	
pasture	
F. Accurate seed placement - neither exposed nor buried too deep	38
G. Monitor weeds & pests regularly after sowing	39
H. Initial & subsequent grazing	40
Vegetation between the neighbouring properties and along Collector Road	40
8. MODELING OF IRRIGATION SYSTEM PERFORMANCE USING MEDLI V2.5	41
Background	41
9. IRRIGATION MANAGEMENT	42
Pre development investigations.	43
Irrigation schedule	43
Management and reporting schedule	43
Daily	43
Weekly	44
10. SITE MONITORING	45
The water flow and quality monitoring program	45
Permeate volumes and chemistry	45
The pasture monitoring program involves	46
The soil management program involves	46
11. REFERENCES	47
APPENDIX 1. WATER QUALITY FOR PRIMARY INDUSTRIES (COPIED FROM	
ANZECC, 2018)	
APPENDIX 2. OUTPUT FROM THE MEDLI MODEL ZERO IRRIGATION	
APPENDIX 3. OUTPUT FROM THE MEDLI MODEL BASED ON APPLYING 0.5	
MM/DAY OF IRRIGATION	66

1. BACKGROUND

The project

Veolia Environmental Services (Australia) Pty Ltd, hereafter Veolia, processes some 40% of Sydney's putrescible wastes at its Woodlawn Site. The waste treatment process generates excess leachate. Currently this leachate treated then retained in effluent storage dams. However, higher than average rainfall in recent years has resulted in the need to safely dispose of excess water.

Irrigation onto lands within the Woodlawn site was explored as an option.

The chemistry of the treated leachate is a major constraint to reuse. The treated leachate was extremely saline, having salinity approximately 1/3 of sea water. It is unsuitable for irrigation. Application of treated leachate to land would kill off most vegetation as well as lead to loss of soil structural stability. See table 1, above, for details of the irrigation water chemistry resulting from double reverse osmosis (double RO) of the leachate.

A reverse osmosis (hereafter RO) plant is proposed as a way of removing contaminants that make the treated leachate unsuitable for irrigation. A sequence of 2 RO membranes is used to achieve permeate that is compliant with Australian Guidelines for irrigation as table 1 shows. It is proposed to irrigate nearby pastures with the permeate. Management of the retentate is under investigation.

The proposed irrigation area is currently used for sheep grazing. Major pasture plants on site include fescue and phalaris. However, weeds dominate the pastures².

A 2 pass RO system can reduce salinity from 13 to 17 dS/m to 0.6 dS/m³ (table 1). Fescue and phalaris can tolerate irrigation water with 3 to 4 dS/m of salinity (ANZECC, 2000, Table 4.2.5). The Double RO permeate would be suitable for some legumes including Berseem clover, strawberry clover and some lucerne varieties (ANZECC, 2000).

It is concluded that the predicted permeate is suitable for pasture irrigation.

The current document is concerned with sustainable irrigation management of the permeate. It also provides detailed guidance on managing the irrigation project.

References consulted

- DEC 2004. NSW Environmental Guidelines, Use of Effluent by Irrigation.
- NRMMC, EPHC, et al 2006. Australian Guidelines for Water Recycling : Managing Health and Environmental Risks. Phase 1.
- QDPI 2023. MEDLI model handbook
- ANZECC & ARMCANZ 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality
- ANZG 2023. Water Quality for Irrigation and General Water Uses: Guidelines. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand governments and Australian state and territory governments, Canberra.

² Efficient eradication of weeds is critically important to producing high quality, saleable fodder.

³ 1000 uS/cm= 1dS/m

- Woodlots and Wetlands 2023. Suitability of four potential irrigation areas at the Veolia Woodlawn Operations Site to sustainably receive treated process leachates. V11
- Woodlots and Wetlands 2025. Impact of double reverse osmosis on permeate quality

Report author

Peter Bacon has over 35 years' experience in investigating nutrient and water dynamics. In this time, he has published over 300 articles, ranging from expert systems to international reviews of major ecological processes.

In the 1970s he lectured to irrigation science Students at Yanco Agricultural College.

Following the untimely death of the Soil Chemistry Lecturer, he lectured in Soil Chemistry to Second and fourth Year Agricultural Science Students at the University of Sydney.

Since 2007 he has been a Fellow of UTS and guest lectured in environmental risk and on wetland design to manage waste waters.

In 1992 he was awarded a Churchill Fellowship to study effluent management and the environment in South Africa, Israel, Portugal and the USA. Specific aspects included modelling effluent quality changes to soil and water, the effects of land management on aquatic ecosystems, biosolids reuse in forests and the environmental effects of effluent reuse. In 1994 he founded Woodlots & Wetlands, an environmental consultancy, specialising in stormwater, wastewater management and eco engineering.

He has undertaken over 300 effluent and waste management projects including ones for food processing facilities, tanneries, abattoirs, chicken sheds, piggeries, dairies, wineries, industrial sites, cities, prisons and individual resort and institutional developments. He has also undertaken compliance investigations for waste food processing and for processing of treated grease trap wastes. Since 2005 he has provided expert witness in several Land and Environment Court cases involving waste management.

2. THE PROPOSED PERMEATE PRODUCTION RATES

Reverse osmosis process

RO (reverse osmosis), operates by forcing pressurised water through a semi permeable membrane, leaving the residual water, with the suspended and dissolved contaminants, behind.

The water with the reduced concentration of contaminants is referred to as 'permeate'. The residual water and contaminants are referred to as 'retentate'.

The current proposal is for a 2-pass system, involving treated water undergoing 2 passes in sequence through separate, semi permeable membranes.

RO production rates

Veolia expects to initially produce 1 L/sec of permeate from a proposed RO plant. This production rate was selected as the permeate produced could be accommodated in the 16.8 ha selected for the first phase of the project. Table 2.1 shows the consequent volumes of permeate water available for irrigation.

Table 2.1. The volumes of RO permeate based on production of 1 L/sec (84 cubic m/24 hr day. The ha of irrigation land required, assuming 183 mm/y of irrigation, is also shown.

L/sec	L/ 24 hr 'shift'		ML/y if an average of 0.5 mm/day is applied	Irrigation land required (ha) based on maximum irrigation 183 mm/y.
1	86400	86.4	32	16.8

Permeate quality

The RO plant is designed to have a two pass system, with the permeate being subject to double RO.

Table 1 in the executive summary shows the anticipated attributes of the permeate after double RO. Woodlot and Wetlands (2025) details the changes in permeate chemistry due to the double RO process.

Key features of the permeate include a salinity of 0.6 dS/m, a pH of above 6.5 and a SAR⁴ of less than 8.

The combination of a relatively high SAR and low salinity can facilitate soil dispersion. The relationship between SAR, salinity and risk of soil dispersion is shown below.

⁴ SAR: Sodium Adsorption Ratio used to establish the likelihood of soil dispensing when irrigated with the combination of high SAR / low salinity irrigation water.

Figure 2.1. Relationship between SAR and EC of irrigation water for prediction of soil structural stability (copied from DNR 1997b. note that 1 dS/m = 1000 uS/cm). Adding sufficient gypsum has two effects; it reduces the SAR and it increases to ionic strength of the soil water. Both these changes increase soil structural stability.

The figure above is a copy of figure 4.2.2 in ANZECC (2000). The blue star shows that the anticipated combination of permeate electrical conductivity (0.6 dS/m) and SAR (8) could facilitate soil structural instability.

A combination of lime and gypsum must be used to address this issue⁵. Gypsum addition reduces the SAR and increases soil electrical conductivity. Both these processes reduce risk of soil structural problems developing. The lime will also reduce acidity. However, gypsum is more efficient than lime as the soil becomes neutral to alkaline.

Adding at least 20 mg/L of dissolved Ca to the final permeate or at least 5T/ha of gypsum to the soil will reduce risk of soil structural instability.

Potential for changes in the RO permeate quality

Permeate water quality is discussed in detail in the report Woodlots and Wetlands (2025) Impact of double reverse osmosis on permeate quality

At the Woodlawn site, the retention of the permeate in pondage over a number of years has resulted in some evaporation. This has concentrated the dissolved constituents. Assuming the current proposal succeeds there will be a reduced storage time in the Woodlawn Dams. In turn, this will reduce the dissolved chemical load in the raw feed

⁵ NOTE that soil organic carbon can reduce the impacts of relatively high SAR. Soil with high concentrations of organic carbon usually have a large and varied microfloral population. The microflora produces mucus and gums. These act as soil particle binders. The dense root system under permanent pasture at Woodlawn also assists in soil stabilisation.

water. This suggests there will be a gradual; improvement in the permeate chemistry over time.

Critical control points

The pump system is a critical control point. It can be shut down

Membrane ruptures and aging can result in decreased permeate quality.

Monitoring of the permeate salinity is a simple, continuous way of monitoring permeate quality. The anticipated Electrical Conductivity of the feed water is some 23,000 uS/cm. The anticipated double RO permeate is expected to have a salinity of around 0.6 dS/m. The salinity sensors can readily be alarmed and the system shut down, if for example, the salinity exceeds 800 uS/m⁶.

pH can be used as another readily measured control point. A suggested alarm trigger is pH<6 and >8.

A flow meter downstream of the RO system is essential to monitor flow to the irrigation system. Pressure sensors can be used in conjunction with solenoid valves to alert the operators to system leaks.

Any significant changes in permeate chemistry will be included in the reports required by the EPA.

The proposed double RO process is predicted to produce permeate that meets that ANZECC (2000) criteria for irrigation, except for Boron. However, the site is Boron deficient, and Boron is mobile, so much of the Boron will be leached into the subsoil.

The double RO water attributes also meet the ANZG (2023a) Irrigation Guidelines. The water is 'non-saline' so the risk of salinisation of the site, the groundwater or local streams is negligible.

The default guideline concentration for boron in irrigation water is 0.5 mg/L. The site specific guideline value is 0.75 to 15 mg/L. Boron is not normally considered an issue except in arid areas with saline soils. These conditions do not apply at Woodlawn.

The permeate quality is compliant with both ANZECC Guidelines For Irrigation and the Australian 2011 Drinking Water Guidelines .

The soils are acidic, so they must receive lime as part of the site preparation for irrigation (see below for details). Increasing soil pH to near neutral values will assist water quality management by precipitation of potentially toxic metals. It will also facilitate soil organic matter accumulation. This, plus raising the soil pH, will assist in boron retention.

⁶ Note the need to allow for temperature fluctuation between winter and summer conditions.

3. WATER BALANCE

A daily time step soil water balance was used to determine the volume of water that can be sustainably irrigated onto the site. The water balance model is based on a 5km*5km gridded data set derived from the SILO website (www.longpaddock.qld.gov.au).

The time duration of the modelling is 43 years, from January 1, 1980 to 13 June 2023. The most recent 43 year period was selected to reflect recent changes in rainfall and potential evapotranspiration that are likely to reflect recent impacts of climate change⁷.

The model inputs/ assumptions are:

- Rainfall data is for a 5km*5 km grid centred on the Veolia site.
- The daily rainfall is based on a 2 dimensional simulation using nearby meteorological stations.
- The potential evapotranspiration (PET) is based on the FAO 56 model.
- The land use is assumed to be pasture with forage harvesting plus low to moderate sheep grazing pressure.
- The soil is assumed to be a well-structured ferrosol. Having a clay loam topsoil, with a low permeability clay subsoil.
- Runoff commences when the daily rainfall exceeds 17.8 mm (USDA, 1984)⁸.
- Available water holding capacity in the root zone is 90mm.
- Once the combination of available soil water content + infiltration exceeds 90mm, the excess water percolated below the root zone. NOTE that this drainage is assumed to happen over the following 24 hrs. In practice, the clay subsoil is likely to take a minimum of 2 days. This creates opportunity for increased evapotranspiration. That is, the model is 'conservative'.
- Plant water use ((evapotranspiration rate, or Et) is 100 % of PET until 50% of WHC (45 mm of available water), then a linear fall in Et as the available soil water content falls to zero.
- The recommended irrigation strategy is to apply 0.5 mm of irrigation each day when the rainfall is predicted to be 10mm or less.
- That is the cut off rainfall/irrigation day was >10mm of predicted rainfall.
- The final design RO flow is 1 L/sec. 24 Hrs/day, 365 days/year.
- The irrigation area totals 16.8 ha.
- Irrigation efficiency is 95%. That is 5% of the permeate is lost via spills, uneven distribution and evaporation.
- Average annual rainfall (1980 to 2023) is 709 mm
- Average annual potential evapotranspiration (1980 to 2023) is 1056 mm (FAO,56 model).
- Average annual runoff 21 mm (Based on USDA, 1984)
- Deep drainage without irrigation averages 91 mm/year. Applying 183 mm/year of permeate irrigation increases that by 85 mm to 188 mm/average year.
- A range of scenarios were examined.
- The recommended one is
 - Apply 0.5mm every day when the predicted rainfall on the irrigation day is not more than 10mm.
- The pre irrigation water balance was modelled to provide a base line condition.

⁷ Climate change in SE Australia is expected to increase potential evapotranspiration and to reduce rainfall. These changes will increase irrigation demand.

⁸ In wet soils, runoff will commence once the infiltration capacity is less than the rainfall intensity. In saturated soils, the infiltration rate can approach zero. Therefore, irrigation must NOT occur on saturated soil

Figure 3.1 shows the initial irrigation area. It is a minimum of over 100m to the headwaters of a first order streamline. Figure 3.1. The area 2 proposed initial irrigation covers 16.8 ha. There is a buffer over 100m wide between the SW corner of the irrigation area and the headwaters of the nearest streamline. There is also a tree lined buffer between the irrigation area and Collector Road.

Figure 3.1. The area 2 proposed initial irrigation covers 16.8 ha. There is a buffer over 100m wide between the SW corner of the irrigation area and the headwaters of the nearest streamline. There is also a tree lined buffer between the irrigation area and Collector Road.

Figure 3.1 shows the initial irrigation area. It is a minimum of over 100m to the headwaters of a first order streamline

Minimising environmental risk from permeate irrigation

The Approach to minimising environmental risk to local watercourses include:

- 1. Double Reverse Osmosis (the same process used to produce drinking water at Sydney's desalination plant in Kurnell).
- 2. Irrigation at extremely low rates (0.5mm/irrigation) to minimise the possibility of runoff.
- 3. Not irrigating on days when 10mm or more rainfall is predicted
- 4. Each morning undertake a visual inspection of area 2 boundaries to determine if runoff is occurring. Do not irrigate if there is evidence of saturation (which would likely result in runoff).
- 5. Maintain a minimum of 100m between the edge of the irrigation area and any drainage line

The table below sets out the recommended separation distances between the outer edge of the irrigation areas and the nearest water bodies.

A separation distance of 50m is recommended between effluent irrigation systems and natural waterbodies. See table 3.1 below.

The proposed distance is over twice this distance.

Table 3.1. Recommended buffer distances from effluent irrigation areas to water	•
resources and public areas (copy of DEC, 2004, table 4.9).	-

Sensitive area	Separation distance (low strength effluent)	Separation distance (medium to high strength)	Impact of concern/comments
Natural waterbodies (e.g. rivers, lakes)	50 m	50 m	Protection of water quality and aquatic ecosystems. Supplementary requirements may be included for human sourced effluent to protect public health in recreation areas.
Other waters (e.g. artificial waters with beneficial uses, small streams, intermittent streams, water distribution and drainage channels, farm dams)	Site-specific	Site-specific	Protection of water quality for most sensitive water uses of the potentially affected waterbody.
Domestic well used for household water supply	Site-specific	250 m	Groundwater quality for domestic human uses protected.
Town water supply bores	Site-specific	1000 m	Water and groundwater quality for drinking water supply protected. Town bores generally pump at high rates and draw water from a large area.
Where spray irrigation gives rise to aerosols near houses, schools, playing fields, roads, public open space and waterbodies	50 m ¹	50 m	Avoidance of spray drift of effluent containing pathogens offsite. Buffers for odours and noise have separate assessment criteria and these are assessed on a site- specific basis.
Other sensitive areas (e.g. waters in drinking water catchments, aquatic ecosystems with high conservation value, wetlands, native stands of vegetation)	Site-specific	250 m	Greater buffer distances and management may be required in some circumstances to protect drinking water (e.g. within the Sydney Drinking Water Catchment the Sydney Catchment Authority would seek a buffer of 100 metres in the absence of other evidence of a neutral or beneficial effect on water quality).

Notes: 1. Recommended in ARMCANZ, ANZECC and NHMRC (2000) for the spray application of reclaimed water from sewerage systems.

Impact of the proposed permeate irrigation regime on the water balance components

Table 3.2 shows the average area 2 water balance components with and without the proposed irrigation regime.

Table 3.2. The water balance components with and without 183 mm of permeate			
irrigation in the average year. Based on daily data between January 1980 and June			
2023. Assumes soil water holding capacity in surface 500 mm is 90mm.			

Water balance component	Zero irrigation	0.5mm/day if <10 mm of rain predicted	Change (mm/y)
Rainfall (1980 to 2023) mm/y	703	703	0
Permeate irrigation mm/y	0	183	+183
Soil evaporation. mm/y This assumes a thick pasture cover	0	0	0
Evapotranspiration mm/y	593	798	+205
Rainfall runoff mm/y	21	21	0
Irrigation runoff mm/y	0	0	0
Deep drainage mm/y	91	186	+95
Average soil available water (mm)	40	58	+18

The key results from permeate irrigation are

- An increase in infiltration into the soil,
- An increase in evapotranspiration, and
- An increase in deep percolation.

The MEDLI modelling in appendix 3 shows there is no accumulation of 'salt' anywhere in the profile. The reasons for this are that the soils are non - saline and there is a minimal quantity of salt in the permeate (see data in table above).

The permeate availability is dependent on the RO process rate. The initial assumption was 1L/sec 24/7. This is equivalent to 31.5 ML/year. See table 3.2, below.

Table 3.3. The range of permeate production rates expressed as L/sec, cubic m/day	
and ML/year. The irrigation rate is shown in mm of permeate/year.	

Design RO permeate production Rate (L/sec)	Daily (cubic m)	Annually (ML) if irrigated every day at 0.5mm/day	Irrigation onto 16.8 ha (mm/y) if irrigated 365 days/y at an average of 0.5mm/day ⁹
1	86.4	31.5	183

The irrigation rate can be increased to 1 mm/day during warm, dry summer days. This 'compensates for the 21 days in the average year when >10mm of rainfall precludes irrigation on that day. This higher rate on an average of 21 day per summer is designed to increase the annual application rate to an average rate of 0.5mm/day or 183 mm/year.

Figure 3.2 shows the percentile distribution of daily precipitation (mm/day).

The percentile rainfall data is summarised in table 3.2.

Table 3.4. The rainfall quantity (mm/day) as percentile frequency of days between January 1980 and June 2023.

Rainfall (mm of rainfall in a 24 hr period		4	8	10	12	15	20	30	40
Frequency (%) of exceedance of these		13	8	6	5	4	2	0.8	0.3
rainfall events									
Days / average year when rainfall	223	47	29	21	18	12	7	3	1
threshold is reached									

Table 3.3 shows that there is no rainfall on 223 days in the average year. Some 6% of days have more 10 mm or more rainfall. That is, 21 days per average year will not be irrigated.

The USDA (1984) rainfall/ runoff/model suggests the runoff threshold for the Woodlawn conditions is 18 mm. Obviously if the ground is very wet then runoff will occur with less rainfall. However, this figure has been used to design the irrigation system specifications.

Irrigation threshold

The 0.5 mm irrigation will only occur if there is less than 10mm of rainfall predicted for the irrigation day. This is an extremely small depth of irrigation water. Most of this 0.5mm will be retained then evaporated from the leaf surfaces. However, we have assumed to all of the 0.5mm will enter the soil. This is a very conservative approach.

The aim is to irrigate with minimal risk of permeate runoff.

It is emphasised that irrigation must NOT occur if there is evidence of saturated soil and runoff is occurring. Daily inspection of the site is essential to verify that no runoff is occurring.

Available soil water quantity without irrigation

A daily available soil water content model was used to predict the available soil water content. The available soil water content (ASWC) is the water content, in mm, between field capacity and permanent wilting point in the surface 500m of soil. The soil investigation of area 2 showed that the topsoil is a clay loam. While the subsoil is a medium clay. The soil water holding capacity (SWHC) in the bulk of the root zone was assumed to be 90mm (Geeves, et al, 2007).

The plant and soil water model used assumes 100% of Potential Evapotranspiration (PET) down to 50% of water holding capacity (45 mm). Then a linear fall in evapotranspiration (Et) as the available soil water content falls to zero

It is obvious from figure 3.3 that there are numerous periods when available water content approaches zero.

Figure 3.4 shows the available soil water content falls to less than 10% of the maximum Water Holding Capacity in 16% of time.

In 97% of time the profile is not 'full'. In 95% of days the profile soil water content is at least 2mm below the water holding capacity (90mm). That is, in some 97% of days it is possible to irrigate a small quantity of permeate (0.5mm), without exceeding the soil water holding capacity.

Note that in periods when the antecedent day had heavy rainfall, the soil water content could still be above 90mm as the water drains into the subsoil.

The strategy is therefore to apply an extremely low irrigation rate of 0.5 mm/day, and only when the model suggests that there is a moisture storage capacity available in the soil.

Irrigation strategy

The irrigation strategy is:

- Ensure the permeate has very low salinity, so that there is minimal risk of salinisation of the soil and water.
- Maximise the volume of permeate that is used on the pastures within the subject property.
- Do NOT irrigate if the paddock is saturated and runoff is occurring.
- Apply the permeate via a low application rate/day to minimise the risk of runoff. That is: Apply irrigation at 0.5 mm/irrigation day
- Only irrigate on days when rainfall is less than the likely runoff threshold of 18mm. The threshold for no irrigation was set at 10 mm of rain.
- Use warm dry summer days to increase the application rate to 1mm/day on an average of 21 days per year. This will compensate for the zero irrigation on the average of 21 days per year.
- That is the annual rate is 365.25*0.5 mm/day = 183mnm/year.

The irrigation model components

- The rainfall at which no irrigation occurs on that day is : 10mm.
- That is, the system will be overridden and not irrigate if 10mm or more rain is predicted on the irrigation day.
- The daily irrigation rate is 0.5 mm/ irrigation day (except for 21 warm dry summer days when irrigation was applied at 1mm/day). This extra volume of water is to 'compensate' for an average of 21 days/year when predicted rainfall will exceed 10 mm.
- The assumed irrigation area was 16.8 ha

Zero irrigation

Zero irrigation was used as a 'base line' condition.

Table 3.3.	Site water	balance	with zero	irrigation.
------------	------------	---------	-----------	-------------

Rainfall (mm)	Actual evapotranspiration (mm) ET	Runoff (mm)	Irrigation (mm)	Deep drainage (mm)	Average available soil water (mm/500mm)
703	593 (zero irrigation)	21	0	91	40

This table provides the base line conditions. It is taken from the MEDLI Model for zero irrigation. See appendix 3.

Water balance when 0.5 mm of permeate irrigation is applied when there is not more than 10 mm of rainfall predicted.

The full MEDLI model output for this scenario in shown in appendix 2. Table 3.4 shows the impact of applying 0.5 mm/day of irrigation whenever there was less than 5mm of rainfall predicted for the same day.

Table 3.4. Water balance when 0.5mm of permeate irrigation applied when there is not more than 10 mm of predicted rainfall on the irrigation day. The irrigation area is 16.8 ha. The design flow is 1 L/sec or 86.4 cubic m/day.

Component	Based on 0.5 mm/d for 344 days plus 11 days at 1mm/day
Number of irrigations /y	344
Potential evapotranspiration (PET), based on FAO 56 Model,	1056
Irrigation (mm/y) (344 days with 0.5 mm/day (170.5 mm) PLUS) PLUS 12 summer irrigations with 1mm of irrigation to allow for wet days with no irrigation). That is 170.5 +12 = 183	183
Irrigation water demand (cubic m/irrigation day) of 0.5mm of permeate per day (86.4 cubic m/irrigation day) PLUS .13 warm dry days with 1 mm/day (173 cubic m/day).	86.4
Annual irrigation demand (ML/y) over 16.8 ha	30.5
Actual evapotranspiration (mm) ET	802
Deep drainage (mm/y)	188
Average water available (mm 90 mm max)	58

The 0.5 mm of permeate / irrigation day will require a 24 hr flow of 1 L/sec of permeate. Obviously if the permeate production rate is increased to 2 L/sec, the irrigation period is halved. It is prudent to have a buffer tank capable of holding sufficient water to allow for the irrigation system demand and also for minor maintenance shutdown of the RO system. A tank capacity of 87 cubic m is required to adequately buffer inflow and outflows and also allow for short term maintenance shutdowns.

The average annual demand based on 183 mm/year irrigation per year is 30.5 ML.

Figure 3.5 shows that the 0.5mm/day irrigation strategy results in soil available moisture content not falling to zero as per figure 3.3.

The average available water content in the surface 500mm was 58 mm compared with 40 mm for the zero irrigation condition.

The recommended approach for area 2

- 16.8 ha of fixed sprinkler irrigation
- Applying 0.5mm/irrigation day IF predicted rainfall is not more than 10 mm. AND
- The site is not already saturated or runoff is occurring.
- The permeate production can be adjusted to suit the available area.
- Irrigation can be increased to 1mm/day during the summer in order to achieve an annualised average of 0.5 mm/day (183 mm/y).

Calculation of soil salinisation

ANZECC (2000), chapter 4, gives methodology to predict soil salinity based on the salinity of the irrigation water and the leaching fraction¹⁰

The predicted salinity of the irrigation water is 0.6 dS/m

¹⁰ The proportion of the applied water that is leached below the root zone

The soil salinity data on page 11 of Appendix 2 shows that the salinity of the soil solution at the base of the root zone is predicted as being 0.05 dS/m.

Table 4.2.4 in ANZECC (2000) shows soils with less than 0.95 dS/m average root zone salinity can support 'salt sensitive' plants.

It is therefore concluded that salinity is not an issue.

Irrigation management

The proposed irrigation regime is based on an understanding of soil water dynamics and daily check of evapotranspiration data and rainfall prediction.

The aim of a typical irrigation system is to remove, or at least minimise, plant moisture stress as a limitation on plant growth.

In the current situation, maximising plant growth and leaf production will increase plant evapotranspiration. The zero irrigation pasture has an estimated ET of 593 mm/year. The pasture receiving an average of 0.5mm/day (183 mm/year of permeate) has a predicted ET of 798 to 802 mm/year. This indicates an increase in transpiration of 205 to 209mm/ year. This is 27mm (or 3% higher) more than the estimated irrigation application rate. Comparison for figures 3.3 and 3.5 show that a key benefit of the irrigation is that it prevents the soil water content from reaching zero (and therefore no transpiration). This suggests that the water use efficiency is higher in the pasture receiving a small amount of irrigation in every day except when rainfall exceeds 10 mm. In turn, the maximised plant water demand will facilitate maximum utilisation of the RO permeate.

The Potential Evapotranspiration (PET) based on the FAO 56 model, is estimated as 1056 mm/year. The actual ET is predicted as being 798 to 802 mm/year. This is some 76% of the PET. The reason for this is that the PET is much higher than the irrigation plus rainfall in the summer months. It may be possible to increase the irrigation rate in the summer, however this will depend on the ability to adjust the pressure of the feed water against the semi permeable membrane. Additional irrigation in summer, will assist in reaching the target of 183 mm/year.

Output of the MEDLI Model

Table 3.5 shows the water balance components when an average of 177 mm of permeate per year is applied.

Table 3.5. The irrigated land water balance based on the MEDLI Mode.appendix 2

Name	Value
Rain	709.3
Effluent irrigation	17 <mark>6</mark> .6
Soil evaporation	0.0
Transpiration	644.4
Rain runoff	<mark>9</mark> .5
Irrigation runoff	0.0
Deep drainage	232.3
Delta soil water	-0.4

The rainfall is 709 mm/year. The potential evapotranspiration is 1056 mm/year. Therefore, there is a moisture deficit of 347 mm/yr (note that this will vary among years).

The actual evapotranspiration is 644mm/year. This is lower than the FAO model. At least some of the difference is due to allowing heavier irrigation during warm dry weather in the FAO model.

The pasture growth response to irrigation is typically 20 to 30 kg/ha/ mm of additional water. Therefore, assuming an additional 25 kg/ha of dry matter/mm of rainfall/year, the additional 177 mm of water will increase pasture production by a modelled 25*177= 4425 kgs of dry pasture mass/ha/year.

A set of relatively simple measurements/ observations are established to guide the operator.

4. THE IRRIGATION AREAS

The suitability of the site for irrigation was based a field sampling and evaluation plus laboratory analyses of soil from 39 pits in the area. Twelve pits were excavated in the 16.8ha of area 2.

The Australian Soil and Land survey Field Handbook (NCST, 2009) was used as a template to describe site conditions.

1:18,056

0 0.2 0.4km

Figure 4.1. The soil sampling and landform assessment points within each of the four areas (image source: NSW Gov). NOTE ONLY area 2 is proposed at this stage.12 of these pits were in the 16.8 ha of area 2 that is the subject of this report.

NOTE that the areas shown are the maximum extent of each area. The irrigatable areas are considerably less. The **RED** highlighted areas are NOT suitable for irrigation. The **YELLOW** areas have SOME constraints.

There was a total of 36.3 ha of suitable irrigation areas in areas 1 and 2. Areas 3 and 4 had at total of 20.5 ha of irrigatable land. Areas 1 and 2 had 'better' soil than areas 3 and 4, so this study concentrated on areas 1 and 2^{11} .

Figure 4.2. A back hoe was used to excavate observation pits, to determine soil depth and to facilitate soil sampling. Note the thick pasture cover.

Landforms and irrigation suitability within each area is described detail in Suitability of four potential irrigation areas at the Veolia Woodlawn Operations Site to sustainably receive treated process leachates (WOODLOTS AND WETLANDS (2023).

Section 5, below tabulates the key attributes of the irrigation areas.

¹¹ NOTE that only area 2 is proposed for development in the initial stage. Further development should be based on the performance of area 2.

5. SITE SUITABILITY FOR IRRIGATION

Site suitability for irrigation is based on a combination of physical, chemical and biological attributes.

figure 4.1.	1	
Attribute	Issue	Comment
Site infrastructure	Nearness to roads and power lines	Area 2 is adjacent to Collector Road. The separation distance requirement depends on the quality of the water (Especially potential pathogen load). NOTE the permeate does not contain pathogens, so this is not a significant consideration for the proposed system The existing power line through area 2 limits the full potential of centre pivot systems. Fixed sprinklers are preferred as they will not impact on power lines. A total of 36.3 ha is available in area 1 plus area 2. It is proposed that Area 2,which has 16.8 ha of irrigatable land, will be developed first.
Ecological values	Some area on the northern portion of the irrigation area has been excluded because of the ecological values in this area	This reduces the potential irrigation area to 16.8 ha based on area 2. Note that some buffering is required to minimise risk of vehicles on Collector Road being sprayed. So, some of the lands excluded on ecological grounds would already need to be excluded because of nearness to Collector Road. Note that there is a treed vegetative buffer zone between area 2 and Collector Road. This may need to be extended to the west to minimise spray drift risk in the western portion of area 2.
Climate	Heavy rainfall can cause water logging and runoff	Irrigate frequently (at 0.5mm/day) subject to predicted rainfall being less than 10mm on that day.
Landform	Run-on from higher elevations could result in excessive leaching. Locating the irrigation areas downslope of the dams could result in seepage into the irrigation area.	Areas 1 and 2 are located on a ridge line extending in a WNW direction roughly parallel to Collector Road. The irrigation areas are at a higher elevation than the storage ponds. Therefore, seepage is NOT an issue.
Slope	Increased slope can increase runoff risk. In turn this can result in convergence zones which can by saturated for long periods.	Avoid irrigating obvious wet areas. Runoff convergence areas can have little or no ability to utilise run-on water. Area 2 is largely 'flat'.

Table 5.1. The key considerations determining the suitability of the proposed irrigation areas. NOTE only area 2 is proposed for irrigation at this stage. See figure 4.1.

Attribute	Issue	Comment
	Fixed sprinklers can operate at up to 15% slope	Fixed sprinklers are recommended for area 2.
Soil depth	Shallow soils overlying rock can become waterlogged under heavy rainfall or irrigation	Area 2 has a 'wet' area in its SE corner. Avoid irrigating this area. There is a total 16.8 ha of irrigatable land in area 2.
Soil chemical instability	Unstable surface soil can develop a crust that inhibits water penetration. An unstable B horizon can act as a choke inhibiting water movement in the soil.	Gypsum addition can assist in improving soil structure. However, the key issue is to maintain good surface soil structure. A combination of gypsum and dense pasture cover is recommended. Keep soil disturbance, especially cultivation to a necessary minimum. Wet soil tolerant pasture species such as phalaris and cocksfoot should be included in the pasture mix.
Low nutrient status		Area 2 soils are based on volcanic rock. These soils are typically fertile. They have good nutrient retention capacity.

Key recommendation 1. Develop area 2 first, using fixed sprinklers able to deliver 0.5 mm/day.

6. SOIL LANDSCAPE TYPES

Irrigation areas 1 and 2 are largely on the Duckfield Hut Variant 'B' soil landscape as figure 6.1, on the next page shows. These are reasonably fertile soils with slopes less than 10% and low local relief, being in the 5 to 30m range.

Irrigation areas 3 and 4 as shown in figure 6.1 are on the main type of Duckfield Hut Soil Landscape. This soil landscape has steeper slopes with some areas over 10% gradient.

Travelling irrigators operate at up to 8% slope and 3% cross slope. Fixed sprinklers can operate on slopes of 15%, provided they are well designed.

All of the irrigation area within areas 1 and 2 have less than 15% slopes

The key landform limitation for areas 3 and 4 will be slope.

Only area 2 is included in the current proposal. Fixed sprinklers are recommended.

Figure 6.1. The areas surveyed along Collector Road were part of the Duckfield Soil Landscape Variant b. These are within the currently proposed irrigation area 2. Irrigation areas 3 and 4 to the south were part of the Duckfield Soil Landscape. These are not included in the current documents.

7. SITE MANAGEMENT

The paddocks, the soils and the pastures need to be well managed in order to maximise the productive use of permeate without creating environmental issues.

Soils

The soils in area 2 are acidic, with low fertility, but structurally strong.

The fertility can be addressed by adding fertilisers as discussed above

Add a minimum of 50 kg/ha of phosphorous. DAP is suitable. It has 20% P, so 50 kg of P/ha will require 250 kg/ha of DAP. This will also supply 90 kg/ha of nitrogen. This should be applied annually once the improved pasture is established. The future rate of fertilisation should be based on leaf and soil analyses results.

There is a need to raise the soil pH. This can be achieved with 2 T/ha of lime. The application rate is based on the quantity of Exch AI present in the soil. It is expected that the quantity of lime per ha required will fall over time.

It is also strongly recommended that 2 T/ha of gypsum be applied in alternative years.

The soils have relatively low potassium. Check potassium concentrations in green leaves after 2 years and apply the equivalent of 50 kg of K/ha if required. The soils are boron deficient, so the boron in the permeate will improve soil fertility and therefore increase pasture growth and transpiration.

Note that if the soil structure is improved, it may be possible the register the site for soil carbon sequestration.

Soils in areas 3 and 4 are less favourable than those in areas 1 and 2. Gypsum will be essential. Additionally agricultural lime will be required. This document is designed to support approval for area 2.

Management of pasture

Ideally the pasture would be grown for fodder The key reason for this is that sheep and cattle pug wet soils, and this reduces infiltration rate. Note that fodder growing will remove the need to allow for salt licks for cattle¹². In turn this will reduce the salt addition to the irrigation areas.

Using forage harvesting when the soils are slightly dry will allow harvest without impacting on the soil.

The height at which the vegetation is harvested will depends on the dominant species. In autumn, a lower cut can be taken as it will assist white clover to reestablish. The cutting height should be around 75 to 100 mm, depending on pasture thickness.

Herbicide will be required to manage thistles and other weeds. Spray only as recommended on the drum. Contract spraying is an option.

¹² Cattle can damage fixed sprinkler systems so sheep are preferred.

Pasture species

The species need to by winter active and able to tolerate wet conditions.

Species mix should include

- White clover
- Sub clover
- Perennial Ryegrass
- Tall Fescue (use Mediterranean variety)
- Phalaris

Table 7.1. Pasture species and sowing rates under irrigation (derived from NSW Gov publications).

Species	Sowing Rate
Phalaris	4 kg/ha
Tall Fescue	15 kg/ha
Perennial Ryegrass	2 kg/ha
Sub Clover	4 kg/ha
White Clover	1 kg/ha

The cultivars change over time. Consult with a rural produce merchant such as Bungendore Rural for advice.

The NSW DPI produced a brochure containing the text below:

It sets out the pasture establishment actions:

Eight steps to successful perennial pasture establishment

Reliable establishment is vital to ensure high levels of production and longevity from perennial pastures. Perennial pasture seeds are generally small with seedlings that are delicate and slow growing compared to most crops and many weeds. Greater care and attention to detail is therefore necessary to establish perennial pastures successfully.

The following checklist of eight critical steps will help you achieve successful establishment and reduce the risk of failure.

Optimum sowing times and species will vary with regions but the principles embodied in these eight steps will remain the same.

A. Select, assess and plan early - start at least 8-12 months before sowing

Key check: Assess the existing pasture, soil fertility, weed and pest risk

- Are the current pasture varieties well adapted and productive or should they be replaced?
- What livestock enterprise and potential pasture use is planned? match these with appropriate species.
- Is a current soil test result available? it can provide vital information to assist decision making.
- Is the soil pH and fertility level suitable for the proposed pasture? If not, reassess paddock selection, species, fertiliser, and need for lime or gypsum.
- What weed and insect pests need to be controlled? Competition from annual grasses is the major cause of poor establishment. Some weeds may need to be controlled over several years before sowing.
- Are any herbicide residues present that could affect the species being sown?
- Sowing equipment ensure equipment capable of placing seed accurately is available and in working order.
- Budget carefully for the appropriate inputs paddock preparation and sowing, herbicides, insecticides, seed, and fertiliser. Budget for fertiliser in subsequent years and extra livestock to make use of the extra feed grown.

B. Weed and pest control in preceding year(s)

Key check: Reduce weed seed reserves in the soil and insect pests by using techniques such as spray-graze, spray fallow, pasture-topping, spring fodder crops and integrated pest management procedures. This step must commence in the previous spring for autumn/winter sowing to prevent annual weed seed set.

- Is the boomspray calibrated and operating correctly?
- Are broadleaf weeds a problem? consider the spray-graze technique.
- Are annual grass weeds a problem? Spray fallowing is preferred to spray topping because windy spring weather can prevent spraying at the correct time so that annuals still set sufficient seed to cause establishment failure during the following autumn.
- What insect pests are present or likely to be present that may affect establishment? Strategic
 spraying in spring, to reduce the adult population that produces over-summering eggs, is very
 effective in reducing red legged earth mite activity the following autumn but may not be as
 effective for blue oat mites. Insecticides may be added to the spray fallow or other herbicide
 applications provided the strategic timing of the insecticide is not compromised and is consistent
with label directions. Other pests of seedling pastures such as lucerne fleas, scarabs etc. will require different control measures.

C. Pre-sowing cultivation or grazing

Key check: Manage the paddock for 3-4 months prior to sowing to reduce trash and maximise weed germination.

- Conventional sowings use cultivation in conjunction with herbicides.
- Direct drill or surface sowings graze leading up to the sowing period to keep pasture only 1–2 cm tall when using sheep or 3–4 cm tall with cattle.

D. Absolute weed & pest control - the most important factor for success

See example below:

Source: Cemple+II, unpublish+d dele

Effect of controlling blue oat mite on establishment of surface sown pasture (no insecticide versus insecticide)

Key check: Allow full weed germination after the break of the season. Either cultivate or graze to keep weeds small while waiting for optimum sowing conditions. Remember both red legged earth and blue oat mites hatch after the autumn break especially when maximum day temperatures are below 20°C. They start producing eggs 6-8 weeks later.

- As a rule, don't sow on the first rain of the season (as subsequent weed germination is likely to be a problem).
- Identify what weeds are present or likely to be present.
 either use the appropriate herbicide at label rates, or
 cultivate to achieve a firm, fine weed-free seedbed.
- Identify what pests are present or likely to be present and apply the appropriate insecticide. For earth mites, spray 4 weeks after the autumn break. This often coincides with the knock-down herbicide application prior to sowing.
- Where sowing into a dry seedbed is the only practical option (e.g., direct drilling cracking clay soils), good weed control in the previous season is paramount.

 Preferably sow without cover crops – these compete with the young pasture for moisture and light just like weeds.

E. Adequate soil moisture - enough for quick germination and survival of the sown pasture

There must be adequate soil moisture around and above a seed

Key check: Moisture extending from the surface to at least 20 cm

- Provide a firm, moist seedbed. This allows close contact between the soil and the seed. Seeds can then absorb moisture, germinate and emerge more quickly and reliably. (Arrows indicate direction of moisture flow.)
- Sow when conditions are best for germination and survival
 - temperate perennials: from autumn through to early spring (depending on the district)
 - sub tropical species: sow late spring to early autumn.
- Generally, avoid dry sowing as it increases the risk of failure. Where dry sowing has been successful, competition from weeds has been minimal and germinating rainfall has been sufficient for seedling survival until follow-up rain has fallen.
- For temperate species which can be sown in the cooler months, adequate soil moisture is more important than time of sowing.

F. Accurate seed placement - neither exposed nor buried too deep

Emergence of luceme as a percent of viable seed sown. Seeding success of luceme declines with increased depth, particularly on clay soils.

Source: JM Sundetal, 1966

Key check: For direct drill sowings of most small seeded species, 5% of seed/fertiliser should still be visible in the row; for ploughed seedbeds, tilth over the seed should be no more than 1 cm deep.)

Direct drilling

– Average furrow depth 25 mm, provided the furrow remains open, with 1-2 cm of loose soil over the seed.

- Use inverted 'T' sowing points when direct drilling.
- Don't use harrows or rollers.
- Conventional sowing
 - Beware of sowing too deep especially when the seedbed is loose and fluffy.
 - Rolling can enhance seed-soil contact but beware of surface crusting in some soils.
- Use seed that is certified or quality assured wherever possible and check its germination and purity.
- Use sufficient seed to ensure a dense pasture.
- Be aware of specific requirements of some species e.g., Rhodes grass, lovegrass and wallaby grass require very shallow sowing.
- Be aware that some soil types such as heavy cracking clays can lose moisture quickly after sowing while other clays are prone to surface crusting or frost lift in ploughed seedbeds.
- Ensure legume seed is inoculated with the correct strain of rhizobia and where necessary, lime pelleted. Molybdenum, insecticides and fungicides can be applied to seed to enhance establishment in many situations.
- Provide good nutrition Apply adequate phosphorus, sulphur and molybdenum at sowing time.

Use nitrogen fortified (compound) fertilisers for direct drill sowings (maximum rate, 20 kg N/ha). Banding fertiliser near the seed is four times more efficient than broadcasting.

G. Monitor weeds & pests regularly after sowing

Source:K FRemons et al. 1963

Effect of banding and broadcasting superphosphate on yield of subclover

Key check: Look for pests and weed seedlings at 10-14 day intervals after sowing. This check is most often overlooked.

- Check pastures for pests regularly. For earth mites this may require close inspection on hands and knees and using glasses if needed for reading. Treat young pastures immediately if mites are found – many mites will probably not be seen.
- The likelihood of insect pests being present is generally greater in direct drilled than conventionally sown new pastures.
- Control weeds with selective herbicides or possibly with grazing in grassy situations.
- In direct drilled pastures under warm, moist spring conditions, slugs may be a problem. Slugs can
 be detected by placing wet paper under bags or boards at several sites. A registered insecticide is
 available for use at or after sowing if they pose a significant threat.

H. Initial & subsequent grazing

Key check: Are grasses 10-15 cm tall and well anchored and is there good soil moisture?

- Once grasses are 10–15 cm tall and under good growing conditions, a quick grazing will enhance tillering and root development. Graze heavily but quickly down to 2.5 cm then rest.
- Always allow grasses to set seed in the first year. Hay cutting is never recommended in the first year.
- Never graze newly sown pastures early under dry conditions or if grasses are poorly developed.
- Avoid grazing aerial or surface sown pastures before they set seed. They are rarely well anchored and are easily pulled out. Stock moderately in the following growth season (e.g., autumn for temperate species, spring for sub tropicals).
- Some pastures have specific grazing requirements (e.g., lucerne and chicory require rotational grazing for good persistence).
- Recent research suggests perennial grasses will be more persistent when rested, especially under adverse conditions i.e., given some form of rotational grazing at least for part of the year.
- The most efficient grazing system for any farm will generally involve a combination of set stocking and some form of rotational grazing.

Remember the most expensive pasture is the one that fails to establish properly.

Such pastures have reduced productivity and carrying capacity, are more prone to weed invasion and have a reduced capacity to combat various aspects of soil degradation. These deficiencies continue throughout the entire life of the pasture. It rarely pays back the cost of establishment and it eventually has to be re-sown.

Vegetation between the neighbouring properties and along Collector Road

The vegetation should inhibit any spray drift. The ideal would be a mix of species that have vegetation right to the ground. The vegetation can provide a shelter belt for sheep. However grazing should not be allowed as it can interfere with the wind break functions.

8. MODELING OF IRRIGATION SYSTEM PERFORMANCE USING MEDLI V2.5

Background

MEDLI is an irrigation model developed within the Queensland Government. Recent improvements have been made to increase model flexibility. MEDLI is now able to model a wide range of scenarios.

The current model is Version 2.5. This was released in July 2023.

The key model outputs are shown in Appendices 2 and 3. NOTE the model was run over area 2 and assumes an area of 16.8 Ha under fixed sprinklers.

9. IRRIGATION MANAGEMENT

The following steps are required

- Establish 'chain of responsibility'.
- Make phone numbers and email addresses of key contacts available to operator.
- Establish what contractors will be used.
- Ensure sufficient training from the irrigation equipment supplier so that the person responsible for the system understands how to operate the system. Specifically, how to react to changing conditions, e.g. a sudden storm.
- Arrange the contractors to prepare the sites (remove sheep, herbicide, apply lime and gypsum, prepare seed bed).
- Apply second round of herbicide to ensure weed kill.
- Arrange to sow the proposed seeding mix in autumn (check with Bungendore Rural regarding sowing times).
- Note that the irrigation can be used to create a favourable germination environment.
- Plough in the fertilizer (e.g DAP). NOTE some seeders allow sowing both seed and phosphate fertilizer. Avoid using ammonium based fertiliser with the seed.
- Sow the seed
- Commence the irrigation system.
- The RECOMMENDED regime is to irrigate 0.5mm/ day each day when not MORE than 10 mm rainfall is predicted.
- NOTE up to 25 warm dry summer days can be irrigated with 1mm/day of permeate. This is to compensate of loss of irrigation opportunities due to wet weather.
- Do NOT irrigate during heavy rain periods where runoff is obviously occurring.
- Do NOT irrigate when the ground is obviously saturated (when the soil surface has free water on it).
- DO a DAILY check to verify that there is no runoff from area 2. This is especially critical in the SW corner as there is to be no runoff to the headwaters of a small drainage line to the SW of area 2.
- Maintain the daily regime unless there are major issues, e.g damage to the RO system or heavy antecedent rainfall is causing widespread runoff.
- Make sure the operator identifies when he/she wants leave, go on holidays or is ill, etc. Arrange training for a replacement operator BEFORE the main operator departs on leave or resigns.
- The operator to keep a LOG BOOK recording
 - Daily check with RO plant to ensure it is operational AND how much water is available for irrigation.
 - Record occurrence of the daily visual check to ensure no runoff from area 2.
 - Irrigation quantities for the irrigation area (0.5 mm over 16.8 ha is 84.6 cubic m/day.
 - Days when irrigation was not applied
 - Cumulative irrigation volume each day
 - The on and off times each day
 - Any breakdowns, leaks or damage. AND responses.
 - The general condition of the pastures. This includes height, ground cover (look to replant areas where establishment is poor),
 - Identify the more suitable fodder harvesting schedules. Delay harvest if the soil is wet and the machinery will damage the soil via compression wheel rutting.
 - \circ $\;$ Identify and record apparent pasture health, and any evidence of insects or diseases
 - Check for pasture species change.
 - Record apparent need / closeness to forage harvesting.
 - Keep contractors up to date.

Pre development investigations.

Predevelopment investigations are presented and discussed in

Suitability of four potential irrigation areas at the Veolia Woodlawn Operations Site to sustainably receive treated process leachates. Woodlots and Wetlands (2023).

The double RO process is predicted to produce permeate that meets that ANZECC (2000) criteria for irrigation. It also largely meets the Australian Drinking Water Guideline 2022 thresholds. This is essential in order to ensure the environmental impact is kept to an absolute minimum.

It is noted that the climate is cool and moist, especially in winter. Between April and late September, the rainfall approximates the potential evapotranspiration, so there is minimal irrigation demand. The irrigation scheduling is based on a visual assess of surface soil wetness and the predicted rainfall on each day. Apply 0.5mm if the trigger threshold of 10mm of rainfall predicted is not reached.

Close assessment was undertaken in some 40 soil excavation pits to a minimum of 1m.along a ridge line parallel to Collector Road. The total area investigated was some 42 ha. Of this 36.3 ha were considered suitable for irrigation. In the initial stage only 16.8ha will be developed. These are within the area 2 as per figure 4.1.

The soil characteristics that made the sites suitable for irrigation were:

- Ferrosol soil type.
- The combination of ferrosol chemistry/ minerology and permanent pasture that means the soils have good structure, good internal drainage and good ability to retain nutrients and any potential toxicants.
- Soil depth at least 0.8m and preferably >1m deep
- Surface soil loams to pedal clay loams (facilitating rapid infiltration of water)
- Structurally stable clay subsoils (facilitating moderate infiltration below the root zone and large ability to retain nutrients, contaminants and water).
- <8% grade and <3% cross grade. Sprinkler irrigation can be used at least to 15% grade.

The proposed irrigation area drains to Lake George. Lake George is a closed basin. The proposed irrigation areas are on rolling low hills. The geology is largely volcanic.

The soils were analysed for pH, EC, Available P, N, C, exchangeable cations, available Zn, Mn, Fe, Cu, B and Si. The soils were acidic non-sodic and non-saline. The soils were nutrient deficient but with adequate concentrations of micro nutrients, except for B which was very deficient. The soil structure was strong. The relatively high concentrations of soil organic carbon plus the contributed to the moderate to strongly pedal physical condition of the soil. A combination of long term pasture, liming, gypsum and NPK fertilisation will maintain soil physical, chemical and biological fertility.

In summary, the soils adjacent to Collector Road in the NW portion of the site are suitable for irrigation. There was some 35.3 ha that could be used for the proposed permeate irrigation. Of this 16.8 ha in area 2 will be developed in the initial stage.

Irrigation schedule

Each morning, check the BoM website for today's predicted rainfall Record results in log book. If there is less than 10 mm of rain forecast, commence irrigation. Record start and finish time for each subset of fixed sprinklers in the log book.

Management and reporting schedule

Daily

- Check with security for any breaches of the plant or the irrigation area, e.g sprinkler head theft.
- Check RO flow and RO water in storage. Record each start and finish time

- Record volume of RO water used each day
- Any observations of problems and issues. For example, bogging of equipment, areas where runoff is apparent, leaks from the irrigation system.
- Check for irrigation area runoff. DO NOT IRRIGATE if there is any evidence of runoff from Area 2.

Weekly

- Pasture inspection: weeds, areas of poor growth (check for irrigation pipeline leaks), insects and diseases.
- Check and lubricate sprinklers as necessary,
- Check along irrigation area' boundaries for evidence of runoff.
- Check plant height to predict forage harvesting date
- Check weekly forecast. Make sure the irrigation system is NOT used whenever there is more than 10 mm of rain predicted
- Make sure the records are up to date. If there is no irrigation, note incident (this includes prediction of >10mm of rain on the irrigation day).

10. SITE MONITORING

The water flow and quality monitoring program

Automatic continuous monitoring of the RO plant for flow and basic quality, especially pH and salinity.

Automatic and continuous system for pressure differential within the RO system (designed to detect pinhole development within aging RO membranes).

Also use change salinity of the permeate to identify loss of efficiency in the system.

Automate the system as much as reliably possible. Test the alarms regularly. Record and non-compliances in the log book.

Permeate volumes and chemistry.

Record weekly cumulative flow to the irrigation area.

- permeate chemistry 3 monthly at the RO outlet . PLUS sampling following significant maintenance / repairs of the RO system. Follow DEC (2004), table 5.1 schedule for pH, EC, SAR, Total N, Total P, Metals.
- See table 1 in the executive summary, above, for the anticipated constituents for the double RO permeate. These provide a guide for the likely concentrations in the permeate. The actual concentrations need to be compared with the ANZECC guidelines (2000). RECORD to results of any analyses. The chemistry of the irrigated permeate will be compared with the ANZECC Guidelines, for freshwater as well as the stock water guidelines. PROVIDED the actual chemistry of the permeate, is similar to the predicted values, it is reasonable to continue irrigation. Serious non-compliance requires system shut down AND investigation.
- Water courses downslope of the irrigation area: Sample water annually in spring for pH, EC, SAR, Total N, Total P.
- **A small farm dam in SE of area 2**: Sample annually in spring time. Record pH, EC, SAR, Total N, Total P.
 - Install shallow piezometers along the ridge top¹³ to enable collection and testing of ground water chemistry. Record presence of water, depth to water, and sample annually for pH, EC, nitrogen, phosphorus, major cations and anions.
 - Another emerging issue is potential contamination of agricultural waters sources by persistent
 organic pollutants such as per and poly fluoroalkyl substances (PFAS). PFAS are environmentally
 persistent and can accumulate in plant and animal produce, either directly or indirectly via fodder
 consumption. PFAS are very mobile in the environment and can migrate large distances from
 source sites in groundwater and surface waters. At present PFAS guidelines are not included and
 the NEMP guideline should be referred to (HEPA 2020). Guidance in these cases must consider
 likely transfer rates from the irrigation water or stock water into plants and animals, with the
 objectives of preventing adverse impacts on human health, produce quality or animal health. Due
 to the range of PFAS compounds potentially present, these assessments will likely be site specific.
 NOTE no guidelines for irrigation at present (August, 2024). NEMP guideline should be referred to
 (HEPA 2020) for guidance.

Current (2024) soil investigation concentrations are PFOS + PFHxS 0.01 mg/kg and PFOS 0.1 mg/kg for Class 'A' residential lands. Site with minimal contact (Class 'B' lands) have a threshold of 2 mg/kg for PFOS + PFHxS and 20 mg/kg PFOS (EPA, 2020). The anticipated double RO water meets the thresholds for 80% protection of aquatic species. However, these thresholds are for freshwaters. The use of the thresholds for irrigation water is very conservative as any of the irrigation water that could eventually reach a surface water body will be extremely diluted by the

¹³ The aim of the piezometers is to detect accumulation of salinity and potential contaminants in the shallow water table. 4 test bores are required along the ridge top to detect any salinisation or contaminant accumulation.

surrounding ground and surface waters. The current (2024) thresholds for freshwater with protection for 80% of biota are 31 ug/L for PFOS and 1824 ug/L for PFOA (HEPA (2020))¹⁴.

The pasture monitoring program involves

- Undertake plant sampling each year in late spring. The sample harvest to be at ground level and just before forage harvesting. A minimum of 1 sample/4ha (5 samples) to be taken. The sample points to be geo-located and site NOT resampled.
- Recording the number and type (s) of bales harvest at each cut for each of the 4 areas.
- Do an annual dry mass estimate based on typical samples.
- Annually sample the fodder and obtain chemical analyses to identify nutrient export. PLUS moisture content.
- Assess the pasture species and indicative dominant / major species at the flowering stage.
- Note need, if any, for weed and pest management.

The soil management program involves

- After 12 and 24 months: Sampling a minimum of 1 sample point per 5 ha (4 in area 2).
 Areas 2: 4 sample points. Depth 0-10 cm. Geo-position and avoid repeating sampling of the same position. Analise the 4 samples for pH, EC, Available P, total P, total N, Organic carbon, Exch Cations, pesticides, heavy metals and boron.
- Every 3rd year: Sample a composite soil sample of 40 soil cores per 5 ha (a 4 locations in a total of 16.8 ha), taken at a depth of 0- 10 cm. For pH, EC, Available P, total P, total N, Organic carbon, Exch Cations, pesticides, heavy metals, PFAS and boron.

Every 10th year: Composite soil samples from 4 sites in area 2 (1 per 5ha), each containing 5 cores at four depth intervals to 1 metre, within a 5 metre diameter plot. The four depths should fall within 0–20, 20–40, 40–70 and 70–100 cm depth increments, and positioned within major soil horizons or layers.

- Sampling to 1m or to rock
- Note topsoil depth (cm), the presence of a bleached A2 horizon and the depth to rock.
- Sample all four depths for pH, EC, P sorption capacity, major cations and boron.

ADDITIONALLY, Sample a composite soil sample of 40 soil cores per 5 ha (4 locations in total in area 2), taken at a depth of 0- 10 cm. For pH, EC, Available P, total P, total N, Organic carbon, Exch Cations, pesticides, heavy metals, PFAS (check on initial samples to see if PFAS sampling is required).

¹⁴ In November 2024 there was interest in reducing threshold PFOS family chemicals in drinking water. These lower thresholds may eventually apply to all freshwaters.

11. **REFERENCES**

ANZECC ARMCANZ 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. NWQMSD. Canberra ACT.

ANZECC & ARMCANZ 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality

ANZG 2023a. *Water Quality for Irrigation and General Water Uses: Guidelines.* Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand governments and Australian state and territory governments, Canberra. See 2024 revised draft.

ANZG 2023b. *Livestock Drinking Water Guidelines.* Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand governments and Australian state and territory governments, Canberra.

Dear, B and Weir, R 200., Boron deficiency in pastures and field crops Agfact P1.AC.1, 2nd edition 2004

DEC 2004. Environmental Guidelines. Use of Effluent by Irrigation. Dept of Environment and Conservation. Citing NSW Agriculture, 1997.

Duran A. 2020 Why do cows need salt? How

EPA. 2020. PFAS *National Environmental Management Plan Version 2.0'*, Heads of EPA Australia and New Zealand 2020'

QDPI 2023. MEDLI model handbook

Duran A 2020. Why Do Cows Need Salt? How Much and How Often? Best Farm Animals Inc. Orem Ut, USA.

Geeves, GW Craze B and Hamilton GJ. 2007. Soil Physical Properties. In Soils . Their Properties and Management. PP 168- 191. Editors PEV Charman and BW Murphy. Third Edition, OUP South Melbourne, Vic.

Hazelton, P and Murphy, B 2016, Interpreting Soil Test Results. Third Edition. CSIRO Canberra, ACT.

HEPA (2020) PFAS National Environmental Management Plan Version 2.0., January, Heads of EPA Australia and New Zealand, p. 102, viewed 25 May 2020, https://www.environment.gov.au/protection/publications/pfas-nemp-2

NRMMC, EPHC, et al 2006. Australian Guidelines for Water Recycling : Managing Health and Environmental Risks. Phase 1.

NHMRC, NRMMC 2011. Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra Updated Sept 2022.

NSW Agriculture 1997. The New South Wales Feedlot Manual. NSW Agric Orange. NSW.

Rhodes JD Kandial A Mashali AM 1992. The Use of Saline Water for Crop production . Paper No, 48 .FAO Rome.

USDA 1986. Urban Hydrology for Small Watersheds. TR-55. Washington DC.

Woodlots and Wetlands 2023. Suitability of four potential irrigation areas at the Veolia Woodlawn Operations Site to sustainably receive treated process leachates. V11

Woodlots and Wetlands (2025). Impact of double reverse osmosis on permeate quality.V9.

APPENDIX 1. WATER QUALITY FOR PRIMARY INDUSTRIES (COPIED FROM ANZECC, 2018).

The quality and quantity of water resources are critical for agriculture in Australia and New Zealand, and water quality is important to protect human consumers of agricultural food products.

Growth of primary industries, together with expanding urbanisation and other industrial development, has increased the demand for good quality water and exerted escalating pressure on the quality of available water resources. Water quality for primary industry enterprises must take into account:

- productivity issues
- possible adverse effects on downstream activities and water quality.

Irrigation and livestock watering are the largest agricultural uses of water. Minor amounts are used for other production purposes, such as the mixing of pesticide, fertiliser, veterinary formulations and livestock dietary supplements. Irrigated agriculture and livestock production industries in Australia rely heavily on the use of groundwater and surface water resources. Groundwater is an important source of stock water in parts of New Zealand.

We provide guidance and default guideline values (DGVs) for primary industries that are applicable to both surface water and groundwater quality, where appropriate. DGVs for general on-farm water use are included with the irrigation DGVs and cover topics such as corrosion and fouling of pipes and fittings.

We revised guidance for livestock drinking water quality in the Water Quality Guidelines. Other guideline values for primary industries published in the ANZECC & ARMCANZ (2000) guidelines have been retained, including water for aquaculture and the production of foods for human consumption, and water for irrigation.

Livestock drinking water quality

Good water quality is essential for successful livestock production. Poor quality water may reduce animal production and impair fertility. In extreme cases, stock may die.

Contaminants in stock drinking water can produce residues in animal products (e.g. meat, milk and eggs), adversely affecting their saleability and sometimes creating human health risks.

Livestock production operations and meat processing plants may impair downstream water quality (e.g. through faecal contamination), highlighting the need for an integrated approach to land and water management in rural catchments.

Refer to <u>Primary Industries</u> — <u>Livestock Drinking Water Guidance</u> (Table A) for revised advice and DGVs for biological, physiochemical and radiological characteristics of water quality that may affect animal health.

DGVs are thresholds within which there should be minimal risk of adverse effects to animal health. If a parameter does not meet a DGV, we recommend further investigation to determine the level of risk.

Irrigation and water for general on-farm use

An important goal of water quality for irrigation and general use is to maintain the productivity of irrigated agricultural land and associated water resources, in accordance with the principles of ecologically sustainable development and integrated catchment management.

The quality of the water available or the cost of treating it so that is fit for purpose should be a consideration in any irrigation strategy — alongside soil and crop type, climate and yield — to fully understand economic viability.

Refer to <u>Primary Industries</u> — <u>Irrigation Guidelines</u> for guidance and default guideline values applicable for the assessment of surface water and groundwater quality for irrigation water in Australia and New Zealand. Includes guidance on biological parameters, salinity and sodicity, inorganic contaminants (specific ions, including heavy metals and nutrients), organic contaminants (pesticides) and radiological characteristics of irrigation water.

DGVs are thresholds within which there should be minimal risk of adverse effects to animal health. If a parameter does not meet a DGV, we recommend further investigation to determine the level of risk.

Aquaculture and aquatic foods

Aquaculture covers the production of food for human consumption, fry for recreational fishing and natural fisheries, ornamental fish and plants for the aquarium trade, raw materials for energy and biochemicals, and a number of items for the fashion industry.

With wild fisheries approaching maximum sustainable levels and many already overexploited, aquaculture is globally important as a source of aquatic food and other products.

Adequate water quality is needed for maintain viable aquaculture operations. Poor water quality can:

- result in loss of production of culture species
- reduce the quality of the end product.

Aquaculture production is reduced when influent water contains enough contaminants to impair development, growth or reproduction and potentially result in death.

Product quality is reduced when low levels of a contaminant cause no obvious adverse effects but gradually accumulate in the culture species to the point where it poses a potential health risk to human consumers.

Both production and product quality need to be considered if useful and usable guideline values are to be provided for the aquaculture industry.

Influent and source water quality

Refer to <u>Primary Industries</u> — <u>Livestock Drinking Water Guidance</u> (Tables A to AA) for advice and DGVs for influent (incoming water) or source water quality. This addresses the safety of aquatic foods for human consumers, whether the foods be produced by aquaculture or commercial, recreational or indigenous fishing.

Aquaculture and human consumption of aquatic foods

Guidance for aquaculture and human consumption of aquatic foods in the Water Quality Guidelines has not been revised since the ANZECC & ARMCANZ (2000) guidelines. Most of these guideline values should be used with caution as few are based on a critical assessment of a wide dataset. The <u>aquatic ecosystem</u> <u>guideline values</u> can be used as additional indicative information as they will generally be protective of aquaculture species.

In addition to guideline values for the protection of aquaculture species, refer to <u>Primary Industries</u> — <u>Livestock Drinking Water Guidance</u> (Tables B to BB) for faecal coliforms, biotoxins and off-flavour compounds in aquatic foods for human consumption produced via aquaculture.

Wild fish stocks

The Primary Industry Guidelines for protecting the health of commercial fish species do not apply to recreational and commercial fisheries based on wild populations of aquatic organisms. Wild fish stocks are dependent on healthy ecosystems to support them throughout their life cycle (e.g. feeding, breeding, habitat). For the protection of wild fish stocks, it is best to apply our <u>guidance for managing aquatic</u> <u>ecosystems</u>.

Seafood production

<u>Food Standards Australia and New Zealand (FSANZ)</u> sets out food safety and suitability requirements for seafood generally from pre-harvesting production of seafood up to, but not including, manufacturing operations.

Other sources of water quality guidance

Some water quality issues were considered out of scope for the revision of the Water Quality Guidelines because advice can be found elsewhere.

- Use by agriculture refer to documents published in conjunction with the National Water Quality Management Strategy; for example, <u>Australian Guidelines for Water Recycling.</u>
- Farmstead water supplies for domestic use
 - Australian Drinking Water Guidelines 6 (2011) Updated 2016
 - o Drinking-Water Standards for New Zealand
 - o <u>Guidelines for Drinking-Water Quality Management for New Zealand.</u>
- Washing of farm produce or dairy water supplies refer to local health and hygiene regulations and the Australian and New Zealand <u>Food Standards Code</u>.
- Aquaculture and human consumption of aquatic foods
 - physical and chemical stressor, toxicant guideline values and guidance on chemicals in water that can taint aquatic organisms in the <u>ANZECC & ARMCANZ (2000) guidelines</u>
 - food safety and suitability requirements for seafood generally from pre-harvesting production of the seafood up to, but not including manufacturing operations, <u>stipulated by</u> <u>Food Standards Australia and New Zealand</u>.

References

ANZECC & ARMCANZ 2000, <u>Australian and New Zealand Guidelines for Fresh and Marine Water Quality</u>, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra.

DEST SEAC 1996, <u>Australia, State of the Environment: An independent report</u>, Department of the Environment, Sport and Territories State of the Environment Advisory Council (Australia), CSIRO Publishing, Collingwood.

APPENDIX 2. OUTPUT FROM THE MEDLI MODEL ZERO IRRIGATION

SCENARIO REPORT: Full run

General information

Enterprise: Woodlawn double RO 06.09.2024 ZERO irrigation Client: New client MEDLI user: PETER-DELL\Peter

Description: New description

Scenario details: NO irrigation .

Map of location:

Note: If the map above appears as a dark box, check that the network is accessible and that the coordinates are not for a location in the ocean.

MEDLI v2.5.0.3 Scenario Report - Full

Page 1

06/09/2024 14:50:02

Climate information

Climate Data Location: Veolia, -35.05°, 149.55° Run Period: 01/01/1970 to 31/12/2021 (52 years)

Climate statistics

	5th Perce	entile	50th Perc	entile	95th Perc	entile
Rainfall (mm/year)	(Year 1979)	469.0	(Year 1987)	684.9	(Year 1978)	975.2
Pan evaporation (mm/year)	(Year 1974)	995.1	(Year 2003)	1216.9	(Year 1979)	1537.0

Climate data

Daily average across run period:

06/09/2024 14:50:02

Wastestream information

Wastestream Name: - New generic system

Wastestream production description

Daily New generic system data supplied for a representative year. This wastestream is not separately pretreated.

Wastestream

Average Daily Quantity and Flow-Weighted Average Quality:

Wastestream

0

scripti

Effluent Quantity: 0.00 m3/year or 0.00 m3/day (Min-Max 0.00 - 0.00)

Flow-Weighted Average (Min - Max) Daily Effluent Quality Entering the Pond System:

	Concentration (mg/L)	Load (kg/year)
Total nitrogen	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total phosphorus	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total dissolved salts	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Volatile solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)

Pond System Configuration: 1 closed (sludge-free) storage tank

Pond system details

	Pond 1
Maximum pond volume (m3)	100000000.00
Minimum allowable pond volume (m3)	249740880.49
Pond depth at overflow outlet (m)	4.00
Maximum water surface area (m2)	250345582.19
Pond footprint length (m)	27405.05
Pond footprint width (m)	9135.02
Pond catchment area (m2)	250345582.19
Average active volume (m3)	762350709.75

Irrigation pump limits

Minimum pump rate limit (ML/day)	0.00
Maximum pump rate limit (ML/day)	1.00

Shandying water

Description

Annual allocation of fresh water available for shandying (m3/year)	0.00
Maximum rate of application of fresh water (ML/day)	0.00
Nitrogen concentration (mg/L)	0.00
Salinity (dS/m)	0.00
Minimum shandy water is used	No

Paddock information

Paddock: Areas 1 and 2, 36.3 ha

Soil type: Red ferrosol, 2000.00 mm defined profile depth

Profile porosity (mm)	1042.26
Profile saturation water content (mm)	1020.80
Profile drained upper limit (or field capacity) (mm)	796.10
Profile lower storage limit (or permanent wilting point) (mm)	571.00
Profile available water capacity (mm)	225.10
Profile limiting saturated hydraulic conductivity (mm/hour)	10.00
Surface saturated hydraulic conductivity (mm/hour)	50.00
Runoff curve number II (coefficient)	78.00
Soil evaporation U (mm)	6.00
Soil evaporation Cona (mm/sqrt day)	3.50

Profile

Description

Planting regime: Monthly Green Covers - New cover species

1.00 (1.00 - 1.00)
0.72
0.00
500.00
Tolerant
3.00
0.00

Irrigation rules: Fixed sprinkler

Rule 1. Irrigation triggered every 1 days and rainfall is less than or equal to 0.00 mm		
Rule 2. Irrigate a fixed amount of 0.00 mm each day		
Rule 3. Irrigation window from 1/1 to 31/12 including the days specified		
Rule 4. A minimum of 365 days must be skipped between irrigation events		

MEDLI v2.5.0.3 Scenario Report - Full

Pond System Configuration: 1 closed (sludge-free) storage tank (wet weather storage pond: 1000000000 m3)

Pond system water balance (m3/year)

Name	Value
Rain	0.00
Inflow	0.00
Recycling	0.00
Evaporation	0.00
Overflow	0.00
Irrigation	0.00
Seepage	9137878. 19
Removed in sludge	0.00
Delta storage	-9137878. 19

Overflow and reuse diagnostics

Performance

Metric	Value
Total volume of overflow (m3/10 years)	0.00
Total number of overflow events (events/10 years)	0.00
Total number of pond overflow days (days/10 years)	0.00
Probability of at least 90% effluent reuse (%)	0.00
Effluent reuse (Proportion of inflow + net gain in rain that is irrigated) (fraction)	0.00

MEDLI v2.5.0.3 Scenario Report - Full

Page 6

06/09/2024 14:50:02

Pond System Configuration: 1 closed (sludge-free) storage tank

Pond system nitrogen balance (kg/year)

Name	Value
Inflow	0.00
Recycling	0.00
Volatilisation	0.00
Sludge	0.00
Overflow	0.00
Irrigation	0.00
Seepage	15534.39
Delta storage	-15534.39

Pond system phosphorus balance (kg/year)

Name Value Inflow 0.00 Recycling 0.00 Sludge 0.00 Overflow 0.00 Irrigation 0.00 0.15 Seepage Delta storage -0.15

Pond system salt balance (kg/year)

Name	Value
Inflow	0.00
Recycling	0.00
Sludge*	0.00
Overflow	0.00
Irrigation	0.00
Seepage	64878.94
Delta storage	-64878.94

* Salt removal in sludge is not calculated from the pond salt balance. However if salt could be assumed to be present in the sludge at the same concentration as in the pond supernatant (up to a maximum of salt added in inflow) - then salt accumulation in the sludge could be 0.00 kg/year

Pond system sludge accumulation: 0.00 kg dwt/year

MEDLI v2.5.0.3 Scenario Report - Full

Performance

Pond System Configuration: 1 closed (sludge-free) storage tank

Pond nutrient concentrations and salinity

Average across simulation period	Pond 1
Average nitrogen concentration of pond liquid (mg/L)	1.70
Average phosphorus concentration of pond liquid (mg/L)	0.00
Average salinity of pond liquid (dS/m)	0.01

Value on final day of simulation period	Pond 1
Final nitrogen concentration of pond liquid (mg/L)	1.70
Final phosphorus concentration of pond liquid (mg/L)	0.00
Final salinity of pond liquid (dS/m)	0.01

MEDLI v2.5.0.3 Scenario Report - Full

Page 8

06/09/2024 14:50:02

Water use (assumes 100% irrigation efficiency)

Metric	Value
Pond water irrigated (m3/year)	0.00
Average shandy water irrigation (m3/year) (minimum - maximum)	0.00 (0.00 - 0.00)
Total water irrigated (m3/year)	0.00
Proportion of irrigation events requiring shandying (fraction of events)	0.00
Proportion of years shandying water allocation of 0 m3/year is exceeded (fraction of years)	0.00
Average exceedance as a proportion of annual shandy water allocation (fraction of allocation) (minimum - maximum)	0.00 (0.00 - 0.00)

Irrigation quality

Metric	Value
Average nitrogen concentration of irrigation water - before ammonia loss during irrigation (mg/L)	0.00
Average nitrogen concentration of irrigation water - after ammonia loss during irrigation (mg/L)	0.00
Average phosphorus concentration of irrigation water (mg/L)	0.00
Average salinity of irrigation water (dS/m)	0.00

Irrigation diagnostics (No effluent irrigation occurred!)

Metric	Value
No. periods/year without any irrigable effluent in the wet weather storage pond (periods/year)	0.00
Average length of such periods (days)	0.00

Irrigation triggering and application

No. Days without Irrigation Applied per Year: 365.25 (with fixed irrigation applied set to zero [217.54], rain exceeding specified rainfall threshold [140.69] and day below minimum time set between irrigations [7.02]) No. Days without Irrigation Applied per Year: 365.25 (with no demand - no application [217.54] and not triggered [147.71])

No. Days with Irrigation Applied per Year: 0.00 No. Days with Irrigation Triggered per Year: 217.54

MEDLI v2.5.0.3 Scenario Report - Full

Page 9

06/09/2024 14:50:02

Paddock information

Paddock: Areas 1 and 2, 36.3 ha Soil Type: Red ferrosol, 53.30 mm PAWC at maximum root depth

Soil water balance (mm/year)

Name	Value		
Rain	709.3		
Effluent irrigation	0.0		
Soil evaporation	0.0		
Transpiration	548.9		
Rain runoff	8.3		
Irrigation runoff	0.0		
Deep drainage	152.7		
Delta soil water	-0.6		

Average monthly totals (mm)

Performance

Average annual totals (mm/year)

09/2024 14:50:02

Paddock information

Paddock: Areas 1 and 2, 36.3 ha Soil Type: Red ferrosol Irrigation Ammonia-N Volatilisation Losses (kg/ha/year): 0.00 Proportion of Total Nitrogen in Irrigated Effluent as Ammonium-N (fraction): 0.10 Nitrogen Added by Irrigation: 0.00 Phosphorus Added by Irrigation: 0.00 Planting Regime: Monthly Green Covers - New cover species

Plant salinity tolerance

Metric	Value
Salt tolerance	Tolerant
Salinity threshold (dS/m soil saturation extract)	3.00
Proportion of yield decrease per dS/m increase (fraction/dS/m)	0.00
No. years assumed for leaching to reach steady-state (years)	10.00

Soil salinity

Metric	Value
Average Infiltrate Salinity (dS/m)	0.03

No salinity calculations as no irrigation occurred.

MEDLI v2.5.0.3 Scenario Report - Full

Scenario information

Enterprise: Woodlawn double RO 06.09.2024 ZERO irrigation

Climate long-term monthly averages (mm)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Rain	66.3	63.6	60.9	45.8	44.5	57.9	52.6	58.4	61.9	69.2	69.9	58.3	709.3
Evap	152.0	115.5	97.5	60.2	37.5	24.4	28.6	45.2	67.5	95.7	115.8	146.6	986.6
Net evap	85.7	51.9	36.6	14.4	-7.0	-33.5	-24.0	-13.1	5.6	26.5	45.9	88.3	277.3
Net evap/day	2.8	1.8	1.2	0.5	-0.2	-1.1	-0.8	-0.4	0.2	0.9	1.5	2.8	0.8

MEDLI v2.5.0.3 Scenario Report - Full

Diagnostics

Page 12

06/09/2024 14:50:02

Pond System Configuration: 1 closed (sludge-free) storage tank Effluent Type: - 0.00 m3/year or 0.00 m3/day generated on average

Effluent entering pond system after any pretreatment and recycling

Average (Minimum-Maximum) influent quality calculated for 0.00 non-zero flow days/year.

Constituent	Concentration (mg/L)	Load (kg/year)
Total nitrogen	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total phosphorus	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total dissolved salts	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Volatile solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)

Ammonia-N loss from pond system water surface area: 0.00 kg/m2/year

Last pond (wet weather store): 1000000000.00 m3

Value	
0.00	
0.00 (0.00 - 0.00)	
0.00 (0.00 - 0.00)	
0.00 (0)	
0.00	
0.00	
0.00	
0.00	
0.00	
0.01	
0.01	
-	

* The threshold is the volume equivalent of the top 1 mm depth of water of a full pond

Volume distribution of the overflow events

Scenario information

Area irrigated: 36.3 ha total area

Loading to whole irrigation area: (assuming 100% irrigation efficiency)

	Quantity/year	Quantity/ha/year
Total irrigation applied (m3)	0.00	0.00
Total nitrogen applied (kg)	0.00	0.00
Total phosphorus applied (kg)	0.00	0.00
Total salts applied (kg)	0.00	0.00

Shandying

Metric	Value
Annual allocation of fresh water for shandying (m3/year)	0.00
Average shandy water irrigation (m3/year) (minimum - maximum)	0.00 (0.00 - 0.00)
Average exceedance as a proportion of annual shandy water allocation (% of allocation) (minimum - maximum)	0.00 (0.00 - 0.00)
Minimum shandy water is used	No

Irrigation issues

Metric	Value
Number of days without irrigation (days/year)	365.25

MEDLI v2.5.0.3 Scenario Report - Full

Paddock information

Paddock: Areas 1 and 2, 36.3 ha

Irrigation: Fixed sprinkler with 0.2% ammonium loss during irrigation

Irrigation triggered every 1 days and when rainfall is less than or equal to 0.00 mm
--

Irrigate a fixed amount of 0.00 mm

Irrigation window from 1/1 to 31/12 including the days specified

A minimum of 365 days must be skipped between irrigation events

Soil water balance (mm): Red ferrosol, 53.30 mm PAWC at maximum root depth

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Rain	66.3	63.6	60.9	45.8	44.5	57.9	52.6	58.4	61.9	69.2	69.9	58.3	709.3
Efflt. irrg.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Soil evap	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Transpn.	59.3	53.8	47.5	33.2	25.9	20.0	24.0	38.6	54.7	65.9	65.4	60.7	548.9
Rain runoff	0.5	0.8	1.7	0.5	0.4	1.1	0.5	1.4	0.3	0.6	0.3	0.1	8.3
Irr. runoff	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Drainage	4.6	6.0	9.9	10.6	7.5	21.6	27.4	21.0	14.9	14.6	8.9	5.9	152.7
Delta SW	1.9	3.1	1.9	1.4	10.7	15.2	0.7	-2.6	-8.0	-11.9	-4.7	-8.4	-0.6

Planting regime: Monthly Green Covers - New cover species

Average monthly cover (fraction) (minimum - maximum)	1.00 (1.00 - 1.00)
Average monthly crop factor (fraction) (minimum - maximum)	0.72 (0.72 - 0.72)
Dead cover (if Mthly Covers) or Tot. cover left after harvest (fraction)	0.00
Average rooting depth in defined soil profile (mm)	500.00

Soil salinity - plant salinity tolerance: Tolerant

Assumes 1.0 dS/m Electrical Conductivity = 640 mg/L Total Dissolved Salts All values based on 10 -year running averages.

No salinity calculations as no irrigation occurred.

MEDLI v2.5.0.3 Scenario Report - Full

Page 15

65

APPENDIX 3. OUTPUT FROM THE MEDLI MODEL BASED ON APPLYING 0.5 MM/DAY OF IRRIGATION

Scenario: Woodlawn double RO.med

General Information

SCENARIO REPORT: Full run

General information

Enterprise: 25.04.2025 Woodlawn double RO 0.6dS.m Client: New client MEDLI user: PETER-DELL\Peter

Description: New description

Scenario details:

Map of location:

General Information

Note: If the map above appears as a dark box, check that the network is accessible and that the coordinates are not for a location in the ocean.

Page 1

25/04/2025 12:30:20

Climate information

Climate Data Location: Veolia, -35.05°, 149.55° Run Period: 01/01/1970 to 31/12/2021 (52 years)

Climate statistics

	5th Percentile		50th Perc	entile	95th Percentile	
Rainfall (mm/year)	(Year 1979)	469.0	(Year 1987)	684.9	(Year 1978)	975.2
Pan evaporation (mm/year)	(Year 1974)	995.1	(Year 2003)	1216.9	(Year 1979)	1537.0

Climate data

Daily average across run period:

Wastestream information

Wastestream Name: - New generic system

Wastestream production description

Daily New generic system data supplied for a representative year. This wastestream is not separately pretreated.

Wastestream

Average Daily Quantity and Flow-Weighted Average Quality:

Wastestream

Description

Effluent Quantity: 31557.60 m3/year or 86.40 m3/day (Min-Max 86.40 - 86.40) Flow-Weighted Average (Min - Max) Daily Effluent Quality Entering the Pond System:

	Concentration (mg/L)	Load (kg/year)
Total nitrogen	60.00 (60.00 - 60.00)	1893.46 (1892.16 - 1897.34)
Total phosphorus	0.50 (0.50 - 0.50)	15.78 (15.77 - 15.81)
Total dissolved salts	384.00 (384.00 - 384.00)	12118.12 (12109.82 - 12143.00)
Volatile solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)

25/04/2025 12:30:20

Pond System Configuration: 1 closed (sludge-free) storage tank

Pond system details

	Pond 1
Maximum pond volume (m3)	100000.00
Minimum allowable pond volume (m3)	79907.25
Pond depth at overflow outlet (m)	5.00
Maximum water surface area (m2)	20115.97
Pond footprint length (m)	245.66
Pond footprint width (m)	81.89
Pond catchment area (m2)	20115.97
Average active volume (m3)	99920.85

Overflow outlet

Irrigation pump limits

Minimum pump rate limit (ML/day)	0.00
Maximum pump rate limit (ML/day)	1.00

Shandying water

Description

Annual allocation of fresh water available for shandying (m3/year)	0.00
Maximum rate of application of fresh water (ML/day)	0.00
Nitrogen concentration (mg/L)	0.00
Salinity (dS/m)	0.00
Minimum shandy water is used	No

MEDLI v2.5.0.3 Scenario Report - Full

Paddock information

Paddock: New paddock, 16.8 ha

Soil type: Red ferrosol, 2000.00 mm defined profile depth

Profile saturation water content (mm)102Profile drained upper limit (or field capacity) (mm)79Profile lower storage limit (or permanent wilting point) (mm)57Profile available water capacity (mm)22Profile limiting saturated hydraulic conductivity (mm/hour)1	
Profile drained upper limit (or field capacity) (mm)79Profile lower storage limit (or permanent wilting point) (mm)57Profile available water capacity (mm)22Profile limiting saturated hydraulic conductivity (mm/hour)1	1042.26
Profile lower storage limit (or permanent wilting point) (mm)57Profile available water capacity (mm)22Profile limiting saturated hydraulic conductivity (mm/hour)1	1020.80
Profile available water capacity (mm)22Profile limiting saturated hydraulic conductivity (mm/hour)1	796.10
Profile limiting saturated hydraulic conductivity (mm/hour) 1	571.00
	225.10
Conference and unstand hered and unstitution (here a)	10.00
Surface saturated hydraulic conductivity (mm/hour) 5	50.00
Runoff curve number II (coefficient) 7	78.00
Soil evaporation U (mm)	6.00
Soil evaporation Cona (mm/sqrt day)	3.50

Profile

Description

Planting regime: Monthly Green Covers - New cover species

Average monthly cover (fraction) (minimum - maximum)	1.00 (1.00 - 1.00)
Maximum crop factor at 100% cover (mm/mm) (Maximum crop coefficient 0.9 x Pan coefficient 0.8)	0.72
Dead cover (if Mthly Covers) or Tot. cover left after harvest (fraction)	0.00
Potential rooting depth in defined soil profile (mm)	500.00
Salt tolerance	Tolerant
Salinity threshold (dS/m soil saturation extract)	3.00
Proportion of yield decrease per dS/m increase (fraction/dS/m)	0.00

Irrigation rules: Fixed sprinkler

Rule 1. Irrigation triggered every 1 days and rainfall is less than or equal to 10.00 mm
Rule 2. Irrigate a fixed amount of 0.50 mm each day
Rule 3. Irrigation window from 1/1 to 31/12 including the days specified
Rule 4. A minimum of 0 days must be skipped between irrigation events

Pond System Configuration: 1 closed (sludge-free) storage tank (wet weather storage pond: 100000 m3)

Pond system water balance (m3/year)

Name	Value
Rain	0.00
Inflow	31557.60
Recycling	0.00
Evaporation	0.00
Overflow	2650.29
Irrigation	28908.92
Seepage	0.00
Removed in	0.00
sludge	0.00
Delta storage	-1.62

Overflow and reuse diagnostics

Performance

Metric	Value
Total volume of overflow (m3/10 years)	26502.92
Total number of overflow events (events/10 years)	0.19
Total number of pond overflow days (days/10 years)	3652.50
Probability of at least 90% effluent reuse (%)	79.46
Effluent reuse (Proportion of inflow + net gain in rain that is irrigated) (fraction)	0.92

MEDLI v2.5.0.3 Scenario Report - Full

25/04/2025 12:30:20

Pond System Configuration: 1 closed (sludge-free) storage tank

Pond system nitrogen balance (kg/year)

Name	Value
Inflow	1893.46
Recycling	0.00
Volatilisation	0.00
Sludge	0.00
Overflow	159.02
Irrigation	1734.54
Seepage	0.00
Delta storage	-0.10

Pond system phosphorus balance (kg/year)

Name Value Inflow 15.78 Recycling 0.00 Sludge 0.00 Overflow 1.33 Irrigation 14.45 Seepage 0.00 Delta storage 0.00

Name	Value
Inflow	12118.12
Recycling	0.00
Sludge*	0.00
Overflow	1017.71
Irrigation	11101.03
Seepage	0.00
Delta storage	-0.62

Pond system salt balance (kg/year)

* Salt removal in sludge is not calculated from the pond salt balance. However if salt could be assumed to be present in the sludge at the same concentration as in the pond supernatant (up to a maximum of salt added in inflow) - then salt accumulation in the sludge could be 0.00 kg/year

Pond system sludge accumulation: 0.00 kg dwt/year

Performance
Pond system information

Pond System Configuration: 1 closed (sludge-free) storage tank

Pond nutrient concentrations and salinity

Average across simulation period	Pond 1
Average nitrogen concentration of pond liquid (mg/L)	60.00
Average phosphorus concentration of pond liquid (mg/L)	0.50
Average salinity of pond liquid (dS/m)	0.60

Value on final day of simulation period	Pond 1
Final nitrogen concentration of pond liquid (mg/L)	60.00
Final phosphorus concentration of pond liquid (mg/L)	0.50
Final salinity of pond liquid (dS/m)	0.60

MEDLI v2.5.0.3 Scenario Report - Full

25/04/2025 12:30:20

Water use (assumes 100% irrigation efficiency)

Metric	Value
Pond water irrigated (m3/year)	28908.92
Average shandy water irrigation (m3/year) (minimum - maximum)	0.00 (0.00 - 0.00)
Total water irrigated (m3/year)	28908.92
Proportion of irrigation events requiring shandying (fraction of events)	0.00
Proportion of years shandying water allocation of 0 m3/year is exceeded (fraction of years)	0.00
Average exceedance as a proportion of annual shandy water allocation (fraction of allocation) (minimum - maximum)	0.00 (0.00 - 0.00)

Irrigation quality

Metric	Value
Average nitrogen concentration of irrigation water - before ammonia loss during irrigation (mg/L)	60.00
Average nitrogen concentration of irrigation water - after ammonia loss during irrigation (mg/L)	58.80
Average phosphorus concentration of irrigation water (mg/L)	0.50
Average salinity of irrigation water (dS/m)	0.60

Irrigation diagnostics

Metric	Value
No. periods/year without any irrigable effluent in the wet weather storage pond	0.00
(periods/year)	0.00
Average length of such periods (days)	0.00

Irrigation triggering and application

No. Days without Irrigation Applied per Year: 21.10 (with rain exceeding specified rainfall threshold)

No. Days without Irrigation Applied per Year: 21.10 (with not triggered)

No. Days with Irrigation Applied per Year: 344.15 (with full application)

No. Days with Irrigation Triggered per Year: 344.15

Performance

Paddock information

Paddock: New paddock, 16.8 ha Soil Type: Red ferrosol, 53.30 mm PAWC at maximum root depth

Soil water balance (mm/year)

Name	Value		
Rain	709.3		
Effluent irrigation	172.1		
Soil evaporation	0.0		
Transpiration	643.1		
Rain runoff	9.5		
Irrigation runoff	0.0		
Deep drainage	229.2		
Delta soil water	-0.4		

Average monthly totals (mm)

Performance

Average annual totals (mm/year)

MEDLI v2.5.0.3 Scenario Report - Full

Paddock information

Paddock: New paddock, 16.8 ha Soil Type: Red ferrosol Irrigation Ammonia-N Volatilisation Losses (kg/ha/year): 2.06 Proportion of Total Nitrogen in Irrigated Effluent as Ammonium-N (fraction): 0.10 Nitrogen Added by Irrigation: 101.18 Phosphorus Added by Irrigation: 0.86 Planting Regime: Monthly Green Covers - New cover species

Plant salinity tolerance

Metric	Value
Salt tolerance	Tolerant
Salinity threshold (dS/m soil saturation extract)	3.00
Proportion of yield decrease per dS/m increase (fraction/dS/m)	0.00
No. years assumed for leaching to reach steady-state (years)	10.00

Soil salinity

Metric	Value		
Salinity of infiltrated water (Average salinity of rainwater = 0.03 dS/m) (dS/m)	0.14		
Salt added by rainfall (kg/ha/year)	134.36		
Average annual salt added & leached at steady state (kg/ha/year)	795.14		
Average leaching fraction based on 10 -year running averages (fraction)	0.46		
Average water-uptake-weighted rootzone salinity sat. ext. (dS/m)	0.14		
Salinity of the soil solution (at drained upper limit) at base of rootzone (dS/m)	0.58		
Relative crop yield expected due to salinity (fraction)	1.00		
Proportion of years that crop yields would be expected to fall below 90% of potential due to salinity (fraction)	0.00		

Average annual rootzone salinity and relative yield

All values based on 10 -year running averages.

Scenario information

Enterprise: 25.04.2025 Woodlawn double RO 0.6dS.m

Climate long-term monthly averages (mm)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Rain	66.3	63.6	60.9	45.8	44.5	57.9	52.6	58.4	61.9	69.2	69.9	58.3	709.3
Evap	152.0	115.5	97.5	60.2	37.5	24.4	28.6	45.2	67.5	95.7	115.8	146.6	986.6
Net evap	85.7	51.9	36.6	14.4	-7.0	-33.5	-24.0	-13.1	5.6	26.5	45.9	88.3	277.3
Net evap/day	2.8	1.8	1.2	0.5	-0.2	-1.1	-0.8	-0.4	0.2	0.9	1.5	2.8	0.8

25/04/2025 12:30:20

Pond system information

Pond System Configuration: 1 closed (sludge-free) storage tank Effluent Type: - 31557.60 m3/year or 86.40 m3/day generated on average

Effluent entering pond system after any pretreatment and recycling

Average (Minimum-Maximum) influent quality calculated for 365.25 non-zero flow days/year.

Constituent	Concentration (mg/L)	Load (kg/year)
Total nitrogen	60.00 (60.00 - 60.00)	1893.46 (1892.16 - 1897.34)
Total phosphorus	0.50 (0.50 - 0.50)	15.78 (15.77 - 15.81)
Total dissolved salts	384.00 (384.00 - 384.00)	12118.12 (12109.82 - 12143.00)
Volatile solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)

Ammonia-N loss from pond system water surface area: 0.00 kg/m2/year

Last pond (wet weather store): 100000.00 m3

Metric	Value
Theoretical hydraulic retention time (days)	1157.41
Volume of overflow (m3/year) Average (minimum-maximum)	2650.29 (1548.00 - 4068.00)
Volume of overflow per day (m3/day) Average (minimum-maximum)	7.26 (2.40 - 86.40)
No overflow days - Average per year (Total in run period)	365.25 (18993)
No. overflow events per 10 years exceeding threshold of 20.116 m3* (events/10 years)	0.19
Average overflow event recurrence interval (years)	52.00
Average duration of overflow (days)	18993.00
Probability of at least 90% effluent reuse (%)	79.46
Effluent reuse (proportion of inflow + net rain gain that is irrigated) (fraction)	0.92
Average salinity (dS/m)	0.60
Salinity on final day of simulation (dS/m)	0.60

* The threshold is the volume equivalent of the top 1 mm depth of water of a full pond

Volume distribution of the overflow events

Diagnostics

Scenario information

Area irrigated: 16.8 ha total area

Loading to whole irrigation area: (assuming 100% irrigation efficiency)

	Quantity/year	Quantity/ha/year
Total irrigation applied (m3)	28908.92	1720.77
Total nitrogen applied (kg)	1699.84	101.18
Total phosphorus applied (kg)	14.45	0.86
Total salts applied (kg)	11101.03	660.78

Shandying

Metric	Value
Annual allocation of fresh water for shandying (m3/year)	0.00
Average shandy water irrigation (m3/year) (minimum - maximum)	0.00 (0.00 - 0.00)
Average exceedance as a proportion of annual shandy water allocation (% of allocation) (minimum - maximum)	0.00 (0.00 - 0.00)
Minimum shandy water is used	No

Irrigation issues

Metric	Value
Number of days without irrigation (days/year)	21.10

Paddock information

Paddock: New paddock, 16.8 ha

Irrigation: Fixed sprinkler with 0.2% ammonium loss during irrigation

Irrigation triggered every 1 days and when rainfall is less than or equal to 10.00 mm

Irrigate a fixed amount of 0.50 mm

Irrigation window from 1/1 to 31/12 including the days specified

A minimum of 0 days must be skipped between irrigation events

Soil water balance (mm): Red ferrosol, 53.30 mm PAWC at maximum root depth

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Rain	66.3	63.6	60.9	45.8	44.5	57.9	52.6	58.4	61.9	69.2	69.9	58.3	709.3
Efflt. irrg.	14.5	13.2	14.5	14.4	14.8	14.3	14.8	14.7	14.1	14.4	14.0	14.5	172.1
Soil evap	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Transpn.	72.8	64.9	57.6	41.7	30.7	21.3	25.5	40.3	59.6	76.5	76.7	75.5	643.1
Rain runoff	0.5	0.8	1.8	0.6	0.5	1.4	0.6	1.5	0.4	0.8	0.4	0.2	9.5
Irr. runoff	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Drainage	5.8	7.3	11.5	13.8	12.8	34.1	43.2	32.8	25.0	21.7	12.3	9.1	229.2
Delta SW	1.6	3.7	4.6	4.1	15.2	15.4	-1.9	-1.5	-8.9	-15.3	-5.5	-12.0	-0.4

Planting regime: Monthly Green Covers - New cover species

Average monthly cover (fraction) (minimum - maximum)	1.00 (1.00 - 1.00)
Average monthly crop factor (fraction) (minimum - maximum)	0.72 (0.72 - 0.72)
Dead cover (if Mthly Covers) or Tot. cover left after harvest (fraction)	0.00
Average rooting depth in defined soil profile (mm)	500.00

Soil salinity - plant salinity tolerance: Tolerant

Assumes 1.0 dS/m Electrical Conductivity = 640 mg/L Total Dissolved Salts All values based on 10 -vear running averages.

Metric	Value
Salinity of infiltrated water (Average salinity of rainwater = 0.03 dS/m) (dS/	0.14
m)	
Salt added by rainfall (kg/ha/year)	134.36
Average annual salt added & leached at steady state (kg/ha/year)	795.14
Average leaching fraction based on 10 -year running averages (fraction)	0.46
Average water-uptake-weighted rootzone salinity sat. ext. (dS/m)	0.14
Salinity of the soil solution (at drained upper limit) at base of rootzone (dS/m)	0.58
Relative crop yield expected due to salinity (fraction)	1.00
Proportion of years that crop yields would be expected to fall below 90% of potential due to salinity (fraction)	0.00

Run information

	Messages	generated whe	n the scenario was	; run	
****	***** WASTEST	REAM RESULTS ***	*****	****	
TABLE OF QUANTITY AND QU	ALITY OF EACH I	RAINFALL-INDEPEN	DENT WASTESTREA	M	
(AFTER PRETREATMENT AND	BEFORE ENTERIN	IG ANY SEDIMENT	ATION BASIN)		
Source Volume_m3/yr	N conc_mg/L	P conc_mg/L	TDS conc_mg/L	N load_kg/yr	P load_kg/yr
TDS load_kg/yr					
New generic system 31557.6	60.0 0.5	384.0 1893.5	15.8 12118.1		
*****	****** END WA	STESTREAM RESUL	TC *********************	*****	
Monthly Green Covers plant o			-		
NOTE: Groundwater nitrate m		5			
UNCONDITIONAL FINISH		· · · · · · · · · · · · · · · · · · ·			

MEDLI v2.5.0.3 Scenario Report - Full

Page 16

25/04/2025 12:30:20

Impact of double reverse osmosis on permeate quality

Prepared for Veolia Environmental Services (Australia) Pty Ltd

Under direction of Raymond Choy, Paul McParland and Jordan Gavel

Prepared by

Dr Peter Bacon CPSS, CEnvP, CPSEC, Principal Natural Resource Scientist Woodlots and Wetlands Pty Ltd 220 Purchase Road, Cherrybrook, 2126 NSW

Document Registration							
Consultancy request	Veolia Environmental Services (Australia) Pty Ltd Under direction of						
	Raymond Choy, Paul McParland and Jordan Gavel						
Prepared By	Woodlots & Wetlands Pty Ltd						
	220 Purchase Road Cherrybrook NSW 2126						
	Mobile: 0427905440						
	E mail:						
	woodlots3@bigpond.com						
Date Issued	28 April 2025						
Document File name	Impact of double reverse osmosis on permeate quality V8 28.04.2025						
Document Title	Impact of double reverse osmosis on permeate quality						
Document	Peter Bacon						
Registered By	Principal Consultant						

Document Registration

Copyright ®

This report on the Impact of double reverse osmosis on permeate quality has been prepared for the express benefit of Veolia Pty Ltd as part of due diligence is assessing the environmental viability of irrigating double RO permeate onto suitable irrigation lands at the Woodlawn Operations Site.

It is Copyright and time and site specific and must not be used for any other purpose.

The assistance of Paul McParland, Raymond Choy and Jordan Gavel is gratefully appreciated.

Contents

1.	BACKGROUND	4
F	Report author	4
2.	PREDICTED RESULTS OF DOUBLE REVERSE OSMOSIS	7
C	Comments of the attribute concentrations	57
ι	Jse irrigation, do not discharge permeate to watercourses	57
F	Potential impact of double RO permeate on suitability for irrigation.	58
	Importance of the low irrigation rate per day and the distance to water courses	59
	The proposed irrigation area	59
	The recommended irrigation strategy based on permeate chemistry	60
3.	CONCLUSIONS	61
4.	REFERENCES	61

1. BACKGROUND

The Veolia Woodlawn Operations Site at Tarago, NSW processes over 40% of Sydney's 'red' bin waste. The treatment process results in excess water that leaches out of the processed product.

The untreated leachate water contains elevated concentrations of sodium, chloride, nutrients and potentially toxic elements and compounds. It requires major reductions in salinity, the concentrations of nutrients and potentially toxic elements compounds before the water can be safely returned to the environment.

It is proposed to use a double Reverse Osmosis (RO) to remove a proportion of the contaminants¹ that is incorporated after the existing leachate treatment plant. The Reverse Osmosis system will include a preliminary filtration stage to safeguard the membrane when processing the stored treated leachate. After the RO process, the purified water will undergo additional treatment through activated carbon filters for polishing and an ion exchange process specifically designed to remove Boron. With reverse osmosis the feed water is pressurised and is forced through a semi permeable membrane. This process will produce water (hereafter referred to as permeate) that is suitable for irrigation. The retentate that does not cross the semi permeable barrier consists of retained water with an increased contaminant load.

Veolia wish to irrigate the permeate onto paddocks to the west of their effluent ponds. A critical issue is the management of potential for any contaminants, e.g. herbicides, pesticides and other chemicals to damage the vegetation and the soil in the irrigated area. It is also necessary to consider the risk to the local waters from any runoff or deep percolation of the permeate.

Figure 1 shows the proposed irrigation land. The headwaters of a local stream are over 100m from the nearest point of the irrigation area.

Report author

Dr Bacon, CPSS, CEnvP, CPESC has over 45 years' experience in soil and water chemistry. He was Senior Research Scientist in NSW Agriculture and later, in NSW State Forests. He undertook major projects on the impact of potentially contaminated biosolids application to soils. In the past decade he has investigated contamination at over 50 sites in NSW.

¹ This is the same process used at Kurnell to produce potable water for Sydney from seawater.

Figure 1. The proposed initial irrigation area is 16.8 ha in area. There is a buffer over 100m wide between the SW corner of the irrigation area and the headwaters of the nearest streamline.

The approach to minimising environmental risk to local watercourses include:

1. Double Reverse Osmosis (the same process used to produce drinking water at Sydney desalination plant in Kurnell).

2. Irrigation at extremely low rates (0.5mm/irrigation) to minimise the possibility of runoff.

3. Not irrigating on days when 10mm or more rainfall is predicted.

4. Each morning undertake a visual inspection of area 2 boundaries to determine if runoff is occurring. Do not irrigate if there is evidence of saturation (which would likely result in runoff).

5. Maintain a minimum of 100m between the edge of the irrigation area and any drainage line.

The table below sets out the recommended separation distances between the outer edge of the irrigation areas and the nearest water bodies.

A separation distance of 50m is recommended between effluent irrigation systems and natural waterbodies.

Recommended buffer distances to water resources and public areas (copy of DEC, 2004, table 4.9).

Sensitive area	Separation distance (low strength effluent)	Separation distance (medium to high strength)	Impact of concern/comments
Natural waterbodies (e.g. rivers, lakes)	50 m	50 m	Protection of water quality and aquatic ecosystems. Supplementary requirements may be included for human sourced effluent to protect public health in recreation areas.
Other waters (e.g. artificial waters with beneficial uses, small streams, intermittent streams, water distribution and drainage channels, farm dams)	Site-specific	Site-specific	Protection of water quality for most sensitive water uses of the potentially affected waterbody.
Domestic well used for household water supply	Site-specific	250 m	Groundwater quality for domestic human uses protected.
Town water supply bores	Site-specific	1000 m	Water and groundwater quality for drinking water supply protected. Town bores generally pump at high rates and draw water from a large area.

Notes: 1. Recommended in ARMCANZ, ANZECC and NHMRC (2000) for the spray application of reclaimed water from sewerage systems.

2. PREDICTED RESULTS OF DOUBLE REVERSE OSMOSIS

The predicted values of the estimates were assessed against the ANZECC (2000² and 2018³) guidelines. The Irrigation water quality guidelines were released in draft form in January, 2024⁴. They are cited as ANZG (2023). The logic for including the irrigation guidelines is that the permeate will be irrigated onto pasture at an indicative rate of 0.5 mm/day. The nearest water body is the head water of a first order stream over 100m away, which is twice the distance recommended buffer distance described in the DEC 2004 guidelines.

The threshold values for permeate discharged to the local stream was set at 95th percentile protection level for local freshwater species. That is, 95% of NSW Freshwater species could tolerate the assessed value of the attributes⁵.

There were 774 attributes measured. 614 of these did not have guideline values. Another 129 attributes had double RO permeate values LESS than the 95% ile threshold value. There were 5 attributes that exceeded the threshold value. In some cases, this excess was a value that exceeded the ANZECC Guideline. For example, the ANZECC Guideline range for upland rivers is 6.5 to 8. The double RO permeate value is 8.5.

Table 1 shows the default toxicity thresholds for 95% of freshwater species in NSW⁶.

Table 2 shows the attributes that exceeded the ANZECC (2000 and 2018) guidelines. The implications of these results are also shown.

⁴ ANZG (2023). DRAFT *Water Quality for Irrigation and General Water Uses: Guidelines*. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand governments and Australian state and territory governments, Canberra.

² Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand (ANZECC/ARMCANZ) 2000. Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy Paper No 4. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand. Canberra, ACT.

³ ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, ACT, Australia. https://www.waterquality.gov.au/anz-guidelines.

⁵ The term 'value' is used because some attributes, e.g. pH and SAR, are not measured in standard units i.e. ug/L and mg/L.

⁶ NOTE the threshold concentration in freshwater. The aim of the Sustainable Irrigation Plan is to apply a very low daily application rate of 0.5 mm of permeate. Irrigation to occur only on days when runoff is not anticipated. Additional irrigation of up to 1.5mm/day can occur on dry summer days. The target annualised irrigation rate is 177 mm/year.

Table 1. Toxicants and their default values for freshwater streams in NSW. The 95% ile value refers to the threshold values for toxicity impact for 95% of species in NSW freshwaters. The Tox LOSP unknown has estimated toxicity threshold values in the ANZECC table. Where applicable, these have been used to assess toxicity issues with the double RO permeate. NOTE not all chemical constituents listed in the table have toxicity thresholds listed in ANZECC. Data source: Copied from the ANZECC web site. Accessed Nov. 2024.

Toxicant name	Toxicant Class	Tox Reliability	Publish date	Tox LOSP 95	Tox LOSP unknown	Tox LOSP Unit
1,1,1-Trichloroethane	Chloroethanes	Unknown	2000	270		µg/L
1,1,2,2-Tetrachloroethane	Chloroethanes	Unknown	2000	400		µg/L
1,1,2,2-Tetrachloroethylene	Chlorinated Alkenes	Unknown	2000	70		µg/L
1,1,2-Trichloroethane	Chloroethanes	Moderate	2000	6500		µg/L
1,1,2-Trichloroethylene	Chlorinated Alkenes	Unknown	2000	330		µg/L
1,1-Dichloroethylene	Chlorinated Alkenes	Unknown	2000	700		µg/L
1,1-Dichloropropane	Chloropopanes	Unknown	2000	500		µg/L
1,2,3,4-Tetrachlorobenzene	Chlorobenzenes and Chloronaphthalenes	Unknown	2000	4		µg/L
1,2,3,5-Tetrachlorobenzene	Chlorobenzenes and Chloronaphthalenes	Unknown	2000	5		µg/L
1,2,3-Trichlorobenzene	Chlorobenzenes and Chloronaphthalenes	Low	2000	10		µg/L
1,2,4,5-Tetrachloro-3-nitrobenzene	Nitrobenzenes	Unknown	2000		0.3	µg/L
1,2,4,5-Tetrachlorobenzene	Chlorobenzenes and Chloronaphthalenes	Unknown	2000	7		µg/L
1,2,4-Trichlorobenzene	Chlorobenzenes and Chloronaphthalenes	Low	2000	170		µg/L
1,2-Dichlorobenzene	Chlorobenzenes and Chloronaphthalenes	Low	2000	160		µg/L
1,2-Dichloroethane	Chloroethanes	Unknown	2000	1900		µg/L
1,2-Dichloropropane	Chloropopanes	Unknown	2000	900		µg/L
1,3,5-Trichlorobenzene	Chlorobenzenes and Chloronaphthalenes	Unknown	2000	13		µg/L
1,3,5-Trinitrobenzene	Nitrobenzenes	Unknown	2000		4	µg/L
1,3-Dichlorobenzene	Chlorobenzenes and Chloronaphthalenes	Low	2000	260		µg/L
1,3-Dichloropropane	Chloropopanes	Unknown	2000	1100		µg/L
1,3-Dinitrobenzene	Nitrobenzenes	Unknown	2000		13	µg/L

Toxicant name	Toxicant Class	Tox Reliability	Publish date	Tox LOSP 95	Tox LOSP unknown	Tox LOSP Unit
1,4-Dichlorobenzene	Chlorobenzenes and Chloronaphthalenes	Moderate	2000	60		µg/L
1,4-Dinitrobenzene	Nitrobenzenes	Unknown	2000		0.6	µg/L
1-Chloro-3-nitrobenzene	Nitrobenzenes	Unknown	2000		12	µg/L
1-Methoxy-2-nitrobenzene	Nitrobenzenes	Unknown	2000		130	µg/L
2,3,4,6-Tetrachlorophenol	Phenols and Xylenols	Low	2000	20		µg/L
2,3,5,6-Tetrachlorophenol	Phenols and Xylenols	Unknown	2000		0.2	µg/L
2,3-Dichlorophenol	Phenols and Xylenols	Unknown	2000		31	µg/L
2,4,5-T	Phenoxyacetic Acid Herbicides	Moderate	2000	36		µg/L
2,4,6-Trichlorophenol	Phenols and Xylenols	Moderate	2000	20		µg/L
2,4,6-Trinitrophenol	Nitrophenols	Unknown	2000		250	µg/L
2,4,6-Trinitrotoluene	Nitrotoluenes	Moderate	2000	140		µg/L
2,4-D	Phenoxyacetic Acid Herbicides	Moderate	2000	280		µg/L
2,4-Dichloroaniline	Anilines	Low	2000	7		µg/L
2,4-Dichlorophenol	Phenols and Xylenols	Low	2000	160		µg/L
2,4-Dimethylphenol	Phenols and Xylenols	Unknown	2000		2	µg/L
2,4-Dinitrophenol	Nitrophenols	Moderate	2000	45		µg/L
2,4-Dinitrotoluene	Nitrotoluenes	Moderate	2000	65		µg/L
2,6-Dichlorophenol	Phenols and Xylenols	Unknown	2000		34	µg/L
2-Chlorophenol	Phenols and Xylenols	Moderate	2000	490		µg/L
2-Nitrotoluene	Nitrotoluenes	Unknown	2000		110	µg/L
3,4-Dichloroaniline	Anilines	Moderate	2000	3		µg/L
3-Chloropropene	Chlorinated Alkenes	Unknown	2000		3	µg/L
3-Nitrotoluene	Nitrotoluenes	Unknown	2000		75	µg/L
4-Chlorophenol	Phenols and Xylenols	Moderate	2000	220		µg/L
4-Nitrophenol	Nitrophenols	Unknown	2000		58	µg/L
4-Nitrotoluene	Nitrotoluenes	Unknown	2000		120	µg/L
Acrolein	Miscellaneous Herbicides	Unknown	2000		0.01	µg/L
Alcohol ethoxylated sulfate (AES)	Surfactants	Low	2000	650		µg/L

Toxicant name	Toxicant Class	Tox Reliability	Publish date	Tox LOSP 95	Tox LOSP unknown	Tox LOSP Unit
Alcohol ethoxylated surfactants (AE)	Surfactants	Moderate	2000	140		µg/L
Aldrin	Organochlorine Pesticides	Unknown	2000		0.001	µg/L
Alpha-cypermethrin	Pyrethroids	Moderate	2023	0.006		µg/L
Aluminium (pH <6.5)	Metals and Metalloids	Unknown	2000		0.8	µg/L
Aluminium (pH >6.5)	Metals and Metalloids	Low	2000	55		µg/L
Ammonia	Non-metallic Inorganics	Very High	2000	900		µg/L
Aniline	Anilines	Moderate	2000	250		µg/L
Anthracene	Polycyclic Aromatic Hydrocarbons	Unknown	2000	0.4		µg/L
Antimony	Metals and Metalloids	Unknown	2000		9	µg/L
Aroclor 1242	Polychlorinated Biphenyls (PCBs) & Dioxins	Low	2000	0.6		µg/L
Aroclor 1254	Polychlorinated Biphenyls (PCBs) & Dioxins	Moderate	2000	0.03		µg/L
Arsenic (AsIII)	Metals and Metalloids	Moderate	2000	24		µg/L
Arsenic (AsV)	Metals and Metalloids	Moderate	2000	13		µg/L
Atrazine	Triazine Herbicides	Moderate	2000	13		µg/L
Azinphos methyl	Organophosphorus Pesticides	Moderate	2000	0.02		µg/L
Benzene	Aromatic Hydrocarbons	Moderate	2000	950		µg/L
Benzo(alpha)pyrene	Polycyclic Aromatic Hydrocarbons	Unknown	2000	0.2		µg/L
Bis(diethylthiocarbamyl)disulfide	Organic Sulfur Compounds	Unknown	2000		1	µg/L
Bis(dimethylthiocarbamyl)sulfide	Organic Sulfur Compounds	Unknown	2000		10	µg/L
Bishphenol A	Miscellaneous industrial organic chemicals	Very High	2023	6.8		µg/L
Boron	Metals and Metalloids	Very High	2021	940		µg/L
BP 1100X	Oil Spill Dispersants	Unknown	2000			µg/L
Cadmium	Metals and Metalloids	Very High	2000	0.2		µg/L
Carbofuran	Carbamate & other Pesticides	Moderate	2000	1.2		µg/L
Carbon disulfide	Organic Sulfur Compounds	Unknown	2000		20	µg/L
Carbon tetrachloride	Chloromethanes	Unknown	2000	240		µg/L
Chlordane	Organochlorine Pesticides	Moderate	2000	0.08		µg/L

Toxicant name	Toxicant Class	Tox Reliability	Publish date	Tox LOSP 95	Tox LOSP unknown	Tox LOSP Unit
Chlorine	Non-metallic Inorganics	Moderate	2000	3		µg/L
Chloroethylene	Chlorinated Alkenes	Unknown	2000	100		µg/L
Chloroform	Chloromethanes	Unknown	2000	770		µg/L
Chlorpyrifos	Organophosphorus Pesticides	Moderate	2000	0.01		µg/L
Chromium (CrIII)	Metals and Metalloids	Unknown	2000		3.3	µg/L
Chromium (CrVI)	Metals and Metalloids	Very High	2000	1		µg/L
Cobalt	Metals and Metalloids	Unknown	2000		1.4	µg/L
Copper	Metals and Metalloids	Very High	2000	1.4		µg/L
Corexit 9527	Oil Spill Dispersants	Unknown	2000			µg/L
Corexit 9550	Oil Spill Dispersants	Unknown	2000		140	µg/L
Cumene (isopropylbenzene)	Aromatic Hydrocarbons	Unknown	2000	30		µg/L
Cyanide	Non-metallic Inorganics	Moderate	2000	7		µg/L
DDT	Organochlorine Pesticides	Moderate	2000	0.01		µg/L
Deltamethrin	Pyrethroids	Unknown	2000		0.0001	µg/L
Di(2-ethylhexyl)phthalate	Phthalates	Unknown	2000		1	µg/L
Diazinon	Organophosphorus Pesticides	Moderate	2000	0.01		µg/L
Dibutylphthalate	Phthalates	Low	2000	26		µg/L
Dichloromethane	Chloromethanes	Unknown	2000	4000		µg/L
Dicofol	Organochlorine Pesticides	Unknown	2000		0.5	µg/L
Dieldrin	Organochlorine Pesticides	Unknown	2000		0.01	µg/L
Diethylphthalate	Phthalates	Very Low	2000	1000		µg/L
Dimethoate	Organophosphorus Pesticides	Low	2000	0.15		µg/L
Dimethylformamide	Miscellaneous Industrial Chemicals	Unknown	2000		1000	µg/L
Dimethylphthalate	Phthalates	Low	2000	3700		µg/L
Dioxins	Polychlorinated biphenyls (PCBs) & Dioxins	Moderate	2023	0.005		ng/L
Diquat	Bypyridilium Herbicides	Low	2000	1.4		µg/L
Diuron	Urea Herbicides	Unknown	2000		0.2	µg/L
Endosulfan	Organochlorine Pesticides	Moderate	2000	0.2		µg/L

Toxicant name	Toxicant Class	Tox Reliability	Publish date	Tox LOSP 95	Tox LOSP unknown	Tox LOSP Unit
Endrin	Organochlorine Pesticides	Moderate	2000	0.02		µg/L
Esfenvalerate	Pyrethroids	High	2000		0.001	µg/L
Ethanol	Organic Alcohols	Low	2000	1400		µg/L
Ethylbenzene	Aromatic Hydrocarbons	Unknown	2000	80		µg/L
Ethylene glycol	Organic Alcohols	Unknown	2000		330	µg/L
Fenitrothion	Organophosphorus Pesticides	Moderate	2000	0.2		µg/L
Fipronil	Pyrazole insecticides	Moderate	2023	0.018		µg/L
Fluoranthene	Polycyclic Aromatic Hydrocarbons	Unknown	2000	1.4		µg/L
Fluoride	Non-metallic Inorganics	Moderate	2024	1.7		mg/L
Glyphosate	Miscellaneous Herbicides	Very High	2021	320		µg/L
Heptachlor	Organochlorine Pesticides	Moderate	2000	0.09		µg/L
Hexachlorobenzene	Chlorobenzenes and Chloronaphthalenes	Unknown	2000	0.1		µg/L
Hexachloroethane	Chloroethanes	Low	2000	360		µg/L
Hydrogen sulfide	Non-metallic Inorganics	Moderate	2000	1		µg/L
Isophorone	Miscellaneous Industrial Chemicals	Unknown	2000			µg/L
Isopropyl alcohol	Organic Alcohols	Unknown	2000		4200	µg/L
Lead	Metals and Metalloids	Moderate	2000	3.4		µg/L
Lindane	Organochlorine Pesticides	Moderate	2000	0.2		µg/L
Linear alkylbenzene sulfonates (LAS)	Surfactants	Low	2000	280		µg/L
Malathion	Organophosphorus Pesticides	Moderate	2000	0.05		µg/L
Mancozeb	Thiocarbamate Herbicides	Moderate	2023	1.2		µg/L
Manganese	Metals and Metalloids	Moderate	2000	1900		µg/L
МСРА	Phenoxyacetic Acid Herbicides	Moderate	2024	7.7		µg/L
Mercury (inorganic)	Metals and Metalloids	Moderate	2000	0.6		µg/L
Methomyl	Carbamate & other Pesticides	Low	2000	3.5		µg/L
Methoxychlor	Organochlorine Pesticides	Unknown	2000		0.005	µg/L
Metolachlor	Miscellaneous Herbicides	Very High	2020	0.46		µg/L
Metsulfuron-methyl	Sulfonylurea herbicides	Moderate	2021	0.018		µg/L

Toxicant name	Toxicant Class	Tox Reliability	Publish date	Tox LOSP 95	Tox LOSP unknown	Tox LOSP Unit
Mirex	Organochlorine Pesticides	Unknown	2000		0.04	µg/L
Molinate	Thiocarbamate Herbicides	Low	2000	3.4		µg/L
Molybdenum	Metals and Metalloids	Unknown	2000		34	µg/L
Monochlorobenzene	Chlorobenzenes and Chloronaphthalenes	Unknown	2000	55		µg/L
m-Xylene	Aromatic Hydrocarbons	Unknown	2000	75		µg/L
Naphthalene	Polycyclic Aromatic Hydrocarbons	Low	2000	16		µg/L
Nickel	Metals and Metalloids	Low	2000	11		µg/L
Nitrate	Non-metallic Inorganics	NA	2000		O _x for slightly distunt (ANZECC, 2000	
Nitrobenzene	Nitrobenzenes	Low	2000	550		µg/L
o-Xylene	Aromatic Hydrocarbons	Low	2000	350		µg/L
Paraquat	Bypyridilium Herbicides	Moderate	2024	1.2		µg/L
Parathion	Organophosphorus Pesticides	Moderate	2000	0.004		µg/L
Pentachlorobenzene	Chlorobenzenes and Chloronaphthalenes	Unknown	2000	2		µg/L
Pentachloroethane	Chloroethanes	Unknown	2000	80		µg/L
Pentachlorophenol	Phenols and Xylenols	Moderate	2000	10		µg/L
Phenanthrene	Polycyclic Aromatic Hydrocarbons	Unknown	2000	2		µg/L
Phenol	Phenols and Xylenols	Moderate	2000	320		µg/L
Picloram	Herbicides	Low	2023	87		µg/L
Poly(acrylonitrile-co-butadiene-co-styrene)	Miscellaneous Industrial Chemicals	Low	2000	530		µg/L
Profenofos	Organophosphorus Pesticides	Unknown	2000		0.02	µg/L
p-Xylene	Aromatic Hydrocarbons	Low	2000	200		µg/L
Selenium (total)	Metals and Metalloids	Moderate	2000	11		µg/L
Silver	Metals and Metalloids	Low	2000	0.05		µg/L
Simazine	Triazine Herbicides	Very High	2024	12		µg/L
S-Methoprene	Carbamate & other Pesticides	Unknown	2000		0.2	µg/L
Sulfometuron-methyl	Sulfonylurea Herbicides	Unknown	2024		0.02	µg/L
Tebuthiuron	Low	2000	2.2		µg/L	

Toxicant name	Toxicant Class	Tox Reliability	Publish date	Tox LOSP 95	Tox LOSP unknown	Tox LOSP Unit
Temephos	Organophosphorus Pesticides	Unknown	2000		0.05	µg/L
Thallium	Metals and Metalloids	Unknown	2000		0.03	µg/L
Thiobencarb	Thiocarbamate Herbicides	Moderate	2000	2.8		µg/L
Thiram	Thiocarbamate Herbicides	Moderate	2000	0.2		µg/L
Toluene	Aromatic Hydrocarbons	Unknown	2000	180		µg/L
Toxaphene	Organochlorine Pesticides	Moderate	2000	0.2		µg/L
Trifluralin	Miscellaneous Herbicides	Moderate	2000	4.4		µg/L
Uranium	Metals and Metalloids	Unknown	2000		0.5	µg/L
Vanadium	Metals and Metalloids	Unknown	2000		6	µg/L
Zinc	Metals and Metalloids	Very High	2000	8		µg/L

The thresholds in table 1 were used to assess the potential toxicity of the 'permeate' derived from the raw water sample taken in October 2024.

In table 2, below, compliant concentrations are shown in GREEN, substances where a threshold is not known are shown in YELLOW. Non-compliant contaminant concentrations in the permeate are shown in RED.

Table 2. Listing of all attributes measured on a sample taken in October 2024. The estimated impact of single and double RO treatment is shown. The concentrations in the double RO permeate is compared with the Toxicity 95% threshold where the permeate is non-toxic for 95% of NSW freshwater species. The advisory toxicity thresholds for short and long term irrigation are also shown. Source: ANZG 2018 for species freshwater toxicity. The toxicity thresholds for short and long term irrigation are from Draft revised Chapter 4.2 Water Quality for Irrigation and General Water Uses: Guidelines Report [Draft] January 2024

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
рН	pH Units	0.02	8.6	>6.5	>6.5	6.5 TO 7.5 IS UPLAND DEFAULT TRIGGER VALUE RANGE. Key impacts include lower solubility of many metals . The proportion of ammoniacal-N as NH3 becomes greater as the pH rises above 8.5.		within range of 5 to 9	The 5 to 9 pH range helps prevent corrosion and fouling of irrigation equipment
Escherichia coli	CFU/ 100mL	1	~20	0.2	0.002	150 cfu/100 mL For PRIMARY CONTACT			Not an issue as no human contact is proposed.
Thermotolerant Coliforms	CFU/100 mL	1	~20	0.2	0.002	<10cfu/100 mL FOR FOOD CROPS EATEN RAW E.G SALAD VEGETABLES			Not an issue as no human contact is proposed.
Electrical Conductivity (EC)	µS/cm	1	23000	1300	600	350 FOR upland rivers (ANZECC, 2000)	Low and not an issue	Low and not an issue	OK for irrigation (0.6 dS/m or 384 mg/L of total dissolved solids ('salt')
Phosphorus - Total	mg/L	0.05	35	3.5	0.35	0.02 The issue is algal growth but algal growth stimulation it is not an issue if the permeate is irrigated soon after production	Up to 12	0.05	To minimise clogging of irrigation equipment only. 0.5mg/L in 1.83 ML of permeate irrigation /ha/y is 0.9 kg/ha/y. A typical 12 T/year Perennial pasture will accumulate 36 kg P/ha/y NSW Agriculture 1997). So, the permeate will

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment supply <3% of the
Total Nitrogen in water	mg/L	0.1	2200	880	60	0.25 mg/L in the threshold in IN UPLAND RIVERS. So, ensure there is no excessive irrigation OR permeate runoff.	<125	<5	anticipated demand. A perennial ryegrass pasture will accumulate an indicative 420 kg/ha/y of Nitrogen.(NSW Agriculture (1997). Applying 183 mm/year containing 60 mg/L N will supply 110 kg/ha/y of N. This is 26% of the pasture N demand.
Ammonia as N in water (operational max based on repeated sampling)	mg/L	0.005	10	1	0.10	0.9 mg/L as AMMONIACAL-N			Ensure there is no permeate runoff to streams. See above comment in relation to total N being 26% of pasture demand.
Nitrate as N in water (operational max based on repeated sampling)	mg/L	0.005	1500	255	50	15 ug/L as NOx-N			Ensure there is no permeate runoff to streams. See above comment in relation to total N being 26% of pasture demand.
Nitrite as N in water (operational max based on repeated sampling)	mg/L	0.005	<0.50	0.075	11.25 ug/L	15 ug/L as NOx-N			ОК
Sodium Adsorption Ratio	-	0.01	28	?	?	A significant issue. However, it can be readily adjusted by adding dissolved calcium to the permeate.	Water with an SAR>6 AND	Add dissolved Calcium to	Check soil. Exchangeable Na % every 3 years. Add

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
							salinity <350 uS/cm create structural ly unstable soil following irrigation.	the permeate	5T/ha of gypsum to the soil if Exch Na%>5%.
Arsenic-Dissolved	µg/L	1	320	32	3.2	As (111) 24 ug/L, As(V) 13 ug/L	20000	5000	OK
Aluminium-Dissolved	µg/L	10	2000	200	20	if pH>6.5_55ug/L. if pH<6.5 ox LOSP unknown 0.8 ug/L is listed	20000	5000	OK for irrigation. Ensure that there is no permeate runoff.
Aluminium-Total	µg/L	10	4800	336	24	NA	20000	5000	OK for irrigation
Antimony-Dissolved	µg/L	1	18	1.8	0.8	ox LOSP unknown 9 ug/L is listed			OK for irrigation
Boron-Dissolved	µg/L	20	4600	3220	340	940	750 to 1500	500	OK for short term irrigation. Raising the soil pH to>7 will increase Fe and Al sorption of B (Strawn, et al, 2015).
Cadmium-Dissolved	µg/L	0.1	3.4	0.4	<0.1	0.2	50	10	OK for irrigation
Calcium - Dissolved	mg/L	0.5	52	5.2	0.52	NA			
Calcium - Total	mg/L	0.5	120	12	1.2	NA			
Chromium-Total	µg/L	1	790	79	7.9	NA			
Cobalt Total	ug/L	1	110	11	1.1				
Cobalt -Dissolved	µg/L	1	94	9.4	0.94	Tox LOSP unknown 1.4 ug/L shown			
Copper -Total	µg/L	1	170	17	1.7	<mark>1.4</mark>	5000	200	

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Copper -Dissolved	µg/L	1	12	1.2	<1	1.4	5000	200	
Fluoride, F	mg/L	0.1	1.4	0.14	0.014	1.7	2	1	OK for irrigation
Lead-Dissolved	µg/L	1	24	2.4	0.24	3.4			-
Lead-Total	µg/L	1	120	12	1.2	3.4	5000	2000	OK for irrigation
Manganese-Dissolved	µg/L	5	250	25	2.5	1900			
Manganese-Total	µg/L	5	1600	160	16	1900	1000	200	OK for irrigation
Mercury-Dissolved	µg/L	0.05	<0.5	0.05	0.005	0.6			
Mercury-Total	µg/L	0.05	<0.50	0.05	0.005	0.6	2	2	OK for irrigation
Molybdenum-Dissolved	µg/L	1	<10	1	0.1	34			
Molybdenum-Total	µg/L	1	13	1.3	0.13	34	50	10	OK for irrigation
Nickel-Dissolved	ug/L	1	290	29	3	<mark>11</mark>			
Nickel-Total	µg/L	1	330	30	3	11	2000	200	OK for irrigation
Selenium-Total	µg/L	1	<10	1	0.1	11	50	20	Total
Sodium - Dissolved	mg/L	0.5	1800	180	18	<224 mg/L FOR upland rivers (<350 uS/cm)			ОК
Sodium - Total	mg/L	0.5	2500	250	25	<224 mg/L FOR upland rivers (<350 uS/cm)			ОК
Vanadium-Dissolved	µg/L	1	110	10	<4	4 ug/L Tox LOSP unknown			
Vanadium-Total	µg/L	1	110	10	1	4 ug/L Tox LOSP unknown	500	100	OK for irrigation
Zinc-Total	µg/L	1	12000	1200	120	NA	5000	2000	OK for irrigation
Zinc-Dissolved	µg/L	1	2100	210	21	8 ug/L (Zn solubility falls with increased pH			No runoff of permeate to local streamlines.
Free Chlorine	mg/L	0.1	<10	0	0	total Chlorine threshold<3 ug/L (0.003 mg/L)			Chlorine reacts with organic matter and is inactivated. The combination of pasture

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
									biomass and organic matter in soils will rapidly inactivate the chlorine so that it is not an issue.
Total Chlorine	mg/L	0.1	<10	1	0.1	3			Not an issue
Methoxychlor	µg/L	0.2	<2.0	0.1	0.005	0.005			
Chlorpyriphos	µg/L	0.2	<2.0	0.1	0.005	0.01 (OK if lower initial concentration)			
Diazinon	µg/L	0.2	<2.0	0.1	0.005	0.01			
pp-DDT	µg/L	0.2	<2.0	0.1	0.005	<mark>0.01</mark>			
Endrin	µg/L	0.2	<2.0	0.1	0.005	0.02 (OK if lower initial concentration)			
Malathion	µg/L	0.2	<2.0	0.1	0.005	<mark>0.05</mark>			
alpha-Chlordane	µg/L	0.2	<2.0	0.1	0.005	<mark>0.08</mark>			
Hexachlorobenzene	µg/L	2	<20	1	0.05	0.1			
2,3,5,6- Tetrachlorophenol	µg/L	2	<20	1.6	0.128	0.2			
Anthracene	µg/L	0.1	<1.0	0.2	0.04	0.2			
Benzo(a)pyrene	µg/L	0.1	<1.0	0.1	0.01	0.2			
Benzo(a)pyrene TEQ	µg/L	0.5	<5	0.5	0.05	0.2			
gamma-BHC (Lindane)	µg/L	2	<20	2	0.2	0.2			
Anthracene	µg/L	2	<20	1.6	0.128	0.4			
Metolachlor	µg/L	2	<20	2	0.2	<mark>0.46</mark>			
Aroclor 1242	µg/L	2	<20	1	0.05	<mark>0.6</mark>			
Carbofuran	µg/L	0.5	<5.0	0.5	0.05	<mark>1.2</mark>			
Fluoranthene	µg/L	2	<20	1	0.05	1.4			
Fluoranthene	µg/L	0.1	<1.0	0.2	0.04	<mark>1.4</mark>			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Pentachlorobenzene	µg/L	2	<20	2	0.2	2			
Phenanthrene	µg/L	2	<20	1.6	0.128	2			
Phenanthrene	µg/L	0.1	<1.0	0.2	0.04	2			
Molinate	µg/L	0.5	<5.0	0.75	0.1125	<mark>3.4</mark>			
1,2,3,4- Tetrachlorobenzene	µg/L	2	<20	2	0.2	4			
Trifluralin	µg/L	2	<20	2	0.2	<mark>4.4</mark>			
1,2,3,5 & 1,2,4,5- Tetrachlorobenzene	µg/L	4	<40	4	0.4	5			
Bisphenol A (BPA)	µg/L	20	220	2	0.2	<mark>6.8</mark>			
Total Cyanide	mg/L	0.004	0.051	0.0077	0.0011	7			
MCPA	µg/L	0.50	<5.0	1	0.2	7.7			
1,2,3-trichlorobenzene	µg/L	1	<10	1.5	0.225	<mark>10</mark>			
1,2,3-Trichlorobenzene	µg/L	2	<20	3	0.45	<mark>10</mark>			
Pentachlorophenol	µg/L	10	<100	5	0.25	<mark>10</mark>			
Simazine	µg/L	2	<20	3	0.45	<mark>12</mark>		0.5	OK
1,3,5-Trichlorobenzene	µg/L	2	<20	3	0.45	<mark>13</mark>			
Atrazine	µg/L	2	<20	2	0.2	<mark>13</mark>		10	OK
Naphthalene	µg/L	2	<20	3	0.45	<mark>16</mark>			
Naphthalene	µg/L	1	<10	10	10	<mark>16</mark>			
Naphthalene	µg/L	0.1	<1	1	1	<mark>16</mark>			
2,3,4,5 & 2,3,4,6- Tetrachlorophenol	µg/L	4	<40	3.2	0.256	20			
2,4,6-Trichlorophenol	µg/L	2	<20	2	0.2	<mark>20</mark>			
lsopropylbenzene	µg/L	1	<10	2	0.4	<mark>30</mark>			
2,6-Dinitrotoluene	µg/L	5	<50	7.5	1.125	<mark>36</mark>			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
2,6-Dinitrotoluene	µg/L	1	<10	1.5	10	<mark>36</mark>			
1,2-Dichlorobenzene	µg/L	2	<20	4	0.8	<mark>60</mark>			
1,4-dichlorobenzene	µg/L	1	<10	1.5	0.225	<mark>60</mark>			
1,4-Dichlorobenzene	µg/L	2	<20	4	0.8	<mark>60</mark>			
2,4-Dinitrotoluene	µg/L	5	<50	7.5	1.125	<mark>65</mark>			
2,4-Dinitrotoluene	µg/L	1	<10	10	10	<mark>65</mark>			
Ethylbenzene	µg/L	1	<10	2	0.4	80			
Ethylbenzene	µg/L	1	<10	3	0.9	80			
Pentachloroethane	µg/L	2	<20	2	0.2	80			
Picloram	µg/L	1.0	<10	2	0.4	87			
2,4,6-Trinitrotoluene	µg/L	1	<10	10	10	<mark>140</mark>			
2,4-Dichlorophenol	µg/L	2	<20	3	0.45	<mark>160</mark>			
1,2,4-trichlorobenzene	µg/L	1	<10	1.5	0.225	<mark>174</mark>			
1,2,4-Trichlorobenzene	µg/L	2	<20	3	0.45	<mark>174</mark>			
Toluene	µg/L	1	<10	2	0.4	<mark>180</mark>			
Toluene	µg/L	1	<10	4	1.6	<mark>180</mark>			
Carbon tetrachloride	µg/L	1	<10	1.5	0.225	240			
1,3-dichlorobenzene	µg/L	1	<10	1.5	0.225	<mark>260</mark>			
1,3-Dichlorobenzene	µg/L	2	<20	4	0.8	<mark>260</mark>			
1,1,1-trichloroethane	µg/L	1	<10	2	0.4	270			
2,4-D	µg/L	0.50	<5.0	1	0.2	280			
Phenol	µg/L	2	35	2	0.8	320			
Total Phenolics (as Phenol)	mg/L	0.05	<0.5	0.075	0.01125	320			
o-xylene	µg/L	1	<10	2	0.4	350			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
o-xylene	µg/L	1	<10	3	0.9	350			
Hexachloroethane	µg/L	2	<20	2	0.2	<mark>360</mark>			
1,1,2,2- tetrachloroethane	µg/L	1	<10	1.5	0.225	400			
2-Chlorophenol	µg/L	2	<20	5	1.25	<mark>490</mark>			
Nitrobenzene	µg/L	5	<50	10	2	<mark>550</mark>			
Nitrobenzene	µg/L	1	<10	10	10	<mark>550</mark>			
Chloroform	µg/L	1	<10	2	0.4	770			
1,2-dichloropropane	µg/L	1	<10	2.5	0.625	900			
Benzene	µg/L	1	<10	2	0.4	<mark>950</mark>			
Diethyl phthalate	µg/L	10	<100	10	1	1000			
1,3-dichloropropane	µg/L	1	<10	2.5	0.625	1100			
Ethanol	µg/L	50	<500	350	245	1400			
1,1,2-trichloroethane	µg/L	1	<10	2	0.4	1900			
1,2-dichloroethane	µg/L	1	<10	3	0.9	<mark>1900</mark>			
Dimethyl phthalate	µg/L	10	<100	10	1	3700			
alpha-Chlordane (cis- Chlordane)	µg/L	2	<20	1	0.05	0.08 (FOR 'Chlordane').			
gamma-Chlordane	µg/L	0.2	<2.0	0.1	0.005	0.08 (FOR 'Chlordane').			
gamma-Chlordane (trans-Chlordane)	µg/L	2	<20	1	0.05	0.08 (FOR 'Chlordane').			
Heptachlor	µg/L	2	<20	2	0.2	0.09 (0.25 FOR 90%ILE)			
Heptachlor	µg/L	0.2	<2.0	0.1	0.005	0.09 (0.25 FOR 90%ILE)			
Endosulfan I	µg/L	2	<20	1	0.05	0.2 (FOR ENDOSULFAN)			
Endosulfan I	µg/L	0.2	<2.0	0.1	0.005	0.2 (FOR ENDOSULFAN)			
Endosulfan II	µg/L	2	<20	1	0.05	0.2 (FOR ENDOSULFAN)			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Endosulfan II	µg/L	0.2	<2.0	0.1	0.005	0.2 (FOR ENDOSULFAN)			
Endosulfan Sulphate	µg/L	2	<20	1	0.05	0.2 (FOR ENDOSULFAN)			
Endosulfan Sulphate	µg/L	0.2	<2.0	0.1	0.005	0.2 (FOR ENDOSULFAN)			
1,3-Dinitrobenzene	µg/L	5	<50	7.5	1.125	13(TOX LOSP UNKNOWN)			
1,3-Dinitrobenzene	µg/L	1	<10	10	10	13(TOX LOSP UNKNOWN)			
2-Nitrotoluene & 4- Nitrotoluene	µg/L	5	<50	50	50	140 (NITROTOLUENE)			
m+p-xylene	µg/L	2	<20	4	0.8	200 (p-xylene)			
Di-n-butyl phthalate	µg/L	50	<500	25	1.25	26 (DIBUTYL PHTHALATE)			
Di-n-octyl phthalate	µg/L	50	<500	25	1.25	26 (DIBUTYL PHTHALATE)			
2,6-D	µg/L	0.50	<5.0	1	0.2	34 Tox LOSP unknown			
2,6-Dichlorophenol	µg/L	2	<20	3	0.45	34 Tox LOSP unknown			
4-Nitrophenol	µg/L	20	<200	40	8	58 Tox LOSP unknown			
Tributyltin	µg/L	0.0020				BELOW DETECTION			
3-Nitrotoluene	µg/L	1	<10	10	10	Tox LOSP unknown 75			
Isopropyl Alcohol	µg/L	50	<500	350	245	Tox unknown 4200			
Extracted ISTD13C2 6:2FTS	%		91			NA			
1,1,1,2- tetrachloroethane	µg/L	1	<10	1.5	0.225	NA			
1,1-dichloroethane	µg/L	1	<10	3	0.9	NA			
1,1-Dichloroethene	µg/L	1	<10	2.5	0.625	NA			
1,1-dichloropropene	µg/L	1	<10	2.5	0.625	NA			
1,2,3,4,6,7,8-HpCDD	pg/L	20	780	4	0.2	NA			
1,2,3,4,6,7,8-HpCDD I- TEQ1	pg/L		7.8	0.04	0.002	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
1,2,3,4,6,7,8-HpCDD I- TEQ2	pg/L		7.8	0.04	0.002	NA			
1,2,3,4,6,7,8-HpCDD I- TEQ3	pg/L		7.8	0.04	0.002	NA			
1,2,3,4,6,7,8-HpCDD WHO-TEQ1	pg/L		7.8	0.04	0.002	NA			
1,2,3,4,6,7,8-HpCDD WHO-TEQ2	pg/L		7.8	0.04	0.002	NA			
1,2,3,4,6,7,8-HpCDD WHO-TEQ3	pg/L		7.8	0.04	0.002	NA			
1,2,3,4,6,7,8-HpCDF	pg/L	20	<200	10	0.5	NA			
1,2,3,4,6,7,8-HpCDF I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,6,7,8-HpCDF I- TEQ2	pg/L		1.0	0	0	NA			
1,2,3,4,6,7,8-HpCDF I- TEQ3	pg/L		2.0	0	0	NA			
1,2,3,4,6,7,8-HpCDF WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,6,7,8-HpCDF WHO-TEQ2	pg/L		1.0	0	0	NA			
1,2,3,4,6,7,8-HpCDF WHO-TEQ3	pg/L		2.0	0	0	NA			
1,2,3,4,7,8,9-HpCDF	pg/L	20	<200	10	0.5	NA			
1,2,3,4,7,8,9-HpCDF I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,7,8,9-HpCDF I- TEQ2	pg/L		1.0	0	0	NA			
1,2,3,4,7,8,9-HpCDF I- TEQ3	pg/L		2.0	0	0	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
1,2,3,4,7,8,9-HpCDF WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,7,8,9-HpCDF WHO-TEQ2	pg/L		1.0	0	0	NA			
1,2,3,4,7,8,9-HpCDF WHO-TEQ3	pg/L		2.0	0	0	NA			
1,2,3,4,7,8-HxCDD	pg/L	20	<200	10	0.5	NA			
1,2,3,4,7,8-HxCDD I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,7,8-HxCDD I- TEQ2	pg/L		10	0	0	NA			
1,2,3,4,7,8-HxCDD I- TEQ3	pg/L		20	0	0	NA			
1,2,3,4,7,8-HxCDD WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,7,8-HxCDD WHO-TEQ2	pg/L		10	0	0	NA			
1,2,3,4,7,8-HxCDD WHO-TEQ3	pg/L		20	0	0	NA			
1,2,3,4,7,8-HxCDF	pg/L	20	<200	10	0.5	NA			
1,2,3,4,7,8-HxCDF I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,7,8-HxCDF I- TEQ2	pg/L		10	0	0	NA			
1,2,3,4,7,8-HxCDF I- TEQ3	pg/L		20	0	0	NA			
1,2,3,4,7,8-HxCDF WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,4,7,8-HxCDF WHO-TEQ2	pg/L		10	0	0	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
1,2,3,4,7,8-HxCDF WHO-TEQ3	pg/L		20	0	0	NA			
1,2,3,6,7,8-HxCDD	pg/L	20	<200	10	0.5	NA			
1,2,3,6,7,8-HxCDD I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,6,7,8-HxCDD I- TEQ2	pg/L		10	0	0	NA			
1,2,3,6,7,8-HxCDD I- TEQ3	pg/L		20	0	0	NA			
1,2,3,6,7,8-HxCDD WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,6,7,8-HxCDD WHO-TEQ2	pg/L		10	0	0	NA			
1,2,3,6,7,8-HxCDD WHO-TEQ3	pg/L		20	0	0	NA			
1,2,3,6,7,8-HxCDF	pg/L	20	<200	10	0.5	NA			
1,2,3,6,7,8-HxCDF I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,6,7,8-HxCDF I- TEQ2	pg/L		10	0	0	NA			
1,2,3,6,7,8-HxCDF I- TEQ3	pg/L		20	0	0	NA			
1,2,3,6,7,8-HxCDF WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,6,7,8-HxCDF WHO-TEQ2	pg/L		10	0	0	NA			
1,2,3,6,7,8-HxCDF WHO-TEQ3	pg/L		20	0	0	NA			
1,2,3,7,8,9-HxCDD	pg/L	20	<200	10	0.5	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
1,2,3,7,8,9-HxCDD I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8,9-HxCDD I- TEQ2	pg/L		10	0	0	NA			
1,2,3,7,8,9-HxCDD I- TEQ3	pg/L		20	0	0	NA			
1,2,3,7,8,9-HxCDD WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8,9-HxCDD WHO-TEQ2	pg/L		10	0	0	NA			
1,2,3,7,8,9-HxCDD WHO-TEQ3	pg/L		20	0	0	NA			
1,2,3,7,8,9-HxCDF	pg/L	20	<200	10	0.5	NA			
1,2,3,7,8,9-HxCDF I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8,9-HxCDF I- TEQ2	pg/L		10	0	0	NA			
1,2,3,7,8,9-HxCDF I- TEQ3	pg/L		20	0	0	NA			
1,2,3,7,8,9-HxCDF WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8,9-HxCDF WHO-TEQ2	pg/L		10	0	0	NA			
1,2,3,7,8,9-HxCDF WHO-TEQ3	pg/L		20	0	0	NA			
1,2,3,7,8-PeCDD	pg/L	20	<200	10	0.5	NA			
1,2,3,7,8-PeCDD I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8-PeCDD I- TEQ2	pg/L		50	0	0	NA			
Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
---------------------------------	-------	---	--------------------------------------	-----------------------------------	---------------------------------------	--	---	---	---------
1,2,3,7,8-PeCDD I- TEQ3	pg/L		100	0	0	NA			
1,2,3,7,8-PeCDD WHO-TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8-PeCDD WHO-TEQ2	pg/L		100	0	0	NA			
1,2,3,7,8-PeCDD WHO-TEQ3	pg/L		200	0	0	NA			
1,2,3,7,8-PeCDF	pg/L	20	<200	10	0.5	NA			
1,2,3,7,8-PeCDF I- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8-PeCDF I- TEQ2	pg/L		5.0	0	0	NA			
1,2,3,7,8-PeCDF I- TEQ3	pg/L		10	0	0	NA			
1,2,3,7,8-PeCDF WHO- TEQ1	pg/L		0.0	0	0	NA			
1,2,3,7,8-PeCDF WHO- TEQ2	pg/L		3.0	0	0	NA			
1,2,3,7,8-PeCDF WHO- TEQ3	pg/L		6.0	0	0	NA			
1,2,3-trichloropropane	µg/L	1	<10	2	0.4	NA			
1,2,4-trimethyl benzene	µg/L	1	<10	2	0.4	NA			
1,2-dibromo-3- chloropropane	µg/L	1	<10	1	0.1	NA			
1,2-dibromoethane	µg/L	1	<10	1.5	0.225	NA			
1,2-dichlorobenzene	µg/L	1	<10	1.5	0.225	NA			
1,3,5-trimethyl benzene	µg/L	1	<10	2	0.4	NA			
1,3,5-Trinitrobenzene	µg/L	1	<10	10	10	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
10:2 FTS	µg/L	0.002	0.021	0.0021	0.00021	NA NA			
13C-1,2,3,4,6,7,8- HpCDD	%		61.8			NA			
13C-1,2,3,4,6,7,8- HpCDF	%		59.6			NA			
13C-1,2,3,4,7,8,9- HpCDF	%		60.1			NA			
13C-1,2,3,4,7,8- HxCDD	%		64.3			NA			
13C-1,2,3,4,7,8-HxCDF	%		75.4			NA			
13C-1,2,3,6,7,8- HxCDD	%		66.4			NA			
13C-1,2,3,6,7,8-HxCDF	%		72.6			NA			
13C-1,2,3,7,8,9-HxCDF	%		76.8			NA			
13C-1,2,3,7,8-PeCDD	%		81.7			NA			
13C-1,2,3,7,8-PeCDF	%		74.1			NA			
13C-2,3,4,6,7,8-HxCDF	%		74.3			NA			
13C-2,3,4,7,8-PeCDF	%		76.7			NA			
13C-2,3,7,8-TCDD	%		71.6			NA			
13C-2,3,7,8-TCDF	%		74.5			NA			
13C-OCDD	%		49.5			NA			
17a-Estradiol	ng/L	10	<500	25	1.25	NA			
17a-ethinyl estradiol	ng/L	5.0	<500	25	1.25	NA			
17b-Estradiol	ng/L	10	3200	10	0.5	NA			
19-Norethindrone	ng/L	20	<1000	50	2.5	NA			
1-Chloronaphthalene	µg/L	2	<20	2	0.2	NA			
1-Methylnaphthalene	µg/L	2	<20	2.4	0.288	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
1-Naphthylamine	µg/L	5	<50	10	2	NA			
1-Octanol	%		111			NA			
2,2-dichloropropane	µg/L	1	<10	2.5	0.625	NA			
2,3,4,6,7,8-HxCDF	pg/L	20	<200	10	0.5	NA			
2,3,4,6,7,8-HxCDF I- TEQ1	pg/L		0.0	0	0	NA			
2,3,4,6,7,8-HxCDF I- TEQ2	pg/L		10	0	0	NA			
2,3,4,6,7,8-HxCDF I- TEQ3	pg/L		20	0	0	NA			
2,3,4,6,7,8-HxCDF WHO-TEQ1	pg/L		0.0	0	0	NA			
2,3,4,6,7,8-HxCDF WHO-TEQ2	pg/L		10	0	0	NA			
2,3,4,6,7,8-HxCDF WHO-TEQ3	pg/L		20	0	0	NA			
2,3,4,7,8-PeCDF	pg/L	20	<200	10	0.5	NA			
2,3,4,7,8-PeCDF I- TEQ1	pg/L		0.0	0	0	NA			
2,3,4,7,8-PeCDF I- TEQ2	pg/L		50	0	0	NA			
2,3,4,7,8-PeCDF I- TEQ3	pg/L		100	0	0	NA			
2,3,4,7,8-PeCDF WHO- TEQ1	pg/L		0.0	0	0	NA			
2,3,4,7,8-PeCDF WHO- TEQ2	pg/L		30	0	0	NA			
2,3,4,7,8-PeCDF WHO- TEQ3	pg/L		60	0	0	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
2,3,7,8-TCDD	pg/L	5.0	<50	2.5	0.125	NA			
2,3,7,8-TCDD I-TEQ1	pg/L		0	0	0	NA			
2,3,7,8-TCDD I-TEQ2	pg/L		25	0.25	0.0125	NA			
2,3,7,8-TCDD I-TEQ3	pg/L		50	0	0	NA			
2,3,7,8-TCDD WHO- TEQ1	pg/L		0.0	0	0	NA			
2,3,7,8-TCDD WHO- TEQ2	pg/L		25	0.25	0.0125	NA			
2,3,7,8-TCDD WHO- TEQ3	pg/L		50	0	0	NA			
2,3,7,8-TCDF	pg/L	5.0	<50			NA			
2,3,7,8-TCDF I-TEQ1	pg/L		0.0	0	0	NA			
2,3,7,8-TCDF I-TEQ2	pg/L		2.5	0.025	0.00125	NA			
2,3,7,8-TCDF I-TEQ3	pg/L		5.0	0	0	NA			
2,3,7,8-TCDF WHO- TEQ1	pg/L		0.0	0	0	NA			
2,3,7,8-TCDF WHO- TEQ2	pg/L		2.5	0.025	0.00125	NA			
2,3,7,8-TCDF WHO- TEQ3	pg/L		5.0	0	0	NA			
2,4,5-T	µg/L	0.50	<5.0	1	0.2	NA			
2,4,5-TP	µg/L	0.50	<5.0	1	0.2	NA			
2,4,5-Trichlorophenol	µg/L	2	<20	2	0.2	NA			
2,4,6-T	µg/L	0.50	<5.0	1	0.2	NA			
2,4-DB	µg/L	0.50	<5.0	1	0.2	NA			
2,4-DCPA	%		90.8			NA			
2,4'-DDD (op-DDD)	µg/L	2	<20	1	0.05	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
2,4'-DDE (op-DDE)	µg/L	2	<20	1	0.05	NA			
2,4'-DDT (op-DDT)	µg/L	2	<20	1	0.05	NA			
2,4-Dimethylphenol	µg/L	2	<20	5	1.25	NA			
2,4-Dintrophenol	µg/L	20	<200	24	2.88	NA			
2-Acetylaminofluorene	µg/L	2	<20	1	0.05	NA			
2-Chloronaphthalene	µg/L	2	<20	2	0.2	NA			
2-Chlorophenoxy acetic acid	µg/L	0.50	<5.0	1	0.2	NA			
2-chlorotoluene	µg/L	1	<10	2	0.4	NA			
2-Fluorobiphenyl	%		120			NA			
2-Fluorobiphenyl	%		120			NA			
2-Fluorobiphenyl	%		120			NA			
2-Methylnaphthalene	µg/L	2	<20	3	0.45	NA			
2-Methylphenol (o- Cresol)	µg/L	2	<20	6	1.8	NA			
2-Naphthylamine	µg/L	5	<50	10	2	NA			
2-Nitroaniline	µg/L	5	<50	10	2	NA			
2-Nitrophenol	µg/L	2	<20	4	0.8	NA			
2-Picoline	µg/L	2	<20	6	1.8	NA			
3,5-Dichlorobenzoic acid	µg/L	0.50	<5.0	1	0.2	NA			
3,5-Dinitroaniline	µg/L	1	<10	10	10	NA			
3/4-Methylphenol (m/p- Cresol)	µg/L	4	7.3	0.09	0.027	NA			
3-Methylcholanthrene	µg/L	2	<20	1	0.05	NA			
3-Nitroaniline	µg/L	5	<50	10	2	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
4-&2-AM-DNT(Isomeric Mixture)	µg/L	2	<20	20	20	NA			
4,4'-DDD (pp-DDD)	µg/L	2	<20	1	0.05	NA			
4,4'-DDE (pp-DDE)	µg/L	2	<20	1	0.05	NA			
4,4'-DDT (pp-DDT)	µg/L	2	<20	1	0.05	NA			
4,6-Dinitro-2- methylphenol	µg/L	20	<200	20	2	NA			
4:2 FTS	µg/L	0.001	<0.01	0.001	0.0001	NA			
4-Aminobiphenyl	µg/L	5	<50	7.5	1.125	NA			
4-Bromophenyl phenyl ether	µg/L	5	<50	7.5	1.125	NA			
4-Chloro-3- methylphenol	µg/L	5	<50	10	2	NA			
4-Chloroaniline	µg/L	5	<50	12.5	3.125	NA			
4-Chlorophenoxy acetic acid	µg/L	0.50	<5.0	1	0.2	NA			
4-Chlorophenyl phenyl ether	µg/L	5	<50	7.5	1.125	NA			
4-chlorotoluene	µg/L	1	<10	2	0.4	NA			
4-isopropyl toluene	µg/L	1	<10	2	0.4	NA			
4-Nitroaniline	µg/L	5	<50	10	2	NA			
4-n-nonyl phenol	ng/L	20	<500	75	11.25	NA			
4-n-octyl phenol	ng/L	20	<500	75	11.25	NA			
4-t-octyl phenol	ng/L	20	1500	75	11.25	NA			
5-Nitro-o-toluidine	µg/L	5	<50	7.5	1.125	NA			
6:2 FTS	µg/L	0.0004	0.07	0.007	0.0007	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
7,12- Dimethylbenz(a)anthra cene	µg/L	2	<20	1	0.05	NA			
8:2 FTS	µg/L	0.0004	<0.02	0.002	0.0002	NA			
Acenaphthene	µg/L	2	<20	2	0.2	NA			
Acenaphthene	µg/L	0.1	<1.0	0.2	0.04	NA			
Acenaphthylene	µg/L	2	<20	2	0.2	NA			
Acenaphthylene	µg/L	0.1	<1.0	0.2	0.04	NA			
Acesulfame K	ng/L	1000	<50000	7500	1125	NA			
Acetophenone	µg/L	5	<50	10	2	NA			
Acifluorfen	µg/L	2.0	<20	4	0.8	NA			
Acrylonitrile Butadiene Styrene Copolymer (ABS)	µg/L	4	<4	0.04	0.0004	NA			
Alachlor	µg/L	2	<20	2	0.2	NA			
alpha-BHC	µg/L	2	<20	2	0.2	NA			
alpha-BHC	µg/L	0.2	<2.0	0.2	0.02	NA			
Alpha-Trenbolone	%		96.6			NA			
Alpha-Trenbolone	%		84.0			NA			
Aluminium-Total	µg/L	10	4800	40	2	NA			
Ametryn	µg/L	2	<20	2	0.2	NA			
Amitriptyline	ng/L	500	<25000	1250	62.5	NA			
Androstanolone	ng/L	200	<10000	500	25	NA			
Androstenedione	ng/L	10	<500	25	1.25	NA			
Androsterone	ng/L	100	<5000	250	12.5	NA			
Aniline	µg/L	5	30	0	0	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Antimony-Total	µg/L	1	26	0.3	0.015	NA NA			
Aroclor 1016	µg/L	2	<20	1	0.05	NA			
Aroclor 1221	µg/L	2	<20	2	0.2	NA			
Aroclor 1232	µg/L	2	<20	2	0.2	NA			
Aroclor 1248	µg/L	2	<20	1	0.05	NA			
Aroclor 1254	µg/L	2	<20	1	0.05	NA			
Aroclor 1260	µg/L	2	<20	1	0.05	NA			
Arsenic-Total	µg/L	1	430	43	4.3	NA			
Atenolol	ng/L	1000	<50000	7500	1125	NA			
Azinphos-methyl (Guthion)	µg/L	2	<20	2	0.2	NA			
Azinphos-methyl (Guthion)	µg/L	0.2	<2.0	0.1	0.005	NA			
Azobenzene	µg/L	5	<50	7.5	1.125	NA			
Bacillus cereus	CFU/100 mL	1	<10000	100	1	NA			
Barium-Dissolved	µg/L	1	150	15	1.5	NA			
Barium-Total	µg/L	1	350	2.5	0.125	NA			
Bentazon	µg/L	1.0	<10	2	0.4	NA			
Benzene	µg/L	1	<10	4	1.6	NA			
Benzo(a)anthracene	µg/L	2	<20	1	0.05	NA			
Benzo(a)anthracene	µg/L	0.1	<1.0	0.15	0.0225	NA			
Benzo(a)pyrene	µg/L	2	<20	1	0.05	NA			
Benzo(b,j,k)fluoranthen e	µg/L	4	<40	2	0.1	NA			
Benzo(b,j+k)fluoranthe ne	µg/L	0.2	<2.0	0.3	0.045	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Benzo(e)pyrene	µg/L	2	<20	1	0.05	NA			
Benzo(g,h,i)perylene	µg/L	2	<20	1	0.05	NA			
Benzo(g,h,i)perylene	µg/L	0.1	<1.0	0.1	0.01	NA			
Benzyl Alcohol	µg/L	5	<50	15	4.5	NA			
Beryllium-Dissolved	µg/L	0.5	<5	5	5	NA			
Beryllium-Total	µg/L	0.5	<5	0.25	0.0125	NA	500	100	Total
beta-BHC	µg/L	2	<20	2	0.2	NA			
beta-BHC	µg/L	0.2	<2.0	0.2	0.02	NA			
Bicarbonate Alkalinity as CaCO3	mg/L	5	8700	35	1.75	NA			
Bifenthrin	µg/L	0.5	<5.0	0.25	0.0125	NA			
Bis(2-Chloroethoxy) methane	µg/L	5	<50	7.5	1.125	NA			
Bis(2-chloroethyl) ether	µg/L	5	<50	7.5	1.125	NA			
Bis(2-Chloroisopropyl) ether	µg/L	5	<50	7.5	1.125	NA			
Bis(2- ethylhexyl)phthalate (DEHP)	µg/L	50	<500	25	1.25	NA			
BOD	mg/L	5	880	8	0.8	NA			
Boron-Total	µg/L	20	5600	3640	360	NA			
Bromobenzene	µg/L	1	<10	1.5	0.225	NA			
Bromochloromethane	µg/L	1	<10	2.5	0.625	NA			
Bromodichloromethane	µg/L	1	<10	2	0.4	NA			
Bromoform	µg/L	1	<10	1	0.1	NA			
Bromomethane	µg/L	10	<100	30	9	NA			
Bromophos ethyl	µg/L	0.2	<2.0	0.1	0.005	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Bromophos-ethyl	µg/L	2	<20	2	0.2	NA			
Bromoxynil	µg/L	0.50	<5.0	1	0.2	NA			
Bupropion	ng/L	50	<2500	375	56.25	NA			
Butanol	µg/L	50	<500	350	245	NA			
Butyl benzyl phthalate	µg/L	10	<100	5	0.25	NA			
Cadmium-Total	µg/L	0.1	20	2	0.2	NA			
Caffeine	ng/L	100	28000	1600	320	NA			
Campylobacter sp			Not Detected			NA			
Carbamazepine	ng/L	10	840	6	0.9	NA			
Carbaryl	µg/L	0.5	<5.0	0.75	0.1125	NA			
Carbazole	µg/L	5	<50	7.5	1.125	NA			
Carbonate Alkalinity as CaCO3	mg/L	5	2300	15	0.75	NA			
Carbophenothion	µg/L	2	<20	2	0.2	NA			
Chloramben	µg/L	1.0	<10	2	0.4	NA			
Chloramine*	mg/L	0.1	<10	0	0	NA			
Chloride, Cl	mg/L	1	2600	30	1.5	NA			
Chlorobenzene	µg/L	1	<10	2	0.4	NA			
Chloroethane	µg/L	10	<100	35	12.25	NA			
Chloromethane	µg/L	10	<100	40	16	NA			
Chloromethyliso thiazolinone (MCI or CMIT)	ng/L	1000	<50000	20000	8000	NA			
Chlorpyrifos-methyl	µg/L	2	<20	2	0.2	NA			
Chlorpyriphos-methyl	µg/L	0.2	<2.0	0.1	0.005	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Chrysene	µg/L	2	<20	1	0.05	NA NA			
Chrysene	µg/L	0.1	<1.0	0.15	0.0225	NA			
Cis-1,2-dichloroethene	µg/L	1	<10	2.5	0.625	NA			
cis-1,3-dichloropropene	µg/L	1	<10	2.5	0.625	NA			
cis-Chlorfenvinphos	µg/L	2	<20	2	0.2	NA			
cis-Permethrin	µg/L	0.5	<5.0	0.25	0.0125	NA			
Clopyralid	µg/L	0.50	<10	2	0.4	NA			
Clostridium perfringens	Spores/1 00mL	1	24000	40	0.4	NA			
Coronene	µg/L	2	<20	1	0.05	NA			
Coumaphos	µg/L	2	<20	2	0.2	NA			
Coumaphos	µg/L	0.2	<2.0	0.1	0.005	NA			
Cyanazine	µg/L	2	<20	2	0.2	NA			
Cyclohexane	µg/L	1	<10	3	0.9	NA			
Cyclohexanone	µg/l	2	<20	5	1.25	NA			
Cyfluthrin	µg/L	2	<20	1	0.05	NA			
Cypermethrin	µg/L	2	<20	1	0.05	NA			
Cyproconazole 1&2	ng/L	50	<5000	250	12.5	NA			
DecaBDE (Br10)	µg/L	1	<1	1	1	NA			
delta-BHC	µg/L	2	<20	2	0.2	NA			
delta-BHC	µg/L	0.2	<2.0	0.2	0.02	NA			
Demeton-S-methyl	µg/L	2	<20	2	0.2	NA			
Desipramine	ng/L	500	<25000	1250	62.5	NA			
Di(2-ethylhexyl)adipate (DEHA)	µg/L	50	<500	25	1.25	NA			
DiBDE (Br2)	µg/L	0.1	<0.1	0.1	0.1	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Dibenzo(a,h)anthracen e	µg/L	2	<20	1	0.05	NA			
Dibenzo(a,h)anthracen e	µg/L	0.1	<1.0	0.1	0.01	NA			
Dibenzofuran	µg/L	5	<50	10	2	NA			
Dibromochloromethane	µg/L	1	<10	1.5	0.225	NA			
Dibromomethane	µg/L	1	<10	2	0.4	NA			
Dibutyltin	µg/L	0.010	Not detectabl e			NA			
Dicamba	µg/L	0.50	<10	2	0.4	NA	0.006		Well below PQL limit
Dichlorodifluoromethan e	µg/L	10	<100	30	9	NA			
Dichloromethylisothiaz olinone (DCMIT)	ng/L	500	<25000	5000	1000	NA			
Dichlorprop	µg/L	0.50	<5.0	1	0.2	NA			
Dichlorvos	µg/L	2	<20	3	0.45	NA			
Dichlorvos	µg/L	0.2	<2.0	0.1	0.005	NA			
Diclofenac	ng/L	50	7800	40	2	NA			
Dieldrin	µg/L	2	<20	1	0.05	NA			
Dieldrin	µg/L	0.2	<2.0	0.1	0.005	NA			
Diethylstilbestrol (synthetic)	ng/L	10	<500	25	1.25	NA			
Difenoconazole	ng/L	200	<20000	1000	50	NA			
Dimethoate	µg/L	0.2	<2.0	0.1	0.005	NA			
Dinoseb	µg/L	20	<200	20	2	NA			
Dinoseb	µg/L	1.0	<10	2	0.4	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Diphenylamine	µg/L	5	<50	7.5	1.125	NA			
Disulfoton	µg/L	2	<20	2	0.2	NA			
Disulfoton	µg/L	0.2	<2.0	0.1	0.005	NA			
Duloxetine	ng/L	1000	<50000	2500	125	NA			
e-Caprolactam	µg/L	5	<50	15	4.5	NA			
Endrin Aldehyde	µg/L	2	<20	1	0.05	NA			
Endrin Aldehyde	µg/L	0.2	<2.0	0.1	0.005	NA			
Endrin Ketone	µg/L	2	<20	1	0.05	NA			
EPN	µg/L	2	<20	2	0.2	NA			
Epoxiconazole	ng/L	50	<5000	250	12.5	NA			
Equilenin	ng/L	10	<500	25	1.25	NA			
Equilin	ng/L	10	<500	25	1.25	NA			
Escitalopram Oxalate	ng/L	50	<2500	2500	2500	NA			
Esfenvalerate I	µg/L	0.5	<5.0	0.25	0.0125	NA			
Estriol	ng/L	5.0	<6500	325	16.25	NA			
Estrone	ng/L	5.0	<250	12.5	0.625	NA			
Ethion	µg/L	2	<20	2	0.2	NA			
Ethion	µg/L	0.2	<2.0	0.1	0.005	NA			
Ethoprophos	µg/L	2	<20	2	0.2	NA			
Ethyl Methanesulfonate	µg/L	5	<50	12.5	3.125	NA			
Etiocholanolone	ng/L	50	<15000	750	37.5	NA			
EtPerfluorooctanesulf- amid oacetic acid	µg/L	0.002	<0.02	0.002	0.0002	NA			
Extracted ISTD 13C2 4:2FTS	%		65			NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Extracted ISTD 13C2 8:2FTS	%		104			NA			
Extracted ISTD 13C2 PFDA	%		62			NA			
Extracted ISTD 13C2 PFDoDA	%		65			NA			
Extracted ISTD 13C2 PFHxA	%		38			NA			
Extracted ISTD 13C2 PFTeDA	%		53			NA			
Extracted ISTD 13C2 PFUnDA	%		63			NA			
Extracted ISTD 13C3 PFBS	%		60			NA			
Extracted ISTD 13C3 PFPeA	%		79			NA			
Extracted ISTD 13C4 PFBA	%		41			NA			
Extracted ISTD 13C4 PFHpA	%		43			NA			
Extracted ISTD 13C4 PFOA	%		54			NA			
Extracted ISTD 13C4 PFOS	%		73			NA			
Extracted ISTD 13C5 PFNA	%		55			NA			
Extracted ISTD 13C8 FOSA	%		61			NA			
Extracted ISTD 18O2 PFHxS	%		69			NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Extracted ISTD d3 N MeFOSA	%		61			NA			
Extracted ISTD d3 N MeFOSAA	%		70			NA			
Extracted ISTD d5 N EtFOSA	%		55			NA			
Extracted ISTD d5 N EtFOSAA	%		85			NA			
Extracted ISTD d7 N MeFOSE	%		56			NA			
Extracted ISTD d9 N EtFOSE	%		68			NA			
Fenamiphos	µg/L	2	<20	2	0.2	NA			
Fenamiphos	µg/L	0.2	<2.0	0.1	0.005	NA			
Fenbuconazole	ng/L	50	<5000	250	12.5	NA			
Fenitrothion	µg/L	2	<20	2	0.2	NA			
Fenitrothion	µg/L	0.2	<2.0	0.1	0.005	NA			
Fensulfothion	µg/L	2	<20	2	0.2	NA			
Fenthion	µg/L	2	<20	2	0.2	NA			
Fenthion	µg/L	0.2	<2.0	0.1	0.005	NA			
Fluorene	µg/L	2	<20	2	0.2	NA			
Fluorene	µg/L	0.1	<1.0	0.2	0.04	NA			
Fluoxetine	ng/L	50	<2500	125	6.25	NA			
Fluquinconazole	ng/L	500	<50000	2500	125	NA			
Fluroxypyr	µg/L	1.0	<10	2	0.4	NA			
Flusilazole	ng/L	50	<5000	250	12.5	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Formaldehyde in waters	µg/L	10	420	16	12.8	NA			
Gabapentin	ng/L	500	<25000	5000	1000	NA			
Galaxolide	ng/L	100	1200	10	0.5	NA			
gamma-BHC	µg/L	0.2	<2.0	0.2	0.02	NA			
Gemfibrozil	ng/L	20	800	0	0	NA			
Hardness - Total (calc) equiv CaCO3	mg/L	3	1100	5	0.25	NA	<60 mg/L CaCO3		increased risk of corrosion
Hardness (calc) equivalent CaCO3	mg/L	3	760	36	21.6	NA			
HCB	µg/L	0.2	<2.0	0.2	0.02	NA			
HeptaBDE (Br7)	µg/L	0.2	<0.2	0.2	0.2	NA			
Heptachlor Epoxide	µg/L	2	<20	1	0.05	NA			
Heptachlor Epoxide	µg/L	0.2	<2.0	0.1	0.005	NA			
HexaBDE (Br6)	µg/L	0.2	<0.2	0.2	0.2	NA			
Hexachlorobutadiene	µg/L	1	<10	1	0.1	NA			
Hexachlorobutadiene	µg/L	2	<20	1	0.05	NA			
Hexachlorocyclopentad iene	µg/L	5	<50	2.5	0.125	NA			
Hexachloropropene	µg/L	2	<20	2	0.2	NA			
Hexazinone	µg/L	2	<20	2	0.2	NA			
HMX	µg/L	1	<10	10	10	NA			
Hydroxide Alkalinity (OH-) as CaCO3	mg/L	5	<5	0.25	0.0125	NA			
Ibuprofen	ng/L	20	3600	90	13.5	NA			
Imipramine	ng/L	1000	<50000	2500	125	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Indeno(1,2,3- c,d)pyrene	µg/L	2	<20	1	0.05	NA			
Indeno(1,2,3- c,d)pyrene	µg/L	0.1	<1.0	0.1	0.01	NA			
loxynil	µg/L	1.0	<10	2	0.4	NA			
Irgarol (Cybutryn)	µg/L	2	<20	2	0.2	NA			
Iron-Dissolved	µg/L	10	15000	1500	150	NA			
Iron-Total	µg/L	10	25000	2500	250	NA	10000	2000	Total
Isobutyl Alcohol	µg/L	50	<500	350	245	NA			
Isodrin	µg/L	2	<20	2	0.2	NA			
Isophorone	µg/L	5	<50	10	2	NA			
Isosafrole (cis+trans)	µg/L	10	<10	2	0.4	NA			
lamda-Cyhalothrin	µg/L	0.5	<5.0	0.25	0.0125	NA			
Levonorgestrel (isomer of Norgestrel)	ng/L	10	<500	25	1.25	NA			
Lithium-Dissolved	µg/L	1	230	23	2.3	NA			
Lithium-Total	µg/L	1	280	28	2.8	NA	75 to 2500	75 (citrus only)	OK for irrigation
m+p-xylene	µg/L	2	<20	6	1.8	NA			
Magnesium - Dissolved	mg/L	0.5	150	2.5	0.125	NA			
Magnesium - Total	mg/L	0.5	190	4.5	0.225	NA			
MCPB	µg/L	0.50	<5.0	1	0.2	NA			
Mecoprop	µg/L	0.50	8.7	0.14	0.028	NA			
MePerfluorooctanesulf- amid oacetic acid	µg/L	0.002	0.031	0.0031	0.00031	NA			
Mestranol	ng/L	10	<2500	125	6.25	NA			
Methanol	µg/L	200	<2000	1400	980	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Methapyrilene	µg/L	10	<100	10	1	NA			
Methidathion	µg/L	2	<20	2	0.2	NA			
Methidathion	µg/L	0.2	<2.0	0.1	0.005	NA			
Methyl Methanesulfonate	µg/L	2	<20	5	1.25	NA			
Methylisothiazolinone (MIT)	ng/L	1000	<50000	20000	8000	NA			
Metribuzin	µg/L	2	<20	2	0.2	NA			
Mevinphos	µg/L	2	<20	3	0.45	NA			
Mevinphos	µg/L	0.2	<2.0	0.1	0.005	NA			
Mirtazapine	ng/L	1000	<50000	2500	125	NA			
MonoBDE (Br1)	µg/L	0.1	<0.1	0.1	0.1	NA			
Monobutyltin	µg/L	0.020	Not detected			NA			
Monobutyltin as Sn	µg/L	0.020	<0.20	0.02	0.002	NA			
Monocrotophos	µg/L	2	<20	2	0.2	NA			
Mould	CFU/100 mL	1	<100	1	0.01	NA			
Naproxen	ng/L	20	<500	75	11.25	NA			
n-butyl benzene	µg/L	1	<10	2	0.4	NA			
N-Et perfluorooctanesulfona mid oethanol	µg/L	0.5	<0.5	0.05	0.005	NA			
N-Ethyl perfluorooctanesulfon amide	µg/L	0.1	<0.1	0.01	0.001	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Nitroglycerine	µg/L	1	<10	1	0.1	NA			
N-Me perfluoro Ctanesulfonamid oethanol	µg/L	0.05	0.1	0.01	0.001	NA			
N-Methyl Perfluorooctane sulfonamide	µg/L	0.05	<0.05	0.005	0.0005	NA	NA		
N-Nitrosodiethylamine (NDEA)	µg/L	5	<50	20	8	NA			
N-Nitrosodi-n- propylamine (NDPA)	µg/L	5	<50	20	8	NA			
N- Nitrosomethylethylamin e (NMEA)	µg/L	5	<50	20	8	NA			
N-Nitrosomorpholine (NMOR)	µg/L	5	<50	20	8	NA			
N-Nitroso-n-butylamine (NDBA)	µg/L	5	<50	20	8	NA			
N-Nitrosopiperidine (NPIP)	µg/L	5	<50	20	8	NA			
N-Nitrosopyrolidine (NPYR)	µg/L	5	<50	20	8	NA			
NonaBDE (Br9)	µg/L	0.5	<0.5	0.5	0.5	NA		1	
Nortriptyline	ng/L	20	<1000	50	2.5	NA			
n-propyl benzene	µg/L	1	<10	2	0.4	NA			
Nylon-6 (N-6)	µg/L	2	<2	0.02	0.0002	NA			
Nylon-6,6 (N-66)	µg/L	6	<6	0.06	0.0006	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
OCDD	pg/L	50	4900	45	2.25	NA NA			
OCDD I-TEQ1	pg/L		4.9	0.045	0.00225	NA			
OCDD I-TEQ2	pg/L		4.9	0.045	0.00225	NA			
OCDD I-TEQ3	pg/L		4.9	0.045	0.00225	NA			
OCDD WHO-TEQ1	pg/L		1.5	0.025	0.00125	NA			
OCDD WHO-TEQ2	pg/L		1.5	0.025	0.00125	NA			
OCDD WHO-TEQ3	pg/L		1.5	0.025	0.00125	NA			
OCDF	pg/L	50	<500	25	1.25	NA			
OCDF I-TEQ1	pg/L		0.0	0	0	NA			
OCDF I-TEQ2	pg/L		0.25	0.0125	0.000625	NA			
OCDF I-TEQ3	pg/L		0.50	0.025	0.00125	NA			
OCDF WHO-TEQ1	pg/L		0.0	0	0	NA			
OCDF WHO-TEQ2	pg/L		0.075	0.00375	0.0001875	NA			
OCDF WHO-TEQ3	pg/L		0.15	0.0075	0.000375	NA			
OctaBDE (Br8)	µg/L	0.2	<0.2	0.2	0.2	NA			
Octinoxate	ng/L	50	<500	25	1.25	NA			
Octocrylene	ng/L	100	9600	30	1.5	NA			
o-desmethylvenlafaxine	ng/L	20	6500	25	1.25	NA			
Oil & Grease (LLE)	mg/L	5	<10	0.5	0.025	NA			
Oxybenzone	ng/L	50	<500	75	11.25	NA			
Paracetamol (Acetaminophen)	ng/L	200	<10000	2000	400	NA			
Parathion-methyl	µg/L	2	<20	2	0.2	NA			
Parathion-Methyl	µg/L	0.2	<2.0	0.1	0.005	NA			
Paroxetine	ng/L	5000	<250000	12500	625	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
PCB C101	µg/L	0.5	<5.0	0.25	0.0125	NA			
PCB C118	µg/L	0.5	<5.0	0.25	0.0125	NA			
PCB C138	µg/L	0.5	<5.0	0.25	0.0125	NA			
PCB C153	µg/L	0.5	<5.0	0.25	0.0125	NA			
PCB C180	µg/L	0.5	<5.0	0.25	0.0125	NA			
PCB C28	µg/L	1	<10	1	0.1	NA			
PCB C52	µg/L	1	<10	0.5	0.025	NA			
p-cumylphenol	ng/L	20	1700	105	15.75	NA			
p- Dimethylaminoazobenz ene	µg/L	5	<50	7.5	1.125	NA			
Penconazole	ng/L	50	<5000	750	112.5	NA			
PentaBDE (Br5)	µg/L	0.2	<0.2	0.2	0.2	NA			
Pentachloronitrobenze ne	µg/L	5	<50	7.5	1.125	NA			
Perfluorobutanesulfonic acid	µg/L	0.0004	22	0.2	0.02	NA			
Perfluorobutanoic acid	µg/L	0.002	0.51	0.051	0.0051	NA			
Perfluorodecanesulfoni c acid	µg/L	0.002	<0.02	0.002	0.0002	NA			
Perfluorodecanoic acid	µg/L	0.002	0.046	0.0046	0.00046	NA			
Perfluorododecanoic acid	µg/L	0.005	<0.05	0.005	0.0005	NA			
Perfluoroheptanesulfon ic acid	µg/L	0.001	<0.01	0.001	0.0001	NA			
Perfluoroheptanoic acid	µg/L	0.0004	<0.01	0.001	0.0001	NA			
Perfluorohexanesulfoni c acid - PFHxS	µg/L	0.0002	0.078	0.0078	0.00078	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Perfluorohexanoic acid	µg/L	0.0004	2.8	0.08	0.008	NA			
Perfluorononanoic acid	µg/L	0.001	0.012	0.0012	0.00012	NA			
Perfluorooctane sulfonamide	µg/L	0.01	<0.1	0.01	0.001	NA			
Perfluorooctanesulfonic acid PFOS	µg/L	0.0002	0.17	0.017	0.0017	NA			
Perfluorooctanoic acid PFOA	µg/L	0.0002	0.068	0.0068	0.00068	NA			
Perfluoropentanesulfon ic acid	µg/L	0.001	<0.01	0.001	0.0001	NA			
Perfluoropentanoic acid	µg/L	0.002	0.7	0.07	0.007	NA			
Perfluorotetradecanoic acid	µg/L	0.05	<0.5	0.05	0.005	NA			
Perfluorotridecanoic acid	µg/L	0.01	<0.1	0.01	0.001	NA			
Perfluoroundecanoic acid	µg/L	0.002	<0.02	0.002	0.0002	NA			
Perylene	µg/L	2	<20	1	0.05	NA			
PETN	µg/L	1	<10	10	10	NA			
Phenacetin	µg/L	5	<50	7.5	1.125	NA			
Phorate	µg/L	2	<20	2	0.2	NA			
Phorate	µg/L	0.2	<2.0	0.1	0.005	NA			
Phosalone	µg/L	2	<20	2	0.2	NA			
Phosalone	µg/L	0.2	<2.0	0.1	0.005	NA			
Phosmet	µg/L	2	<20	2	0.2	NA			
Pirimiphos-ethyl	µg/L	2	<20	2	0.2	NA			
Pirimiphos-methyl	µg/L	2	<20	2	0.2	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Polycarbonate (PC)	µg/L	3	<3	0.03	0.0003	NA			
Polyethylene (PE)	µg/L	18	<18	0.18	0.0018	NA			
Polyethylene Terephthalate (PET)	µg/L	6	<6	0.06	0.0006	NA			
Polymethyl Methacrylate (PMMA)	µg/L	3	<3	0.03	0.0003	NA			
Polypropylene (PP)	µg/L	8	<8	0.08	0.0008	NA			
Polystyrene (PS)	µg/L	2	<2	0.02	0.0002	NA			
Polyurethane (PU)	µg/L	1	<1	0.01	0.0001	NA			
Polyvinyl Chloride (PVC)	µg/L	10	<10	0.1	0.001	NA			
Potassium - Dissolved	mg/L	0.5	1100	6	0.36	NA			
Potassium - Total	mg/L	0.5	1000	0	0	NA			
pp-DDD	µg/L	0.2	<2.0	0.1	0.005	NA			
pp-DDE	µg/L	0.2	<2.0	0.2	0.02	NA			
Progesterone	ng/L	5.0	<250	12.5	0.625	NA			
Prometryn	µg/L	2	<20	2	0.2	NA			
Propazine	µg/L	2	<20	2	0.2	NA			
Propiconazole A	µg/L	2	<20	1	0.05	NA			
Propiconazole B	µg/L	2	<20	1	0.05	NA			
Propranolol	ng/L	1000	<50000	7500	1125	NA			
Propyl Alcohol	µg/L	50	<500	350	245	NA			
Prothiophos	µg/L	2	<20	2	0.2	NA NA			
Pyrene	µg/L	2	<20	1	0.05	NA			
Pyrene	µg/L	0.1	<1.0	0.15	0.0225	NA			
Ranitidine	ng/L	10	<500	75	11.25	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
RDX	µg/L	1	<10	10	10	NA NA			
Ronnel	µg/L	2	<20	2	0.2	NA			
Ronnel	µg/L	0.2	<2.0	0.1	0.005	NA			
Safrole	µg/L	5	<50	10	2	NA			
Salmonella sp		1	Not detected			NA			
Sec-butyl benzene	µg/L	1	<10	2	0.4	NA			
Selenium-Dissolved	µg/L	1	<10	10	10	NA			
Sertraline	ng/L	1000	<50000	2500	125	NA			
Styrene	µg/L	1	<10	2	0.4	NA			
Styrene Butadiene Rubber (SBR)	µg/L	4	<4	0.04	0.0004	NA			
Sulfamethoxazole	ng/L	20	<1000	150	22.5	NA			
Sulfur -Total	mg/L	0.5	250	50	50	NA			
Sulprofos (Bolstar)	µg/L	2	<20	2	0.2	NA			
Tebuconazole	µg/L	2	<20	1	0.05	NA			
Terbuthylazine	µg/L	2	<20	2	0.2	NA			
Terbuthylazine-d5	%		94.5			NA			
Terbutryn	µg/L	2	<20	2	0.2	NA			
Tert-butyl benzene	µg/L	1	<10	2	0.4	NA			
Testosterone	ng/L	5.0	<250	12.5	0.625	NA			
TetraBDE (Br4)	µg/L	0.1	<0.1	0.1	0.1	NA			
Tetrachloroethene	µg/L	1	<10	1.5	0.225	NA			
Tetrachlorvinphos	µg/L	2	<20	2	0.2	NA			
Tetraconazole	ng/L	50	<5000	500	50	NA			
Tetryl	µg/L	1	<10	10	10	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Thiabendazole	ng/L	50	<5000	1000	200	NA NA			
Tin-Dissolved	µg/L	1	54	5.4	0.54	NA			
Tin-Total	µg/L	1	130	13	1.3	NA			
Tonalide	ng/L	100	<1000	50	2.5	NA			
Total +ve TRH (>C10- C40)	µg/L	50	7400	400	400	NA			
Total +ve TRH (C10- C36)	µg/L	50	7500	500	500	NA			
Total +ve PAH's	µg/L	0.1	<1	0.1	0.01	NA			
Total Alkalinity as CaCO3	mg/L	5	11000	50	2.5	NA			
Total Organic Carbon	mg/L	1	1900	90	9	NA			
Total Positive PBDE Br1-Br10	µg/L	0.1	<0.1	0.1	0.1	NA			
Total Positive PBDE Br1-Br9	µg/L	0.1	<0.1	0.1	0.1	NA			
Total Positive PFAS	µg/L	0.0002	26	0.6	0.06	NA			
Total Positive PFHxS & PFOS	µg/L	0.0002	0.25	0.025	0.0025	NA			
Total Positive PFOS & PFOA	µg/L	0.0002	0.24	0.024	0.0024	NA			
Tramadol	ng/L	5.0	1300	15	0.75	NA			
Trans-1,2- dichloroethene	µg/L	1	<10	2.5	0.625	NA			
trans-1,3- dichloropropene	µg/L	1	<10	2.5	0.625	NA			
trans-Chlorfenvinphos	µg/L	2	<20	2	0.2	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
trans-Nonachlor	µg/L	2	<20	1	0.05	NA			
Trazodone	ng/L	10	<500	25	1.25	NA			
TRH >C10 - C16	µg/L	50	2700	700	700	NA			
TRH >C10 - C16 less Naphthalene (F2)	µg/L	50	2700	700	700	NA			
TRH >C16 - C34	µg/L	100	4500	500	500	NA			
TRH >C34 - C40	µg/L	100	180	80	80	NA			
TRH C10 - C14	µg/L	50	2200	200	200	NA			
TRH C15 - C28	µg/L	100	4600	600	600	NA			
TRH C29 - C36	µg/L	100	710	10	10	NA			
TRH C6 - C10	µg/L	10	100	0	0	NA			
TRH C6 - C10 less BTEX (F1)	µg/L	10	100	0	0	NA			
TRH C6 - C9	µg/L	10	100	0	0	NA			
TriBDE (Br3)	µg/L	0.1	<0.1	0.1	0.1	NA			
Tributyltin as Sn	µg/L	0.0020	<0.020	0.002	0.0002	NA			
Trichloroethene	µg/L	1	<10	1.5	0.225	NA			
Trichlorofluoromethane	µg/L	10	<100	20	4	NA			
Triclopyr	µg/L	0.50	<10	2	0.4	NA			
Triclosan	ng/L	20	<500	75	11.25	NA			
Triphenyltin	%		95.6			NA			
Venlafaxine	ng/L	10	<500	25	1.25	NA			
Vinyl Chloride	µg/L	10	<100	30	9	NA			
Vitamin E Acetate	ng/L	100	5800	40	2	NA			
Yeast	CFU/100 mL	1	100	0	0	NA			

Attribute	Units	Practical quantific ation limit (PQL)	Raw Water Analysis 01.10.24	Pass 1 permeate (estimated)	Pass 2 permeate (estimated)	Tox LOSP 95: threshold where permeate is non-toxic for an estimated 95% of NSW freshwater fauna GREEN is compliant. YELLOW is used where a threshold of Issue or value is not available RED is for non-compliant attributes	Short term irrigatio n (20 years)	Long term irrigation (100 years)	Comment
Dibutyltin as Sn	µg/L	0.010	<0.10	0.01	0.001	<mark>NA (Sn not listed)</mark>			
Parathion	µg/L	2	<20	<2	<0.2	0.004 (<pql<u>)</pql<u>			
Parathion	µg/L	0.2	<2.0	<0.1	<0.005	0.004 (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Chlorpyrifos	µg/L	2	<20	<2	<0.2	0.01 (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Diazinon	µg/L	2	<20	<2	<0.2	0.01 (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Endrin	µg/L	2	<20	<1	<0.05	0.02 (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Malathion	µg/L	2	<20	<2	<0.2	0.05 (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Dimethoate	µg/L	2	<20	<2	<0.2	0.15 (<pql)< td=""><td></td><td></td><td></td></pql)<>			
trans-Permethrin	µg/L	0.5	<5.0	<0.25	<0.0125	(Alpha-cypermethrin 0.006) (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Methoxychlor	µg/L	2	<20	<1	<0.05	0.005 (default value) (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Mirex	ug/L	2	<20	<1	<0.05	0.04 (default value) (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Mirex	ug/L	0.2	<2.0	<0.1	<0.005	0.04 (default value) (<pql)< td=""><td></td><td></td><td></td></pql)<>			
Aldrin	µg/L	2	<20	<2	<0.2	Tox LOSP unknown (0.001 ug/L IS LISTED)			
Aldrin	µg/L	0.2	<2.0	<0.1	<0.005	Tox LOSP unknown (0.001 ug/L IS LISTED)			
Deltamethrin	µg/L	0.5	<5.0	<0.25	<0.0125	Tox LOSP unknown (0.0001 is			

There are 21 Non-compliant attributes for upland rivers in SE Australia.

These included Electrical conductivity, total Nitrogen, Nitrate-N, total Phosphorus and Dissolved Chromium. However, the concentrations of these attributes comply with the ANZECC (2000) guideline threshold for irrigation. It is obviously essential that there be no runoff of permeate to local stream lines. See discussion in Woodlots and Wetlands (2025a,b). Obvious in table 3, is that the Tox LOSP 95 threshold is set below the Practical Quantification Limit for routine analyses of many anolytes. That is non-specialised, but NATA registered, laboratories cannot quantify some analyte concentrations that occur at or below Tox LOSP 95 threshold. Note that there is expected to be a similar log reduction of any contaminants from the feed to the permeate, presented above.

Table 3 provides comment on the non-compliant attributes.

Table 3. The attributes that exceeded the threshold values in the ANZECC (2000 - 2024) guidelines. The units are shown in column 2. The comments are designed to interpret the result. For many attributes the estimated concentration following double reverse osmosis is less than the practical quantification limit (PQL). The TOX LOSP 95 threshold is also below the PQL. This can occur because of interference within liquids containing multiple contaminants. This apparent incongruity creates an issue in interpreting the data.

Attribute	Units	Practical	Raw	RO Pass 1	RO Pass 2	Tox LOSP 95	Comments
		quantification	Water	permeate	permeate	(threshold where	
		limit (PQL)	Analysis	(estimated)	(estimated)	water is non-toxic	
			01.10.24	see	see	for an estimated	
				column 2	column 2	95% of NSW	
				for units	for units	freshwater fauna)	
Parathion	µg/L	2	<20	2	0.2	0.004	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Parathion	µg/L	0.2	<2.0	0.1	0.005	0.004	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Chlorpyrifos	µg/L	2	<20	2	0.2	0.01	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Diazinon	µg/L	2	<20	2	0.2	0.01	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Endrin	µg/L	2	<20	1	0.05	0.02	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Malathion	µg/L	2	<20	2	0.2	0.05	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Dimethoate	µg/L	2	<20	2	0.2	0.15	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
trans-Permethrin	µg/L	0.5	<5.0	0.25	0.0125	(Alpha-cypermethrin 0.006)	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Methoxychlor	µg/L	2	<20	1	0.05	0.005 (default value)	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Mirex	ug/L	2	<20	1	0.0.05	0.04 (default value)	Threshold <practical (pql)<="" limit="" quantification="" td=""></practical>
Mirex	ug/L	0.2	<2.0	0.1	0.005	0.04 (default value)	Threshold <practical (pql).<br="" limit="" quantification="">However, the estimated concentration in double RO permeate is <the <u="" concentration.="" default="">So. <u>OK.</u></the></practical>
Aldrin	µg/L	2	<20	2	0.2	Tox LOSP unknown (0.001 ug/L IS LISTED)	aldrin is rapidly converted to dieldrin in the environment. Toxicity of dieldrin is 'unknown' 9ANZECC, 2018).
Aldrin	µg/L	0.2	<2.0	0.1	0.005	Tox LOSP unknown (0.001 ug/L IS LISTED)	See above
Deltamethrin	µg/L	0.5	<5.0	0.25	0.0125	Tox LOSP unknown 0.0001 ug/L shown	Toxicity is unknown (ANZECC, 2018).

Comments of the attribute concentrations

728 attributes were measured. 564 attributes had no relevant threshold Tox LOSP 95. Some 147 of the attributes were found to be less than the threshold Tox LOSP 95. That is the threshold where water is non-toxic for an estimated 95% of NSW freshwater fauna. A further 21 attributes exceeded the threshold where water is non-toxic for an estimated 95% of NSW freshwater fauna. Importantly, the attributes met the ANZECC (2000) criteria for irrigation suitability (the proposed use). This includes the thresholds for irrigation in 20 or 100 years duration showed that the elements tested were compliant for irridation.

A number of the attributes were not concentrations. For example, pH and SAR.

Comments on pH were taken from ANZECC, 2000, tables 2.3.2 and 2.3.3.

The SAR (Sodium Absorption Ratio) is a measure of the ratio of Na/(Ca+Mg). The higher the number the more the risk of irrigated soil structural instability. Adding dissolved Ca to the permeate will reduce the SAR while increasing the ionic strength. Adding lime if the soil is acidic or adding gypsum if the soil is near neutral pH will also reduce the SAR value.

Other attributes, especially dissolved metals, are very pH dependent. Typically, the solubility of the potentially toxic metals fall rapidly with pH increase. The practical response to this is to raise the soil pH to an indicative 6.5 to 7.

The ammoniacal-N form is also very pH dependent. At a pH<8 almost all the ammoniacal-N is in a monovalent cation form: i.e. NH_4N . The NH_4N becomes a dissolved gas (NH_3-N) as the pH rises above a pH of around 8.4 to 8.5. This can result in loss of ammonia from surface soil, vegetation and water via gas to the atmosphere. It is important to contextualise that for the proposed purpose of irrigation without runoff, total Nitrogen concentration in the double RO permeate is estimated as being 60 mg/L. This is over an order of magnitude higher than the 0.25 mg/L guideline threshold for slightly disturbed upland rivers (ANZECC, 2000).

The nitrogen application rate should be less than the nitrogen uptake rate by the pasture. According to NSW Agriculture (1997), a typical 12 T/ha perennial ryegrass pasture will accumulate some 420 kg/ha/y of nitrogen. The proposed application rate of around 37 kg N/ha/year via the permeate (60mg/L*1.83 (ML/ha/y) =110 kg/ha/y) is less than 27% of the nitrogen demand for a typical perennial ryegrass pasture (NSW Agriculture 1997).

The predicted phosphorus concentration in the permeate is 0.5mg/L. The proposed irrigation rate is 1.83 ML/ha/year. Therefore, the phosphorus application via the permeate is 0.9 kg/ha/y. A typical 12 T/year Perennial ryegrass pasture will accumulate 36 kg P/ha/y NSW Agriculture (1997). That is, the permeate will supply 2.5% of the anticipated phosphorus demand.

Use irrigation, do not discharge permeate to watercourses

A critical issue is that the permeate is used for IRRIGATION without direct discharges to watercourses.

The irrigation area is more than 100m from any watercourse. Additionally, the design irrigation rate is 0.5mm/day. This is extremely low and much of the water will be evaporated directly from leaves wetted with the permeate. The remainder will infiltrate the clay loam soil and interact via sorption processes, eventually being degraded or sorbed in the soil.

Daily pre-irrigation site assessment is required to ensure there is no runoff from the irrigation area. Irrigation MUST not occur if there is field saturation (which would likely result in runoff.

Table 3, above, shows that the concentrations of many attributes in the double permeate are below the practical quantification limit.

Potential impact of double RO permeate on suitability for long term irrigation.

Table 4 shows typical double RO chemical constituent concentrations against the ANZECC (2000) guideline thresholds for long term irrigation (Table 4.2.10 in ANZECC, 2000).

The concentrations of dissolved substances in the double RO permeate are well below the thresholds for long term irrigation ss per ANZG (2023).

Table 4. The typical attributes of the double RO permeate and their compliance compared with ANZG (2023a) long term irrigation threshold values.

Component	Units (ug/L) unless noted.	Indicative post double RO (ug/L) Dissolved concentrations	Compliance with ANZG (2023a) long term irrigation and general use guidelines. (ug/L unless noted)	Comments regarding post double RO water
Al	ug/L	12	5000	Ok
As	ug/L	20	100	ОК
В	ug/L	340	500	The background concentration in soils is 1000 ug/kg. Note that Boron losses to fodder are typical.
Са	ug/L		NA	Ca is a valuable element; it increases soil stability as well as improve plant growth
Cd	ug/L	0.4	10	OK
Со	ug/L	1	50	ОК
Cr (111)	ug/L	3	100	ОК
Cu	ug/L	0.12	200	ОК
Mg	ug/L	475		Not listed. However, Mg is useful in 'moderate' concentrations to plant development.
Mn	ug/L	50	200	ОК
Na	ug/L	4.5	<115,000 to avoid foliar injury in sensitive plants.	The lower the better.
Ni	ug/L	3	200	ОК
К	ug/L			OK. An important plant nutrient.
Ва	ug/L			Not listed
Se	ug/L	1	20	ОК
NH4-N	ug/L	900	5000	ОК
Fe	ug/L	150	200	Ok
Pb	ug/L	1	2000	ОК
Zn	ug/L	21	2000	ОК
NO3	ug/L			Nitrate-N concentration is elevated but is below the toxicity threshold for babies <3 months old.
F	ug/L		1	OK
Br	ug/L	600	500	OK for <20 years' irrigation. Raising the soil pH will increase Fe and Al sorption of Br.

Component	Units (ug/L) unless noted.	Indicative post double RO (ug/L) Dissolved concentrations	Compliance with ANZG (2023a) long term irrigation and general use guidelines. (ug/L unless noted)	Comments regarding post double RO water
B (Boron)	ug/L	340	500	ОК
PO ₄	ug/L	350	50	P leaching is highly unlikely as the application rate in 1.8 ML/ha/y is 9 kg/ha/y. A typical 12 T/ha/y perennial ryegrass crop accumulates some 36 kg P. This is 4 times the application rate via the irrigation system.
TDS	mg/l		Yes	Very low, so non-saline water
Electrical conductivity at 25°C/ 37°C	uS/cm	600	Yes	Very low and non-saline, so OK
'Salt concentration	mg/L	840	Yes	Assumes 1000 uS/cm is equivalent to 640 mg/L
рН	рН	pH will be adjusted to be in the 6.5 to 8 range.	Yes	6.5 to 8 is the 'normal range. So OK
PFOA	µg/L	0.4		.Irrigation water so OK (EPA. 2020)
PFOS	µg/L	0.3		Irrigation water so OK (EPA. 2020)
PFHxS	µg/L	0.09		
perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS)	µg/L	NA		0.07 ug/L drinking water. And 2 ug/L for recreational water.

Based on the results in table 4, it is reasonable to conclude that based on the chemicals tested, the double RO permeate is suitable for pasture irrigation.

Importance of the low irrigation rate per day and the distance to water courses.

It is important to note that the permeate will be applied at 0.5 mm/day (except when the predicted rainfall will create runoff). No irrigation will occur if the predicted rainfall is 100mm or greater. The 0.5mm irrigation will largely be retained within the leaves. The net effect is that irrigated permeate will be retained in the topsoil.

Additionally, the proposed irrigation area is over 100m from the headwaters of the nearest local streamline. So, even if there was some off site migration of the permeate, it is extremely unlikely that the permeate would reach local surface waters.

The water is 'non-saline' so the risk of salinisation of the site, the groundwater or local streams is negligible.

The proposed irrigation area

The proposed irrigation areas are on low hills. The geology is largely volcanic, with some surface rocks being metamorphosed siliceous bedrock (see Espade v2.2).

The initial development will be concentrated on a relatively flat area within the NW portion of the Veolia Property. See figure 1.

The recommended irrigation strategy based on permeate chemistry

A series of wastewater irrigation models were examined to address the impacts. These were then assessed to determine the most suitable strategy.

The recommended irrigation strategy is to apply a small quantity of irrigation (0.5 mm) each day when the predicted rainfall is <10mm. The 10mm irrigation cutoff threshold for predicated rainfall is less than the rainfall runoff threshold of 17mm/day (from USDA model).

The irrigation is to be applied via fixed or mobile sprinklers. A total of 16.8 ha of irrigation is expected to be installed. 0.5mm over 16.8 ha is 84 cubic m/day. This is a permeate flow of 1 L/sec. If this rate is applied 365 days/y, the annual volume is 31.5 ML/y (1*60*60*24*365/1000000).

The recommended model (as discussed in the Sustainable Irrigation Management Plan, Woodlots and Wetlands 2025b), has 12 days/year when irrigation will not occur. Note that in summer, the irrigation rate can be doubled to 1mm/day on 12 dry warm days to 'make up' for the 12 days/ average year with zero irrigation. The annualised irrigation rate would be 183 mm/year. With maintenance downtime, the indicative application rate is 177 mm/year. Any temporary cessation of irrigation can be recovered by applying a higher daily application rate once the weather becomes warm and dry. However, the annual rate of 183 mm/year is assumed for modelling purposes.

Note it is critically important to raise the soil pH to at least 6.5.

The proposed irrigation protocol had minimal increase in surface runoff as table 5 shows (2 mm/year). However deep percolation was increased from 153 mm/year without irrigation, to 232 mm/year for a scenario of 0.5 mm/day of permeate unless there was at least 10mm of rainfall predicted.

Table 5. The water balance	components with and without permeate irri	gation. For details see the
Sustainable Irrigation Plan (Woodlots and Wetlands, 2025b).	-

Water balance	Zero irrigation	0.5mm every day if	Change (mm/y)
component (all		<10 mm of rain	
mm/y)		predicted	
Rainfall (1980 to	709	709	0
2021)			
Permeate irrigation	0	177	+177
Soil evaporation	0	0	0
Transpiration	549	644	+95
Rainfall runoff	8	10	+2
Irrigation runoff	0	0	0
Deep drainage	153	232	+79

7Note that the SW corner of the irrigation area should be inspected each morning. The SW corner is the portion of area 2 closest to the drainage line. Do NOT irrigate if there is runoff from the site.

The key result of the permeate irrigation is an increase in transpiration and in deep percolation. The MEDLI modelling shows there is no accumulation of 'salt' anywhere in the profile. The reasons for this are that the

- soils are currently non saline,
- there is a minimal quantity of salt in the permeate
- the irrigation rate of 183 mm/year is very low.

3. CONCLUSIONS

The double RO permeate has greatly reduced contaminant concentrations. However, there are some chemicals whose post double RO attributes exceed the 95% of NSW aquatic species toxicity threshold. This issue is addressed via irrigation rather than discharge of the double RO permeate. The anticipated quality attributes are compliant with the ANZECC 2000 guidelines for irrigation.

The irrigation is based on application of 0.5mm/day every day when the forecast rainfall is less than 10mm. (runoff threshold is 17mm/day).

There is more than 100 m of unirrigated buffer lands between the irrigation area and the headwaters of a first order watercourse. It is therefore extremely unlikely that the constituents in the double RO permeate will reach the watercourse. Management of this will be verified as per the control described, including daily inspections to verify the fields are unsaturated as well as the plant control measures described in the Sustainable Irrigation Management Plan.

4. REFERENCES

ANZG 2023a. Water Quality for Irrigation and General Water Uses: Guidelines. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand governments and Australian state and territory governments, Canberra. See 2024 revised draft.

NSW Agriculture 1997. The New South Wales Feedlot Manual. Inter- Departmental Committee on Intensive Animal Industries (Feedlot Section), NSW Agriculture, Orange, NSW

Woodlots and Wetlands. 2025. Sustainable Irrigation Management Plan

Suitability of four potential irrigation areas at the Veolia Woodlawn Operations Site to sustainably receive treated process leachates

Prepared for Veolia Environmental Services (Australia) Pty Ltd

Under direction of Raymond Choy and Jordan Gavel

Prepared by

Dr Peter Bacon CPSS, CEnvP, CPSEC, Principal Natural Resource Scientist Woodlots and Wetlands Pty Ltd 220 Purchase Road, Cherrybrook, 2126 NSW

	Document Registration
Consultancy request	Veolia Environmental Services (Australia) Pty Ltd Under direction of
request	Raymond Choy and Jordan Gavel
Prepared By	Woodlots & Wetlands Pty Ltd
	220 Purchase Road Cherrybrook NSW 2126
	Mobile: 0427905440
	E mail:
	woodlots3@bigpond.com
Date Issued	06.05.2024
Document File name	Suitability of 4 potential irrigation areas at Veolia Woodlawn Operations Site to sustainably receive treated process leachates V12
Document Title	Suitability of four potential irrigation areas at the Veolia Woodlawn Operations Site to sustainably receive treated process leachates
Document	Peter Bacon
Registered By	Principal Consultant

Document Registration

Copyright ®

This has been prepared for the express benefit of Veolia Pty Ltd to provide a viable plan to utilise excess treated leachate to irrigate lands at the Woodlawn Operations Site.

It is Copyright and time and site specific and must not be used for any other purpose.

The assistance of Raymond Choy and Jordan Gavel is gratefully appreciated.
1. Executive summary

The Veolia Woodlawn Operations Site processes over 40% of Sydney's 'red' bin waste. The treatment process results in excess water that leaches out of the processed product.

The untreated leachate water contains elevated concentrations of sodium, chloride, nutrients and potentially toxic elements. It may also contain chemicals of concern such as PFAS / PFOS and endocrine disruptors. The untreated leachate will require major reductions in salinity as well as in the concentrations of nutrients and potentially toxic elements before the water can be safely returned to the environment via irrigation.

It is proposed to use a double Reverse Osmosis (RO) to remove a proportion of the contaminants. In the RO process, the leachate is pressurised and is forced through a semi permeable membrane. This process will produce water (hereafter referred to as permeate) that is suitable for irrigation. The retentate that does not cross the semi permeable barrier consists of water with an increased contaminant concentration load.

A critical issue in the current report is to establish the quantity of permeate that can be safely used on lands to the west of the current storage ponds on the Veolia site. A total of 77 ha was assessed (figure 5.1, below). This document focusses on suitability of the 77 ha for irrigation with the double RO permeate.

The document titled: *Impact of double reverse osmosis on permeate quality* And

The document titled: Sustainable Irrigation Management Plan

Provide details on the anticipated quality of the permeate and on the methodology for achieving a sustainable irrigation system.

The key guidance document for the current document is DEC (2004).Use of Effluent by Irrigation.

The table below shows the anticipated chemical characteristics of the permeate following double RO.

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
рН	pH Units	>6.5		within range of 5 to 9	The 5 to 9 pH range helps prevent corrosion and fouling of irrigation equipment
Escherichia coli	CFU/ 100mL	0.002			Not an issue as no human contact is proposed.
Thermotolerant Coliforms	CFU/100 mL	0.002			Not an issue as no human contact is proposed.
Electrical Conductivity	µS/cm	600	Low and not an issue	Low and not an issue	OK for irrigation (0.6 dS/m or 384 mg/L of total dissolved solids ('salt')
Total dissolved solids	mg/kg	384			See above

Table 1. The anticipated attributes of the double RO permeate compared with the	
short and long term ANZECC (2000) guidelines for irrigation water.	

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
Phosphorus - Total	mg/L	0.35	Up to 12	0.05	To minimise clogging of irrigation equipment only. 0.5mg/L in 1.83 ML of permeate irrigation /ha/y is 0.9 kg/ha/y. A typical 12 T/year Perennial pasture will accumulate 36 kg P/ha/y NSW Agriculture 1997). So, the permeate will supply <3% of the anticipated demand.
Total Nitrogen in water	mg/L	60	<125	<5	A perennial ryegrass pasture will accumulate an indicative 420 kg/ha/y of Nitrogen.(NSW Agriculture (1997). Applying 183 mm/year containing 60 mg/L N will supply 110 kg/ha/y of N. This is 26% of the pasture N demand.
Ammonia as N in water (operational max based on repeated sampling)	mg/L	0.10			Ensure there is no permeate runoff to streams. See above comment in relation to total N being 26% of pasture demand.
Nitrate as N in water (operational max based on repeated sampling)	mg/L	50			Ensure there is no permeate runoff to streams. See above comment in relation to total N being 26% of pasture demand.
Nitrite as N in water (operational max based on repeated sampling)	mg/L	11.25 ug/L			ОК
Sodium Adsorption Ratio	-	?	Water with an SAR>6 AND salinity <600 uS/cm can create structurally	Add dissolved Calcium to the permeate	Check soil Exchangeable Na % every 3 years. Add 5T/ha of gypsum to the soil if Exch Na%>5%.

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
			unstable soil following irrigation.		
Arsenic-Dissolved	µg/L	3.2	20000	100	ОК
Aluminium-Dissolved	µg/L	20	20000	5000	OK for irrigation. Ensure that there is no permeate runoff.
Aluminium-Total	µg/L	24	20000	5000	OK for irrigation
Antimony-Dissolved	µg/L	0.8			OK for irrigation
Boron-Dissolved	µg/L	340	750 to 1500	500	OK for short term irrigation. Raising the soil pH to>7 will increase Fe and Al sorption of B (Strawn, et al, 2015).
Cadmium-Dissolved	µg/L	<0.1	50	10	OK for irrigation
Calcium - Dissolved	mg/L	0.52			
Calcium - Total	mg/L	1.2			
Cobalt-Dissolved	µg/L	0.94	100	50	OK for irrigation
Copper-Total	µg/L	1.7	5000	200	OK for irrigation
Copper-Dissolved	µg/L	<1	5000	200	See above
Fluoride, F	mg/L	0.014	2	1	OK for irrigation
Lead-Dissolved	µg/L	0.24			
Lead-Total	µg/L	1.2	5000	2000	OK for irrigation
Manganese- Dissolved	µg/L	2.5			
Manganese-Total	µg/L	16	10000	200	OK for irrigation
Mercury-Dissolved	µg/L	0.005			
Mercury-Total	µg/L	0.005	2	2	OK for irrigation
Molybdenum- Dissolved	µg/L	0.1			
Molybdenum-Total	µg/L	0.13	50	10	OK for irrigation
Nickel-Dissolved	ug/L	3			
Nickel-Total	µg/L	3	2000	200	OK for irrigation
Selenium-Total	µg/L	0.1	50	20	OK for irrigation
Sodium - Dissolved	mg/L	18			OK for irrigation
Sodium - Total	mg/L	25			OK for irrigation
Vanadium-Dissolved	µg/L	<4			
Vanadium-Total	µg/L	1	500	100	OK for irrigation
Zinc-Total	µg/L	120	5000	2000	OK for irrigation
Zinc-Dissolved	µg/L	21			No runoff of permeate to local streamlines.
Free Chlorine	mg/L	0			Chlorine reacts with organic matter and is

Attribute	Units	Pass 2 permeate (estimated)	Short term irrigation (20 years)	Long term irrigation (100 years)	Comment
					inactivated. The combination of pasture biomass and organic matter in soils will rapidly inactivate the chlorine so that it is not an issue.
Total Chlorine	mg/L	0.1			Not an issue

Essentially the post double RO permeate is suitable for irrigation provided the Calcium concentration, either in the permeate or as gypsum applied at 5T/ha to the soil surface.

The entire proposed irrigation area drains to Lake George. Lake George is a closed basin.

The proposed irrigation areas are on rolling low hills. The geology is largely volcanic along Collector Road, areas 1 and 2, and some surface rocks being metamorphosed siliceous bedrock in areas 3 and 4 (see Espade v2.2). Areas 3 and 4 were steeper than areas 1 and 2.

The soil characteristics that made the sites suitable for irrigation were:

- Soil depth at least 0.8m and preferable >1m deep
- Surface soil loams to pedal clay loams (facilitating rapid infiltration of water)
- Structurally stable clay subsoils (Facilitating moderate infiltration and large ability to retain nutrients, contaminants and water).
- sprinkler irrigation can be used at least to 15% grade.

These attributes largely applied to areas 1 and 2.

The key limitations in areas 3 and 4 were:

- Shallow soils
- Rocky sub soils
- Water logging and poor physical conditions in the subsoil as indicated by a bleached A₂ horizon. These soils have low wet strength and this can result in 'bogging' of vehicles and the travelling irrigators.
- Some slopes too steep for sprinkler irrigation.
- The current pastures are not designed to maximise response to irrigation. Pasture species/cultivars designed to respond to irrigation need to be planted.
- Weed control is essential
- The pH is too low. Lime is required. Liming will also increase the percentage of exchangeable Ca. This, in turn will increase soil structural stability.
- Available P concentration is very low. Apply 20 kg P/ha/y.
- Potassium and boron fertilisation will be needed in future.

A range of model parameters were used.

The water holding capacity of the soil was set at 90mm. This is the quantity of water (mm) in the surface 500mm of soil can store water before free drainage occurs.

Conclusions And Recommendations

- There were 4 irrigation areas.
- Areas 1 and 2 are the most favourable for irrigation on the Veolia Site. Their soils are relatively deep. They have good nutrient retention ability and are non-saline.
- Areas 3 and 4 have less favourable conditions. Typically, shallower soil, steeper slopes and in some cases convergence runon from upslope areas.
- All areas are deficient in nutrients.
- Some areas require liming and /or gypsum to correct soil acidity/ structural instability.

Recommendations

- 1. Fixed sprinkler systems are RECOMMENDED
- 2. All areas require establishment of improved pastures. Legumes are recommended in the pasture mix.

The proposed irrigation areas will need a topographical survey.

Area 2 was selected for the first phase of this irrigation project.

It is proposed to apply 0.5mm/day every day when there is ZERO runoff and when there less than 10 mm of rainfall is predicted.

Contents

1.	Executive summary	3
(Conclusions And Recommendations	7
F	Recommendations	7
1.	BACKGROUND	10
٦	The project	10
L	ocation of the irrigation areas	10
F	Report author	13
2.	THE PROPOSED PERMEATE PRODUCTION RATES	14
F	Reverse osmosis process	14
F	RO production rates and irrigation area needs.	14
F	Permeate quality	14
3.	SITE SUITABILITY FOR IRRIGATION	16
4.	SOIL LANDSCAPE TYPES	17
5.	LANDFORM CONDITIONS IN THE IRRIGATION AREAS	19
L	andform attributes and irrigation suitability conditions in Area 1	20
٦	The pasture mix requirements	22
L	andform attributes and limitations in Area 2	25
L	andform attributes and limitations in Area 3	28
L	andform attributes and limitations in Area 4	31
ł	Key landform limitations	34
ł		
ł	Key landform limitations	34
ł	Key landform limitations Area 1:	34 34
ł	Key landform limitations Area 1: Area 2:	34 34 34
	Key landform limitations Area 1: Area 2: Area 3 :	34 34 34 34
	Key landform limitations Area 1: Area 2: Area 3 : Area 4:	34 34 34 34 34
6.	Key landform limitations Area 1: Area 2: Area 3 : Area 4: Conclusions regarding the 4 areas	34 34 34 34 34 35
6.	Key landform limitations Area 1: Area 2: Area 3 : Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1`	34 34 34 34 34 35 42
6.	Key landform limitations Area 1: Area 2: Area 3 : Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1	34 34 34 34 35 42 42
6.	Key landform limitations Area 1: Area 2: Area 3 : Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations	34 34 34 34 34 35 42 42 42
6.	Key landform limitations Area 1: Area 2: Area 3 : Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations P availability	34 34 34 34 35 42 42 42 42
6.	Key landform limitations Area 1: Area 2: Area 3 : Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations P availability Nitrogen	34 34 34 34 35 42 42 42 42 42
6.	Key landform limitations Area 1: Area 2: Area 3: Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations P availability Nitrogen Sulfur	34 34 34 34 35 42 42 42 42 42 42
6.	Key landform limitations Area 1: Area 2: Area 3: Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations P availability Nitrogen Sulfur Acidity	34 34 34 34 34 35 42 42 42 42 42 42 42
6.	Key landform limitations Area 1: Area 2: Area 3: Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations P availability. Nitrogen Sulfur Acidity Salinity	34 34 34 34 35 42 42 42 42 42 42 42 42 42
6.	Key landform limitations Area 1: Area 2: Area 3: Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations P availability Nitrogen Sulfur Acidity Salinity Exchangeable cations	34 34 34 34 35 42 42 42 42 42 42 42 42 42 42 43
6.	Key landform limitations Area 1: Area 2: Area 3: Area 4: Conclusions regarding the 4 areas SOIL CHEMICAL DATA FOR AREA 1` Discussion of topsoil chemistry in Area 1 Soluble cations P availability Nitrogen Sulfur Acidity Salinity Exchangeable cations	34 34 34 34 34 35 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42

Conclusions regarding the soils in area 1	
Overall suitability of Area 1 soils	45
7. SOIL CHEMISTRY ASSESSMENT IN AREAS 2, 3 AND 4	
Conclusions regarding soil chemistry in the 4 areas	66
P sorption capacity in areas 2, 3 and 4	67
Conclusions regarding P sorption capacity	67
8. IRRIGATION MANAGEMENT AND WATER BALANCE	69
9. CALCULATION OF SOIL SALINISATION AND NUTRIENT ACCUMULATIO	N74
SALINISATION	74
Nutrient demand	74
Management of buffer areas	75
Potential for changes in permeate quality	75
Site monitoring	76
The water flow and quality monitoring program involves	76
The pasture monitoring program involves	76
The soil management program involves	76
Required responses	77
Permeate quality and quantity	77
Surface and subsurface water	77
10. CONCLUSIONS and RECOMMENDATIONS	78
Recommendations	78
REFERENCES	79
APPENDIX 1. SOIL ATTRIBUTES OF THE 39 PROFILES IN AREAS 2, 3 and 4	4 80

1. BACKGROUND

The project

Veolia Environmental Services (Australia) Pty Ltd, hereafter Veolia, receives some 40% of Sydney's putrescible wastes at its Woodlawn Site. The waste treatment process generates excess leachate. Currently this leachate is retained in effluent storage dams. However, leachate volumes requiring storage have exceeded modelled values. This has resulted in the need to safely dispose of excess volume.

Irrigation onto lands within the Woodlawn site was explored as an option. Appendix 1 contains the detailed modelling. Appendix 2 contains soil / landform information.

The treated leachate chemistry is a major constraint to reuse. The treated leachate was extremely saline. Its sodium concentration is extremely high. Application of treated leachate to land would kill off most vegetation as well as lead to loss of soil structural stability. See table 2.2 for details.

A reverse osmosis (hereafter RO) plant is proposed as a way of removing contaminants that make the treated leachate unsuitable for irrigation. It is proposed to irrigate nearby pastures with the permeate. Management of the retentate is under investigation.

The proposed irrigation area is currently used for sheep grazing. Major pasture plants on site include fescue and phalaris. However, weeds currently dominate the pastures.

Fescue and phalaris can tolerate irrigation water with 3 to 4 dS/m of salinity (ANZECC, 2000, Table 4.2.5). A 2 pass RO system can reduce salinity from 13 - 17 dS/m to 0.2 to 0.3 dS/m (table 2.2). That is, the permeate is suitable for pasture irrigation. The treated leachate would also be suitable for some clovers.

The current project assesses the proposed irrigation areas for various types of irrigation. It also considers the suitability of the soil for irrigation.

Location of the irrigation areas

The proposed irrigation areas cover some 72 ha on the western edge of the Veolia Site (see figure 1.1).

This area of the Veolia site drains to Lake George. Lake George is a 'closed' catchment that is separate from the Sydney Water hydrological catchment . *Lake George is 25 kilometres long, 10 kilometres wide, and very shallow. The lake has no surface outflow but water is lost through evaporation and underground seepage. This natural drainage basin is fed by 10 major tributaries that drain from the surrounding hilly country. These tributaries originally drained to the Yass River before they were cut off by the uplift of the Lake George Range (see NSW Water website).*

Figure 1.1 and 1.2 show the flow direction.

This drainage patter is important because it means that the proposed irrigation areas are NOT part of the Sydney Hydrological Catchment.

Figure 1.1. The proposed irrigation areas all drain towards Lake George (image source: NSW Gov). See figure 1.2 below. Note that the irrigation is onto pastures. The treed areas are excluded.

Report author

Peter Bacon has over 35 years' experience in investigating nutrient and water dynamics. In this time, he has published over 300 articles, ranging from expert systems to international reviews of major ecological processes.

During the 1980s he lectured to irrigation science students at Yanco Agricultural College.

In 1992 he was awarded a Churchill Fellowship to study effluent management and the environment in South Africa, Israel, Portugal and the USA. Specific aspects included modelling effluent quality changes to soil and water, the effects of land management on aquatic ecosystems, biosolids reuse in forests and the environmental effects of effluent reuse. In 1994 he founded Woodlots & Wetlands, an environmental consultancy, specialising in stormwater and wastewater management and eco engineering.

Since 2007 he has been a Fellow of UTS and guest lectured to postgraduate Environmental Engineers in environmental risk and on wetland design to manage waste waters.

He has undertaken over 200 effluent and waste management projects including ones for food processing facilities, tanneries, abattoirs, chicken sheds, piggeries, dairies, wineries, industrial sites, aboriginal settlements, towns, cities and individual resort and institutional developments. He has also undertaken compliance investigations for waste food processing and for processing of treated grease trap wastes from commercial premises and industrial plants.

Since 2005 he has provided expert witness in several Land and Environment Court cases involving waste management and effluent reuse.

2. THE PROPOSED PERMEATE PRODUCTION

RATES

Reverse osmosis process

RO (reverse osmosis), operates by forcing pressurised water through a semi permeable membrane, leaving the retentate, with the dissolved contaminants, behind.

The water with the reduced concentration of contaminants is referred to as the permeate. The remaining water and contaminants are referred to as the retentate.

RO production rates and irrigation area needs.

Veolia expects to produce between 2 and a maximum of 8 L/sec of permeate from a proposed RO plant. Table 2.1 shows the consequent volumes of permeate water available for irrigation The area of irrigation land required is discussed later in this report.

Table 2.1. The volumes of permeate water over different time periods based on production of 1 to 8 L/sec. The initial estimate of the minimum irrigation area for different production rates are also shown. Note the areas are rounded up to the next ha.

HEVI H	а.							
L/sec	L/day	Cubic	ML/y	Minimum	Minimum	Minimum	Minimum	Minimum
	-	m/day	-	Ha required				
				assuming	assuming	assuming	assuming	assuming
				an	an	an	annualised	annualised
				annualised	annualised	annualised	irrigation	irrigation
				irrigation	irrigation	irrigation	rate of 5	rate of 6
				rate of 1.8	rate of 3	rate of 4	ML/ha/y	ML/ha/y
				ML/ha/y	ML/ha/y	ML/ha/y	(1.4	(1.7
				(0.5	(0.8	(1.1	mm/day)	mm/day)
				mm/day	mm/day)	mm/day)		
1	86,400	86.4	31	17	11	8	7	6
2	172,800	173	62	35	21	16	12	10
4	345,600	346	124	69	41	31	25	21
6	518,400	518	187	104	62	47	37	31
8	691,200	691	249	139	83	62	50	42

Table 2.1 shows that, depending on the permeate production rate and the irrigation rate , between 6 and 138 ha of irrigation will be required.

The quantity of buffer / wet weather storage will depend on the permeate production rate. This will depend on the configuration of the RO system and the actual rate of permeate irrigation.

The reason for this is that if there is no irrigation demand, the RO plant output will be set to 'idle' phase, sufficient to maintain the membranes.

Permeate quality

The RO plant is designed to have a two pass system, with the permeate being subject to double RO. Permeate quality is discussed in detail in the document:

Woodlots and Wetlands (2024a). Impact of double reverse osmosis on permeate quality

The predicted permeate quality is compliant with both ANZECC and Australian Drinking Water Guidelines.

The soils are acidic, so they must receive lime as part of the site preparation for irrigation.

The critical issue is how many ML/ha/year can be sustainably applied to soils. The next section examines site suitability for irrigation.

3. SITE SUITABILITY FOR IRRIGATION

Site suitability for irrigation is based on a combination of physical, chemical and biological attributes.

Attribute	Issue	Comment and potential responses
Site infrastructure	Nearness to roads and power lines	 Areas 1 and 2 are adjacent to Collector Road. The separation distance requirement depends on the quality of the water (Especially potential pathogen load). The load is essentially zero following Double RO. The existing power line through areas 1 and 2 limit the full potential of centre pivot systems. Fixed sprinklers are an option. Taking the power lines and the Collector Road into account means there is a total of 18.7 ha in area 1 and 16.8 ha in area 2.
Climate	Heavy rainfall can cause water logging of the soil. This increases runoff risk	Irrigate frequently (daily) subject to predicted rainfall on that day
Slope	Increased slope can increase runoff risk. In turn this can result in convergence zones which can be saturated for long periods. Travelling irrigators and centre pivot irrigation is limited to relatively low slopes. Fixed sprinklers can operate at up to 15% slope	 Avoid irrigating obvious wet areas. Runoff convergence areas can have little or no ability to utilise run-on water. Areas 1 and 2 are largely 'flat'. Areas 3 and, especially 4, have some steep slopes. This will reduce the proportion of areas 3 and 4 that can be irrigated.
Soil depth	Shallow soils overlying rock can become waterlogged under heavy rainfall or irrigation	Soil parts of areas 3 and 4 have shallow soil
Soil chemical instability	Unstable surface soil can develop a crust that inhibits water penetration. An unstable B horizon can act as a choke inhibiting water movement through the soil.	A light grey A ₂ horizon typically indicates an internal drainage issue. This can be related to unstable subsoil Portion of areas 3 and 4 have evidence of poor internal drainage.
Low nutrient status		Areas 1 and 2 soils are based on volcanic rock. These soils are typically fertile. Areas 3 and 4 are largely based on metamorphosed rock(with some influence of the nearby volcanic rock. These soil normally have lower inherent soil fertility.

Table 3.1. Site attributes and their impact on their suitability for irrigation.

4. SOIL LANDSCAPE TYPES

Irrigation areas 1 and 2 are largely on the Duckfield Hut Variant 'B' soil landscape as figure 4.1 shows. These are reasonably fertile soils with slopes less than 10% and low local relief, being in the 5 to 30m range.

Irrigation areas 3 and 4 as shown in figure 4.1 are on the main type of Duckfield Hut Soil Landscape. This soil landscape has steeper slopes with some areas over 10% gradient.

Travelling irrigators operate at up to 8% slope and 3% cross slope. Fixed sprinklers can operate on slopes of 15%, provided they are well designed.

Slope is a key landform limitation.

Figure 4.1. The areas surveyed along Collector Road were part of the Duckfield Soil Landscape Variant b. These were irrigation areas 1 and 2. Irrigation areas 3 and 4 to the south were part of the Duckfield Soil Landscape. The soil landscape report is shown as appendix 1 below.

5. LANDFORM CONDITIONS IN THE IRRIGATION AREAS

The Australian Soil and Land survey Field Handbook (NCST, 2009) was used as a template to describe site conditions.

1:18,056

0 0.2 0.4km

Figure 5.1. The soil sampling and landform assessment points within each of the four areas (image source: NSW Gov). NOTE that the areas shown are the maximum extent of each area. Areas 1 and 2 both have 16.8 ha. See below.

Figure 5.2. A back hoe was used to excavate observation pits, to determine soil depth and to facilitate soil sampling. Note the thick pasture cover.

Landforms and irrigation suitability within each area is described below.

The landform conditions in area 1 are summarised in table 5.1 to 5.4.

Landform attributes and irrigation suitability conditions in Area 1

Table 5.1. Land								104/4 0	1044 0
Site Number	VW - 1	VW12 -	VW12 -	VW 1 -	VW 1 -	VW 1 -	VW1	VW 1 - 8	VW1 -9
		2	3	4	5	6	2 - 7		
Critical limitation									
Slope	2%	0	2%	0	1%	0	0	0	0
Slope length (m)	0	0	30	0	00	0	0	0	0
Aspect	NW	Flat	North	Flat	Flat	Flat	Flat	Flat	Flat
Landscape position					Minor ridge	line	•		

Table 5.1. Landform attributes in the first 9 sampling pits in Area 1.

Land form pattern	Level	Very gently inclined	level	Very gently inclined	Very gently inclined	level	level	level	level			
Landform element		Low										
Drainage line distance (m)		>100										
Run-on/ runoff					Low							
Surface water bodies- streams, dams, springs		Effluent storage dam to south / south east										
Storm water				Mi	nimal to low	run-on						
Salt					No evider	nce						
Current erosion potential					Extremely	low						
Rock out crops %					<2%							
Soil parent material					Volcani	C						
Depth to hard rock (cm)			See soi	l profile data	a Mostarea	as have soi	ls >1m de	ер.				
Water table, depth					>1m							
Soil moisture					Moist							
Flood risk					Zero							
Land use				Semi imp	proved but v	veedy past	ure					
Land use history DISTURBAN CE EVIDENCE		Long term pasture. Minimal disturbance.										
Distance to public roads houses, etc		>100m										
Fire hazard					Low to mod	erate						

The conditions in the first 9 sampling pits were very similar.

Table 5.2 contains a summary of each sampling point in Area 1 as shown in figure 5.1. Table 5.3 contains an indicative soil profile from Area 1. Table 5.4 provides commentary of the soil conditions in Area 1. Tables 5.5 to 5.7 show conditions in areas 2, 3 and 4.

The pasture mix requirements

There is a need to include Phalaris (*Phalaris aquatica*), Tall Fescue (*Festuca arundinacea*) and Perennial Ryegrass (*Lolium perenne*) in the pasture mix.

Subterraneam clover (*Trifolium subterraneum*), especially Yannminicum types are best for wet soils.

White clover (*Trifolium repens*) is useful in cool wet soils. The grazing pressure needs to be managed to give regeneration of annual pasture species a chance to occur. Heavy harvesting is required in late summer to remove the excess phalaris, fescue and ryegrass vegetation.

Area 1 was selected for the first assessment because the preliminary assessment showed that it had low slopes, appeared to be well drained and had thick grass cover.

Area 2 was adjacent to Area 1 ,but was closer to the likely RO plant location. It also had a treed buffer zone between it and Collector Road. The soils in these two areas were very similar.

Pit	GPS	Landform element	Aspect	Slope %	Up slope length	Distance to drainage line (m)	Vegetation	Evidence of erosion	Neighbours, roads, etc, distance (m)	Critical Constraints
VW 1 - 1	1098	Ridge top	Flat	0	75	>100	Semi	Nil	>100	Nil
VW1 - 2	1099	Ridge top	Flat	0	50	>100	improved		>100	Nil
VW1 - 3	1100	Ridge top	SW	2%	50	>100	pasture		>100	Nil
VW1 - 4	1101	Ridge top	S	3%	75	>100	Lots of		>100	Nil
VW1 - 5	1102	Ridge top	Flat	0%	0	>100	weeds		>100	Nil
VW 1 - 6	1103	Ridge top	Flat	0%	0	>100			>100	Nil
VW 1 - 7	1104	Ridge top	W	7%	65	>100			>100	Nil
VW1 - 8	1105	Ridge top	W	10%	105	>100			>100	Nil
VW 1 - 9	1106	Upper slope	W	3%	300	>100			>100	Nil
VW 1 - 10	1107	Mid slope	W	5%	250	>100			>100	Nil
VW1 - 11	1108	Upper slope	S	4%	220	>100			>100	Nil
VW 1 - 12	1109	Upper slope	N	4%	200	>100			>100	Nil
VW 1 - 13	1110	Upper slope	W	4%	110	100			80	Nil
VW 1 - 14	1111	Mid slope	N	5%	110	90			90	Nil
VW 1 - 15	1112	Mid slope	N	8%	120	>130			80	Nil
VW 1 - 16	1113	Mid slope	NW	3%	160	130			50	Nil
VW1 - 17	1114	Not evaluated	NW	3%	120	100			50	Nil
VW 1 - 18	1115	Mid slope	NW	7%	100	80			50	Nil
VW 1 - 19	1116	Lower slope	Ν	8%	100	>100			>300	Nil
VW 1 - 20	1117/1118	Lower slope	S	7%	80	>100			>300	Nil
VW 1 - 21	1119	Upper slope	S	8%	110	>100			>300	Nil
VW 1 - 22	1120	Upper slope	S	7%	140	>100			>300	Nil
VW 1 - 23	1121	Upper slope	S	9%	90	>100			>300	Nil
VW 1 - 24	1122	Upper slope	S	10%	100	<100			>300	Nil
VW 1 - 25	1123	Mid slope	SSW	7%	120	>100			>300	Nil
VW 1 - 26	1124	Mid slope	SW	5%	270	>100			>300	Rocky Shallow soil
VW 1 - 27	1125	Lower slope	SSW	7%	200	60	1		>300	
VW 1 - 28	1127	Lower slope	SSW	8%	250	60			>300m	Wet, Steep

Table 5.2. Summary of the landform conditions in area 1. Figure 5.1 shows the sampling sites. Areas surrounding sample points 1.26 and 1.28 are not suitable for irrigation. All other sampling areas are suitable.

Table 5.3. Indicative soil profile in area 1.

Site	Depth	Field	Consistency	Pedality	Fabric	Colour	Boundaries	Mottles	Nodules	Hard	Bleached	Root	Biological	Texture	Hard	Rock %
name	(cm)	texture						%	%	pan	A2	number	activity	change	setting	
VW1- 4	0-22	Clay loam	Firm	Moderate	Earthy	Brown	Diffuse	No	No	No	No	Abundant	No	Gradual	No	0%
	22-56	Light clay	Firm	Moderate	Earthy	Brown	Diffuse	No	Common I grey	Dark		Rare	No	Gradual		30%
	5680	Medium clay	Firm	Massive	Earthy	Very light brown	Diffuse	10% red	No			None	No	Gradual		50%
	80- 110	Light clay	Firm	Massive	Earthy	Light brown	Diffuse	No	No			None	No	Gradual		50%
	110- 140															80% rock

The key soil features are shown below.

Table 5.4 Areas 1 and 2, soil profile features and comments.

Features	Comment
10 to 20 cm of loam to clay loam topsoil	Loam to clay loam topsoils is preferred as they are reasonably permeable, so runoff is reduced. An irrigation strategy involving almost daily watering with 0.9 to 1.5 mm of permeate will minimise runoff risk.
Not hard setting	Good as moderate soil permeability is ideal for irrigation
Light to medium clay below the topsoil	Good as the clay dominant subsoil means that the nutrients are retained within the soil profile.
No evidence of a structurally unstable A ₂ horizon	Good as there is less likelihood of a perched water table during prolonged wet weather.
Friable, weakly pedal topsoil overlying a firm to very firm subsoil.	The friability will assist root penetration. The weak structure means the soil is likely to become rutted when saturated. The irrigator will need wide tyres.
Brown to dark brown topsoil, graduating into a light brown to grey subsoil	Grey subsoil typically indicates poor deep drainage.
Subsoil commonly has 10% orange mottles (indicating occasional saturation and anaerobic conditions at depth).	Orange mottles indicate that the subsoil is a mosaic of saturated , anaerobic zones and areas where at least some oxygen is present.
Abundant roots and occasional earthworms in the topsoil	Abundant roots in the topsoil indicates good growing conditions. Earthworms are less abundant in very acidic soils. Their presence is an indication of reasonable soil health.
Increasing rock percentage with increasing depth	The increasing rock at depth means there is less oxygen and less ability to retain nutrients with increasing depth. The increased rock reduces the volume of soil able to retain water and nutrients.
	Relatively frequent, light irrigations are preferred.

Landform attributes and limitations in Area 2

Site Number	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 -	VW 2 ·
	1	2	3	4	5	6	7	8	9	10	11	12
Area	2	2	2	2	2	2	2	2	2	2	2	2
Limitation								Bleached A2	Wet area nearby Bleached A2			
Slope	2%	0	2%	0	1%	0	0	0	0	3%	2%	3%
Slope length (m)	60	0	40	0	60	0	0	0	0	70	60	60
Aspect	NW	Flat	North	Flat	Flat	Flat	Flat	Flat	Flat	SW	SW	SW
Land scape position						Minor ri	dge line				·	
Land form pattern	Level	Very gently inclined	level	Very gently inclined	Very gently inclined	level	level	level	level	Very gently inclined	Very gently inclined	Very gently inclined
Landform element	Low											
Drainage line distance (m)	>100											
Run-on/ runoff	Low											

Table 5.5. Landform attributes in area 2. Figure 5.1 shows the sampling positions.

Site Number	VW 2 - 1	VW 2 - 2	VW 2 - 3	VW 2 -	VW 2 - 5	VW 2 - 6	VW 2 - 7	VW 2 - 8	VW 2 - 9	VW 2 - 10	VW 2 - 11	VW 2 - 12		
Area	2	2	2	<u>4</u> 2	2	2	2	0 2	2	2	2	2		
Surface water bodies-streams, dams, springs			<u> </u>			ffluent storag			<u> </u>	<u> </u>	<u> </u>			
Storm water						Minimal to	low runon							
Salt		No evidence												
Erosion potential based on current landuse		Extremely low												
Rock out crops %		None												
Soil parent material		Volcanic												
Depth to hard rock (cm)						See soil	profiles							
Water table, depth						>1	m							
Soil moisture						Мс	bist							
Flood risk						Ze	ero							
Land use		Semi improved but weedy pasture												
Land use history DISTURBANCE EVIDENCE		Semi improved but weedy pasture Long term pasture												

Site Number	VW 2 - 1	VW 2 - 2	VW 2 - 3	VW 2 - 4	VW 2 - 5	VW 2 - 6	VW 2 - 7	VW 2 - 8	VW 2 - 9	VW 2 - 10	VW 2 - 11	VW 2 - 12
Area	2	2	2	2	2	2	2	2	2	2	2	2
Distance to public roads houses, etc	>100m											
Fire hazard	Low to moderate (NOTE irrigation will keep the site moist reducing fire risk.)											

Landform attributes and limitations in Area 3

Table 5.6. Landform attributes in area 3. Figure 5.1 shows the sampling positions. Area 3 sites with Moderate limitations are highlighted in **YELLOW**. Sites with critical limitations are also noted and highlighted in **RED**.

											1		104/0	104/6	104/0	10410	104/0
Site	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2 -	VW 2				
Number	- 13	- 14	- 15	- 16	- 17	- 18	- 19	- 20	- 21	- 22	- 23	24	- 25	- 26	- 27	- 28	- 29
Area	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Limitatio n	<mark>Shallo</mark> w soil			Bleach ed A2	Bleach ed A2		Wet area Avoid				Bleach ed A2	Wet. Bleache d A2 Conver gence zone	Wet Bleach ed A2	Minor erosion	Bleach ed A2	Bleach ed A2	Bleach ed A2
Slope	12%	8%	3%	8%	6%	4%	7%	4%	4%	5%	5%	4%	5%	6%	5%	5%	7%
Slope length (m)	120	120	120	90	70	150	70	90	120	50	70	250	30	100	200	200	150
Aspect	W	NW	NW	W	SW	SW	W	W	NW	NW	NE	NE	NW	NE	Ν	NE	NW
Land scape position	lower slope	lower slope	Mid slope	Upper slope	Mid slope	Mid slope	lower slope	Mid slope	Mid slope	Upper slope	Mid slope	Lower slope	Lower slope	Lower slope	Mid slope	Upper slope	Upper slope
Land form pattern	Rolling Iow hills	Undula ting low hills	Very gently incline d	Undula ting low hills	Undula ting low hills	Undula ting low hills	Undul ating low hills	Undula ting low hills	Undula ting low hills	Undula ting low hills	Undula ting low hills	Undulati ng low hills	Undula ting low hills	Undula ting low hills	Undula ting low hills	Undula ting low hills	Undula ting low hills
Landfor m element									Low								
Drainage line distance (m)	>100	>100	>100	>100	>100	>100	70	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100

Site	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2	VW 2 -	VW 2	VW 2	VW 2	VW 2	VW 2
Number	- 13	- 14	- 15	- 16	- 17	- 18	- 19	- 20	- 21	- 22	- 23	24	- 25	- 26	- 27	- 28	- 29
Area	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Run-on/	Low to	Low	Low	Low	Low	Low to	Moder	Low to	Low	Low	Low	Low to	Moder	Low to	Low to	Low to	Low to
runoff	moder					moder	ate	moder				moderat	ate	moder	moder	moder	moder
	ate					ate		ate				е		ate	ate	ate	ate
Surface	Headw	Headw	Headw	Headw	Headw	Headw	70m	Headw	Headw	Headw	Headw	Headwa	Headw	Headw	Headw	Headw	Headw
water	aters	aters	aters	aters	aters	aters		aters	aters	aters	aters	ters of	aters	aters	aters	aters	aters
bodies-	of	of	of	of	of	of		of	of	of	of	unname	of	of	of	of	of
streams,	unnam	unnam	unnam	unnam	unnam	unnam		unnam	unnam	unnam	unnam	d creek	unnam	unnam	unnam	unnam	unnam
dams,	ed	ed	ed	ed	ed	ed		ed	ed	ed	ed	>100m	ed	ed	ed	ed	ed
springs	creek	creek	creek	creek	creek	creek		creek	creek	creek	creek	away	creek	creek	creek	creek	creek
	>100m	>100m	>100m	>100m	>100m	>100m		>100m	>100m	>100m	>100m		>100m	>100m	>100m	>100m	>100m
O 1	away	away	away	away	away	away	N 41 - 1	away	away	away	away		away	away	away	away	away
Storm	Minor	Minor	Minima	Minima	Minima	Minima	Minim	Minima	Minima	Minima	Minima	Moderat	Minima	Minima	Minima	Minima	Minima
water	runon	runon	I to low	I to low	I to low	I to low	al to	I to low	I to low	I to low	I to low	е	I to low	I to low	I to low	I to low	I to low
			runon	runon	runon	runon	low	runon	runon	runon	runon		runon	runon	runon	runon	runon
Salt							runon										
Sait									No evideno	ce							
Erosion potential based on current landuse								E	Extremely l	ow							
Rock out crops %	10%	0	%%	0	0	0	None	10%	5%	None	None	None	None	None	None	1%	5%
Soil	Volcani	Volcani	Volcani	Volcani	Volcani	Volcani	Meta	Not	Not	Meta	Not	Not	Meta	Meta	Meta	Volcani	Meta
parent material	c	c	c	c	c	c	morph osed sandst one	evident	evident	morph osed sandst one	evident	evident	morph osed sandst one	morph osed sandst one	morph osed sandst one	c	morph osed sandst one

Site Number	VW 2 - 13	VW 2 - 14	VW 2 - 15	VW 2 - 16	VW 2 - 17	VW 2 - 18	VW 2 - 19	VW 2 - 20	VW 2 - 21	VW 2 - 22	VW 2 - 23	VW 2 - 24	VW 2 - 25	VW 2 - 26	VW 2 - 27	VW 2 - 28	VW 2 - 29
Area	3	3	3	3	3	3	- 13	3	3	3	3	3	3	3	3	3	- 25
Depth to hard rock (cm)	80						48			85							
Water table, depth		I	I	I	1	I		I	>1m	L	I			1	I	L	L
Soil moisture	Moist	Moist	Moist	Moist	Moist	Moist	Wet	Moist	Wet	Moist	Moist	Wet.	Wet	Moist	Moist	Moist	Moist
Flood risk	Zero																
Land use	Semi improved but weedy pasture																
Land use history DISTURB ANCE EVIDENC E	Long term pasture																
Distance to public roads houses, etc	>100m																
Fire hazard	Low to moderate																

Landform attributes and limitations in Area 4

Table 5.7. Landform attributes in area 4. Figure 5.1 shows the sampling positions. Area 4 sites with Moderate limitations are highlighted in **YELLOW**. Sites with critical limitations are also noted and highlighted in **RED**.

Site Number	VW 2 - 30	VW 2 - 31	VW 2 - 32	VW 2 - 33	VW 2 - 34	VW 2 - 35	VW 2 - 36	VW 2 - 37	VW 2 - 38	VW 2 - 39
Area	4	4	4	4	4	4	4	4	4	4
Limitation	Bleached A2. Steep for travelling irrigator		Bleached A2. Steep for travelling irrigator	Wet soil Bleached A2. Steep for travelling irrigator	Drainage line approximately 40m away. Avoid the area	Steep for travelling irrigator	Steep for travelling irrigator	Shallow soil	Shallow soil	Bleached A2. Slope
Slope	10%	7%	11%	15%	9%	11%	20%	5%	8%	8%
Slope length (m)	120	90	120	160	70	80	40	10	40	60
Aspect	N	W	SW	W	W	NW	SW	Crest	W	SW
Land scape position	Upper slope	Upper slope	Upper slope	Mid slope	Mid slope	Mid slope	Mid slope	Upper slope	Upper slope	Upper slope
Land form pattern	Rolling low hills	Undulating low hills	Rolling low hills	Rolling low hills	Undulating low hills	Rolling low hills	Rolling low hills	Rolling low hills	Rolling low hills	Rolling low hills
Landform element					Lov	v				
Drainage line distance (m)	45 m	>100	>100	>100	>100	>100	>100	>100	>100	>100
Run-on/ runoff	Low to moderate	Low to moderate	Low to moderate	Low to moderate	Low to moderate	Low to moderate	Low to moderate	Very low	Very low	Very low

Site Number	VW 2 -	VW 2 - 31	VW 2 -	VW 2 -	VW 2 - 34	VW 2 -					
Area	30 4	4	<u>32</u> 4	<u>33</u> 4	4	35 4	36 4	37 4	38 4	39 4	
Surface water bodies-streams, dams, springs	4 Headwaters of unnamed creek >100m away	4 Headwaters of unnamed creek >100m away	4 Headwaters of unnamed creek >100m away	4 Headwaters of unnamed creek >100m away	4 Headwaters of unnamed creek >40m away	4 Headwaters of unnamed creek >100m away					
Storm water					Minimal to lo	ow runon					
Salt					No evid	ence					
Erosion potential based on current landuse		Extremely low									
Rock out crops %	5%	10%	5%	1%	2%	1%	5%	4%	5%	1%	
Soil parent material	Volcanic	Meta morphosed sandstone	Meta morphosed sandstone	Not evident	Volcanic	Meta morphosed sandstone	Not evident	Meta morphosed sandstone	Meta morphosed sandstone	Meta morphosed sandstone	
Depth to hard rock (cm)	>1m	>1m	>1m	>1m	>1m	>1m	>1m	45cm	65 cm	>1m	
Water table, depth					>1n	n					
Soil moisture	Moist	Moist	Moist	Wet	Moist	Moist	Moist	Moist	Moist	Moist	
Flood risk		<u> </u>	I	I	Zer	0	1	1	1	<u> </u>	
Land use				S	emi improved but	t weedy pasture	Э				
Land use history DISTURBANCE EVIDENCE	Long term pasture										

Site Number	VW 2 - 30	VW 2 - 31	VW 2 - 32	VW 2 - 33	VW 2 - 34	VW 2 - 35	VW 2 - 36	VW 2 - 37	VW 2 - 38	VW 2 - 39	
Area	4	4	4	4	4	4	4	4	4	4	
Distance to public roads houses, etc	>100m										
Fire hazard	Low to moderate										

Key landform limitations

Area 1:

Sites 26 and 28 have significant limitations and should be avoided if possible

Area 2:

Sites 8 and 9 have moderate limitations and should be avoided if possible. Machinery bogging may be an issue with the centre pivot. Fixed sprinklers are the preferred irrigation method. Use large quantities of gypsum to coagulate the soil and improve internal drainage on Area 2, sites 8 and 9.

Area 3 :

Most sites in area 3 have moderate limitations. Avoid Area 3, sites 19 and 20. Both are 'wet'.

Area 4:

Sites 37 and 38 have shallow soil. Site 34 is within 50m of a drainage line. This area should NOT be irrigated.

Most sites in area 4 have 'moderate' limitations.

Conclusions regarding the 4 areas

Area 1 has the fewest soil / landform limitations.

Area 2 is broadly similar to area 1. There is a poorly drained area (sites 8 and 9). Adding an initial topdressing of 4 T/ha of gypsum will assist in improving drainage in this area.

Much of Area 3 has moderate limitations. The irrigation application rate needs to adjusted downwards to minimise risk of water logging. Applying less than a mm/irrigation day is advised.

Most of Area 4 has moderate to severe limitations. Applying a very low irrigation rate, e.g., less than a mm/day, will assist in overcoming moderate limitations. Irrigation should not occur in the SW portion (sites 34, 35 and 36).

6. SOIL CHEMICAL DATA FOR AREA 1`

Soil samples were taken from 66 topsoil sites within areas 1 to 4. Figure 5.1 shows the sampling positions. The reason for emphasis on topsoil chemistry this is that the topsoil is a key determinant of successful irrigation.

- It controls the water infiltration rate
- \circ $\;$ It contains the bulk of the plant root systems
- It contains a high proportion of plant nutrients
- Under good soil conditions it contains a large and diverse biota that can increase nutrient availability as well as assist in accumulating resilient soil organic carbon.

Area 1 was sampled and analysed first. The reason for this is that preliminary assessment indicated that it probably contained the most suitable soils and landforms for irrigation. Area 1 therefore set the 'standard' for the other 3 areas.

The 'raw' data for the topsoils at 27 pits in area 1 is shown in table 6.1. Note the sampling point 1.28 was not sampled as it was wet and unsuitable for irrigation.

Table 6.2 presents the statistical analyses for area 1 topsoils.

Table 6.1. The 'raw	' data for the 27 topso	il samples taken from	Area 1. Figure 5. ⁴	1 shows the sampling positions.
			· · · · · · · · · · · · · · · · · · ·	

	The	law	uala										Figui														
Parameter	VW 1 0- 15	VW 2 0- 20	VW 3-0- 19	VW 4 0- 22	VW 5 0- 17	VW 6 0- 22	VW 7 0- 14	VW 8 0- 15	VW 9 0- 15	VW 10 0- 10	VW 11 0- 15	VW 12 0- 20	VW 13 0- 16	VW 14 0- 10	VW 15 0- 15	VW 16 0-7	VW 17 0- 12	VW 18 0- 13	VW 19 0- 15	VW 20 0- 15	VW 21 0- 16	VW 22 0-9	VW 23 0- 15	VW 24 0- 15	VW 25 0- 15	VW 26 0- 13	VW 27 0- 10
Soluble Ca (mg/kg)	772	851	744	524	636	610	622	370	324	310	593	671	289	986	112 9	840	815	842	105 8	715	901	749	946	732	803	247	202
Soluble Mg (mg/kg)	170	383	210	141	129	149	150	104	100	123	170	217	100	316	283	234	226	290	302	223	212	184	264	187	212	63	65
Soluble K (mg/kg)	100	56	132	63	53	120	116	63	49	114	43	<25	52	<25	34	49	54	28	<25	68	134	<25	<25	<25	<25	53	48
Soluble P (mg/kg)	4.7	2.4	1.3	1.7	2.0	2.3	1.7	1.9	1.4	<1	2.4	1.1	<1	<1	2.1	4.2	2.9	1.7	1.8	1.7	7.4	1.6	<1	1.8	<1	1.5	<1
Available P (Bray 1 mg/kg)	14	4.1	4.3	3.9	9.6	6.8	4.9	5.1	5.6	4.4	4.1	1.2	8.8	1.1	4.5	7.5	2.6	3.2	2.0	3.9	31. 2	3.6	1.6	1.5	2.1	9.4	4.0
Available P (Bray 2 mg/kg)	63	7.3	7.6	8.0	18	12	10	7.3	11	8.7	6.1	2.0	12	2.5	7.8	10. 2	5.6	5.0	4.2	6.4	54	7.5	3.2	2.8	6.1	13	7.5
Nitrate-N (mg/kg)	7.2	4.5	12. 2	16. 7	10. 9	8.6	9.3	4.7	8.0	6.7	11. 6	5.0	2.7	1.8	8.1	20. 6	10. 1	12. 6	6.2	7.2	22. 2	10. 9	5.4	8.2	7.3	12. 9	11
Ammonium -N (mg/kg)	4.2	6.0	6.5	7.0	12. 5	5.7	4.4	6.4	5.4	13. 6	16. 0	4.4	3.2	4.6	8.7	13. 8	4.9	12. 8	3.7	4.0	9.4	5.1	6.7	5.9	6.9	11. 3	7.6
Sulfur (mg/kg S)	13	13. 6	7.4	10. 7	9.3	11. 7	10. 0	5.7	14. 6	4.4	7.2	7.0	10. 7	9.3	10. 2	11. 9	10. 9	11. 1	9.9	11. 9	15. 3	14. 9	5.5	11. 3	12. 5	10. 5	3.3
pH (5:1 Water: Soil)	5.4 9	5.3 8	5.5 0	5.0 1	5.0 7	5.1 1	5.3 4	5.2 9	5.1 6	5.6 2	5.1 1	5.8 0	5.6 8	6.1 2	5.5 5	5.2 1	5.5 2	5.4 2	5.9 5	5.6 3	5.5 8	5.0 4	5.6 6	5.5 5	5.7 4	5.1 1	5.1 2
pH (dS/m 5:1 Water: Soil)	0.0 72	0.0 50	0.0 66	0.0 94	0.0 63	0.0 71	0.0 61	0.0 40	0.0 58	0.0 54	0.0 67	0.0 33	0.0 53	0.0 34	0.0 54	0.0 95	0.0 57	0.0 65	0.0 43	0.0 59	0.1 15	0.0 59	0.0 32	0.0 48	0.0 41	0.0 54	0.0 43
Exch Ca *cmol+/kg)	7.0	8.7 7	7.0 3	4.7 5	5.6 0	5.6 6	5.8 8	2.9 7	2.6 1	2.6 0	5.0 9	6.0 4	2.2 5	9.1 2	10. 97	8.0 5	7.3 7	8.4 5	10. 40	6.2 7	8.0 4	7.5 1	9.5 6	6.7 0	7.5 0	2.0 0	1.7
Exch Mg *cmol+/kg)	2.4	5.3 1	2.5 5	1.6 1	1.4 2	1.7 5	1.7 2	1.0 5	1.0 4	1.2 5	1.8 3	2.5 2	0.9 4	3.5 0	3.3 5	2.7 4	2.4 8	3.5 7	3.5 2	2.4 4	2.3 7	2.2 5	3.2 2	2.1 1	2.4 7	0.6 6	0.6 6
Exch K *cmol+/kg)	0.3 9	0.3 1	0.6 1	0.2 6	0.2 1	0.5 8	0.5 7	0.2 4	0.1 9	0.4 0	0.1 8	<0. 12	0.1 5	<0. 12	0.1 9	0.2 1	0.2 6	0.1 7	0.1 4	0.2 9	0.6 5	0.1 5	<0. 12	<0. 12	<0. 12	0.2 5	0.2 0
Exch K *cmol+/kg)	0.2 3	0.1 5	0.0 8	0.1 0	<0. 065	<0. 065	0.0 7	<0. 065	0.1 1	0.1 1	0.0 7	0.0 8	0.1 3	0.1 0	0.1 0	0.1 3	0.0 8	0.0 8	0.1 1	0.1 2	0.1 1	0.0 7	0.1 0	0.0 9	0.0 9	<0. 065	0.1 2

Exch K *cmol+/kg)	0.0 9	0.4	0.1 8	0.6 6	0.5 6	0.5 8	0.2 5	0.3 4	0.6 6	0.1 5	0.5 9	0.0 9	0.1 5	0.0 5	0.1 3	0.2 9	0.1	0.3 5	0.0 6	0.0 5	0.0 7	1.2 2	0.1 6	0.1 5	0.1 0	0.5	0.8 4
Exch K *cmol+/kg)	0.2 5	0.2	0.1	0.2 9	0.2 7	0.2 7	0.2 0	0.2	0.2 6	0.1 4	0.2 8	0.1 7	0.1 8	0.1 9	0.1 3	0.2	0.1	0.2	0.2	0.2	0.2	0.5	0.1	0.1 9	0.1	0.3	0.3 3
Effective Cation Exchange Capacity (ECEC) (cmol ₊ /kg)	10	15. 16	10. 58	7.6 7	8.1 2	8.9 2	8.6 9	4.8 6	4.8 7	4.6 5	8.0 3	9.0 0	3.8 0	13. 04	14. 86	11. 65	10. 46	12. 84	14. 44	9.4 6	11. 46	11. 72	13. 27	9.3 7	10. 42	3.7 8	3.8
Ca as % of effective CEC	67	57. 8	66. 4	61. 9	69. 0	63. 5	67. 6	61. 1	53. 6	55. 9	63. 3	67. 1	59. 1	69. 9	73. 8	69. 1	70. 5	65. 8	72. 0	66. 3	70. 2	64. 1	72. 0	71. 5	72. 0	52. 9	44
Mg as % of effective CEC	23	35. 0	24. 1	21. 0	17. 5	19. 6	19. 8	21. 7	21. 4	27. 0	22. 8	28. 0	24. 8	26. 8	22. 5	23. 5	23. 7	27. 8	24. 4	25. 8	20. 7	19. 2	24. 2	22. 5	23. 7	17. 4	17
K as % of effective CEC	3.7	2.0	5.8	3.4	2.6	6.5	6.6	4.9	3.9	8.7	2.2	1.2	4.0	0.6	1.3	1.8	2.5	1.3	1.0	3.1	5.7	1.3	0.4	1.3	0.8	6.6	5.3
Na as % of effective CEC	2.2	1.0	0.8	1.3	0.8	0.7	0.9	1.0	2.2	2.3	0.8	0.9	3.5	0.8	0.6	1.1	0.8	0.6	0.8	1.3	0.9	0.6	0.7	1.0	0.9	1.2	3.2
Al as % of effective CEC	0.8 9	2.7	1.7	8.6	6.9	6.6	2.9	7.0	13. 7	3.2	7.4	1.0	3.8	0.4	0.9	2.5	1.1	2.7	0.4	0.5	0.6	10. 4	1.2	1.6	0.9	13. 6	22
H as % of effective CEC	2.4	1.4	1.3	3.8	3.3	3.1	2.3	4.3	5.4	3.1	3.5	1.9	4.7	1.5	0.9	2.0	1.4	1.8	1.4	2.9	1.9	4.5	1.4	2.1	1.7	8.3	8.5
Ca : Mg ratio	2.9	1.7	2.8	2.9	3.9	3.2	3.4	2.8	2.5	2.1	2.8	2.4	2.4	2.6	3.3	2.9	3.0	2.4	3.0	2.6	3.4	3.3	3.0	3.2	3.0	3.0	2.5
Zinc (mg/kg)	6.8	3.9	6.4	5.4	8.4	7.6	6.9	2.6	3.9	5.3	4.8	1.5	2.7	1.1	3.8	4.7	4.7	4.1	2.0	3.4	6.7	6.0	4.0	5.4	4.4	3.9	3.6
Manganes e (mg/kg)	34	46	73	73	37	92	79	30	23	12	72	24	7	28	52	77	56	74	42	42	63	88	51	74	58	51	9.2
Iron (mg/kg)	328	167	377	435	316	556	388	308	391	421	512	193	160	97	181	300	262	329	105	360	363	477	308	303	423	262	376
Copper (mg/kg)	1.2	1.4	1.9	1.3	1.5	1.8	1.5	0.9	0.9	0.5	1.6	0.9	0.2	1.4	1.6	1.9	1.9	1.8	1.6	1.4	1.7	2.1	1.5	2.1	2.0	0.7	0.4 3

Boron	0.4	0.6	0.5	0.3	0.3	0.4	0.3	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.3	0.5	0.4	0.6	0.5	0.5	0.2	0.4
(mg/kg)	5	1	4	4	4	1	6	0	4	0	2	9	0	3	7	7	5	8	5	9	6	1	4	4	4	5	0
Silicon (mg/kg)	50	60	56	55	63	69	50	34	25	28	47	29	18	37	44	49	49	50	45	53	65	56	43	38	50	21	21
Texture	Cla																										
	y Loa m																										
Chloride (mg/kg)	46	32	42	60	40	45	39	26	37	35	43	21	34	22	35	61	36	42	28	38	74	38	20	31	26	35	28
Phosphoru s sorption (mg/kg)	136	319	242	286	227	290	246	191	266	211	301	249	136	244	308	299	264	345	286	246	205	387	196	299	376	167	268
Horizon thickness (cm)	15	20	19	22	17	22	14	15	15	10	15	20	16	10	15	7	12	13	15	15	16	9	15	15	15	13	10
Assumed bulk density	1.5 0																										
P sorption (kg/ha)	307	957	690	944	433	862	517	409	599	317	678	746	285	366	693	283	475	674	579	554	491	497	441	673	846	293	403
Parameter	Indicative guideline values for clay loam	Indicative guideline values for loam	Min	Max	Count	Average	Stdev	Confid ence interval	lower 95%ile Cl	Upper 95%ile Cl	Comment																
---	--	---	------	------	-------	---------	-------	----------------------------	-----------------------	-----------------------	--																
Soluble Ca (mg/kg)	750	375	202	1129	27	677	248	94	583	771	Within desirable range for loam to clay loam soils																
Soluble Mg (mg/kg)	105	60	63.3	383	27	193	78	30	163	222	A bit high. Add lime to balance the Ca : Mg ratio																
Soluble K (mg/kg)	75	60	28.4	134	20	71.5	33.1	14.5	57.0	86.0	Within desirable range for loam to clay loam soils																
Soluble P (mg/kg)	12	10	1.09	7.38	21	2.36	1.42	0.61	1.75	2.96	Very low Add P fertiliser																
Available P (Bray 1 mg/kg)	30	24	1.13	31.2	27	5.75	5.80	2.19	3.56	7.93	Very low Add P fertiliser																
Available P (Bray 2 mg/kg)	60	48	2.02	63.2	27	11.4	13.8	5.22	6.20	16.6	Very low Add P fertiliser																
Nitrate-N (mg/kg)	13	10	1.84	22.2	27	9.34	4.73	1.78	7.55	11.1	A bit low. Encourage Sub clover.																
Ammonium-N (mg/kg)	18	15	3.19	16.0	27	7.43	3.50	1.32	6.11	8.75	A bit low. Encourage Sub clover.																
Sulfur (mg/kg S)	8.0	8.0	3.30	15.3	27	10.1	3.08	1.16	8.99	11.3	Within desirable range for loam to clay loam soils																
pH (5:1 Water: Soil)	6.5	6.3	5.01	6.12	27	5.44	0.29	0.11	5.33	5.54	A bit low add lime. Check % Exch Al to determine application rate.																
pH (dS/m 5:1 Water: Soil)	0.150	0.120	0.03	0.12	27	0.06	0.02	0.01	0.05	0.07	Low salinity and therefore OK																
Exch Ca *cmol+/kg	10.8	5.0	1.67	11.0	27	6.29	2.57	0.97	5.32	7.26	Within desirable range for loam. Slightly low for clay loam soils																
Exch Mg *cmol+/kg	1.7	1.2	0.66	5.31	27	2.25	1.04	0.39	1.86	2.64	A bit high. Add lime to increase the Ca: Mg ratio																
Exch K *cmol+/kg	0.50	0.40	0.14	0.65	22	0.30	0.16	0.07	0.23	0.37	A bit low. Add K containing fertilizer																
Exch Na *cmol+/kg	0.26	0.22	0.07	0.23	23	0.11	0.03	0.01	0.09	0.12	Low and OK. Check SAR																
Exch Al *cmol+/kg	0.5	0.4	0.05	1.22	27	0.33	0.29	0.11	0.22	0.43	Low and OK. Check % Exchangeable Al																
Exch H ⁺ *cmol+/kg	0.5	0.4	0.13	0.53	27	0.23	0.08	0.03	0.20	0.26	Low and OK.																
Effective Cation Exchange Capacity (ECEC) (cmol ₊ /kg)	14.3	7.8	3.78	15.2	27	9.46	3.40	1.28	8.17	10.74	Within desirable range for loams. A bit low for clay loam soils																
Ca as % of effective CEC	75.7	65.6	44	74	27	65	7	3	62	67	A bit low. Add lime.																

Table 6.2. The statistical analyses of the 27 topsoil samples from Area 1.

Parameter	Indicative guideline values for clay loam	Indicative guideline values for loam	Min	Max	Count	Average	Stdev	Confid ence interval	lower 95%ile Cl	Upper 95%ile Cl	Comment
Mg as % of effective CEC	11.9	15.7	17	35	27	23	4	1	22	25	A bit high. Add lime. NO dolomite required.
K as % of effective CEC	3.5	5.2	0	9	27	3	2	1	2	4	A bit low. Add K containing fertilizer
Na as % of effective CEC	1.8	2.9	1	4	27	1	1	0	1	2	Low and OK
Al as % of effective CEC	7.1	10.5	0	22	27	5	5	2	3	7	Zero is preferable. Add lime.
H as % of effective CEC			1	9	27	3	2	1	2	4	Zero is preferable. Add lime.
Ca : Mg ratio	6.4	4.2	1.65	3.95	27	2.85	0.46	0.17	2.68	3.02	Low. Add lime.
Zinc (mg/kg)	5.0	4.0	1.06	8.44	27	4.60	1.80	0.68	3.92	5.28	ОК
Manganese (mg/kg)	22	18	7.46	92.4	27	50.6	24.0	9.06	41.6	59.7	A bit high, but low toxicity. Liming will reduce availability
Iron (mg/kg)	22	18	97	556	27	322	115	44	279	366	A bit high, but low toxicity. Liming will reduce availability
Copper (mg/kg)	2.0	1.6	0.22	2.15	27	1.40	0.51	0.19	1.20	1.59	Within desirable range for loam to clay loam soils
Boron (mg/kg)	1.7	1.4	0.14	0.64	27	0.38	0.13	0.05	0.33	0.43	A bit low. Consider adding boron
Silicon (mg/kg)	45	40	18.3	68.8	27	44.7	13.7	5.2	39.5	49.8	Within desirable range for loam to clay loam soils
Chloride (mg/kg)			20.5	73.6	27	37.5	12.1	4.6	32.9	42.0	Low and indicating good soil drainage
Phosphorus sorption (mg/kg)		1	136	387	27	259	63	14	245	274	

Table 6.3. Phosphorus sorption capacity down to rock at 5 sites in Area 1 (VW 2, VW 8, VW 15, VW 22 And VW 27). Figure 5.1 shows the sampling positions. Soil depths are in cm.

P Sorption	VŴ	VW	VW	VW8	VW 8	VW8	VW8	VW	VW15	VW15	VW15	VW	VW22	VW22	VW	VW	VW 27
component	2	2	2	0-15	15-55	55-80	80-	15	14-45	45-75	75-97	22 0-	9-55	55-72	27 0-	27	61-100
S	0-20	20-	50-				105	0-15				9			10	10-60	
	cm	50	95														
Phosphorus	319	699	372	191	616	559	240	308	411	572	409	387	624	251	268	655	260
sorption (mg/kg)																	
Horizon	20	30	45	15	40	35	25	15	30	30	22	9	46	17	10	50	39
thickness (cm)																	
Assumed bulk	1.50	1.60	1.60	1.50	1.60	1.60	1.60	1.50	1.60	1.60	1.60	1.50	1.60	1.60	1.50	1.60	1.60
density																	
Rock as a	0.00	0.10	0.30	0.05	0.05	0.20	0.70	0.00	0.40	0.50	0.60	0.05	0.40	0.85	0.00	0.00	0.80
proportion of																	
total volume																	
P sorption	957	3018	1874	409	3744	2503	288	693	1185	1373	576	497	2756	102	403	5240	324
(kg/ha)																	
Total profile P			5848				6944				3827			3355			5966
sorption in																	
kg/ha																	

Table 6.4 statistical analyses of P sorption capacity data for 5 profiles in Area 1.

Mean	Stdev	Count	Confidence Interval (CI)	Lower 95%ile Cl	Upper 95%ile Cl
5188	1528	5	1339	3849	6527

Discussion of topsoil chemistry in Area 1

Soluble cations

The top soils are Ca dominant. This is desirable as Ca is a major determinant of soil structure. Good structure is essential for irrigation as soil structure is a major determinant of soil infiltration rate. The combination of permanent pasture and high calcium content is highly desirable for this project

The Mg content is high. This is an issue as too much Mg, compared with Ca reduces soil stability. Add lime to correct.

K content is within the desirable range. Some K rich fertiliser may be required in the long term.

P availability

Soluble P is very low. These soils are severely P deficient. This deficit needs to be rectified because the key to maximising evapotranspiration and therefore irrigation demand is to have lots of healthy pasture biomass.

Available P (expressed as Bray available P), is extremely low. For example, the 'desirable' range for loams to clay loams is 24 to 30 mg/kg. The 95% upper Confidence limit for Bray 1 P is 7.9 mg/kg. The addition of at least 20 kg/ha of P as superphosphate every year for at least 5 years is considered essential to the viability of the irrigation scheme.

Nitrogen

Nitrate-N concentration is 'moderate'. Adding more subclover to the pasture mix will increase nitrogen addition.

Ammonium-N concentration is low. Increasing phosphorus availability will increase sub clover growth (note pH will also need to be increased as acid conditions prevent clover rhizobia from establishing).

Sulfur

Sulfur concentration is adequate. Addition of superphosphate will further increase S availability.

Acidity

The pH range is relatively low. The 95% ile upper and lower confidence interval is 5.33 to 5.44. This is low and the addition of agricultural lime is considered essential. The target pH is 6 to 7 (Hazelton and Murphy, 2016).

Salinity

Salinity is very low. This indicates a well-drained soil. Maintaining good soil drainage is important as it will assist in maximising plant vigour and evapotranspiration.

Exchangeable cations

Exchangeable Ca concentration is slightly low. Add lime (CaCO₃) to maximise soil fertility and utilisation of the irrigation water.

The Ca as a % of ECE is important as a Ca dominant soil is more structurally stable. The proposed liming will increase Ca percentage.

Exchangeable Mg concentration is high. This can be adjusted by adding agricultural lime. It is important because excess Mg can increase the risk of structural degradation.

The Mg as a % of the CEC is high. Too high a percentage will encourage loss of soil structure. Adding lime will reduce this percentage.

Exchangeable K concentration is low. Some potassium fertilizer is recommended. The 95% upper and lower limits are 2% to 4%. The desirable percentage is 4% to 5%. Adding K based fertiliser will assist in maximising pasture growth and therefore water utilisation.

Exchangeable Na concentration is low. This is good as excess Na increases soil structural instability. The Na as a percentage of the ECEC should be <3%. The 95% lower and upper confidence interval is 1 to 2%. This result is good.

Exchangeable AI concentration is higher than desirable in soil of the soils. Adding lime will address this issue. The AI as a percentage of the ECEC should be <11 (for loams). The maximum is 22%. This is very high and will stunt root growth of some pasture plants, especially clovers. Adding lime will reduce this percentage. Liming is considered essential.

Exchangeable H⁺ concentrations are within the 'desirable' range. The lower the better, as a very low number indicates maximisation of the CEC that is occupied by 'desirable' cations such as Ca and K. There is no issue at present with the Exchangeable H⁺ as a percentage of the ECEC.

Effective Cation Exchange Capacity (Ca+Mg+Na+K+Al+H⁺), is a measure of the soil's ability to retain cations. The 95% le lower and upper concentrations are 8 to 11 cmol₊/kg. The 'desirable' range for loams to clay loams is 8 to 14. This suggests that some of the soils have relatively low ECEC. Increasing the pH via liming, plus the irrigation will increase pasture growth. In turn the improved growth will increase Soil Organic Carbon. Increased SOC concentrations will increase CEC values.

The Ca : Mg ratio is low. This can lead to structural instability. Liming will increase the ratio.

Adding lime is essential.

The quantity of lime required/ha is discussed below.

Micro nutrient sufficiency

The 95% ile CI (Confidence interval) available Zn range is 3.9 to 5.3 mg/kg. This is close to the desirable range of 4 to 5 mg/kg. Zinc is not an issue.

The 95% CI range for available Manganese range is 42 to 60 mg/kg. This is substantially higher than the desirable range of 18 to 22. Adding lime will increase the soil pH, and this will reduce Mn availability.

The 95% available CI for iron in soils is 279 to 366 mg/kg. This is substantially higher than the desirable range of 18 to 22. Adding lime will increase the soil pH, and this will reduce Fe availability.

The 95% ile CI for available Copper range is1.2 to 1.6 mg/kg. This is slightly lower than the desirable range of 1.6 to 2.0. This is not considered an issue at present.

The 95% ile CI for available Boron range is 0.33 to 0.43 mg/kg. This is much lower than the desirable range of 1.4 to 1.7. Boron deficiency has been reported in soils with less than 0.15 mg/kg. This is not considered an issue at present, but needs to be monitored, especially as boron is a very mobile nutrient in soil. More than 5 mg/kg is considered very high (Bruse and Rayment, 1982). 15 mg/ka is toxic to some cereals

The irrigation is likely to increase leaching of this nutrient. Boron will be required in future.

Phosphorus sorption capacity

P sorption capacity is a measure of the soil's ability to retain phosphorus as well as other elements such as Arsenic.

P sorption capacity is important in reducing P loss from irrigated soil. Irrigation can result in soluble P being leached through the profile.

There is an over 3 fold range in P sorption in the topsoils, from 283 to 957 kg/ha. A 'heavy' fertilizer application will supply around 20 kg/ha. Good pasture can accumulate more than 30 kg/ha/y (see table 9.3). So, provided the pasture growth is vigorous, it is likely that the P sorption capacity of the pasture lands will not fall over time. The main 'export' of the phosphorus will be via sheep wool and meat.

How much lime is needed?

Lime requirement is expressed as:

1 cmol₊/kg of CaCO₃ requirement for every cmol₊/kg of aluminium.

Assuming a bulk density of 1.5 T per cubic m, 15 cm depth, a 1.5 correction coefficient and the 95% ile upper Exch AI concentration is 0.43 cmol₊/kg, the mass of lime required is 500 * 1.5*15*1.5*0.43= 725 kg/ha.

Typically, this can be rounded up to 1 T/ha.

Application of 1 T/ha of agricultural lime is RECOMMENDED.

Insist on a documented Neutralisation Value (NV) of at least 90%.

Phosphorus sorption capacity in the soil profiles in area 1.

Table 6.3 shows the phosphorus sorption capacity down 5 profiles. The P sorption capacity is based on The thickness of the soil horizon, the P sorption capacity in mg/kg down the profiles, an assumed bulk density of 1.5 T/cubic m and the percentage of rock in each horizon.

The average P sorption over the 5 profiles is 5188 kg/ha as table 6.4 shows. This suggests that these soils have significant ability to retain nutrients and contaminants. Leaching of phosphorus to the local stream lines is highly unlikely. The rationale behind this statement is:

P concentration in the permeate is very low (see table 2.2), and there is a significant P sorption capacity in the profiles as table 6.4 shows. Therefore, excess P leading to leaching is unlikely to occur under the proposed irrigation regime.

Conclusions regarding the soils in area 1.

The Area 1 soils have moderate fertility and are currently supporting a vigorous, but weedy pasture. There are several significant nutrient and acidity limitations, but these can be overcome. It is critical that pasture growth be vigorous. Low phosphorus availability will limit plant vigour and therefore plant transpiration over the entire life cycle.

Apply a minimum of 20 kg/ha/y of elemental P. For example, if using Single Superphosphate (9% P) apply 220 to 250 kg/ha. Double superphosphate (17.5%P) will need to be applied at 115 to 120 kg/ha in order to add 20 kg/ha of P. MAP (21%P), apply 95 kg/ha is required. DAP (20%P), apply 100 kg/ha is required.

Boron will become an issue. Borax and Solubor are two products that can be applied. See Dear and Weir, (2004).Boron deficiency in pastures and field crops Agfact P1.AC.1, 2nd edition 2004

The soils have comparatively high P sorption capacity. The combination of low P concentration in the RO permeate and the relatively high profile P sorption capacity mean that leaching of P to groundwater or local streams lines is highly unlikely.

Overall suitability of Area 1 soils.

.

The chemical limitations of the soils in area 1 can be addressed by a combination of agricultural lime, superphosphate and some potassium fertiliser. Boron deficiency is likely in the future.

Addressing these chemical limitations is important as chemical fertility is a major determinant of pasture growth. In turn pasture growth is a key determinant of evapotranspiration.

Figure 6.1. The area determined to be suitable for irrigation in Area 1 (Image source: NSW Gov).

7. SOIL CHEMISTRY ASSESSMENT IN AREAS 2, 3 AND 4

Areas 2, 3 and 4 cover at least 42 ha. Surface soils from 39 locations within areas 2, 3 and 4 were analysed for the same analytes as used for the first set. Figure 5.1 shows the sampling locations.

The results are shown in table 7.1 below.

The key issues are similar to the first set of soils:

- Low P availability
- Acidic
- Low in Exch Ca
- Low in nitrogen
- Low cation exchange capacity (CEC)
- Low in K
- Some areas low in Zn
- Low in Mn.
- Low in Boron.

All of these issues can be addressed via P fertilisation, liming and future addition of Potassium and Boron to maximise plant growth and transpiration.

Table 7.1. The statistical analyses of the 27 surface soil samples from area 1. NOTE this is the same as table 6.2. It is included here for ease of comparison with the other 3 areas.

Parameter	Indicative guideline values for clay loam	Indicative guideline values for loam	Min	Max	Count	Average	Stdev	Confidence interval	lower 95%ile Cl	Upper 95%ile Cl	Comment
Soluble Ca (mg/kg)	750	375	202	1129	27	677	248	94	583	771	Within desirable range for loam to clay loam soils
Soluble Mg (mg/kg)	105	60	63.3	383	27	193	78	30	163	222	A bit high. Add lime to balance the Ca : Mg ratio
Soluble K (mg/kg)	75	60	28.4	134	20	71.5	33.1	14.5	57.0	86.0	Within desirable range for loam to clay loam soils
Soluble P (mg/kg)	12	10	1.09	7.38	21	2.36	1.42	0.61	1.75	2.96	Very low Add P fertiliser
Available P (Bray 1 mg/kg)	30	24	1.13	31.2	27	5.75	5.80	2.19	3.56	7.93	Very low Add P fertiliser
Available P (Bray 2 mg/kg)	60	48	2.02	63.2	27	11.4	13.8	5.22	6.20	16.6	Very low Add P fertiliser
Nitrate-N (mg/kg)	13	10	1.84	22.2	27	9.34	4.73	1.78	7.55	11.1	A bit low. Encourage Sub clover.
Ammonium-N (mg/kg)	18	15	3.19	16.0	27	7.43	3.50	1.32	6.11	8.75	A bit low. Encourage Sub clover.
Sulfur (mg/kg S)	8.0	8.0	3.30	15.3	27	10.1	3.08	1.16	8.99	11.3	Within desirable range for loam to clay loam soils
pH (5:1 Water: Soil)	6.5	6.3	5.01	6.12	27	5.44	0.29	0.11	5.33	5.54	A bit low add lime. Check % Exch Al to determine application rate.
pH (dS/m 5:1 Water: Soil)	0.150	0.120	0.03	0.12	27	0.06	0.02	0.01	0.05	0.07	Low salinity and therefore OK
Exch Ca *cmol+/kg	10.8	5.0	1.67	11.0	27	6.29	2.57	0.97	5.32	7.26	Within desirable range for loam. Slightly low for clay loam soils
Exch Mg *cmol+/kg	1.7	1.2	0.66	5.31	27	2.25	1.04	0.39	1.86	2.64	A bit high. Add lime to increase the Ca: Mg ratio
Exch K *cmol+/kg	0.50	0.40	0.14	0.65	22	0.30	0.16	0.07	0.23	0.37	A bit low. Add K containing fertilizer
Exch Na *cmol+/kg	0.26	0.22	0.07	0.23	23	0.11	0.03	0.01	0.09	0.12	Low and OK. Check SAR
Exch Al *cmol+/kg	0.5	0.4	0.05	1.22	27	0.33	0.29	0.11	0.22	0.43	Low and OK. Check % Exchangeable Al
Exch H ⁺ *cmol+/kg	0.5	0.4	0.13	0.53	27	0.23	0.08	0.03	0.20	0.26	Low and OK.
Effective Cation Exchange Capacity (ECEC) (cmol₊/kg)	14.3	7.8	3.78	15.2	27	9.46	3.40	1.28	8.17	10.74	Within desirable range for loams. A bit low for clay loam soils
Ca as % of effective CEC	75.7	65.6	44	74	27	65	7	3	62	67	A bit low. Add lime.

Parameter	Indicative guideline values for clay loam	Indicative guideline values for loam	Min	Мах	Count	Average	Stdev	Confidence interval	lower 95%ile Cl	Upper 95%ile Cl	Comment
Mg as % of effective CEC	11.9	15.7	17	35	27	23	4	1	22	25	A bit high. Add lime. NO dolomite required.
K as % of effective CEC	3.5	5.2	0	9	27	3	2	1	2	4	A bit low. Add K containing fertilizer
Na as % of effective CEC	1.8	2.9	1	4	27	1	1	0	1	2	Low and OK
Al as % of effective CEC	7.1	10.5	0	22	27	5	5	2	3	7	Zero is preferable. Add lime.
H as % of effective CEC	_		1	9	27	3	2	1	2	4	Zero is preferable. Add lime.
Ca : Mg ratio	6.4	4.2	1.65	3.95	27	2.85	0.46	0.17	2.68	3.02	Low. Add lime.
Zinc (mg/kg)	5.0	4.0	1.06	8.44	27	4.60	1.80	0.68	3.92	5.28	ОК
Manganese (mg/kg)	22	18	7.46	92.4	27	50.6	24.0	9.06	41.6	59.7	A bit high, but low toxicity. Liming will reduce availability
Iron (mg/kg)	22	18	97	556	27	322	115	44	279	366	A bit high, but low toxicity. Liming will reduce availability
Copper (mg/kg)	2.0	1.6	0.22	2.15	27	1.40	0.51	0.19	1.20	1.59	Within desirable range for loam to clay loam soils
Boron (mg/kg)	1.7	1.4	0.14	0.64	27	0.38	0.13	0.05	0.33	0.43	A bit low. Consider adding boron
Silicon (mg/kg)	45	40	18.3	68.8	27	44.7	13.7	5.2	39.5	49.8	Within desirable range for loam to clay loam soils
Chloride (mg/kg)			20.5	73.6	27	37.5	12.1	4.6	32.9	42.0	Low and indicating good soil drainage
Phosphorus sorption (mg/kg)		1	136	387	27	259	63	24	235	283	

Anolyte	VW 2 1 0-10	VW 2 2 0-9	VW 2 3 0-9	VW 2 4 0- 12	VW 2 5 0-16	VW 2 6 0-12	VW 2 7 0-9	VW 2 8 0-15	VW 2 9 0-11	VW 2 10 0-9	VW 2 11 0-16	VW 2 12 0-13
Soluble Calcium (mg/kg)	374	947	621	287	197	359	478	313	603	367	706	482
Soluble Magnesium (mg/kg)	130	298	374	79	43	97	285	75	125	85	195	149
Soluble Potassium (mg/kg)	34	29	48	<25	<25	<25	<25	36	<25	<25	<25	39
Soluble Phosphorus (mg/kg)	1.5	2.1	1.9	<1	<1	<1	1.3	1.5	1.1	<1	<1	1.6
Phosphorus- Bray 1 (mg/kg P)	4.9	4.0	2.4	2.7	4.4	2.3	2.8	8.3	1.8	2.1	1.2	7.4
Phosphorus- Bray 2 (mg/kg P)	6.6	6.5	5.3	3.8	4.3	3.2	4.6	11	4.4	3.9	2.1	11.8
Nitrate Nitrogen (mg/kg N)	26	20	16	6.4	5.0	11	7.4	4.2	9.3	5.0	5.8	13.5
Ammonium Nitrogen (mg/kg N)	4.9	3.8	5.0	2.1	1.9	2.2	4.7	32	16.0	9.5	4.2	9.2
Sulfur (mg/kg S)	11	11	10	6.5	6.2	6.9	8.0	12	7.0	7.6	4.2	12.7
pH (1:5) Water:soil	5.01	5.66	5.81	5.33	5.40	5.63	5.65	5.72	5.89	5.46	5.85	5.22
Electrical Conductivity (dS/m) (1:5 Water:soil)	0.089	0.078	0.081	0.047	0.053	0.052	0.056	0.061	0.066	0.045	0.047	0.050
Exchangeable Calcium (cmol₊/kg)	3.1	9.5	5.8	2.2	1.3	3.0	4.4	2.4	5.2	2.57	6.21	4.49
Exchangeable Magnesium (cmol₊/kg)	1.3	3.4	4.5	0.82	0.40	1.0	3.3	0.70	1.3	0.80	2.08	1.71
Exchangeable Potassium (cmol ₊ /kg)	0.15	0.16	0.24	<0.12	<0.12	<0.12	0.15	0.12	<0.12	<0.12	<0.12	0.23
Exchangeable Sodium (cmol₊/kg)	0.15	0.16	0.29	0.07	<0.065	0.13	0.27	0.11	0.18	0.10	0.11	0.15
Exchangeable Aluminium (cmol ₊ /kg)	0.60	0.14	0.13	0.28	0.31	0.19	0.32	0.23	0.05	0.43	0.08	0.72
Exchangeable Hydrogen (cmol ₊ /kg)	0.40	0.18	0.05	0.18	0.32	0.05	0.26	0.15	0.22	0.34	0.24	0.49

Table 7.2. Chemistry of the surface soil samples from Area 2. Figure 5.1 shows the sampling positions.

Anolyte	VW 2 1 0-10	VW 2 2 0-9	VW 2 3 0-9	VW 2 4 0- 12	VW 2 5 0-16	VW 2 6 0-12	VW 2 7 0-9	VW 2 8 0-15	VW 2 9 0-11	VW 2 10 0-9	VW 2 11 0-16	VW 2 12 0-13
Effective Cation Exchange	5.7	14	11	3.6	2.5	4.5	8.6	3.7	7.07	4.35	8.80	7.80
Capacity (ECEC) (cmol₊/kg)												
Calcium (%)	54	70	53	61	54	67	51	65	73	59.0	70.6	57.6
Magnesium (%)	23	25	41	23	16	24	38	19	19	18.4	23.6	22.0
Potassium (%)	2.7	1.2	2.2	1.9	2.0	1.00	1.8	3.3	1.6	2.2	0.9	3.0
Sodium - ESP (%)	2.6	1.2	2.6	1.9	2.6	2.9	3.2	2.9	2.6	2.4	1.3	1.9
Aluminium (%)	11	1.0	1.2	7.8	12	4.3	3.7	6.2	0.66	10.0	0.9	9.2
Hydrogen (%)	6.9	1.4	0.47	5.0	13	1.0	3.0	3.9	3.2	7.9	2.7	6.3
Calcium/Magnesium Ratio	2.3	2.8	1.3	2.7	3.4	2.9	1.3	3.5	3.9	3.2	3.0	2.6
Zinc (mg/kg)	4.3	4.7	4.2	3.1	3.1	3.2	7.4	6.8	7.6	4.0	4.0	6.4
Manganese (mg/kg)	25	52	15	8.3	21	18	7.9	9.5	37	17	14	44
lron (mg/kg)	427	196	419	281	269	291	425	496	334	408	253	478
Copper (mg/kg)	1.4	2.1	1.6	0.80	1.0	1.0	1.6	1.2	2.3	1.8	1.2	1.9
Boron (mg/kg)	0.24	0.31	0.89	0.14	0.10	0.13	0.34	0.20	0.33	0.33	0.57	0.46
Silicon (mg/kg Si)	47	59	66	26	27	32	40	40	28	35	46	36
Basic Texture	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Loam	Loam	Loam	Loam
Phosphorus Sorption (mg P/kg)	319	320	468	160	153	207	382	254	384	376	339	465

Table 7.3. Statistical analyses of Area 2 soils.

Parameter	Medium texture soil desirable value	Light texture soil desirable value	Min	Мах	Count	Average	Stdev	Confidence interval	lower 95%ileCl	Upper 95%ileCl	Comment
Soluble Calcium (mg/kg)	750	375	196.54	946.6	12	477.8	201.61	114.07	363	591	A bit low for clay loam soils
Soluble Magnesium (mg/kg)	105	60	43.32	373.7	12	161.3	100.32	56.76	104	216	High. Add lime
Soluble Potassium (mg/kg)	75	60	28.81	47.7	5	37.1	6.31	5.53	31.6	42.7	Low add K fertilizer
Soluble Phosphorus (mg/kg)	12	10	1.14	2.1	7	1.6	0.31	0.23	1.35	1.81	Very low Add P fertiliser
Phosphorus- Bray 1 (mg/kg P)	30	24	1.22	8.3	12	3.7	2.12	1.20	2.50	4.90	Very low Add P fertiliser
Phosphorus- Bray 2 (mg/kg P)	60	48	2.08	11.8	12	5.6	2.81	1.59	4.00	7.18	Very low Add P fertiliser
Nitrate Nitrogen (mg/kg N)	13	10	4.16	26.3	12	10.8	6.64	3.76	7.04	14.56	ОК
Ammonium Nitrogen (mg/kg N)	18	15	1.90	31.9	12	7.9	8.20	4.64	3.31	12.58	A bit low. Encourage Sub clover.
Sulfur (mg/kg S)	8.0	8.0	4.16	12.7	12	8.6	2.54	1.44	7.16	10.04	Within desirable range for loam to clay loam soils
pH (1:5) Water:soil	6.5	6.3	5.01	5.9	12	5.6	0.26	0.15	5.41	5.70	low add lime. Check % Exch Al
Electrical Conductivity (dS/m) (1:5 Water:soil)	0.150	0.120	0.05	0.1	12	0.1	0.01	0.01	0.05	0.07	Low salinity and therefore OK
Exchangeable Calcium (cmol ₊ /kg)	10.8	5.0	1.35	9.5	12	4.2	2.17	1.23	2.95	5.40	Low add lime
Exchangeable Magnesium (cmol ₊ /kg)	1.7	1.2	0.40	4.5	12	1.8	1.23	0.70	1.09	2.48	ОК
Exchangeable Potassium (cmol ₊ /kg)	0.50	0.40	0.12	0.2	6	0.2	0.04	0.04	0.14	0.21	Low add K fertiliser
Exchangeable Sodium (cmol ₊ /kg)	0.26	0.22	0.07	0.3	11	0.2	0.07	0.04	0.12	0.20	Low and so OK
Exchangeable Aluminium (cmol ₊ /kg)	0.5	0.4	0.05	0.7	12	0.3	0.20	0.11	0.18	0.40	Within desirable range, but the % of ECEC that is Exch Al is more important

Parameter	Medium texture soil desirable value	Light texture soil desirable value	Min	Max	Count	Average	Stdev	Confidence interval	lower 95%ileCl	Upper 95%ileCl	Comment
Exchangeable Hydrogen (cmol ₊ /kg)	0.5	0.4	0.05	0.5	12	0.2	0.13	0.07	0.17	0.31	Within desirable range, but the % of ECEC that is Exch Al is more important
Effective Cation Exchange Capacity (ECEC) (cmol₊/kg)	14.3	7.8	2.48	13.6	12	6.8	3.20	1.81	4.95	8.57	A bit low. Increasing pH and increasing pasture growth will address this.
Calcium (%)	75.7	65.6	50.67	73.3	12	61.2	7.46	4.22	57.02	65.47	Low Add lime
Magnesium (%)	11.9	15.7	15.97	40.9	12	24.3	7.25	4.10	20.16	28.37	High. Add lime. Do not add dolomite.
Potassium (%)	3.5	5.2	0.86	3.3	12	2.0	0.73	0.41	1.56	2.38	Ok. But some potassium fertiliser is required
Sodium - ESP (%)	1.8	2.9	1.19	3.2	12	2.3	0.61	0.34	1.99	2.67	Low and OK. Non sodic at present. Increasing soil organic carbon will help maintain stability.
Aluminium (%)	7.1	10.5	0.66	12.3	12	5.7	4.07	2.30	3.35	7.96	% ECEC as AL is highly variable. Add lime
Hydrogen (%)			0.47	12.8	12	4.5	3.35	1.90	2.64	6.44	Ok. But some potassium fertiliser is required
Calcium/Magnesium Ratio	6.4	4.2	1.29	3.9	12	2.7	0.76	0.43	2.30	3.16	A bit low add lime.
Zinc (mg/kg)	5.0	4.0	3.06	7.6	12	4.9	1.61	0.91	3.97	5.80	Good
Manganese (mg/kg)	22	18	7.93	51.6	12	22.4	13.79	7.80	14.59	30.19	Slightly low. So do not overdose on lime.
lron (mg/kg)	22	18	195.63	495.9	12	356.4	93.58	52.95	303	409	High, but not an issue
Copper (mg/kg)	2.0	1.6	0.80	2.3	12	1.5	0.45	0.26	1.23	1.74	ОК
Boron (mg/kg)	1.7	1.4	0.10	0.9	12	0.3	0.21	0.12	0.22	0.46	Low. Add B fertiliser.
Silicon (mg/kg Si)	45	40	26.24	66.4	12	40.2	12.12	6.86	33.36	47.07	l bit low, but OK
Chloride Estimate (equiv. mg/kg)			28.80	57.0	12	38.7	9.11	5.16	33	44	Low and OK

Parameter	Medium texture soil desirable value	Light texture soil desirable value	Min	Max	Count	Average	Stdev	Confidence interval	lower 95%ileCl	Upper 95%ileCl	Comment
Phosphorus Sorption (mg P/kg)			153.00	468.0	12	318.9	102.01	57.72	261	377	Good nutrient retention ability.

Devenue for		VW 2					VW 2			VW 2	VW 2	VW 2	104/0	VW 2	VW 2	VW 2	VW 2
Parameter	VW 2 13 0- 10	14 0-7	VW 2 15 0-7	VW 2 16 0-5	VW 2 17 0-7	VW 2 18 0-9	19 0- 15	VW 2 20 0- 11	VW 2 21 0- 11	22 0-9	23 0-8	24 0-9	VW 2 25 0- 12	26 0-9	27 0- 10	28 0- 10	29 0-8
Soluble	378	439	949	586	561	635	235	827	560	566	693	979	211	171	816	309	221
Calcium																	
(mg/kg)																	
Soluble	186	89	108	120	81	46	25	56	128	127	78	63	72	67	112	166	86
Magnesium																	
(mg/kg)																	
Soluble	121	60	64	55	29	<25	<25	<25	28	<25	117	<25	79	53	<25	30	109
Potassium																	
(mg/kg)																	
Soluble	1.8	5.2	14.1	5.1	2.8	1.4	<1	4.6	2.5	2.2	11.5	6.6	<1	<1	3.1	<1	1.2
Phosphorus																	
(mg/kg)																	
Phosphorus-	2.6	70.7	66.3	23.7	18.3	3.8	2.1	19.3	22.7	19.1	100.4	27.5	2.3	2.5	13.4	2.6	6.0
Bray 1 (mg/kg P)																	
Phosphorus- Bray 2 (mg/kg P)	4.0	192	195	62.6	45	5.2	2.7	40.7	56	48.9	281.0	69.2	4.5	5.3	41.7	5.0	15
Nitrate Nitrogen (mg/kg N)	23.0	9.2	11.6	20.1	7.6	1.9	8.4	7.0	2.8	3.6	13.2	7.5	2.5	1.1	10.0	1.7	5.3
Ammonium Nitrogen (mg/kg N)	27.1	8.0	6.9	8.5	6.1	4.6	7.7	4.2	9.1	6.3	6.5	7.3	19.1	6.5	7.0	12.8	20.3
Sulfur (mg/kg S)	8.0	5.8	9.3	13.7	13.7	9.4	6.6	15.0	8.8	6.7	6.7	3.9	6.3	4.5	9.8	8.4	6.1
pH (1:5) Water:soil	5.47	6.11	6.67	6.04	6.33	6.77	5.67	7.01	6.29	6.29	6.32	7.22	5.73	5.51	6.74	5.51	5.51
Electrical Conductivity (dS/m) (1:5 Water:soil)	0.093	0.068	0.083	0.097	0.074	0.058	0.033	0.104	0.058	0.056	0.078	0.073	0.043	0.031	0.070	0.052	0.061

Table 7.4. Chemistry of the surface soil samples from Area 3. Figure 5.1 shows the sampling positions.

Parameter	VW 2 13 0- 10	VW 2 14 0-7	VW 2 15 0-7	VW 2 16 0-5	VW 2 17 0-7	VW 2 18 0-9	VW 2 19 0- 15	VW 2 20 0- 11	VW 2 21 0- 11	VW 2 22 0-9	VW 2 23 0-8	VW 2 24 0-9	VW 2 25 0- 12	VW 2 26 0-9	VW 2 27 0- 10	VW 2 28 0- 10	VW 2 29 0-8
Exchangeable	3.31	3.91	7.85	5.08	4.37	4.87	1.60	6.42	4.51	4.14	5.02	6.30	1.44	1.30	6.98	2.55	1.82
Calcium																	
(cmol₊/kg)																	
Exchangeable	1.95	1.00	1.06	1.27	0.80	0.48	0.23	0.55	1.34	1.21	0.71	0.53	0.67	0.69	1.23	1.92	0.88
Magnesium																	
(cmol₊/kg)																	
Exchangeable	0.57	0.23	0.27	0.25	0.13	<0.12	<0.12	<0.12	0.15	<0.12	0.43	<0.12	0.31	0.22	<0.12	0.17	0.46
Potassium																	
(cmol₊/kg)		0.04	0.40	0.40	0.04	0.14	0.005	0.40	0.04		0.005			0.005			
Exchangeable	0.09	0.24	0.16	0.18	0.24	0.14	<0.065	0.13	0.24	0.22	<0.065	0.08	0.08	<0.065	0.20	0.23	0.09
Sodium																	
(cmol ₊ /kg)	0.40	0.00		0.04	0.04	0.00	0.40	0.04	0.04	-0.04	0.04		0.00	0.44	0.04	0.55	0.05
Exchangeable	0.19	0.02	<0.01	0.01	0.01	0.02	0.10	0.04	0.01	<0.01	0.01	<0.01	0.26	0.41	0.01	0.55	0.35
Aluminium																	
(cmol ₊ /kg)	0.00	0.40	-0.01	0.40	0.07	10.01	0.14	-0.01	0.00	0.00	0.07	-0.01	0.00	0.00	10.01	0.07	0.04
Exchangeable	0.29	0.12	<0.01	0.12	0.07	<0.01	0.14	<0.01	0.09	0.06	0.07	<0.01	0.23	0.28	<0.01	0.37	0.31
Hydrogen																	
(cmol₊/kg) Effective	6.40	5.51	9.35	6.92	5.63	5.60	2.17	7.26	6.33	5.75	6.30	6.99	2.99	2.97	8.53	5.79	3.91
Cation	0.40	5.51	9.55	0.92	5.05	5.00	2.17	7.20	0.55	5.75	0.30	0.99	2.99	2.97	0.00	5.79	5.91
Exchange																	
Capacity																	
(ECEC)																	
(cmol₊/kg)																	
Calcium (%)	51.6	71.0	83.9	73.5	77.7	87.0	73.4	88.4	71.2	72.0	79.6	90.1	48.0	43.8	81.8	44.0	46.5
Magnesium	30.4	18.1	11.4	18.3	14.2	8.7	10.4	7.6	21.1	21.0	11.3	7.6	22.6	23.3	14.5	33.2	22.4
(%)																	
Potassium (%)	8.9	4.1	2.8	3.7	2.4	1.6	3.5	1.6	2.4	1.9	6.9	1.1	10.3	7.5	1.2	2.9	11.8
Sodium - ESP (%)	1.4	4.3	1.7	2.5	4.2	2.6	1.8	1.8	3.8	3.8	0.8	1.1	2.8	1.9	2.4	4.0	2.2
Aluminium (%)	3.0	0.4	0.1	0.2	0.2	0.3	4.7	0.6	0.2	0.2	0.2	0.1	8.7	13.9	0.2	9.5	9.1
Hydrogen (%)	4.6	2.1	0.0	1.8	1.3	0.0	6.2	0.0	1.4	1.1	1.2	0.0	7.6	9.5	0.0	6.4	8.1

Parameter	VW 2 13 0- 10	VW 2 14 0-7	VW 2 15 0-7	VW 2 16 0-5	VW 2 17 0-7	VW 2 18 0-9	VW 2 19 0- 15	VW 2 20 0- 11	VW 2 21 0- 11	VW 2 22 0-9	VW 2 23 0-8	VW 2 24 0-9	VW 2 25 0- 12	VW 2 26 0-9	VW 2 27 0- 10	VW 2 28 0- 10	VW 2 29 0-8
Calcium/ Magnesium Ratio	1.7	3.9	7.4	4.0	5.5	10.0	7.1	11.6	3.4	3.4	7.0	11.8	2.1	1.9	5.7	1.3	2.1
Zinc (mg/kg)	13.2	9.5	10.5	12.3	6.4	1.3	1.3	12.9	5.8	5.1	14.5	14.6	4.5	2.4	18.2	7.2	9.3
Manganese (mg/kg)	22	5.6	4.1	11	10	3.1	4.6	2.6	3.5	3.7	4.3	8.3	7.7	14	5.0	9.3	3.7
Iron (mg/kg)	318	443	262	367	289	209	130	160	408	402	358	68	341	343	211	796	592
Copper (mg/kg)	2.0	3.7	3.9	4.8	2.9	1.2	0.4	9.2	2.6	2.5	6.7	10.4	1.3	0.9	12.9	1.7	1.2
Boron (mg/kg)	0.44	0.45	0.39	0.37	0.16	0.13	0.32	0.33	0.39	0.42	0.29	0.21	0.18	0.30	0.27	0.31	0.33
Silicon (mg/kg Si)	24	35	39	35	35	21	37	27	32	38	44	22	32	34	28	30	30
Basic Texture	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam	Loam
Chloride Estimate (equiv. mg/kg)	60	44	53	62	47	37	21	67	37	36	50	47	28	20	45	33	39
Phosphorus Sorption (mg P/kg)	319	293	197	278	305	211	214	190	340	341	266	206	351	339	262	404	458

Parameter	Medium texture soil	Light texture soil	Min	Max	Count	Average	Stdev	Confidence interval	lower 95%ileCl	Upper 95%ileCl	Comment
Soluble Calcium (mg/kg)	750	375	171	979	17	540	246	117	423	657	A bit low for clay loam soils
Soluble Magnesium (mg/kg)	105	60	25	186	17	93	40	19	75	112	ОК
Soluble Potassium (mg/kg)	75	60	28	121	11	68	31	18	50	86	ОК
Soluble Phosphorus (mg/kg)	12.0	10.0	1.2	14.1	13.0	5.6	4.1	2.2	3.4	7.8	Low Add P fertiliser
Phosphorus- Bray 1 (mg/kg P)	30.0	24.0	2	100	17	24	28	13.2	10.5	36.9	OK at present will require maintenance application
Phosphorus- Bray 2 (mg/kg P)	60	48	3	281	17	63	79	38	26	101	OK at present will require maintenance application
Nitrate Nitrogen (mg/kg N)	12.5	10.0	1	23	17	8	6	2.8	5.6	11.2	Low N is required.
Ammonium Nitrogen (mg/kg N)	18.0	15.0	4	27	17	11	6	2.9	7.7	13.5	Low. Encourage Sub clover.
Sulfur (mg/kg S)	8.0	8.0	4	15	17	8	3	1.4	7.0	9.8	Within desirable range for loam to clay loam soils
pH (1:5) Water:soil	6.50	6.30	5	7	17	6	1	0.25	5.96	6.46	Apply maintenance application of lime if/when required
Electrical Conductivity (dS/m) (1:5 Water:soil)	0.150	0.120	0	0	17	0	0	0.014	0.060	0.088	Low salinity and therefore OK
Exchangeable Calcium (cmol ₊ /kg)	10.80	5.00	1	8	17	5	2	1.12	3.47	5.71	ОК
Exchangeable Magnesium (cmol₊/kg)	1.70	1.20	0	2	17	1	0	0.22	0.80	1.25	OK
Exchangeable Potassium (cmol ₊ /kg)	0.50	0.40	0	1	11	0	0	0.08	0.23	0.40	Low add K fertiliser
Exchangeable Sodium (cmol ₊ /kg)	0.26	0.22	0	0	14	0	0	0.03	0.14	0.21	Low and so OK
Exchangeable Aluminium (cmol ₊ /kg)	0.50	0.40	0	1	14	0	0	0.10	0.08	0.28	Within desirable range, but the % of ECEC that is Exch AI is more important

 Table 7.5.
 Statistical analyses of Area 3 soils.

Parameter	Medium texture soil	Light texture soil	Min	Max	Count	Average	Stdev	Confidence interval	lower 95%ileCl	Upper 95%ileCl	Comment
Exchangeable Hydrogen (cmol₊/kg)	0.50	0.40	0	0	12	0	0	0.08	0.14	0.30	Within desirable range, but the % of ECEC that is Exch AI is more important
Effective Cation Exchange Capacity (ECEC) (cmol ₊ /kg)	14.30	7.80	2	9	17	6	3	1.24	5.10	7.58	A bit low. Increasing pH and increasing pasture growth will address this.
Calcium (%)	75.7	65.6	44	90	17	70	15	7.2	62.6	76.9	ОК
Magnesium (%)	11.9	15.7	8	33	17	17	7	3.4	13.6	20.4	Ok. Do not add dolomite.
Potassium (%)	3.5	5.2	1	12	17	4	3	1.5	2.9	5.9	ОК
Sodium - ESP (%)	1.8	2.9	1	4	17	3	1	0.5	2.0	3.0	Low and OK. Non sodic at present. Increasing soil organic carbon will help maintain stability.
Aluminium (%)	7.1	10.5	0	14	17	4	4	2.1	1.5	5.8	OK at present
Hydrogen (%)			0	10	17	3	3	1.5	1.5	4.5	Low and OK
Calcium/Magnesium Ratio	6.4	4.2	1	12	17	5	3	1.5	3.8	6.8	ОК
Zinc (mg/kg)	5.0	4.0	1	18	17	8	5	2.3	6.0	10.6	ОК
Manganese (mg/kg)	22.0	18.0	3	22	17	9	6	2.9	5.6	11.4	OK Do not lime
Iron (mg/kg)	22	18	68	796	17	302	187	89	213	391	High, but not an issue
Copper (mg/kg)	2.0	1.6	0	13	17	4	3	1.6	2.1	5.4	ОК
Boron (mg/kg)	1.70	1.40	0.13	0.45	17.00	0.44	0.39	0.19	0.25	0.63	Low. Add B fertiliser.
Silicon (mg/kg Si)	45	40	21	44	17	33	7	3	30	36	A bit low, but OK
Chloride Estimate (equiv. mg/kg)			20	67	17	43	13	6	36	49	Low and OK
Phosphorus Sorption (mg P/kg)			190	458	17	293	74	35	257	328	Good nutrient retention ability.

Parameter		VW 2 30 0-10	VW 2 31 0-12	VW 2 32 0-10	VW 2 33 0-7	VW 2 34 0-12	VW 2 35 0-5	VW 2 36 0-10	VW 2 37 0-9	VW 2 38 0-7	VW 2 39 0-9
Soluble Calcium (mg/kg)		348	290	182	332	283	140	426	164	231	344
Soluble Magnesium (mg/kg	g)	86	105	57	51	144	41	121	43	102	127
Soluble Potassium (mg/kg)	104	39	45	38	110	59	47	86	40	64
Soluble Phosphorus (mg/k	g)	2.5	1.3	<1	1.7	3.6	1.0	2.8	1.3	1.4	2.2
Phosphorus- Bray 1 (mg/kg P)		14.8	5.1	5.4	13.2	10.1	5.1	4.3	4.8	4.4	4.3
Phosphorus- Bray 2 (mg/kg P)		40.3	10.7	10.5	26.9	15	7.0	8.7	7.6	7.2	11
Nitrate Nitrogen (mg/kg N)		21.1	1.6	3.9	0.3	34.1	10	8.8	11.4	4.0	23.8
Ammonium Nitrogen (mg/	(g N)	47.9	6.0	11.1	10.3	32.7	8.5	18.9	26.7	12.6	13.2
Sulfur (mg/kg S)		22.1	11.2	6.1	9.7	13.2	6.8	24.1	8.2	8.9	9.6
pH (1:5) Water:soil		5.23	5.23	5.55	5.66	5.71	5.05	5.43	4.96	5.51	5.27
Electrical Conductivity (dS Water:soil)	/m) (1:5	0.073	0.065	0.041	0.060	0.156	0.047	0.075	0.069	0.058	0.110
Exchangeable Calcium	(cmol ₊ /kg)	3.47	2.71	1.25	2.63	2.98	1.2	3.72	1.41	1.99	3.37
Exchangeable Magnesium	(cmol₊/kg)	0.98	1.16	0.51	0.49	1.75	0.45	1.30	0.45	1.09	1.38
Exchangeable Potassium	(cmol₊/kg)	0.47	0.19	0.18	0.17	0.50	0.30	0.24	0.44	0.19	0.29
Exchangeable Sodium	(cmol₊/kg)	0.09	0.23	0.12	0.23	0.39	0.07	0.11	0.12	0.27	0.34
Exchangeable Aluminium	(cmol₊/kg)	0.96	0.62	0.49	0.28	0.04	1.09	0.36	1.25	0.48	0.41
Exchangeable Hydrogen	(cmol₊/kg)	0.63	0.40	0.36	0.26	0.22	0.53	0.46	0.59	0.33	0.35
Effective Cation Exchange (ECEC) (cmol ₊ /kg)	Capacity	6.60	5.31	2.90	4.07	5.88	3.6	6.19	4.26	4.35	6.13
Calcium (%)		52.6	51.0	43.0	64.7	50.6	33	60.1	33.1	45.8	54.9

Table 7.6. Chemistry of the surface soil samples from Area 4. Figure 5.1 shows the sampling positions.

Magnesium (%)	14.9	21.8	17.6	12.2	29.7	12	21.1	10.6	25.1	22.4
Potassium (%)	7.1	3.7	6.1	4.2	8.5	8.2	3.8	10.3	4.4	4.7
Sodium - ESP (%)	1.4	4.3	4.1	5.6	6.7	2.0	1.7	2.9	6.1	5.6
Aluminium (%)	14.6	11.7	16.8	6.8	0.8	30	5.7	29.3	11.0	6.7
Hydrogen (%)	9.5	7.6	12.3	6.5	3.7	14.5	7.5	13.8	7.6	5.7
Calcium/Magnesium Ratio	3.5	2.3	2.4	5.3	1.7	2.6	2.9	3.1	1.8	2.4
Zinc (mg/kg)	17.8	10.3	4.2	10.3	13.4	5.3	116.3	12.3	9.3	21.2
Manganese (mg/kg)	6.8	6.7	3.8	2.2	26	16.8	41	21	6.5	5.0
lron (mg/kg)	521	493	387	409	182	276	235	306	340	562
Copper (mg/kg)	1.8	1.1	0.8	0.9	0.8	1.24	2.3	2.1	1.2	1.4
Boron (mg/kg)	0.30	0.22	0.18	0.28	0.38	0.46	0.32	0.38	0.29	0.45
Silicon (mg/kg Si)	35	31	23	23	45	28	22	27	22	36
Basic Texture	Loam	Loam	Loam	Loam						
Chloride Estimate (equiv. mg/kg)	47	42	26	38	100	30	48	44	37	70
Phosphorus Sorption (mg P/kg)	419	415	370	374	170	354	391	375	358	437

Table 7.7. Statistical analyses of area 4 soils.

Parameter	Indicative guideline clay loams	Indicative guideline loams	Min	Max	Count	Average	Stdev	Confidence interval	lower 95%ileCl	Upper 95%ileCl	Comment
Soluble Calcium (mg/kg)	750	375	140	426	10	274	88.3	55	219	329	A bit low for clay loam soils. Add lime
Soluble Magnesium (mg/kg)	105	60	41	144	10	88	35.7	22	66	110	A bit high Add lime
Soluble Potassium (mg/kg)	75	60	38	110	10	63	26.0	16.1	47.2	79.4	Within desirable range for loam to clay loam soils
Soluble Phosphorus (mg/kg)	12	10	1.0	3.56	9	2.0	0.8	0.52	1.45	2.49	Very low Add P fertiliser
Phosphorus- Bray 1 (mg/kg P)	305	24	4.3	15	10	7.1	3.8	2.4	4.8	9.5	Very low Add P fertiliser
Phosphorus- Bray 2 (mg/kg P)	605	48	7.0	40	10	14.5	10.2	6.4	8.1	20.8	Very low Add P fertiliser
Nitrate Nitrogen (mg/kg N)	13	10	0.3	34	10	11.9	10.5	6.50	5.43	18.42	A bit low. Encourage Sub clover.
Ammonium Nitrogen (mg/kg N)	18	15	6.0	48	10	18.8	12.5	7.78	11.02	26.57	A bit low. Encourage Sub clover.
Sulfur (mg/kg S)	8.0	8.0	6.1	24	10	12.0	5.9	3.65	8.34	15.65	ОК
pH (1:5) Water:soil	6.5	6.3	5.0	5.71	10	5.4	0.2	0.148	5.21	5.51	low add lime. Check % Exch Al
Electrical Conductivity (dS/m) (1:5 Water:soil)	0.150	0.120	0.04	0.16	10	0.1	0.0	0.020	0.055	0.095	Low salinity and therefore OK
Exchangeable Calcium (cmol ₊ /kg)	10.8	5.0	1.2	3.72	10	2.5	0.9	0.562	1.91	3.03	Low add lime
Exchangeable Magnesium (cmol₊/kg)	1.7	1.2	0.5	1.75	10	1.0	0.4	0.270	0.686	1.23	Low. Check future sampling to check if dolomite is needed
Exchangeable Potassium (cmol₊/kg)	0.50	0.40	0.2	0.50	10	0.3	0.1	0.075	0.221	0.371	Low add K fertiliser
Exchangeable Sodium (cmol₊/kg)	0.26	0.22	0.1	0.39	10	0.2	0.1	0.066	0.131	0.263	Low and so OK
Exchangeable Aluminium (cmol ₊ /kg)	0.5	0.4	0.0	1.25	10	0.6	0.4	0.226	0.371	0.823	Within desirable range, but the % of ECEC that is Exch Al is more important

Parameter	Indicative guideline clay loams	Indicative guideline loams	Min	Max	Count	Average	Stdev	Confidence interval	lower 95%ileCl	Upper 95%ileCl	Comment
Exchangeable Hydrogen (cmol₊/kg)	0.5	0.4	0.2	0.63	10	0.4	0.1	0.080	0.333	0.493	Within desirable range, but the % of ECEC that is Exch Al is more important
Effective Cation Exchange Capacity (ECEC) (cmol₊/kg)	14.3	7.8	2.9	6.60	10	4.9	1.2	0.7	4	6	A bit low. Increasing pH and increasing pasture growth will address this.
Calcium (%)	75.7	65.6	33	64.74	10	48.9	10.0	6.2	43	55	Low Add lime
Magnesium (%)	11.9	15.7	11	29.68	10	18.8	5.9	3.7	15	22	High. Add lime. Do not add dolomite.
Potassium (%)	3.5	5.2	4	10.30	10	6.1	2.2	1.4	5	7	Ok. But some potassium fertiliser is required
Sodium - ESP (%)	1.8	2.9	1	6.69	10	4.0	1.8	1.1	3	5	Low and OK. Non sodic at present. Increasing soil organic carbon will help maintain stability.
Aluminium (%)	7.1	10.5	1	30.12	10	13.4	9.3	5.8	8	19	% ECEC as AL is highly variable. Add lime
Hydrogen (%)			4	14.52	10	8.9	3.4	2.1	7	11	Ok. But some potassium fertiliser is required
Calcium/Magnesium Ratio	6.4	4.2	2	5.32	10	2.8	1.0	0.6	2.2	3.4	A bit low add lime.
Zinc (mg/kg)	5.0	4.0	4	116	10	22.0	31.8	19.7	2.3	41.7	Good
Manganese (mg/kg)	22	18	2	41	10	13.6	11.8	7.3	6.3	20.9	Slightly low. So do not overdose on lime.
Iron (mg/kg)	22	18	182	562	10	371	120	74.4	297	446	High, but not an issue
Copper (mg/kg)	2.0	1.6	0.8	2.30	10	1.4	0.5	0.3	1.04	1.67	ОК
Boron (mg/kg)	1.7	1.4	0	0.46	10	0.3	0.1	0.1	0.273	0.4	Low. Add B fertiliser.
Silicon (mg/kg Si)	45	40	22	45	10	29.4	7.1	4.4	24.9	34	A bit low, but OK
Chloride Estimate (equiv. mg/kg)			26	100	10	48	20.6	12.8	35.5	61	Low and OK
Phosphorus Sorption (mg P/kg)			170	437	10	366	70.3	43.6	323	410	Good nutrient retention ability.

Table 7.8. St	tatistical analy	ses of area 1,	2, 3 and 4	surface soils.
---------------	------------------	----------------	------------	----------------

Parameter	Desirable for Clay Loam	Desirable for Loam	Area1 Iower Iimit	Area 1 upper limit	Area 2 Iower Iimit	Area 2 upper limit	Area 3 Iower Iimit	Area 3 upper limit	Area 4 Iower Iimit	Area 4 upper limit	Comment: That are the 95%ile values in each of the 4 areas similar?
Soluble Calcium (mg/kg)	750	375	370	535	363	591	423	657	219	329	Area 4 is lower than areas 1, 2 and 3
Soluble Magnesium (mg/kg)	105	60	83	113	104	216	75	112	66	110	All overlap
Soluble Potassium (mg/kg)	75	60	52	77	32	43	50	86	47	79	Area 2 is lower than areas 1, 3 and 4
Soluble Phosphorus (mg/kg)	12	10	2.16	4.71	1.35	1.81	3.4	7.8	1.45	2.49	Area 2 is lower than areas 1 and 3.
Bray 1 Available P (mg/kg)	30	24	7.79	23.6	2.50	4.90	10.5	36.9	4.8	9.5	Area 2 is lower than area 3.
Bray 2 Available P (mg/kg)	605	485	17.4	62.6	4.00	7.18	26	101	8.1	20.8	Area 2 is lower than areas 1 and 3.
Nitrate Nitrogen (mg/kg N)	13	10	6.60	12.1	7.04	14.56	5.6	11.2	5.43	18.42	All similar with overlap.
Ammonium Nitrogen (mg/kg N)	18	15	9.38	16.1	3.31	12.58	7.7	13.5	11.02	26.57	All similar with overlap.
Sulfur (mg/kg S)	8.0	8.0	7.88	11.1	7.16	10.04	7.0	9.8	8.34	15.65	All similar with overlap.
рН	6.5	6.3	5.64	6.05	5.41	5.70	5.96	6.46	5.21	5.51	Area 4 is more acidic than areas 1 and 3.
Electrical Conductivity (dS/m)	0.15	0.120	0.059	0.076	0.05	0.07	0.060	0.088	0.055	0.095	All very low and nonsaline. All similar with overlap.
Exch Ca (cmol+/kg)	10.8	5.0	3.06	4.34	2.95	5.40	3.47	5.71	1.91	3.03	Area 4 is lower than area 1 and area 3.
Exch Mg (cmol+/kg)	1.7	1.2	0.86	1.20	1.09	2.48	0.80	1.25	0.67	1.23	All similar with overlap.
Exch K (cmol+/kg)	0.5	0.4	0.24	0.34	0.14	0.21	0.23	0.40	0.22	0.37	Exch K is lower in areas 2 and 3 than in area 1.
Exch Na (cmol+/kg)	0.26	0.22	0.143	0.20	0.12	0.20	0.14	0.21	0.13	0.26	All similar, with overlap.
Exch AI (cmol+/kg)	0.5	0.4	0.21	0.46	0.18	0.40	0.08	0.28	0.37	0.82	Area 3 has lower Exch Al than area 4
Exch H+ (cmol+/kg)	0.5	0.4	0.23	0.35	0.17	0.31	0.14	0.30	0.33	0.49	Areas 2 and 3 have lower Exch H than area 4
Effective Cation Exchange Capacity (ECEC) (cmol ₊ /kg)	14.3	7.8	5.1	6.3	5.0	8.7	5.1	7.7	4.2	5.7	All similar with overlap.
Calcium (%)	76	66	57	68	57.	65	63	77	43	55	Area 4 is lower than areas 1, 2 and 3,

Parameter	Desirable for Clay Loam	Desirable for Loam	Area1 Iower Iimit	Area 1 upper limit	Area 2 Iower Iimit	Area 2 upper limit	Area 3 Iower Iimit	Area 3 upper limit	Area 4 Iower Iimit	Area 4 upper limit	Comment: That are the 95%ile values in each of the 4 areas similar?
Magnesium (%)	12	15.7	16.0	20.6	20.2	28.4	13.6	20.4	15	22	All similar with overlap.
Potassium (%)	3.5	5.2	4	6	2	3	3	6	5	7	Area 2 is lower than areas 1 and 4.
Sodium - ESP (%)	1.8	2.9	2	3	2	3	2	3	3	5	All similar with overlap.
Aluminium (%)	2	11	4	9	3	8	2	6	8	19	Area 4 is higher than area 3.
Hydrogen (%)	2.1		4	7	3	6	2	5	7	11	Area 4 is higher than area 2 or area 3.
Calcium/Magnesium Ratio	6.4	4.2	3.24	5.20	2.30	3.16	3.8	6.8	2.2	3.4	All similar with overlap.
Zinc (mg/kg)	5.0	4.0	5.74	19.5	3.97	5.80	6.0	10.6	2.3	41.7	Area 2 is lower than area 3.
Manganese (mg/kg)	22	18	7.98	15.9	14.59	30.19	5.6	11.4	6.3	20.9	All similar with overlap.
lron (mg/kg)	22	18	299	403	303	409	213	391	297	446	All similar with overlap.
Copper (mg/kg)	2.0	1.6	1.83	3.91	1.23	1.74	2.1	5.4	1.04	1.67	Areas 2 and 4 are lower than area 1
Boron (mg/kg)	1.7	1.4	0.30	0.37	0.22	0.46	0.25	0.63	0.27	0.4	All similar with overlap.
Silicon (mg/kg Si)	45	40	29	34	33	47	30	36	24	34	All similar with overlap.
Chloride (mg/kg)			33	42	33	44	36	49	35.5	61	All similar with overlap.
Phosphorus sorption capacity (mg/kg)			245	274	261	377	257	328	323	410	Area 4 has higher concentration than area 1.

Conclusions regarding soil chemistry in the 4 areas

The table below highlights statistically significant difference in soil among the 4 areas. It also contains comments and proposed responses.

Attributes with statistically significant differences	Response
• Area 2 has lower soluble Ca and P than area 1.	 Addition of a minimum of 20 kg of P/ha/y¹ to area 2 is required. Area 1 requires a minimum of 15 kg/ha of P/ha/y. Adjust according to plant and soil monitoring results.
 Area 2 has lower concentration of available P than area 1. 	See above
 Area 4 is more acidic than area 1. 	 This can reduce clover growth. Apply lime to Area 4. Each cmol+/kg of exchangeable AI requires 750 kg/ha of high quality agricultural lime (100% Ca CO₃) Area 4 averages 0.65 cmol/kg of exch AI, so 450 kg/ha of lime is required. Add 1 t/ha to area 4.
• Area 4 has lower Exch Ca than area 1 or 2.	 Add 2T/ha of gypsum to area 4. Note the agricultural lime will also assist in increasing exch Ca concentration.
 Area 3 has lower Exch AI than area 4 	See above.
• Exch K is lower in area 2 than in area 1 and area 4	 Apply 100 kg/ha of Potassium/ha to area 2. Include potassium content in pasture and soil monitoring.
 Areas 2 and 4 have lower Cu concentrations than area 1 	 Copper concentrations can be higher in soil 'near' Copper ore bodies. However, the difference is minor. The ecological investigation concentration for Cu is 100 mg/kg. This is more than 7 the maximum Cu concentration of 13 mg/kg found in an area 3 soil.
 Area 4 has higher P sorption capacity than area 1. 	• The 95%ile lower limit is 323 mg/kg. in a topsoil in area 4. This is 'high compared with most Australian soils and the permeate P concentration is below 1 mg/L, so deep penetration of the soil profile is highly unlikely. There is absolutely minimal risk that the phosphorus in the permeate would reach the groundwater.

Table 7.9. Comments on the differences among the 4 areas.

It is CONCLUDED that the 4 proposed irrigation areas have soil chemistry that will not impact on their suitability for irrigation with the permeate with its predicted chemistry.

¹ The P requirement is in kg P/ha/y. The mass of fertiliser added each year depends on the nutrient content of the fertilizer. If single superphosphate is used and the P concentration is 8.9%, then 225 kg/ha of single superphosphate is required to apply 20 kg/ha/y.

If Diammonium phosphate is used and the P requirement is 20 kg P/ha then 77 kg of DASP/ha is required. This would also provide 14 kg/ha of Nitrogen.

P sorption capacity in areas 2, 3 and 4

The soil sampling techniques in areas 2. 3 and 4 were the same as for areas 1.

That is: Approximately one sample pit per 1 to 2 ha of potential irrigated area. The pits were visually assessed. Three sample depts were typically taken:

- 1. The surface (A) horizon : typically, 10 cm
- 2. The depth of main root zone : typically, 10 to 40 cm
- 3. The clay dominant layer, with increasing percentage of rocks: typically, 40 to 100 cm.

Some soils had a distinctly bleached A_2 horizon. The bleached A_2 horizon is found immediately below the A horizon. It is indicative of water logging. Typically, this horizon has low nutrient holding capacity and can act as a barrier to root development.

Table 7.10. The P sorption capacity statistics for the surface 100 cm of 39 soils.in areas 2, 3 and 4.

Sample ID and	Min	Max	Count	Mean	Stdev	Confidence	lower	Upper
depth increment						interval	95%ileCl	95%ileCl
P sorption (mg/kg)	65	819	96	474	185	37	437	511
Profile P sorption capacity (kg/ha) top 100 cm.	1108	11198	31	7073	2574	906	6167	7979

The minimum P sorption capacity was 65 mg/kg. This was found in the bleached A_2 horizon of pit 24. The pit was located in an overland flow convergence zone. At this site, the soil below the A_2 horizon extended a minimum of 79 cm and contained 5405 kg/ha of P sorption capacity, so the total profile p sorption capacity was over 6,000 kg/ha. That is, the A_2 horizon is not an issue for P sorption capacity provided there is sufficient capacity within the remainder of the profile.

The lowest Profile P sorption capacity was 1108 kg/ha. This was pit 34 which had only 40 cm of soil. Table 5.6 shows that this area has been excluded from being irrigated.

The average capacity per profile for the 39 sites in areas 2, 3 and 4 was 7073 kg/ha. Typically, phosphorus application rates on irrigated pastures are around 20 kg P/ha/y. Uptake by vigorous pasture is 20 to 30 kg P/ha/y. So, the uptake potential typically exceeds the application rate. Even if the pasture were to receive an excess supply of 30 kg P/ha/y, it would take over 200 years to 'saturate' the surface metre of soil P sorption capacity. This is extremely unlikely to occur using RO permeate for irrigation. Virtually all the phosphorus has been excluded from the permeate, as the data in

Woodlots and Wetlands (2024a). Impact of double reverse osmosis on permeate quality demonstrates.

Conclusions regarding P sorption capacity

Soil profile P sorption capacity had 95% ile confidence range of 6167 to 7979 kg/ha. This is high compared with many Australian soils.

P sorption is indicative of the ability of the soil to retain nutrients (and contaminants) from leaching. So, the relatively high storage capacity of the proposed irrigation area soils mean that the proposed irrigation areas have a low risk of ground water contamination with phosphorus.

This is important, as it is intended to operate the irrigation system so that the soils are close to field capacity for the entire year. Increased water availability will increase deep drainage. However, this will not result in significant leaching of phosphorus as the P sorption values are very large compared with the available P concentrations in the soils and in the permeate.

8. IRRIGATION MANAGEMENT AND WATER

BALANCE

Irrigation management

The proposed irrigation regime is based on an understanding of soil water dynamics and daily check of evapotranspiration data and rainfall prediction.

The aim of a typical irrigation system is to remove, or at least minimise, plant moisture stress as a limitation on plant growth.

In the current situation, maximising plant growth and leaf production will increase plant water demand. In turn, the maximised plant water demand will facilitate maximum utilisation of the RO permeate.

The proposed system increases total water application to meet, and even exceed meeting the plant potential water demand.

The rainfall is 703 mm/year. The potential evapotranspiration is 1056 mm/year. Therefore, the moisture deficit is some 353 mm/yr (note that this will vary among years).

The plant growth response to irrigation is typically 20 to 30 kg/ha/ mm of additional water. Therefore, assuming say 25 kg/ha of dry matter increment /mm of rainfall/year, the additional 353 mm of water will increase pasture production by a modelled 8825 kgs/year.

A daily time step water balance was used to determine the volume of water that can be sustainably irrigated onto the site. The water balance model is based on a 5km*5km gridded data set derived from the SILO website (www.longpaddock.qld.gov.au).

The time duration of the modelling is 43 years, from January 1, 1980 to 13 June 2023. The most recent 43 year period was selected to reflect recent changes in rainfall and potential evapotranspiration that are likely to reflect climate change².

The model inputs/ assumptions are:

- Rainfall data is for a 5km*5 km grid centred on the Veolia site (see figure 3.1).
- The daily rainfall is based on a 2 dimensional simulation using nearby meteorological stations.
- The potential evapotranspiration (PET) is based on the FAO 56 model see figure 3.1).
- The landuse is assumed to be pasture with moderate grazing pressure
- The soil is assumed to be clay loam topsoil, with a low permeability clay subsoil.
- Runoff commences when the daily rainfall exceeds 17.8 mm (USDA, 1984).
- Available water holding capacity in the root zone is 90mm.
- Once the combination of available soil water content + infiltration exceeds 90mm, the excess water percolated below the root zone. NOTE that this drainage is assumed to happen over the following 24 hrs. In practice, the clay subsoil is likely to take a minimum of 2 days. This creates opportunity for increased evapotranspiration. That is, the model is 'conservative',

² Climate change in SE Australia is expected to increase potential evapotranspiration and to reduce rainfall. These changes will both increase irrigation demand.

- Plant water use ((evapotranspiration rate, or Et) is 100 % of PET until 50% of WHC (45 mm of available water), then a linear fall in Et as the available soil water content falls to zero.
- The irrigation strategy is to apply a small quantity of irrigation i.e., 0.5 mm, each day when the predicted rainfall was well below the rainfall runoff threshold of 18mm.

Irrigation strategy

The irrigation strategy is:

- Ensure the permeate has very low salinity, so that there is minimal risk of salinisation of the soil and water.
- Maximise the volume of permeate that is used on the pastures within the subject property.
- Do NOT irrigate if the paddock is saturated and runoff is occurring.
- Apply the permeate via a low application rate/day to minimise the risk of runoff: Apply irrigation at 0.5 mm/irrigation day
- Only irrigate on days when rainfall is less than the likely runoff threshold of 18mm. The threshold for no irrigation was set at 10 mm of rain.
- Use warm dry summer days to increase the application rate to 1mm/day on an average of 21 days per year. This will compensate for the zero irrigation on the average of 21 days per year.
- That is the annual rate is 365.25*0.5 mm/day = 183mnm/year.
- The assumed irrigation area was 16.8 ha

Available soil water quantity without irrigation

A daily available soil water content model was used to identify the soil water content. The available soil water content (ASWC) is the water content, in mm, between field capacity and permanent wilting point in the surface metre of soil. Based on a clay loam topsoil and a medium clay subsoil, the WHC in the bulk of the root zone was assumed to be 90mm (Geeves, et al, 2007).

It is obvious from figure 8.2 that there are numerous periods when available water content approaches zero.

The model used assumes 100% of potential evapotranspiration (PET) down to 50% of field capacity (45 mm). Figure 8.5 shows the available water then falls to less than 10% of the maximum Water Holding

Figure 8.3. Available soil water (mm) as a percentile of time based

Capacity in 16% of time. In 97% of time the profile is not 'full'. That is in some 97% of days it is possible to irrigate a small quantity of permeate. without exceeding the soil water holding capacity.

Note that in periods when the antecedent day had heavy rainfall, the soil water content could still be above 90mm as the water drained into the subsoil.

The strategy is therefore to apply an extremely low irrigation rate, and only when the model suggests that there is a moisture storage capacity available in the soil.

Irrigation strategy

The irrigation strategy is:

- Ensure the permeate has very low salinity, so that there is minimal risk of salinisation of the soil and water.
- Maximise the volume of permeate that is used on the pastures within the subject property.
- Apply the permeate at a low application rate/day (0.5mm), to minimise the risk of runoff.
- Only irrigate on days when rainfall is not more than 10mm
- Apply the strategy to the 16.8 ha of area 2.

The irrigation management modelling and results are detailed in the *Sustainable Irrigation Management (Woodlots and Wetlands 2024b).*

9. CALCULATION OF SOIL SALINISATION AND NUTRIENT ACCUMULATION

SALINISATION

ANZECC (2000), chapter 4, gives methodology to predict soil salinity based on the salinity of the irrigation water and the leaching fraction³

The predicted salinity of the irrigation water is less than 0.3 dS/m. See Woodlots and Wetlands (2025a)..

The leaching fraction is calculated as the proportion of irrigation water that percolated below the root zone.

Table 9.1 shows the leaching fraction. Note the MEDLI model estimates that the leaching fraction of the 1.5mm/day irrigation is 0.54 (Woodlots and Wetlands 2025b). The daily time step model assumes 183 mm of permeate irrigation with a salinity of 0.6 dS/m. The irrigation increases the deep drainage from 91 mm/year without irrigation to 186 mm/year with 183 mm/year irrigation. That is a 95mm/year increase in deep drainage. The leaching fraction is 95/183. That is a leaching fraction of 0.5.

The anticipated soil salinity, expressed as a saturated paste extract was calculated as:

Root zone salinity (SAT PASTE) (dS/m) = <u>EC of irrigation water (permeate salinity 0.6)</u> (2.2* Leaching fraction (table 9.1, ABOVE).

Or 0.55 dS/m.

This salinity is very low and there will not be an issue with salt accumulation in these soils. For example, table 4.2.4 in ANZECC (2000) shows soils with less than 0.95 dS/m average root zone salinity can support 'salt sensitive' plants. The average salinity predicted is 0.55 dS/m or less than 60% of this value.

Nutrient demand

The table below is from DEC (2004). It was derived from NSW Agriculture (1997).

Table 9.3. Dry matter production and nutrient uptake from southern h	ighlands pastures (derived
from DEC, 2004 and NSW Agriculture 1997).	

Pasture	Growth season	Average yield (tonnes/ ha dry matter)	N % in harvested tissue	P % in harvested tissue	K % in harvested tissue	N Uptake (kg/ha)	P Uptake (kg/ha)	K Uptake (kg/ha)
Phalaris	Mar–Nov	12	1.1	0.3	2.8	132	36	336
Perennial ryegrass	Mar-Dec	12	3.5	0.3	2	420	36	240
Fescue	All year	14	2.4	0.4	2.1	336	56	294
Lucerne	All year	20	3.5	0.4	2.5	700	80	500
White clover	Sept– Feb	20	3.7	0.4	2.6	740	80	520

Key points:

• A mix of species is more likely to produce year round pasture production

³ The proportion of the applied water that is leached below the root zone
- Non legume species will typically produce 12 to 14 T/ha/yr of dry matter
- Legume species produce up to 20 T/ha/y.
- Note that the dry matter production under irrigation is expected to be greater than under dryland conditions.
- The legume containing pasture will produce more dry matter than the non-legume pastures. This suggests that the pasture mix should include white clover
- A mix of perennial ryegrass, fescue and white clover will result in 'high' demand for NPK.
- The N, P and K mass/ha/year from the permeate application is estimated as 12 kg N/ha, 0.3 kg P/ha and 2 kg K/ha respectively. That is, the proposed 5 to 5.6 ML/ha/y of permeate will only supply a few percent of the plant demand for N, P and K.
- Soil and plant tissue monitoring followed by required fertilisation is essential to maintain plant productivity and therefore maximise evapotranspiration.
- As a minimum the fertilisation rates should be similar to anticipated plant demand.
- In order to minimise leaching of nutrients, the fertiliser application should meet the seasonal demand. That is, apply fertiliser to meet seasonal demand by plants. Heavier applications in spring, with low or zero application in winter.
- Regular sapling the pasture tissue and the soil is essential. At least annual sampling of pasture plants and biennial sampling of the soil.

The volume of RO water that can be accommodated per ha of irrigated land is discussed in detail in the *Woodlots and Wetlands (2024b) Sustainable Irrigation Plan.*

Management of buffer areas

It is expected that the buffer areas between the permeate irrigation areas and any drainage lines or property will be planted and maintained with the same species as used in the irrigation areas.

These areas already have a thick but very weedy pasture cover. Weed management will improve the utility of the buffer vegetation. The buffer areas can then be forage harvested whenever there is sufficient fodder. The cutting height should be adjusted to reflect the slower growth in the non-irrigated area. Note that strategic harvesting of the fodder can encourage tillering and nutrient demand. In turn this will increase the ability of the buffer areas to slow rainfall induced runoff from the permeate treatment areas.

Potential for changes in permeate quality

Changes could occur via the following mechanisms:

- The high temperature compositing process may change via improvements that remove more of the contaminants.
 - \circ $\;$ In turn this would further reduce the contamination in the raw water.
 - The process water has been stored in the large lagoons for several decades now. Long term storage with associated fluctuations in pH and Eh can cause contaminant precipitation so that there is a long term reduction in contaminants in the final pondage water.
 - The current proposal is for the long term storage to continue, but that there will be a 'bleed' point from the final pond to the RO plant. Assuming a dynamic equilibrium is established, there will still be over 12 months residence time. This is sufficient to allow significant precipitation of heavy metal cations to occur.
 - The Double RO system plus the irrigation area should be designed to process the net accumulation of excess water from the high temperature composting process.
 - Ideally a residence time of 12 months should be implemented.
- The membranes in the RO plant may leak. The unexpected increase in salinity of the permeate is an obvious trigger. Change in salinity can be monitored in real time, and attached to visible, audible and electronic alarm systems. If it occurs then the RO plant must shut down and the issue addressed.
- Power outage may occasionally occur (note the adjacent wind farm). The RO plant will shut down and will need restarting.

Site monitoring

The site modelling requirements are detailed in the Sustainable Irrigation Management (Woodlots and Wetlands 2024b).

Key components are set out below.

The water flow and quality monitoring program involves

- Permeate volumes and chemistry. Record weekly cumulative flow:
- permeate chemistry 3 monthly at the RO outlet PLUS sampling following significant maintenance / repairs of the RO system. Follow DEC (2004), table 5.1 schedule for pH, EC, SAR, Total N, Total P, Metals
 - Water courses downslope of the irrigation area sample annually for pH, EC, SAR, Total N, Total P. Measure annually in spring time .
- Several small farm dams on site annually in spring time record pH, EC, SAR, Total N, Total P. Measure

The pasture monitoring program involves

- Undertake plant sampling each year in late spring. The sample harvest to be at ground level and just before forage harvesting. A minimum of 1 sample/4ha (14 samples) to be taken. The sample points to be geolocated and NOT resampled.
- Recording the number and type (s) of bales harvest at each cut for each of the 4 areas.
- Do an annual dry mass estimate based on typical samples.
- o Annually sample the fodder and obtain chemical analyses to identify nutrient export.
- Assess the pasture species and indicative dominant / major species at the flowering stage.
- Note need if any, for weed management

The soil management program involves

- Sampling a minimum of 1 sample points 5/ ha.
 - Area 2, 4 sample points.

Every 3rd year: Sample a composite soil sample of 40 soil cores per 5 ha (4 locations in total), taken at a depth of 0- 10 cm. For pH, EC, Available P, total P, total N, Organic carbon, Exch Cations, pesticides, heavy metals, PFAS.

Every 10th year: Composite soil samples of 5 cores at four depth intervals to 1 metre, within a 5 metre diameter plot. The four depths should fall within 0–20, 20–40, 40–70 and 70–100 cm depth increments, and positioned within major soil horizons or layers.

- Sampling to 1m of to rock
- Note topsoil depth (cm), the presence of a bleached A2 horizon and the depth to rock.
- Sample all four depths for pH, EC, P sorption capacity, major cations,
- ADDITIONALLY, Sample a composite soil sample of 40 soil cores per 5 ha (4 locations in total), taken at a depth of 0- 10 cm. For pH, EC, Available P, total P, total N, Organic carbon, Exch Cations, pesticides, heavy metals, PFAS

Required responses

Permeate quality and quantity

Establish a log book. Record

- Daily flows
- Include daily weather conditions, especially rainfall. (Use SILO for weather for past 24 hrs).
- Certify that the maintenance schedule is being followed.
- Note any deficiencies.
- Record water quality results at least quarterly.

Surface and subsurface water

Undertake the sampling as outlined above.

10. CONCLUSIONS and RECOMMENDATIONS

- There are 4 irrigation areas.
- Areas 1 and 2 are the most favourable for irrigation on the Veolia Site. The areas are relatively low slope. Their soils are relatively deep. They have good nutrient retention ability and are non-saline.
- Areas 3 and 4 have less favourable conditions. Typically, shallower soil, steeper slopes and in some cases convergence run on from upslope areas.
- It is RECOMMENDED that 16.8 ha in area 2 be developed for fixed sprinkler irrigation in phase 1 of the project.
- All areas are deficient in nutrients.
- Some areas require liming and /or gypsum to correct soil acidity/ structural instability.
- The predicted chemistry of the double reverse osmosis permeate is similar to that of very good quality irrigation water (table 2.2).

Recommendations

1. Fixed or travelling sprinklers are RECOMMENDED.

Area 2 will receive 0.5 mm of irrigation whenever the predicted precipitation on the irrigation day is not>10mm. SEE: **Sustainable Irrigation Management (Woodlots and Wetlands 2024b).**

- 2. All irrigated areas require establishment of improved pastures. Legumes are recommended in the pasture mix.
- 3. As per DEC (2004) the low strength permeate requires all irrigation areas to have a minimum buffer of 50m to any sensitive areas/receptors, drainage lines, creeks and permanent watercourse(s).
- 4. MONITORING
 - a. There must be flow meters on the irrigation area.
 - b. Cumulative volumes to be recorded each week
 - c. A site rainfall gauge is to be installed and precipitation to be recorded daily (may already be on site, if so, check suitability and location).
 - d. The predicted rainfall each day is to be accessed for Bungendore from the www / BOM website, and recorded PRIOR to irrigation commencement. NO irrigation IF the predicted rainfall is >8mm⁴.
 - e. The pasture will need to be machine harvested and the fodder removed. This WILL require the irrigation to be turned off to allow the fodder to dry out prior to baling. This is easier in hot dry weather. It may not be practical in winter. ALTERNATIVELY, it can be wet harvested and used to make silage.
 - f. Moderate pasture cutting height to be used, e.g 100 to 120 mm above ground to leave a residual pasture mass, e.g 5 T/ha, to recover rapidly from harvest.
 - g. Undertake plant sampling each year in late spring. The sample harvest to be at ground level and just before forage harvesting. A minimum of 1 sample/4ha (14 samples) to be taken. The sample points to be geolocated and NOT resampled. Harvest dry weight/msq sample to be recorded and samples for N, P, K and micro nutrients to be recorded.
 - h. Undertake soil sampling to 1m soil depth (or rock) every second year. Sampling the same geo position as the pasture sample. Report top soil and subsoil chemistry as required by the EPA (base on DEC, 2004).
- 5. The actual harvest process needs to be established prior to irrigation commencement. The critical issue is maximising pasture DM production. This will require a severe harvest in late summer/ autumn to allow the clover component to establish before winter. A cutting height of some 50 mm to leave a residual pasture mass of 3 T/ha. This severe cut is required to allow the clover component to re-establish after summer growth conditions.

⁴ NOTE that the daily rainfall should bd checked against the predicted rain at the site. After a few years it will be possible to 'adjust' the predicted rainfall to the likely actual rainfall.

REFERENCES

ANZECC ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. NWQMSD. Canberra ACT.

Bruce RC and Rayment GE (1982). Analytical methods and interpretations used by the Agricultural Chemistry Branch for soil and land use surveys. QDPI Bull QB 82004.

Dear, B and Weir, R (2004). Boron deficiency in pastures and field crops Agfact P1.AC.1, 2nd edition 2004

DEC (2004). Environmental Guidelines. Use of Effluent by Irrigation.

Hazelton, P and Murphy, B (2016. Interpreting Soil Test Results. Third Edition. CSIRO Canberra, ACT.

NHMRC, NRMMC (2011) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra Updated Sept 2022.

NSW Agriculture (1997). Feedlot Manual.

USDA (2019 is most recent edition). Small Watershed Hydrology (WinTR-55). https://data.nal.usda.gov/dataset/small-watershed-hydrology-wintr-55/resource/8e0189fa-9f99-4ec4-a587-518068698191

Woodlots and Wetlands 2024a. Impact of double reverse osmosis on permeate quality

Woodlots and Wetlands 2024b Sustainable Irrigation Management.

APPENDIX 1. SOIL ATTRIBUTES OF THE 39 PROFILES IN AREAS 2, 3 and 4.

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
VW 2 -1	0-10	Loam	Weak, friable	Moderate	Dark brown	Diffuse	No	No	No	No	Abundant	Earth worms	Gradual	No	10%
	10-40	Clay loam	firm	Weak	Reddish brown	Diffuse	No	No			Common	No	Gradual		<5%
	40-68	Light clay	Firm	Weak	Brown	Diffuse	40% orange	No			None	No			65%
VW 2-2	0-9	Loam	Weak, friable	Moderate	Reddish brown	Diffuse	No	No	No	No	Abundant	No	Gradual	No	<5%
	9-40	Medium clay	Firm	Weak	Grey	Diffuse	25% orange	No			Occasional;	No	Gradual		<5%
	40-100	Medium clay	Firm	Apedal	Grey	Diffuse	25% orange	No			Rare	No			10%
VW 2-3	0-9	Clay loam	Soft friable	Moderate	Reddish brown	Diffuse	No	No	No	No	Abundant	Earth worms	Gradual	No	<5%
	9-44	Light clay	Firm	Moderate	Light yellow	Diffuse	10% orange	No	No		Occasional	No	Gradual		<5%
	44-10	Light clay	Firm	weak	Grey green	Diffuse	20% orange	No	No		Occasional	No			10%
					green		orange								

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H ard set t i g	Rock %
VW 2- 4	0-12	Clay loam	Friable	Moderate	Dark yellowish brown	Diffuse	No	No	No	No	Abundant	Earth worms	Gradual	No	20%
	12-44	Clay loam	Firm	Moderate	Yellowish red	Diffuse	No	No	No	No	Common	No	Gradual		10%
	44-100	Medium clay	Firm	Massive	Light yellow	Diffuse	40% red	No			Occasional	No	Gradual		10%
VW 2- 5	0-16	Silty loam	Soft friable	weak	Light brown	Diffuse	No	No	No	No	Abundant	Earthworms	Gradual	No	<5%
	16-50	medium clay	Firm	Moderate	Brownish yellow	Diffuse	15% orange	Common Dark grey			Occasional	No	Gradual		<5%
	50-100	Medium clay	Firm	Massive	Pale brown	Diffuse	5% red	No			Rare	No	Gradual		20%
VW 2-6	0-12	Silty loam	Soft friable	Weak	Dark reddish grey	Diffuse	No	No	No	No	Common	No	Gradual	No	<5%
	12-40	Medium clay	Firm	Weak	Brown	Diffuse	40% orange	No	No	No	Occasional	No	Gradual		<10%
	52-100	Medium clay	Firm	Weak	Brownish yellow	Diffuse	4-% light orange	No	No	No	Occasional	Some burnt roots			<10%
VW 2 7	0-9	Silt Loam	Soft friable	Moderate	Dark brown	Diffuse	No	No	No	No	Abundant	Earthworms	Gradual	No	<10%
	9-40	Medium clay	Firm	Weak	Brownish yellow	Diffuse	10% orange	No	No	No	Occasional	No	Gradual		<10%

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
	40-100	Medium clay	Firm	Weak	Brownish yellow	Diffuse	40% Orange	No	No	No	Rare	No		9	<10%
VW 2 8	0-15	Silt loam	Soft friable	Moderate	Brown	Diffuse	No	No	No	No	Abundant	No	Gradual	No	0%
	15-45	Silt loam	Friable	Moderate	Light grey	Diffuse	20% orange	No	No	Thin bleached A2 horizon.	Rare	No	Gradual		50% pebbles
	45-100	Medium clay	Firm	Weak	Light orange		40% grey, 10% red	No	No		Rare	No			10%
VW 2 9	0-11	Clay loam	Firm	Moderate	Dark yellowish brown	Diffuse	No	No	No	No	Common	No	Gradual	No	0%
	11-53	Medium clay	Firm	Weak	Light yellow	Gradual	20% orange	No	No	Grey bleaching	Occasional	No	Gradual	No	10%
	53-100	Medium clay	Firm	Weak	Orange	Gradual	40% bleached				Rare	No	Gradual		40%
VW 2 10	0-9	Loam	Soft friable	Moderate	Brown	Gradual	No	No	No	No	Abundant	Earth worms	Gradual	No	0%
	9 -40	Light clay	Firm	Weak	Brown	Gradual	25% orange	No	No	No	Occasional	No	Gradual		5%
	40-100	Light clay	firm	Weak	Light brownish yellow	Gradual	30% orange	No	No	No	Occasional	No	Gradual		20%

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
VW 2 11	0-16	Silty clay loam	Soft friable	Moderate	Light brown	Gradual	No	No	No	No	Abundant	No	Gradual	No	0%
	11-40	Light clay	Firm	Weak	Light yellowish brown	Gradual v	No	No	No	No	Common	No	Gradual		40%
	40-100	Med clay	Firm	Weak	Grey	Gradual	30% orange	No	No	No	Occasional	No			80%
VW 2 12	0-13	Loam	Soft friable	Moderate	Dark brown	Gradual	No	No	No	No	Abundant	No	Gradual	No	30%
	13-40	Light clay	Firm	Weak	Light brown	Gradual	40% orange	No	No		Common	No	Gradual		35%
	40100	Medium clay	firm	Weak	Light brown	Gradual	20% orange	No	No		Rare	No			45%
VW 2 13	0-10	Loam	Soft friable	Moderate	Dark brown	Clear	No	No	No	No	Abundant	Earthworms	Gradual	No	10%
	10-45	Light clay	Firm	Moderate	Yellowish brown	Gradual	No	No	No	No	Common	No	Gradual		30%
	48-84	Medium clay	Firm	Massive	Yellowish brown		10% orange	Fe and Mn nodules 5%	No	No	Rare	No			40%
															100% below 84 cm

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n q	Rock %
VW 2 14	0 - 7	Loam	Friable	Moderate	Dark brown	Clear	No	No	No		Abundant	No	Gradual	No	<5%
	7-21	Silt loam	Massive	Weak	Light brown	Gradual	No	No	No	Yes	Common	No	Duplex		15%
	21-40	Medium clay	Friable	Weak	Light orange	Gradual	No	No	No		Abundant	No	Gradual		20%
	40-100	Medium clay	Firm	Weak	Yellow		30% orange	No	No		Rare	No			60%
VW 2 15	0-7	Clay loam	Firm	Moderate	Dark brown	Clear	No	No	No	Yes	Abundant	Earthworms	Gradual	No	10%
	7-44	Light clay	Firm	Moderate	Orange	Diffuse	40% red	No	No		Occasional	No	Gradual		30%
	44-100	Light clay	Firm	Moderate	Pale yellow		5% red	No	No		Rare	No	Gradual		30%
VW 2 16	0-5	Loam	Friable	Strong	Greyish brown	Clear	No	No	No	Yes	Abundant	Earthworms	Gradual	No	0%
	5 -20	Silty clay Ioam	Weak	Weak	Light grey	Clear	No	No	No	Yes	Occasional	No	Gradual	No	No
	20-45	Light clay	Firm	Weak	Bronze	Diffuse	40% orange	No	No	Yes	Rare	No	Gradual	No	20%
	45-82	Med clay	Firm	Massive	Grey		40% orange	No	No	Yes	Rare	No	Gradual	No	80% Metamorphosed
	>88														
VW 2 17	0-7	Silt loam	Friable	Weak	Brown	Clear	No	No	No		Abundant	No	Gradual	No	0%

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H ardset ting	Rock %
	740	Silty clay loam	Firm (Wet)	Apedal	Light grey	Diffuse	No	No	No	Yes	Rare	No	Gradual	No	25%
	40-82	Light clay	Firm	Weak	Light yellow	Diffuse	40% orange	No			Rare	No		No	100% @ 82 cm
VW 2 18	0-9	Silt loam	Friable	Moderate	Light brown	Diffuse	No	No	No	No	Abundant	No	Gradual	No	10%
	9-50	Medium clay	Firm	Moderate	Red	Diffuse	No	No	No	No	Rare	No		No	10%
	50-100	Medium clay	Firm	Moderate	Light grey		10% orange	No	No	No	Rare	No		No	20% 20%
VW 2 19	0-15	Silt loam	Friable	Moderate	Grey	Diffuse	No	iron nodules	No	No	Occasional	No	Gradual	No	50% (iron nodules)
	15-48	Light clay	firm	Moderate	Grey	Clear	30% orange	No	No	No	Rare	No	Abrupt	No	40%
	Metamorphosed	rock below 48	cm	1	1	1	1	1	1				T	1	1
VW 2 20	0-11	Loam	Friable	Moderate	Dark yellowish brown	Diffuse	No	No	No	No	Abundant	Earthworms	Gradual	No	0%
	11-50	Clay	Firm	Weak	Red	Diffuse	40% orange	No	No	No	Common	No	Gradual	No	20%
	50-100	Medium clay	Firm	Weak	Orange		25% red	No	No	No	Occasional	No		No	30%

-11 1 -43	Loam							n					e t i n g	
1 -43		Friable	Moderate	Brown	Diffuse	No	No	No	No	Abundant	No	Gradual	No	None
	Medium clay	Firm	Weak	Light brown	Diffuse	40% red	No	No	No	Common	No	Gradual	No	None
3-108	Medium clay	Firm	Weak	Yellowish brown			White nodules	No	No	Rare	No	Gradual	No	None
.8	Loam	Friable	Moderate	Brown	Diffuse	No	No	No	No	Common	Earthworms	Gradual	No	None
44	Medium clay	Firm	Weak	Orange	Diffuse	30% red	No	No	No	Occasional	No	Gradual	No	None
1- 84	Medium clay	Firm	Weak	Orange	Diffuse	10% white	No	No	No	Rare	No	Gradual	No	None
3														Quartzite like rock
- 8	Clay loam	Friable	Moderate	Dark brown	Clear	No	No	No	No	Common	No	Gradual	No	5%
-15	Medium clay	Firm	Weak	Grey	Clear	20% orange	No	No	<mark>Yes</mark>	Rare	No	No	No	10%
5 - 45	Medium clay	Firm	Weak	Pale brownish yellow	Diffuse	25% orange	No	No		Rare	No	No		20%
5-105	Medium clay	Firm	Weak	Grey	Diffuse	25% orange	No	No		Rare	No	No		60% sandstone/ quartzite type rock
	100% rock a	at 105 cm	1									1		
- 1 - 1 - 5 - 1	108 -44 84 8 15 - 45	clay108Medium clay108Medium clay-44Loam-44Medium clay84Medium clay8Clay loam15Medium clay15Medium clay-45Medium clay105Medium clay	clay108Medium clayFirm clay108Medium clayFirable-44Medium clayFirm clay84Medium clayFirm84Medium clayFirm8Clay loamFriable15Medium clayFirm clay15Medium clayFirm clay105Medium FirmFirm	clayFirmWeak108Medium clayFirmWeak108LoamFriableModerate-44Medium clayFirmWeak84Medium clayFirmWeak84Clay loamFriableModerate15Medium clayFirmWeak15Medium clayFirmWeak15Medium clayFirmWeak105Medium clayFirm FirmWeak	claybrown108Medium clayFirmWeakYellowish brown108Medium clayFirmWeakYellowish brown-44LoamFriableModerateBrown-44Medium clayFirmWeakOrange84Medium clayFirmWeakOrange84Medium clayFirmWeakOrange84Medium clayFirmWeakOrange15Medium clayFirmWeakGrey-45Medium clayFirmWeakPale brownish yellow105Medium 	clayFirmWeakForwn108Medium clayFirmWeakYellowish brown108Medium clayFirmModerateBrownDiffuse-44Medium clayFirmWeakOrangeDiffuse-44Medium clayFirmWeakOrangeDiffuse84Medium clayFirmWeakOrangeDiffuse84Medium clayFirmWeakOrangeDiffuse8Clay loam clayFriableModerate brownDark brownClear15Medium clayFirm Firm clayWeakPale brownish yellowDiffuse105Medium clayFirm Firm Firm clayWeakGrey GreyDiffuse	clayFirmWeakYellowish brown108Medium clayFirmWeakYellowish brown108Medium clayFriableModerateBrownDiffuse109LoamFriableModerateBrownDiffuseNo-44Medium clayFirmWeakOrangeDiffuse30% red84Medium clayFirmWeakOrangeDiffuse10% white84Medium clayFirmWeakOrangeDiffuse10% white8Clay loam clayFriableModerateDark brownClearNo15Medium clayFirm clayWeakGreyClear clear20% orange-45Medium clayFirm FirmWeakGreyDiffuse prownish yellow25% orange105Medium clayFirm FirmWeakGreyDiffuse prownish yellow25% orange	clayFirmWeakbrownWeakWhite nodules108Medium clayFirmWeakYellowish brownWhite nodules108LoamFriableModerateBrownDiffuseNo44Medium clayFirmWeakOrangeDiffuse30% redNo84Medium clayFirmWeakOrangeDiffuse10% whiteNo84Medium clayFirmWeakOrangeDiffuse10% whiteNo8Clay loam clayFriableModerate ModerateDark brownClear orangeNoNo15Medium clayFirm Firm clayWeakGreyClear orange20% orangeNo105Medium clayFirm Firm ClayWeakGreyDiffuse orange25% orangeNo	clayclayFirmWeakYellowish brownWhite nodulesNo108Medium clayFirmWeakYellowish brownWhite nodulesNo108LoamFriableModerateBrownDiffuseNoNo109LoamFriableModerateBrownDiffuseNoNoNo104Medium clayFirmWeakOrangeDiffuse30% redNoNo84Medium clayFirmWeakOrangeDiffuse10% whiteNoNo84Medium clayFirmWeakOrangeDiffuse10% whiteNoNo84Medium clayFirmWeakOrangeDiffuse10% whiteNoNo85Clay loamFriableModerate ModerateDark brownClear clayNoNoNo105Medium clayFirmWeakGreyClear brownish yellowDiffuse25% orangeNoNo105Medium clayFirmWeakGreyDiffuse25% orangeNoNo	claybrown108Medium clayFirmWeakYellowish brownWhite nodulesNoNo108Medium clayFirmWeakYellowish brown108LoamFriableModerateBrownDiffuseNoNoNoNo-44Medium clayFirmWeakOrangeDiffuse30% redNoNoNo84Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNo84Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNo8Clay loam clayFriableModerateDark brownClearNoNoNoNo15Medium clayFirm krimWeakGreyClear brownish yellowNoNoNoYes105Medium clayFirm krimWeakGreyDiffuse25% orangeNoNoNo	claycbrownccccccc108Medium clayFirmWeakYellowish browncNoNoNoRare108LoamFirmWeakYellowish brownccccc108LoamFriableModerateBrownDiffuseNoNoNoNoCommon44Medium clayFirmWeakOrangeDiffuse30% redNoNoNoNoOccasional84Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNoNoRare84Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNoNoRare84Medium clayFirmWeakGrangeDiffuse10% whiteNoNoNoNoNoNo84Medium clayFriableModerateDark brownClearNoNoNoNoNoNo85Clay loamFirmWeakGreyClear20% orangeNoNoNoNoNoNo15Medium clayFirmWeakPale brownish yellowDiffuse25% orangeNoNoNoNoRare105Medium clayFirmWeakGreyDiffuse25% orangeNoNoNoRare <td>clayclayfirmWeakYellowish brownwhite rownNoNoRareNo108Medium clayFirmWeakYellowish brownwhite rownNoNoNoNoRareNo108LoamFriableModerateBrownDiffuseNoNoNoNoNoCommonEarthworms109LoamFriableModerateBrownDiffuseNoNoNoNoNoCommonEarthworms-44Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNoNoNoNo84Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNoRareNo85Clay loam clayFrimbleModerateDark brownClearNoNoNoNoNoNo15Medium clayFirmWeakGreyClear brownish yellowNoNoNoNoNoNoNo105Medium clayFirmWeakGreyDiffuse brownish yellow25% orangeNoNoNoNoRareNo105Medium clayFirmWeakGreyDiffuse brownish yellow25% orangeNoNoNoRareNo105Medium clayFirmWeakGreyDiffuse brownish yellow25% orangeNo</td> <td>clayclaycbrowncc<thc>ccccc</thc></td> <td>clayclaycbrowncc</td>	clayclayfirmWeakYellowish brownwhite rownNoNoRareNo108Medium clayFirmWeakYellowish brownwhite rownNoNoNoNoRareNo108LoamFriableModerateBrownDiffuseNoNoNoNoNoCommonEarthworms109LoamFriableModerateBrownDiffuseNoNoNoNoNoCommonEarthworms-44Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNoNoNoNo84Medium clayFirmWeakOrangeDiffuse10% whiteNoNoNoRareNo85Clay loam clayFrimbleModerateDark brownClearNoNoNoNoNoNo15Medium clayFirmWeakGreyClear brownish yellowNoNoNoNoNoNoNo105Medium clayFirmWeakGreyDiffuse brownish yellow25% orangeNoNoNoNoRareNo105Medium clayFirmWeakGreyDiffuse brownish yellow25% orangeNoNoNoRareNo105Medium clayFirmWeakGreyDiffuse brownish yellow25% orangeNo	clayclaycbrowncc <thc>ccccc</thc>	clayclaycbrowncc

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
VW2 24	0 - 9	Loam	Friable	Weak	Brown	Clear	No	No	No	Yes	Common	No	Gradual	No	0%
Convergenc e zone . Wet	9 - 29	Gravelly loam	Friable	Apedal	Light brownish grey	Clear	No	No	No		Rare	No			15%
	29 - 41	Medium clay	Firm	Apedal	Grey	Diffuse	50% orange in layers	white nodules common	No		Rare	No			40%
	41 – 105	Medium F clay	Firm	Apedal	Olive yellow	Diffuse	50% orange	White nodules	No		Rare	No	Gradual		60%
VW 2 25	0 - 12	Clay loam	Friable	Mode rate	Dark yellowish brown	Diffuse	No	No	No	No	Abundant	No	Gradual	No	None
							Narrow bl and 12 cm	eached A2 t	and be	<mark>etween 10</mark>					
	12 - 50	Light clay	Firm	Weak	Light brown	Diffuse	10% red		No		Common	No	Gradual;		None
	50 - 100	Medium clay	Very firm	Weak	Brown	Diffuse	10% red		No		Rare	Old root channels			None
VW 2 26	0 - 9	Silty loam	Friable	Weak	Yellowish brown	Clear	No	No	No	No	Abundant	Earthworms	Gradual	No	20%
Eroded area	9 -45	Clay	Firm	Moderate	Red	diffuse	No	5% black nodules	No	No	Occasional	No	Gradual	No	20%
	45-105	Medium clay	Firm												30%

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
VW 2 27	0 - 10	Clay loam	Friable	Moderate	Dark brownish grey	Clear	No	No	No	Yes	Abundant	Earthworms	Gradual	No	0%
	10-15						Narrow bl and 15 cm	leached A2	band be	etween 10					0%
	15 - 45	Medium clay	Firm	Weak	Brownish yellow	diffuse	10% orange	No	No	No	Occasional	No	Gradual		0%
	45 - 100	Medium clay	Very firm	Very weak	Brownish yellow		5% orange 5% white	No	No		Root channels	No	no		60%
		60% rotted r cm	rock fragmer	its at 100											60%
VW2 28	0 - 10	Clay loam	Friable	Moderate	brown	Clear	No	No	No	Yes	Common	No	Gradual	No	0%
	10-12						Minor A2	bleaching							0%
	12 - 43	Medium clay	Firm (wet)	Weak	Orange brown	diffuse	40% orange	No	No	Yes	Occasional	No	Gradual		0%
	43 - 100	Medium clay	Very firm	Very weak	Yellowish brown		50% orange	No	No		Rare	No	Во		80%
		80% rotted i cm	rock fragmer	its at 100											60%
VW2 29	0 - 8	Clay loam	Friable	Weak	Brown	Clear	No	No	No	No	Common		Gradual	No	0%
	8 - 10	-					Minor A2 I	bleaching	1	1					0%
	10 - 44	Medium clay	Very firm	Weak	Brownish yellow	diffuse	10% orange	No	No	No	Occasional	No	Gradual		0%

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
	44 - 85	Medium	Very firm	Very	Brownish		5% red	No	Во		Rare	No			20%
		clay	fue even e e te ce	weak	yellow		5% white								C00/
		TOILED TOCK	fragments a												60%
VW 2 - 30	0 - 10	Clay loam	Friable	Moderate	Dark brown	Clear	No	No	No	No	Abundant	Earthworms	Gradual	No	0%
	10-13						Narrow bl and 13 cm	eached A2	band be	etween 10					0%
	13 - 41	Medium clay	Firm	Weak	Red	Clear	25% orange/ yellow	No	No	No	Occasional	No	Gradual		0%
	41 - 108	Medium clay	Very firm	Very weak	Grey	Diffuse	30% orange	No	Во		No	No	Во		0%
		60% rotted i cm	rock fragmer	nts at 100											60%
VW 2 - 31	0 - 12	Clay loam	Friable	Moderate	Dark brown	Clear	No	No	No	No	Abundant	Earthworms	Gradual	No	0%
	12 - 45	Medium clay	Firm	Moderate	Orange red	diffuse	25% bronze	No	No	No	Rare	No	Gradual		40% rock
	45 - 70	Medium clay	Very firm	Moderate	Reddish orange	Clear	25% bronze	No	No	No	Rare	No	No		Red 'volcanic'? 30%
	70 - 105	Medium clay	Very firm	Moderate	Pale yellow		5% orange	No	No	No	Rare	No	No		40% sandstone
VW 2 - 32	0 - 10	Clay loam	Weak	Moderate	Brown	Clear	No	No	No	No	Abundant	Earthworms	Gradual	No	10%
	10-12							ghtly_bleac 0 and 20 cr		<mark>band</mark>					0%

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
	20 - 46	Gravelly clay	Friable	Weak	Light orange yellow	Clear	No	No	No	No	Common	No	Gradual		30%
	46 - 100	Light clay	Weak	Very weak	Light orange	clear	30% orange	No	Во		None	No			40%
		60% rotted cm	rock fragmer	its at 100											60%
VW 2 33	0 -70	Clay loam	Firm	Moderate	Light brown	Clear	No	No	No	Yes	Abundant	No	Gradual	No	0%
	7 - 15	Clay		Weak	Very pale yellow		Narrow bl and 15 cm	eached A2	band be	etween 10	Occasional	No			0%
	15 - 41	Light clay	Firm	Weak	Brownish yellow	diffuse	10% orange	No	No	No	Occasional	No			10%
	41 - 76	Light clay	Very firm	Apedal	Light grey	Diffuse	10% red	No			Occasional	No			60% metamorphosed shale
VW 2 - 34	0 - 12	Clay loam	Friable	Moderate	Dark brown	Clear	No	No	No	No	Abundant	Earthworms	Gradual	No	0%
Shallow soil	12 - 40	Gravelly clay	Friable	Weak	Light yellowish brown	Clear	No	No	No	No	Occasional	No	Gradual		0%
	40-100	55% metam fragments	orphosed ro at >40 cm	ock	Light brown						Rare	No			55%
VW 2 35	0 -5	Very rocky,	l metamorpho	sed sandstor	ne. High runo	 ff risk Avoi	id				I	 	I	 	

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a r d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
VW 2 36	0-10	Clay loam	Friable	Moderate	Dark brown	Clear	No	No	No	No	Abundant	No	Gradual	No	20%
	10- 45	Medium clay	Friable	Moderate pedality	Light brown	Diffuse	No	No	No	No	Rare	No	Gradual	No	70%
	45- 85	Steep shallo	w rocky site	avoid											90%
VW 2 - 37	0 - 9	Clay loam	Friable	Moderate	Dark brown	Gradual	No	No	No	No	Abundant	No	Gradual	No	20%
Shallow site	12 - 34	Clay loam	Friable	Moderate	Brown	Gradual	No	No	No	No	Occasional	No	Gradual		80% rock
	34 - 60	Medium clay	Very firm	Moderate	Light brown	Gradual	25% bronze	No	No	No	Rare	No	No		95%
VW 2 - 38	0 - 7	Gravelly clay loam	Friable	Weak	Yellowish brown	Clear	40% red	No	No	No	Abundant	No	Gradual	No	20%
	7 - 40	Medium clay	Firm	Weak	Light brown	Diffuse	5% red	No	No	No	Rare	No	Gradual		40% rock
	40 - 60	Medium clay	Firm	Moderate	Light brown		No	No	No	No	No	No	No		80%
VW 2 - 39	0 - 9	Clay loam	Friable	Moderate	Dark brown	Clear	No	No	No	Yes.	Abundant	No	Gradual	No	10%
	9 to 31	Medium clay (saturated)	Firm	Moderate	Very pale brown	diffuse	No	No	No	22 cm A2 horizon	Occasional	No	Gradual		20% rock
	31 to 40	Medium clay	Very firm	Moderate	Brown	Clear	25% bronze	No	No	No	Rare	No	No		60% rock lenses

Site name	Depth (cm)	Field textur e	Con siste ncy	Pedal ity	Colo ur	Bou nda ries	Mottl es %	Nod ules %	H a d p a n	Blea ched A2	Root numbe r	Biologic al activity	Text ure cha nge	H a r d s e t t i n g	Rock %
	40 - 100	Medium clay	firm	weak	Whitish yellow		30% red	No	No	No	Rare	No	No		40% rock