

4 October 2022

TM244-02F01 Addendum Report (r2).docx

Blind Creek Solar Farm Pty Ltd

Ms Emily Walker

emily.walker@octopusinvestments.com

From: William Chan [William.Chan@renzotonin.com.au]

Blind Creek Solar Farm - Addendum Noise Assessment

1 Introduction

Renzo Tonin & Associates was engaged to undertake an addendum noise assessment of the proposed Blind Creek Solar Farm, to determine whether alternative plant and equipment selections would result in noise impacts different to those presented in the Environmental Impact Statement's (EIS) Noise Assessment (ref: TM244-01F02 Construction & Operational Noise & Vibration Assessment [r4], dated 22 February 2022).

2 Amendment Operational Noise Sources

In this addendum noise assessment, the plant and equipment selection that have changed are the inverters and batteries, as follows:

• EIS: 85 inverters (SMA MV Power Station 4600 S2 or equivalent)

Alternative Option: 93 inverters (SMA Sunny Central 4200 UP or 4400 UP)

• EIS: 170 batteries in array inclusion zone (Tesla Megapack or equivalent

[1927.2kW])

Alternative Option: 435 batteries in array inclusion zone (Wartsila Gridsolv Quantum [745kW])

EIS: 200 batteries in battery storage system area (Tesla Megapack or equivalent

[1927.2kW])

Alternative Option: 512 batteries in array inclusion zone (Wartsila Gridsolv Quantum [745kW])

All other plant and equipment from the EIS remain the same.

The plant and equipment and corresponding sound power levels used in this assessment are presented in the table below.

Table 2.1 – Typical Operational Plant and Equipment & Sound Power Levels

Plant Item	Plant Description	L _{Aeq} Sound Power Levels, dB(A) re. 1pW
EIS		
1	Tracker motor (2,400 in total)	81 (each) ¹
2	Inverters (85 in total)	91 (each) ¹
3	Batteries (array inclusion zone) (170 in total)	86 (each) ¹
4	Converters (1020 in total)	92 (each) ¹
5	Batteries (battery storage system area) (200 in total)	86 (each) ¹
6	150 MVA Transformers (3 in total)	95 (each) ¹
7	Light vehicle (5 in total)	88 (each) ¹
Amendment	:	
1	Tracker motor (2,400 in total)	81 (each) ¹
2	Inverters (93 in total)	91 (each)²
3	Batteries (array inclusion zone) (435 in total)	73 (each)²
4	Converters (1020 in total)	92 (each) ¹
5	Batteries (battery storage system area) (512 in total)	73 (each)²
6	150 MVA Transformers (3 in total)	95 (each) ¹
7	Light vehicle (5 in total)	88 (each) ¹

Notes:

- 1. Based on sound power level data from manufacturer's data, past projects and/or RT&A's acoustic database
- 2. Based on sound power level data from manufacturer's data for new plant selection
- 3. **Bold** denotes a change from the EIS selection

3 Addendum Operational Noise Assessment

The CadnaA noise model developed for the EIS Noise Assessment was updated for the addendum plant and equipment selection. The predicted noise impacts are compared to the predicted EIS noise impacts and presented in the table below

Table 3.1 – Predicted L_{Aeq,15min} Operational Noise Levels at Receiver Locations, dB(A)

	Project Noise Trigger Levels Predicted Operational Noise Levels												
Receiver Location	Fv	Even-	NP. Le	Calm & Isothermal Conditions			Slight to Gentle Breeze			Moderate Temperature Inversion ¹			Compliant? (Yes/No)
	Day	ing	Night	EIS	Alter- native Option	Differ -ence	EIS	Alter- native Option	Differ -ence	EIS	Alter- native Option	Differ -ence	
					lı	nvolved	Receiv	ers					
	40	35	35	39	39	-	40	39	-1	40	39	-1	No
Receiver R2													
Receiver R5	40	35	35	<20	<20	-	<20	<20	_	<20	<20	-	Yes
Receiver R6	40	35	35	20	20	-	20	20	-	20	20	-	Yes
Receiver R7	40	35	35	32	32	-	32	32	-	32	32	-	Yes
Receiver R41	40	35	35	32	32	-	32	32	-	32	32	-	Yes
Receiver R42	40	35	35	33	32	-1	33	32	-1	33	32	-1	Yes
Receiver R43	40	35	35	32	29	-	33	32	-1	33	32	-1	Yes
Receiver R48	40	35	35	46	46	-	47	46	-1	47	46	-1	No
					Nor	n-involve	ed Rec	eivers					
Receiver R1	40	35	35	24	24	-	24	24	-	24	24	-	Yes
Receiver R9	68 ((When in	use)	37	37	-	38	38	-	38	38	-	Yes
Receiver R10	40	35	35	25	25	-	25	25	-	25	25	-	Yes
Receiver R11	40	35	35	25	25	-	25	25	-	25	25	-	Yes
Receiver R12	40	35	35	26	25	-	26	25	-	26	25	-1	Yes
Receiver R13	40	35	35	26	26	-	26	26	-	26	26	-	Yes
Receiver R14	40	35	35	26	26	-	26	26	-	26	26	-	Yes
Receiver R15	40	35	35	26	26	-	26	26	-	26	26	-	Yes
Receiver R16	40	35	35	24	24	-	24	24	-	24	24	-	Yes
Receiver R17	40	35	35	27	26	-1	27	26	-1	27	26	-1	Yes
Receiver R18	40	35	35	26	26	-	26	26	-	26	26	-	Yes
Receiver R19	40	35	35	27	26	-	27	26	-1	27	26	-1	Yes
Receiver R20	40	35	35	27	27	-	27	27	-	27	27	-	Yes
Receiver R21	40	35	35	27	27	-	27	27	-	27	27	-	Yes
Receiver R22	40	35	35	27	27	-	27	27	-	27	27	-	Yes
Receiver R23	40	35	35	26	26	-	26	26	-	26	26	-	Yes
Receiver R24	40	35	35	27	26	-1	27	26	-1	27	26	-1	Yes
Receiver R32	40	35	35	22	22	-	22	22	-	22	22	-	Yes

	Projec	t Noise Levels	Trigger	Predicted Operational Noise Levels									
Receiver Location		Even-		Calm & Isothermal Conditions			Slight to Gentle Breeze			Moderate Temperature Inversion ¹			Compliant? (Yes/No)
	Day	ing	Night	EIS	Alter- native Option	Differ -ence	EIS	Alter- native Option	Differ -ence	EIS	Alter- native Option	Differ -ence	
Receiver R36	40	35	35	30	30	-	30	30	-	30	30	-	Yes
Receiver R37	40	35	35	29	27	-2	29	27	-2	29	27	-2	Yes
Receiver R38	40	35	35	28	27	-1	28	27	-1	28	27	-1	Yes
Receiver R40	40	35	35	29	26	-3	30	26	-4	30	26	-4	Yes
Receiver R45	40	35	35	23	23	-	23	23	-	23	23	-	Yes
Receiver R46	40	35	35	27	26	-1	27	26	-	27	26	-1	Yes
Receiver R47	40	35	35	27	26	-1	27	26	-	27	26	-1	Yes
Receiver R49	40	35	35	22	22	-	22	22	-	22	22	-	Yes
Receiver R50	40	35	35	22	22	-	22	22	-	22	22	-	Yes
Receiver R51	40	35	35	23	23	-	23	23	-	23	23	-	Yes
Receiver R106	68 (When in	use)	38	34	-5	39	34	-5	39	34	-5	Yes

Notes:

- 1. Temperature inversion applicable for the night time period only
- 2. Difference is EIS predicted level minus Amendment predicted level
- 3. **Bold** font represents exceedance of the project noise trigger level/s

From the table above, the predicted noise impacts to the identified receiver locations with the alternative plant and equipment selection are the same or lower than the predicted noise impacts presented in the EIS Noise Assessment. However, the project noise trigger levels are still exceeded at two (2) involved receiver locations and comply for all non-involved receiver locations for all time periods.

Therefore, the change in the plant and equipment listed in Section 2 would not result in increased noise impacts to the identified receiver locations (involved or non-involved) when compared to the noise impacts presented in the EIS Noise Assessment.

4 Conclusion

Renzo Tonin & Associates has completed an amendment noise assessment of the proposed Blind Creek Solar Farm. With the proposed alternative plant and equipment selection, the noise impacts were found to be the same or lower for all identified receiver locations. The noise emissions from the operational phase of the project were predicted to be within the operational noise criteria at all non-involved receiver locations.

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
29.09.2022	Generate technical memo	0	1	W. Chan	W. Chan	M. Chung
04.10.2022	Final	-	2	W. Chan	W. Chan	M. Chung

File Path: R:\AssocSydProjects\TM201-TM250\TM244 mch Blind Creek Solar Farm\TASK 2\1 Docs\TM244-02F01 Addendum Report (r2).docx

Important Disclaimers

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

APPENDIX A Glossary of terminology

The following is a brief description of the technical terms used to describe noise to assist in understanding the technical issues presented.

Adverse weather Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site for a significant period of time (that is, wind occurring more than 30% of the time in any assessment period in any season and/or temperature inversions occurring more than 30% of the nights in winter). Ambient noise The all-encompassing noise associated within a given environment at a given time, usually composed of sound from all sources near and far. Assessment period The period in a day over which assessments are made. Assessment point A point at which noise measurements are taken or estimated. A point at which noise measurements are taken or estimated. A point at which noise measurements are taken or estimated. Background noise is the term used to describe the underlying level of noise present in the ambient noise, measured in the absence of the noise under investigation, when extraneous noise is removed. It is described as the average of the minimum noise levels measured on a sound level meter and is measured in the absence of the noise under investigation, when extraneous noise is removed. It is described as the average of the minimum noise levels weighted noise level exceeded for ninety percent of a sample period. This is represented as the 190 noise level (see below). Decibel [dB] The units that sound is measured in. The following are examples of the decibel readings of every day sounds: Odd The faintest sound we can hear 30dB A quiet library or in a quiet location in the country 45dB Typical office space. Ambience in the city at night 60dB CBD mall at lunch time 70dB The sound of a truck passing on the street 80dB Loud music played at home 90dB The sound of a truck passing on the street 100dB The sound of a rock band 115dB Limit of sound permitted in industry 120dB Deafening dB(A) Aveighted decibels. The A- weighting noise filter simulates the response of the human ear at relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in heari		
composed of sound from all sources near and far. Assessment period The period in a day over which assessments are made. Assessment point A point at which noise measurements are taken or estimated. A point at which noise measurements are taken or estimated and the search of the moise measurements are taken or estimated. A point at which noise measurements are taken or estimated. Background noise Background noise is the term used to describe the underlying level of noise present in the ambient noise, measured in the absence of the noise under investigation, when extraneous noise is removed. It is described as the average of the minimum noise levels measured on a sound level meter and is measured statistically as the A-weighted noise level exceeded for ninety percent of a sample period. This is represented as the L90 noise level (see below). Decibel [dB] The units that sound is measured in. The following are examples of the decibel readings of every day sounds: OdB The faintest sound we can hear 30dB A quiet library or in a quiet location in the country 45dB Typical office space. Ambience in the city at night 60dB CBD mall at lunch time 70dB The sound of a car passing on the street 80dB Loud music played at home 90dB The sound of a rock band 115dBLimit of sound permitted in industry 120dB Deafening dB(A) A-weighted decibels. The A- weighting noise filter simulates the response of the human ear at relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. That is, low frequency sounds as it is in hearing high frequency sounds and the same dB level are not heard as loud as high frequency sounds. The sound level measured with this filter switched on is denoted as dB(A). Practically all noise is measured using the A filter. dB(C) C-weighted decibels. The C-weighting noise filter simulates the response of the human ear at relatively high	Adverse weather	for a significant period of time (that is, wind occurring more than 30% of the time in any assessment period in any season and/or temperature inversions occurring more than 30% of the
Assessment point A point at which noise measurements are taken or estimated. A point at which noise measurements are taken or estimated. Background noise Background noise is the term used to describe the underlying level of noise present in the ambient noise, measured in the absence of the noise under investigation, when extraneous noise is removed. It is described as the average of the minimum noise levels measured on a sound level meter and is measured statistically as the A-weighted noise level exceeded for ninety percent of a sample period. This is represented as the L90 noise level (see below). Decibel [dB] The units that sound is measured in. The following are examples of the decibel readings of every day sounds: OBB The faintest sound we can hear 30dB A quiet library or in a quiet location in the country 45dB Typical office space. Ambience in the city at night 60dB CBD mall at lunch time 70dB The sound of a car passing on the street 80dB Loud music played at home 90dB The sound of a truck passing on the street 100dBThe sound of a rock band 115dBLimit of sound permitted in industry 120dB Deafening dB(A) A-weighted decibels. The A- weighting noise filter simulates the response of the human ear at relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. The sound level meter replicates the human response of the ear by using an electronic filter which is called the "A" filter. A sound level measured with this filter switched on is denoted as dB(A). Practically all noise is measured using the A filter. dB(C) C-weighted decibels. The C-weighting noise filter simulates the response of the human ear at relatively high levels, where the human ear is nearly equally effective at hearing from mid-low frequency (63Hz) to mid-high frequency (4kHz), but is less effective outside these frequencies. Frequency is synonymous to pitch. Sounds have	Ambient noise	, , , , , , , , , , , , , , , , , , , ,
Background noise Background noise is the term used to describe the underlying level of noise present in the ambient noise, measured in the abscence of the noise under investigation, when extraneous noise is removed. It is described as the average of the minimum noise levels measured on a sound level meter and is measured statistically as the A-weighted noise level exceeded for ninety percent of a sample period. This is represented as the L90 noise level (see below). Decibel [dB] The units that sound is measured in. The following are examples of the decibel readings of every day sounds: OdB The faintest sound we can hear 30dB A quiet library or in a quiet location in the country 45dB Typical office space. Ambience in the city at night 60dB CBD mall at lunch time 70dB The sound of a car passing on the street 80dB Loud music played at home 90dB The sound of a rock band 115dBLimit of sound permitted in industry 120dBDeafening dB(A) A-weighted decibels. The A-weighting noise filter simulates the response of the human ear at relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. The sound level meter replicates the human response of the ear by using an electronic filter which is called the "A" filter. A sound level measured with this filter switched on is denoted as dB(A). Practically all noise is measured using the A filter. dB(C) C-weighted decibels. The C-weighting noise filter simulates the response of the human ear at relatively high levels, where the human ear is nearly equally effective at hearing from mid-low frequency (63Hz) to mid-high frequency (48Hz), but is less effective outside these frequencies. Frequency is synonymous to pitch. Sounds have a pitch which is peculiar to the nature of the sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass drum has a low pitch. Frequency or pitch ca	Assessment period	The period in a day over which assessments are made.
ambient noise, measured in the absence of the noise under investigation, when extraneous noise is removed. It is described as the average of the minimum noise levels measured on a sound level meter and is measured statistically as the A-weighted noise level exceeded for ninety percent of a sample period. This is represented as the L90 noise level (see below). Decibel [dB] The units that sound is measured in. The following are examples of the decibel readings of every day sounds: OdB The faintest sound we can hear 30dB A quiet library or in a quiet location in the country 45dB Typical office space. Ambience in the city at night 60dB CBD mall at lunch time 70dB The sound of a car passing on the street 80dB Loud music played at home 90dB The sound of a truck passing on the street 100dBThe sound of a rock band 115dBLimit of sound permitted in industry 120dBDeafening dB(A) A-weighted decibels. The A- weighting noise filter simulates the response of the human ear at relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. The sound level meter replicates the human response of the ear by using an electronic filter which is called the "A" filter. A sound level measured with this filter switched on is denoted as dB(A). Practically all noise is measured using the A filter. dB(C) C-weighted decibels. The C-weighting noise filter simulates the response of the human ear at relatively high levels, where the human ear is nearly equally effective at hearing from mid-low frequency (63Hz) to mid-high frequency (4kHz), but is less effective outside these frequencies. Frequency Frequency is synonymous to pitch. Sounds have a pitch which is peculiar to the nature of the sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass drum has a low pitch. Frequency or pitch can be measured on a scale in units of Hertz or Hz.	Assessment point	· · · · · · · · · · · · · · · · · · ·
day sounds: OdB The faintest sound we can hear 30dB A quiet library or in a quiet location in the country 45dB Typical office space. Ambience in the city at night 60dB CBD mall at lunch time 70dB The sound of a car passing on the street 80dB Loud music played at home 90dB The sound of a truck passing on the street 100dBThe sound of a rock band 115dBLimit of sound permitted in industry 120dBDeafening dB(A) A-weighted decibels. The A- weighting noise filter simulates the response of the human ear at relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. The sound level meter replicates the human response of the ear by using an electronic filter which is called the "A" filter. A sound level measured with this filter switched on is denoted as dB(A). Practically all noise is measured using the A filter. dB(C) C-weighted decibels. The C-weighting noise filter simulates the response of the human ear at relatively high levels, where the human ear is nearly equally effective at hearing from mid-low frequency (63Hz) to mid-high frequency (4kHz), but is less effective outside these frequencies. Frequency Frequency is synonymous to pitch. Sounds have a pitch which is peculiar to the nature of the sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass drum has a low pitch. Frequency or pitch can be measured on a scale in units of Hertz or Hz. Impulsive noise The level suddenly drops to that of the background noise several times during the period of observation. The time during which the noise remains at levels different from that of the ambient is one second or more.	Background noise	ambient noise, measured in the absence of the noise under investigation, when extraneous noise is removed. It is described as the average of the minimum noise levels measured on a sound level meter and is measured statistically as the A-weighted noise level exceeded for ninety
relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. The sound level meter replicates the human response of the ear by using an electronic filter which is called the "A" filter. A sound level measured with this filter switched on is denoted as dB(A). Practically all noise is measured using the A filter. dB(C) C-weighted decibels. The C-weighting noise filter simulates the response of the human ear at relatively high levels, where the human ear is nearly equally effective at hearing from mid-low frequency (63Hz) to mid-high frequency (4kHz), but is less effective outside these frequencies. Frequency Frequency is synonymous to pitch. Sounds have a pitch which is peculiar to the nature of the sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass drum has a low pitch. Frequency or pitch can be measured on a scale in units of Hertz or Hz. Impulsive noise Having a high peak of short duration or a sequence of such peaks. A sequence of impulses in rapid succession is termed repetitive impulsive noise. The level suddenly drops to that of the background noise several times during the period of observation. The time during which the noise remains at levels different from that of the ambient is one second or more.		day sounds: OdB The faintest sound we can hear 30dB A quiet library or in a quiet location in the country 45dB Typical office space. Ambience in the city at night 60dB CBD mall at lunch time 70dB The sound of a car passing on the street 80dB Loud music played at home 90dB The sound of a truck passing on the street 100dBThe sound of a rock band 115dBLimit of sound permitted in industry 120dBDeafening
relatively high levels, where the human ear is nearly equally effective at hearing from mid-low frequency (63Hz) to mid-high frequency (4kHz), but is less effective outside these frequencies. Frequency Frequency is synonymous to pitch. Sounds have a pitch which is peculiar to the nature of the sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass drum has a low pitch. Frequency or pitch can be measured on a scale in units of Hertz or Hz. Impulsive noise Having a high peak of short duration or a sequence of such peaks. A sequence of impulses in rapid succession is termed repetitive impulsive noise. The level suddenly drops to that of the background noise several times during the period of observation. The time during which the noise remains at levels different from that of the ambient is one second or more.	dB(A)	relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. The sound level meter replicates the human response of the ear by using an electronic filter which is called the "A" filter. A sound level measured with
sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass drum has a low pitch. Frequency or pitch can be measured on a scale in units of Hertz or Hz. Impulsive noise Having a high peak of short duration or a sequence of such peaks. A sequence of impulses in rapid succession is termed repetitive impulsive noise. Intermittent noise The level suddenly drops to that of the background noise several times during the period of observation. The time during which the noise remains at levels different from that of the ambient is one second or more.	dB(C)	relatively high levels, where the human ear is nearly equally effective at hearing from mid-low
rapid succession is termed repetitive impulsive noise. Intermittent noise The level suddenly drops to that of the background noise several times during the period of observation. The time during which the noise remains at levels different from that of the ambient is one second or more.	Frequency	sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass
observation. The time during which the noise remains at levels different from that of the ambient is one second or more.	Impulsive noise	
L _{Max} The maximum sound pressure level measured over a given period.	Intermittent noise	observation. The time during which the noise remains at levels different from that of the
	L _{Max}	The maximum sound pressure level measured over a given period.

L _{Min}	The minimum sound pressure level measured over a given period.
L ₁	The sound pressure level that is exceeded for 1% of the time for which the given sound is measured.
L ₁₀	The sound pressure level that is exceeded for 10% of the time for which the given sound is measured.
L ₉₀	The level of noise exceeded for 90% of the time. The bottom 10% of the sample is the L90 noise level expressed in units of $dB(A)$.
L _{eq}	The "equivalent noise level" is the summation of noise events and integrated over a selected period of time.
Reflection	Sound wave changed in direction of propagation due to a solid object obscuring its path.
SEL	Sound Exposure Level (SEL) is the constant sound level which, if maintained for a period of 1 second would have the same acoustic energy as the measured noise event. SEL noise measurements are useful as they can be converted to obtain Leq sound levels over any period of time and can be used for predicting noise at various locations.
Sound	A fluctuation of air pressure which is propagated as a wave through air.
Sound absorption	The ability of a material to absorb sound energy through its conversion into thermal energy.
Sound level meter	An instrument consisting of a microphone, amplifier and indicating device, having a declared performance and designed to measure sound pressure levels.
Sound pressure level	The level of noise, usually expressed in decibels, as measured by a standard sound level meter with a microphone.
Sound power level	Ten times the logarithm to the base 10 of the ratio of the sound power of the source to the reference sound power.
Tonal noise	Containing a prominent frequency and characterised by a definite pitch.