Preliminary and Detailed Contamination Assessment – Proposed Stables Development

Cnr Darling and Chatham Street, Broadmeadow NSW.

NEW20P-0194-ABv1 21 April 2022

Document control record

Document prepared for:

Newcastle Jockey Club C/- Avid Project Management Pty Ltd 45 Hargrave Street CARRINGTON NSW 2294

Document prepared by:

Qualtest Laboratory (NSW) Pty Ltd ABN 98 153 268 896 2 Murray Dwyer Circuit Mayfield West, NSW 2304 T 02 4968 4468

W www.qualtest.com.au

Docu	Document Control						
Report Title		Contamination Assessment					
Document ID		NEW20P-0194-AB					
Project		Contamination Assessment Cnr Darling and Chatham Street, Broadmeadow NSW					
Rev	Date	Revision details/status	Prepared by	Author	Project Manager	Reviewer	
0	15/06/2021	Original	Qualtest	B. Snow	E. Coleman	L. Fox	
1	21/04/2022	Revised	Qualtest	E. Coleman			

Executive Summary

Qualtest Laboratory NSW Pty Ltd (Qualtest) has carried out a Contamination Assessment (CA) on behalf of Newcastle Jockey Club Ltd (NJC) c/- Avid Project Management Pty Ltd (Avid PM), for the proposed development located at the corner of Darling and Chatham Street, Broadmeadow, NSW (the site).

The site is located within Lot 13 DP227704 and currently comprises part of the Newcastle Jockey Club facility, approximately 2.5ha in size. The site contains multiple horse stables, grassed fields used for car parking, horse unloading and loading area, parading area, pavilions, an equine centre, and sheds used for storage of maintenance equipment including pesticides, fertilisers, fuels and oils.

Based on information provided by Avid PM, the site is proposed to be redeveloped for stables, offices, equipment, goods and maintenance sheds, access roads and carparks, ticket booth and landscaped courtyard areas.

The objectives of the CA were to:

- Assess former and current site uses or activities, that have the potential cause contamination;
- Assess the location and extent of potential soil contamination on the site (if any); and,
- Provide recommendations on the need for further assessment, management and/or remediation.

In order to achieve the above objective, Qualtest carried out the following scope:

- Desktop study and site history assessment, including incorporation of relevant information from a preliminary geotechnical assessment by Qualtest (ref: NEW20P-0194-AA, dated 12 January 2021);
- Site walkover;
- Drilling of 13 boreholes for collection of soil samples;
- Collection of 10 surface soil samples;
- Laboratory analysis of soil samples from a suite of common contaminants; and,
- Data assessment and preparation of a Contamination Assessment Report.

The site history review showed the site has been owned and occupied by the Newcastle Jockey Club since 1915. Available information indicates the site has been used for horse racing since the 1840s. Aerial photographs from 1954 to the present day show that the site has been used as a racecourse facility with associated buildings, viewing pavilions, storage sheds and horse stables being constructed and/or renovated over the past 67 years.

Today the site is still used as a racecourse and includes horse stables, grassed fields used for car parking, horse unloading and loading area, parading area, pavilions, an equine centre and building used for storage of maintenance equipment including pesticides, fertilisers, fuels and oils.

The desktop and site history assessment identified four Areas of Environmental Concern (AECs), relating to hazardous materials in current and former buildings; imported fill materials, storage of pesticides, fuels and oils; and application of fertilisers and pesticides. The risk of soil contamination being present was assessed to be low to medium.

21 April 2022 1 NEW20P-0194-ABv1v1

The field investigations identified fill across the site to depths between 0.0m bgs and 1.0m bgs. The fill was relatively consistent across the site, comprising of soils mixed with coal chitter, with the exception of surface soils which varied depending on location (i.e. gravel in roads and carparks, and topsoil in grassed areas).

The sampling and analysis targeted the AECs and COPC identified. The results showed concentrations below the adopted criteria, taking into account the 95% UCL calculations, with the exception of zinc above the EIL in sample BH15 0.0-0.1m. BH15 was located in a grassed "median strip" in the horse loading and unloading area, which is asphalt paved. Based on this, the extent of the elevated zinc concentrations was considered small and localised. Therefore, it is considered that further investigation or remediation is not warranted.

It is considered that groundwater is unlikely to be contaminated by site activities, based on the following: The soil assessment did not identify gross or widespread contamination; The contamination identified comprised localised impacts of metals in surface soils; and, Groundwater inflows were observed beneath sandy clay alluvial soils. The clayey subsoils would inhibit migration of contamination from surface soils or fill materials, to groundwater

Based on the results of the Preliminary and Detailed Contamination Assessment, it is considered the site is suitable for the proposed redevelopment, from a contamination perspective, in accordance with SEPP Resilience and Hazards (which consolidates former SEPP 55 – Remediation of Land, SEPP 33 – Hazardous and Offensive Development and SEPP (Coastal Management) 2018).

An Unexpected Finds Procedure must be included in the Construction Environmental Management Plan, and implemented during demolition of buildings and earthworks.

If buildings onsite are proposed to be demolished or refurbished as part of the development, it is recommended that a hazardous materials survey is completed by a suitably qualified consultant/hygienist. Following the survey, the hazardous materials (if any) will require appropriate demolition and disposal to a licensed waste facility.

Any soils proposed to be removed from the site, will require waste classification in accordance with the NSW EPA (2014) Waste Classification Guideline. Alternatively, soils may be able to be assessed in accordance with a relevant resource recovery order/exemption under Part 9, Clause 91 to 93 of the Protection of The Environmental Operations (Waste) Regulation 2014.

The report comprises a preliminary and detailed contamination assessment, in accordance with State Environmental Planning Policy Resilience and Hazards (which consolidates former SEPP 55 – Remediation of Land, SEPP 33 – Hazardous and Offensive Development and SEPP (Coastal Management) 2018). This report was prepared in general accordance with the relevant sections of the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013).

Table of Contents:

1.0		Introduction	4
	1.1	Objectives	5
	1.2	Scope of Works	6
2.0		Site Description	6
	2.1	Site Identification	6
	2.2	Topography and Drainage	7
	2.3	Regional Geology	7
	2.4	Hydrogeology	7
	2.5	Acid Sulfate Soils	7
3.0		Site History Review	8
	3.1	Historical Titles Search	8
	3.2	Aerial Photograph Review	8
	3.3	Site Observations	11
	3.4	NSW EPA Records & Environment Protection Licenses	12
	3.5	Anecdotal Information	13
	3.6	Section 10.7 Certificate	14
	3.7	Previous Reports	15
	3.8	Summary of Site History	15
	3.9	Potential Offsite Sources of Contamination	16
	3.10	Gaps in the Site History	16
	3.11	Areas of Environmental Concern	16
4.0		Data Quality Objectives	17
	4.1	Step 1 – State the Problem	17
	4.2	Step 2 – Identify the Decisions	17
	4.3	Step 3 – Identify the Inputs to the Decisions	17
	4.4	Step 4 – Define the Study Boundaries	18
	4.5	Step 5 – Develop a Decision Rule	18
	4.6	Step 6 – Specify Acceptable Limits on Decision Errors	18
	4.7	Step 7 – Optimise the Design for Obtaining Data	19
5.0		Field and Laboratory Investigations	19
	5.1	Sampling Plan	19
	5.2	Sampling	20

	5.3	Laboratory Analysis	20
6.0		Investigation Criteria	20
	6.1	Health and Ecological Levels (Soil)	20
	6.2	Asbestos Materials in Soil	21
7.0		Quality Assurance/Quality Control	22
8.0		Results	23
	8.1	Subsurface Conditions	23
	8.2	PID Results	25
	8.3	Laboratory Results	25
9.0		Discussion	27
10.0		Conceptual Site Model	28
11.0		Conclusions and Recommendations	30
12.0		Limitations	31
13.0		References	31

Attachments:

Appendix A - Figures: Figure 1 - Site Location Plan

Figure 2 - Site Features Plan

Figure 3 – Soil Sampling Locations

Figure 4 – Newcastle Jockey Club Master Plan

Appendix B: Tables: Table 1 – Soil Analytical Results – TRH, BTEX, PAH, Metals

Table 2 – Soil Analytical Results – OCP

Table 3 – Soil Analytical Results - Asbestos

Table 4 – Quality Control Results

Appendix C: Groundwater Bore Search

Appendix D: Historical Titles

Appendix E: Aerial Photographs

Appendix F: Site Photographs

Appendix G: NSW EPA Records

Appendix H: Section 10.7 Certificates

Appendix I: Borehole Logs

Appendix J: Data Validation Report

Appendix K: Laboratory Reports

1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) has carried out a Preliminary and Detailed Contamination Assessment on behalf of Newcastle Jockey Club Ltd (NJC) c/- Avid Project Management Pty Ltd (Avid PM), for the proposed development located at the corner of Darling and Chatham Street, Broadmeadow, NSW (the site). Figure 1, Appendix A, shows the site location.

The site is located within Lot 13 DP227704 and currently comprises part of the Newcastle Jockey Club facility, approximately 2.5ha in size. The site contains multiple horse stables, grassed fields currently used for car parking, horse unloading and loading area, parading area, pavilions, an equine centre, and sheds used for storage of maintenance equipment including pesticides, fertilisers, fuels and oils.

Based on information provided by Avid PM, it is understood the following developments are proposed for the site:

- Seven horse stables 'Blocks' (approx. 1278m² each);
- Site office (approx. 135m²);
- Equipment shed (approx. 262m²);
- Goods storage shed (approx. 570m²);
- Maintenance amenities (approx. 160m²);
- Maintenance shed (approx. 508m²);
- Three basins (125m², 180m² and 304m²);
- Seven horse walkers (unknown area);
- Paved access roads;
- Thirty six space car park;
- Wash bay and sand roll areas;
- New ticket booth; and
- Court yard areas with plants and trees.

The Masterplan is shown on Figure 4, Appendix A.

The purpose of the assessment was to support the DA submission to the City of Newcastle Council.

The report comprises a preliminary and detailed contamination assessment, in accordance with State Environmental Planning Policy Resilience and Hazards (which consolidates former SEPP 55 – Remediation of Land, SEPP 33 – Hazardous and Offensive Development and SEPP (Coastal Management) 2018). This report was prepared in general accordance with the relevant sections of the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013).

1.1 Objectives

The objectives of the Preliminary and Detailed Contamination Assessment were to:

- Assess former and current site uses or activities, that have the potential to cause contamination;
- Assess the location and extent of potential soil contamination on the site (if any); and,
- Provide recommendations on the need for further assessment, management and/or remediation.

The report comprises a preliminary and detailed contamination assessment, as required by State Environmental Planning Policy Resilience and Hazards. The report has been prepared in general accordance with, or with reference to, contaminated land planning guidelines, guidelines in force under the Contaminated Land Management Act 1997, legislation and standards, including:

- State Environmental Planning Policy Resilience and Hazards.
- Environmental Planning & Assessment Act 1979 (EP&A Act).
- Contaminated Land Management (CLM) Act 1997 (CLM Act).
- Protection of the Environment Operations Act 1997 (POEO Act).
- Protection of the Environment Operations (Waste) Regulation 2014 (POEO Regulation).
- Newcastle Local Environmental Plan 2012 (NLEP).
- Newcastle Development Control Plan 2012 (NDCP), in particular Section 5.02 Land Contamination.
- Newcastle Contaminated Land Management Policy.
- NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste.
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd edition).
- WA DoH (2009) Guidelines of the assessment and management of asbestos contaminated sites in Western Australia, WA Department of Health and Department of Environment and Conservation.
- National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended April 2013) NEPC 2013 (ASC NEPM 2013).
- AS/NZS 4482.1 2005, Guide to the Sampling and Investigation of potentially contaminated soil Non-volatile and semi-volatile compounds.
- AS/NZS 4482.2 1999, Guide to the Sampling and Investigation of potentially contaminated soil – Volatile compounds.

1.2 Scope of Works

In order to achieve the above objective, Qualtest carried out the following scope:

- Desktop study and site history assessment, including incorporation of relevant information from a preliminary geotechnical assessment by Qualtest (ref: NEW20P-0194-AA, dated 12 January 2021);
- Site walkover;
- Drilling of 13 boreholes for collection of soil samples;
- Collection of 10 surface soil samples;
- Laboratory analysis of soil samples from a suite of common contaminants; and,
- Data assessment and preparation of a Preliminary and Detailed Contamination Assessment Report.

2.0 Site Description

2.1 Site Identification

General site information is provided below in Table 2.1. The site location is shown in Figure 1, Appendix A.

Table 2.1: Summary of Site Details

Site Address:	Cnr Darling and Chatham Street, Broadmeadow NSW	
Approximate site area and dimensions:	Approx. 2.5 ha. Approx. 125m wide by 2500m long at its widest and longest points.	
Title Identification Details: Part Lot 13 DP227704 within the City of Newcastle local government area, Parish of Newcastle, County of Northumberland.		
Current Zoning	RE2 Private Recreation	
Current Ownership:	Newcastle Jockey Club Limited	
Current Occupier:	Newcastle Jockey Club Limited	
Previous and Current Landuse:	Newcastle Jockey Club The Australian Agricultural Company (Prior to 1915)	
Proposed Landuse:	RE2 Private Recreation	
Adjoining Site Uses:	North – Newcastle Jockey Club race track; East – Newcastle Jockey Club; South – Chatham Street, followed by residential dwellings; West – Darling Street, followed by residential dwellings.	
Site Coordinates for approx. centre of site:	32°55'52.13 \$ 151°44'13.96 E	

2.2 Topography and Drainage

Reference to the NSW Land and Property Information Spatial Information Exchange website (https://six.nsw.gov.au/wps/portal/) indicated the elevation of the site was less than 10m AHD.

During the site walkover, the site was observed to be relatively level with no discernible slopes.

Rain falling on the site would be expected to infiltrate into the site surface. Excess surface water is expected to flow off site, following on-site drainage systems and low points. Surface water is anticipated to then flow into municipal storm water drains located along Chatham and Darling Streets, which are likely to discharge into the Hunter River, located about 2.5km north-east of the site.

2.3 Regional Geology

Reference to the 1:100,000 Newcastle-Hunter Area Coastal Quaternary Geology Map indicates that the site is underlain by an Estuarine Plain System comprising of clay, silt, fluvial sand, marine sand, shell.

Qualtest previously carried out a geotechnical assessment for the site, ref: NEW20P-0194-AA, dated 12 January 2021. As part of the assessment, 12 boreholes were drilled across the site. These boreholes identified fill materials to depths of between 0.2m and 1.0m, overlying alluvial soils comprising sandy clay / clayey sand, and sand to the depth of investigation of 2.8m

The borehole logs are included in Appendix I, and the soil profile is included in the description provided in Section 8.1.

2.4 Hydrogeology

Groundwater beneath the site is anticipated to be present in a semi-confined aquifer in alluvial soils. Groundwater is expected to occur between 2m and 4m below ground surface (bgs). Groundwater flow direction is anticipated to follow the regional topography and discharge into the Hunter River, located approximately 2.5km to the north-east of the site.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

A search of the NSW Department of Primary Industries (Office of Water) registered groundwater bores located within a 500m radius of the site was undertaken. The search revealed that there was one bore within this radius. A copy of the search is provided in Appendix C.

Bore ID	Installation Date	Purpose	Approx. Distance and Gradient from Site	Water Bearing Zones (mbgs)
GW058191	1/12/1982	General Use	370m E, Cross-gradient	Not Provided

Notes: NK – not known; N – North, E – East, S – South, W - West

2.5 Acid Sulfate Soils

Reference to the Acid Sulfate Soil Risk Mapping for the Wallsend (1:25,000 scale, December 1997 Edition 2, supplied by the Department of Land and Water Conservation) indicates that the site is located within an aeolian sandplain at greater than 4m AHD, with a low probability of acid sulfate soils at greater than 3m depth.

Reference to the Newcastle Local Environmental Plan (LEP) 2012 Acid Sulfate Map soils on the site are classified as "Class 4" Acid Sulfate Soils. Class 4 ASS are works more than 2 metres below the natural ground surface and/or works by which the watertable is likely to be lowered more than 1 metre below the natural ground surface.

The previous geotechnical assessment for the site included an ASS assessment. The assessment found that ASS were present below about 1.6m depth. An ASS Management Plan would be required if excavations greater than 1.5m depth are proposed.

3.0 Site History Review

A site history review was undertaken as part of the CA, and included:

- A review of historical ownership of the site (Lot 13 DP227704);
- A review of aerial photography from the past 66 years;
- A review of Section 10.7 Certificate from City of Newcastle Council;
- An interview with a long-term employee of the Jockey Club;
- Search of the NSW EPA's list of contaminated sites applying to the site and nearby properties; and
- A site walkover to help identify current and previous activities carried out on the site, identify surrounding land uses, and assess Areas of Environmental Concern (AECs) and Chemicals of Potential Concern (COPCs).

The information provided from the above reviews is summarised in the sections below.

3.1 Historical Titles Search

A search of historical titles for Lot 13 DP 227704 was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for Lot 13, dating back to 1906, was obtained. The results of the search are included in Appendix D and a summary is presented below in Table 3.1.

Table 3.1: Summary of Historical Titles - Lot 13 DP 227704

Date	Owner
1915 – To date	The Newcastle Jockey Club Limited
Prior – 1915	The Australian Agricultural Company

The historical title search indicated that the site was owned by the Australian Agricultural Company prior to 1915. From 1915 to present day the site has been owned by the Newcastle Jockey Club Limited.

Prior to 1915, Australian Agricultural Company (AACo) were granted land by the British Government for the purposes of establishing agriculture in the Port Stephens area and coal mining in the Newcastle area. Based on the site's location, it is inferred that AACo held Lot 13 DP227704 for purposes associated with coal mining. (references:

https://en.wikipedia.org/wiki/Australian Agricultural Company, and https://web.archive.org/web/20110930030430/http://www.newcastle.nsw.gov.au/_data/assets/pdf_file/0005/115988/Chapter_2.pdf).

3.2 Aerial Photograph Review

Aerial photographs of the site from 1954, 1964, 1976, 1987 and 1993 were obtained from the NSW Government Spatial Portal (https://portal.spatial.nswe.gov.au), and satellite images from Google Earth for 2010 and 2021, were assessed by a Qualtest Environmental Scientist. The

results of the aerial photograph review are summarised below in Table 3.2. The aerial photographs are presented in Appendix E.

Table 3.2: Aerial Photograph Review

Year	Site	Surrounding Land	
1954	The photo is black and white, and of moderate quality.	The surrounding land is observed to be a horse racing track to the	
	The site appears to comprise the Newcastle Jockey Club.	north and north-east. A dam appears to be situated in the middle of the race track.	
	Horse stables and a mounting yard are observed in the central portion of the site.	Additional buildings/pavilions associated with the Newcastle	
	A small building is also observed in the central southern portion of the site (currently tickets sales/entry and groundsmen shed).	Jockey Club are located to the east. Residential dwellings to the south and west followed by vacant land.	
	Another building can also be observed in the central-western portion of the site.		
	A fence or hedge appears to be present across the southern portion of the site.		
	There may be a building/structures in the centre of the site, and in the north-west corner of the site, however the photo is not clear.		
1964	The photo is black and white, and of moderate quality.	The surrounding land appears similar to the previous aerial	
	The site appears to be relatively unchanged from the previous aerial photograph. Two small buildings are present in the central-southern portion of the site.	photograph, some additional road infrastructure has been developed to the south of the site.	
	There are structures in the north-west corner of the site.		
	A circular structure has also been developed along the north-western boundary of the site.		
	The fence or hedge in the southern part of the site is no longer present.		
1976	The photo is colour, and of good quality.	The surrounding land appear similar to the previous aerial	
	The site is similar to the 1964 photo. Two additional buildings have been constructed to the west of the stables.	photograph. Additional residential dwellings have been developed to the south-east of the site.	
	An area in the north-eastern portion of the site appears to have been cleared of vegetation.		

Year	Site	Surrounding Land	
1987	The photo is black and white, and of poor quality.	The surrounding land appear similar to the previous aerial	
	The site appears similar to the 1976 photo.	photograph. Additional residential dwellings have been developed	
	A building in the north-western portion appears to have been removed. It appears that more trees have been planted in the central portion of the site.	to the south of the site.	
	No other changes could be distinguished due to the poor quality of photo.		
1993	The photo is colour, and of good quality.	The site appears relatively	
	The site is similar to the 1987 photo.	unchanged from the previous aerial photograph.	
	A horse swimming pool has been constructed in the centre of the site. Cars are parked adjacent to the pool and the entry/groundsmen building. These may be associated with construction of the pool.	The roof of the viewing pavilion to the east of the site has changed colour.	
	Additional circular structures have been developed on the site, in the north-western corner. A road/ roundabout, possibly asphalt paved, has appears to have been constructed along the western boundary of the site.		
2010	The photo is colour, and of good quality.	The surrounding land appears	
	The site appears similar to the previous aerial photograph.	relatively unchanged, there appears to be minor disturbed land to the north-east of the site in the middle of the race track.	
	A small structure has been developed along the central-western boundary.		
	A new building is present on the north-western boundary of the site, and a new small building in the north-western corner of the site.	A new pavilion building has been constructed immediately to the east of the north-east corner of the site.	
	The horse swimming pool has been fenced off, and a few sheds are present to the north of the pool.		
	The roof of the entry/groundsmen building has changed from grey to green in colour.		
2021	The photo is colour, and of good quality.	The surrounding area appears	
	The site appears similar to the previous aerial photograph, and appears to be consistent with the current site layout.	relatively unchanged. Additional dams have been constructed in the middle of the race track.	

3.3 Site Observations

A Qualtest Environmental Scientist visited the site on 6 May 2021. Selected site photographs are presented in Appendix F. The location of site features is shown on Figure 2, Appendix A. A summary of the site features is outlined below:

- The southern and central portion of the site was mostly observed to comprise open space
 and well-maintained grass. Two access roads comprising some asphalt and gravel
 materials were observed on the site running north-south from the southern boundary in the
 central portion of the site and approximately east-west along the southern boundary of the
 site. Pooled water was observed on the surface following recent rain (see photographs 1
 and 2);
- An equine centre and the entry building and gates to the NJC were observed in the
 central southern portion of the site. The equine centre comprised concrete paved floors,
 hydrotherapy pools containing chlorinated water, steel fencing, a small building
 constructed of wood and a steel roof, and a small shed constructed of steel. The NJC entry
 building and gates were located in the central eastern portion of the site, were observed
 to be constructed with concrete with steel roofing and guttering (see photographs 3 to 5);
- A shed was observed connected on the northern side of the entry gates to NJC. The shed stored a variety of fertilisers including liquid seaweed, rooster booster, BorMax, Growrite Seaweed Master, and Florafert SRF. Two lockers containing pesticides were also observed in the shed. These lockers were locked during the site visit so the types of pesticides are not known. Several other containers comprising engine oil, hydraulic oil, degreaser and surface cleaner were also observed. Five jerry cans were observed and were thought to contain diesel or petroleum. Wheel mounted, generator powered, weed sprayers were also observed. All containers, bags and buckets of fertilisers appeared to be in good condition. The floor of the shed was constructed of concrete and was observed to be in a good condition (see photographs 6 to 8);
- A car park area was observed to the north of the NJC entry gates, in the central portion of
 the site and appears to be mostly grass with two gravel and asphalt paved access roads
 intersecting the car park running approximately east-west (see photograph 9);
- A Marquee was observed in the north-east portion of the site, and was used as a function/spectating facility. The Marquee is constructed of PVC covers and plastic (see photograph 10);
- One large horse stable and three smaller horse stables were observed in the central portion
 of the site. Each stable was made up of numerous smaller stables. The stables appeared to
 be constructed of concrete blocks for walls, concrete floors with rubber mats, both in good
 condition, wooden and steel frames and steel rooves (see photographs 11 to 12);
- A mounting yard/parading ring was observed to the east of the stables, and comprised well-maintained grass coverage and mulch which then became asphalt paved as the path travelled north-east then east towards the racing track (see photograph 13);
- An access roundabout road area, used for loading and unloading horses for track work and race meets was observed along the western boundary of the site. The road was constructed of asphalt of varying quality (mostly good with some poor quality areas).
 Asphalt patching works were observed particularly along the far western boundary. The central portion of the access round about appeared to be filled due to the raised elevation of the area (see photograph 14);
- To the north and north-east of the access roundabout road area was a concrete viewing tower and a raised wood and steel constructed viewing room. The floor surrounding the two buildings comprised of manufactured sand fill.

- Two circular structures, thought to be used to hold horses or used to work horses, was observed in the north-western portion of the site. These two structures were constructed of brick walls, sand floors and a steel gate (see photograph 15);
- A locked shed was observed along the western boundary of the site and was observed to be relatively new, constructed of steel with a concrete floor (see photograph 16);
- Two fuel storage cells/pumps constructed of steel were observed along the western boundary of the site. Anecdotal information indicated that the fuel storage cells/pumps were new and were delivered to site on the 27 April 2021. Qualtest was also informed that the storage cells were empty at the time of the site walkover (see photograph 17);
- Fork lift forks, a roller, a grass cutting attachment, two tyres, PVC piping, aluminium guttering and a trailer were observed along the western boundary in the north-western corner of the site;
- Two new shipping containers on concrete footings were observed along the Western boundary of the site;
- The site is fenced by mostly wire and steel fencing with brick walls observed around the entries to the site; and,
- Several small to medium sized trees and landscaped gardens were observed around the site (see photograph 18).

3.4 NSW EPA Records & Environment Protection Licenses

Contaminated Land Records

A search of the NSW EPA database of notices issued under the Contaminated Land Management Act, 1997 (CLM Act) revealed there were no properties listed as having current and/or former notices within the Broadmeadow suburb.

A search of sites that have been notified to NSW EPA as contaminated (as of 6 May 2021) was also carried out. The search identified three properties within the Broadmeadow suburb which have been notified to the NSW EPA as being contaminated. These properties were:

- Service Station, 16 Broadmeadow Road Located approximately 2km north-east of the site (Regulation under the CLM not required);
- Coles Express Service Station, Corner Brunker Road and Lambton Road Located approximately 560m north of the site (Regulation under the CLM not required);
- Metal industry, 2 Georgetown Road, Broadmeadow Located approximately 2km located north-east of the site (Under Assessment);

Based on the distance of these properties from the site, it is considered that contamination on the properties would not impact the site.

A copy of the above searches is provided in Appendix G.

Penalty Notices

The Protection of the Environment Operations (POEO) register under Section 308 of the POEO Act 1997, was searched for Penalty Notices for the suburb of Broadmeadow NSW. The search revealed no Penalty Notices for the suburb of Broadmeadow.

Environment Protection Licenses (EPLs)

The Protection of the Environment Operations (POEO) register under Section 308 of the POEO Act 1997, was searched for Environment Protection Licenses (EPLs) and notices for the suburb of Broadmeadow NSW. The search revealed there were three properties within the Broadmeadow suburb.

Company Name	Address	Approx. Distance & Direction from Site	Licensed Activity
UGL Rail Services Pty Ltd	16 Broadmeadow Road, Broadmeadow	1.9km north-west from the northern boundary of the site	Hazardous, Industrial or Group A Waste Generations or Storage
Berendsen fluid Power Pty Ltd	9-11 Broadmeadow Road, Broadmeadow	1.95km north-west from the northern boundary of the site	Hazardous, Industrial or Group A Waste Generations or Storage
Railcorp	Brown Road, Broadmeadow	880m west north-west from western boundary of the site	Hazardous, Industrial or Group A Waste Generations or Storage

Based on the distance of these properties from the site, it is considered that contamination on the properties would not impact the site.

A copy of the above searches is provided in Appendix G.

NSW EPA PFAS Investigation Program

Based on a review of the NSW EPA Government PFAS Investigation Program (ref: https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program), there are no properties in the suburb of Broadmeadow that have been identified as a site that is likely to have used large quantities of PFAS.

NSW EPA Former Gasworks Sites

Based on a review of the NSW EPA website <u>(ref: https://www.epa.nsw.gov.au/your-environment/contaminated-land/other-contamination-issues/former-gasworks-sites)</u>, no former gasworks have been identified in the suburb of Broadmeadow.

3.5 Anecdotal Information

Mr Dave Nugent responded to site questions provided by Qualtest on 9 June 2021. Mr Nugent is a member of the track staff and has been associated with the NJC since 1982. Information obtained from Mr Nugent is summarised below:

- According to Mr Nugent the site has been used as tie up stalls. The stables used to be
 positioned along the perimeter fence, with a barn positioned where the existing car park is
 now.
- Mr Nugent is not aware of any chemicals stored on the site (note, Qualtest observed chemicals stored in the groundsmen building).
- The only waste Mr Nugent is aware of on the site is horse waste.
- NJC has owned the land as long as Mr Nugent can remember.
- Mr Nugent is unaware of any past uses that may have affected the site from a contamination perspective.
- As far as Mr Nugent is aware, the surrounding land uses have been private housing.

The Newcastle Jockey Club website (https://www.newcastleracecourse.com.au/newcastle-jockey-club/) also provides information on the history of the site:

- Organised racing began in the region in 1848. "The first race meeting was held in 1848 on a track cleared through bush and scrub in an area known as Wallaby Flat. Wallaby Flat was an area taking in most of Hamilton, a portion of Broadmeadow and Merewether."
- "The starting point of the races was at the city's first smelting works, located on the site once known as Beaumont Park, the junction of the Sydney rail line, not far from the Nine Ways, Broadmeadow was the finishing point, and therefore it is fair to say that parts of the Broadmeadow course have known the hoof-beats of fleet horses since the 1840's."
- "The future of Newcastle was made secure when the first meeting of racegoers and enthusiasts of the Sport of Kings met to form the Newcastle Jockey Club in 1907."

3.6 Section 10.7 Certificate

A Section 10.7 Certificate for the site was obtained from Newcastle City Council, and is presented in Appendix H. Relevant information is summarised below.

Table 3.3 - Summary of Section 10.7 Certificate for Lot 13 DP227704

Zoning	Zone RE2 Private Recreation	
Critical Habitat	The Newcastle Local Environmental plan 2012 does not identify the land as including or comprising critical habitat.	
Heritage	The land is NOT within a heritage conservation area under the Newcastle Local Environmental Plan 2012.	
Mine Subsidence	The land IS WITHIN a declared Mine Subsidence District under section 20 of the Coal Mine Subsidence Compensation Act 2017.	
Bushfire	Information currently available indicates the land is not affected by a policy referred to in Item 7 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000 that restricts the development of the land because of the likelihood of bushfire.	
Loose-fill Asbestos Insulation	City of Newcastle HAS NOT been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register of loose-fill asbestos insulation, that is required to be maintained under that division.	

	Council is in possession of the following contaminated land documents(s) which relate the land. Persons relying on the certificate are advised to examine and consider the contents of each document:
Contaminated Land	 Report: Dr John Lucas (11 November 2013) Environmental Site Assessment DW 4543036 Report: ESP Environmental and Safety Professionals (November 2014) Detailed Site Investigation Report: ESP Environmental and Safety Professionals (17 February 2015) Validation Report
	Persons relying on the certificate are advised to make their own investigations as to whether the land is affected by elevated concentrations of soil or groundwater contaminants in relation to proposed purchase or use of the land.
	It is noted that the above reports relate to portions of the Newcastle Racecourse that are not located within or adjacent to the current site.
Potential acid sulfate soils	Yes, the site is located within an area of Class 4 Acid Sulfate Soils.

3.7 Previous Reports

Qualtest completed a Preliminary Geotechnical Assessment for the site in January 2021. (ref: NEW20P-0194-AA, dated 12 January 2021). The geotechnical assessment was carried out to provide information on subsurface conditions (soil profile) and preliminary geotechnical parameters for foundations, pavements, and retaining walls.

As part of the geotechnical assessment, 12 boreholes (BH01 to BH12) were drilled across the site using a mini-excavator with an auger attachment. The boreholes were drilled to 2.8m depth across the site. The borehole logs are included in Appendix I, and the soil profile is included in the description provided in Section 8.1.

Qualtest has not been provided with or been made aware of any previous contamination assessments being conducted on the site. The reports noted on the Section 10.7 certificate were not located within or adjacent to the current site. These reports related to facilities (including re-fuelling) located on the eastern side of Newcastle Racecourse property, greater than 400m from the current site.

3.8 Summary of Site History

- The site history review showed the site has been owned and occupied by the Newcastle Jockey Club since 1915. Prior to 1915 the site was owned by the Australian Agricultural Company. Based on available information, it appears the site has been used for horse racing since the 1840s, and it is unlikely that coal mining pit top activities occurred on the site.
- Aerial photographs from 1954 to the present day show that the site has been used as a racecourse with associated pavilions, storage sheds and horse stables being progressively constructed and/or renovated over the past 67 years.
- Today the site is still used as a racecourse with multipurpose buildings, horse stables, viewing
 pavilions, an equine centre (including hydrotherapy pool), and sheds which are used for
 storing chemicals, fuels, pesticides and maintenance equipment.

3.9 Potential Offsite Sources of Contamination

Based on the surrounding land use, no potential offsite sources of contamination have been identified adjacent to and/or upgradient of the site.

3.10 Gaps in the Site History

Whilst the site history is reasonably comprehensive there are some gaps identified in the review as follows:

- The origin of the fill materials observed during sampling of boreholes across the site is not known;
- The process used to treat water from the equine centre hydrotherapy pool is not known;
 and
- Historic use and application rate of fertilisers/herbicides/pesticides/fuels is not known.

3.11 Areas of Environmental Concern

Table 3.11 (below) shows the areas of environmental concern (AECs) and associated Chemicals of Potential Concern (COPCs) identified for the site.

Table 3.11 – Areas of Environmental Concern and Chemicals of Potential Concern

AEC	Potentially Contaminating Activity	Potential COCs	Likelihood of Contamination
Current and former buildings across the site.	Weathering and/or demolition of potentially hazardous materials (asbestos, lead paint, galvanised metals)	Metals, Asbestos	Low
2. Imported Fill.	Potential use of imported fill of unknown quality and origin.	TRH, BTEX, PAH, OCPs, Metals, Asbestos	Medium
3. Storage and use of pesticides and fuels/oils in groundsmen building.	Potential for pesticide and hydrocarbon contamination.	Metals, OCPs, BTEX, PAHs, TRH	Low
4. Application of fertilisers, pesticides across the site.	Potential for pesticides and fertiliser contamination.	Metals, OCP	Low

4.0 Data Quality Objectives

4.1 Step 1 – State the Problem

There is a potential for soil contamination to exist from past and current practices. Should contamination exist the site many not be suitable for the intended use without remediation and or management.

Four AECs have been identified for the site:

- 1. Current and former buildings across the site;
- 2. Imported fill;
- 3. Storage of pesticides and fuels/oils in groundsmen building; and,
- 4. Application of fertilisers and pesticides across site.

4.2 Step 2 – Identify the Decisions

The decisions to be made based on the Contamination Assessment (site history review, site observations, and sampling & analysis) are:

Is the site suitable for the proposed development? Is the site contaminated and requires
remediation and or management, and if so, what level and type of remediation will be
required to make the site suitable for the proposed land use, from a contamination
perspective?

4.3 Step 3 – Identify the Inputs to the Decisions

Inputs into the decision are:

- Have samples been collected in the required areas of the site (the identified AECs)?
- Have samples been collected at the required frequencies and adequately represent the conditions on site?
- Have samples been collected in the required media?
- Is the data set adequate to perform statistical analysis, if required (i.e. calculate 95% UCL)?
- Have the samples been analysed for the COPCs identified?
- Have concentrations exceeding the adopted criteria been reported in the samples?
- If concentrations exceeding adopted criteria have been reported, will these areas require remediation and/or management?

The informational inputs into the decision area:

- Field observations and field screening results (PID);
- Laboratory results (concentrations of contaminants in soil);
- QA/QC documentation and data;
- Adopted assessment criteria (see Section 6); and,
- Relevant NSW EPA endorsed Guidelines.

Based on the preliminary nature of the investigation, the media to be sample and analysed is:

· Soil.

4.4 Step 4 – Define the Study Boundaries

The study boundary is defined laterally as the site boundary, part Lot 13 DP227704 within the City of Newcastle local government area. The site is located at the Cnr of Darling and Chatham Street, Broadmeadow NSW and covers an area of approximately 2.5ha (refer to Figure 1 and Figure 2, Appendix A). Vertically, the study boundary will be defined by the depth of soil contamination and/or depth to groundwater. It is anticipated the vertical boundary would be a maximum of 5m bgs.

4.5 Step 5 – Develop a Decision Rule

Chemicals of Potential Concern (COPCs) are identified in Section 3.11, above. The COPCs and the associated assessment criteria are listed in Section 6 below.

The decision rules can be defined as: -

- If the laboratory quality assurance/ quality control data are within the acceptable ranges, the data will be considered suitable for use;
- If the COPCs are reported above the adopted criteria and/or at elevated levels (where no criteria are available) then it will be considered whether further assessment, remediation and/or management measures are required; and
- Where concentrations are below the assessment criteria, then no further assessment, remediation and/or management of that contaminant, in that area, in that media, is required. This is provided samples have been collected at the required frequencies (as per NSW EPA guidelines) and adequately represent the conditions on site, if not, additional sampling may be required.

4.6 Step 6 – Specify Acceptable Limits on Decision Errors

There are two types of errors:

- Type 1 finding that the site is contaminated, when it is not;
- Type 2 finding that the site is uncontaminated, when it is.

To reduce the potential for errors, the following will be applied:

- Appropriate field sampling methodologies and collection of field data (including sampling frequency);
- Robust QA/QC assessment of field procedures and laboratory data;
- Appropriate sampling and analytical density;
- Use of statistics (i.e. 95% UCL) to assess arithmetic average of COPCs. Use of statistics will also take into account:
 - o No sample should report a concentration more than 250% of the adopted criteria; and,
 - o The standard deviation of a sample population should not exceed 50% of the adopted criteria.

4.7 Step 7 – Optimise the Design for Obtaining Data

The methodologies presented in this report are designed to meet the nominated DQOs. Optimisation of the data collection process will be achieved by:

- Working closely with the analytical laboratories and sampling equipment suppliers so that
 appropriate procedures and processes are developed and implemented prior to and
 during the field work and that sampling, handling, and transport to, and processing by, the
 analytical laboratories is appropriate.
- Conduct sampling in accordance with industry best practice and Standard Operating Procedures (SOPs) for the type of sampling being conducted.

5.0 Field and Laboratory Investigations

5.1 Sampling Plan

The site is approximately 2.5ha in area. The NSW EPA (1995) Sampling Design Guidelines recommend a minimum of 35 sample locations to characterise a site of 2.5ha.

The previous geotechnical assessment comprised drilling of 12 boreholes on the site, providing assessment of the soil profile, and observations for odours, stains, anthropogenic materials, or other indications of potential contamination. Therefore, an additional 23 sampling locations were required to meet the sampling density recommended by NSW EPA (1995).

Thirteen (13) boreholes (BH13 to BH18, BH20 to BH23, and BH25 to BH27) and 10 surface soil samples (SS1 to SS8, BH19 and BH24) were collected from across the site. Two proposed borehole locations BH19 and BH24) were converted to surface samples, due to access constraints. The sampling locations were selected on an approximately grid-based system, taking into account the previous borehole locations and buildings/structures.

The sampling locations are shown on Figure 3, Appendix A. The sampling locations in relation to the identified AECs is shown in Table 5.1 below.

Table 5.1 AECs and Sampling Locations

AEC	Sampling Locations	Previous Borehole Locations	
Current and former buildings across the site.	BH13, BH17, BH18, BH19, BH21, SS2, SS3, SS4, SS6, SS7	BH07 to BH11	
2. Imported Fill.	BH13 to BH27 and SS1 to SS8	BH01 to BH12	
3. Storage and use of pesticides and fuels/oils in groundsmen building.	SS6 and SS7	Nil	

AEC	Sampling Locations	Previous Borehole Locations
4. Application of fertilisers, pesticides across the site.	BH13 to BH27 and SS1 to SS8	BH01 to BH12

5.2 Sampling

Thirteen (13) boreholes (BH13 to BH18, BH120 to BH23, and BH25 to BH27) were drilled using a 4WD truck mounted drill rig across the site. The boreholes were drilled to approximately 1.5m below ground surface (bgs). Soil samples were collected directly from the auger using a pair of clean disposable nitrile gloves.

Ten surface soil samples (SS1 to SS8, BH19 and BH24) were collected using hand tools. Two locations, BH19 and BH24, were changed from borehole locations to surface sample locations due to access constraints.

The soil samples were placed into 250mL laboratory supplied glass jars, and two zip locked bags PID screening and laboratory analysis. Each soil sample was placed directly into an ice-chilled esky and remained chilled during fieldwork and transportation to the laboratory.

5.3 Laboratory Analysis

23 primary soil samples were selected for analysis based on field observations and dispatched to the NATA-accredited Eurofins MGT laboratory under chain of custody conditions. The samples were analysed for the following:

- Total Recoverable Hydrocarbons (TRH) 23 primary samples;
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) 23 primary samples;
- Polycyclic Aromatic Hydrocarbons (PAHs) 23 primary samples;
- Metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury) 15 primary samples;
- Organochlorine pesticides (OCPs) 5 primary samples;
- pH & CEC 1 primary samples; and
- Asbestos (NEPM % w/w) 15 primary samples.

6.0 Investigation Criteria

6.1 Health and Ecological Levels (Soil)

To assess whether the material is suitable for re-use on-site, the laboratory results were compared to the health and ecological investigation levels for soil, presented in the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013).

ASC NEPM (2013) provides health and ecological investigation and screening levels for different exposure scenarios based on a proposed land use. They are adopted as concentrations of a contaminant above which either further appropriate investigation and/or evaluation will be required, or development of an appropriate management strategy (including remediation).

Health Investigation Levels (HILs) and Health Screening levels (HSLs) are applicable for assessing human health risk via relevant exposure pathways. The HILs were developed for a broad range of metals and organic substances. These are generic to all soil types. The HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via inhalation and direct contact with soil and groundwater. The HSLs depend on specific soil physicochemical properties, building configurations, land use scenarios and the depth that groundwater is encountered. Ecological Investigation Levels (ElLs) and Ecological Screening Levels (ESLs) are applicable for assessing risk to terrestrial ecosystems under residential, open space and commercial/industrial land use scenarios. They apply to the top 2m of soil, which corresponds to the root zone and habitation zone of many species. The ElLs are associated with selected metals and organic compounds. The ElLs are site specific and are determined by calculating an Ambient Background Concentration (ABC) and an Added Contaminant Limit (ACL) for the site, which are added together to get the EIL. The EIL's for the site have been calculated using an ABC and site specific pH, Cation Exchange Capacity (CEC) and clay content values. The ABC obtained from Trace element concentrations in soils from rural and urban areas of Australia.

It is noted the ESLs for benzo(a)pyrene (ASC NEPM, 2013) were adopted from Canadian Soil Quality Guidelines (SQGs) presented in Environment Canada (2004), and were noted to have a low-reliability. The ESLs for benzo(a)pyrene in ASC NEPM (2013) were based on a review of Canadian SQGs by Dr Michael Warne, who completed the review in February 2010. Since the completion of Warne (2010) (which are included in the publication of ASC NEPM, 2013), the Canadian SQGs for benzo(a)pyrene were revised later in 2010 (CCME 2010a,b). Therefore, CRC Care Technical Note 39 assesses the benzo(a)pyrene ESL derivation, and derives a higher reliability ESL for benzo(a)pyrene in the Australian setting. The ESLs for benzo(a)pyrene derived by CRC Care (2017) are 33mg/kg for residential and open space land uses, and 172mg/kg for commercial/industrial land uses. These have been considered where benzo(a)pyrene concentrations exceed the ESL, but do not exceed the HIL, to mitigate against unwarranted remediation that is driven by low-reliability ESLs.

Based on the current and proposed site use (RE2 private recreation with horse stables, buildings, equine centre, grassed and hard stand paved surfaces) the following investigation levels have been adopted:

- HIL C & HSL C Public open space (parks, playgrounds, playing fields, secondary schools and footpaths) and;
- EIL C, ESL C urban residential / public open space.

6.2 Asbestos Materials in Soil

The assessment of known and suspected asbestos contamination in soil is based on:

- ASC NEPM (2013); and
- WA DoH (2009) Guidelines of the assessment and management of asbestos contaminated sites in Western Australia, WA Department of Health and Department of Environment and Conservation.

Schedule B1, Section 4 ASC NEPM (2013) provides guidance on the assessment of both friable and non-friable forms of asbestos in soil. This guidance is based on the WA DoH (2009) Guidelines that presented risk based screening levels for asbestos in soil under various landuse scenarios.

For the purpose of assessing asbestos impacts in soil, three groups are recognised:

- Asbestos Containing Material (ACM) which is in sound condition although possibly broken or fragmented and the asbestos is bound in a matrix. This is restricted to material that cannot pass through a 7mm x 7mm sieve;
- Fibrous asbestos (FA) friable asbestos material, such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products;
- Asbestos fines (AF) includes free fibres of asbestos, small fibre bundles and also ACM fragments that pass through a 7mm x 7mm sieve.

The health screening levels for asbestos in soil for public open space have been adopted:

Form of Asbestos	HSL C
Bonded ACM %	0.02
FA and AF %	0.001
All forms of asbestos	No visible evidence for surface soil (top 10cm)

7.0 Quality Assurance/Quality Control

Sampling activities were undertaken in accordance with normal, industry accepted practices and standards. The assessment of field and laboratory quality assurance / quality control (QA / QC) procedures is provided below, and a data validation report is presented in Appendix J.

In order to assess field quality assurance / quality control (QA/QC) procedures, the following quality control samples were collected and analysed:

QC Sample	Sample Type Lab		Analysis	
D.12.5.21	Duplicate of BH22 0.0-0.1	Eurofins mgt	TRH, BTEX, PAH	
T.12.5.21	Triplicate of BH22 0.0-0.1	ALS	TRH, BTEX, PAH, Metals	
D1.12.5.21	Duplicate of BH14 0.0-0.1	Eurofins mgt	TRH, BTEX, PAH, Metals	
T1.12.5.21	Triplicate of BH14 0.0-0.1	ALS	Not Analysed	

Primary and intra lab duplicate samples were analysed by the NATA-accredited Eurofins mgt laboratory. Inter-lab duplicate samples were analysed by the NATA accredited ALS laboratory.

Table 4, Appendix B, presents the relative percentage differences (RPDs) between the primary and duplicate samples. A review of the Qualtest QA / QC results indicates that RPDs were within the acceptable range. It is noted that low concentrations can exaggerate the percentage differences with respect to small total concentrations, therefore where results for primary and duplicate sample were less than 10 time the LOR, the RPDs have been disregarded.

The laboratory internal QA/QC reports indicated that the appropriate laboratory QA / QC procedures and rates were undertaken for contamination studies, and that:

- Laboratory blank samples were free of contamination;
- Laboratory matrix spike recoveries were within the control limits;
- Laboratory duplicate RPDs were recorded within the control limits; and
- Surrogates and laboratory control samples were within the laboratories acceptable range.

Based on the above, and the data validation report in Appendix J, it is considered that the field and laboratory methods for soil sampling are appropriate and that the data obtained is usable and considered to reasonably represent the concentrations at the sampling points at the time of sampling.

8.0 Results

8.1 Subsurface Conditions

Table 8.1 presents a summary of the typical soil types encountered at borehole locations during the field investigation, divided into representative geotechnical units. Table 8.2 contains a summary of the distribution of the above geotechnical units at the borehole locations. The borehole logs are presented in Appendix I.

Table 8.1 – Summary of Geotechnical Units and Soil Types

Unit	Soil Type	Description
		SAND - fine to medium grained, pale brown to white and grey to dark grey and orange-brown, root affected.
		Sandy Clayey GRAVEL / Clayey GRAVEL - fine to coarse grained, sub-rounded to rounded and sub-angular, grey to grey-brown, pale brown to orange-brown, with some black fine to coarse grained sand, fines of low to medium plasticity, with some slag, coal chitter with some roots and rootlets.
		Sandy Gravelly CLAY / Sandy CLAY / Clayey Gravelly SAND – low plasticity clay, fine to coarse grained sand, black and grey-brown to grey, fine to medium grained angular to sub-angular gravel.
1	FILL	Sandy GRAVEL (crusher dust and road base) - fine to medium grained, sub-rounded to sub-angular, grey-brown to brown and dark grey, and pale brown and grey-brown, fine to coarse grained sand, trace fines of low plasticity.
		Sandy GRAVEL (Coal Chitter) - fine to medium grained, sub-angular to angular, dark grey to black, fine to medium grained sand.
		Silty Sandy GRAVEL / Gravelly Silty SAND – fine to medium grained gravel, sub-rounded to sub-angular, fine to coarse grained sand, pale orange-brown, and dark brown / brown to grey, fine to coarse grained sand, fines of low plasticity.
2	TOPSOIL	Silty SAND – fine to medium grained, brown, fines of low plasticity, root affected.

Unit	Soil Type	Description
	3 ALLUVIUM	CLAY - medium to high plasticity, dark grey to grey with some pale brown and orange-brown, with some fine to medium grained sand, with organic inclusion.
		Sandy CLAY - medium to high plasticity, dark grey, grey, pale grey and orange-brown and brown, fine grained sand.
3		Clayey SAND - fine to medium grained, grey with some white and orange-brown, fines of low to medium plasticity.
		SAND – fine to medium grained, pale grey to white / grey /orange-brown, becoming dark grey to dark brown / black at increasing depth, fines of low plasticity. Weakly cemented layers in places.

Table 8.2 – Summary of Geotechnical Units Encountered at Each Borehole Location

	Unit 1	Unit 2	Unit 3			
Location	Fill	Topsoil	Alluvium			
	Depth in metres (m)					
BH01	0.00 – 0.70	-	0.70 – 2.80			
BH02	0.00 – 0.40	-	0.40 - 2.80			
BH03	0.00 – 0.45	-	0.45 – 2.80			
BH04	-	0.00 – 0.20	0.20 – 2.80			
BH05	0.00 – 0.20	-	0.20 – 2.80			
BH06	0.00 – 0.60	-	0.60 – 2.80			
BH07	0.00 – 1.00	-	1.00 – 2.80			
BH08	0.00 – 0.70	-	0.70 – 2.80			
BH09	0.00 – 0.80	-	0.80 – 2.80			
BH10	0.00 – 0.80	-	0.80 – 2.80			
BH11	0.00 – 0.50	-	0.50 – 2.80			
BH12	0.00 – 0.80	-	0.80 – 2.80			
BH13	0.00 – 0.90	-	0.90 – 1.50			
BH14	0.00 – 0.90	-	0.90 – 1.50			
BH15	0.00 – 1.00	-	1.00 – 1.50			
BH16	0.00 – 0.70	-	0.70 – 1.50			
BH17	0.00 – 1.00	-	1.00 – 1.50			
BH18	0.00 – 0.60	-	0.60 – 1.50			
BH20	0.00 – 1.00	-	1.00 – 1.50			
BH21	0.00 – 0.70	-	0.70 – 1.50			

Location	Unit 1 Fill	Unit 2 Topsoil	Unit 3 Alluvium
		Depth in metres (m)	
BH22	0.00 - 0.40	-	0.40 – 1.50
BH23	0.00 – 0.50	-	0.50 – 1.50
BH25	-	-	0.20 – 1.50
BH26	0.00 - 0.50	-	0.50 – 1.50
BH27	0.00 – 0.30	-	0.30 – 1.50

Slow groundwater inflows were observed at depths of approximately 2.40m beneath existing ground level at borehole locations BH02 to BH05, BH10, and BH12, during the geotechnical assessment in November 2020. No groundwater levels or inflows were observed in the remaining boreholes during the limited time that they remained open on the day of field work.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage

Coal chitter was observed in the fill in each borehole, and slag was occasionally observed in fill materials. No other anthropogenic materials, staining or odours were observed during sampling.

8.2 PID Results

Headspace screening using a Photo-Ionisation Detector (PID) was undertaken on the soil samples collected. PID headspace screening can provide a field indication of whether volatile contaminants are present.

The PID headspace screening recorded results between 0.0 and 3.5ppmv, which indicates a negligible to low potential for volatile contaminants.

8.3 Laboratory Results

Soil analytical results for the contamination assessment are summarised in Table 1 to Table 3, Appendix B. The laboratory analytical reports are also included in Appendix K.

The soil laboratory results were compared to the investigation levels described in Sections 6. The analytical results indicated that concentrations of contaminants were reported below the adopted criteria, with the exception of the following:

- Concentrations of Zinc exceeded the EIL (700mg/kg) in samples BH15 0.0-0.1 (2,900mg/kg), and SS7 (820mg/kg);
- Concentrations of Copper exceeded the EIL (290mg/kg) in sample BH15 0.0-0.1 (350mg/kg);
- Concentrations of Benzo(a)pyrene exceeded the ESL (0.7mg/kg) in samples BH22 0.0-0.1 (2.2mg/kg), BH24 0.0-0.1 (1.2mg/kg), BH26 0.0-0.1 (1.0mg/kg) and BH27 0.0-0.1 (1.5mg/kg). These concentrations are below the CRC Care (2017) ESL for benzo(a)pyrene (33mg/kg);
- Concentrations of Benzo(a)pyrene TEQ slightly exceeded the HIL (3mg/kg) in sample BH22 0.0-0.1 (3.1mg/kg).

For concentrations of benzo(a)pyrene, benzo(a)pyrene TEQ, and zinc exceeding the adopted investigation levels the 95% Upper Confidence Limits (UCLs) of the average concentrations for the sample results were calculated using ProUCL in accordance with the procedures discussed in NEPM (2013) Schedule B2 Section 13 and NSW EPA (1995) Sampling Design Guidelines.

NEPM (2013) Schedule B1, Section 3.2.1 states that:

- "At the very least, the maximum and 95%UCL of the arithmetic mean contaminant concentration should be compared to the relevant Tier 1 screening criteria"
- "The implications of localised elevated values (hotspots) should also be considered. The results should also meet the following criteria:
 - The standard deviation of the results should be less than 50% of the relevant investigation or screening level, and
 - No single value should exceed 250% of the relevant investigation or screening level."

Calculation sheets for data statistics, including average, standard deviation and 95%UCL of the average, are attached in Appendix K. ProUCL calculates the UCL comparing a number of different methods, including normal distribution, lognormal distribution, gamma distribution and nonparametric. ProUCL then recommends an appropriate method for the data set.

The UCL was calculated for:

- Zinc in surface soils. It is noted that BH15 0.0-0.1 was not included in the calculation as the concentration of zinc in BH15 0.0-0.1 was considered a hotspot (concentrations greater 250% of screening level);
- Copper in surface soils;
- Benzo(a)pyrene TEQ in surface soils;

The calculations showed:

Parameter	Benzo(a)pyrene	Copper	Zinc
No. of samples	19	12	11
Average	0.932	57.73	200.3
Standard Deviation	0.716	93.24	231.3
95% UCL	1.647	111.7	428
EIL (mg/kg)	3.0	290	700

The 95% UCL calculation shows the average and 95% UCL concentrations for benzo(a)pyrene TEQ, copper, and zinc were below the adopted criteria.

9.0 Discussion

The site history review showed the site has been owned and occupied by the Newcastle Jockey Club since 1915. Available information indicates the site has been used for horse racing since the 1840s. Aerial photographs from 1954 to the present day show that the site has been used as a racecourse facility with associated buildings, viewing pavilions, storage sheds and horse stables being constructed and/or renovated over the past 67 years.

Today the site is still used as a racecourse and includes horse stables, grassed fields used for car parking, horse unloading and loading area, parading area, pavilions, an equine centre and building used for storage of maintenance equipment including pesticides, fertilisers, fuels and oils

The desktop and site history assessment identified four Areas of Environmental Concern (AECs), relating to hazardous materials in current and former buildings; imported fill materials, storage of pesticides, fuels and oils; and application of fertilisers and pesticides. The risk of soil contamination being present was assessed to be low to medium.

The field investigations identified fill across the site to depths between 0.0m bgs and 1.0m bgs. The fill was relatively consistent across the site, comprising of soils mixed with coal chitter, with the exception of surface soils which varied depending on location (i.e. gravel in roads and carparks, and topsoil in grassed areas).

The sampling and analysis targeted the AECs and COPC identified. The results showed concentrations below the adopted criteria, taking into account the 95% UCL calculations, with the exception of zinc above the EIL in sample BH15 0.0-0.1m. BH15 was located in a grassed "median strip" in the horse loading and unloading area, which is asphalt paved. Based on this, the extent of the elevated zinc concentrations was considered small and localised. Therefore, it is considered that further investigation or remediation is not warranted.

It is considered that groundwater is unlikely to be contaminated by site activities, based on the following:

- The soil assessment did not identify gross or widespread contamination. The contamination identified comprised localised impacts of metals in surface soils;
- Groundwater inflows were observed beneath sandy clay alluvial soils. The clayey subsoils would inhibit migration of contamination from surface soils or fill materials, to groundwater.

10.0 Conceptual Site Model

Based on the results of the contamination assessment carried out on the site, a Conceptual Site Model (CSM) has been developed.

Table 10.0 – Preliminary Conceptual Site Model

AEC	COPC	Mechanism of Contamination	Potentially Affected Media	Human & Ecological Receptors	Potential mechanisms of exposure	Potential & Complete Exposure Pathways	Comments
Current and former buildings across the site. Weathering of potentially hazardous materials (asbestos, lead paint, galvanised metals)	Metals, Asbestos	 Top-down leaks/spills, flakes/fibres onto soil. Leaching of soil contaminants to surface water and groundwater. 	 Aesthetics Underlying soils Surface water Groundwater 	 Current site visitors Future construction workers & site users Soil biota/plants and transitory wildlife Offsite surface water Unnamed dam located 230m to the north-east of the site. Offsite groundwater discharge point – Hunter River located approximately 2.5km to the north-east of the site. 	 Direct dermal contact with contaminated soil Ingestion of contaminated soil Inhalation of asbestos fibres, or contaminated soil (as dust) Leaching of soil contaminants to surface water and/or groundwater Groundwater discharge from onsite to offsite Hunter River located 2.5km to the north-east of the site. 	 Incomplete exposure pathway for current site visitors, future construction workers and site users as no contamination above human health criteria identified. Incomplete exposure pathway for ecological receptors, as no contamination above ecological criteria identified, except one localised area for zinc. Likely incomplete exposure pathway for offsite surface water, due to the relatively level topography and nearest surface water body >200m from the site. Likely incomplete exposure pathway for groundwater, due to localised impacts in surface soils, and groundwater beneath sandy clay subsoils. 	It is recommended that s Hazardous material survey be carried out on building proposed to be demolished as part of the proposed development.
2. Imported Fill Potential use of imported fill of unknown quality and origin. 2. Imported Fill Potential use of imported fill of unknown quality and origin.	TRH, BTEX, PAH, OCP, Metals, Asbestos	 Top-down and to depth of fill Leaching of contaminants from fill into underlying soils Leaching of soil contaminants to surface water and groundwater 	 Fill soils Underlying soils Surface water Groundwater 	 Current site visitors Future construction workers & site users Soil biota/plants and transitory wildlife Offsite surface water Unnamed dam located 230m to the north-east of the site. Offsite groundwater discharge point – Hunter River located approximately 2.5km to the north-east of the site. 	 Direct dermal contact with contaminated soil Ingestion of contaminated soil Inhalation of asbestos fibres, or contaminated soil (as dust) Inhalation of petroleum hydrocarbon vapours Leaching of soil contaminants to surface water and/or groundwater Groundwater discharge from onsite to offsite Hunter River located 2.5km to the north-east of the site. 	 Incomplete exposure pathway for current site visitors, future construction workers and site users as no contamination above human health criteria identified. Incomplete exposure pathway for ecological receptors, as no contamination above ecological criteria identified, except one localised area for zinc. Likely incomplete exposure pathway for offsite surface water, due to the relatively level topography and nearest surface water body >200m from the site. Likely incomplete exposure pathway for groundwater, due to localised impacts in surface soils, and groundwater beneath sandy clay subsoils. 	

AEC	COPC	Mechanism of Contamination	Potentially Affected Media	Human & Ecological Receptors	Potential mechanisms of exposure	Potential & Complete Exposure Pathways	Comments
 Storage of fertilisers, pesticides and fuels/oils in groundsmen building Potential for fertiliser, pesticide and hydrocarbon contamination 	Metals, OCPs, BTEX, PAHs, TRH	Top-down Leaching of soil contaminants to surface water and groundwater	SoilsGroundwaterSurface water	 Current site visitors Future construction workers & site users Soil biota/plants and transitory wildlife Onsite surface water – municipal stormwater drains Offsite surface water – Unnamed dam located 230m to the north-east of the site. Offsite groundwater discharge point – Hunter River located approximately 2.5km to the north-east of the site. 	 Direct dermal contact with contaminated soil and/or surface water Ingestion of contaminated soil Inhalation of contaminated soil (as dust) Inhalation of petroleum hydrocarbon vapours Leaching of soil contaminants to surface water and/or groundwater Surface water and groundwater discharge from onsite to offsite Unnamed dam and Hunter River located 230m and 2.5km to the north-east of the site. 	 Incomplete exposure pathway for current site visitors, future construction workers and site users as no contamination above human health criteria identified. Incomplete exposure pathway for ecological receptors, as no contamination above ecological criteria identified, except one localised area for zinc. Likely incomplete exposure pathway for offsite surface water, due to the relatively level topography and nearest surface water body >200m from the site. Likely incomplete exposure pathway for groundwater, due to localised impacts in surface soils, and groundwater beneath sandy clay subsoils. 	
4. Application of fertilisers, and pesticides • Potential for fertiliser and pesticide contamination Output Description:	Metals, OCP	Top-down Leaching of soil contaminants to surface water and groundwater	SoilsGroundwaterSurface water	 Current site visitors Future construction workers & site users Soil biota/plants and transitory wildlife Onsite surface water – municipal stormwater drains Offsite surface water – Unnamed dam located 230m to the north-east of the site. Offsite groundwater discharge point – Hunter River located approximately 2.5km to the north-east of the site. 	 Direct dermal contact with contaminated soil and/or surface water Ingestion of contaminated soil Inhalation of contaminated soil (as dust) Leaching of soil contaminants to surface water and/or groundwater Surface water and groundwater discharge from onsite to offsite Unnamed dam and Hunter River located 230m and 2.5km to the north-east of the site. 	 Incomplete exposure pathway for current site visitors, future construction workers and site users as no contamination above human health criteria identified. Incomplete exposure pathway for ecological receptors, as no contamination above ecological criteria identified, except one localised area for zinc. Likely incomplete exposure pathway for offsite surface water, due to the relatively level topography and nearest surface water body >200m from the site. Likely incomplete exposure pathway for groundwater, due to localised impacts in surface soils, and groundwater beneath sandy clay subsoils 	

11.0 Conclusions and Recommendations

Based on the results of the Preliminary and Detailed Contamination Assessment, it is considered the site is suitable for the proposed redevelopment, from a contamination perspective, in accordance with SEPP Resilience and Hazards (which consolidates former SEPP 55 – Remediation of Land, SEPP 33 – Hazardous and Offensive Development and SEPP (Coastal Management) 2018).

An Unexpected Finds Procedure must be included in the Construction Environmental Management Plan, and implemented during demolition of buildings and earthworks.

If buildings onsite are proposed to be demolished or refurbished as part of the development, it is recommended that a hazardous materials survey is completed by a suitably qualified consultant/hygienist. Following the survey, the hazardous materials (if any) will require appropriate demolition and disposal to a licensed waste facility.

Any soils proposed to be removed from the site, will require waste classification in accordance with the NSW EPA (2014) Waste Classification Guideline. Alternatively, soils may be able to be assessed in accordance with a relevant resource recovery order/exemption under Part 9, Clause 91 to 93 of the Protection of The Environmental Operations (Waste) Regulation 2014.

This report was prepared in general accordance with the relevant sections of the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013).

12.0 Limitations

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted practices and standards. To our knowledge, they represent a reasonable interpretation of the general site history of the site relevant to potential contamination.

This report has been prepared by Qualtest for Newcastle Jockey Club c/o Avid Project Management, based on the objectives and scope of work listed in Sections 1.1 and 1.2. No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to their particular situation.

The opinions, conclusions and recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. Qualtest has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

In preparing this report Qualtest has relied on information contained in searches of government websites and has not independently verified or checked the data contained on these websites.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. The conclusions reached in this report are dependent on the limitations inherent in all subsurface investigations where horizontal and vertical variation in contaminant concentrations can occur. No subsurface assessment can accurately predict the contaminant concentration at all points.

Site conditions may change after the date of this report. Qualtest does not accept responsibility arising from, or in connection with, any change to the site conditions.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

13.0 References

NSW Department of Primary Industries (Office of Water) Registered Groundwater Bore Map, accessed from http://allwaterdata.water.nsw.gov.au/water.stm, accessed on 21 May 2021.

NSW Land and Property Information, Spatial Information eXchange (SIX) Maps - Topographic Map, accessed from https://maps.six.nsw.gov.au/, accessed on 6 May 2021.

Department of Land and Water Conservation (1997) Wallsend Acid Sulfate Soil Risk Map, 1:25,000 scale, Edition 2.

NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land.

NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste.

NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd edition).

WA DoH (2009) Guidelines of the assessment and management of asbestos contaminated sites in Western Australia, WA Department of Health and Department of Environment and Conservation.

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), Canberra (ASC NEPM 2013).

State Environmental Planning Policy Resilience and Hazards.

Environmental Planning & Assessment Act 1979 (EP&A Act).

Contaminated Land Management (CLM) Act 1997 (CLM Act).

Protection of the Environment Operations Act 1997 (POEO Act).

Protection of the Environment Operations (Waste) Regulation 2014 (POEO Regulation).

Newcastle Local Environmental Plan 2012 (NLEP).

Newcastle Development Control Plan 2012 (NDCP), in particular Section 5.02 Land Contamination.

Newcastle Contaminated Land Management Policy.

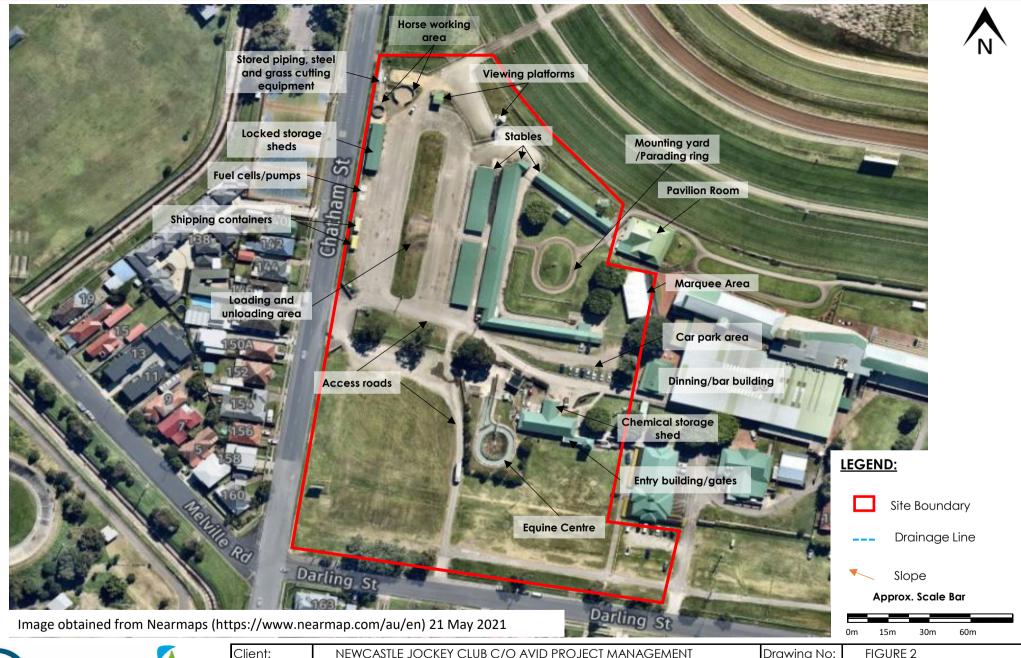
AS/NZS 4482.1 – 2005, Guide to the Sampling and Investigation of potentially contaminated soil – Non-volatile and semi-volatile compounds.

AS/NZS 4482.2 – 1999, Guide to the Sampling and Investigation of potentially contaminated soil – Volatile compounds.

APPENDIX A:

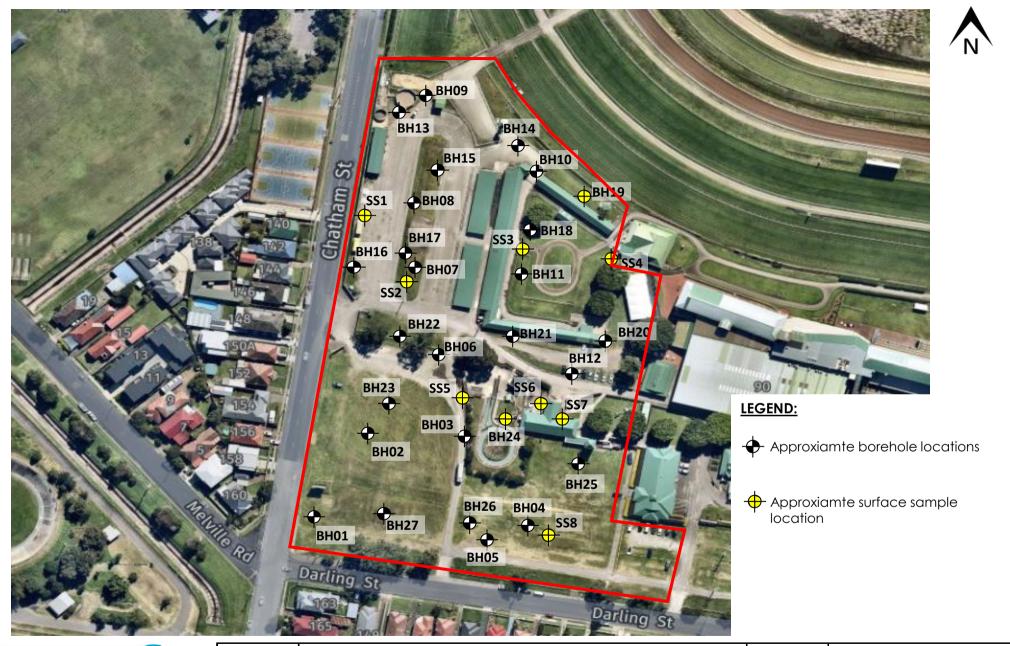
Figures

LEGEND:



Site Boundary

Image obtained from Nearmaps (https://www.nearmap.com/au/en) 21 May 2021



Client:	NEWCASTLE JOCKEY CLUB C/O AVID PROJECT MANAGEMENT	Drawing No:	FIGURE 1
Project:	Contamination assessment	Project No:	NEW20P-0194-AA
Location:	CNR DARLING AND CHATHAM STREET, BROADMEADOW, NSW	Scale:	N.T.S.
Title:	SITE LOCATION PLAN	Date:	28/05/2021

Client:	NEWCASTLE JOCKEY CLUB C/O AVID PROJECT MANAGEMENT	Drawing No:	FIGURE 2
Project:	CONTAMINATION ASSESSMENT	Project No:	NEW20P-0194-AA
Location:	CNR DARLING AND CHATHAM STREET, BROADMEADOW, NSW	Scale:	N.T.S.
Title:	SITE FEATURES PLAN	Date:	28/05/2021

Client:	NEWCASTLE JOCKEY CLUB C/O AVID PROJECT MANAGEMENT	Drawing No:	FIGURE 3
Project:	CONTAMINATION ASSESSMENT	Project No:	NEW20P-0194-AA
Location:	CNR DARLING AND CHATHAM STREET, BROADMEADOW, NSW	Scale:	N.T.S.
Title:	SOIL SAMPLING LOCATIONS	Date:	18/05/2021

NEWCASTLE JOCKEY CLUB C/O AVID PROJECT MANAGEMENT Client: Drawing No: FIGURE 4 CONTAMINATION ASSESSMENT NEW20P-0194-AA Project: Project No: Location: CNR DARLING AND CHATHAM STREET, BROADMEADOW, NSW Scale: N.T.S. Title: NEWCASTLE JOCKEY CLUB - MASTER PLAN Date: 21/04/2022

APPENDIX B:

Tables

Table 1: Soil Analytical Results - TRH, BTEX, PAH, Metals Proposed Stables Development, Darling Street, Broadmeadow NSW

										I	T	I		I	I	T =	I	I	I						
						Field ID												BH25 0.0-0.1				SS2 0.0-0.1	SS3 0.0-0.1		SS5 0.0-0.1
		_				Date	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021
	Analytes	Units	LOR	HIL/HSL C	HSL D	EIL/ESL C												_							
	Arsenic	mg/kg	2	300		100	< 2	10	15	2.3	38	4.3	-	-	-	-	4	-	4.2	-	2.6	8.5	-	3.6	-
	Cadmium	mg/kg	0.4	90			< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	-	-	-	-	< 0.4	-	< 0.4	-	< 0.4	< 0.4	-	0.5	-
	Chromium	mg/kg	5	300		670*	< 5	20	13	17	8.4	5.4	-	-	-	-	9.8	-	37	-	18	6.8	-	7.1	-
Metals	Copper	mg/kg	5	17000		290*	7.7	24	350	17	110	20	-	-	-	-	35	-	26	-	21	38	-	20	-
Ivictais	Lead	mg/kg	5	600		1100	8.3	8.5	410	5.8	130	10	-	-	-	-	60	-	55	-	6.8	49	-	180	-
	Mercury	mg/kg	0.1	80			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	-	-	-	< 0.1	-	< 0.1	1	< 0.1	< 0.1	1	< 0.1	-
	Nickel	mg/kg	5	1200		310*	< 5	20	17	12	17	8.7	-	-	-	-	9.3	-	63	1	13	9.4	-	6.9	-
	Zinc	mg/kg	5	30 000		700*	85	69	2900	48	620	19	-	-	-	-	97	-	94	-	57	270	-	190	-
-11 0 CE	рН	pH units	0.1				-	-	-	-	-	-	-	-	-	-	5.9	-	-	-	-	-	-	-	-
pH & CEC	Cation Exchange Capacity	meq/100g	0.05				-	-	-	-	-	-	-	-	-	-	11	-	-	-	-	-	-	-	-
	Acenaphthene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benz(a)anthracene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.5	< 0.5	1.3	< 0.5	0.9	1.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5			0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.2	< 0.5	1.2	< 0.5	1	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene TEQ	mg/kg	0.6	3			0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	3.1	0.6	1.9	0.6	1.5	2.2	0.6	0.6	0.6	0.6	0.6
	Benzo(b&j)fluoranthene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	< 0.5	1.3	< 0.5	0.6	0.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(g.h.i)perylene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.9	< 0.5	0.8	< 0.5	0.8	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.8	< 0.5	1	< 0.5	0.7	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PAH	Chrysene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.9	< 0.5	1.2	< 0.5	1	1.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dibenz(a.h)anthracene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	4.4	< 0.5	3.8	< 0.5	3.5	3.6	< 0.5	< 0.5	< 0.5	0.7	< 0.5
	Fluorene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.4	< 0.5	0.7	< 0.5	0.6	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5			370	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	0.6	0.7	< 0.5	< 0.5	1.2	< 0.5	2.8	< 0.5	2.2	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Pyrene	mg/kg	0.5				< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	4.5	< 0.5	3.3	< 0.5	3.2	3.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5
	Total PAH*	mg/kg	0.5	300			< 0.5	< 0.5	< 0.5	< 0.5	1.8	1.3	< 0.5	< 0.5	22	< 0.5	18	< 0.5	14.5	16.6	< 0.5	< 0.5	< 0.5	1.3	< 0.5
	Benzene	mg/kg			3	50	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Ethylbenzene	mg/kg			NL	70	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BTEX	Toluene	mg/kg	0.1		NL	85	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Xylenes - Total	mg/kg	0.3		230	105	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
	Naphthalene	mg/kg	0.5		NL	170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	TRH C6-C10	mg/kg	20			180	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C6-C10 less BTEX (F1)	mg/kg	20		260	-55	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
TRH	TRH >C10-C16	mg/kg	50			120	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 250	< 50	< 50
	TRH >C10-C16 less Naphthalene (F2)	mg/kg			NL		< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 250	< 50	< 50
	TRH >C16-C34	mg/kg			NL	300	< 100	< 100	200	< 100	280	150	< 100	< 100	200	< 100	< 100	< 100	< 100	120	< 100	190	340	130	< 100
	TRH >C34-C40	mg/kg	100		NL	2800	< 100	< 100	200	< 100	< 100	< 100	110	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	170	< 100	< 100

Notes

EIL based on pH of 5.9, CEC of 11meq/100ml, and clay content 10%. Ambient background

concentrations (ABCs) calculated from Trace Element Concentrations in Soils from Rural and

Urban Areas of Australia (1995) - old suburbs, high traffic, 25 percentile.

ND Not Detected

NL Non Limiting

Result Concentration exceeds adopted Health Investigation Level (Recreational)

Result Concentration exceeds adopted Health Screening Level (Commercial)

Result Concentration exceeds adopted Ecological Investigation/Screening Level

1 ASC NEPM (2013) - Health Investigation Levels (Recreational/Open Space)

2 ASC NEPM (2013) - Soil Health Screening Levels for Vapour Intrusion, Commercial/Industrial, Sand, 0m to <1m

3 ASC NEPM (2013) - Ecological Investigation and Screening Levels (Recreational/Open Space)

NEW20P-0194 Newcastle Jockey Club Table 1: Soil Analytical Results - TRH, BTEX, PAH, Metals
Proposed Stables Development, Darling Street, Broadmeadow NSW

6	Jualtest

						e: 1115	1 666 0 0 0 4		
						Field ID	SS6 0.0-0.1		
		1	T			Date	13/05/2021	13/05/2021	13/05/2021
	Analytes	Units	LOR	HIL/HSL C	HSL D	EIL/ESL C			
	Arsenic	mg/kg	2	300		100	5.6	5.8	3.8
	Cadmium	mg/kg	0.4	90			0.6	1.4	< 0.4
	Chromium	mg/kg	5	300		670*	17	26	7.4
Metals	Copper	mg/kg	5	17000		290*	59	50	45
victais	Lead	mg/kg	5	600		1100	220	500	89
	Mercury	mg/kg	0.1	80			< 0.1	< 0.1	< 0.1
	Nickel	mg/kg	5	1200		310*	17	16	9.4
	Zinc	mg/kg	5	30 000		700*	390	820	83
pH & CEC	рН	pH units	0.1				-	-	-
pii & CLC	Cation Exchange Capacity	meq/100g	0.05				-	-	-
	Acenaphthene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Benz(a)anthracene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5			0.7	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene TEQ	mg/kg	0.6	3			0.6	0.6	0.6
	Benzo(b&j)fluoranthene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Benzo(g.h.i)perylene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5				0.5	< 0.5	< 0.5
PAH	Chrysene	mg/kg	0.5				0.5	< 0.5	< 0.5
	Dibenz(a.h)anthracene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5				0.9	< 0.5	< 0.5
	Fluorene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5			370	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5				< 0.5	< 0.5	< 0.5
	Pyrene	mg/kg	0.5				1	< 0.5	< 0.5
	Total PAH*	mg/kg	0.5	300			2.9	< 0.5	< 0.5
	Benzene	mg/kg	0.1		3	50	< 0.1	< 0.1	< 0.1
TEV.	Ethylbenzene	mg/kg	0.1		NL	70	< 0.1	< 0.1	< 0.1
BTEX	Toluene	mg/kg	0.1		NL	85	< 0.1	< 0.1	< 0.1
	Xylenes - Total	mg/kg	0.3		230	105	< 0.3	< 0.3	< 0.3
	Naphthalene	mg/kg	0.5		NL	170	< 0.5	< 0.5	< 0.5
	TRH C6-C10	mg/kg	20			180	< 20	< 20	< 20
	TRH C6-C10 less BTEX (F1)	mg/kg	20		260		< 20	< 20	< 20
ΓRH	TRH >C10-C16	mg/kg	50			120	< 50	< 250	< 50
	TRH >C10-C16 less Naphthalene (F2)	mg/kg	50		NL		< 50	< 250	< 50
	TRH >C16-C34	mg/kg	100		NL	300	< 100	760	< 100
	TRH >C34-C40	mg/kg	100		NL	2800	< 100	360	< 100

Notes

EIL based on pH of 5.9, CEC of 11meq/100ml, and clay content 10%. Ambient background

concentrations (ABCs) calculated from Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995) - old suburbs, high traffic, 25 percentile.

ND Not Detected

NL Non Limiting

Result Concentration exceeds adopted Health Investigation Level (Recreational)

Result Concentration exceeds adopted Health Screening Level (Commercial)

Result Concentration exceeds adopted Ecological Investigation/Screening Level

- 1 ASC NEPM (2013) Health Investigation Levels (Recreational/Open Space)
- 2 ASC NEPM (2013) Soil Health Screening Levels for Vapour Intrusion, Commercial/Industrial, Sand, (
- 3 ASC NEPM (2013) Ecological Investigation and Screening Levels (Recreational/Open Space)

Table 2: Soil Analytical Results - OCPs Proposed Stables Development, Darling Street, Broadmeadow NSW

				ı			_			
					Field ID	BH15 0.0-0.1	BH18 0.0-0.1	BH24 0.0-0.1	SS6 0.0-0.1	SS7 0.0-0.1
					Date	12/05/2021	12/05/2021	12/05/2021	13/05/2021	13/05/2021
Analytes		Units	EQL	HIL-C ¹	EIL C/ESL C ³					
	4.4'-DDD	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	4.4'-DDE	mg/kg	0.05	400		< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	4.4'-DDT	mg/kg	0.05		180	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	a-BHC	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Aldrin	mg/kg	0.05	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Dieldrin	mg/kg	0.05	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	b-BHC	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Chlordanes - Total	mg/kg	0.1	70		< 0.1	< 0.1	< 0.1	< 0.1	< 1
	d-BHC	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Endosulfan I	mg/kg	0.05	340		< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
OCPs	Endosulfan II	mg/kg	0.05	340		< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Endosulfan sulphate	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Endrin	mg/kg	0.05	20		< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Endrin aldehyde	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Endrin ketone	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	g-BHC (Lindane)	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Heptachlor	mg/kg	0.05	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Heptachlor epoxide	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Hexachlorobenzene	mg/kg	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.5
	Methoxychlor	mg/kg	0.05	400		< 0.2	< 0.2	< 0.2	< 0.2	< 0.5
	Toxaphene	mg/kg	1	30		< 0.1	< 0.1	< 0.1	< 0.1	< 10

Notes

Result Concentration exceeds adopted Health Investigation Level (Recreational)

Concentration exceeds adopted Ecological Investigation/Screening Level

1 ASC NEPM (2013) - Health Investigation Levels (Recreational/Open Space)

3 ASC NEPM (2013) - Ecological Investigation and Screening Levels (Recreational/Open Space)

Table 3: Soil Analytical Results - Asbestos Proposed Stables Development, Darling Street, Broadmeadow NSW

				Field ID	BH13 0.0-0.2	BH14 0.0-0.2	BH15 0.0-0.2	BH16 0.0-0.2	BH17 0.0-0.2	BH18 0.0-0.2	BH19 0.0-0.2	BH20 0.0-0.2	BH21 0.0-0.2	BH21 0.4-0.5	BH22 0.0-0.2	BH23 0.0-0.2
				Date	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021	12/05/2021
				Material	Soil											
Analytes		Units	LOR	HSL A ¹												
Ashastas	Asbestos (AF & FA quantitative)	% w/w	0.001	0.001	<0.001	-	<0.001	<0.001	<0.001	<0.001	-	< 0.001	<0.001	<0.001	-	-
Asbestos	Asbestos (ACM quantitative)*	% w/w		0.01	ND											
•																
				Field ID	BH24 0.0-0.2	BH25 0.0-0.2	BH26 0.0-0.2	BH27 0.0-0.2	SS1 0.0-0.2	SS2 0.0-0.2	SS3 0.0-0.1	SS4 0.0-0.2	SS5 0.0-0.2	SS6 0.0-0.2	SS7 0.0-0.2	SS8 0.0-0.2
				Date	12/05/2021	12/05/2021	12/05/2021	12/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021	13/05/2021
				Material	Soil											
Analytes		Units	LOR	HSL A ¹												
Asbestos	Asbestos (AF & FA quantitative)	% w/w	0.001	0.001	<0.001	<0.001	-	<0.001	-	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.001
Aspestos	Asbestos (ACM quantitative)*	% w/w		0.01	ND											

Notes

Assessed and calculated by Qualtest: % w/w asbestos in

soil = (% asbestos content x bonded ACM (kg) / (soil

Not analysed

ND Not detected

Result Concentration exceeds adopted health screening level, Asbestos (Recreational)

1 NEPC (2013) Soil Health Screening Levels for Asbestos, Recreational C

Table 4: Quality Control Results Proposed Stables Development, Darling Street, Broadmeadow NSW

		Field ID		BH22	D.12.5.21	DDD0/	BH14	D1.12.5.21	DDD0/	BH22	T.12.5.21	DDD0/	BH14	T1.12.5.21	DDD0/
		Date		12/05/2021	12/05/2021	RPD%									
	Analytes	Units	LOR												
	Arsenic	mg/kg	2	-	-	-	10	9.6	4	-	<5	-	10	-	-
	Cadmium	mg/kg	0.4	-	-	-	< 0.4	< 0.4	0	-	<1	-	< 0.4	-	-
	Chromium	mg/kg	5	-	-	-	20	15	29	-	5	-	20	-	-
Motolo	Copper	mg/kg	5	-	-	-	24	20	18	-	23	-	24	-	-
Metals	Lead	mg/kg	5	-	-	-	8.5	9.2	8	-	126	-	8.5	-	-
	Mercury	mg/kg	0.1	-	-	-	< 0.1	< 0.1	0	-	<0.1	-	< 0.1	-	-
	Nickel	mg/kg	5	-	-	-	20	16	22	-	6	-	20	-	-
	Zinc	mg/kg	5	-	-	-	69	68	1	-	128	-	69	-	-
0. 050	рН	pH units	0.1	-	-	-	-	-	-	-	-	-	-	-	-
pH & CEC	Cation Exchange Capacity	meq/100g	0.05	-	-	-	-	-	-	-	-	-	-	-	-
	Acenaphthene	mg/kg	0.5	< 0.5	< 0.5	0	< 0.5	< 0.5	0	< 0.5	<0.5	0	< 0.5	-	-
	Acenaphthylene	mg/kg	0.5	< 0.5	< 0.5	0	< 0.5	< 0.5	0	< 0.5	<0.5	0	< 0.5	-	-
	Anthracene	mg/kg	0.5	< 0.5	< 0.5	0	< 0.5	< 0.5	0	< 0.5	<0.5	0	< 0.5	-	-
	Benz(a)anthracene	mg/kg	0.5	1.5	1.3	14	< 0.5	< 0.5	0	1.5	1.8	18	< 0.5	-	-
	Benzo(a)pyrene	mg/kg	0.5	2.2	1.8	20	< 0.5	< 0.5	0	2.2	1.2	59	< 0.5	-	-
	Benzo(a)pyrene TEQ	mg/kg	0.6	3.1	2.6	18	0.6	0.6	0	3.1	3	3	0.6	-	-
	Benzo(b&j)fluoranthene	mg/kg	0.5	1.2	1.2	0	< 0.5	< 0.5	0	1.2	2.6	74	< 0.5	-	-
	Benzo(g.h.i)perylene	mg/kg	0.5	1.9	1.5	24	< 0.5	< 0.5	0	1.9	1.6	17	< 0.5	-	-
РАН	Benzo(k)fluoranthene	mg/kg	0.5	1.8	1.4	25	< 0.5	< 0.5	0	1.8	1	57	< 0.5	-	-
FAII	Chrysene	mg/kg	0.5	1.9	1.6	17	< 0.5	< 0.5	0	1.9	1.9	0	< 0.5	-	-
	Dibenz(a.h)anthracene	mg/kg	0.5	< 0.5	< 0.5	0	< 0.5	< 0.5	0	< 0.5	<0.5	0	< 0.5	-	-
	Fluoranthene	mg/kg	0.5	4.4	3.9	12	< 0.5	< 0.5	0	4.4	4.9	11	< 0.5	-	
	Fluorene	mg/kg	0.5	< 0.5	< 0.5	0	< 0.5	< 0.5	0	< 0.5	<0.5	0	< 0.5	-	-
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5	1.4	1	33	< 0.5	< 0.5	0	1.4	1.2	15	< 0.5	-	
	Naphthalene	mg/kg	0.5	< 0.5	< 0.5	0	< 0.5	< 0.5	0	< 0.5	<0.5	0	< 0.5	-	-
	Phenanthrene	mg/kg	0.5	1.2	1	18	< 0.5	< 0.5	0	1.2	1.6	29	< 0.5	-	<u> </u>
	Pyrene	mg/kg	0.5	4.5	4	12	< 0.5	< 0.5	0	4.5	5.2	14	< 0.5	-	
	Total PAH*	mg/kg	0.5	22	18.7	16	< 0.5	< 0.5	0	22	23.9	8	< 0.5	-	
	Benzene	mg/kg	0.1	< 0.1	< 0.1	0	< 0.1	< 0.1	0	< 0.1	<0.2	0	< 0.1	-	
ВТЕХ	Ethylbenzene	mg/kg	0.1	< 0.1	< 0.1	0	< 0.1	< 0.1	0	< 0.1	<0.5	0	< 0.1	-	
	Toluene	mg/kg	0.1	< 0.1	< 0.1	0	< 0.1	< 0.1	0	< 0.1	<0.5	0	< 0.1	-	<u> </u>
	Xylenes - Total	mg/kg	0.3	< 0.3	< 0.3	0	< 0.3	< 0.3	0	< 0.3	<0.5	0	< 0.3	-	<u> </u>
	Naphthalene	mg/kg	0.5	< 0.5	< 0.5	0	< 0.5	< 0.5	0	< 0.5	<0.5	0	< 0.5	-	<u> </u>
	TRH C6-C10	mg/kg	20	< 20	< 20	0	< 20	< 20	0	< 20	<10	0	< 20	-	<u> </u>
	TRH C6-C10 less BTEX (F1)	mg/kg	20	< 20	< 20	0	< 20	< 20	0	< 20	<10	0	< 20	-	<u> </u>
TRH	TRH >C10-C16	mg/kg	50	< 50	< 50	0	< 50	< 50	0	< 50	<50	0	< 50	-	-

		TB 13.5.21
		13/05/2021
Water	Water	Trip Blank
Units	LOR	ттр ыапк
mg/L	-	-
mg/L	0.001	< 0.001
mg/L	0.001	< 0.001
mg/L	0.001	< 0.001
mg/L	0.003	< 0.003
mg/L	0.02	-
mg/L	0.05	< 0.02
mg/L	0.1	< 0.02
mg/L	0.1	-

APPENDIX C:

Groundwater Bore Search

WaterNSW Work Summary

GW058191

Licence: **Licence Status:**

Authorised Purpose(s):

Intended Purpose(s): GENERAL USE

Work Type: Spear Work Status:

Construct_Method: Jetted Owner Type: Private

Commenced Date: Final Depth: 4.00 m

Completion Date: 01/12/1982 **Drilled Depth:**

Contractor Name: (None)

Driller:

Assistant Driller:

Standing Water Level Property: GWMA: Salinity Description: GW Zone: Yield (L/s):

Site Details

Site Chosen By:

County Parish Cadastre Form A: NORTHUMBERLAND **NEWCA** 268

Licensed:

Region: 20 - Hunter CMA Map: 9232-3S

River Basin: 210 - HUNTER RIVER **Grid Zone:** Scale:

Area/District:

Latitude: 32°55'58.3"S Elevation: 0.00 m (A.H.D.) Northing: 6355453.000 Elevation Source: (Unknown) **Easting:** 382335.000 Longitude: 151°44'29.1"E

GS Map: -MGA Zone: 56 Coordinate Source: GD., ACC. MAP

*** End of GW058191 ***

Warning To Clients: This raw data has been supplied to the WaterNSW by drillers, licensees and other sources. WaterNSW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

APPENDIX D:

Historical Titles

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

18/36 Osborne Road, Manly NSW 2095 Telephone: +612 9977 6713 Mobile: 0412 169 809 Email: search@alsearchers.com.au

03rd May, 2021

QUALTEST LABORATORY (NSW) PTY LTD 8 Ironbark Close, WARABROOK NSW 2304

Attention: Stephanie Cullen,

RE: Darling Street,

& 125 Chatham Street, Broadmeadow PO NEW20P-0194

Current Search

Folio Identifier 13/227704 (title attached)
DP 227704 (plan attached)
Dated 03rd May, 2021
Registered Proprietor:

THE NEWCASTLE JOCKEY CLUB LIMITED

Title Tree Lot 13 DP 227704

Folio Identifier 13/227704

Certificate of Title Volume 10209 Folio 157

Certificate of Title Volume 5607 Folio 191

Certificate of Title Volume 5471 Folio 210

PA 35494

See Notes (a), (b), (c) & (d)

(a) (b) (c)

Conv Book 810 No 901 Conv Book 814 No 335 Conv Book 1049 No 242

(d)

Conveyance Book 1091 No 233

Summary of Proprietor(s) Lot 13 DP 227704

Year Proprietor(s)

	(Lot 13 DP 227704)
1987 – todate	The Newcastle Jockey Club Limited
	ž
(2020 – todate)	(current lease to Newcastle Equine Veterinary Services Pty Limited
	of part)
(2015 – todate)	(current lease to Rumpus Room Children's Centre Pty Limited of
	121-123 Chatham Street, Broadmeadow)
(1987 – todate)	(various leases shown on Historical Folio 13/227704)
	(Lot 13 DP 227704 – CTVol 10209 Fol 157)
1966 – 1987	The Newcastle Jockey Club Limited
(1986 - 2004)	(lease to William Herbert Rutledge and Kevin Johns, of building
	known as "The Newcastle Hunter and Central Coast Racing
	Association office, Chatham Road, Broadmeadow)
(1983 - 1985)	(lease to Roy Bede Mahony, Harry Reginald Hayes & William James
	Meredith, of offices No 2 Lowe Street, Hamilton)
	(Lots 1 to 5 and part Lots 8 & 9 Section Y Australian
	Agricultural Company's Subdivision – Area 127 Acres 3 Roods
	19 Perches – CTVol 5607 Fol 191)
1946 – 1966	The Newcastle Jockey Club Limited
	(Lots 1 to 6 and part Lots 8 & 9 Section Y Australian
	Agricultural Company's Subdivision – Area 188 Acres 1 Roods
	14 Perches – CTVol 5471 Fol 210)
1945 – 1946	The Newcastle Jockey Club Limited

See Notes (a), (b), (c) & (d)

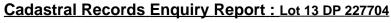
Note (a)

	(Lot 5 Section Y Australian Agricultural Company's Subdivision – Area 3 Acres 2 Roods 0 Perches – Conv Bk 810 No 901)
1906 – 1945	The Newcastle Jockey Club Limited
Prior – 1906	The Australian Agricultural Company

Note (b)

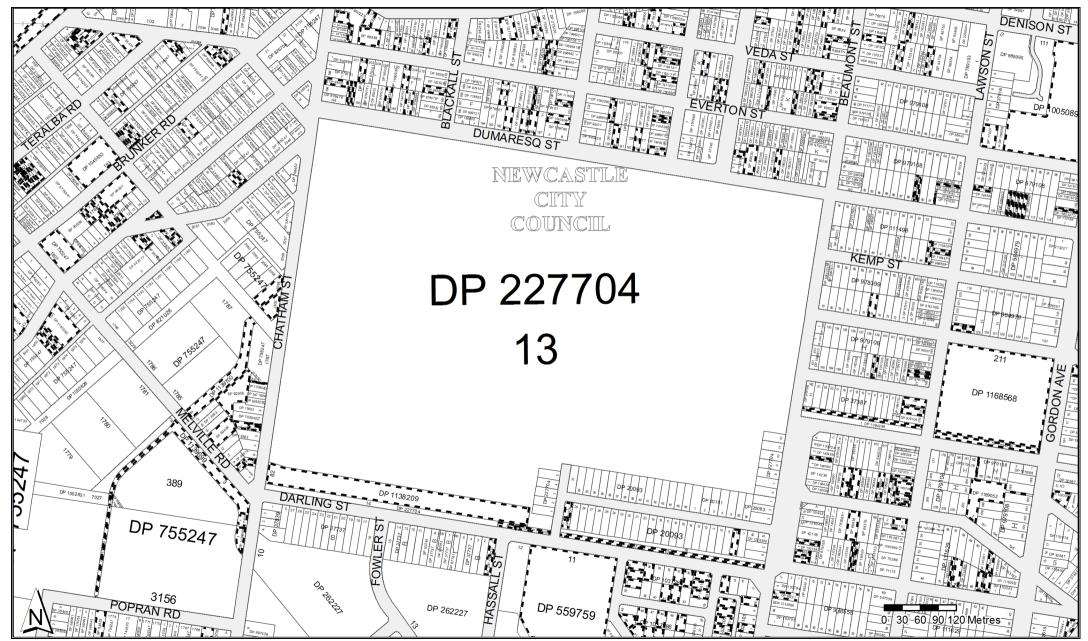
	(Lots 2, 3 & 4 Section Y Australian Agricultural Company's Subdivision – Area 5 Acres 3 Roods 32 Perches – Conv Bk 814 No 335)
1906 – 1945	The Newcastle Jockey Club Limited
Prior – 1906	The Australian Agricultural Company

Note (c)


	(Lots 1 Section Y Australian Agricultural Company's Subdivision – Area 95 Acres 3 Roods 22 Perches – Conv Bk 1049 No 242)	
1914 – 1945	The Newcastle Jockey Club Limited	
Prior – 1914	The Australian Agricultural Company	

Note (d)

	(Part Lot 8 Section Y Australian Agricultural Company's Subdivision – Area 18 Acres 3 Roods 14 3/4 Perches – Conv Bk 1091 No 233)
1915 – 1945	The Newcastle Jockey Club Limited
Prior – 1915	The Australian Agricultural Company


Ref: NOUSER

REGISTRY Locality : BROADMEADOW SERVICES

LGA: NEWCASTLE

County: NORTHUMBERLAND

Parish: NEWCASTLE

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Status Surv/Comp **Purpose** DP17897 Lot(s): 1, 2, 3 DP1266913 PRE-ALLOCATED **UNAVAILABLE** REDEFINITION SP101984 PRE-ALLOCATED **UNAVAILABLE** STRATA PLAN DP19588 Lot(s): 9, 10, 11 **UNAVAILABLE** REDEFINITION DP1266913 PRE-ALLOCATED SP101984 PRE-ALLOCATED **UNAVAILABLE** STRATA PLAN DP20093 Lot(s): 8 DP1256337 REGISTERED SURVEY **EASEMENT** DP36910 Lot(s): 2 CA92121 - LOT 2 DP36910 DP37516 Lot(s): 5 DP1204888 REGISTERED SURVEY REDEFINITION DP95221 Lot(s): 22 CA92030 - LOT 22 DP95221 DP95222 Lot(s): 81 CA92062 - LOT 81 DP95222 DP95330 Lot(s): 109 CA90992 - LOT 109 DP95330 AND LOT 103 DP1077999 DP95332 Lot(s): 197 CA91610 - LOT 197 DP95332 Lot(s): 202 CA91628 - LOT 202 DP95332 Lot(s): 181 CA91823 - LOT 181 DP95332 Lot(s): 189 CA91732 - LOT 189 DP95332 DP95336 Lot(s): 75 CA92246 - LOT 75 DP95336 DP95337 Lot(s): 175 CA91716 - LOT 175 DP95337 Lot(s): 174 CA98474 - LOT 174 DP95337 DP95344 Lot(s): 29 CA91621 - LOT 29 DP95344 Lot(s): 8 CA92037 - LOT 8 DP95344 DP95377 Lot(s): 140 CA91814 - LOT 140 DP95377 Lot(s): 173 CA92251 - LOT 173 DP95377 Lot(s): 143 CA91568 - LOT 143 DP95377 Lot(s): 159 P CA91801 - LOT 159 DP95377 Lot(s): 161 CA91802 - LOT 161 DP95377 Lot(s): 158 CA91803 - LOT 158 DP95377

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Status Surv/Comp **Purpose** Lot(s): 150 P CA92255 - LOT 150 DP95377 DP111629 Lot(s): 68 DP1113486 REGISTERED SURVEY SUBDIVISION DP117840 Lot(s): 1 CA92087 - LOT 1 DP117840 DP150602 Lot(s): 2 CA89198 - LOT 2 DP150602 DP151702 Lot(s): 1 CA105077 - LOT 1 DP151702 DP151948 Lot(s): 1 CA91417 - LOT 1 DP151948 DP153761 Lot(s): 1 REGISTERED **COMPILATION EASEMENT** DP1044318 Lot(s): 2 CA91712 - LOT 2 DP153761 DP154897 Lot(s): 4 CA89054 - LOT 4 DP154897 DP159584 Lot(s): 1 CA91626 - LOT 1 DP159584 DP162171 Lot(s): B CA91504 - LOT B DP162171 DP164986 Lot(s): 2 CA91524 - LOT 2 DP164986 DP194478 Lot(s): 1 DP994008 **HISTORICAL UNAVAILABLE** UNRESEARCHED DP334397 Lot(s): A, B, C P994052 **HISTORICAL COMPILATION** UNRESEARCHED DP343663 Lot(s): A DP1123836 REGISTERED SURVEY **EASEMENT** DP355336 Lot(s): 1 DP649895 REGISTERED **COMPILATION EASEMENT** DP400929 Lot(s): B, C DP649895 REGISTERED COMPILATION **EASEMENT** DP403122 Lot(s): A DP1159741 REGISTERED **SURVEY** SUBDIVISION DP1227321 REGISTERED **SURVEY** SUBDIVISION DP536950 Lot(s): 160 P994006 **HISTORICAL UNAVAILABLE** UNRESEARCHED DP559759 Lot(s): 11 DP227016 HISTORICAL SUBDIVISION SURVEY

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Status Surv/Comp **Purpose** DP568980 Lot(s): 1 CA91514 - LOT 1 DP568980 DP600850 Lot(s): 750 DP266578 REGISTERED SURVEY **EASEMENT** DP755247 Lot(s): 1806 CA92071 - LOT 1806 DP755247 Lot(s): 1807 DP1189760 REGISTERED SURVEY SURVEY INFORMATION ONLY CA92075 - LOT 1807 DP755247 Lot(s): 2066, 2067 DP994131 HISTORICAL **SURVEY** SURVEY INFORMATION ONLY DP782057 Lot(s): 1 DP1263044 PRE-ALLOCATED **UNAVAILABLE DELIMITATION** DP783353 Lot(s): 1 P994008 HISTORICAL UNAVAILABLE UNRESEARCHED DP794967 Lot(s): 1 DP994007 HISTORICAL COMPILATION UNRESEARCHED DP868359 Lot(s): 10, 11 P994007 HISTORICAL **COMPILATION** UNRESEARCHED DP978400 Lot(s): 123 SEE DP95219 DP979101 Lot(s): 208 Section: F CA90492 - LOT 208 SECTION F DP979101 DP1005089 Lot(s): 112 DP858527 **HISTORICAL SURVEY** SUBDIVISION DP1012321 Lot(s): 1, 2, 3, 4 DP755247 HISTORICAL **COMPILATION** CROWN ADMIN NO. DP1016517 Lot(s): 11, 12 HISTORICAL SURVEY UNRESEARCHED DP37737 DP1026105 Lot(s): 7, 10, 14, 15, 16, 17, 18, 22, 23, 24 DP354397 HISTORICAL SURVEY UNRESEARCHED DP1034735 Lot(s): 111 DP37739 **HISTORICAL SURVEY** UNRESEARCHED DP859205 **HISTORICAL COMPILATION** PRIMARY APPLN NON SUBDIVISION DP1029330 SUBDIVISION **HISTORICAL SURVEY** DP1036655 Lot(s): 1 DP994008 **HISTORICAL UNAVAILABLE** UNRESEARCHED DP1037286 Lot(s): 30, 31, 34, 35, 36, 37, 41, 42, 44, 46, 48, 50, 51, 52, 53 SURVEY UNRESEARCHED DP354397 HISTORICAL HISTORICAL DP1026105 SURVEY SUBDIVISION DP1045853 Lot(s): 183 **HISTORICAL SURVEY** UNRESEARCHED DP326807 DP342940 HISTORICAL SURVEY UNRESEARCHED

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

HISTORICAL

Parish: NEWCASTLE

DEPARTMENTAL

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND Status Surv/Comp **Purpose** DP1045944 Lot(s): 1 CA87176 - LOT 1 DP1045944 DP1046106 Lot(s): 13 CA87225 - LOT 13 DP1046106 DP1047369 Lot(s): 16 CA87417 - LOT 16 DP1047369 DP1053021 Lot(s): 692

COMPILATION

DP111629 DP1054079 Lot(s): 5

CA88119 - LOT 5 DP1054079

DP1057884 Lot(s): 1

CA88531 - LOT 1 DP1057884

DP1058180 Lot(s): 1

DP153333 HISTORICAL COMPILATION UNRESEARCHED

DP1060371 Lot(s): 201

DP755247 HISTORICAL COMPILATION CROWN ADMIN NO.

DP1063551 Lot(s): 3

P CA89260 - LOT 3 DP1063551

DP1064111 Lot(s): 1, 2

DP1047705 HISTORICAL COMPILATION LIMITED FOLIO CREATION

CA87468 - LOT 8 DP1047705

DP1071691 Lot(s): 201

P CA90187 - LOT 201 DP1071691

DP1074355 Lot(s): 177

CA90617 - LOT 177 DP1074355

DP1078476 Lot(s): 1, 2

DP137212 HISTORICAL COMPILATION DEPARTMENTAL

DP1078908 Lot(s): 1481, 1482

DP979106 HISTORICAL COMPILATION UNRESEARCHED

DP1079176 Lot(s): 11, 12

CA91280 - LOT 12 DP1079176

Lot(s): 11

CA91279 - LOT 11 DP1079176

DP1079322

Lot(s): 2

■ DP979108 HISTORICAL COMPILATION UNRESEARCHED
■ DP1079234 HISTORICAL SURVEY SUBDIVISION

DP1081153 Lot(s): 38

CA91871 - LOT 38 DP1081153

DP1081686 Lot(s): 8

P CA92386 - LOT 8 DP1081686

DP1081697 Lot(s): 132

🤛 CA92384 - LOT 132 DP1081697

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL ACTIVITY PRIOR TO SEPTEMBER 2002** you must refer to the RGs Charting and Reference Maps.

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Status Surv/Comp Purpose

DP1082019 Lot(s): 92

CA92618 - LOT 92 DP1082019

DP1082032 Lot(s): 14

PDP994007 HISTORICAL COMPILATION UNRESEARCHED

CA92638 - LOT 14 DP1082032

DP1082040 Lot(s): 15

P CA92924 - LOT 15 DP1082040

DP1082063 Lot(s): 94

CA92551 - LOT 94 DP1082063

DP1083003 Lot(s): 31

CA93209 - PART LOT 3 SECTION H. DP979108

Locality: BROADMEADOW

DP1083006 Lot(s): 20

CA93249 - LOT 20 SECTION 5 DP32687

DP1083709 Lot(s): 66

P CA93748 - LOT 66 DP1083709

DP1083936 Lot(s): 1

DP95377 HISTORICAL SURVEY UNRESEARCHED

P1081313 HISTORICAL COMPILATION LIMITED FOLIO CREATION

CA92154 - LOT 154 DP95377

DP1084385 Lot(s): 8

CA94111 - LOT 8 DP1084385

DP1089648 Lot(s): 1

P397120 HISTORICAL SURVEY UNRESEARCHED

DP1094296 Lot(s): 2

CA98359 - LOTS 1 AND 2 DP1094296

DP1097485 Lot(s): 100

P CA99342 - LOT 100 DP1097485

DP1099667 Lot(s): 1121

■ DP979108 HISTORICAL COMPILATION UNRESEARCHED

DP1102094 Lot(s): 28

CA101325 - LOT 28 DP1102094

DP1103821

Lot(s): 1, 2

P979108 HISTORICAL COMPILATION UNRESEARCHED

DP1109890 Lot(s): 13

CA104455 - LOT 13 DP1109890

DP1109965 Lot(s): <u>14</u>7

P CA104265 - LOT 147 DP1109965

DP1110016 Lot(s): 180

P CA104266 - LOT 180 DP1110016

DP1112281 Lot(s): 51, 52

DP755247 HISTORICAL COMPILATION CROWN ADMIN NO.

Caution: This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Status Surv/Comp **Purpose**

DP1122139 Lot(s): 212

DP879044 HISTORICAL SURVEY SUBDIVISION

DP1138209 Lot(s): 81, 82

CA137881 - LOTS 81 AND 82 DP1138209

DP1139699 Lot(s): 1, 2, 3

CA145217 - LOTS 1-3 DP1139699 AND LOT 4 DP1139700

Locality: BROADMEADOW

DP1139700 Lot(s): 4

CA145217 - LOTS 1-3 DP1139699 AND LOT 4 DP1139700

DP1139744 Lot(s): 4

CA145571 - LOT 4 DP1139744 AND LOT 5 DP1139745

DP1139745 Lot(s): 5

CA145571 - LOT 4 DP1139744 AND LOT 5 DP1139745

DP1147134 Lot(s): 651

> DP111629 HISTORICAL **COMPILATION DEPARTMENTAL**

Lot(s): 652

CA150149 - LOT 652 DP1147134

DP1151219 Lot(s): 1, 2

CA133276 - LOT 1 DP1151219

Lot(s): 2

CA153133 - LOT 2 DP115129

DP1159741 Lot(s): 412

DP1227321 REGISTERED **SURVEY** SUBDIVISION

Lot(s): 411, 412

🖳 DP755247 **HISTORICAL** COMPILATION CROWN ADMIN NO.

DP1160293 Lot(s): 1260, 1261

HISTORICAL **COMPILATION** LIMITED FOLIO CREATION 🖳 DP1055310

CA88353 - LOT 126 DP1055310

Lot(s): 1261

DP799093 HISTORICAL COMPILATION **DEPARTMENTAL**

DP1161828 Lot(s): 21, 22

DP397120 HISTORICAL SURVEY UNRESEARCHED DP1089648 HISTORICAL SURVEY SUBDIVISION

DP1167243

Lot(s): 1, 2 DP979108 HISTORICAL COMPILATION

UNRESEARCHED

DP1168400 Lot(s): 10

CA130852 - LOT 10 DP1168400

DP1168568 Lot(s): 211

CA139051 - LOT 211 DP1168568

DP1181993 Lot(s): 100

COMPILATION CROWN ADMIN NO. DP755247 HISTORICAL

DP1187008 Lot(s): 2

CA167904 - LOT 2 DP1187008

DP1189052 Lot(s): 1

CA168985 - LOT 1 DP1189052

Caution: This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

	EGA : NEWO/IOTEL		ounty: NORTHOMBEREAM
	Status	Surv/Comp	Purpose
DP1191328		•	·
Lot(s): 1, 2			
DP20093	HISTORICAL	SURVEY	UNRESEARCHED
DP1198222			
Lot(s): 102			
DP210660	HISTORICAL	SURVEY	SUBDIVISION
DP1203600			
Lot(s): 1, 2, 3	LUCTORIONI	COMPU ATION	LINDEGEADOLIED
☐ DP979108	HISTORICAL	COMPILATION	UNRESEARCHED
Lot(s): 3	HISTORICAL	COMPU ATION	DEDARTMENTAL
₽ DP196167	HISTORICAL	COMPILATION	DEPARTMENTAL
DP1206890			
_ot(s): 1, 2 ■ DP309582	HISTORICAL	COMPILATION	UNRESEARCHED
DP1210672	THOTORIOAE	COM ILATION	ONNEGERICOTIED
Lot(s): 181, 182			
DP557459	HISTORICAL	SURVEY	SUBDIVISION
DP1212891	1110101110112	33.11.2.1	002211101011
_ot(s): 1, 2			
DP979101	HISTORICAL	COMPILATION	UNRESEARCHED
DP1224926			
_ot(s): 13			
DP333529	HISTORICAL	COMPILATION	UNRESEARCHED
DP1227321			
_ot(s): 1, 2			
DP755247	HISTORICAL	COMPILATION	CROWN ADMIN NO.
DP1159741	HISTORICAL	SURVEY	SUBDIVISION
DP1231619			
_ot(s): 16			
DP172729	HISTORICAL	COMPILATION	UNRESEARCHED
DP173225	HISTORICAL	COMPILATION	UNRESEARCHED
DP173226	HISTORICAL	COMPILATION	UNRESEARCHED
DP173227	HISTORICAL	SURVEY	UNRESEARCHED
DP173327	HISTORICAL	SURVEY	UNRESEARCHED
P173548	HISTORICAL	COMPILATION	UNRESEARCHED
P173813	HISTORICAL	COMPILATION	UNRESEARCHED
DP173844	HISTORICAL	COMPILATION	UNRESEARCHED
P173845	HISTORICAL	COMPILATION	UNRESEARCHED
DP174286	HISTORICAL	COMPILATION	UNRESEARCHED
☐ DP174490	HISTORICAL	COMPILATION	UNRESEARCHED
DP190969	HISTORICAL	COMPILATION	UNRESEARCHED
P DP662911	HISTORICAL	COMPILATION	DEPARTMENTAL
DP1006738	HISTORICAL	SURVEY	SUBDIVISION
DP1006850	HISTORICAL	SURVEY	REDEFINITION
DP1067381	HISTORICAL	SURVEY	SUBDIVISION
P1147480	HISTORICAL	SURVEY	SUBDIVISION
Z CA89899 - LOTS			
_ot(s): 12, 16			
₽ DP1006358	HISTORICAL	SURVEY	RESUMPTION OR ACQUISITION
P1070943	REGISTERED	SURVEY	SURVEY INFORMATION ONLY
CA174911 - NPW			202
•	S 11-12 AND 16 DP1231619		
-	7 11-12 AND 10 DF 1231018		
DP1232702 ∟ot(s): 1, 2			
DP755247	HISTORICAL	COMPILATION	CROWN ADMIN NO.
DP1236106	HOTORIOAL	CONTILATION	ONOWIN ADMINING.
_ot(s): 1, 2			
P984979	HISTORICAL	COMPILATION	UNRESEARCHED
70.00			

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

	LGA . NEWCASTLE		OUILY . NORTHOWIDERLAND
	Status	Surv/Comp	Purpose
DP1246910		•	•
Lot(s): 10			
DP196469	HISTORICAL	COMPILATION	DEPARTMENTAL
CA129885 - LO	Г 932 DP1126329		
DP1253244	. 002 21 1120020		
Lot(s): 1, 2			
P13583	HISTORICAL	SURVEY	UNRESEARCHED
DP1253899			
Lot(s): 21, 22			
DP13583	HISTORICAL	SURVEY	UNRESEARCHED
DP1254586			
Lot(s): 1, 2			
`´ 🧕 DP979108	HISTORICAL	COMPILATION	UNRESEARCHED
DP1270224			
Lot(s): 243			
P333722	HISTORICAL	SURVEY	UNRESEARCHED
DP755247	HISTORICAL	COMPILATION	CROWN ADMIN NO.
DP1271453			
Lot(s): 100			
P744442	HISTORICAL	COMPILATION	DEPARTMENTAL
SP17007			
₽ SP70564	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP37492			
SP91578	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP65477			
P755247	HISTORICAL	COMPILATION	CROWN ADMIN NO.
P1027858	HISTORICAL	SURVEY	SUBDIVISION
SP66836	THOTOTAL	001(121	COBBINICION
₽ DP1032967	HISTORICAL	SURVEY	OLD SYSTEM CONVERSION
SP69087	1110101110712	0011121	CLS CTOTEM CONVERCION
₽ DP846148	HISTORICAL	SURVEY	PRIMARY APPLN NON SUBDIVISION
SP69607	1110101110712	0011121	Transmitt für Environt GGBB violent
□ DP745286	HISTORICAL	COMPILATION	DEPARTMENTAL
P1048639	HISTORICAL	SURVEY	DELIMITATION
_	HISTORICAL	SORVET	DELIMITATION
SP73895 P1011076	HISTORICAL	COMPILATION	LIMITED FOLIO CREATION
_			
P1070815	HISTORICAL	SURVEY	OLD SYSTEM CONVERSION
PA81644 - LOT	12 DP1070815		
SP86995		0014011471011	ODOMALA DAMALA LO
P755247	HISTORICAL	COMPILATION	CROWN ADMIN NO.
DP1175141	HISTORICAL	SURVEY	REDEFINITION
SP89620			
DP742958	HISTORICAL	COMPILATION	DEPARTMENTAL
DP1022047	HISTORICAL	COMPILATION	LIMITED FOLIO CREATION
DP1129576	HISTORICAL	SURVEY	DELIMITATION
SP91328			
DP163271	HISTORICAL	SURVEY	UNRESEARCHED
P1204888	HISTORICAL	SURVEY	REDEFINITION
Z CA91548 - LOT			
SP92905			
P703942	HISTORICAL	SURVEY	SUBDIVISION
P1209431	HISTORICAL	SURVEY	REDEFINITION
_	HISTORICAL	SORVET	REDEFINITION
SP94829	HISTORICAL	SURVEY	SUBDIVISION
_			REDEFINITION
PD00057	HISTORICAL	SURVEY	REDEFINITION
SP98657	LUCTODIOAL	COMPU ATION	CDOMAN ADMINIANO
PR404000	HISTORICAL	COMPILATION	CROWN ADMIN NO.
DP1242006	HISTORICAL	SURVEY	SUBDIVISION

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

	Status	Surv/Comp	Purpose
SP98710			
DP403122	HISTORICAL	SURVEY	UNRESEARCHED
DP1246752	HISTORICAL	SURVEY	REDEFINITION
SP99558			
DP37739	HISTORICAL	SURVEY	UNRESEARCHED
DP859205	HISTORICAL	COMPILATION	PRIMARY APPLN NON SUBDIVISION
DP1029330	HISTORICAL	SURVEY	SUBDIVISION
DP1251913	HISTORICAL	SURVEY	CONSOLIDATION
SP99636			
DP13583	HISTORICAL	SURVEY	UNRESEARCHED
DP1253326	HISTORICAL	SURVEY	CONSOLIDATION
SP101948			
DP1256198	HISTORICAL	SURVEY	CONSOLIDATION
SP102706			
DP397120	HISTORICAL	SURVEY	UNRESEARCHED
DP1268265	HISTORICAL	SURVEY	REDEFINITION

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

		County : NORTHOMBEREAND
Plan	Surv/Comp	Purpose
DP13583	SURVEY	UNRESEARCHED
DP17897	SURVEY	UNRESEARCHED
DP18347	SURVEY	UNRESEARCHED
DP19047	SURVEY	UNRESEARCHED
DP19338	SURVEY	UNRESEARCHED
DP19588	SURVEY	UNRESEARCHED
DP20093	SURVEY	UNRESEARCHED
DP20181	SURVEY	UNRESEARCHED
DP22857	SURVEY	UNRESEARCHED
DP32687 DP36910	SURVEY COMPILATION	UNRESEARCHED SUBDIVISION
DP36910 DP36911	COMPILATION	SUBDIVISION
DP37254	SURVEY	UNRESEARCHED
DP37332	SURVEY	UNRESEARCHED
DP37387	SURVEY	UNRESEARCHED
DP37451	SURVEY	UNRESEARCHED
DP37512	SURVEY	UNRESEARCHED
DP37516	SURVEY	UNRESEARCHED
DP37737	SURVEY	UNRESEARCHED
DP37739	SURVEY	UNRESEARCHED
DP37839	SURVEY	UNRESEARCHED
DP37867	SURVEY	UNRESEARCHED
DP37913 DP37916	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP37916 DP39318	SURVEY	UNRESEARCHED
DP39316 DP40689	COMPILATION	CROWN FOLIO CREATION
DP75471	SURVEY	UNRESEARCHED
DP76276	SURVEY	UNRESEARCHED
DP87913	SURVEY	UNRESEARCHED
DP88443	SURVEY	UNRESEARCHED
DP89947	SURVEY	UNRESEARCHED
DP95216	COMPILATION	UNRESEARCHED
DP95219	COMPILATION	UNRESEARCHED
DP95221	SURVEY	UNRESEARCHED
DP95222 DP95329	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP95329 DP95330	SURVEY	UNRESEARCHED
DP95331	COMPILATION	UNRESEARCHED
DP95332	COMPILATION	UNRESEARCHED
DP95336	COMPILATION	UNRESEARCHED
DP95337	COMPILATION	UNRESEARCHED
DP95338	COMPILATION	UNRESEARCHED
DP95340	COMPILATION	UNRESEARCHED
DP95344	SURVEY	UNRESEARCHED
DP95345	SURVEY	UNRESEARCHED
DP95377	SURVEY	UNRESEARCHED
DP100361	SURVEY	UNRESEARCHED
DP100362 DP102254	COMPILATION SURVEY	UNRESEARCHED UNRESEARCHED
DP102254 DP111498	COMPILATION	DEPARTMENTAL
DP111629	COMPILATION	DEPARTMENTAL
DP112539	COMPILATION	DEPARTMENTAL
DP117831	COMPILATION	SUBDIVISION
DP117832	COMPILATION	SUBDIVISION
DP117840	COMPILATION	SUBDIVISION
DP119880	COMPILATION	DEPARTMENTAL
DP120392	COMPILATION	DEPARTMENTAL
DP121935	COMPILATION	DEPARTMENTAL
DP132396	COMPILATION	DEPARTMENTAL
DP134273	COMPILATION	DEPARTMENTAL
DP136529 DP136912	COMPILATION COMPILATION	DEPARTMENTAL LIMITED FOLIO CREATION
DP136912 DP137117	COMPILATION	DEPARTMENTAL
DP150032	SURVEY	UNRESEARCHED
DP150352	COMPILATION	UNRESEARCHED
Caution:	This information is provided as a convenient aid only. Whilet over	

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

	LGA: NEWCASTLE	County: NORTHUMBERLAND
Plan	Surv/Comp	Purpose
	•	•
DP150461	COMPILATION	UNRESEARCHED
DP150602	COMPILATION	UNRESEARCHED
DP150603	COMPILATION	UNRESEARCHED
DP151003	COMPILATION	UNRESEARCHED
DP151116	COMPILATION	UNRESEARCHED
DP151238	COMPILATION	UNRESEARCHED
DP151448	COMPILATION	UNRESEARCHED
DP151702	COMPILATION	UNRESEARCHED
DP151876	COMPILATION	UNRESEARCHED
DP151922	COMPILATION	UNRESEARCHED
DP151948	COMPILATION	UNRESEARCHED
DP152066	COMPILATION	UNRESEARCHED
DP152890	COMPILATION	UNRESEARCHED
DP153140	SURVEY	UNRESEARCHED
DP153187	COMPILATION	UNRESEARCHED
DP153343	COMPILATION	UNRESEARCHED
DP153399	SURVEY	UNRESEARCHED
DP153402	COMPILATION	UNRESEARCHED
DP153488	COMPILATION	UNRESEARCHED
DP153592	SURVEY	UNRESEARCHED
DP153624	COMPILATION	UNRESEARCHED
DP153724	COMPILATION	UNRESEARCHED
DP153753	SURVEY	UNRESEARCHED
DP153761	COMPILATION	UNRESEARCHED
DP153761 DP153794	COMPILATION	UNRESEARCHED
DP153915	SURVEY	UNRESEARCHED
DP154106	COMPILATION	UNRESEARCHED
DP154190	SURVEY	UNRESEARCHED
DP154300	COMPILATION	UNRESEARCHED
DP154412	COMPILATION	UNRESEARCHED
DP154727	SURVEY	UNRESEARCHED
DP154897	SURVEY	UNRESEARCHED
DP159002	SURVEY	UNRESEARCHED
DP159038	SURVEY	UNRESEARCHED
DP159584	COMPILATION	UNRESEARCHED
DP159792	SURVEY	UNRESEARCHED
DP161391	SURVEY	UNRESEARCHED
DP162114	SURVEY	UNRESEARCHED
DP162171	SURVEY	UNRESEARCHED
DP163271	SURVEY	UNRESEARCHED
	SURVEY	
DP164986		UNRESEARCHED
DP168345	SURVEY	UNRESEARCHED
DP168346	SURVEY	UNRESEARCHED
DP174254	COMPILATION	UNRESEARCHED
DP177332	SURVEY	UNRESEARCHED
DP177417	COMPILATION	UNRESEARCHED
DP177537	SURVEY	UNRESEARCHED
DP178317	SURVEY	UNRESEARCHED
DP178404	SURVEY	UNRESEARCHED
DP179889	COMPILATION	UNRESEARCHED
DP188311	COMPILATION	UNRESEARCHED
DP192619	COMPILATION	UNRESEARCHED
DP193997	COMPILATION	DEPARTMENTAL
DP194478	COMPILATION	DEPARTMENTAL
DP194653	COMPILATION	DEPARTMENTAL
DP194765	COMPILATION	DEPARTMENTAL
DP194765 DP195046	COMPILATION	DEPARTMENTAL
DP195223	COMPILATION	DEPARTMENTAL
DP195952	COMPILATION	DEPARTMENTAL
DP196202	COMPILATION	DEPARTMENTAL
DP196345	COMPILATION	DEPARTMENTAL
DP196943	COMPILATION	DEPARTMENTAL
DP196977	COMPILATION	DEPARTMENTAL
DP197099	COMPILATION	DEPARTMENTAL
DP197285	COMPILATION	DEPARTMENTAL
DP197286	COMPILATION	DEPARTMENTAL
Caution:		Whilst every endeavour is made the ensure that current man, plan and

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Plan	Surv/Comp	Purpose
DP197322	COMPILATION	DEPARTMENTAL
DP197942	COMPILATION	DEPARTMENTAL
DP197989	COMPILATION	DEPARTMENTAL
DP198404	COMPILATION	DEPARTMENTAL
DP198543	COMPILATION	DEPARTMENTAL
DP198853	COMPILATION	DEPARTMENTAL
DP198905	COMPILATION	DEPARTMENTAL
DP198939	COMPILATION	DEPARTMENTAL DEPARTMENTAL
DP199244 DP199270	COMPILATION COMPILATION	DEPARTMENTAL
DP199623	COMPILATION	DEPARTMENTAL
DP199714	COMPILATION	DEPARTMENTAL
DP199731	COMPILATION	DEPARTMENTAL
DP204561	SURVEY	SUBDIVISION
DP211338	SURVEY	SUBDIVISION
DP213226	SURVEY	SUBDIVISION
DP213227	SURVEY	SUBDIVISION
DP217358	SURVEY	SUBDIVISION
DP222277	SURVEY	SUBDIVISION
DP223004 DP223369	SURVEY	SUBDIVISION
DP223369 DP227704	SURVEY SURVEY	SUBDIVISION SUBDIVISION
DP262227	SURVEY	SUBDIVISION
DP300387	SURVEY	UNRESEARCHED
DP300961	COMPILATION	UNRESEARCHED
DP303372	COMPILATION	UNRESEARCHED
DP304118	SURVEY	UNRESEARCHED
DP304381	SURVEY	UNRESEARCHED
DP304937	COMPILATION	UNRESEARCHED
DP305058	COMPILATION	UNRESEARCHED
DP308536	SURVEY	UNRESEARCHED UNRESEARCHED
DP309015 DP309444	COMPILATION SURVEY	UNRESEARCHED
DP309444 DP310119	COMPILATION	UNRESEARCHED
DP310113	SURVEY	UNRESEARCHED
DP310796	COMPILATION	UNRESEARCHED
DP311987	COMPILATION	UNRESEARCHED
DP312348	COMPILATION	UNRESEARCHED
DP312607	SURVEY	UNRESEARCHED
DP312941	SURVEY	UNRESEARCHED
DP314405	SURVEY	UNRESEARCHED
DP314498	COMPILATION	UNRESEARCHED
DP316567 DP317014	COMPILATION	UNRESEARCHED UNRESEARCHED
DP317014 DP317303	COMPILATION COMPILATION	UNRESEARCHED
DP317893	COMPILATION	UNRESEARCHED
DP317903	COMPILATION	UNRESEARCHED
DP320124	COMPILATION	UNRESEARCHED
DP320968	COMPILATION	UNRESEARCHED
DP322592	COMPILATION	UNRESEARCHED
DP326582	COMPILATION	UNRESEARCHED
DP327045	COMPILATION	UNRESEARCHED
DP330003	COMPILATION	UNRESEARCHED
DP330575 DP330998	COMPILATION SURVEY	UNRESEARCHED UNRESEARCHED
DP330996 DP332261	COMPILATION	UNRESEARCHED
DP332921	COMPILATION	UNRESEARCHED
DP332929	COMPILATION	UNRESEARCHED
DP333722	SURVEY	UNRESEARCHED
DP333801	COMPILATION	UNRESEARCHED
DP334038	SURVEY	UNRESEARCHED
DP334047	COMPILATION	UNRESEARCHED
DP334364	COMPILATION	UNRESEARCHED
DP334397	SURVEY	UNRESEARCHED
DP335201	COMPILATION	UNRESEARCHED
DP335249	COMPILATION	UNRESEARCHED
Caution:	This information is provided as a searching aid only	Whilst every endeavour is made the ensure that current man, plan and

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

	LGA: NEWCASTLE	County: NORTHUMBERLAND
Plan	Surv/Comp	Purpose
	·	•
DP335437	COMPILATION	UNRESEARCHED
DP336165	SURVEY	UNRESEARCHED
DP336202	COMPILATION	UNRESEARCHED
DP336268	COMPILATION	UNRESEARCHED
DP337780	SURVEY	UNRESEARCHED
DP340476	SURVEY	UNRESEARCHED
DP340666	SURVEY	UNRESEARCHED
DP342940	SURVEY	UNRESEARCHED
DP343475	COMPILATION	UNRESEARCHED
DP343663	SURVEY	UNRESEARCHED
DP345004	SURVEY	UNRESEARCHED
DP345069	SURVEY	UNRESEARCHED
DP345886	SURVEY	UNRESEARCHED
DP346256	SURVEY	UNRESEARCHED
DP347192	SURVEY	UNRESEARCHED
DP347707	COMPILATION	UNRESEARCHED
DP348264	SURVEY	UNRESEARCHED
DP350089	COMPILATION	UNRESEARCHED
DP354457	COMPILATION	UNRESEARCHED
		• · · · · · · · · · · · · · · · · · · ·
DP355336	COMPILATION	UNRESEARCHED
DP366946	COMPILATION	UNRESEARCHED
DP366986	SURVEY	UNRESEARCHED
DP367994	COMPILATION	UNRESEARCHED
DP368412	SURVEY	UNRESEARCHED
DP371936	COMPILATION	UNRESEARCHED
DP377913	SURVEY	UNRESEARCHED
DP379043	SURVEY	UNRESEARCHED
DP390735	SURVEY	UNRESEARCHED
DP395042	SURVEY	UNRESEARCHED
DP400929	SURVEY	UNRESEARCHED
DP403122	SURVEY	UNRESEARCHED
DP409599	SURVEY	UNRESEARCHED
DP435357	SURVEY	UNRESEARCHED
DP435949	SURVEY	UNRESEARCHED
DP440806	SURVEY	UNRESEARCHED
DP441070	SURVEY	UNRESEARCHED
DP447636	SURVEY	UNRESEARCHED
DP448711	SURVEY	UNRESEARCHED
DP456095	COMPILATION	DEPARTMENTAL
DP500834	SURVEY	OLD SYSTEM CONVERSION
DP500034	SURVEY	SUBDIVISION
DP508357	SURVEY	SUBDIVISION
DP515586	SURVEY	SUBDIVISION
DP516406	COMPILATION	SUBDIVISION
DP522277	SURVEY	SUBDIVISION
DP522611	SURVEY	SUBDIVISION
DP522870	SURVEY	SUBDIVISION
DP523029	SURVEY	SUBDIVISION
DP523411	SURVEY	SUBDIVISION
DP529943	SURVEY	SUBDIVISION
DP536868	SURVEY	SUBDIVISION
DP536950	SURVEY	SUBDIVISION
DP540225	SURVEY	SUBDIVISION
DP547039	SURVEY	OLD SYSTEM CONVERSION
DP557459	SURVEY	SUBDIVISION
DP559759	COMPILATION	RESUMPTION OR ACQUISITION
DP559891	SURVEY	SUBDIVISION
DP559988	SURVEY	SUBDIVISION
DP563045	SURVEY	SUBDIVISION
DP568980	SURVEY	SUBDIVISION
DP571722	SURVEY	SUBDIVISION
DP571771	SURVEY	OLD SYSTEM CONVERSION
DP581258	SURVEY	SUBDIVISION
DP586345	SURVEY	SUBDIVISION
DP586925	SURVEY	SUBDIVISION
DP506925 DP595648	SURVEY	SUBDIVISION
Caution:	This information is provided as a searching aid only Wh	pilst every endeavour is made the ensure that current man, plan and

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Plan Surv/Comp **Purpose** DP600850 **SURVEY** SUBDIVISION DP626527 COMPILATION SUBDIVISION DP628619 SUBDIVISION **SURVEY** DP660723 COMPILATION DEPARTMENTAL DP664615 **COMPILATION DEPARTMENTAL** DP666931 **COMPILATION DEPARTMENTAL** DP666932 COMPILATION **DEPARTMENTAL** DP666933 **COMPILATION DEPARTMENTAL** DP666934 COMPILATION **DEPARTMENTAL** DP666958 COMPILATION **DEPARTMENTAL** DP667015 COMPILATION **DEPARTMENTAL** DP669348 **COMPILATION DEPARTMENTAL** DP669376 COMPILATION **DEPARTMENTAL** DP669392 COMPILATION DEPARTMENTAL DP669394 **COMPILATION DEPARTMENTAL** DP669395 **COMPILATION DEPARTMENTAL** DP669396 COMPILATION **DEPARTMENTAL** DP703942 **SURVEY SUBDIVISION** DP706288 **SURVEY** OLD SYSTEM CONVERSION COMPILATION DP707231 **DEPARTMENTAL** DP708452 SUBDIVISION **SURVEY** DP709901 **COMPILATION** DEPARTMENTAL DP709941 COMPILATION **DEPARTMENTAL** DP711607 COMPILATION DEPARTMENTAL DP711650 **COMPILATION DEPARTMENTAL** DP712285 **COMPILATION DEPARTMENTAL** COMPILATION DP712326 DEPARTMENTAL DP712330 COMPILATION DEPARTMENTAL DP712477 COMPILATION **DEPARTMENTAL** COMPILATION DP713400 DEPARTMENTAL **COMPILATION** DP713471 **DEPARTMENTAL COMPILATION** DP714539 **DEPARTMENTAL** DP715967 **COMPILATION DEPARTMENTAL** DP716801 **COMPILATION DEPARTMENTAL** DP716807 **COMPILATION** DEPARTMENTAL DP718352 **COMPILATION DEPARTMENTAL** DP718447 COMPILATION DEPARTMENTAL DP719412 COMPILATION **DEPARTMENTAL** DP719414 **COMPILATION DEPARTMENTAL** DP719415 COMPILATION DEPARTMENTAL DP719416 COMPILATION **DEPARTMENTAL** DP730556 COMPILATION **DEPARTMENTAL DEPARTMENTAL** DP730696 COMPILATION **COMPILATION** DP734069 **DEPARTMENTAL** DP735925 **COMPILATION** DEPARTMENTAL DP735929 **COMPILATION DEPARTMENTAL** DP736463 **COMPILATION DEPARTMENTAL** DP737521 COMPILATION **DEPARTMENTAL** DP737711 **COMPILATION DEPARTMENTAL** DP737811 COMPILATION **DEPARTMENTAL** DP740192 COMPILATION CONSOLIDATION DP741055 COMPILATION **DEPARTMENTAL COMPILATION** DP741103 **DEPARTMENTAL** DP741489 COMPILATION **DEPARTMENTAL** DP741518 COMPILATION DEPARTMENTAL DP741561 **COMPILATION** DEPARTMENTAL DP741647 **COMPILATION DEPARTMENTAL** DP742528 COMPILATION **DEPARTMENTAL** DP742534 **COMPILATION DEPARTMENTAL** DP742984 COMPILATION **DEPARTMENTAL** DP744039 **COMPILATION DEPARTMENTAL** DP744076 **COMPILATION DEPARTMENTAL** COMPILATION DP744368 DEPARTMENTAL DP744398 COMPILATION **DEPARTMENTAL** DP744519 COMPILATION **DEPARTMENTAL** DEPARTMENTAL **COMPILATION** DP744625

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE

County: NORTHUMBERLAND

Pan		- CATTILL WORLD	Godiny : NORTHORIDERE AND
DP744864 COMPILATION DEPARTMENTAL	Plan	Surv/Comp	Purpose
DP744752 COMPILATION DEPARTMENTAL DP745037 COMPILATION DEPARTMENTAL DP745035 SURVEY SUBDIVISION DP746284 SURVEY SUBDIVISION DP746284 SURVEY SUBDIVISION DP746264 SURVEY SUBDIVISION DP746264 SURVEY SUBDIVISION DP746264 SURVEY SUBDIVISION DP776054 COMPILATION DEPARTMENTAL DP776054 COMPILATION DEPARTMENTAL DP776055 COMPILATION DEPARTMENTAL DP776056 COMPILATION DEPARTMENTAL DP776057 COMPILATION DEPARTMENTAL DP776058 COMPILATION DEPARTMENTAL DP776058 COMPILATION DEPARTMENTAL DP776058 COMPILATION DEPARTMENTAL DP776058 COMPILATION DEPARTMENTAL DP7676058 COMPILATION DE	DP744684	•	
DP744866 COMPILATION DEPARTMENTAL DP745107 COMPILATION DEPARTMENTAL DP745107 COMPILATION DEPARTMENTAL DP745366 COMPILATION DEPARTMENTAL DP74537 COMPILATION DEPARTMENTAL DP745915 COMPILATION DEPARTMENTAL DP746284 SURVEY SUBDIVISION DP748223 SURVEY SUBDIVISION DP749054 SURVEY SUBDIVISION DP755247 COMPILATION CROWN ADMIN NO. DP770918 COMPILATION DEPARTMENTAL DP770919 COMPILATION DEPARTMENTAL DP770919 COMPILATION DEPARTMENTAL DP770919 COMPILATION DEPARTMENTAL DP7707373 COMPILATION DEPARTMENTAL DP770785 COMPILATION DEPARTMENTAL DP777853 COMPILATION DEPARTMENTAL DP777854 COMPILATION DEPARTMENTAL DP778553 COMPILATION DEPARTMENTAL DP778453 COMPILATION DEPART			
6P745037 COMPILATION DEPARTMENTAL 6P745036 COMPILATION DEPARTMENTAL 6P745357 COMPILATION DEPARTMENTAL 6P745357 COMPILATION DEPARTMENTAL 6P745356 COMPILATION DEPARTMENTAL 6P746224 SURVEY SUBDIVISION 6P748223 SURVEY SUBDIVISION 6P755247 COMPILATION CROWN ADMIN NO. 6P77091 COMPILATION DEPARTMENTAL 6P77091 COMPILATION DEPARTMENTAL 6P770148 COMPILATION DEPARTMENTAL 6P770139 COMPILATION DEPARTMENTAL 6P770503 COMPILATION DEPARTMENTAL 6P770503 COMPILATION DEPARTMENTAL 6P773990 SURVEY OLD SYSTEM CONVERSION 6P778053 COMPILATION DEPARTMENTAL 6P778069 COMPILATION DEPARTMENTAL 6P778079 COMPILATION DEPARTMENTAL 6P778079 COMPILATION DEPARTMENTAL 6P778089 COMPILATION <t< td=""><td></td><td></td><td></td></t<>			
DP745356 CÓMPILATIÓN DEPARTMENTAL DP745477 COMPILATION DEPARTMENTAL DP745477 COMPILATION DEPARTMENTAL DP74527 COMPILATION DEPARTMENTAL DP746284 SURVEY SUBDIVISION DP746284 SURVEY SUBDIVISION DP746283 SURVEY SUBDIVISION DP746284 SURVEY SUBDIVISION DP746284 SURVEY SUBDIVISION DP746285 SURVEY SUBDIVISION DP746286 SURVEY SUBDIVISION DP746287 COMPILATION DEPARTMENTAL DP770187 COMPILATION DEPARTMENTAL DP770188 COMPILATION DEPARTMENTAL DP770373 COMPILATION DEPARTMENTAL DP770373 COMPILATION DEPARTMENTAL DP77085 COMPILATION DEPARTMENTAL DP77085 COMPILATION DEPARTMENTAL DP770863 COMPILATION DEPARTMENTAL DP778863 COMPILATION DEPARTMENTAL DP778863 COMPILATION DEPARTMENTAL DP77803 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP780754442 COMPILATION DEPARTMENTAL DP780756 COMPILATION DEPARTMENTAL DP780757 COMPILATION DEPARTMENTAL DP780758 COMPILATION DEPARTMENTAL DP780759 COMPILATION DEPARTMENTAL DP780759 COMPILATION DEPARTMENTAL DP780759 COMPILATION DEPARTMENTAL DP780759 COMPILATION DEPARTMENTAL DP780750 COMPILATION DEPARTMENTAL DP780750 COMPILATION DEPARTMENTAL DP780750 COMPILATION DEPARTMENTAL DP780750 COMPI			
DP745857 COMPILATION DEPARTMENTAL			
DP745857 COMPILATION DEPARTMENTAL	DP745356	COMPILATION	DEPARTMENTAL
DP7482915 COMPILATION DEPARTMENTAL DP748223 SURVEY SUBDIVISION DP748223 SURVEY SUBDIVISION DP749054 SURVEY SUBDIVISION DP75091 COMPILATION CROWN ADMIN NO. DP770148 COMPILATION DEPARTMENTAL DP770179 COMPILATION DEPARTMENTAL DP770180 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP770785 COMPILATION DEPARTMENTAL DP779090 COMPILATION DEPARTMENTAL DP779091 COMPILATION DEPARTMENTAL DP779092 COMPILATION DEPARTMENTAL DP779463 COMPILATION DEPARTMENTAL DP779653 COMPILATION DEPARTMENTAL DP778953 COMPILATION DEPARTMENTAL DP7780753 COMPILATION DEPARTMENTAL DP7807503 COMPILATION DEPARTMENTAL DP780804 COMPILATION DEPA	DP745357		
DP748224 SURVEY SUBDIVISION DP749054 SURVEY SUBDIVISION DP749054 SURVEY SUBDIVISION DP749054 SURVEY SUBDIVISION DP770091 COMPILATION DEPARTMENTAL DP770091 COMPILATION DEPARTMENTAL DP7701319 COMPILATION DEPARTMENTAL DP770319 COMPILATION DEPARTMENTAL DP770319 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP770504 SURVEY DEPARTMENTAL DP770505 SURVEY DEPARTMENTAL DP770506 SURVEY DEPARTMENTAL DP770507 SURVEY DEPARTMENTAL DP770508 SURVEY DEPARTMENTAL DP770509 COMPILATION DEPARTMENTAL DP770509 COMPILATION DEPARTMENTAL DP770502 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP770504 COMPILATION DEPARTMENTAL DP770505 COMPILATION DEPARTMENTAL DP770506 COMPILATION DEPARTMENTAL DP770507 COMPILATION DEPARTMENTAL DP770508 COMPILATION DEPARTMENTAL DP7806 COMPILATION DEPARTMENTAL DP780708 COMPILATION DEPARTMENTAL DP780709 COMPILATION DEPARTMENTAL DP780800 COMPILATION DEPARTMENTAL DP780900 COMPILATION DEPARTMENTAL DP79000 DEPARTMENTAL DP79000 DEPARTMENTAL DP79000 DEPARTMENTAL DP79000 COMPILATION DEPARTMENTAL DP79000 COMPILATION DEPARTMENTAL DP79000 COMPILATION DEPARTMENTAL DP79000 COMPILATION	DP745477	COMPILATION	DEPARTMENTAL
DP748223 SURVEY SUBDIVISION DP755247 COMPILATION CROWN ADMIN NO. DP75091 COMPILATION DEPARTMENTAL DP77018 COMPILATION DEPARTMENTAL DP77018 COMPILATION DEPARTMENTAL DP770373 COMPILATION DEPARTMENTAL DP770374 COMPILATION DEPARTMENTAL DP77085 COMPILATION DEPARTMENTAL DP77086 COMPILATION DEPARTMENTAL DP77087 COMPILATION DEPARTMENTAL DP770809 SURVEY OLD SYSTEM CONVERSION DP778090 COMPILATION DEPARTMENTAL DP779091 COMPILATION DEPARTMENTAL DP779092 COMPILATION DEPARTMENTAL DP7780783 COMPILATION DEPARTMENTAL DP7780783 COMPILATION DEPARTMENTAL DP7780783 COMPILATION DEPARTMENTAL DP780780 COMPILATION DEPARTMENTAL DP7807800 COMPILATION DEPARTMENTAL DP780800 COMPILATION	DP745915	COMPILATION	DEPARTMENTAL
DP749054 SURVEY	DP746284	SURVEY	SUBDIVISION
DP752247 COMPILATION CROWN ADMIN NO. DP770148 COMPILATION DEPARTMENTAL DP770139 COMPILATION DEPARTMENTAL DP770373 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP770785 COMPILATION DEPARTMENTAL DP770786 COMPILATION DEPARTMENTAL DP770787 COMPILATION DEPARTMENTAL DP778883 COMPILATION DEPARTMENTAL DP779032 COMPILATION DEPARTMENTAL DP779463 COMPILATION DEPARTMENTAL DP779463 COMPILATION DEPARTMENTAL DP779463 COMPILATION DEPARTMENTAL DP779403 COMPILATION DEPARTMENTAL DP7781030 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782442 COMPILATION DEPARTMENTAL DP782442 COMPILATION DEPARTMENTAL DP7833095 COMPILATION <td></td> <td>SURVEY</td> <td></td>		SURVEY	
DP770091			
DP770148 COMPILATION DEPARTMENTAL DP770373 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP7707055 COMPILATION DEPARTMENTAL DP7707065 COMPILATION DEPARTMENTAL DP770800 SURVEY OLD SYSTEM CONVERSION DP778883 COMPILATION DEPARTMENTAL DP77902 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP7796073 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782059 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782804 COMPILATION DEPARTMENTAL DP783059 COMPILATION DEPARTMENTAL DP783049 COMPILATION <td></td> <td></td> <td></td>			
DP770319 COMPILATION DEPARTMENTAL DP770503 COMPILATION DEPARTMENTAL DP77055 COMPILATION DEPARTMENTAL DP770785 COMPILATION DEPARTMENTAL DP773900 SURVEY OLD SYSTEM CONVERSION DP779009 COMPILATION DEPARTMENTAL DP779012 COMPILATION DEPARTMENTAL DP779022 COMPILATION DEPARTMENTAL DP7794543 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP778053 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP782087 COMPILATION DEPARTMENTAL DP782087 COMPILATION DEPARTMENTAL DP782382 COMPILATION DEPARTMENTAL DP782442 COMPILATION DEPARTMENTAL DP782480 COMPILATION DEPARTMENTAL DP78388 COMPILATION DEPARTMENTAL DP783880 COMPILATION			
DP7703073 COMPILATION DEPARTMENTAL DP7707085 COMPILATION DEPARTMENTAL DP7707085 COMPILATION DEPARTMENTAL DP770860 SURVEY OLD SYSTEM CONVERSION DP778863 COMPILATION DEPARTMENTAL DP779090 COMPILATION DEPARTMENTAL DP779091 COMPILATION DEPARTMENTAL DP779092 COMPILATION DEPARTMENTAL DP779083 COMPILATION DEPARTMENTAL DP779653 COMPILATION DEPARTMENTAL DP779633 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP782067 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782394 COMPILATION DEPARTMENTAL DP782304 COMPILATION DEPARTMENTAL DP783305 COMPILATION DEPARTMENTAL DP783306 COMPILATION DEPARTMENTAL DP783393 COMPILATION DEPARTMENTAL DP783393 COMPILATION DEPARTMENTAL DP783393 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783406 COMPILATION DEPARTMENTAL DP783407 DEPARTMENTAL DP783408 COMPILATION DEPARTMENTAL DP783409 COMPILATION DEPARTMENTAL DP783409 COMPILATION DEPARTMENTAL DP783400 DEPARTMENTAL DP794800 DEPA			
DP770503 COMPILATION DEPARTMENTAL DP773900 SURVEY OLD SYSTEM CONVERSION DP773900 SURVEY OLD SYSTEM CONVERSION DP773900 SURVEY OLD SYSTEM CONVERSION DP779009 COMPILATION DEPARTMENTAL DP779009 COMPILATION DEPARTMENTAL DP779002 COMPILATION DEPARTMENTAL DP779032 COMPILATION DEPARTMENTAL DP779453 COMPILATION DEPARTMENTAL DP779033 COMPILATION DEPARTMENTAL DP78063 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782267 COMPILATION DEPARTMENTAL DP782280 COMPILATION DEPARTMENTAL DP782442 COMPILATION DEPARTMENTAL DP782442 COMPILATION DEPARTMENTAL DP782309 COMPILATION DEPARTMENTAL DP782309 COMPILATION DEPARTMENTAL DP782333 COMPILATION DEPARTMENTAL DP782333 COMPILATION DEPARTMENTAL DP782333 COMPILATION DEPARTMENTAL DP782338 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783486 COMPILATION DEPARTMENTAL DP783487 COMPILATION DEPARTMENTAL DP784486 COMPILATION DEPARTMENTAL DP784381 COMPILATION DEPARTMENTAL DP784383 SURVEY SUBDIVISION DP784381 COMPILATION DEPARTMENTAL DP784383 SURVEY SUBDIVISION DP794880 COMPILATION DEPARTMENTAL DP793481 COMPILATION DEPARTMENTAL DP793482 COMPILATION DEPARTMENTAL DP793483 COMPILATION DEPARTMENTAL DP793494 COMPILATION DEPARTMENTAL DP7934967 COMPILATION DEPARTMENTAL DP793497 COMPILATION DEPARTMENTAL DP7934980 COMPILATION DEPARTMENTAL DP7934913 COMPILATION DEPARTMENTAL DP7934925 COMPILATION DEPARTMENTAL DP7934917 COMPILATION DEPARTMENTAL DP7934917 COMPILATION DEPARTMENTAL DP7934917 COMPILATION DEPARTMENTAL DP7934917 COMPILATION DEPARTMENTAL DP7931919 COMPILATION DEPARTMENTAL DP7931919 COMPILATION DEPARTMENT			
DP770785 COMPILATION DEPARTMENTAL DP778853 COMPILATION DEPARTMENTAL DP778909 COMPILATION DEPARTMENTAL DP779019 COMPILATION DEPARTMENTAL DP779019 COMPILATION DEPARTMENTAL DP779012 COMPILATION DEPARTMENTAL DP779013 COMPILATION DEPARTMENTAL DP779015 COMPILATION DEPARTMENTAL DP779015 COMPILATION DEPARTMENTAL DP779015 COMPILATION DEPARTMENTAL DP78016 COMPILATION DEPARTMENTAL DP78017 COMPILATION DEPARTMENTAL DP78018 COMPILATION DEPARTMENTAL DP78018 COMPILATION DEPARTMENTAL DP78019 COMPILATION DEPARTMENTAL DP78029 COMPILATION DEPARTMENTAL DP780305 COMPILATION DEPARTMENTAL DP780305 COMPILATION DEPARTMENTAL DP780305 COMPILATION DEPARTMENTAL DP780305 COMPILATION DEPARTMENTAL DP780383 COMPILATION DEPARTMENTAL DP780383 COMPILATION DEPARTMENTAL DP780489 COMPILATION DEPARTMENTAL DP780489 COMPILATION DEPARTMENTAL DP780480 COMPILATION DEPARTMENTAL DP790480 COMPILATION DEPARTMENTAL DP790490 COMPILATION DEPARTMENTAL DP790400 COMPILATION DEPARTMENTAL DP790400 COMP			
DP773900 SURVEY			
DP778853 COMPILATION DEPARTMENTAL DP77902 COMPILATION DEPARTMENTAL DP779032 COMPILATION DEPARTMENTAL DP779453 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP779529 COMPILATION DEPARTMENTAL DP779529 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782393 COMPILATION DEPARTMENTAL DP782394 COMPILATION DEPARTMENTAL DP782395 COMPILATION DEPARTMENTAL DP783305 COMPILATION DEPARTMENTAL DP783305 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783496 COMPILATION DEPARTMENTAL DP783496 COMPILATION DEPARTMENTAL DP783466 COMPILATION DEPARTMENTAL DP783763 SURVEY SUBDIVISION DP78193 SURVEY SUBDIVISION DP784831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794881 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794876 COMPILATION DEPARTMENTAL DP794876 COMPILATION DEPARTMENTAL DP793776 COMPILATION DEPARTMENTAL DP793776 COMPILATION DEPARTMENTAL DP793776 COMPILATION DEPARTMENTAL DP793776 COMPILATION DEPARTMENTAL DP793810 COMPILATION DEPARTMENTAL DP793811 COMPILATION DEPARTMENTAL DP793812 COMPILATION DEPARTMENTAL DP793776 COMPILATION DEPARTMENTAL DP793776 COMPILATION DEPARTMENTAL DP793817 COMPILATION DEPARTMENTAL DP793818 COMPILATION DEPARTMENTAL DP793819 COMPILATION DEPARTMENTAL DP793816 COMPILATION DEPARTMENTAL DP793817 COMPILATION DEPARTMENTAL DP793818 COMPILA			
DP779009 COMPILATION DEPARTMENTAL DP779453 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP779033 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782394 COMPILATION DEPARTMENTAL DP782804 COMPILATION DEPARTMENTAL DP782805 COMPILATION DEPARTMENTAL DP783363 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP7834026 COMPILATION DEPARTMENTAL DP7834026 COMPILATION DEPARTMENTAL DP7834026 COMPILATION DEPARTMENTAL DP7834028 SURVEY SUBDIVISION DP784026 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784028 SURVEY SUBDIVISION DP784029 SURVEY SUBDIVISION DP784020 DEPARTMENTAL DP784020 COMPILATION DEPARTMENTAL DP784020 COMPILATION DEPARTMENTAL DP784021 COMPILATION DEPARTMENTAL DP7940225 COMPILATION DEPARTMENTAL DP794025 COMPILATION DEPARTMENTAL DP794026 COMPILATION DEPARTMENTAL DP794027 COMPILATION DEPARTMENTAL DP7940280 COMPILATION DEPARTMENTAL DP7940290 COMPILATION DEPARTMENTAL DP794030 COMPILATION DEPARTMENTAL DP799310 COMPILATION DEPARTMENTAL DP799311 COMPILATION DEPARTMENTAL DP799312 COMPILATION DEPARTMENTAL DP799313 COMPILATION DEPARTMENTAL DP799314 COMPILATION DEPARTMENTAL DP799315 COMPILATION DEPARTMENTAL DP799316 COMPILATION DEPARTMENTAL DP799317 COMPILATION DEPARTMENTAL DP7993180 COMPILATION DEP			
DP779322 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP779528 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP780753 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782292 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782442 COMPILATION DEPARTMENTAL DP782804 COMPILATION DEPARTMENTAL DP782805 COMPILATION DEPARTMENTAL DP783305 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783384 COMPILATION DEPARTMENTAL DP783385 COMPILATION DEPARTMENTAL DP783466 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP78487 SURVEY SUBDIVISION DP794881 SURVEY SUBDIVISION DP794881 COMPILATION DEPARTMENTAL DP794881 COMPILATION DEPARTMENTAL DP794881 COMPILATION DEPARTMENTAL DP794867 COMPILATION DEPARTMENTAL DP79487 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798121 COMPILATION DEPARTMENTAL DP798122 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798144 COMPILATION DEPARTMENTAL DP798157 COMPILATION DEPARTMENTAL DP798169 COMPILATION DEPARTMENTAL DP798170 COMPILATION DEPARTMENTAL DP798171 COMPILATION DEPARTMENTAL DP798172 COMPILATION DEPARTMENTAL DP798173 COMPILATION DEPARTMENTAL DP798174 COMPILATION DEPARTMENTAL DP798175 COMPILATION			
DP779453			
DP779528			
DP779633			
DP780753 COMPILATION DEPARTMENTAL DP781030 COMPILATION DEPARTMENTAL DP781080 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782804 COMPILATION DEPARTMENTAL DP783095 COMPILATION DEPARTMENTAL DP783353 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784166 COMPILATION DEPARTMENTAL DP7837363 SURVEY SUBDIVISION DP7394831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP7949267 COMPILATION DEPARTMENTAL DP7995036 COMPILATION			
DP781030 COMPILATION DEPARTMENTAL DP782057 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782804 COMPILATION DEPARTMENTAL DP783095 COMPILATION DEPARTMENTAL DP783353 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP7849193 SURVEY SUBJUSION DP789193 SURVEY SUBJUSION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794881 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP7949267 COMPILATION DEPARTMENTAL DP7979776 COMPILATION DEPA			: : : : : : : : : : : : : : : : : :
DP782057 COMPILATION DEPARTMENTAL DP782392 COMPILATION DEPARTMENTAL DP782804 COMPILATION DEPARTMENTAL DP783095 COMPILATION DEPARTMENTAL DP783363 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784363 SURVEY SUBDIVISION DP789193 SURVEY SUBDIVISION DP789193 SURVEY PULD SYSTEM CONVERSION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794881 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP7948967 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP799776 COMPILATION DEPARTMENTAL DP799776 COMPILATION <		COMPILATION	DEPARTMENTAL
PP782392 COMPILATION DEPARTMENTAL DP782442 COMPILATION DEPARTMENTAL DP783095 COMPILATION DEPARTMENTAL DP783363 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783398 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP78403 SURVEY SUBDIVISION DP784131 COMPILATION DEPARTMENTAL DP794831 COMPILATION DEPARTMENTAL DP79425 COMPILATION DEPARTMENTAL DP79426 COMPILATION DEPARTMENTAL DP7985036 COMPILATION <td< td=""><td>DP781080</td><td>COMPILATION</td><td>DEPARTMENTAL</td></td<>	DP781080	COMPILATION	DEPARTMENTAL
DP782442 COMPILATION DEPARTMENTAL DP782804 COMPILATION DEPARTMENTAL DP783395 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP7834965 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP789193 SURVEY SUBDIVISION DP789193 SURVEY OLD SYSTEM CONVERSION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794881 COMPILATION DEPARTMENTAL DP794825 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP7987931 COMPILATION DEPARTMENTAL DP798121 COMPILATION			DEPARTMENTAL
DP782804 COMPILATION DEPARTMENTAL DP783095 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783388 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783665 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784031 SURVEY SUBDIVISION DP784033 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794825 COMPILATION DEPARTMENTAL DP7949267 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP799776 COMPILATION DEPARTMENTAL DP799776 COMPILATION DEPARTMENTAL DP798109 COMPILATION D		COMPILATION	DEPARTMENTAL
DP783095 COMPILATION DEPARTMENTAL DP783353 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP783565 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP787363 SURVEY SUBDIVISION DP789193 SURVEY OLD SYSTEM CONVERSION DP794831 COMPILATION DEPARTMENTAL DP794832 COMPILATION DEPARTMENTAL DP79494831 COMPILATION DEPARTMENTAL DP7949485 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798124 COMPILATION DEPARTMENTAL DP798170 COMPILATION			DEPARTMENTAL
DP783353 COMPILATION DEPARTMENTAL DP783383 COMPILATION DEPARTMENTAL DP783498 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP787363 SURVEY SUBDIVISION DP789193 SURVEY SUBDIVISION DP794831 COMPILATION DEPARTMENTAL DP794831 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP7949267 COMPILATION DEPARTMENTAL DP7949267 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP7997776 COMPILATION DEPARTMENTAL DP7997776 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798124 COMPILATION DEPARTMENTAL DP79827 COMPILATION			
DP783488 COMPILATION DEPARTMENTAL DP784565 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784027 REDEFINITION DP784028 SURVEY REDEFINITION DP784081 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP794067 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP7997931 COMPILATION DEPARTMENTAL DP7997931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798121 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798118 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP799150 COMPILATION DEPARTMENTAL DP799150 COMPILATION DEPARTMENTAL DP7991510 COMPILATION DEPARTMENTAL			
DP783498 COMPILATION DEPARTMENTAL DP783565 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP787363 SURVEY SUBDIVISION DP789193 SURVEY OLD SYSTEM CONVERSION DP793585 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP7997776 COMPILATION DEPARTMENTAL DP7997931 COMPILATION DEPARTMENTAL DP7997931 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798129 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798916 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799393 COMPILATION DEPARTMENTAL DP799394 COMPILATION DEPARTMENTAL DP799394 COMPILATION DEPARTMENTAL DP799394 COMPILATION DEPARTMENTAL DP799394 COMPILATION DEPARTMENTAL			
DP783565 COMPILATION DEPARTMENTAL DP784026 COMPILATION DEPARTMENTAL DP784766 COMPILATION DEPARTMENTAL DP787363 SURVEY SUBDIVISION DP789193 SURVEY OLD SYSTEM CONVERSION DP793585 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794830 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794926 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP7957370 COMPILATION DEPARTMENTAL DP7977776 COMPILATION DEPARTMENTAL DP7997931 COMPILATION DEPARTMENTAL DP7997931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798211 COMPILATION DEPARTMENTAL DP798211 COMPILATION DEPARTMENTAL DP798211 COMPILATION DEPARTMENTAL DP798211 COMPILATION DEPARTMENTAL DP798212 COMPILATION DEPARTMENTAL DP798213 COMPILATION DEPARTMENTAL DP798214 COMPILATION DEPARTMENTAL DP798215 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP79911110 DEPARTMENTAL DP7991110 DEPARTMENTAL DP79911110 DEPARTM			
DP784026 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP784466 COMPILATION DEPARTMENTAL DP78363 SURVEY SUBDIVISION DP788193 SURVEY PREDEFINITION DP793585 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795038 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP798113 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798127 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798707 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799190000 DEPARTMENTAL DP799190000 DEPARTMENTAL DP799190000 DEPARTMENTAL DP7990000 DEPARTMENTAL DP7990000 DEPARTMENTAL DP7990000 DEPARTMENTAL DP7990000 DEPA			
DP784466 COMPILATION DEPARTMENTAL DP787363 SURVEY SUBDIVISION DP789193 SURVEY OLD SYSTEM CONVERSION DP793585 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797370 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798124 COMPILATION DEPARTMENTAL DP798227 COMPILATION DEPARTMENTAL DP798228 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798901 COMPILATION DEPARTMENTAL DP7999100 COMPILATION DEPARTMENTAL DP799118 COMPILATION <t< td=""><td></td><td></td><td></td></t<>			
DP787363 SURVEY SUBDIVISION DP789193 SURVEY OLD SYSTEM CONVERSION DP793885 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797770 COMPILATION DEPARTMENTAL DP7979731 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP799918 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION <t< td=""><td></td><td></td><td></td></t<>			
DP789193 SURVEY REDEFINITION DP793585 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797370 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798218 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798900 COMPILATION DEPARTMENTAL DP7999118 COMPILATION DEPARTMENTAL DP799119 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799158 COMPILATION D			
DP793585 SURVEY REDEFINITION DP794831 COMPILATION DEPARTMENTAL DP794880 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795038 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797770 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798124 COMPILATION DEPARTMENTAL DP79827 COMPILATION DEPARTMENTAL DP798270 COMPILATION DEPARTMENTAL DP798211 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799100 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799100 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799170 DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799399 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799939			
DP794831 COMPILATION DEPARTMENTAL DP79480 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP7957370 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797831 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798210 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799170 DEPARTMENTAL DP79919000 DEPARTMENTAL DP79919000 DEPARTMENTAL DP79919000 DEPARTMENTAL DP79919000 DEPARTMENTAL DP7991000 DEPARTMENTAL DP7990000 DEPARTMENTAL DP799000 DEPARTMENTAL DP79900			
DP794880 COMPILATION DEPARTMENTAL DP794925 COMPILATION DEPARTMENTAL DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797370 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798211 COMPILATION DEPARTMENTAL DP798211 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798707 COMPILATION DEPARTMENTAL DP79918 COMPILATION DEPARTMENTAL DP799100 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799158 COMPILATION DEPARTMENTAL DP799159 COMPILATION DEPARTMENTAL DP799170 DEPARTMENTAL DP7			
DP794925 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797370 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799100 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP79944 COMPILATION DEPARTMENTAL DP79944			
DP794967 COMPILATION DEPARTMENTAL DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797370 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798707 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL DP799939			
DP795036 COMPILATION DEPARTMENTAL DP795438 COMPILATION DEPARTMENTAL DP797770 COMPILATION DEPARTMENTAL DP797776 COMPILATION DEPARTMENTAL DP797931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798707 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799117 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799159 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP795438 COMPILATION DP797770 COMPILATION DPARTMENTAL DP797776 COMPILATION DPARTMENTAL DP797931 COMPILATION DPARTMENTAL DP798109 COMPILATION DPARTMENTAL DP798123 COMPILATION DPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DPARTMENTAL DP798706 COMPILATION DPARTMENTAL DP798707 COMPILATION DPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799117 DP799170 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799459 COMPILATION DEPARTMENTAL DP799450 DP7999450 COMPILATION DEPARTMENTAL DP799450 DP7999450 DP7999460			
DP797776 COMPILATION DP797931 COMPILATION DP798109 COMPILATION DP798123 DP798217 DP798221 DP798221 DP798706 DP798706 DP798707 DP798907 DP798907 DP798907 DP798907 DP798708 DP798708 DP798708 DP7999000 DP798708 DP798708 DP799118 DP799170 DP799170 DP799170 DP799458 DP799458 DP799458 DP799458 DP799939 COMPILATION DP799944 COMPILATION DP799944 DP799945		COMPILATION	DEPARTMENTAL
DP797931 COMPILATION DEPARTMENTAL DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			DEPARTMENTAL
DP798109 COMPILATION DEPARTMENTAL DP798123 COMPILATION DEPARTMENTAL DP798217 COMPILATION DEPARTMENTAL DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP798123 COMPILATION DP798217 COMPILATION DP798221 COMPILATION DP798706 DP798907 DP798907 DP799000 DP799118 DP799157 DP799157 DP799170 DP799170 DP799458 DP799458 DP799939 DP799944 COMPILATION DEPARTMENTAL DP79932 DP799944 COMPILATION DEPARTMENTAL DP799157 DP799157 DP799170 DP799170 DP799170 DP799170 DP799170 DP799170 DP799458 DP799944 DDP799944 DDP799945			
DP798217 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP798221 COMPILATION DEPARTMENTAL DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP798706 COMPILATION DEPARTMENTAL DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP798907 COMPILATION DEPARTMENTAL DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799000 COMPILATION DEPARTMENTAL DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799118 COMPILATION DEPARTMENTAL DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799157 COMPILATION DEPARTMENTAL DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799170 COMPILATION DEPARTMENTAL DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799458 COMPILATION DEPARTMENTAL DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799622 COMPILATION DEPARTMENTAL DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799939 COMPILATION DEPARTMENTAL DP799944 COMPILATION DEPARTMENTAL			
DP799944 COMPILATION DEPARTMENTAL			

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

<u>-</u>		<u> </u>
Plan	Surv/Comp	Purpose
DP800078	SURVEY	SUBDIVISION
DP809995	SURVEY	SUBDIVISION
DP812092	COMPILATION	CONSOLIDATION
DP814239	SURVEY	PRIMARY APPLN NON SUBDIVISION
DP814774	COMPILATION	SUBDIVISION
DP817811	SURVEY	SUBDIVISION
DP821026	COMPILATION	CROWN FOLIO CREATION
DP826756 DP832563	SURVEY	SUBDIVISION SUBDIVISION
DP832503 DP843425	SURVEY SURVEY	SUBDIVISION
DP845969	SURVEY	SUBDIVISION
DP848193	SURVEY	SUBDIVISION
DP861552	SURVEY	REDEFINITION
DP865995	SURVEY	SUBDIVISION
DP868359	SURVEY	SUBDIVISION
DP869989	SURVEY	SUBDIVISION
DP877611	SURVEY	SUBDIVISION
DP877994	COMPILATION	CONSOLIDATION
DP878417 DP880223	SURVEY COMPILATION	SUBDIVISION CONSOLIDATION
DP900169	SURVEY	UNRESEARCHED
DP928096	COMPILATION	UNRESEARCHED
DP946285	SURVEY	UNRESEARCHED
DP948479	COMPILATION	UNRESEARCHED
DP949431	SURVEY	UNRESEARCHED
DP950120	COMPILATION	UNRESEARCHED
DP953823	COMPILATION	UNRESEARCHED
DP954298	COMPILATION	UNRESEARCHED
DP954500	COMPILATION	UNRESEARCHED
DP954842	COMPILATION	UNRESEARCHED
DP955302 DP958274	SURVEY COMPILATION	UNRESEARCHED UNRESEARCHED
DP959000	COMPILATION	UNRESEARCHED
DP961578	COMPILATION	UNRESEARCHED
DP963648	COMPILATION	UNRESEARCHED
DP978399	COMPILATION	UNRESEARCHED
DP978400	COMPILATION	UNRESEARCHED
DP978555	COMPILATION	UNRESEARCHED
DP978910	COMPILATION	UNRESEARCHED
DP979101	COMPILATION	UNRESEARCHED
DP979102 DP979106	COMPILATION COMPILATION	UNRESEARCHED UNRESEARCHED
DP979108	COMPILATION	UNRESEARCHED
DP979478	COMPILATION	UNRESEARCHED
DP984979	COMPILATION	UNRESEARCHED
DP986255	COMPILATION	DEPARTMENTAL
DP986500	COMPILATION	DEPARTMENTAL
DP986640	COMPILATION	LIMITED FOLIO CREATION
DP986885	COMPILATION	DEPARTMENTAL
DP995091	COMPILATION	DEPARTMENTAL
DP995241 DP995992	COMPILATION COMPILATION	DEPARTMENTAL DEPARTMENTAL
DP995992 DP996060	COMPILATION	DEPARTMENTAL DEPARTMENTAL
DP996395	COMPILATION	DEPARTMENTAL
DP997046	COMPILATION	DEPARTMENTAL
DP997389	COMPILATION	DEPARTMENTAL
DP997436	COMPILATION	DEPARTMENTAL
DP997841	COMPILATION	DEPARTMENTAL
DP998090	COMPILATION	DEPARTMENTAL
DP998140	COMPILATION	DEPARTMENTAL
DP998278	COMPILATION	DEPARTMENTAL
DP998545	COMPILATION	DEPARTMENTAL
DP998662 DP998677	COMPILATION COMPILATION	DEPARTMENTAL DEPARTMENTAL
DP998677 DP998691	COMPILATION	DEPARTMENTAL DEPARTMENTAL
DP998781	COMPILATION	DEPARTMENTAL
Coution	JOINI ILATION	DEI / IIX I IVIE I VII/ LE

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Cadastral Records Enquiry Report: Lot 13 DP 227704

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE **County**: NORTHUMBERLAND

	LGA: NEWCASTLE	County: NORTHUMBERLAND
Plan	Surv/Comp	Purpose
DP998835	COMPILATION	DEPARTMENTAL
DP998853	COMPILATION	DEPARTMENTAL
DP999033 DP999127	COMPILATION	DEPARTMENTAL
DP999127 DP999167	COMPILATION	DEPARTMENTAL
DP999182	COMPILATION	DEPARTMENTAL
DP999335	COMPILATION	DEPARTMENTAL
DP999478	COMPILATION	DEPARTMENTAL LIMITED FOLIO OPERATION
DP1001583	COMPILATION	LIMITED FOLIO CREATION
DP1003392	COMPILATION	LIMITED FOLIO CREATION
DP1005089	SURVEY	SUBDIVISION
DP1007893	COMPILATION	LIMITED FOLIO CREATION
DP1011006	COMPILATION	LIMITED FOLIO CREATION
DP1011985	SURVEY	SUBDIVISION
DP1012321	SURVEY	SUBDIVISION
DP1016517	SURVEY	SUBDIVISION
DP1025749	COMPILATION	LIMITED FOLIO CREATION
DP1026105	SURVEY	SUBDIVISION
DP1031335	COMPILATION	LIMITED FOLIO CREATION
DP1034735	SURVEY	SUBDIVISION
DP1036655	COMPILATION	LIMITED FOLIO CREATION
DP1037286	SURVEY	SUBDIVISION
DP1041191	COMPILATION	LIMITED FOLIO CREATION
DP1042202	COMPILATION	LIMITED FOLIO CREATION
DP1043315	COMPILATION	LIMITED FOLIO CREATION
DP1045853	COMPILATION	CONSOLIDATION
DP1045944	COMPILATION	LIMITED FOLIO CREATION
DP1046106	COMPILATION	LIMITED FOLIO CREATION
DP1047369	COMPILATION	LIMITED FOLIO CREATION
DP1049839	COMPILATION	LIMITED FOLIO CREATION
DP1052825	COMPILATION	DEPARTMENTAL
DP1052826	COMPILATION	DEPARTMENTAL
DP1052831	COMPILATION	DEPARTMENTAL CURRINGUIS
DP1053021 DP1054079	SURVEY	SUBDIVISION LIMITED FOLIO CREATION
DP1054079 DP1057650	COMPILATION COMPILATION	DEPARTMENTAL
DP1057884	COMPILATION	LIMITED FOLIO CREATION
DP1058180	COMPILATION	LIMITED FOLIO CREATION
DP1050160 DP1060371	SURVEY	REDEFINITION
DP1063551	COMPILATION	LIMITED FOLIO CREATION
DP1063331	SURVEY	SUBDIVISION
DP1004111	COMPILATION	LIMITED FOLIO CREATION
DP1074355	COMPILATION	LIMITED FOLIO CREATION
DP1077989	SURVEY	SUBDIVISION
DP1078476	SURVEY	SUBDIVISION
DP1078908	SURVEY	SUBDIVISION
DP1079176	COMPILATION	LIMITED FOLIO CREATION
DP1079322	SURVEY	SUBDIVISION
DP1079322 DP1080599	COMPILATION	LIMITED FOLIO CREATION
DP1081153	COMPILATION	LIMITED FOLIO CREATION
DP1081679	COMPILATION	LIMITED FOLIO CREATION
DP1081686	COMPILATION	LIMITED FOLIO CREATION
DP1081697	COMPILATION	LIMITED FOLIO CREATION
DP1081701	COMPILATION	LIMITED FOLIO CREATION
DP1082014	COMPILATION	LIMITED FOLIO CREATION
DP1082017	COMPILATION	LIMITED FOLIO CREATION
DP1082019	COMPILATION	LIMITED FOLIO CREATION
DP1082025	COMPILATION	LIMITED FOLIO CREATION
DP1082028	COMPILATION	LIMITED FOLIO CREATION
DP1082032	COMPILATION	LIMITED FOLIO CREATION
DP1082039	COMPILATION	LIMITED FOLIO CREATION
DP1082040	COMPILATION	LIMITED FOLIO CREATION
DP1082041	COMPILATION	LIMITED FOLIO CREATION
DP1082063	COMPILATION	LIMITED FOLIO CREATION
DP1082325	COMPILATION	LIMITED FOLIO CREATION
DP1082326	COMPILATION	LIMITED FOLIO CREATION
DP1082334	COMPILATION	LIMITED FOLIO CREATION
Caution:		ilst every endeavour is made the ensure that current man, plan and

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Cadastral Records Enquiry Report: Lot 13 DP 227704

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

Plan Surv/Comp Purpose DP1082345 COMPILATION LIMITED FOLIO CREATION **COMPILATION** LIMITED FOLIO CREATION DP1082347 DP1082367 **COMPILATION** LIMITED FOLIO CREATION DP1082372 **COMPILATION** LIMITED FOLIO CREATION DP1082376 **COMPILATION** LIMITED FOLIO CREATION DP1082703 **COMPILATION** LIMITED FOLIO CREATION DP1083003 COMPILATION LIMITED FOLIO CREATION DP1083006 **COMPILATION** LIMITED FOLIO CREATION DP1083327 COMPILATION LIMITED FOLIO CREATION DP1083332 COMPILATION LIMITED FOLIO CREATION DP1083662 COMPILATION LIMITED FOLIO CREATION COMPILATION DP1083666 LIMITED FOLIO CREATION **COMPILATION** DP1083709 LIMITED FOLIO CREATION DP1083936 COMPILATION CONSOLIDATION DP1084385 **COMPILATION** LIMITED FOLIO CREATION DP1085541 **COMPILATION** LIMITED FOLIO CREATION DP1089648 **SURVEY** SUBDIVISION DP1089872 **SURVEY** SUBDIVISION DP1090272 **SURVEY** SUBDIVISION DP1094296 COMPILATION LIMITED FOLIO CREATION DP1097153 **COMPILATION** LIMITED FOLIO CREATION DP1097485 **COMPILATION** LIMITED FOLIO CREATION DP1097635 **COMPILATION** LIMITED FOLIO CREATION DP1099667 SURVEY SUBDIVISION DP1102094 LIMITED FOLIO CREATION **COMPILATION** DP1103821 **SUBDIVISION** SURVEY DP1109890 COMPILATION LIMITED FOLIO CREATION DP1109965 COMPILATION LIMITED FOLIO CREATION DP1110016 COMPILATION LIMITED FOLIO CREATION DP1112281 **SURVEY** SUBDIVISION SURVEY **SUBDIVISION** DP1113486 DP1120898 SURVEY **OLD SYSTEM CONVERSION** DP1122139 **SURVEY SUBDIVISION** DP1126329 **COMPILATION** LIMITED FOLIO CREATION DP1133965 **COMPILATION** LIMITED FOLIO CREATION DP1135133 SURVEY SUBDIVISION DP1138209 COMPILATION LIMITED FOLIO CREATION DP1139699 **COMPILATION** LIMITED FOLIO CREATION DP1139700 **COMPILATION** LIMITED FOLIO CREATION DP1139744 COMPILATION LIMITED FOLIO CREATION DP1139745 COMPILATION LIMITED FOLIO CREATION DP1144733 COMPILATION **CROWN LAND CONVERSION** DP1147134 COMPILATION **DEPARTMENTAL SURVEY SUBDIVISION** DP1150193 LIMITED FOLIO CREATION DP1151219 **COMPILATION** DP1159741 **SURVEY SUBDIVISION** DP1160293 **SURVEY SUBDIVISION** DP1161828 **SURVEY** SUBDIVISION DP1166639 **SURVEY** CONSOLIDATION DP1167243 **SURVEY** SUBDIVISION DP1168400 COMPILATION LIMITED FOLIO CREATION DP1168568 COMPILATION LIMITED FOLIO CREATION DP1177157 SURVEY SUBDIVISION DP1181993 SURVEY CONSOLIDATION LIMITED FOLIO CREATION DP1187008 COMPILATION DP1189052 **COMPILATION** LIMITED FOLIO CREATION DP1191328 **SURVEY** SUBDIVISION COMPILATION **DELIMITATION** DP1194229 **SUBDIVISION** DP1196694 **SURVEY** DP1198222 **SURVEY** SUBDIVISION DP1203600 **SURVEY** SUBDIVISION DP1206890 SURVEY **SUBDIVISION** DP1210672 SURVEY SUBDIVISION DP1211790 **SURVEY** SUBDIVISION DP1212891 SURVEY SUBDIVISION DP1224926 **SURVEY SUBDIVISION**

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Cadastral Records Enquiry Report: Lot 13 DP 227704

Locality: BROADMEADOW

Parish: NEWCASTLE

Ref: NOUSER

LGA: NEWCASTLE County: NORTHUMBERLAND

	LGA . NEWCASTLE	County . NORTHOMBERLAND
Plan	Surv/Comp	Purpose
DP1227321	SURVEY	SUBDIVISION
DP1228385	SURVEY	SUBDIVISION
DP1231619	SURVEY	SUBDIVISION
DP1231019 DP1232702	SURVEY	
		SUBDIVISION
DP1233868	SURVEY	REDEFINITION
DP1236106	COMPILATION	SUBDIVISION
DP1246910	SURVEY	DELIMITATION
DP1253244	SURVEY	SUBDIVISION
DP1253899	SURVEY	SUBDIVISION
DP1254586	SURVEY	SUBDIVISION
DP1257981	SURVEY	DELIMITATION
DP1258468	SURVEY	SUBDIVISION
DP1260437	SURVEY	SUBDIVISION
DP1270224	SURVEY	CONSOLIDATION
DP1271453	SURVEY	REDEFINITION
SP2526	COMPILATION	STRATA PLAN
SP8554	COMPILATION	STRATA PLAN
SP14236	COMPILATION	STRATA PLAN
SP17007	COMPILATION	STRATA PLAN
SP18777	COMPILATION	STRATA PLAN
SP22988	COMPILATION	STRATA PLAN
SP30038	COMPILATION	STRATA PLAN
SP32294	COMPILATION	STRATA PLAN
SP34887	COMPILATION	STRATA PLAN
SP37342	COMPILATION	STRATA PLAN
SP37492	COMPILATION	STRATA PLAN
SP37801	COMPILATION	STRATA PLAN
SP40753	COMPILATION	STRATA PLAN
SP42148	COMPILATION	STRATA PLAN
SP48459	COMPILATION	STRATA PLAN
SP49939	COMPILATION	STRATA PLAN
SP50638	COMPILATION	STRATA PLAN
SP53245	COMPILATION	STRATA PLAN
SP54704	COMPILATION	STRATA PLAN
SP55094	COMPILATION	STRATA PLAN
SP64376	COMPILATION	STRATA PLAN
SP65477	COMPILATION	STRATA PLAN
SP66836	COMPILATION	STRATA PLAN
SP69087	COMPILATION	STRATA PLAN
SP69607	COMPILATION	STRATA PLAN
SP70389	COMPILATION	STRATA PLAN
SP71115	COMPILATION	STRATA PLAN
SP73895	COMPILATION	STRATA PLAN
SP75334	COMPILATION	STRATA PLAN
SP78830	COMPILATION	STRATA PLAN
SP80924	COMPILATION	STRATA PLAN
SP86995	COMPILATION	STRATA PLAN
SP89620	COMPILATION	STRATA PLAN
SP91328	COMPILATION	STRATA PLAN
SP92905	COMPILATION	STRATA PLAN
SP93468	COMPILATION	STRATA PLAN
SP94829	COMPILATION	STRATA PLAN
SP98554	COMPILATION	STRATA PLAN
SP98657	COMPILATION	STRATA PLAN
SP98710	COMPILATION	STRATA PLAN
SP99558	COMPILATION	STRATA PLAN STRATA PLAN
SP99636	COMPILATION	STRATA PLAN STRATA PLAN
SP101948	COMPILATION	STRATA PLAN STRATA PLAN
SP101946 SP102706	COMPILATION	STRATA PLAN STRATA PLAN
Ji 102700	CONFILATION	SHALATLAN

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

NEW SOUTH WALES

Application No. 35494

Prior Title Volume 5607 Folio 191

FICATE OF TITLE RTY ACT, 1900, as amended.

WARNING THIS DOCUMENT MUST

NOT

BE

REMOVED

FROM THE LAND TITLES OFFICE

10209 Vol..

157

Edition issued 13-1-1966.

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Charles Witness

Registrar General.

PLAN SHOWING LOCATION OF LAND SEE AUTO FOLIO DUMARESO (66 wide) KEMP ST Arc 874& A192 LEXANDER 13 123 ac. 3r 4p (By Deduction) JENNER PDE 20093 DARLING ST. Lot 14 22p 12 32 33 DIAGRAM 2 22 p. 10 22p 3 9 DIAGRAM 1 22p HIBBERD (50 mde) ST. 30 29 28 22 p 20/093 ttp. 53 64 2 DARLING (66 mds) ST, |BP| 20|093 ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 13 in Deposited Plan 227704 at Hamilton in the City of Newcastle Parish of Newcastle and County of Northumberland being part of Portion 268A granted to Australian Agricultural Company on 20-11-1847. Excepting thereout the mines and minerals contained in Deeds Book 810 No.901, Book 814 No.335, Book 1049 No.242 and Book 1091 No.233 affecting parts and excepting thereout the mines and deposits specified in Section 134 Public Works Act, 1900 affecting part. FIRST SCHEDULE (continued overleaf)

THE NEWCASTLE JOCKEY CLUB LIMITED.

Jacon/ Registrar General. SECOND SCHEDULE (continued overleaf)

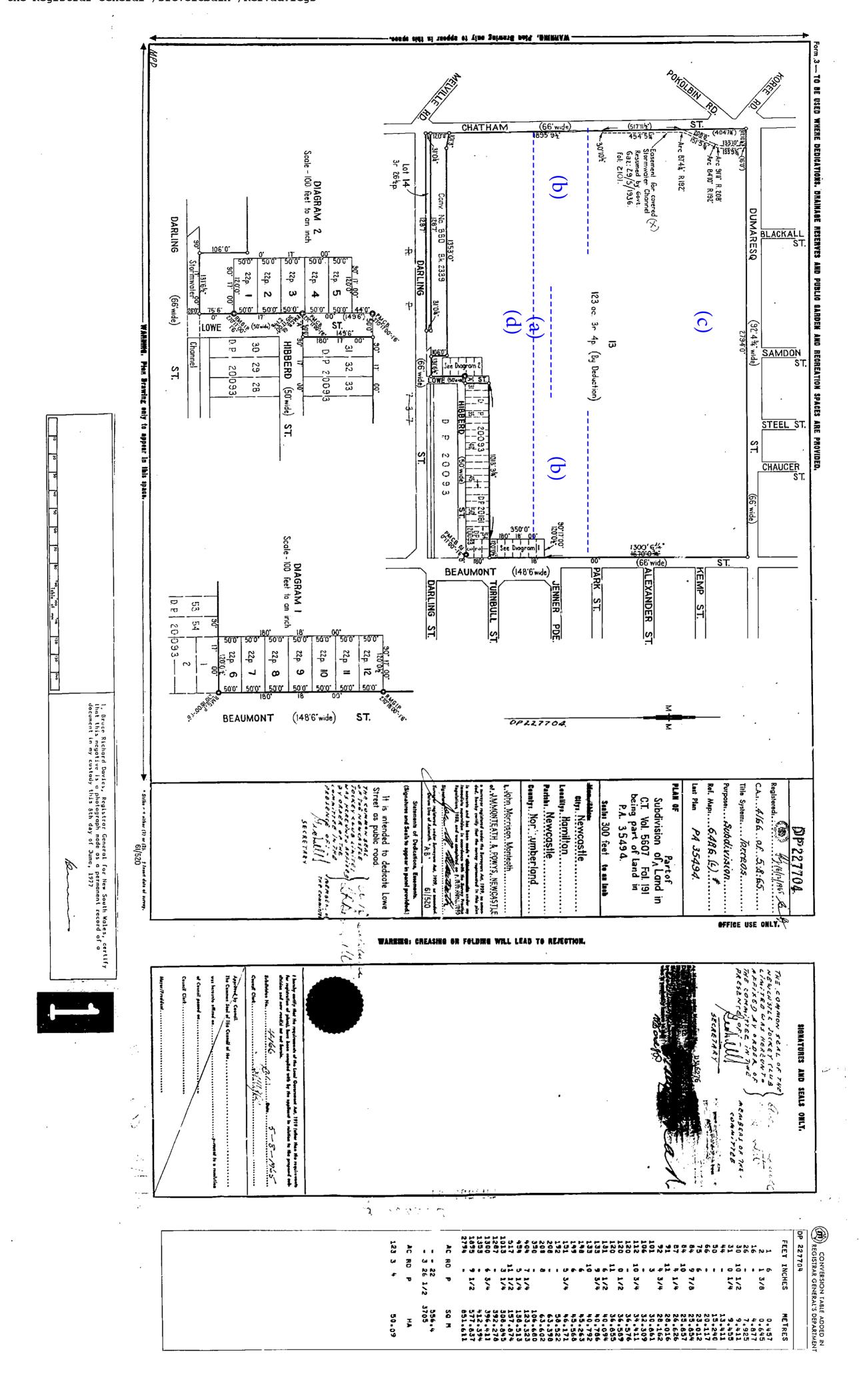
GRY 1. Reservations and conditions, if any, contained in the Crown Grant above referred to 2. Provisions contained in Deeds Book 810 No.901, Book 814 No.335, Book 1049 No.242 and Book 1091 No.233

affecting parts.
3. Easement for the construction and maintenance of a covered stormwater channel created by notification in Government Gazette dated 29-5-1936 Folio 2101 affecting the strip of land shown as Easement for covered stormwater channel in the plan hereon. 00 227704
4. Mortgage No. D3462760 Bank of New South Wales. Entered 22-1-1945.

Registrar General.

PERSONS B

AA


M

7 G L loa

T0201

© Offi	ce o	E th	e Reg						ISW LRS advlec		s:ALL	/Pı	ct:(03-м	ay-2	021	10:	54 ,	/Sec	q:2	of	2	: .			
0-7-18-0	Tx60676		M349154	(PREM)											-						٠					
V.C.N. Blight, Government Printer		Signature of Registrar-General																								
, 17 V.C.N. Bligh		ENTERED				•				CANCELLATION															-	
.		DATE																								
		INSTRUMENT								Signature of Registrar-General			Character and Ch													•
		NATURE								ENTERED	ts, of		1		Racing	1007	ļ									
	FIRST SCHEDULE (continued)	REGISTERED PROPRIETOR				E 1	SEE AUTO FOLIG		SECOND SCHEDULE (continued)	PARTICULARS	Mahony, Harry Reginald Hayes and William James Meredith, as joint tenants,	. 2 Lowe Street, Hamilton, together with an option of renewal	2-6-1983.	ent Ruthedge and Kevin Johns as joint	as "The Newcontle Honter and Central Cous	nam Boad Broadmeadew. = xpres = 1-3-										
										INSTRUMENT DATE NUMBER DATE	Lease to Roy Bede	premises known as Offices, No	Expires 31-7-1986. Registered		of the building	- 0ffic	Kegya teresa a 1 = 0 = 110 0.									

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

3/5/2021 10:51AM

FOLIO: 13/227704

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 10209 FOL 157

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
21/4/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
27/9/1996		AMENDMENT: LOCAL GOVT AREA	
12/5/1997 12/5/1997	3029771 3029772	DISCHARGE OF MORTGAGE LEASE	EDITION 1
1/7/2006	AC429387	LEASE	EDITION 2
12/9/2007	AD172460	LEASE	EDITION 3
2/11/2007	AD443538	LEASE	EDITION 4
1/12/2009 1/12/2009	AF155042 AF155055	LEASE LEASE	EDITION 5
30/10/2012	AH332208	DEPARTMENTAL DEALING	
25/3/2014	AI465493	DEPARTMENTAL DEALING	
24/7/2014	AI644158	LEASE	EDITION 6
15/5/2015 15/5/2015		LEASE LEASE LEASE LEASE	EDITION 7
22/9/2015	AJ829912	MORTGAGE OF LEASE	
19/8/2020	AQ322364	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 8
3/9/2020	AQ365133	LEASE	EDITION 9

*** END OF SEARCH ***

advlegs PRINTED ON 3/5/2021

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 13/227704

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 3/5/2021
 10:53 AM
 9
 3/9/2020

LAND

LOT 13 IN DEPOSITED PLAN 227704 AT HAMILTON LOCAL GOVERNMENT AREA NEWCASTLE

PARISH OF NEWCASTLE COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP227704

FIRST SCHEDULE

THE NEWCASTLE JOCKEY CLUB LIMITED

SECOND SCHEDULE (10 NOTIFICATIONS)

- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 PROVISIONS AFFECTING PARTS OF THE LAND ABOVE DESCRIBED AS CONTAINED IN BK. 810 NO. 901, BK. 814 NO. 335, BK. 1049 NO. 242 & BK. 1091 NO. 233
- 3 EASEMENT FOR THE CONSTRUCTION AND MAINTENANCE OF A COVERED STORMWATER CHANNEL CREATED BY GOV. GAZ. DATED 29.5.1936 FOL 2101 AFFECTING THE LAND SHOWN AS EASEMENT FOR COVERED STORMWATER CHANNEL IN DP227704
- 4 LAND EXCLUDES MINERALS BK 810 NO 901, BK 814 NO 335, BK 1049 NO 242 & BK 1091 NO 233 AFFECTING PARTS
- 5 LAND EXCLUDES MINERALS (S.134 PUBLIC WORKS ACT, 1900) AFFECTING PART
- 6 AJ471647 LEASE TO THE RUMPUS ROOM CHILDRENS CENTRES PTY LIMITED OF 121-123 CHATHAM STREET, BROADMEADOW. EXPIRES: 14/9/2019.
 - AJ829912 MORTGAGE OF LEASE AJ471647 TO COMMONWEALTH BANK OF AUSTRALIA
- 7 AJ471648 LEASE TO THE RUMPUS ROOM CHILDRENS CENTRES PTY LIMITED OF 121-123 CHATHAM STREET, BROADMEADOW COMMENCES 15/9/2019. EXPIRES: 14/9/2024.
 - AJ829912 MORTGAGE OF LEASE AJ471648 TO COMMONWEALTH BANK OF AUSTRALIA
- 3 AJ471649 LEASE TO THE RUMPUS ROOM CHILDRENS CENTRES PTY LIMITED OF 121-123 CHATHAM STREET, BROADMEADOW COMMENCES 15/9/2024. EXPIRES: 14/9/2029.
 - AJ829912 MORTGAGE OF LEASE AJ471649 TO COMMONWEALTH BANK OF AUSTRALIA
- 9 AJ471650 LEASE TO THE RUMPUS ROOM CHILDRENS CENTRES PTY LIMITED OF 121-123 CHATHAM STREET, BROADMEADOW

END OF PAGE 1 - CONTINUED OVER

advlegs PRINTED ON 3/5/2021

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

PAGE

2

FOLIO: 13/227704

SECOND SCHEDULE (10 NOTIFICATIONS) (CONTINUED)

COMMENCES 15/9/2029. EXPIRES: 14/9/2034.

AJ829912 MORTGAGE OF LEASE AJ471650 TO COMMONWEALTH BANK OF AUSTRALIA

10 AQ365133 LEASE TO NEWCASTLE EQUINE VETERINARY SERVICES PTY
LTD PART FOLIO IDENTIFIER 13/227704 BEING THE AREAS
MARKED HATCHED ON THE LEASE PLAN IN SCHEDULE 3.
EXPIRES: 31/10/2024. OPTION OF RENEWAL: 5 YEARS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 3/5/2021

Obtained from NSW LRS on 03 May 2021 10:53 AM AEST

© Office of the Registrar-General 2021

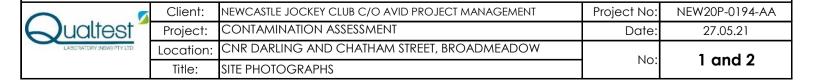
^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. GlobalX hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900. Note: Information contained in this document is provided by GlobalX Pty Ltd, ABN 35 099 032 596, www.globalx.com.au an approved NSW Information Broker.

APPENDIX E:

Aerial Photographs

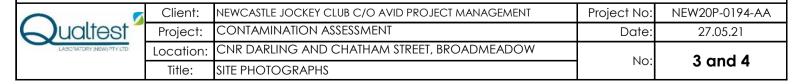


APPENDIX F:


Site Photographs

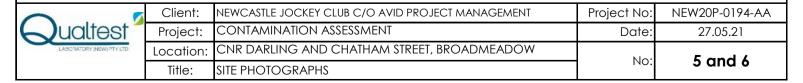
Photograph 1 - Facing south-east, showing well maintained grass in the southern portion of the site.

Photograph 2 - Showing access road running north-south.



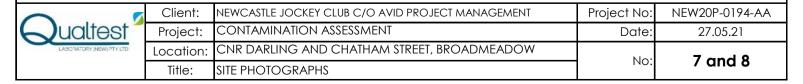
Photograph 3 - Showing NJC entry gates.

Photograph 4 -Showing the NJC entry building, situated to the immediate west of the entry gates.



Photograph 5 - Showing equine centre.

Photograph 6 - Showing locked pesticide storage lockers.

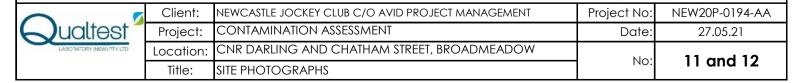


Photograph 7 - Showing jerry cans with diesal/petroleum and a concrete floor in good condition.

Photograph 8 -Showing stored fertilisers observed within the shed.

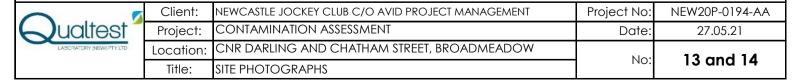
Photograph 9 - Showing access road in the central portion of the site.

Photograph 10 - Showing marquee, south of pavilion room.


<u> </u>	Client:	NEWCASTLE JOCKEY CLUB C/O AVID PROJECT MANAGEMENT	Project No:	NEW20P-0194-AA
Qualtest	Project:	Contamination assessment	Date:	27.05.21
LABORATORY (NSW) PTY LTD	Location:	CNR DARLING AND CHATHAM STREET, BROADMEADOW	No:	9 and 10
	Title:	SITE PHOTOGRAPHS	110.	7 and 10

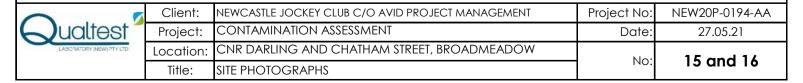
Photograph 11 - Showing stables.

Photograph 12 -Showing the typical building materials within the stables.



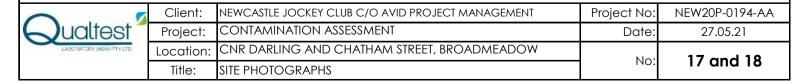
Photograph 13 - Showing the mounting yard/parading ring.

Photograph 14 -Showing possible fill in loading and unloading area mound.



Photograph 15 - Showing circular structure in the north-western portion of the site.

Photograph 16 -Showing locked shed.



Photograph 17 - Showing fuel storage cells/pumps

Photograph 18 - Showing general site trees and plants within the racecourse.

APPENDIX G:

NSW EPA Records

BBOADMEADOW	Forman Indicated City	16 Breadwardow BOAD	Complex Canalism	Decidation and a CIAA Ast ast assumed	22.01444006	151 7200112
BROADMEADOW	Former Industrial Site	16 Broadmeadow ROAD	Service Station	Regulation under CLM Act not required	-32.91444096	151.7300112
BROADMEADOW	Nineways Broadmeadow Coles Express SS	Corner Brunker Road and Lambton ROAD	Service Station	Regulation under CLM Act not required	-32.92511185	151.7364247
BROADMEADOW	2 Georgetown Road, Broadmeadow NSW	2 Georgetown ROAD	Metal Industry	Under assessment	-32.912288	151.732197

Search results

Your search for: Suburb: BROADMEADOW

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the</u> Environmental Planning and Assessment Act.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register.

Search TIP

Search Again

To search for a specific site, search by LGA (local government area) and carefully review all sites listed.

Refine Search

.. more search tips

Search results

Your search for: Notices with the following criteria

Notice type - Penalty Notice Suburb - broadmeadow

Suburb - broadmeadov returned 0 result

Search results

Your search for: POEO Licences with the following criteria

Suburb - broadmeadow

returned 3 results

Export to ex	ccel	1 of 1 Pages		Search Again
Number	<u>Name</u>	<u>Location</u>	<u>Туре</u>	Status Issued date
10667	BERENDSEN FLUID POWER PTY LIMITED	9-11 BROADMEADOW RD, BROADMEADOW, NSW 2292	POEO licence	Surrendered 27 Apr 2000
10996	RAIL CORPORATION NEW SOUTH WALES	BROWN ROAD, BROADMEADOW, NSW 2292	POEO licence	No longer in 19 Jun 2000 force
6808	UGL RAIL SERVICES PTY LIMITED	16 BROADMEADOW ROAD, BROADMEADOW, NSW 2292	POEO licence	No longer in 26 Jun 2000 force
				06 May 2021

Search Again

Return to Previous Page

Summary Licence No: 6808

View this licence (PDF document 198 kb)

Licence holder: UGL RAIL SERVICES PTY LIMITED

Premises: GONINANS

16 BROADMEADOW ROAD, BROADMEADOW, NSW, 2292

LGA: NEWCASTLE Catchment: Hunter

Administrative fee: \$4,448.00

Licence status: No_longer_in_force

Activity type: Hazardous, Industrial or Group A Waste Generation or Storage

Licence review: Complete date 23 Jun 2003

Due date 23 Jun 2008

Pollution incident management

plan: No

Applications

Number	Application type	<u>Current status</u>	<u>Date received</u>
140493	s.55 Licence Transfer	Approved	08 Jun 2001

Annual Returns ___

Start date	End date	Date received	Non-com	pliance LBL data	
27-Apr-2007	26-Apr-2008				Complete annual return via eConnect
27-Apr-2006	26-Apr-2007	26-Jun-2007	No	Not available	
27-Apr-2005	26-Apr-2006	21-Jul-2006	No	Not available	
27-Apr-2004	26-Apr-2005	14-Jun-2005	No	Not available	
27-Apr-2003	26-Apr-2004	21-Jun-2004	No	Not available	
27-Apr-2002	26-Apr-2003	18-Jun-2003	No	Not available	
27-Apr-2001	26-Apr-2002	03-Jul-2002	No	Not available	
27-Apr-2000	26-Apr-2001	07-Jun-2001	No	Not available	

Licence summary

Search Again Return to Previous Page

Summary Licence No: 10667

View this licence (PDF document 189 kb)

Licence holder: BERENDSEN FLUID POWER PTY LIMITED

Premises: BERENDSEN FLUID POWER P/L

9-11 BROADMEADOW RD, BROADMEADOW, NSW, 2292

LGA: NEWCASTLE Catchment: Hunter

Administrative fee: \$760.00

Licence status: Surrendered

Activity type: Hazardous, Industrial or Group A Waste Generation or Storage

Licence review: Due date 27 Apr 2003
Pollution incident management

plan: No

Applications

Number	Application type	Current status	Date received	
1004842	s.80 Surrender of a	Issued	20 Feb 2001	
	Licence			

Notices _

<u>Number</u>	<u>Issue date</u>	Notice type
1004842	07 Mar 2001	s.80 Surrender of a Licence

Annual Returns

art date	End date	Date received	Non-comp	oliance LBL data
7-Apr-2000	07-Mar-2001	18-May-2001	No	Not available

Licence summary

Search Again

Return to Previous Page

Summary Licence No: 10996

View this licence (PDF document 109 kb)

Licence holder: RAIL CORPORATION NEW SOUTH WALES

Trading as: RAILCORP

Premises: ENDEAVOUR MAINTENANCE CENTRE

BROWN ROAD, BROADMEADOW, NSW, 2292

LGA: NEWCASTLE Catchment: Hunter

Administrative fee: \$760.00

Licence status: No_longer_in_force

Activity type: Hazardous, Industrial or Group A Waste Generation or Storage

Licence review: Complete date 04 Jun 2004

Due date 04 Jun 2009

Pollution incident management

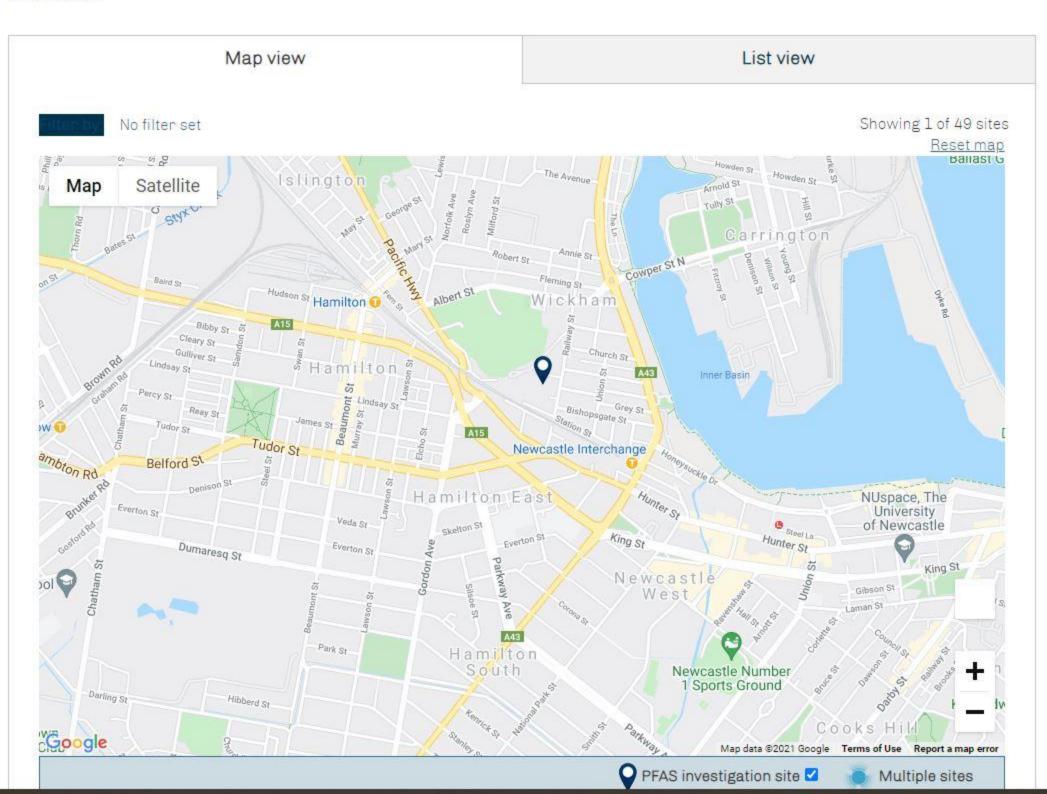
plan: No

Applications

Number	Application type	Current status	Date received	
143258	s.55 Licence Transfer	Approved	11 Feb 2005	
1060631	s.58 Licence Variation	Issued	13 Apr 2006	

Notices -

<u>Number</u>	<u>Issue date</u>	Notice type	
1060631	22 Jun 2006	s.58 Licence Variation	
1077282	27 Aug 2007	s.58 Licence Variation	


Annual Returns

Start date	End date	Date received	Non-com	<u>pliance LBL data</u>	
20-Jun-2007	29-Jun-2007	16-Aug-2007	No	Not available	
20-Jun-2006	19-Jun-2007	17-Aug-2007	<u>yes</u>	Not available	
20-Jun-2005	19-Jun-2006	16-Aug-2006	<u>yes</u>	Not available	
20-Jun-2004	19-Jun-2005	18-Aug-2005	<u>yes</u>	Not available	
20-Jun-2003	19-Jun-2004	18-Aug-2004	<u>yes</u>	Not available	
20-Jun-2002	19-Jun-2003	18-Aug-2003	No	Not available	
20-Jun-2001	19-Jun-2002	19-Aug-2002	<u>yes</u>	Not available	
20-Jun-2000	19-Jun-2001	05-Jul-2001	No	Not available	

Newcastle City Council	Clyde Street, Hamilton North	Search record of EPA notices⊌
Newcaslte City Council	Ellis Road, Turton Road, Georgetown Road, Waratah	Contact council
Newcastle City Council	Low Street, Wallsend	Contact council
Newcastle City Council	Steel Street, Newcastle West	Contact council
Newcastle City Council	Wharf Road, Newcastle	Contact council

The EPA is leading an investigation program to assess the legacy of PFAS use across NSW. With the assistance of the NSW PFAS Technical Advisory Group, which includes NSW Health, Department of Primary Industries and the Office of Environment and Heritage, we provide impacted residents with tailored, precautionary dietary advice to help them reduce any exposure to PFAS.

Current investigations are focused on sites where it is likely that large quantities of PFAS have been used. The EPA is currently investigating PFAS at these sites:

APPENDIX H:

Section 10.7 Certificate

Planning Certificate

Section 10.7, Environmental Planning and Assessment Act 1979

To: Qualtest Laboratory (NSW) Pty Ltd

2 Murray Dwyer Circuit Mayfield West NSW 2304 Certificate No: PL2021/02525

Fees: \$133.00 Receipt No(s): D001883629

Your Reference: NEW20P-0194

Date of Issue: 03/05/2021

The Land: Lot 13 DP 227704

125 Chatham Street Broadmeadow NSW 2292

Advice provided on this Certificate:

Advice under section 10.7(2): see items 1-21

Additional advice under section 10.7(5): see Items 22 - 28

IMPORTANT: Please read this certificate carefully

This certificate contains important information about the land.

Please check for any item which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, phone our **Customer Contact Centre** on (02) 4974 2000, or come in and see us.

The information provided in this certificate relates only to the land described above. If you need information about adjoining or nearby land, or about the City of Newcastle (CN) development policies for the general area, contact our **Customer Contact Centre**.

All information provided is correct as at 03/05/2021. However, it's possible for changes to occur within a short time. We recommend that you only rely upon a very recent certificate.

City of Newcastle

PO Box 489 NEWCASTLE 2300

Phone: (02) 4974 2000 Facsimile: (02) 4974 2222 **Customer Contact Centre**

Ground floor, 12 Stewart Avenue Newcastle West NSW 2300

Office hours:

Mondays to Fridays 8.30 am to 5.00 pm

Part 1:

Advice provided under section 10.7(2)

ATTENTION: The explanatory notes appearing in italic print within Part 1 are provided to assist understanding, but do not form part of the advice provided under section 10.7(2). These notes shall be taken as being advice provided under section 10.7(5).

1. Names of relevant planning instruments and DCPs

The following environmental planning instruments, proposed environmental planning instruments and development control plans apply to the land, either in full or in part.

State Environmental Planning Policy No. 1 - Development Standards

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous and Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy (Koala Habitat Protection) Amendment (Maps) 2020

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising and Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy (Housing For Seniors or People with a Disability) 2004

State Environmental Planning Policy (Building Sustainability Index:BASIX) 2004

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Urban Renewal) 2010

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

State Environmental Planning Policy (Concurrences) 2018

State Environmental Planning Policy (Primary Production and Rural Development) 2019

Newcastle Local Environmental Plan 2012

Newcastle Development Control Plan 2012

2. Zoning and land use under relevant LEPs

Newcastle Local Environmental Plan 2012

Zoning: The Newcastle Local Environmental Plan 2012 identifies the land as being within the following zone(s):

Zone RE2 Private Recreation

Note: Refer to www. newcastle.nsw.gov.au or www. legislation.nsw.gov.au website for LEP instrument and zoning maps.

The following is an extract from the zoning provisions contained in Newcastle Local Environmental Plan 2012:

Zone RE2 Private Recreation

· Objectives of zone

- To enable land to be used for private open space or recreational purposes.
- To provide a range of recreational settings and activities and compatible land uses.
- To protect and enhance the natural environment for recreational purposes.

Permitted without consent

Environmental facilities; Environmental protection works; Home occupations

Permitted with consent

Amusement centres; Aquaculture; Boat launching ramps; Boat sheds; Camping grounds; Car parks; Caravan parks; Charter and tourism boating facilities; Centre-based child care facilities; Community facilities; Dwelling houses; Emergency services facilities; Entertainment facilities; Flood mitigation works; Food and drink premises; Function centres; Helipads; Home-based child care; Jetties; Kiosks; Marinas; Markets; Moorings; Neighbourhood shops; Passenger transport facilities; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Respite day care centres; Roads; Signage; Water recreation structures

Prohibited

Pubs; Any other development not specified in, permitted without consent or permitted with consent

Minimum land dimensions for erection of a dwelling-house: The Newcastle Local Environmental Plan 2012 contains development standards relating to minimum land dimensions for the erection of a dwelling house. Refer to clause 4.1 Minimum subdivision lot size and Part 4 Principle development standards of the Newcastle LEP 2012 for provisions relating to minimum lot sizes for residential development.

Critical habitat: The Newcastle Local Environmental Plan 2012 does not identify the land as including or comprising critical habitat.

Heritage conservation area: The land is not within a heritage conservation area under the Newcastle Local Environmental Plan 2012.

Heritage items: A heritage item listed in the Newcastle Local Environmental Plan 2012 is situated on the land. Refer to the LEP for provisions relating to development involving a heritage item.

3. Complying development

Note Other requirements: The advice below for all Complying Development Codes, is limited to identifying whether or not the **land**, the subject of the certificate, is land on which complying development may be carried out because of Clauses 1.17A(1)(c) to (e), (2), (3) & (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 (the Codes SEPP).

To ascertain the extent to which the complying development may or may not be carried out on the land, maps are available on City of Newcastle (CN) web pages.

Housing Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Rural Housing Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Low Rise Housing Diversity Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Greenfield Housing Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Inland Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Housing Alterations Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

General Development Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Commercial and Industrial Alterations Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Container Recycling Facilities Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Subdivision Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Demolition Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

Fire Safety Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by General land exemptions, being land that comprises, or on which there is, a Heritage Item.

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

The land IS NOT subject to an agreement for annual charges under section 496B of the Local Government Act 1993 for coastal protection services (within the meaning of section 553B of that Act).

5. Coal Mine Subsidence Compensation Act 2017

The land IS WITHIN a declared Mine Subsidence District under section 20 of the Coal Mine Subsidence Compensation Act 2017. Development in a Mine Subsidence District requires approval from Subsidence Advisory NSW. Subsidence Advisory NSW provides compensation to property owners for mine subsidence damage. To be eligible for compensation, development must be constructed in accordance with Subsidence Advisory NSW approval. Subsidence Advisory NSW has set surface development guidelines for properties in Mine Subsidence Districts that specify building requirements to help prevent potential damage from coal mine subsidence.

NOTE: The above advice is provided to the extent that City of Newcastle (CN) has been notified by Subsidence Advisory NSW.

6. Road widening or realignment

NOTE: The Roads and Maritime Services (RMS) may have proposals that are not referred to in this item. For advice about affectation by RMS proposals, contact the Roads and Maritime Services, Locked Mail Bag 30 Newcastle 2300. Ph: 131 782.

The land IS NOT AFFECTED by any road widening or road realignment under Division 2 of Part 3 of the Roads Act 1993.

The land IS NOT AFFECTED by any road widening or road realignment under an environmental planning instrument.

The land IS NOT AFFECTED by road widening or road realignment under a resolution of the Council.

7. Policies on hazard risk restrictions

Except as stated below, the land is not affected by a policy referred to in Item 7 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000 that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Potential acid sulfate soils: Works carried out on the land must be undertaken in accordance with Clause 6.1 Acid sulfate soils of the Newcastle Local Environmental Plan 2012.

Land Contamination: We have land contamination information/records in relation to this property. Council has adopted a policy of restricting development or imposing conditions on properties affected by land contamination. Refer to Section 5.02 Land Contamination of Newcastle Development Control Plan 2012, which is available to view and download from City of Newcastle's website.

NOTE: The absence of a policy to restrict development of the land because of the likelihood of a particular risk does not imply that the land is free from that risk. City of Newcastle (CN) considers the likelihood of natural and man-made risks when determining development applications under section 4.15 of the Environmental Planning and Assessment Act 1979. Detailed investigation carried out in conjunction with the preparation or assessment of a development application may result in CN either refusing development consent or imposing conditions of consent on the basis of risks that are not identified above.

7A. Flood related development controls information

Our information currently indicates that the property is, or contains, flood prone land as defined in the Floodplain Development Manual: the management of flood liable land, April 2005 published by the NSW Government.

Section 4.01 Flood Management of Newcastle Development Control Plan (DCP) 2012 provides guidelines with respect to all development of flood prone land. This includes development for the purpose of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings. The DCP may be viewed on our website, inspected or purchased at our Customer Contact Centre.

NOTE: More detailed flood information specific to the property is available on separate flooding certificate application through our Customer Contact Centre on (02) 4974 2000

8. Land reserved for acquisition

The land is not identified for acquisition by a public authority (as referred to in section 3.15 of the Act) by any environmental planning instrument or proposed environmental planning instrument applying to the land.

9. Contributions plans

The following contribution plan/s apply to the land.

Section 7.12 Newcastle Local Infrastructure Contributions Plan 2019: Effective 9 September 2019.

The Plan specifies section 7.12 contributions that may be imposed as a condition of development consent.

NOTE: Contributions plans are available on our website or may be inspected or purchased at our Customer Contact Centre.

9A. Biodiversity certified land

The land IS NOT biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

10. Biodiversity stewardship sites

The land IS NOT land (of which CN is aware) under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

10A. Native vegetation clearing set asides

The land IS NOT land (of which CN is aware) that contains a set aside area under section 60ZC of the Local Land Services Act 2013.

11. Bush fire prone land

The land IS NOT bush fire prone land for the purposes of the Environmental Planning and Assessment Act 1979.

12. Property vegetation plans

Not applicable. The Native Vegetation Act 2003 does not apply to the Newcastle local government area.

13. Orders under Trees (Disputes Between Neighbours) Act 2006

CN HAS NOT been notified that an order has been made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. Directions under Part 3A

The land IS NOT AFFECTED by a direction by the Minister in force under section 75P (2) (c1) of the Act.

15. Site compatibility certificates and conditions for seniors housing

- (a) The land IS NOT AFFECTED by a current site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Housing for Seniors and People with a Disability) 2004.
- (b) The land IS NOT AFFECTED by any terms of kind referred to in clause 18(2) of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004, that have been imposed as a condition of consent to a development application granted after 11 October, 2007 in respect of the land.

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Infrastructure) 2007.

17. Site compatibility certificates and conditions for affordable rental housing

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Affordable Rental Housing) 2009.

18. Paper subdivision information

The land IS NOT AFFECTED by any development plan that applies to the land or that is proposed to be subject to a consent ballot.

19. Site verification certificates

The land IS NOT AFFECTED by a current site verification certificate (of which CN is aware) issued under the State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20. Loose-fill asbestos insulation

CN HAS NOT been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register of loose-fill asbestos insulation, that is required to be maintained under that Division.

21. Affected building notices and building product rectification orders

The land IS NOT AFFECTED by any affected building notice of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by any building product rectification order that has not been fully complied with, of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by an outstanding notice of intention to make a building product rectification order of which CN is aware.

An affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017. Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Note: There are no matters prescribed by section 59(2) of the Contaminated Land Management Act 1997 to be disclosed, however if other contamination information is held by the Council this may be provided under a section 10.7(5) certificate.

Part 2:

Advice provided under section 10.7(5)

ATTENTION: Section 10.7(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 10.7(5).

22. Outstanding Notices and Orders issued by City of Newcastle (CN).

Our records indicate that this premise IS NOT AFFECTED by a current notice or order (excluding the notices or orders mentioned in the note below).

NOTE: CN has not inspected the premises immediately prior to the issue of this certificate. It is possible that the premises are affected by matters of which we are unaware.

NOTE: This Certificate does not include any advice regarding outstanding notices or orders issued under the Environmental Planning and Assessment Act 1979 or the Local Government Act 1993. To obtain advice regarding these matters, you should lodge an application for a Certificate as to Outstanding Notices and Orders (accompanied by the appropriate fee). For further information, please contact the Customer Contact Centre on (02) 4974 2000.

23. Draft development control plans.

A draft development control plan DOES NOT APPLY to the land. The draft plans are exhibited pursuant to Part 3 of the Environmental Planning and Assessment Regulation 2000.

24. Heritage Act 1977.

The land IS NOT AFFECTED by a listing on the State Heritage Register or an Interim Heritage Order that is in force under the Heritage Act 1977.

NOTE: The above advice is provided to the extent that CN has been notified by the Heritage Council of NSW. For up-to-date details, contact the Office of Environment and Heritage, PO Box A290, South Sydney NSW 1232 Ph: (02) 9995 5000.

25. Listing by National Trust of Australia.

The land IS NOT AFFECTED by a listing of the National Trust of Australia (NSW).

NOTE: The above advice is provided to the extent that CN has been notified by the National Trust of Australia (NSW). For up-to-date details, contact the National Trust Ph 02 9258 0123.

26. Australian Heritage Database.

The land IS NOT AFFECTED by a listing on the Australian Heritage Database.

NOTE: The above advice is provided to the extent that CN has been notified by the Department of the Environment. For up-to-date details, contact the Department of the Environment, Heritage, King Edward Terrace, Parkes ACT 2600. Ph (02) 6274 1111.

27. Environment Protection & Biodiversity Conservation Act 1999 (Cth)

Under the (Commonwealth) Environment Protection and Biodiversity Conservation Act 1999, actions which have, may have or are likely to have, a significant impact on a matter of national environmental significance may be taken only with the approval of the Commonwealth Minister for the Environment.

Approval is also required for actions that have a significant effect on the environment of Commonwealth land. These actions may be on Commonwealth land or other land.

This approval is in addition to any approvals under the (NSW) Environmental Planning and Assessment Act 1979 or other NSW legislation.

Matters of national environmental significance are:

- · declared World Heritage areas
- · declared Ramsar wetlands
- · listed threatened species and ecological communities
- · listed migratory species
- nuclear actions
- · the environment of Commonwealth marine areas.

Locations within the City of Newcastle that are a declared Ramsar wetland include Kooragang Nature Reserve and Shortland Wetlands. Listed threatened species and listed migratory species are known to occur within the City of Newcastle.

28. Other matters

The land is affected by the following:

Live Music Strategy (2019) and Newcastle After Dark: Night-time Economy Strategy (2018-2022).

City of Newcastle's Live Music Strategy and Newcastle After Dark: Night Time Economy Strategy supports live music and the night-time economy which play a key role in accommodation, events, cultural and business uses in the City Centre and Town Centres. Future residents should be aware that these uses may generate noise, odour, traffic and have longer hours of operation, including after 5pm, which is part of living in/near a commercial centre. The Strategies promote the sharing of the City, including the mitigation of impacts of new residential development, live music or the night time economy on other land uses.

For more information see Live Music Strategy (2019) and Newcastle After Dark: Night-Time Economy Strategy (2018-2022) on Council's website https://www.newcastle.nsw.gov.au or phone 4974 2000.

Newcastle earthquake

Earthquakes occurred in the vicinity of Newcastle on 28th December 1989 and 6 August 1994. Buildings on the land may have suffered damage as a consequence of the earthquakes. Prospective purchasers are advised to make their own enquiries as to whether the property is affected by any damage.

Further consent requirements under the Newcastle Local Environmental Plan 2012.

The following provisions of the Newcastle Local Environmental Plan 2012 affect the carrying out of development on the land. These provisions are in addition to those required to be disclosed at Item 2 of this Certificate.

Refer to clause 3.1 Exempt Development of the Newcastle Local Environmental Plan 2012

Refer to clause 3.2 Complying Development of the Newcastle Local Environmental Plan 2012

Local Strategic Planning Statement

The Local Strategic Planning Statement (LSPS) was adopted by council on 26 May 2020 and replaces the Local Planning Strategy. The LSPS is taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Hunter Regional Plan 2036

The Hunter Regional Plan has been prepared by the Department of Planning and Environment. The contents of the strategy will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to the Department of Planning and Environment's website to view the document. www.planning.nsw.gov.au

Newcastle City-Wide Floodplain Risk Management Study and Plan (2012)

The Newcastle City-wide Floodplain Risk Management Study and Plan addresses flood management for the City of Newcastle. The Study and Plan will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Greater Newcastle Metropolitan Plan 2036

The Greater Newcastle Metropolitan Plan 2036 has been prepared by the Department of Planning and Environment. The Plan will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Contaminated land information

Council is in possession of the following contaminated land document(s) which relate to the land. Persons relying on the certificate are advised to examine and consider the contents of each document:

- 1. Report: Dr John Lucas (11 November 2013) Environmental Site Assessment DW 4543036
- 2. Report: ESP Environmental and Safety Professionals (November 2014) Detailed Site Investigation
- 3. Report: ESP Environmental and Safety Professionals (17 February 2015) Validation Report Persons relying on the certificate are advised to make their own investigations as to whether the land is affected by elevated concentrations of soil or groundwater contaminants in relation to proposed purchase or use of land.

Issued without alterations or additions, 03/05/21 Authorised by

JEREMY BATH
CHIEF EXECUTIVE OFFICER

APPENDIX I:

Borehole Logs

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH01

1 OF 1

ВВ

NEW20P-0194

DRILL TYPE: 2.7 TONNE EXCAVATOR WITH AUGER SURFACE RL:

BOREHOLE DIAMETER: 300 mm

	KEH	OLE DIAN	IETER	:	300 m	m	DATUM:						
	Dril	ing and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity/particles characteristics, colour, minor components	icle	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.80m U50 1.10m		1.0_ 		SM SP CH CH	FILL-TOPSOIL: Gravelly Silty SAND - fine to med grained (mostly fine grained), dark brown, fines or low plasticity, fine to coarse grained angular grave root affected in top 0.10m. D.25m Black. FILL: SAND - fine to medium grained, pale brown fine to medium grained, pale brown grained angular gravel. FILL: Sandy CLAY - medium plasticity, black, fine coarse grained sand, with some fine to medium grained angular gravel. Sandy CLAY - medium to high plasticity, dark grewith some brown, fine to medium grained sand. Medium plasticity. Medium plasticity. SAND - fine to medium grained, grey with some orange-brown, with some fines of low plasticity. Orange-brown. Dark grey.	of rel, [D - M M > M > M M M M M M M M M M M M M M	St - VSt		180 100 150	FILL - TOPSOIL FILL ALLUVIUM POSSIBLE FILL ALLUVIUM
Wat	Wat (Dar - Wat I Wat ata Char	er Level te and time sl er Inflow er Outflow anges radational or ansitional stra	nown)	Notes, Sa U ₅₀ CBR E ASS B Field Test	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample to nmenta s jar, se sulfate s c bag, s sample	ter tube sample or CBR testing s S al sample f St Soil Sample vst sir expelled, chilled) The state of the sample of the	Sof Firr Stif t Ver Har	ry Soft ft m ff ry Stiff	V	25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

BOREHOLE NO:

LOGGED BY:

PAGE:

BH02

1 OF 1

ВВ

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

	Dril	ling and Sam	pling				Material description and profile information				Field	d Test	
МЕТНОD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics,colour,minor componer	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		0.40m		-		SC	FILL-TOPSOIL: Clayey Gravelly SAND - fill coarse grained, black, fine to medium grain angular gravel, fines of low plasticity, root at top 0.10m.	ned	D - M				FILL - TOPSOIL
		CBR		0. <u>5</u>		СН	Sandy CLAY - medium to high plasticity, downwith some brown, fine to medium grained s	ark grey sand.		St	HP	130	ALLUVIUM7 POSSIBLE FI
		0.80m		- 1. <u>0</u> -		CI	O.80m Sandy CLAY - medium plasticity, grey with brown, fine to medium grained sand.	some	M > Wp		HP		ALLUVIUM
AD/T				- 1. <u>5</u> - -		CI	Sandy CLAY / Clayey SAND - medium pla grey with some brown, fine to medium grai		M ~ Wp	St - VSt	HP	180	
	1 L/min) █			2.0 - - - - 2.5_		SP	SAND - fine to medium grained, pale grey Dark grey to black.	to white.	M - W	MD - D	-		
	Very slow inflow (<1L/min)			-			Dark brown. 2.80m Hole Terminated at 2.80 m Limit Of Reach						
Wate	Wat (Da Wat Wat	ter Level te and time sho ter Inflow ter Outflow anges tradational or	own)	Notes, Sal U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta s jar, se Sulfate S	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H H	recy Very Soft Soft Firm Stiff Very Stiff Hard Friable V		25 50 10 20	CS (kPa 225 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	tra D	ansitional strata efinitive or dist trata change	a	PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)		L ME D VD	L() N D	oose	n Dense	Density Index 15 - 35%

LIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

LOGGED BY:

PAGE:

BH03

1 OF 1

ВВ

	Drill	ing and Sam	pling				Material description and profile information				Field	d Test	
MEIHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		SM	FILL-TOPSOIL: Silty SAND - fine to mediu brown, fines of low plasticity, root affected.	m grained,	D - M				FILL - TOPSOIL
				-		GM	0.15m FILL: Silty Sandy GRAVEL - fine to medius sub-rounded to sub-angular, pale orange-to coarse grained sand, fines of low plastic 0.45m	orown, fine	М				FILL
				0. <u>5</u> _		CH	Sandy CLAY - medium to high plasticity, g some brown, fine to medium grained sand		V W _P		HP	300	ALLUVIUM
				-			0.90m		Σ		HP	250	
				1. <u>0</u>			Sandy CLAY - medium plasticity, grey with orange-brown, fine to medium grained sar			VSt	HP	350	
AD/I				-		CI			M ~ W		HP	300	
				1. <u>5</u> -		CI	Sandy CLAY / Clayey SAND - medium pla 1.60m grey with some orange-brown, fine to med grained sand.	ium 					
				- 2.0 <u></u> -		SP	SAND - fine to medium grained, pale grey	to white.	M - W	MD - D			
	slow inflow (<1 L/min)			2. <u>5</u> -			Dark brown to dark grey-brown.						
	Very sl			_			Hole Terminated at 2.80 m Limit Of Reach						
Wate	Wat (Dat Wat Wat	er Level e and time sho er Inflow er Outflow	own)	I Notes, Sal U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se ulfate S	ts ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S So F Fi St St VSt Vo H H	lery Soft oft rm tiff ery Stiff ard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
<u> </u>	tra De	anges radational or ansitional strat efinitive or dist rata change	a	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME	Lo M	ery Lo oose ledium ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT

LOCATION: CNR DARLING STREET & CHATHAM STREET,

LOGGED BY: BROADMEADOW DATE:

BOREHOLE NO:

PAGE:

JOB NO:

BH04

1 OF 1

26/11/20

ВВ

NEW20P-0194

	Dril	ing and Sam	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics,colour,minor componer	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		SM	TOPSOIL: Silty SAND - fine to medium grabrown, fines of low plasticity, root affected.	ined,	D - M				TOPSOIL
		0.56FR D 0.60m		- 0. <u>5</u>		СН	Sandy CLAY - medium to high plasticity, diffine to medium grained sand.	ark grey,	M > W _P	St	HP	160	ALLUVIUM
		0.70m		-			Sandy CLAY - medium plasticity, pale grey some orange-brown, fine to medium grains	— — — — with ed sand.	√ w ~ h	VSt	HP	230	
L/		1.00m D 1.10m		1. <u>0</u>		SC	Clayey SAND / Sandy CLAY - medium pla grey with some orange-brown, fine to med grained sand.		Σ	Fb	_		
AD/I				1. <u>5</u>			SAND - fine to medium grained, grey, with fines of low plasticity. Pale grey to white.	some	- M				
	low inflow (<1L/min)			2.0 - - - - 2.5_		SP	Dark grey-brown to dark brown. Dark brown.		M - W	MD - D			
	Very slow int			-			2.80m Hole Terminated at 2.80 m Limit Of Reach						
Wate	Wat (Da Wat Wat	er Level te and time sh er Inflow er Outflow anges	nown)	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample to nmenta s jar, se Sulfate S	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	ery Soft oft irm Stiff ery Stiff lard		25 50 10 20 >4	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	tra D	radational or ansitional stra efinitive or dis rata change		PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L ME D	L O M	ery Lo oose lediun ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

LOGGED BY:

PAGE:

BH05

1 OF 1

ВВ

		OLE DIAMET				Material description and profile information				Field	d Test	
	ااال	and Sampli	· 9		7	<u> </u>				1 161	u 1691	
METHOD	WATER		RL DEPT	GRAPHIC	CLASSIFICATION	MATERIAL DESCRIPTION: Soil type, plastici characteristics, colour, minor componer	ty/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-	GM	FILL: Silty Sandy GRAVEL - fine to mediu angular to sub-angular, black, fine to coars sand, fines of low plasticity.		D - M				FILL
		0.40m		*** ////	SC	Clayey SAND - fine to medium grained, gr some brown, fines of low plasticity.	— — — — ey with	М	_			ALLUVIUM
		U50	0	5		Sandy CLAY - medium plasticity, grey with brown to orange-brown, fine to medium gr sand.						
		0.60m			CI			M ~ W _P	St	HP	150	
		0.80m 0.90M 0.90m		///	sc	Clayey SAND - fine to medium grained, gr 0.90m pale grey, fines of low to medium plasticity	<u>.</u>					
_		D (1.00m	1	0		SAND - fine to medium grained, pale grey	to white.	М				
AD/I		1.50m D (1.60m	1	5_		Grey and orange-brown.			MD -			
		2.00m D 2.10m	2	.0 .0 	SP	Dark brown.		M - W	D			
	slow inflow (<1L/min)		2	5_		2.80m		2				
	Very 8			-		Hole Terminated at 2.80 m Limit Of Reach						
Wate	Wat (Da Wat Wat	ter Level te and time show ter Inflow ter Outflow anges	U ₅₀ CBR E	Bulk Env (Gla Acid (Pla	nm Diam s sample ironmen ass jar, s d Sulfate	eter tube sample for CBR testing tal sample ealed and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt N	/ery Soft Soft Firm Stiff /ery Stiff Hard		25 50 10 20	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit W_ Liquid Limit
<u> </u>	G tra D	anges radational or ansitional strata efinitive or distict rata change	Field To PID DCP(x- HP	ests Pho y) Dyn	toionisat	ion detector reading (ppm) netrometer test (test depth interval shown) cometer test (UCS kPa)	Density	V L ME	Lo N	ery Lo oose lediun	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH06

1 OF 1

ВВ

NEW20P-0194

	Drill	ing and Samp	ling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		0.60m D 0.70m		0.5		GP GM GM	FILL: Sandy GRAVEL - fine grained, grey, coarse grained sand. O.15m FILL: Silty Sandy GRAVEL - fine to mediur sub-angular to sub-rounded, pale orange-lot coarse grained sand, fines of low plastic FILL: Silty Sandy GRAVEL - fine to mediur angular, black, fine to coarse grained sand low plasticity, with some coal chitter and lig slag / ash. Sandy CLAY - medium to high plasticity, grey with some orange-brown, fine to med grained sand.	m grained / prown, fine / ity j n grained , fines of htweight	D - M		HP	220	ALLUVIUM
AD/T	Not Encountered	1.00m D 1.10m 1.30m D 1.40m		1.0_ - - 1.5_		CI CI	Sandy CLAY - medium plasticity, pale grey orange-brown, fine to medium grained san 1.30m Clayey SAND / Sandy CLAY - medium pla grey to orange-brown, fine to medium grained san	d. sticity, pale	M ~ W	VSt	HP	300	
				2.0		SP	SAND - fine to medium grained, pale grey. Pale grey to white. Dark brown.		М	MD - D			
LEG	GEND:			2.5	mples a	nd Tes	2.80m Hole Terminated at 2.80 m Limit Of Reach	Consiste	тсу		U	CS (kPa) Moisture Condition
Wat	wat (Dat (Dat Wat Wat Mata Cha Gar Tra	er Level te and time shorer Inflow er Outflow anges radational or ansitional strata efinitive or distic rata change	wn)	U ₅₀ CBR E ASS B Field Test PID CCP(x-y) HP	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S S Photoi	Diame ample finmenta jar, se ulfate \$ c bag, a ample onisationic pending properties of the properties	ter tube sample or CBR testing all sample aled and chilled on site) soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	VS VS S S F F St S VSt VSt V	ery Soft oft irm tiff ery Stiff ard riable V L MC	V L	25 50 10 20 20 24 ery Lo	25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

Definitive or distict

strata change

DCP(x-y)

HP

Dynamic penetrometer test (test depth interval shown)

Hand Penetrometer test (UCS kPa)

ENGINEERING LOG - BOREHOLE

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO:

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BH07

1 OF 1

ВВ

NEW20P-0194

Density Index 35 - 65%

Density Index 65 - 85%

Density Index 85 - 100%

MD

D

VD

Medium Dense

Very Dense

BOREHOLE NO:

LOGGED BY:

PAGE:

		YPE: OLE DIAM			EXCA 300 m		R WITH AUGER SURF	FACE RL: JM:					
	Drill	ing and Sam	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		SM	FILL-TOPSOIL: Silty SAND - fine to mediur dark brown, fines of low plasticity, with som coarse grained rounded to sub-angular gra affected.	e fine to	D - M				FILL - TOPSOIL
				- 0. <u>5</u>		SM	FILL: Sitty SAND - fine to coarse grained (r to medium grained), black to dark grey, fine plasticity.	mostly fine es of low					FILL
				- 1.0		SP	Gravelly SAND - fine to coarse grained, bla medium grained (mostly fine grained) angu with some coal chitter.		- M				
	ntered			- -		СН	Sandy CLAY - medium to high plasticity, da fine to medium grained sand.	ark grey,	M > W _P	St	HP	130	ALLUVIUM
AD/T	Not Encountered			1. <u>5</u>			Sandy CLAY - medium plasticity, grey with orange-brown, fine to medium grained sand	some d.			HP	150	
				- - 2. <u>0</u>		CI			M ~ W _P	VSt			
				- - 2.5		CI	Sandy CLAY / Clayey SAND - medium plas grey with some orange-brown, fine to medi grained sand.						
				-		SP	SAND - fine to medium grained, pale grey to with some pale orange-brown.	to white	M - W				
				-			Hole Terminated at 2.80 m Limit Of Reach						
Wat	Wat (Dat Wat	er Level e and time sh er Inflow er Outflow	nown)	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f ample f anmenta s jar, sea sulfate S	En tube sample or CBR testing I sample aled and chilled on site) oil Sample ir expelled, chilled)	S S S S S S S S S S S S S S S S S S S	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet D W _p Plastic Limit
	G	radational or ansitional stra	ıta	Field Test PID DCP(x-v)	t <u>s</u> Photo	onisatio	n detector reading (ppm) etrometer test (test depth interval shown)	Density	V L MD	L	ery Lo oose lediun	oose n Dense	Density Index <15% Density Index 15 - 35% e Density Index 35 - 65%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

LOGGED BY:

PAGE:

BH08

1 OF 1

ВВ

	REH	OLE DIAM			300 m		DR WITH AUGER SURF	M:					
	Drill	ing and San	npling			1	Material description and profile information		1		Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		GM	ASPHALT FILL: Silty Sandy GRAVEL - fine to coarse (mostly fine to medium grained), rounded to sub-angular, pale brown, fine to coarse grasand, fines of low plasticity.	Š	М	D - VD)		ASPHALT FILL - PAVEMENT
		0.70m		0. <u>5</u>		GP	FILL: Sandy GRAVEL - fine grained angula fine to coarse grained sand.	ir, black,	M - W	L - MD)		FILL
		D (0.80m		-		СН	Sandy CLAY - medium to high plasticity, gr medium grained sand.	ey, fine to	M > W	St	HP	110	ALLUVIUM
	red	1.00m D (1.10m		1.0			Sandy CLAY - medium plasticity, grey with pale orange-brown, fine to medium grained	some sand.			HP	250	
	Not Encountered			1. <u>5</u>		CI			M ~ W _P	VSt			
		2.00m D 2.10m		2. <u>0</u>		SC	Clayey SAND - fine to medium grained, grepale orange-brown, fines of low to medium	— — — — - ey and plasticity.					
		2.30m D 2.40m		2. <u>5</u>		SP	SAND - fine to medium grained, pale grey to Grey-brown.	o white.	M				
				-			Hole Terminated at 2.80 m Limit Of Reach						
Wat	Wat (Dat Wat Wat	er Level te and time sh er Inflow er Outflow anges	hown)	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample to nmenta s jar, se Sulfate S	ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F Fi St S VSt V H H Fb Fi	ery Soft oft irm tiff ery Stiff ard riable		25 50 10 20 >4	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra — D	radational or ansitional stra efinitive or dis rata change		Field Tes PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L ME D VC	Lo D D	ery Loose lediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

LOGGED BY:

PAGE:

BH09

1 OF 1

ВВ

	Drill	ling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
						SM	FILL-TOPSOIL: Silty SAND - fine to mediur dark brown, fines of low plasticity, root affect and the state of t	n grained, cted.	М				FILL - TOPSOIL
						SP	FILL: Gravelly SAND - fine to coarse grains fine to medium grained angular gravel.	ed, black,	M - W				FILL
		0.90m CBR		1.0			Sandy CLAY - medium to high plasticity, da fine to medium grained sand.	ark grey,		F	HP	70	ALLUVIUM
T	Not Encountered	1.20m		-			Pale grey with some pale orange-brown.		W _P		HP	120	
AD/T	Not En			1.5		СН	2.00m		×	St	HP	150	
				- 2. <u>0</u>		sc	Clayey SAND - fine to medium grained, gre some pale orange-brown, fines of low plast						
				2. <u>5</u>		SP	SAND - fine to medium grained, dark grey. Pale grey with some pale orange-brown.		М				
				-	-		Hole Terminated at 2.80 m Limit Of Reach						
Wat	Wat (Dat Wat Wat	ter Level te and time si ter Inflow ter Outflow anges	hown)	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample i nmenta s jar, se sulfate s	ter tube sample for CBR testing all sample all sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	ery Soft oft firm oftiff ery Stiff lard riable		25 50 10 20 >4	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional stra efinitive or dis rata change		PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose ediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

LIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH10

1 OF 1

ВВ

NEW20P-0194

	Drill	ing and Samp	oling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle its	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		SM	FILL-TOPSOIL: Silty SAND - fine to mediu dark grey-brown, fines of low plasticity, roo						FILL - TOPSOIL
				- 0. <u>5</u> -		SP	0.40m FILL: Gravelly SAND - fine to coarse grain to dark grey, fine grained angular gravel.	ed, black	M				FILL ——————
		0.80m U50		1.0			Sandy CLAY - medium to high plasticity, g some brown, fine to medium grained sand			F	HP	70	ALLUVIUM
		1.10m 1.20m D		- -		СН	1.30m			St	HP	130	
AD/T		1.30m		1.5 <u></u>		CI	Sandy CLAY - medium plasticity, pale grey orange-brown, fine to medium grained san	— — — - and pale d.	M > W	VSt	HP	210	
					/// ///	sc	Clayey SAND - fine to medium grained, grapale orange-brown, fines of medium plastic	— — — — ey and city.	М				
	low inflow (<1L/min)			- 2. <u>5</u> -		SP	SAND - fine to medium grained, pale grey Grey to grey-brown.	to white.	M - M				
	Very sl			-			Hole Terminated at 2.80 m Limit Of Reach	_					
Wate	Wat (Dat Wat Wat	er Level e and time sho er Inflow er Outflow anges	wn)	Notes, Sa U ₅₀ CBR E ASS B Field Test	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diamet ample fo nmenta s jar, sea sulfate S	E er tube sample or CBR testing I sample aled and chilled on site) oil Sample ir expelled, chilled)	S F St VSt H	Very Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	 tra De	radational or ansitional strata efinitive or distionate rata change	1	PID DCP(x-y) HP	Photo Dynar	nic pene	n detector reading (ppm) strometer test (test depth interval shown) meter test (UCS kPa)	Sonarty	L ME D VD	Lo M D	oose	n Dense	Density Index 15 - 35%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

LOGGED BY:

PAGE:

BH11

1 OF 1

ВВ

	REH(OLE DIAM				300 m		DATE	JM:					
	Drill	ing and Sar	npling					Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEP (m		GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
							CL	FILL-TOPSOIL: Sandy CLAY - low plasticit brown, fine to medium grained sand, root a		× × ×				FILL - TOPSOIL
							SP	FILL: Gravelly SAND - fine to coarse graine fine grained angular gravel.	ed, black,	М			_	FILL
					D. <u>5</u>			Sandy CLAY - medium to high plasticity, gr grey, fine to medium grained sand.	ey to dark	Wp	F 04	HP	80	ALLUVIUM
					1. <u>0</u>		CH	1.00m		^ ≥	F - St	HP	100	
J/T	Not Encountered				- -		CI	Sandy CLAY - medium plasticity, pale grey some pale orange-brown, fine to medium g sand.	with rained	M ~ W _P	VSt	HP	200	
AD/T	Not Er				1.5			1.70m Clayey SAND - fine to medium grained, gra		2		HP	300	
				2	2.0		SC	pale orange-brown, fines of low plasticity.		М				
					-			SAND - fine to medium grained, pale grey to said the said of the s	to white.	W				
				2	2.5		SP	Dark grey.		N-M				
					-			2.80m Hole Terminated at 2.80 m Limit Of Reach						
Wat	Wat (Dat Wat Wat	er Level ee and time si er Inflow er Outflow	hown)	U ₅₀ CBR E	, Sar	Bulk sa Enviro (Glass Acid S (Plasti	Diame ample in nmenta jar, se ulfate s c bag,	ts ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	ery Soft Soft Firm Stiff ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
Stra	tra De	anges radational or ansitional stra efinitive or dis rata change		B Field 1 PID DCP(x HP		Photoi Dynan	onisati	on detector reading (ppm) etrometer test (test depth interval shown) ymeter test (UCS kPa)	Fb F <u>Density</u>	riable V L MC D VD	Lo M D	ery Lo oose ediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO:

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 26/11/20

BOREHOLE NO:

LOGGED BY:

PAGE:

BH12

1 OF 1

ВВ

NEW20P-0194

		OLE DIAM			300 r		DATE	JM:					
	Drill	ling and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPT (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
						SM	FILL-TOPSOIL: Silty SAND - fine to coarse (mostly fine to medium grained), dark brow low plasticity, root affected.						FILL - TOPSOIL
				0.	5	SM	FILL: Gravelly Silty SAND - fine to coarse of grey-brown, fine grained rounded to sub-argravel, fines of low plasticity.		M				FILL
		0.90m				CL	Sandy CLAY - low plasticity, dark grey-brown medium grained sand.	vn, fine to	≥ × ≥	F	HP	90	ALLUVIUM / POSSIBLE FIL
		U50 1.10m		1.	<u>0 </u>		Sandy CLAY - medium to high plasticity, gr medium grained sand.	ey, fine to	M × W	St	HP	180	ALLUVIUM
				1.	55	СН	1.80m		M ~ W _P	VSt	HP	250	
				2.	0	SP	SAND - fine to medium grained, grey and porange-brown, with some fines of low plast	pale icity.	М				
)					SP	SAND - fine to medium grained, grey-brow		M - W				
	slow inflow (<1L/min)			2.	5		Pale brown to brown.	nown.	2				
	Very slc				-		Hole Terminated at 2.80 m Limit Of Reach						
Wat	Wat (Dat Wat Wat	ter Level te and time sl ter Inflow ter Outflow	nown)	Notes, SU50 CBR E	Bulk Envi (Glas Acid (Plas	n Diame sample conment ss jar, se Sulfate	ts eter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H H	ncy /ery Soft Soft Firm Stiff /ery Stiff lard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
<u>экга</u>	G tra De	anges radational or ansitional stra efinitive or dis rata change		Field Te PID DCP(x-1 HP	ests Phot () Dyna	oionisati mic per	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L ME D VD	L() N D	ery Lo oose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

LOGGED BY:

PAGE:

BH13

1 OF 1

BS

	Drill	ling and Sam	pling				Material description and profile information				Fiel	d Test	_
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		E 0.20m		_		SP	FILL: SAND - fine to medium grained, pale white, root affected.	brown to	D - M				FILL
	ved	0.40m E 0.50m		- 0. <u>5</u>		GC	FILL: Sandy Clayey GRAVEL - fine to coal grained, sub-rounded to rounded, grey to grey-brown, fine to coarse grained sand, fit to medium plasticity.	se se sof low	M - M				
AD/I	Not Observed	E (0.75m		-		GC	FILL: Sandy Clayey GRAVEL - fine to med grained, sub-angular to sub-rounded, dark black, fine to coarse grained sand, fines of medium plasticity.	grey to	W				
		E (1.00m /		- 1.0_ - - - - 1.5		СН	CLAY - medium to high plasticity, dark gre with some pale brown, with some fine grai with organic inclusion.		M > W _P				ALLUVIUM
				-	,,,,,,		Hole Terminated at 1.50 m Limit Of Required Investigation						
				-									
				2.0_									
				-									
				2. <u>5</u>									
				-									
LEG Wat	END:			Notes, Sa	50mm	Diame	ter tube sample	1	Very Soft	<u> </u>	<2	CS (kPa	D Dry
_ _	(Dat Wat Wat	ter Level te and time sho ter Inflow ter Outflow	own)	CBR E ASS B	Enviro (Glass Acid S (Plasti	nmenta jar, se ulfate S	or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	F St VSt H	Soft Firm Stiff Very Stiff Hard Friable		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	P
<u>>tra</u>	G tra D	anges radational or ansitional strat efinitive or dist rata change	а	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME	L D M	ery Lo oose lediun	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

BOREHOLE NO:

LOGGED BY:

PAGE:

BH14

1 OF 1

BS

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

	Drill	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		E 0.20m		_			FILL: Sandy GRAVEL - fine to medium gra sub-rounded to sub-angular, grey-brown to fine to coarse grained sand, trace fines of I plasticity.	brown,	D				FILL / CRUSHER DUST
	P	0.40m E 0.50m		0.5_		GP	Dark grey, possibly stabilised.		D - M				
AD/T	Not Observed	E 0.70m 0.90m		-		GP	FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand.		D				FILL / COAL CHITTER
		E (1.00m)		1.0_ - - - 1.5		СН	CLAY - medium to high plasticity, grey to d with some orange-brown, with some fine gi sand, with some organic inclusions.	ark-grey, ained	M > W _P				ALLUVIUM
				- - - 2.0			Hole Terminated at 1.50 m Limit Of Required Investigation						
				-									
				2.5_ - -									
Wate	— Wat	ter Level te and time sh		Notes, Sar U ₅₀ CBR E	50mm Bulk s Enviro	Diame ample f nmenta	i <u>s</u> ter tube sample or CBR testing al sample aled and chilled on site)	S S	ncy /ery Soft Soft Firm	i	-{2 25 50	CS (kPa 25 5 - 50 0 - 100 00 - 200	D Dry M Moist W Wet
► Stra	Wat ta Cha G tra	ter Inflow ter Outflow anges tradational or ansitional strate efinitive or dis	ta	ASS B Field Test PID DCP(x-y)	Acid S (Plasti Bulk S <u>s</u> Photoi	c bag, a ample onisation	Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown)	Н н	ery Stiff lard <u>riable</u> V L ME	V	ery Lo	00 - 400 400 Dose	W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT **JOB NO**:

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

LOGGED BY:

PAGE:

BH15

1 OF 1

BS

NEW20P-0194

	Dril	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	//particle is	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		E 0.20m		-		GC	FILL: Sandy Clayey GRAVEL - fine to coar grained, sub-rounded to sub-angular, grey-grey and dark grey, with some black, fine to grained sand, fines of low to medium plastic slag and coal chitter, root affected.	brown to coarse					FILL / TOPSOIL
	p	0.40m E (0.50m		0. <u>5</u>		GP	FILL: Sandy GRAVEL - fine to medium gra sub-rounded to sub-angular, pale brown, fin coarse grained sand, with some fines of low plasticity. Grey-brown.	ne to	D				FILL / ROADBASE
AD/T	Not Observed	0.90m		-		GP	FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand.						FILL / COAL CHITTER
		1:88m E 1.10m		1. <u>0</u>			CLAY - medium to high plasticity, grey to do with some fine grained sand.	 ark grey,					ALLUVIUM
				-		СН			M > W _p				
				1.5	<i>x//////</i>		Hole Terminated at 1.50 m Limit Of Required Investigation						
				- 2.0_									
				-									
				2. <u>5</u>									
				-									
LFG	END:			Notes, Sa	mples a	nd Tee	ts.	Consiste	ncv		110	CS (kPa	a) Moisture Condition
Wat	er Wat (Da Wat Wat	ter Level te and time sh ter Inflow ter Outflow anges	iown)	U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample to nmenta s jar, se Sulfate S	ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	VS V S S F F St S VSt V	Yery Soft Soft Firm Stiff Yery Stiff Hard Friable		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
<u> </u>	G tra D	radational or ansitional stra efinitive or dis rata change	ta	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	ionisatio	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D	Lo N D	ense	oose n Dense ense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

LOGGED BY:

PAGE:

BH16

1 OF 1

BS

	Drill	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		E 0.20m		-		GP	FILL: Sandy GRAVEL - fine to medium gra sub-angular to sub-rounded, brown to grey fine to coarse grained sand, with some fine medium plasticity. Dark grey.	-brown,	D - M				FILL / CRUSHER DUST
	erved	E (0.50m)		0.5_		GP	FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand.		w				FILL / COAL CHITTER
AD/I	Not Observed	E (0.80m		- 1.0		СН	CLAY - medium to high plasticity, dark grey with some fine grained sand.	·					ALLUVIUM
				-		СН	Sandy CLAY - medium to high plasticity, grorange-brown, fine grained sand.	ey and	M > W				
				1.5	<u> </u>		Hole Terminated at 1.50 m						
				_			Limit Of Required Investigation						
				_									
				2.0									
				_									
				-									
				-									
				2.5									
				_									
				_									
				-									
	END:			Notes, Sa				Consiste				CS (kPa	
Wat	_	ter Level		U ₅₀ CBR	Bulk s	ample f	ter tube sample or CBR testing	s s	ery Soft		25	25 5 - 50	D Dry M Moist
-	(Dat	te and time sho ter Inflow	1	E ASS	(Glass	jar, se	al sample aled and chilled on site) Soil Sample	St S	Firm Stiff Very Stiff		10	0 - 100 00 - 200 00 - 400	P
-	l Wat	er Outflow		ASS B	(Plasti		Soil Sample air expelled, chilled)	н н	/ery Stiπ lard ⁻ riable			400 400	W _L Liquid Limit
<u>stra</u>	G	anges radational or		Field Test PID	<u>s</u>	·	on detector reading (nom)	<u>Density</u>	V L		ery Lo	oose	Density Index <15%
		ansitional strat efinitive or dist		DCP(x-y)	Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown)		ME) N	l ediun	n Dense	•
		rata change		HP	Hand	Penetro	meter test (UCS kPa)		D VD		ense ery D		Density Index 65 - 85% Density Index 85 - 100%

NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH17

1 OF 1

BS

NEW20P-0194

4WD TRUCK MOUNTED DRILL RIG DRILL TYPE: SURFACE RI

во	REH	OLE DIAM	ETER	!	100 m	m	DATI	JM:					
	Drill	ing and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle its	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		E 0.20m		_		CL	FILL: Sandy CLAY - low to medium plastic to dark brown, fine to medium grained san affected.	ity, brown d, root	w v				FILL / TOPSOIL
		0.20111		-		CI	FILL: Sandy Gravelly CLAY - medium plas 0.30m grey-brown to grey, fine to medium grained	ticity,	- Σ				FILL
	Not Observed	0.40m E (0.50m		0.5_ -		GP	FILL: Sandy GRAVEL - fine to medium gravel FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand.	^{l.} ained,	D - M				FILL / COAL CHITTER
AD/I	Not O	0.90m 1:88m		- 1. <u>0</u>			1.00m		D				
		E (1.10m		-		СН	CLAY - medium to high plasticity, grey to d with some orange-brown, with some fine g sand.		M > W _P				ĀLLŪVIĀL
				1.5	(/////		Hole Terminated at 1.50 m Limit Of Required Investigation						
				- 2.0 <u></u> - - - 2.5 <u></u> -									
	END:			Notes, Sa			ts ter tube sample	Consiste VS	ency /ery Soft			CS (kPa 25	Moisture Condition D Dry
_	Wat (Dat Wat	er Level e and time sh er Inflow er Outflow anges	nown)	U ₅₀ CBR E ASS	Bulk s Enviro (Glass Acid S (Plasti Bulk S	ample f onmenta s jar, se Sulfate S	ter tube sample for CBR testing all sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt N	Very Soll Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet W _p Plastic Limit
	G tra De	radational or ansitional stra efinitive or dis rata change		PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D VD	L) M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH18

1 OF 1

BS

NEW20P-0194

	Dril	ling and Samp	oling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	//particle is	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		E 0.20m		_		CL	FILL: Sandy Gravelly CLAY - low to medium plasticity, dark grey-brown, fine to medium sub-angular to sub-rounded gravel, fine gra sand, root affected.	grained,					FILL / TOPSOIL
	70	0.40m E 0.50m		- 0. <u>5</u>		GP	FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand, with some slag.	ined, fine to	М				FILL / COAL CHITTER
AD/I	Not Observed	8:78m 8:78m 0.80m		1.0		СН	CLAY - medium to high plasticity, dark grey	to grey.	M > W _P				ALLUVIUM
		1.20m E (1.30m		1.5		СН	1.20m CLAY - medium to high plasticity, grey and orange-brown with some fine to medium gr sand. 1.50m Hole Terminated at 1.50 m	ained	-				
				2.0			Limit Of Required Investigation						
				-									
				2.5_ -									
LEC	ENIP		<u>, , .</u>	Notes 2:	males	nd Tax		Cour!-4				Ce /I-P	Moioture Condition
<u>Wat</u>	— Wat (Da Wat Wat	ter Level te and time sho ter Inflow ter Outflow anges	wn)	Notes, San U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se ulfate \$	ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H H Fb F	ery Soft oft irm tiff ery Stiff lard	f	25 50 10 20 >4	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional strata efinitive or disti rata change	.]	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MC D VC	L D M D	ense	oose n Dense ense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT **JOB NO**:

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

LOGGED BY:

PAGE:

BH20

1 OF 1

BS

NEW20P-0194

	Drill	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		E		-		sc	FILL: Clayey SAND - fine grained, brown, fi plasticity, trace roots.	nes of low	D - M				FILL / TOPSOIL
AD/T	Not Observed	0.40m E 0.50m		- 0. <u>5</u> - - - -		GP	FILL: Sandy GRAVEL - fine to medium grasub-angular to angular, dark grey to black, medium grained sand, with some slag.	ined, fine to	D				FILL / COAL CHITTER
		E (1.10m)		- - - 1.5		СН	Sandy CLAY - medium to high plasticity, gr grey, trace orange-brown, fine grained sand	ey to dark d.	M > W _P				ALLUVIUM
				-			Hole Terminated at 1.50 m Limit Of Required Investigation						
				2.0									
				-									
				2.5									
				-									
Wat	Wat (Dat Wat	ter Level te and time sh ter Inflow ter Outflow	own)	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S	Diame ample to nmenta s jar, se Sulfate S	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V	ncy /ery Soft Soft Firm Stiff /ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	ta Cha G tra De	anges radational or ansitional stra efinitive or dis rata change	ta	B Field Test PID DCP(x-y) HP	Bulk S s Photo Dynar	Sample ionisationis	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	1	riable V L MD	Lo N	ery Lo		Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

LOGGED BY:

PAGE:

BH21

1 OF 1

BS

	Dril	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
	served	E 0.20m 0.40m E 0.50m		- - 0.5_		sc	FILL: Clayey SAND - fine to medium graine 0.10m fines of low to medium plasticity, with some grained sub-angular to sub-rounded grave FILL: Clayey GRAVEL - fine to coarse grai sub-rounded to sub-angular, pale brown to orange-brown, fines of low to medium plas FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand, with some slag.	fine	M				FILL / TOPSOIL FILL FILL FILL / COAL CHITTER
AD/T	Not Observed	E (0.80m)		1.0_ - - - - -		CH	CLAY - medium to high plasticity, dark grey with some fine grained sand, some organic inclusions. 1.10m Sandy CLAY - medium to high plasticity, grey and orange-brown, fine grained sand.	 ey to dark	M > W _p				ALLUVIUM
				2.0 - - - - 2.5 -			Hole Terminated at 1.50 m Limit Of Required Investigation						
Wate	Wat (Da Wat Wat Wat <u>ta Ch</u>	ter Level te and time sho ter Inflow ter Outflow anges radational or ansitional strate	own)	Notes, San U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample to nomenta s jar, se sulfate s c bag, sample tonisatio	is ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown)	S S F F St S VSt V H F	ncy /ery Soft foft cirrm ciff /ery Stiff lard /riable V L MI	· V Le	25 50 10 20 20 20 ery Lo	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO:

LOCATION: CNR DARLING STREET & CHATHAM STREET,

LOGGED BY: BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

PAGE:

BH22

1 OF 1

BS

NEW20P-0194

во	REH	OLE DIAN	IETER	t :	100 m	m	DATU	JM:					
	Drill	ling and Sar	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		E		-		sc	FILL: Clayey SAND - fine grained, dark bro grey-brown, fines of low plasticity.	wn to dark					FILL / TOPSOIL
		0.20m		-		SP	FILL: SAND - fine to medium grained, grey grey-brown.	and	D - M				FILL
		0.40m E 0.55m		0.5_			Sandy CLAY - medium to high plasticity, gr grey, with some orange-brown.	ey to dark		_			ALLUVIUM
AD/1	Not Observed	E 0.85m		-		0			M < Wp				
				1.0_ -		CH	Grey and orange-brown.		M × W				
				-		 CL	1.35m Sandy CLAY/Clayey SAND - low to mediur plasticity, pale grey to pale brown and pale		W W				
				1.5	<u> </u>		1.50m yellow-brown. Hole Terminated at 1.50 m Limit Of Required Investigation		Σ				
				-									
				2.0_									
				-									
				2.5									
				-									
				-									
Wat	_			Notes, Sa U ₅₀ CBR	50mm	Diame	ts ter tube sample for CBR testing	1	ency Very Soft	1	<2	CS (kPa 25 5 - 50	Moisture Condition D Dry M Moist
¥ _	(Dat	ter Level te and time si ter Inflow ter Outflow	hown)	E ASS	Enviro (Glass Acid S	nmenta jar, se ulfate s	of Ostricesing al sample aled and chilled on site) Soil Sample air expelled, chilled)	F F St S VSt V	Firm Stiff Very Stiff Hard		50 10 20	0 - 100 00 - 200 00 - 400 400	W Wet W _p Plastic Limit
	ta Cha G tra	anges radational or ansitional stra		B Field Test PID DCP(x-y)	Bulk S ss Photoi	ample onisati	on detector reading (ppm)	1	Friable V L MI	L	ery Lo		Density Index <15% Density Index 15 - 35% Density Index 35 - 65%
	_ D	ansitional stra efinitive or dis rata change		DCP(x-y) HP	Dynan	nic pen	etrometer test (test depth interval shown) meter test (UCS kPa)) N			

LIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO: NEW20P-0194

LOCATION: CNR DARLING STREET & CHATHAM STREET, **LOGGED BY:**

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

PAGE:

BH23

1 OF 1

BS

	Drill	ling and Sam	npling				Material description and profile information				Fiel	d Test	
МЕТНОВ	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		E 0.20m		-		sc	FILL: Clayey SAND - fine grained, brown, fi plasticity, trace roots.	nes of low					FILL / TOPSOIL
		0.40m		-		GP	FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand, with some slag.	ined, fine to	М				FILL / COAL CHITTER
AD/I	Not Observed	0.50Fm 0.50m E 0.60m		0. <u>5</u>			0.50m CLAY - medium to high plasticity, dark grey fine grained sand.	to grey,		_			ALLUVIUM
	_			1. <u>0</u>		СН	Sandy CLAY - medium to high plasticity, gr grey and orange-brown	ey to dark	M > W _P				
				- - 1.5		СН	1.50m						
				-			Hole Terminated at 1.50 m Limit Of Required Investigation						
				-									
				2.0									
				-									
				-									
				2.5_									
				-									
				-									
				-									
LEG	END:			Notes, Sa				Consiste			<u>U</u>	CS (kPa	Moisture Condition
Wate	_	ter Level		U₅₀ CBR	Bulk s	ample t	ter tube sample or CBR testing	s s	ery Sofi oft	t	25	25 5 - 50	D Dry M Moist
_	(Dat	te and time sh ter Inflow	1	E ASS	(Glass	jar, se	al sample aled and chilled on site) Soil Sample	St S	irm stiff 'ery Stiff	ļ.	10	0 - 100 00 - 200 00 - 400	P
⋖ Stra		ter Outflow anges		В	(Plasti Bulk S		air expelled, chilled)	H H Fb F	lard riable			400	
	G tra	radational or ansitional stra	ta	Field Test PID DCP(x-y)	Photo		on detector reading (ppm) etrometer test (test depth interval shown)	<u>Density</u>	V L MI	L	ery Lo oose lediun	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65%
		efinitive or dis rata change	SUCT	HP			ometer test (UCS kPa)		D VE	D	ense ery D		Density Index 65 - 85% Density Index 85 - 100%

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT **JOB NO**:

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

LOGGED BY:

PAGE:

BH25

1 OF 1

BS

NEW20P-0194

	Dril	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		E 0.20m		_		CL	FILL: Sandy Gravelly CLAY - low to mediun plasticity, dark brown, fine to medium grain sub-rounded to sub-angular, fine to mediun gand, with some roots.	ed,	M × W				FILL / TOPSOIL
AD/T	Not Observed	0.30m E 0.40m		- 0.5_ - -		CL	Sandy CLAY - low to medium plasticity, da fine grained sand. Grey.	rk grey,	M > W _P				ALLUVIUM
				- 1.0_ - -		sc	0.90m Clayey SAND - fine to medium grained, gra	ey and ticity.	М				
				1.5 - -			Hole Terminated at 1.50 m Limit Of Required Investigation						
				2. <u>0</u> -									
				2. <u>5</u>									
				-									
Wat	Wat (Da Wat Wat	ter Level te and time shater Inflow ter Outflow anges	own)	Notes, San U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se Sulfate S	ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	ery Soft oft off off off off off off off off	f	25 50 10 20 >4	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional strat efinitive or dist rata change	а	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L MI D VD	L() N D	ense	oose n Dense ense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE

CLIENT: NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT

LOCATION: CNR DARLING STREET & CHATHAM STREET,

BROADMEADOW DATE:

BOREHOLE NO:

PAGE:

JOB NO:

LOGGED BY:

BH26

1 OF 1

12/5/21

BS

NEW20P-0194

DRILL TYPE: 4WD TRUCK MOUNTED DRILL RIG SURFACE RL:

	REH	OLE DIAN			100 m		D DRILL RIG SURF DATU	ACE RL: JM:					
	Dril	ling and San	npling				Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		E 0.20m		_		CL	FILL: Sandy Gravelly CLAY - low to mediur plasticity, dark brown to dark grey-brown, fi medium grained, sub-rounded to sub-angu fine to medium grained sand, with some sle	ne to lar gravel,	M < W				FILL / TOPSOIL
		0.40m		-		GP	FILL: Sandy GRAVEL - fine to medium gra sub-angular to angular, dark grey to black, medium grained sand, with some slag.	ined,	М				FILL / COAL CHITTER
AD/T	Not Observed	0.50En (0.50m E (0.60m		0. <u>5</u>		СН	CLAY - medium to high plasticity, grey to grand brown.	ey-brown	M > W _P				ALLUVIUM
				1. <u>0</u>			1.00m Clayey SAND - medium to coarse grained, orange-brown, fines of low plasticity.	 grey and					
000				-		SC			М				
Datgel Lab and III onw				1.5			Hole Terminated at 1.50 m Limit Of Required Investigation						
ZINOS/ZUZI US:ST 10:01.00:01 Datgel Lao and in Situ Tool				2. <u>0</u>									
94 FOGG.GTO ADDIAMENDED FINANCIAL				- 2. <u>5</u> -									
TEO INEVENT	SEND:			- - Notes, Sa	mnles a	nd Teet	s	Consiste	ncv		114	CS (kPa) Moisture Condition
Wat	er Wat (Da Wat Wat	ter Level te and time sl ter Inflow ter Outflow anges	hown)	U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate S	ter tube sample or CBR testing Il sample aled and chilled on site) foil Sample sir expelled, chilled)	VS V S S F F St S VSt V	Yery Soft foft firm stiff Yery Stiff lard riable		25 50 10 20	•	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	<u>s</u> Photo Dynar	ionisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo D D	ery Lo oose lediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE

NEWCASTLE JOCKEY CLUB

PROJECT: PROPOSED STABLES DEVELOPMENT JOB NO:

LOCATION: CNR DARLING STREET & CHATHAM STREET,

LOGGED BY: BS BROADMEADOW DATE: 12/5/21

BOREHOLE NO:

PAGE:

BH27

1 OF 1

NEW20P-0194

DRILL TYPE: 4WD TRUCK MOUNTED DRILL RIG SURFACE RL:

Drilling and		ing and Sam	g and Sampling			Material description and profile information							
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle its	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		E 0.20m 0.30m		-		SC GP	FILL: Clayey SAND - fine grained, brown, plasticity, trace roots, with slag. FILL: Sandy GRAVEL - fine to medium grasub-angular to angular, dark grey to black, medium grained sand, with some slag.	ined, fine to	D - M				FILL / TOPSOIL FILL / COAL CHITTER
AD/T	Not Observed	0.40m 0.60m E 0.70m		- 0. <u>5</u> - -		СН	CLAY - medium to high plasticity, grey to gand brown.	rey-brown	M > w _p				ALLUVIUM
				1. <u>0</u> - -		SC	Clayey SAND - fine to medium grained, gr grey and orange-brown, fines of low to me plasticity. Possibly cemented sand at 1.0 to 1.2m	ey to pale dium	M	-			
				- 1.5 2.0_			Hole Terminated at 1.50 m Limit Of Required Investigation						
				2.5_ -									
<u>Wat</u>	Wat (Dat Wat Wat	er Level te and time sho er Inflow er Outflow	own)	Notes, Sal U ₅₀ CBR E	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate s c bag, a	ter tube sample or CBR testing al sample aled and chilled on site) soil Sample air expelled, chilled)	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 000 - 400 400	D Dry M Moist W Wet W Plastic Limit
stra	tra De	anges radational or ansitional strata efinitive or dist rata change	a	B Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Fb F Density	riable V L MI D	Lo N	ery Lo oose lediun	oose n Dense	Density Index <15% Density Index 15 - 35% e Density Index 35 - 65% Density Index 65 - 85%

APPENDIX J:

Data Validation Report

QA/QC DATA VALIDATION REPORT

Job No: NEW20P-0194-AB

Eurofins report: 795526-S, 795526-AID, 795526-W, ES2118733

1. SAMPLE HANDLING

Item	Yes/No	Comments
Were the sample holding times met?	Yes	
Were the samples in proper custody between collection in the field and reaching the laboratory?	Yes	
Were the samples properly and adequately preserved?	Yes	
Were the samples received by the laboratory in good condition?	Yes	

Sampling Handling was:

Satisfactory:	✓	Partially Satisfactory:	Unsatisfactory:

2. PRECISION AND ACCURACY ASSESSMENT

Item	Yes/No	Comment
Was a NATA registered laboratory used?	Yes	-
Did the laboratory perform the requested tests?	Yes	-
Were the laboratory methods adopted NATA endorsed?	Yes	-
Were the appropriate test procedures followed?	Yes	-
Were the reporting limits satisfactory?	Yes	-
Was the NATA seal on the reports?	Yes	-
Were the reports signed by an authorised person?	Yes	-

Laboratory Precision and Accuracy was:

	Satisfactory:	Partially Satisfactory:	Unsatisfactory:
--	---------------	-------------------------	-----------------

1

3. FIELD QA/QC

Soil, Sediment and Water Samples

	Soil/Sediment
No. Samples Analysed	38
No. of Duplicates	2
No. of Triplicates	1
No. of Wash Blanks	0
No. of Trip Blanks	1
No. of Trip Spikes	0

No. Days Sampling

Item	Soil
Number of Days Sampling	2
Number of Sampling Events	1

Field Duplicates

Item	Yes/No	Comments
Were an adequate number of field duplicates collected?	Yes	Duplicates collected at a rate of 1 per 19 samples.
Were RPDs within control limits? No Limit for 5-10 x EQL and 30% for >10 x EQL	Yes	It is noted that low concentrations can exaggerate the percentage differences with respect to small total concentrations, therefore where results for primary and duplicate sample were less than 10 time the LOR, the RPDs have been disregarded.

Trip Blanks/Trip Spikes

Item	Yes/No	Comments
Were an adequate number of trip blanks and trip spikes collected?	Yes	Trip blanks collected at a rate of one per sampling event
Were the trip blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals).	Yes	
Were the trip spikes within recovery limits (between 80% and 120%)	N/A	

Rinsate Samples

Item	Yes/No	Comments
Were an adequate number of rinsate samples used? (1 per day of using reusable sampling equipment – trowel, hand auger etc)	No	No rinsate samples were collected. Reuseable sampling equipment was decontaminated between sampling locations, in accordance with SOP, and therefore risk of cross-contamination is low.
Were the rinsate samples free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals).	N/A	

4. LABORATORY INTERNAL QUALITY CONTROL PROCEDURES

A) Type of QA/QC Sample	Yes/No	Comments
Laboratory Blanks/Reagent Blanks (at least 1 per batch)	Yes	
Laboratory Duplicates (at least 1 per batch or 1 per 10 samples)	Yes	
Matrix Spikes, Matrix Spike Duplicates (1 for each soil type)	Yes	
Laboratory Control Spike	Yes	
Surrogate (where appropriate)	Yes	

Item	Yes/No	Comments
B) Were the laboratory blanks and/or reagent blanks free of contamination?	Yes	
C) Were the spike recoveries within control limits? I: Organics/inorganics/metals (50% to 150%) II: Phenols (20% to 130%)	Yes	
D) Were the RPDs of the laboratory duplicates within control limits?	Yes	
E) Were the surrogate recoveries within control limits?	Yes	

Laboratory Internal QA/QC was:

Satisfactory: ✓	Partially Satisfactory:	Unsatisfactory:
-----------------	-------------------------	-----------------

QA/QC DATA VALIDATION REPORT

5. DATA USABILITY

Item	Yes/No	Comments
Was the data directly usable?	Yes	
Was the data usable with the following corrections/modifications? (see comments)	NA	
Was the data not usable?	NA	

APPENDIX K:

Laboratory Reports

	А В	С	D	E	F	G	Н	I	J	K	L
1			UC	CL Statist	tics for Unc	ensored Full	Data Sets	S			
2	Llear Solor	cted Options									
3	Date/Time of Co		ProUCL 5.115	/06/2021	1·10·29 PM						
4	Bate/Time of Ge	From File	WorkSheet.xls		1.10.201 1	'					
5 6	Full	I Precision	OFF								
7	Confidence (95%								
8	Number of Bootstrap (Operations	2000								
9	·	<u> </u>									
10											
11	Copper										
12											
13					General	Statistics					
14		Total N	lumber of Obse	ervations	12				of Distinct O		12
15								Number	of Missing O	bservations	0
16				Minimum	7.7					Mean	57.73
17			M	1aximum	350					Median	30.5
18			0	SD ,	93.24				Std. E	rror of Mean	26.92
19			Coefficient of \	variation	1.615					Skewness	3.308
20					Norm-1	GOF Test					
21		Ch.	apiro Wilk Test	Statistia	0.478	JOF TEST		Chanira W	ilk GOF Tes		
22			apiro Wilk Critic		0.478		Data No	•	5% Significa		
23		J /0 J110	Lilliefors Test		0.839		Data NO		GOF Test	lice Level	
24		5%	Lilliefors Critic		0.243		Data No		5% Significa	nce I evel	
25 26						i% Significar		t Hormar at	o 70 Olgrillica	TICC ECVOI	
27						,,, e.g.,,,,,					
28				Ass	uming Norr	nal Distribut	ion				
29		95% No	rmal UCL					UCLs (Adjı	usted for Ske	ewness)	
30			95% Studen	t's-t UCL	106.1				d-CLT UCL (•	129.5
31							g	95% Modifie	d-t UCL (Joh	nson-1978)	110.3
32											
33					Gamma (GOF Test					
34			A-D Test	Statistic	1.243		Ander	son-Darling	Gamma GC	OF Test	
35			5% A-D Critic	cal Value	0.755	Data				gnificance Lev	/el
36			K-S Test	Statistic	0.28		•		ov Gamma (
37			5% K-S Critic		0.252				ted at 5% Siç	gnificance Lev	/el
38			Data N	lot Gamm	na Distribute	ed at 5% Sig	nificance l	Level			
39											
40				-+ /B 41> ¹	Gamma	Statistics			+- ·- (h :		0.050
41				at (MLE)	1.063				tar (bias cori	1	0.853
42				at (MLE)	54.3			i neta s	tar (bias cor	´	67.69
43		KAI F	nu n E Mean (bias co	at (MLE)	25.51 57.73				nu star (bia MLE Sd (bia	s corrected)	20.47 62.51
44		IVILE	- mean (nigs co	Jii ecteu)	31.13		Λ		Chi Square \	-	11.2
45		Adinet	ed Level of Sigr	nificance	0.029		A		justed Chi S		10.16
46 47		, tajuoti	- 5 - 5 + 5 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +		0.020			Au	,	- Lac. O Value	
48				Ass	uming Gam	ma Distribut	ion				
49	95% Approxima	ate Gamma l	JCL (use when		105.5			sted Gamm	na UCL (use	when n<50)	116.2
50			•	**					•	,	
51					Lognorma	GOF Test					
52		Sh	apiro Wilk Test	Statistic	0.892		Shap	oiro Wilk Lo	gnormal GO	F Test	
53		5% Sha	apiro Wilk Critic	cal Value	0.859	D	ata appea	r Lognorma	at 5% Signi	ficance Level	
54			Lilliefors Test	Statistic	0.188		Lill	iefors Logn	ormal GOF	Test	
55		5%	Lilliefors Critic	al Value	0.243	D	ata appea	r Lognorma	at 5% Signi	ficance Level	
56			Data	a appear	Lognormal	at 5% Signifi	cance Lev	/el			
57											

	Α	В	С	D	E	F	G	Н	l l	J	K	L											
58							Statistics																
59				Minimum of I		2.041					logged Data	3.516											
60				Maximum of I	Logged Data	5.858				SD of	logged Data	0.923											
61					Δεειι	ming Logno	rmal Dietrih	ution															
62					95% H-UCL	111.7	illiai Distrib	ution	90% (hehyshev ((MVUE) UCL	91.01											
63 64			95%	Chebyshev ((MVUE) UCL	136.2											
65				Chebyshev (· ,	187.9			07.070 0	, iobyonov (100.2											
66				(.07.10																	
67					Nonparame	tric Distribut	tion Free U0	CL Statistic	s														
68				Data appear	-					vel													
69																							
70					Nonpar	ametric Dist	tribution Fre	e UCLs															
71				95	5% CLT UCL	102				95% Ja	ackknife UCL	106.1											
72			95%	Standard Bo	otstrap UCL	100.1				95% Boo	otstrap-t UCL	288.9											
73			9	95% Hall's Bo	ootstrap UCL	291.5			95% P	ercentile Bo	ootstrap UCL	108.2											
74				95% BCA Bo	otstrap UCL	138.2																	
75			90% Cl	nebyshev(Me	an, Sd) UCL	138.5			95% Che	ebyshev(Me	an, Sd) UCL	175											
76			97.5% Cł	nebyshev(Me	an, Sd) UCL	225.8			99% Che	ebyshev(Me	ean, Sd) UCL	325.5											
77																							
78						Suggested	UCL to Use																
79					95% H-UCL	111.7																	
80											050/ 1	101											
	Note	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.																					
81	Recommendations are based upon data size, data distribution, and skewness.																						
82	The	oo rooomm									These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).												
82 83			nendations	are based up	oon the result	s of the sim	ulation stud	ies summa	rized in Sing	gh, Maichle													
82 83 84			nendations	are based up	oon the result	s of the sim	ulation stud	ies summa	rized in Sing	gh, Maichle	, and Lee (200 consult a statis												
82 83 84 85			nendations ons results	are based up s will not cove	oon the resulter all Real Wo	ts of the sim	ulation stud	ies summa onal insight	rized in Sing the user ma	gh, Maichle ay want to c													
82 83 84 85 86	Howev	er, simulati	nendations ons results Prol	are based up will not cove	oon the resulter all Real Wo	ts of the sim	ts; for addition	ies summa onal insight Ls for histo	the user ma	gh, Maichle ay want to c	consult a statis	stician.											
82 83 84 85	Howev	er, simulati	endations results Proluten results	are based up will not cove	oon the result er all Real Wo es and output (both high ar	ts of the sim orld data set ts H-statistic and low) valu	ulation stud ts; for addition to based UC es of UCL9	ies summa onal insight Ls for histo 5 as show	the user ma orical reason in in example	gh, Maichle ay want to comes only. es in the To		stician.											
82 83 84 85 86 87	Howev	er, simulati	endations results Prouten results	are based up will not cover by the computer in unstable is therefore in the cover by the cover b	oon the resulter all Real Wees and output (both high arrecommende	ts of the simple or the simple	ulation stud ts; for addition to based UC tes of UCL9 the use of H	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user ma orical reason in example ased 95% U	gh, Maichle ay want to come only. es in the Tolera.	consult a statis	e.											
82 83 84 85 86 87 88	Howev	er, simulati	endations results Prouten results	are based up will not cover by the computer in unstable is therefore in the cover by the cover b	oon the resulter all Real Wees and output (both high arrecommende	ts of the simple or the simple	ulation stud ts; for addition to based UC tes of UCL9 the use of H	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user ma orical reason in example ased 95% U	gh, Maichle ay want to come only. es in the Tolera.	consult a statis	e.											
82 83 84 85 86 87 88	Howev	er, simulati	endations results Prouten results	are based up will not cover by the computer in unstable is therefore in the cover by the cover b	oon the resulter all Real Wees and output (both high arrecommende	ts of the simple or the simple	ulation stud ts; for addition to based UC tes of UCL9 the use of H	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user ma orical reason in example ased 95% U	gh, Maichle ay want to come only. es in the Toleran.	consult a statis	e.											
82 83 84 85 86 87 88 89 90	Howev	er, simulati	endations results Prouten results	are based up will not cover by the computer in unstable is therefore in the cover by the cover b	oon the resulter all Real Wees and output (both high arrecommende	ts of the simple or the simple	ulation stud ts; for addition to based UC tes of UCL9 the use of H	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user ma orical reason in example ased 95% U	gh, Maichle ay want to come only. es in the Toleran.	consult a statis	e.											
82 83 84 85 86 87 88 89 90	Howev H-	er, simulati	endations results Prouten results	are based up will not cover by the computer in unstable is therefore in the cover by the cover b	oon the resulter all Real Wees and output (both high arrecommende	ts of the simple or the simple of the simple	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user ma orical reason in example ased 95% U	gh, Maichle ay want to come only. es in the Toleran.	consult a statis	e.											
82 83 84 85 86 87 88 89 90 91	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover a will not cover by the will not cover	er all Real Works and output (both high arrecommender erred to comp	ts of the simple or ld data set the statistic of low) valued to avoid the pute UCL95	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to one as only. es in the To ICLs. ot follow a	echnical Guid	e. bution.											
82 83 84 85 86 87 88 89 90 91 92	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover by the computer in unstable is therefore in the cover by the cover b	er all Real Works and output (both high arrecommender erred to comp	ts of the simple or the simple of the simple	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TollCLs. ot follow a	echnical Guid gamma distri	e. bution.											
82 83 84 85 86 87 88 89 90 91 92 93	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover a will not cover by the will not cover	es and output (both high ar recommende erred to comp	ds of the simple or of	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TollCLs. ot follow a	echnical Guid gamma distri	e. bution.											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover a will not cover by the will not cover	es and output (both high arrecommender erred to comp	ds of the simple or of	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TollCLs. ot follow a	echnical Guid gamma distri Dbservations Dbservations Mean	e. bution. 11 0 200.3											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover a will not cover by the will not cover	es and output (both high ar recommende erred to comp	ss of the simple state of	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TollCLs. ot follow a of Distinct Conference of Missing Conference on the Tollow on the Tollow of Missing Conference on the Tollow	echnical Guid gamma distri Disservations Disservations Mean Median	e. 11 0 200.3 94											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover by the computer in unstable is therefore roods are preferned.	es and output (both high ar recommende erred to comp Observations Minimum Maximum	General: 48 820 231.3	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TollCLs. ot follow a of Distinct Conference of Missing Conference on the Tollow on the Tollow of Missing Conference on the Tollow	echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover by the computer in unstable is therefore roods are preferned.	es and output (both high ar recommende erred to comp	ss of the simple state of	tulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TollCLs. ot follow a of Distinct Conference of Missing Conference on the Tollow on the Tollow of Missing Conference on the Tollow	echnical Guid gamma distri Disservations Disservations Mean Median	e. 11 0 200.3 94											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover by the computer in unstable is therefore roods are preferned.	es and output (both high ar recommende erred to comp Observations Minimum Maximum	General 3 48 820 231.3 1.155	sulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba	the user materical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TollCLs. ot follow a of Distinct Conference of Missing Conference on the Tollow on the Tollow of Missing Conference on the Tollow	echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover by the cover by	es and output (both high ar recommende erred to comp Deservations Minimum Maximum SD t of Variation	General: 48 820 231.3 1.155 Normal C	sulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown statistic ba I data sets	rized in Sing the user ma orical reason in example ased 95% U which do n	gh, Maichle ay want to come only. es in the TolcLs. ot follow a of Distinct Conference of Missing Conference of Std. E	echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore rods are preferenced. I Number of Coefficient	es and output (both high ar recommende erred to comp Disservations Minimum Maximum SD t of Variation	General 3 11 48 820 231.3 1.155 Normal C 0.683	sulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba I data sets	the user material reason in example ased 95% U which do n Number Number of Shapiro Wi	gh, Maichle ay want to come only. es in the Tollocus. ot follow a of Distinct Come of Missing	echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore rods are prefer in the control of the coefficient in the coefficie	con the resulter all Real Works and output (both high ar recommende erred to complete the complete to the complete the complete to the complete the	General 3 1.155 Normal C 0.683 0.85	sulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa onal insight Ls for histo 5 as shown -statistic ba I data sets	rized in Sing the user ma orical reason in example ased 95% U which do n Number Number of	gh, Maichle ay want to come only. es in the TolcLs. ot follow a of Distinct Come of Missing C	echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	Howev H-	er, simulati	ProL ten results It etric metho Total	are based up will not cover will not cover in unstable in unstable is therefore rods are prefer in the prefer in t	es and output (both high ar recommende erred to comp Deservations Minimum Maximum SD t of Variation Test Statistic Critical Value	General 3 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309	sulation stud ts; for addition to based UC tes of UCL9 the use of He to for skewed	ies summa pnal insight Ls for histo 5 as showi -statistic ba I data sets Data No	rized in Sing the user ma orical reason in in example ased 95% U which do n Number Number of Number of Number of Number of Lilliefors	of Distinct (of Missing (Std. E	consult a statis echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore rods are prefer in the control of the coefficient in the coefficie	es and output (both high ar recommende erred to comp Disservations Minimum Maximum SD t of Variation Test Statistic Critical Value Test Statistic Critical Value	General 3 General 3 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309 0.251	sulation stud ts; for addition ts based UC tes of UCL9 the use of He to for skewed Statistics	Data No	rized in Sing the user ma orical reason in example ased 95% U which do n Number Number of	of Distinct (of Missing (Std. E	consult a statis echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore rods are prefer in the prefer in t	es and output (both high ar recommende erred to comp Disservations Minimum Maximum SD t of Variation Test Statistic Critical Value Test Statistic Critical Value	General 3 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309	sulation stud ts; for addition ts based UC tes of UCL9 the use of He to for skewed Statistics	Data No	rized in Sing the user ma orical reason in in example ased 95% U which do n Number Number of Number of Number of Number of Lilliefors	of Distinct (of Missing (Std. E	consult a statis echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore rods are prefer in the prefer in t	es and output (both high ar recommende erred to comp Disservations Minimum Maximum SD t of Variation Test Statistic Critical Value Data Not	General S General S 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309 0.251 Normal at 5	sylvation studies; for additions to based UC tess of UCL9 the use of He is for skewed. Statistics GOF Test	Data No	rized in Sing the user ma orical reason in in example ased 95% U which do n Number Number of Number of Number of Number of Lilliefors	of Distinct (of Missing (Std. E	consult a statis echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore rods are prefer in the prefer in t	es and output (both high ar recommende erred to comp Disservations Minimum Maximum SD t of Variation Test Statistic Critical Value Data Not	General 3 General 3 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309 0.251	sylvation studies; for additions to based UC tess of UCL9 the use of He is for skewed. Statistics GOF Test	Data No Data No Data No	rized in Sing the user ma orical reason in example ased 95% U which do n Number Number Number of t Normal at the single of the	gh, Maichle ay want to come only. es in the To ICLs. ot follow a of Distinct Co of Missing Co Std. E	Deservations Deservations Deservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore it ods are prefer in unstable will be a seen of the control o	es and output (both high ar recommende erred to comp Disservations Minimum Maximum SD t of Variation Test Statistic Critical Value Data Not	General S General S 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309 0.251 Normal at 5	sylvation studies; for additions to based UC tess of UCL9 the use of He is for skewed. Statistics GOF Test	Data No Data No	rized in Sing the user ma orical reason in example ased 95% U which do n Number Number Number of t Normal at 9 Lilliefors t Normal at 9 UCLs (Adju	gh, Maichle ay want to come only. es in the To ICLs. of Distinct Co of Missing Co Std. E Std. E GOF Test 5% Significat GOF Test 5% Significat usted for Sk	consult a statis echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness st ance Level ance Level	e. bution. 11 0 200.3 94 69.74											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore it ods are prefer in unstable will be a seen of the control o	es and output (both high ar recommende erred to comp Deservations Minimum Maximum SD t of Variation Test Statistic Critical Value Test Statistic Critical Value Data Not Ass	General: 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309 0.251 Normal at 5	sylvation studies; for additions to based UC tess of UCL9 the use of He is for skewed. Statistics GOF Test	Data No	rized in Sing the user ma orical reason in in example ased 95% U which do n Number Number of the Normal at 9	gh, Maichle ay want to come only. es in the Tollocks. ot follow a of Distinct Come of Missing	Deservations Deservations Deservations Mean Median Error of Mean Skewness	e. bution. 11 0 200.3 94 69.74 2.282											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore it ods are prefer in unstable will be a seen of the control o	es and output (both high ar recommende erred to comp Deservations Minimum Maximum SD t of Variation Test Statistic Critical Value Test Statistic Critical Value Data Not Ass	General: 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309 0.251 Normal at 5	sylvation studies; for additions to based UC tess of UCL9 the use of He is for skewed. Statistics GOF Test	Data No	rized in Sing the user ma orical reason in in example ased 95% U which do n Number Number of the Normal at 9	gh, Maichle ay want to come only. es in the Tollocks. ot follow a of Distinct Come of Missing	consult a statis echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness st ance Level ance Level	e. bution. 11 0 200.3 94 69.74 2.282											
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	Howev H-	er, simulati	ProL ten results It etric metho	are based up will not cover will not cover in unstable in unstable is therefore it ods are prefer in unstable will be a seen of the control o	es and output (both high ar recommende erred to comp Deservations Minimum Maximum SD t of Variation Test Statistic Critical Value Test Statistic Critical Value Data Not Ass	General: 11 48 820 231.3 1.155 Normal C 0.683 0.85 0.309 0.251 Normal at 5	syllation studies; for additions to based UC less of UCL9 the use of He is for skewed. Statistics GOF Test We Significate the signification of the signif	Data No	rized in Sing the user ma orical reason in in example ased 95% U which do n Number Number of the Normal at 9	gh, Maichle ay want to come only. es in the Tollocks. ot follow a of Distinct Come of Missing	consult a statis echnical Guid gamma distri Disservations Disservations Mean Median Error of Mean Skewness st ance Level ance Level	e. bution. 11 0 200.3 94 69.74 2.282											

	А	В	С	D	E		F	G	Н	ı	J	K	L
115				A-I	D Test Stati	istic	0.821		Anderso	n-Darlin	g Gamma G	OF Test	
116				5% A-E	Critical Va	alue	0.745	Dat	a Not Gamma	a Distribu	ted at 5% Si	ignificance Le	vel
117				K-	S Test Stati	istic	0.306		Kolmogor	ov-Smirn	ov Gamma	GOF Test	
118					6 Critical Va		0.261				ted at 5% Si	ignificance Le	vel
119					Data Not Ga	amma	Distribute	ed at 5% Sig	nificance Le	vel			
120								a					
121					1.1/54		Gamma	Statistics					1.004
122					k hat (M	- 1	1.325 151.1				•	rrected MLE)	1.024 195.5
123				ı	heta hat (M nu hat (M	- '	29.16			metas	`	as corrected)	22.54
124			MI	F Mean (bias correct	- 1	200.3				`	as corrected)	197.9
125 126			IVIL	_ ivican (bias correct	icu)	200.5		Apr			Value (0.05)	12.74
127			Adiust	ed Level	of Significa	nce	0.0278		, 44			Square Value	11.56
128			,		· · · · · · · · · · · · · · · · ·						,	4	
129						Assun	ming Gam	ma Distribu	tion				
130	95% Ap	proximate	e Gamma	UCL (use	when n>=	50))	354.2		95% Adjust	ed Gamn	na UCL (use	when n<50)	390.5
131													
132						L	.ognormal	GOF Test					
133			Sh	apiro Wil	k Test Stati	istic	0.895		Shapiro	o Wilk Lo	gnormal GC	F Test	
134			5% Sh	apiro Will	c Critical Va	alue	0.85		Data appear L	ognorma	l at 5% Sign	ificance Leve	
135				Lilliefor	s Test Stati	istic	0.269		Lillie	fors Logr	ormal GOF	Test	
136			5%	Lilliefors	Critical Va	alue	0.251		Data Not Lo	gnormal a	at 5% Signifi	cance Level	
137				Data	appear Ap	proxim	nate Logn	ormal at 5%	Significance	e Level			
138													
139	Lognormal Statistics Minimum of Logged Data 3.871 Mean of logged Data 4.877												
140							3.871					logged Data	4.877
141			M	axımum (of Logged D	Data	6.709				SD of	logged Data	0.89
142					^	\eeumi	ina Loana	rmal Distrib	ution				
143					95% H-U		428	טווומו טופנווט	ution	Q0% (hehvehev (MVUE) UCL	344
144 145			95% C	hehyshe	v (MVUE) L		415.5				· · · · · · · · · · · · · · · · · · ·	MVUE) UCL	514.6
146				•	v (MVUE) L		709.4			07.070	(0 = , 0 0 =	
147					(- , -								
148					Nonpara	ametrio	c Distribu	tion Free UC	CL Statistics				
149			D	ata appe	ar to follow	v a Dis	scernible l	Distribution	at 5% Signifi	cance Le	evel		
150													
151					Nor	nparam	netric Dist	tribution Fre	e UCLs				
152					95% CLT L	JCL	315					ckknife UCL	326.7
153			95% 5	Standard	Bootstrap U		311.4					otstrap-t UCL	535.1
154					Bootstrap U		742.7			95% F	Percentile Bo	ootstrap UCL	323
155					Bootstrap U		374.5			050/ 0:	1 1 7 5	0 % 1 : 0 :	
156				• .	Mean, Sd) L		409.5				• •	ean, Sd) UCL	504.3
157			∌7.5% Ch€	:bysnev(N	/lean, Sd) L	JUL	635.8			ษษ% Ch	ebysnev(Me	an, Sd) UCL	894.2
158						Q.	unnested	UCL to Use					
159					95% H-U		428	50L 10 03E					
160 161					33701120		0						
162	Note: Su	uggestions	s regarding	the sele	ction of a 9	95% U	CL are pro	ovided to he	lp the user to	select th	e most appr	opriate 95% l	JCL.
163		55							distribution, a				
164	These	recomme	ndations a	re based	upon the re	esults (of the sim	ulation studi	ies summariz	ed in Sin	gh, Maichle,	, and Lee (20	06).
165	However,	simulation	ns results v	vill not co	ver all Rea	al World	d data set	ts; for addition	onal insight th	ne user m	ay want to c	consult a statis	stician.
166													
167													
168	H-stat	tistic ofter	n results in	n unstabl	e (both hig	h and	low) valu	es of UCL9	5 as shown i	n examp	les in the Te	echnical Guid	e.
169									statistic bas				
170	Use of nor	nparameti	ric method	ls are pre	eferred to c	comput	te UCL95	for skewed	data sets w	hich do r	not follow a	gamma distri	bution.
171													
			_				_						

	Α	В	С		D	E		F	G	Н	I		J	K	L		
172	- ()																
170	Benzo(a)py	yrene TEQ															
174								Conoral	Ctatiation								
175			Total	Numb	or of C)bserva	tions	19	Statistics		Numbo	r of Dict	inct Obse	nyotiono	5		
176			TOLAI	Nullib	ei oi C	DSEIVa	1110115	19					sing Obse		0		
177						Mini	imum	0.6			Number	OI WIISS	ing Obse	Mean	0.932		
178 179							imum	3.1						Median	0.6		
180							SD	0.716				S	Std. Error		0.164		
181				Coef	fficient	of Vari	iation	0.768					SI	kewness	2.165		
182																	
183								Normal (GOF Test								
184			S	hapiro	Wilk T	est Sta	atistic	0.543			Shapiro V	Vilk GOI	F Test				
185			5% SI	hapiro	Wilk C	ritical \	√alue	0.901		Data Not	Normal at			Level			
186						est Sta		0.468			Lilliefor						
187			5'	% Lillie	efors C	ritical \		0.197			Normal at	5% Sig	nificance	Level			
188						Data	a Not	Normal at 5	% Significa	nce Level							
189							۸	umir = N-	nol Diet-it	tion							
190			95% N	lormal	HCI		ASS	surning Norr	nal Distribu		UCLs (Adj	inetad fa	or Skows	ec)			
191			90% 1			dent's-t	HCI	1.216			5% Adjuste				1.289		
192				33	70 Otuc	uent s-t	OCL	1.210			5% Modifie				1.23		
193 194											0 70 111001111		_ (00111100	, 1070,			
194								Gamma (GOF Test								
195					A-D T	est Sta	atistic	4.422		Anders	son-Darlin	g Gamn	na GOF	Test			
197				5%	A-D C	Critical \	√alue	0.748	Da	ta Not Gamr					vel		
198					K-S T	est Sta	atistic	0.484		Kolmogo	rov-Smirr	nov Gan	nma GOF	Test			
199				5%	K-S C	critical \	√alue	0.2	Da	ta Not Gamr	ma Distribu	uted at 5	% Signifi	cance Le	vel		
200					Dat	ta Not (Gamm	na Distribute	ed at 5% Sig	d at 5% Significance Level							
201																	
202								Gamma	Statistics								
203						k hat (2.993				•	s correct		2.556		
204						ta hat (0.311			Theta	•	s correct	,	0.365		
205						nu hat (l		113.7					ır (bias co		97.12		
206			ML	LE Mea	an (bia	s corre	cted)	0.932					d (bias co		0.583		
207			م د داد ۸	- المحد		C:: if: -		0.0200		Ap	oproximate				75.39		
208			Adjus	stea Le	vei oi .	Signific	ance	0.0369			A	ajustea (Chi Squa	re value	73.71		
209							Δος	uming Gam	ıma Distribu	ıtion							
210	95%	S Approximate	e Gamma	UCL (use w	hen n>:		1.2		95% Adju	sted Gamr	na UCI	(use whe	en n<50)	1.227		
212							//						(
213								Lognorma	GOF Test								
214			S	hapiro	Wilk T	est Sta	atistic	0.548		Shap	iro Wilk Lo	gnorma	al GOF T	est			
215			5% SI	hapiro	Wilk C	ritical \	√alue	0.901		Data Not L	.ognormal	at 5% S	ignificand	ce Level			
216				Lillie	efors T	est Sta	atistic	0.477		Lilli	efors Logi	normal (GOF Tes	t			
217			5'	% Lillie	efors C	ritical \	/alue	0.197		Data Not L	ognormal.	at 5% S	ignificand	e Level			
218						Data I	Not Lo	ognormal at	5% Signific	cance Level							
219																	
220									Statistics								
221						ogged.		-0.511					an of logg	1	-0.247		
222			N	Maximu	ım of L	ogged	Data	1.131				S	SD of logg	jed Data	0.539		
223							Λ		uma el D' · ··								
224									rmal Distrib	oution	000/	Chabon	hov. / N.M. //	IE/ LIOI	1041		
225			050/	Chob		95% H MVUE)		1.172					hev (MVl hev (MVl		1.241 1.615		
226				•	•	MVUE)		2.043			31.3%	CHEDYS	iiea (iaiar	JL) UCL			
227			JJ /0 (OHEDY:	21164 (I	vi v UL)	JUL	2.043									
228																	

	Α	В	С	D	E	F	G	Н	I	J	K	L	
229					Nonparamet	tric Distribut	ion Free U	CL Statistic	S				
230				Da	ata do not fo	llow a Disce	ernible Dist	ribution (0.0	05)				
231													
232	Nonparametric Distribution Free UCLs												
233		95% CLT UCL 1.202 95% Jackknife UCL 1.216											
234			95% S	standard Boo	otstrap UCL	1.192				95% Boot	strap-t UCL	1.369	
235			95	% Hall's Boo	otstrap UCL	1.232			95% P	ercentile Boo	otstrap UCL	1.211	
236			95	5% BCA Boo	otstrap UCL	1.268							
237			90% Che	byshev(Mea	ın, Sd) UCL	1.424			95% Che	byshev(Mea	n, Sd) UCL	1.647	
238			97.5% Che	byshev(Mea	ın, Sd) UCL	1.957			99% Che	byshev(Mea	n, Sd) UCL	2.565	
239													
240						Suggested l	JCL to Use	•					
241			95% Cheb	yshev (Mea	in, Sd) UCL	1.647							
242													
243	Note	: Suggestion	ns regarding	the selection	on of a 95%	UCL are pro	vided to he	lp the user	to select the	most appro	priate 95%	UCL.	
244			Red	commendati	ons are base	ed upon data	a size, data	distribution,	, and skewn	ess.			
245	The	se recomme	endations ar	e based up	on the result	s of the sim	ulation stud	lies summar	rized in Sing	h, Maichle,	and Lee (20	06).	
246	Howev	er, simulatio	ons results w	vill not cover	all Real Wo	orld data set	s; for addition	onal insight	the user ma	y want to co	onsult a stat	istician.	
247													

Certificate of Analysis

Environment Testing

Qualtest
2 Murray Dwyer Circuit
Mayfield West
NSW 2304

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention: Emma Coleman Report 795526-AID

Project Name NEWCASTLE JOCKEY CLUB

Project ID NEW20P-0194
Received Date May 14, 2021
Date Reported May 25, 2021

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Project Name NEWCASTLE JOCKEY CLUB

Project ID NEW20P-0194

Date Sampled May 12, 2021 to May 13, 2021

Report 795526-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH13 0.0-0.2	21-My30204	May 12, 2021	Approximate Sample 794g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH15 0.0-0.2	21-My30207	May 12, 2021	Approximate Sample 603g Sample consisted of: Brown coarse-grained soil, coal, glass, debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected. No trace asbestos detected.
BH16 0.0-0.2	21-My30209	May 12, 2021	Approximate Sample 780g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH17 0.0-0.2	21-My30210	May 12, 2021	Approximate Sample 376g Sample consisted of: Brown coarse-grained clayey soil, coal, debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH18 0.0-0.2	21-My30213	May 12, 2021	Approximate Sample 487g Sample consisted of: Brown coarse-grained soil, coal, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH20 0.0-0.2	21-My30216	May 12, 2021	Approximate Sample 646g Sample consisted of: Brown coarse-grained sandy soil, coal, organic debris, and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH21 0.0-0.2	21-My30218	May 12, 2021	Approximate Sample 579g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH21 0.4-0.5	21-My30219	May 12, 2021	Approximate Sample 691g Sample consisted of: Brown coarse-grained soil, brick, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Date Reported: May 25, 2021

Environment Testing

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers

Page 3 of 14

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH24 0.0-0.2	21-My30223	May 12, 2021	Approximate Sample 564g Sample consisted of: Brown coarse-grained sandy soil, coal and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH25 0.0-0.2	21-My30225	May 12, 2021	Approximate Sample 552g Sample consisted of: Brown coarse-grained soil, coal, glass, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH27 0.0-0.2	21-My30228	May 12, 2021	Approximate Sample 448g Sample consisted of: Brown coarse-grained soil, coal, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS2 0.0-0.2	21-My30235	May 13, 2021	Approximate Sample 787g Sample consisted of: Brown coarse-grained soil, glass, coal, brick and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS3 0.0-0.1	21-My30236	May 13, 2021	Approximate Sample 36g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS4 0.0-0.2	21-My30238	May 13, 2021	Approximate Sample 562g Sample consisted of: Brown coarse-grained sandy soil, coal, glass, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS6 0.0-0.2	21-My30241	May 13, 2021	Approximate Sample 586g Sample consisted of: Brown coarse-grained sandy soil, corroded metal, coal and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS7 0.0-0.2	21-My30243	May 13, 2021	Approximate Sample 736g Sample consisted of: Brown coarse-grained soil, coal, bitumen and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	May 17, 2021	Indefinite
Asbestos - LTM-ASB-8020	Sydney	May 17, 2021	Indefinite

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2 1

Site # 1254 & 14271

Fax:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Order No.: Received: May 14, 2021 12:00 PM

 Report #:
 795526
 Due:
 May 21, 2021

 Phone:
 02 4968 4468
 Priority:
 5 Day

02 4960 9775 Contact Name: Emma Coleman

Eurofins Analytical Services Manager: Andrew Black

Sample Detail								CANCELLED	НОГД	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271									Х			
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	'36													
May	field Laboratory	/ - NATA Site #	25079													
Exte	rnal Laboratory	<u> </u>			_											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH13 0.0-0.1	May 12, 2021		Soil	N21-My30203							Х		Х		
2	BH13 0.0-0.2	May 12, 2021		Soil	N21-My30204		Х									
3	BH14 0.0-0.1	May 12, 2021		Soil	N21-My30205							Х		Х		
4	BH15 0.0-0.1	May 12, 2021		Soil	N21-My30206						Х	Х		Х		
5	BH15 0.0-0.2	N21-My30207		Х												
6	BH16 0.0-0.1	May 12, 2021		Soil	N21-My30208							Х		Х		
7	BH16 0.0-0.2	May 12, 2021		Soil	N21-My30209		Х									
8	BH17 0.0-0.2	May 12, 2021		Soil	N21-My30210		Х									
9	BH17 0.4-0.5	May 12, 2021		Soil	N21-My30211							Х		Х		

Page 5 of 14

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Contact Name:

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

May 14, 2021 12:00 PM

May 21, 2021

Emma Coleman

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Order No.: Report #:

Phone:

795526 02 4968 4468

02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

			mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
		ory - NATA Site		2/1		.,	.,	.,	.,	.,		.,	X			
		- NATA Site # 1				Х	X	X	Х	Х	Х	X	Х	Х	Х	X
		y - NATA Site # NATA Site # 237														
		/ - NATA Site # 257														
	ernal Laboratory		20010													
10	BH18 0.0-0.1	May 12, 2021		Soil	N21-My30212						Х	Х				
11	BH18 0.0-0.2	May 12, 2021		Soil	N21-My30213		Х									
12	BH18 0.4-0.5	May 12, 2021		Soil	N21-My30214							Х		Х		
13	BH19 0.0-0.1	May 12, 2021		Soil	N21-My30215							Х			Х	
14	BH20 0.0-0.2	May 12, 2021		Soil	N21-My30216		Х									
15	BH20 0.4-0.5	May 12, 2021		Soil	N21-My30217							Х			Х	
16	BH21 0.0-0.2	May 12, 2021		Soil	N21-My30218		Х									
17	BH21 0.4-0.5	May 12, 2021		Soil	N21-My30219		Х									
18	BH22 0.0-0.1	May 12, 2021		Soil	N21-My30220							Х			Х	
19	BH23 0.0-0.1	May 12, 2021		Soil	N21-My30221							Х			Χ	
20	BH24 0.0-0.1	May 12, 2021		Soil	N21-My30222					Х	Х	Х	Х	Χ		

Page 6 of 14

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Order No.: Report #:

795526

Phone: 02 4968 4468 **Fax:** 02 4960 9775

Received: May 14, 2021 12:00 PM

 Due:
 May 21, 2021

 Priority:
 5 Day

Contact Name: Emma Coleman

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melk	oourne Laborate	ory - NATA Site	# 1254 & 142	271									Х			
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator															
	h Laboratory - I															
_	field Laboratory		25079													
Exte	rnal Laboratory	1		1												
21	BH24 0.0-0.2	May 12, 2021		Soil	N21-My30223		Х									
22	BH25 0.0-0.1	May 12, 2021		Soil	N21-My30224							Х			Х	
23	BH25 0.0-0.2	May 12, 2021		Soil	N21-My30225		Х									
24	BH26 0.0-0.1	May 12, 2021		Soil	N21-My30226							Х		Х		
25	BH27 0.0-0.1	May 12, 2021		Soil	N21-My30227							Х			Х	
26	BH27 0.0-0.2	May 12, 2021		Soil	N21-My30228		Х									
27	D.12.5.21	May 12, 2021		Soil	N21-My30229							Х			Х	
28	D1.12.5.21	May 12, 2021		Soil	N21-My30230							Х		Х		
29	TB.13.5.21	May 12, 2021		Water	N21-My30231											Х
30	TB.13.5.21	May 12, 2021		Water	N21-My30232				Х							
31	SS1 0.0-0.1	May 13, 2021		Soil	N21-My30233							Х		Х		

Page 7 of 14

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

795526

02 4968 4468

02 4960 9775

Order No.:

Report #:

Phone:

Fax:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

Address: 2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

NEWCASTLE JOCKEY CLUB

Project ID:

NEW20P-0194

Received: May 14, 2021 12:00 PM

Due: May 21, 2021 **Priority:** 5 Day

Contact Name: Emma Coleman

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
		ory - NATA Site		71									Х			
		- NATA Site # 1				Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х
		ry - NATA Site #														
		NATA Site # 237														
		y - NATA Site # :	25079													
	ernal Laborator															
32	SS2 0.0-0.1	May 13, 2021		Soil	N21-My30234							X		Х		
33	SS2 0.0-0.2	May 13, 2021		Soil	N21-My30235		Х									
34	SS3 0.0-0.1	May 13, 2021		Soil	N21-My30236	Х						Х			Х	
35	SS4 0.0-0.1	May 13, 2021		Soil	N21-My30237							Х		Х		
36	SS4 0.0-0.2	May 13, 2021		Soil	N21-My30238		Х									
37	SS5 0.0-0.1	May 13, 2021		Soil	N21-My30239							Х			Х	
38	SS6 0.0-0.1	May 13, 2021		Soil	N21-My30240						Х	Х		Х		
39	SS6 0.0-0.2	May 13, 2021		Soil	N21-My30241		Х									
40	SS7 0.0-0.1	May 13, 2021		Soil	N21-My30242						Х	Х		Х		
41	SS7 0.0-0.2	May 13, 2021		Soil	N21-My30243		Х									
42	SS8 0.0-0.1	May 12, 2021		Soil	N21-My30244							Х		Х		

Page 8 of 14

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2 1

Site # 1254 & 14271

Phone:

Fax:

02 4960 9775

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID:

NEW20P-0194

 Order No.:
 Received:
 May 14, 2021 12:00 PM

 Report #:
 795526
 Due:
 May 21, 2021

795526 **Due:** May 21, 2021 02 4968 4468 **Priority:** 5 Day

Contact Name: Emma Coleman

Eurofins Analytical Services Manager: Andrew Black

		Sar	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	oourne Laborate	ory - NATA Site	# 1254 & 142	271									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х
		y - NATA Site #														
Pert	h Laboratory - I	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # 2	25079													
Exte	rnal Laboratory	<u>'</u>														
43	BH13 0.4-0.5	May 12, 2021		Soil	N21-My30282				Х							
44	BH13 0.65- 0.75	May 12, 2021		Soil	N21-My30283				Х							
45	BH13 0.9-1.0	May 12, 2021		Soil	N21-My30284				Х							
46	BH14 0.0-0.2	May 12, 2021		Soil	N21-My30285				Х							
47	BH14 0.4-0.5	May 12, 2021		Soil	N21-My30286				Х							\square
48	BH14 0.6-0.7	May 12, 2021		Soil	N21-My30287				Х							\square
49	BH14 0.9-1.0	May 12, 2021		Soil	N21-My30288				Х							
50	BH15 0.4-0.5	May 12, 2021		Soil	N21-My30289				Х							
51	BH15 0.9-1.0	May 12, 2021		Soil	N21-My30290				Х							
52	BH15 1.0-1.1	May 12, 2021		Soil	N21-My30291				Х							

Page 9 of 14

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2

795526

02 4968 4468

02 4960 9775

Order No.:

Report #:

Phone:

Fax:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland C 35 O'Rorke Road 4 Penrose, Auckland 1061 R Phone: +64 9 526 45 51 P IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Site # 1254 & 14271

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Received: May 14, 2021 12:00 PM

 Due:
 May 21, 2021

 Priority:
 5 Day

Contact Name: Emma Coleman

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	oourne Laborat	ory - NATA Site	# 1254 & 14271										Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	36													
May	field Laboratory	y - NATA Site # :	25079													
Exte	rnal Laboratory	<u>/</u>														
53	BH16 0.4-0.5	May 12, 2021	S	oil	N21-My30292				Х							
54	BH16 0.7-0.8	May 12, 2021	S	oil	N21-My30293				Х							
55	BH17 0.0-0.1	May 12, 2021	S	oil	N21-My30294				Х							
56	BH17 0.9-1.0	May 12, 2021	S	oil	N21-My30295				Х							
57	BH17 1.0-1.1	May 12, 2021	S	oil	N21-My30296				Х							
58	BH18 0.6-0.7	May 12, 2021	S	oil	N21-My30297				Х							
59	BH18 0.7-0.8	May 12, 2021	S	oil	N21-My30298			Х								
60	BH18 1.2-1.3	May 12, 2021	S	oil	N21-My30299			Х								
61	BH19 0.0-0.2	May 13, 2021	S	oil	N21-My30300				Х							
62	BH20 0.0-0.1	May 12, 2021	S	oil	N21-My30301				Х							
63	BH20 1.0-1.1	May 12, 2021	S	oil	N21-My30302				Х							

Page 10 of 14

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261 Phone : +61 22

Phone:

Fax:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Site # 1254 & 14271

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

 Order No.:
 Received:
 May 14, 2021 12:00 PM

 Report #:
 795526
 Due:
 May 21, 2021

795526 **Due:** May 21, 2021 02 4968 4468 **Priority:** 5 Day

02 4960 9775 Contact Name: Emma Coleman

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	271									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N	NATA Site # 237	36													
May	field Laboratory	- NATA Site #	25079													
Exte	rnal Laboratory	!														
64	BH21 0.0-0.1	May 12, 2021		Soil	N21-My30303				Х							
65	BH21 0.7-0.8	May 12, 2021		Soil	N21-My30304				Х							
66	BH22 0.0-0.2	May 12, 2021		Soil	N21-My30305				Х							
67	BH22 0.4-0.55	May 12, 2021		Soil	N21-My30306				Х							\square
68	BH22 0.55- 0.85	May 12, 2021		Soil	N21-My30307				Х							
69	BH23 0.0-0.2	May 12, 2021		Soil	N21-My30308				Х							
70	BH23 0.4-0.5	May 12, 2021		Soil	N21-My30309				Х							
71	BH23 0.5-0.6	May 12, 2021		Soil	N21-My30310				Х							
72	BH25 0.3-0.4	May 12, 2021		Soil	N21-My30311				Х							
73	BH26 0.0-0.2	May 12, 2021		Soil	N21-My30312				Х							

Page 11 of 14

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID:

NEW20P-0194

Order No.: Report #:

Phone:

795526

02 4968 4468

02 4960 9775 Fax:

Priority: Contact Name:

Received:

Due:

May 21, 2021 Emma Coleman

May 14, 2021 12:00 PM

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794													
Pert	h Laboratory - N	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # 2	25079													
Exte	rnal Laboratory	'														
74	BH26 0.4-0.5	May 12, 2021		Soil	N21-My30313				Х							
75	BH26 0.5-0.6	May 12, 2021		Soil	N21-My30314				Х							
76	BH27 0.3-0.4	May 12, 2021		Soil	N21-My30315				Х							
77	BH27 0.6-0.7	May 12, 2021		Soil	N21-My30316			Х								
78	SS1 0.0-0.2	May 13, 2021		Soil	N21-My30317				Х							
79	SS3 0.0-0.2	May 13, 2021		Soil	N21-My30318				Х							
80	SS5 0.0-0.2	May 13, 2021		Soil	N21-My30319				Х							
81	SS8 0.0-0.2	May 12, 2021		Soil	N21-My30320				Х							
Test	Counts					1	15	3	37	1	5	25	1	15	9	1

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

Date Reported: May 25, 2021

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 ABN : 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 795526-AID

Comments

My30236: The sample received was not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-sample to be analysed accurately represented the sample received.

My30210, My30213, My30228: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	Yes

Qualifier Codes/Comments

Code Description
N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 795526-AID

⁻ Indicates Not Requested

^{*} Indicates NATA accreditation does not cover the performance of this service

CHAIN OF CUSTODY RECORD

☐ Sydney Laboratory

☐ Brisbane Laboratory

☐ Perth Laboratory

H 9241 9490 Europäämpie MM2 pyrottot cons

Melbourne Laboratory
 This is a second of the seco

	Use Only	pment		B	<u> </u>	B	8	<u></u>	I B	里	<u>o</u>	0		Q _I	₩	ctions)rder		0	m		22	
Received By	Received By	Courier (#		BH14 0.9-1.0	BH14 0.6-0.7	BH14 0.4-0.5	BH14 0.0-0.2	BH14 0.0-0.1	BH13 0.9-1.0	BH13 0.65-0.75	BH13 0.4-0.5	BH13 0.0-0.2	BH13 0.0-0.1	Client Sample ID	180622QUAN-1			0429 359 411	Emma Coleman		Murray Dwyer Circui	
	Emma) -	To	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	Sampled Date/Time outmaky hims							2 Murray Dwyer Circuit Mayfield West NSW 2304	
		_	Total Counts	SOIL	SOIL	SOIL	SOIL	Matrix Scild (S) Wester (W)	Whorts	Ar mylink are requested SURTE code must be a	nallyses ploma ge	xäy To	otas" on "F		1							
SYD	SYD		2	-				×					×			37(Metals, BTEX,			101/200	,	Project Name	
BNE - ME	BNE ME	_ P	->									×				Asbestos (NEPM	%w/w)				Ne	
L PER	L PER	Postal			1										Su	ite B4 (PAHs, BTI	EX, TRH)				vcastle Jo	
SYD BNE MEL PER ADL NTL DRW	SYD BNE MEL PER ADL NTS DRW	Name														OCPs					Newcastle Jockey Club	
DRW	DRW	ne																				
Signature	Signature	Billy							_													
	tout	Billy Snow																			EDD Format ESdat ECulS etc	
		Signature																			Excel	
Date	Date	B. m.			9																	
	14/5/21	2		1																		
Time	Time	Date											i.		500mL F 250mL F 125mL F	Plastic	Chings o		Email for Regults	Email for Invoice	Handed over by	
														200	OmL Amb	oer Glass	e container type & s	Contair	espulles	rvcice	er by	
	12pm	いた												500		AS Bottle	& size of hade		libbybet	acco		,
	1	.21	о О	>	-à	<u> </u>	_	-3	->		-	_	->			or HDPE) 64, WA Guidelines)	- Vores		z@qualtes len@qualt	unts@c		
Report No	Temperature	Time											Page 1 of 9	Sample Comments / Dangerous Goods Hazard Wa	Other(Durfatuit will be	Required Turns	libbybetz@qualtest.com.au emmacoleman@qualtest.com.au stenheullen@dualtest.com.au	accounts@qualtest.com.au		
79557	12.6	11:30												Comments ods Hazard Warning	lard)	Overnight (reporting by 9am) Same day 1 day 2 days 3	will be 5 days, if not seasots Streetbudy will = 27	pround Time (TAT	an@qualtest.com.a	ŭ		

ė

Eurofins Environment Testing Australia Pty Ltd

Submission of saffylists to the Jeberhalpy will be desired to exceptioned Europe (Enrollment Testing Standard Torris and Condition

Laboratory Us

CHAIN OF CUSTODY RECORD

Unit F3 Bld.F 16 Mars File Mars

☐ Brisbane Laboratory

☐ Perth Laboratory

☐ Melbourne Laboratory

	Laboratory Use Only	WF	Metirod of Shipment		10	ω.	8	7	đ	Ch .	4	ω	N	4	æ	Quote ID Xa	Purchase Order	Special Directions	Phone Ne	Contact Name		Address	Company
Received By	T		☐ Courier (#		BH17 0.0-0.1	BH16 0.7-0.8	BH16 0.4-0.5	BH16 0.0-0.2	BH16 0.0-0.1	BH15 1.0-1.1	BH15 0.9-1.0	BH15 0.4-0.5	BH15 0.0-0.2	BH150.0-0.1	Client Sample 15	180622QUAN-1			0429 359 411	Emma Coleman		2 Murray Dwyer Circuit Mayfield West NSW 2304	Qualtest
\$)	Total Counts	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	Sampled Data/Time os/mm/yy th.mm							field West NSW 2304	
	cr.	- 5	Hand Delivered		SOIL	SOIL	Matrix Solid (S) William (VV)	Whates	models an SUITE cod	Analy: microsted, pea is must be used t	ies m spozy n alter Si	Talaf or T	Filend 0	Project Name	Project Ne								
YD BNE	AD BNE			2				•	×					×				ls, BTEX, PAI				ma	1
MEL PE	MEL PE		Postal	N	1			×					×					s (NEPM %w/				Newcast	NEW20P-0194
R ADL	K ADL		1	_										×		50		'AHs, BTEX, '	IKH)			Newcastle Jockey Club	-0194
SYD BNE MEL PER ADL NTL DRW	SYD BNE MEL PER ADL NTL DRW		Name		4									**				and CEC				Club	
	1	ı		1																			
Signature	Signature		Billy Snow																				
			Snow																			EDO Format ESdat EQuiS no	Project Ma
																						ormat MiS no	fanager
		Cignotic Control of Co	Signature					-														Excel	Emma Coleman
Date	Date	Ö																					man
Φ.	0	لې	- 1																				
		1	an	1																			
			-													500mL F	Plastic		200		500		
Time	Time	Cala													2	250mL F	Plastic		Charge c	Email for Results	Email for Invoice	Handed over by	Sampler(s)
			ľ													125mL F mL Ami		s	Contail contails	la sulta	nvoice	ver by	(6)
															4	lomL VC	A vial		ALC:	2 =	(O)		
		Ú				_										mL PFA			17	obybetz ephculi	ICCOL		Billy Snow
		1		00	_	-	<u> </u>		_	_	- <u>-</u>	_	_	-	Jar Other (Asbes	(Glass of			Į.	@qualt en@qua	nts		WO
	-		ì	100											THE STATE OF				-	est.com altest.c	qua		
Report Ne	Temperature) l												Page 2 of 9	Sample Comments Dangerous Goods Hazard Warning	b days (Standard)		Overnight (reporting by 9am)	Required Turnaround Time Details will be 5 days 8 had 0.5	libbybetz@qualtest.com.au emmacoleman@qualtest.com.au stephcullen@qualtest.com.au billysnow@qualtest.com.au	accounts@qualtest.com.au		
		00	92.11												ents ard Werning		ω .	orting by 9am)	Time (TAT)	altest.com.au)st.com.au			

Eurofins Environment Testing Australia Pty Ltd

CHAIN OF CUSTODY RECORD

Eurofins | Environment Testing ABN 50 005 085 821

Sydney Laboratory

Brisbane Laboratory

Perth Laboratory

Melbourne Laboratory

Laboratory Use Only Received By	Received By	□ Courier (#		BH18 1.2-1.3	못	m									Quote ID Na	Purchase Order	Special Directions					
				2-1.3	BH18 0.7-0.8	BH18 0.6-0.7	BH18 0.4-0.5	BH18 0.0-0.2	BH18 0.0-0.1	BH17 1.0-1.1	BH17 0.9-1.0	BH17 0.4-0.5	BH17 0.0-0.2	Client Sample ID	180622QUAN-1			0429 359 411	Emma Coleman		2 Murray Dwyer Circuit Mayfield West NSW 2304	Qualtest
		· -	Total Counts	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	Sampled Data/Time ddiwnlyy Numm							field West NSW 2304	
		Hand Delivered	ounts	SOIL	Matrix Sold (5) Water (VI)	Where	metals an	Anal Analysis of the second of	/645 and quocify '	Total di F	"altered".	Proje	Proj									
gyb j	l das	d	2				×					×					ls, BTEX, P/				Project Name	Project No
BNE M	BNE M	D P	2					×					×			Asbesto	s (NEPM %v	v/w)			N e	Z.
E PER	EL PER	Postal		ı											Su	ite B4 (F	PAHs, BTEX	TRH)			wcastle.	NEW20P-0194
I ADL I	ADL								×								OCPs				Newcastle Jockey Club	194
SYD BNE MEL PER ADL NTL DRW	SYD BNE MEL PER ADL NTL DRW	Name																			üb	
Signature	Signature																					
		Billy Snow																			S m	Pira
		•																			EDD Format ESda, FOLIS sto	Project Manager
																						eg eg
		Signature																			Excel	Emma (
		Ci																				Emma Coleman
Date	Date	8. 5																				
	w l	m. 1																				
		}																				
	8	J	9												500mL			Chan	5	Ema	H	တ္
Time	Time	Date													250mL 125mL			ange con	Email to Rusults	Email for Involce	Handed over by	Sampler(s)
														20	0mL Am	ber Glas	s	Cont	Salle	olco	Ma	0)
		至													40mL V			a A sign	\$ 8	(Q)		Φ.
		N													0mL PF.			7	bybetz	ccou		Billy Snow
		12	6 7	V	\checkmark	_	_		-		_		_		r (Glass			į	@quah en@qu	nts		WO
Report Ne	Temperature	Time [1:30		X	^		_						Page 3 of 9	Other (Asbe Sample Comments / Dangerous Goods Hazard Warning		2 days •	Same day *Surcharga will apply 1 day 1 day *Surcharga will apply 1 day 1 day *Surcharga will apply	Required Turnsround Time (TAT Default will be 5 days it not listed	libbybetz@qualtest.com.au emmacoleman@qualtest.com.au stephcullen@qualtest.com.au billysnow@qualtest.com.au	accounts@qualtest.com.au		

Eurofins Environment Testing Australia Pty Ltd

, Eurofins Environment Testing Australia Pty Ltd Laboratory Use Only BH20 1.0-1.1 Quaitest BH20 0.0-0.1 BH21 0.7-0.8 BH21 0.4-0.5 BH21 0.0-0.2 BH19 0.0-0.2 BH19 0.0-0.1 2 Murray Dwyer Circuit Mayfield West NSW 2304 BH21 0.0-0.1 BH20 0.4-0.5 BH20 0.0-0.2 0429 359 411 Emma Coleman 180622QUAN-1 Received By Received By 12/05/21 12/05/21 12/05/21 12/05/21 12/05/21 12/05/21 13/05/21 13/05/21 12/05/21 1205/21 Hand Delivered SOIL SYD | BNE | MEL | PER | ADL | NTL | DRW SYD | BNE | MEL | PER | ADL | NTL | DRW × Suite B7(Metals, BTEX, PAHs, TRH) 8 N × × Asbestos (NEPM %w/w) NEW20P-0194 Newcastle Jockey Club N × × Suite B4 (PAHs, BTEX, TRH) OCPs Signature Signature Billy Snow EDD Format Excel Emma Coleman S Date Date 3 500mL Plastic Time 250mL Plastic Time Date 125mL Plastic 200mL Amber Glass 14.5.21 40mL VOA vial stephcullen@qualtest.com.au billysnow@qualtest.com.au libbybetz@quattest.com.au emmacoleman@quattest.com.au accounts@qualtest.com.au Billy Snow 500mL PFAS Bottle X --Jar (Glass or HDPE) 6 --_ -Other (Asbestos AS4964, WA Guidelines) < Temperature Page 4 of 9 Report No Other(5 days (Standard) 2 days 🌩 Same day • Overnight (reporting by 9am)+ Time 1 day 🌩 30

CHAIN OF CUSTODY RECORD

Sydney Laboratory

Brisbane Laboratory

Perth Laboratory Unil 291 Leach Highway Kewdale WA 6105

☐ Melbourne Laboratory

Unit 1 21 Smallwood Place Murarrie QLD 4172

* . Eurofins Environment Testing Australia Pty Ltd Laboratory Use Only BH22 0.55-0.85 BH24 0.0-0.2 BH24 0.0-0.1 BH23 0.5-0.6 BH23 0.4-0.5 BH23 0.0-0.2 BH22 0.4-0.55 BH22 0.0-0.2 BH23 0.0-0.1 BH22 0.0-0.1 Qualtest 180622QUAN-1 0429 359 411 Emma Coleman 2 Murray Dwyer Circuit Mayfield West NSW 2304 Received By Received By 13/05/21 13/05/21 12/05/21 12/05/21 12/05/21 12/05/21 12/05/21 12/05/21 12/05/21 12/05/21 Hand Delivered SOIL SYD | BNE | MEL | PER | ADL | NTL | DRW SYD | BNE | MEL | PER | ADL | NTL | DRW × Suite B7(Metals, BTEX, PAHs, TRH) 4 × Asbestos (NEPM %w/w) Newcastle Jockey Club NEW20P-0194 2 × × Suite B4 (PAHs, BTEX, TRH) × **OCPs** _ × pH & CEC Signature Signature Billy Snow Excel Emma Coleman 5 Date Date 3 3 500mL Plastic 250mL Plastic Time Time Date 125mL Plastic 200mL Amber Glass 40mL VOA vial 14.5.21 libbybetz@qualtest.com.au emmacoleman@qualtest.com.au stephcullen@qualtest.com.au billysnow@qualtest.com.au accounts@qualtest.com.au Billy Snow 500mL PFAS Bottle ~ _ _ -Jar (Glass or HDPE) 4 -_ -_ Other (Asbestos AS4964, WA Guidelines) Report No Temperature Page 5 of 9 5 days (Standard) 2 days 🔷 Same day 🔷 Overnight (reporting by 9am)+ Time 7 1 day 🔷 30 ではない

CHAIN OF CUSTODY RECORD

Sydney Laboratory Unit F3 Bld.F 16 Mars F

Brisbane Laboratory

Perth Laboratory

Melbourne Laboratory

Unit 1 21 Smallwood Place Murarrie QLD 4172

CHAIN OF CUSTODY RECORD Sydney Laboratory
Unit F3 Bid.F 16 Mars Brisbane Laboratory

Perth Laboratory

☐ Melbourne Laboratory

Feth 5 9 8 7 6 5 4 3 12 7 7 8 8 9 0	To the second se					1					The Part of the Pa	fine Environment Tooling A	
Common Columns Common Columns Common Columns Common Columns Column	Room I Ph	Time	Date		Signature		PER AD	BNE MEL	IAS		Received By		
Company Comp	Temperature	Time	Date		Signature	150	PER AD) BNE MEL	IAS		Received By	aboratory Use Only	200
Company Comp	5.21 Time [حــ	inch	Signature	Billy Snow	Name	stal	1	nd Delivered		Courier (#	-	
Contract	\rightarrow						2	2	340	Total Cor			100
Contract	-								SOIL	12/05/21	H27 0.3-0.4		à
Contractive Colors 2 Hump Days Clock Hums 2 Hump Days Clock Hump								×	SOIL	12/05/21	H27 0.0-0.2		ø
Contract Contract Contrac	_						×		SOIL	12/05/21	H27 0.0-0.1		00
Contact Name 2 Marrier Days Contact Name 2 Marrier Days Days									SOIL	12/05/21	H26 0.5-0.6	₩.	7
Company Outliest Zimmy Days Cronit Hapfield West NSW 22M Address Emma Coleman Find West NSW 22M Find									SOIL	12/05/21	H26 0.4-0.5		
Address 2 2 Morney Dryor Circuit Royfold West 1997 22044 Address 2 2 Morney Dryor Circuit Royfold West 1997 22044 Analysis Emmi Colonian Price is 1992 22044 Price is 1992 22044 Analysis Emmi Colonian Price is 1992 22044 Analysis Emmi Colon	_								SOIL	12/05/21	H26 0.0-0.2		- Ch
Company Depart Hamps Column Column District Hamps Column District	_							^		12/05/21	H26 0.0-0.1	B.	
Compatible Coloman Adabases 2 Murray Dayer Circuit Mayfield West NSW 2204 Project Name Control Mane Control Contr	_								SOIL	12/05/21	H25 0.3-0.4	-	60
Comma Coleman Project Name Pro	-							×	SOIL	12/05/21	H25 0.0-0.2	. 7	N)
Client Sample D Client Sample D Committee Surple of Su				1			×		SOIL	12/05/21	H25 0.0-0.1	83	63
Analyses Where medals are requested, please pool of Total or Filtered. Suite B7 (Metals, BTEX, PAHs, TRH) Asbestos (NEPM %w/w) Suite B4 (PAHs, BTEX, TRH) OCPs Analyses Where medals are requested, please pool or allows BITE prong. Suite B4 (PAHs, BTEX, TRH) OCPs Email for Invoice Contained Containe	500 Jar Other (Asbes	200							Matrix Sodu (S) Wedge (M)	Sampled Data/Time dd/mnlyy ht.mm	ant Sample ID		2
Analyses India are requested, please spool, Total are replaced, Sufficient Strice Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses India are requested, please spool, Total at Flatence Analyses Analyses India are requested, please spool, Total at Flatence Analyses Analy	mL PFA (Glass of tos AS49	250mL F 125mL F mL Amb					Su				80622QUAN-1		1
Qualtest Project No. NEW20P-0/194 Project Name Coleman Sampler(s) 2 Murray Dwyer Circuit Mayfield West NSW 2304 Emma Coleman Project Name Newcastle Jockey Club Excel Excel Handed over by PAHs, TRH) 0429 359 411 Charge contained Cont	S Bottle or HDPE) 64, WA Guldelines) 62 days	Plastic Plastic per Glass				OCPs	ite B4 (PAHs, BTE					pacial Directions Purchase Order	
Qualtest Project Name New2oP-0194 Project Manager Emma Coleman Sampler(s) 2 Murray Dwyer Circuit Mayfield West NSW 2304 Project Name Newcastle Jockey Club Emul For Involve Emul For Results Emma Coleman Emul For Results 6 12 12 12 12 12 12 12 12 12 12 12 12 12	(S-3K-	Chairge container type & s					X, TRH)						
Qualtest Project Na NEW20P-0194 Project Manager Emma Coleman Sampler(s) 2 Murray Dwyer Circuit Mayfield West NSW 2304 Project Name Newcastle Jockey Club ESWA Schild etc. Excel Email for Involve Email for Involve	stephcullen@quaftest.com.au billysnow@quaftest.com.au	for Results						ATI)			429 359 411		
Qualtest Project Na NEW20P-0194 Project Manager Emma Coleman Sampler(s) 2 Murray Dwyer Circuit Mayfield West NSW 2304 Project Name Newcastle Jockey Club ESM Edwis ac Excel Handed over by	accounts@qualtest.com.au								is "Filished". roing		mma Coloman		
Qualtest Project No NEW20P-0194 Project Manager Emma Coleman Sampler(s)		Handed over by				key Club	castle Joc	100	Project Nar	eld West NSW 2304	2 Murray Dwyer Circuit Mayfi		121
	Billy Snow		sman		3		V20P-0194	100	Project N		Qualtest	Company	P.

Eurofins Environment Testing Australia Pty Ltd

nduro. Terroxulatid Conditions unkern agreed of harvisia. A copy is available on request.

C

CHAIN OF CUSTODY RECORD

Sydney Laboratory
Unit F 18 New Point Land Cook Ward Nich 2005
Unit F 18 New Point Land Cook Ward Nich 2005
Unit Cook Nation
Unit Semple Land Cook Ward Nich 2005
Unit Cook Nation
Unit Cook Nati

☐ Brisbane Laboratory
Und 1-74 Smolland Power Murano GCD-11-72
OF 1962 HEBD : EventSmitchOCD-autoritis com

Perth Laboratory

1907 En - Sangé (AA)- on

C1 Melbourne Laboratory

Library Facility And Secretary South Scale

MEST 5001 Expression recommendation

rofins Environment Testing Australia Pty Ltd		Laboratory Use Only	ethod or Shipment		0	*			O1	On .	*	LO.	2			Quote ID No	Purchase Order	Special Directions	Phone Nz	Contact Name		Address	Company
Australia Pty Ltd	Received By	Received By	Courier (#	No. of the least o	SS2 0.0-0.2	SS2 0.0-0.1	SS1 0.0-0.2	SS1 0.0-0.1	TB.13.5.21	T1.12.5.21	D1.12.5.21	T.12.5.21	D.12.5.21	BH27 0.6-0.7	Client Sample ID	180622QUAN-1			0429 359 411	Emma Coleman		2 Murray Dwyer Circuit Mayfield West NSW 2304	Qualtest
the state of the s) -	Total	13/05/21	13/05/21	13/05/21	13/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	12/05/21	Sampled Date/Time canneyy th mm							rfield West NSW 2304	
	ans.	SYD BNE MEL PER ADL NTL DRW	Hand Delivered Postal	Total Counts 3	SOIL	SOIL	SOIL	SOIL	Water	SOIL	SOIL X	SOIL	SOIL	SOIL	Analyses When makes an inquested, places equally Total of Tilliand'. Statte code must be used to allead Statte prising. Suite B7(Metals, BTEX, PAHs, TRH) Asbestos (NEPM %w/w)						licend".	Project Name	Project Na
	BNE MI			_	×			202			•												
Andrew Policy Statutes	EL PER												×			Suite B4 (PAHs, BTEX, TRH)						Newcastle Jockey Club	NEW20P-0194
	SYD BNE MEL PER ADL NTL DRW	ADL NTL	Name	2											OCPs BTEX SEND TO ALS (Test for S-26)							Jockey Clu	94
	I DRW	DRW	me	-					×													6	
STATE STATE	Signature	Signature	Billy Snow									×											
	iture	iture																					
		4.5	Snow																			EDD Format ESdut ECs/S pro	Project Manager
			Signature											İ								Excel	Emma Coleman
	Date	Date	Bim. hu																				าลก
	Time	Time	Date												1	500mL P 250mL P 125mL P	lastic		Change codiniti	Email to Results	Email for involve	Handed over by	Sampler(s)
			Ĭ.	N					2					1		mL Amb IOmL VO	er Glass A vial		Container Irerype & siz			ž	
			15.2,	o		_					->	-3	-3		500mL PFAS Bottle		i if theorem	accou ibbybetz(itephculle		Billy Snow			
				ω	_		_							Х		Jar (Glass or HDPE)					nts@c		MC
i mport i m	Report No	Temperature	Time							SEND TO ALS				Page 7 of 9	Sample Co	□ Other(2 days •	0	Regulred Turnstro	libbybetz@quattest.com.au emmacoleman@quattest.com.au stephcullen@quattest.com.au billvsnow@quattest.com.au	accounts@qualtest.com.au		
			11:30												Comments ods Hazard Warning	d)	3 3	orting by 9am)+	ound Time (TAT)	@qualtest.com.au			

Eurofins Environment Testing Australia Pty Ltd

Substitute of samples to the lateratory will be described as acceptance of European Environment felling Standard Corns and Conditions unless registed officers in A copy is available on registed

Approved by

CHAIN OF CUSTODY RECORD Equations (Environment) Testing ABN 50 005 085 521

Sydney Laboratory
Use 15 flish 15 Mars Physics are come Weath 15W 2055.
CC 2000 34-0. Environment 15W 2000 and 15W 2055.

☐ Brisbane Laboratory
ISHI 121 Enumerative Manager CLC 1172
- CLC 1912-1600 Enumerative CLC 1172

☐ Perth Laboratory

50) ErnyösünüteMAğışında sanii

☐ Melbourne Laboratory

Laboratory Use Only		ethod of Shipment		3	60	φ.		di ,	G	4	ε,	N	-		Quote ID Na	Purchase Order	Special Directions	Phone Na	Contact Name		Address	Company
Received By	Received By	Courler (#		SS7 0.0-0.2	SS7 0.0-0.1	SS6 0.0-0.2	SS6 0.0-0.1	885 0.0-0.2	SS5 0.0-0.1	SS4 0.0-0.2	SS4 0.0-0.1	SS3 0.0-0.2	SS3 0.0-0.1	Client Sample ID	180622QUAN-1			0429 359 411	Emma Coleman		2 Murray Dwyer Circuit Mayfield West NSW 2304	Qualtest
)	Total Counts	13/05/21	13/05/21	13/05/21	13/05/21	13/05/21	13/05/21	13/05/21	13/05/21	13/05/21	13/05/21	Sampled Date/Time summby th.mn							eld West NSW 2304	
co.	Q.	Hand Delivered		SOIL	Matrix Solid (S) Water (W)			Analy mquested, clea ermed he weed			Filmrod* Vi	Project Name	Project Na									
O BNE	O BNE		ω 4	×	×	×	×			×	×		×				Is, BTEX, PA s (NEPM %w					
MEL PE	MEL PE	Postal	N	^	·····	^			×	^			×								Newcastle Jockey Club	NEW20P-0194
R ADL	R ADL		2		×		×		^				~	Suite B4 (PAHs, BTEX, TRH) OCPs							Jockey (194
SYD BNE MEL PER ADL NTL DRW	SYD BNE MEL PER ADL NTL DRW	Name			3202																lub	
Signature	Signature																					
en	Fig.	Billy Snow																				70
		WO																			EDD Format EStat Edul 5 no	Project Manager
	1.5	Signature																			Excel	Emma Coleman
Date	Date	Bin																				man
		r																				
											_				500mL			O)	Ema	Emai	Han	y,
Time	Time	Date													250mL 125mL	Plastic		ige conta	Emall for Results	Email for Invoice	landed over by	Sampler(e)
															0mL Am 40mL V	ber Glas OA vial	is	Containors			-	TE II
		1,5,4	ن ن		>		_		_		_		_			AS Bottl		i i Necesi	ibbybetz(stephculle	accou		Billy Snow
		2	O)	_		m.>	_	_	_	_	_	-	_	Other (Asbe		or HDPI 964, WA (A.C.	@qualtes	nts@c		W
Report No	Temperature	Time [11:30	STATE OF THE PARTY										Page 8 of 9	Sample Comments / Dangerous Goods Hazard Warning			Overnight (reporting by 9am) Same day 1 day	Required Turnaround Time (FAT Oriant will be 5 days if not toket	libbybetz@qualtest.com.au emmacoleman@qualtest.com.au stephcullen@qualtest.com.au billysnow@qualtest.com.au	accounts@qualtest.com.au		

Eurofins Environment Testing Australia Pty Ltd

Eurofins Environment Testing Australia Pty Ltd Laboratory Use Only CHAIN OF CUSTODY RECORD SS8 0.0-0.2 SS8 0.0-0.1 180622QUAN-1 Qualtest 0429 359 411 Emma Coleman 2 Murray Dwyer Circuit Mayfield West NSW 2304 Courier (# Received By Received By 12/05/21 Hand Delivered SOIL SOIL SYD | BNE | MEL | PER | ADL | NTL | DRW SYD | BNE | MEL | PER | ADL | NTL | DRW × Suite B7(Metals, BTEX, PAHs, TRH) Asbestos (NEPM %w/w) Posta Newcastle Jockey Club NEW20P-0194 Suite B4 (PAHs, BTEX, TRH) **OCPs** Signature Signature Billy Snow Signature Excel Emma Coleman Ban Date Date 500mL Plastic Time Date 250mL Plastic Time 125mL Plastic 200mL Amber Glass is available on request 40mL VOA vial 18.37 stephcullen@quartest.com.au billysnow@quartest.com.au libbybetz@qualtest.com.au emmacoleman@qualtest.com.au accounts@qualtest.com.au Billy Snow 500mL PFAS Bottle _ Jar (Glass or HDPE) Melbourne Laboratory _ _ Other (Asbestos AS4964, WA Guidelines) emperature Report No. Page 9 of 9 5 days (Standard) 2 days 🔷 Time Same day 💠 Overnight (reporting by 9am)+ d 11:30 1 day 🌩

Sydney Laboratory

Brisbane Laboratory

Perth Laboratory

Qualtest
2 Murray Dwyer Circuit
Mayfield West
NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 25079

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention: Emma Coleman

Report 795526-W

Project name NEWCASTLE JOCKEY CLUB

Project ID NEW20P-0194
Received Date May 14, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TB.13.5.21 Water N21-My30231 May 12, 2021
Naphthalene ^{N02}	0.01	mg/L	< 0.01
Total Recoverable Hydrocarbons - 1999 NEF	PM Fractions		
TRH C6-C9	0.02	mg/L	< 0.02
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	102
Total Recoverable Hydrocarbons			
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 19, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 19, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	May 19, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

May 14, 2021 12:00 PM

May 21, 2021

Emma Coleman

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Order No.: Report #:

795526

Phone: 02 4968 4468 02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

New Zealand

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site									Х					
Sydı	ney Laboratory	- NATA Site # 1		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # :	25079													
Exte	rnal Laboratory	<u>'</u>			i											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH13 0.0-0.1	May 12, 2021		Soil	N21-My30203							Х		Х		
2	BH13 0.0-0.2	May 12, 2021		Soil	N21-My30204		Х									
3	BH14 0.0-0.1	May 12, 2021		Soil	N21-My30205							Х		Х		
4	BH15 0.0-0.1	May 12, 2021		Soil	N21-My30206						Х	Х		Х		
5	BH15 0.0-0.2	May 12, 2021		Soil	N21-My30207		Х									
6	BH16 0.0-0.1	May 12, 2021		Soil	N21-My30208							Х		Х		
7	BH16 0.0-0.2	May 12, 2021		Soil	N21-My30209		Х									
8	BH17 0.0-0.2	May 12, 2021		Soil	N21-My30210		Х									
9	BH17 0.4-0.5	May 12, 2021		Soil	N21-My30211							Х		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Order No.: Received: May 14, 2021 12:00 PM

Report #: 795526 Due: May 21, 2021 Phone: 02 4968 4468 **Priority:** 5 Day

02 4960 9775 Emma Coleman Fax: **Contact Name:**

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mel	bourne Laborate	ory - NATA Site	# 1254 & 1427	71									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794													
Pert	h Laboratory - I	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # :	25079													
Exte	ernal Laboratory	<i>!</i>														
10	BH18 0.0-0.1	May 12, 2021	;	Soil	N21-My30212						Х	Х				
11	BH18 0.0-0.2	May 12, 2021		Soil	N21-My30213		Х									
12	BH18 0.4-0.5	May 12, 2021		Soil	N21-My30214							Х		Х		
13	BH19 0.0-0.1	May 12, 2021		Soil	N21-My30215							Х			Х	
14	BH20 0.0-0.2	May 12, 2021		Soil	N21-My30216		Х									
15	BH20 0.4-0.5	May 12, 2021		Soil	N21-My30217							Х			Х	
16	BH21 0.0-0.2	May 12, 2021	;	Soil	N21-My30218		Х									
17	BH21 0.4-0.5	May 12, 2021	;	Soil	N21-My30219		Х									
18	BH22 0.0-0.1	May 12, 2021	;	Soil	N21-My30220							Х			Х	
19	BH23 0.0-0.1	May 12, 2021	;	Soil	N21-My30221							Х			Х	
20	BH24 0.0-0.1	May 12, 2021		Soil	N21-My30222					Х	Х	Х	Х	Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Order No.: Report #:

795526

Phone: 02 4968 4468 Fax:

02 4960 9775

Received: May 14, 2021 12:00 PM

New Zealand

Due: May 21, 2021 **Priority:** 5 Day

Emma Coleman **Contact Name:**

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	oourne Laborate	ory - NATA Site	# 1254 & 142	271									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	736													
May	field Laboratory	y - NATA Site #	25079													
Exte	rnal Laboratory	<u>/</u>		1												
21	BH24 0.0-0.2	May 12, 2021		Soil	N21-My30223		Х									
22	BH25 0.0-0.1	May 12, 2021		Soil	N21-My30224							Х			Х	
23	BH25 0.0-0.2	May 12, 2021		Soil	N21-My30225		Х									Ш
24	BH26 0.0-0.1	May 12, 2021		Soil	N21-My30226							Х		Х		
25	BH27 0.0-0.1	May 12, 2021		Soil	N21-My30227							Х			Х	
26	BH27 0.0-0.2	May 12, 2021		Soil	N21-My30228		Х									
27	D.12.5.21	May 12, 2021		Soil	N21-My30229							Х			Х	
28	D1.12.5.21	May 12, 2021		Soil	N21-My30230							Х		Х		
29	TB.13.5.21	May 12, 2021		Water	N21-My30231											Х
30	TB.13.5.21	May 12, 2021		Water	N21-My30232				Х							
31	SS1 0.0-0.1	May 13, 2021		Soil	N21-My30233							Х		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane Perth 1/21 Smallwood Place 46-48 Banksia Road Welshpool WA 6106 Murarrie QLD 4172 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Contact Name:

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

May 21, 2021

Emma Coleman

May 14, 2021 12:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Order No.: Report #:

795526

Phone: 02 4968 4468 02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

			mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	bourne Laborat	ory - NATA Site	# 1254 & 142	271									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х
Bris	bane Laborato	ry - NATA Site#	20794													
_		NATA Site # 237														
May	field Laborator	y - NATA Site #	25079													
Exte	rnal Laborator	у														
32	SS2 0.0-0.1	May 13, 2021		Soil	N21-My30234							X		Х		
33	SS2 0.0-0.2	May 13, 2021		Soil	N21-My30235		Х									
34	SS3 0.0-0.1	May 13, 2021		Soil	N21-My30236	Х						X			Х	\square
35	SS4 0.0-0.1	May 13, 2021		Soil	N21-My30237							X		Х		\square
36	SS4 0.0-0.2	May 13, 2021		Soil	N21-My30238		Х									
37	SS5 0.0-0.1	May 13, 2021		Soil	N21-My30239							X			Х	
38	SS6 0.0-0.1	May 13, 2021		Soil	N21-My30240						Х	X		Х		\square
39	SS6 0.0-0.2	May 13, 2021		Soil	N21-My30241		Х									\square
40	SS7 0.0-0.1	May 13, 2021		Soil	N21-My30242						Х	X		Х		\square
41	SS7 0.0-0.2	May 13, 2021		Soil	N21-My30243		Х									
42	SS8 0.0-0.1	May 12, 2021		Soil	N21-My30244							X		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

NEWCASTLE JOCKEY CLUB

Project ID:

Address:

NEW20P-0194

Order No.: Report #:

Phone:

Fax:

795526

02 4968 4468

02 4960 9775

Received: May 14, 2021 12:00 PM Due: May 21, 2021

New Zealand

Priority: 5 Day

Emma Coleman **Contact Name:**

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	oourne Laborate	ory - NATA Site	# 1254 & 142	271									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # 2	25079													
Exte	rnal Laboratory	<u>'</u>														
43	BH13 0.4-0.5	May 12, 2021		Soil	N21-My30282				Х							
44	BH13 0.65- 0.75	May 12, 2021		Soil	N21-My30283				Х							
45	BH13 0.9-1.0	May 12, 2021		Soil	N21-My30284				Х							
46	BH14 0.0-0.2	May 12, 2021		Soil	N21-My30285				Х							
47	BH14 0.4-0.5	May 12, 2021		Soil	N21-My30286				Х							
48	BH14 0.6-0.7	May 12, 2021		Soil	N21-My30287				Х							
49	BH14 0.9-1.0	May 12, 2021		Soil	N21-My30288				Х							
50	BH15 0.4-0.5	May 12, 2021		Soil	N21-My30289				Х							
51	BH15 0.9-1.0	May 12, 2021		Soil	N21-My30290				Х							
52	BH15 1.0-1.1	May 12, 2021		Soil	N21-My30291				Х							

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Order No.: Report #:

Phone:

795526

02 4968 4468

02 4960 9775 Fax:

Received: May 14, 2021 12:00 PM

New Zealand

Due: May 21, 2021 **Priority:** 5 Day

Emma Coleman **Contact Name:**

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794													
Pert	h Laboratory - I	NATA Site # 237	'36													
May	field Laboratory	/ - NATA Site #	25079													
Exte	rnal Laboratory	<u> </u>														
53	BH16 0.4-0.5	May 12, 2021		Soil	N21-My30292				Х							
54	BH16 0.7-0.8	May 12, 2021		Soil	N21-My30293				Х							
55	BH17 0.0-0.1	May 12, 2021		Soil	N21-My30294				Х							
56	BH17 0.9-1.0	May 12, 2021		Soil	N21-My30295				Х							
57	BH17 1.0-1.1	May 12, 2021		Soil	N21-My30296				Х							
58	BH18 0.6-0.7	May 12, 2021		Soil	N21-My30297				Х							
59	BH18 0.7-0.8	May 12, 2021		Soil	N21-My30298			Х								
60	BH18 1.2-1.3	May 12, 2021		Soil	N21-My30299			Х								
61	BH19 0.0-0.2	May 13, 2021		Soil	N21-My30300				Х							
62	BH20 0.0-0.1	May 12, 2021		Soil	N21-My30301				Х							
63	BH20 1.0-1.1	May 12, 2021		Soil	N21-My30302				Х							

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +612 2

Site # 1254 & 14271

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Order No.: Report #:

795526

Phone: 02 4968 4468 **Fax:** 02 4960 9775

Received: May 14, 2021 12:00 PM **Due:** May 21, 2021

Priority: 5 Day

Contact Name: Emma Coleman

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N	NATA Site # 237	36													
May	field Laboratory	- NATA Site #	25079													
Exte	rnal Laboratory				_											
64	BH21 0.0-0.1	May 12, 2021		Soil	N21-My30303				Х							
65	BH21 0.7-0.8	May 12, 2021		Soil	N21-My30304				Х							
66	BH22 0.0-0.2	May 12, 2021		Soil	N21-My30305				Х							
67	BH22 0.4-0.55	May 12, 2021		Soil	N21-My30306				Х							
68	BH22 0.55- 0.85	May 12, 2021		Soil	N21-My30307				Х							
69	BH23 0.0-0.2	May 12, 2021		Soil	N21-My30308				Х							
70	BH23 0.4-0.5	May 12, 2021		Soil	N21-My30309				Х							
71	BH23 0.5-0.6	May 12, 2021		Soil	N21-My30310				Х							
72	BH25 0.3-0.4	May 12, 2021		Soil	N21-My30311				Х							
73	BH26 0.0-0.2	May 12, 2021		Soil	N21-My30312				Х							

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2 1

Site # 1254 & 14271

Fax:

Perth
46-48 Banksia Road
Welshpool WA 6106
Delta Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Order No.: Received: May 14, 2021 12:00 PM

 Report #:
 795526
 Due:
 May 21, 2021

 Phone:
 02 4968 4468
 Priority:
 5 Day

02 4960 9775 Contact Name: Emma Coleman

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71									Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794													
Pert	h Laboratory - I	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # 2	25079													
Exte	rnal Laboratory	<u>'</u>														
74	BH26 0.4-0.5	May 12, 2021		Soil	N21-My30313				Х							
75	BH26 0.5-0.6	May 12, 2021		Soil	N21-My30314				Х							
76	BH27 0.3-0.4	May 12, 2021		Soil	N21-My30315				Х							
77	BH27 0.6-0.7	May 12, 2021		Soil	N21-My30316			Х								
78	SS1 0.0-0.2	May 13, 2021		Soil	N21-My30317				Х							
79	SS3 0.0-0.2	May 13, 2021		Soil	N21-My30318				Х							
80	SS5 0.0-0.2	May 13, 2021		Soil	N21-My30319				Х							
81	SS8 0.0-0.2	May 12, 2021		Soil	N21-My30320				Х							
Test	Counts					1	15	3	37	1	5	25	1	15	9	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association Toxicity Characteristic Leaching Procedure TCLP

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Page 11 of 14

Quality Control Results

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							
Naphthalene			mg/L	< 0.01	0.01	Pass	
Method Blank							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions					
TRH C6-C9			mg/L	< 0.02	0.02	Pass	
Method Blank							
BTEX							
Benzene			mg/L	< 0.001	0.001	Pass	
Toluene			mg/L	< 0.001	0.001	Pass	
Ethylbenzene			mg/L	< 0.001	0.001	Pass	
m&p-Xylenes			mg/L	< 0.002	0.002	Pass	
o-Xylene			mg/L	< 0.001	0.001	Pass	
Xylenes - Total*			mg/L	< 0.003	0.003	Pass	
Method Blank							
Total Recoverable Hydrocarbons	1						
TRH C6-C10			mg/L	< 0.02	0.02	Pass	
LCS - % Recovery							
Naphthalene			%	92	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions					
TRH C6-C9			%	105	70-130	Pass	
LCS - % Recovery							
ВТЕХ							
Benzene			%	104	70-130	Pass	
Toluene			%	100	70-130	Pass	
Ethylbenzene			%	102	70-130	Pass	
m&p-Xylenes			%	99	70-130	Pass	
o-Xylene			%	107	70-130	Pass	
Xylenes - Total*			%	102	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons	}						
TRH C6-C10			%	106	70-130	Pass	
	Lab Camula ID	QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery						1	
				Result 1			
Naphthalene	S21-My32964	NCP	%	92	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1			
TRH C6-C9	S21-My32964	NCP	%	112	70-130	Pass	
Spike - % Recovery							
ВТЕХ		, ,		Result 1			
Benzene	S21-My32964	NCP	%	97	70-130	Pass	
Toluene	S21-My32964	NCP	%	97	70-130	Pass	
Ethylbenzene	S21-My32964	NCP	%	99	70-130	Pass	
m&p-Xylenes	S21-My32964	NCP	%	95	70-130	Pass	
o-Xylene	S21-My32964	NCP	%	99	70-130	Pass	
Xylenes - Total*	S21-My32964	NCP	%	96	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	5			Result 1			
TRH C6-C10	S21-My32964	NCP	%	116	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Naphthalene	S21-My40483	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S21-My40483	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S21-My40483	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S21-My40483	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S21-My40483	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S21-My40483	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S21-My40483	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S21-My40483	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons			·	Result 1	Result 2	RPD			
TRH C6-C10	S21-My40483	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted Yes

Qualifier Codes/Comments

Code Description

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

Andrew Black Analytical Services Manager Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Child Special Control of the Con Site # 1254 & 14271

Unit F3 Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

Sample Receipt Advice

Company name:

Qualtest

Contact name:

Emma Coleman

Project name: Project ID:

NEWCASTLE JOCKEY CLUB NEW20P-0194

Turnaround time:

5 Day

Date/Time received

May 14, 2021 12:00 PM

Eurofins reference

795526

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Trip spike not received. | Bag not received for SS3 0.0-0.1, unable to analyse for AsbWA. Logged for Asb instead. | BH18 0.7-0.8, BH18 1.2-1.3 and BH27 0.6-0.7 not received.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Emma Coleman - emmacoleman@qualtest.com.au.

Qualtest
2 Murray Dwyer Circuit
Mayfield West
NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 25079

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention: Emma Coleman

Report 795526-S

Project name NEWCASTLE JOCKEY CLUB

Project ID NEW20P-0194
Received Date May 14, 2021

Client Sample ID			BH13 0.0-0.1	BH14 0.0-0.1	BH15 0.0-0.1	BH16 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30203	N21-My30205	N21-My30206	N21-My30208
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions	•				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	23	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	150	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	210	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	383	< 50
BTEX	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	67	73	80	93
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH13 0.0-0.1	BH14 0.0-0.1	BH15 0.0-0.1	BH16 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30203	N21-My30205	N21-My30206	N21-My30208
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	99	101	104	102
p-Terphenyl-d14 (surr.)	1	%	106	108	98	108
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	200	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	200	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	400	< 100
Heavy Metals		, 5		1		
Arsenic	2	mg/kg	< 2	10	15	2.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	20	13	17
Copper	5	mg/kg	7.7	24	350	17
Lead	5	mg/kg	8.3	8.5	410	5.8
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	20	17	12
Zinc	5	mg/kg	85	69	2900	48
ZIIIC	<u> </u>	IIIg/kg	03	09	2900	40
% Moisture	1	%	3.0	5.4	13	9.1
Organochlorine Pesticides	ı ı	/0	3.0	3.4	13	9.1
	0.1	m a/l.a			.01	
Chlordanes - Total 4.4'-DDD	0.1	mg/kg	-	-	< 0.1 < 0.05	-
4.4'-DDE		mg/kg	-	-		-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
Aldrin b-BHC	0.05	mg/kg	-	-	< 0.05 < 0.05	-
d-BHC	0.05	mg/kg	-	-		-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan ulahata	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene Methowychlor	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.2	mg/kg	-	-	< 0.2	-
Toxaphene	0.1	mg/kg	-	-	< 0.1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Dibutylchlorendate (surr.)	1	%	_	_	98	_

Client Sample ID			BH17 0.4-0.5	BH18 0.0-0.1	BH18 0.4-0.5	BH19 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30211	N21-My30212	N21-My30214	N21-My30215
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions	'				
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	25	-	27	< 20
TRH C15-C28	50	mg/kg	250	-	140	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50	91
TRH C10-C36 (Total)	50	mg/kg	275	-	167	91
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	72	-	68	99
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5		< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.6	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	0.6	< 0.5
Phenanthrene	0.5	mg/kg	0.6	-	0.7	< 0.5
Pyrene	0.5	mg/kg	0.6	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	1.8	-	1.3	< 0.5
2-Fluorobiphenyl (surr.)	1	%	109	-	110	103
p-Terphenyl-d14 (surr.)	1	%	111	-	115	110
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	280	-	150	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100	110
TRH >C10-C40 (total)*	100	mg/kg	280	-	150	110

Client Sample ID			BH17 0.4-0.5	BH18 0.0-0.1	BH18 0.4-0.5	BH19 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30211	N21-My30212	N21-My30214	N21-My30215
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
Test/Reference	LOR	Unit				
Heavy Metals	<u> </u>	1				
Arsenic	2	mg/kg	38	-	4.3	_
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	_
Chromium	5	mg/kg	8.4	-	5.4	_
Copper	5	mg/kg	110	-	20	_
Lead	5	mg/kg	130	-	10.0	_
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	_
Nickel	5	mg/kg	17	-	8.7	_
Zinc	5	mg/kg	620	-	19	-
% Moisture	1	%	16	27	27	21
Organochlorine Pesticides		,,,	10		1	
Chlordanes - Total	0.1	mg/kg	_	< 0.1	_	_
4.4'-DDD	0.05	mg/kg	_	< 0.05	_	_
4.4'-DDE	0.05	mg/kg	_	< 0.05	_	_
4.4'-DDT	0.05	mg/kg	_	< 0.05	_	_
a-BHC	0.05	mg/kg	_	< 0.05	_	_
Aldrin	0.05	mg/kg	_	< 0.05	_	_
b-BHC	0.05	mg/kg	_	< 0.05	_	_
d-BHC	0.05	mg/kg	_	< 0.05	_	_
Dieldrin	0.05	mg/kg	-	< 0.05	-	_
Endosulfan I	0.05	mg/kg	_	< 0.05	-	_
Endosulfan II	0.05	mg/kg	_	< 0.05	-	_
Endosulfan sulphate	0.05	mg/kg	_	< 0.05	-	_
Endrin	0.05	mg/kg	-	< 0.05	-	_
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg		< 0.05		
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Toxaphene	0.1	mg/kg	-	< 0.1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	=
Dibutylchlorendate (surr.)	1	%	-		-	-
Tetrachloro-m-xylene (surr.)	1	%	-	101	-	-

Client Sample ID			BH20 0.4-0.5	BH22 0.0-0.1	BH23 0.0-0.1	BH24 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30217	N21-My30220	N21-My30221	N21-My30222
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM		Onic				
			. 20	. 20	. 20	. 20
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	110	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	110	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	65	81	74	77
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	_				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	2.8	< 0.5	1.7
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	3.1	0.6	1.9
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	3.3	1.2	2.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Benz(a)anthracene	0.5	mg/kg	< 0.5	1.5	< 0.5	1.3
Benzo(a)pyrene	0.5	mg/kg	< 0.5	2.2	< 0.5	1.2
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	1.2	< 0.5	1.3
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	1.9	< 0.5	0.8
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	1.8	< 0.5	1.0
Chrysene	0.5	mg/kg	< 0.5	1.9	< 0.5	1.2
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	4.4	< 0.5	3.8
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.4	< 0.5	0.7
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	1.2	< 0.5	2.8
Pyrene	0.5	mg/kg	< 0.5	4.5	< 0.5	3.3
Total PAH*	0.5	mg/kg	< 0.5	22	< 0.5	18
2-Fluorobiphenyl (surr.)	1	%	106	103	104	99
p-Terphenyl-d14 (surr.)	1	%	114	100	108	99
Total Recoverable Hydrocarbons - 2013 NEPM		/0	114	100	100	33
-		m = /1. =	. 50	. 50	. 50	. 50
TRH > C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH > C16-C34	100	mg/kg	< 100	200	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	200	< 100	< 100

Client Sample ID			BH20 0.4-0.5	BH22 0.0-0.1	BH23 0.0-0.1	BH24 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30217	N21-My30220	N21-My30221	N21-My30222
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
			Way 12, 2021	Way 12, 2021	Way 12, 2021	Way 12, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	-	-	=	4.0
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-		=	9.8
Copper	5	mg/kg	-		-	35
Lead	5	mg/kg	-	-	-	60
Mercury	0.1	mg/kg	-	-	-	< 0.1
Nickel	5	mg/kg	-	-	-	9.3
Zinc	5	mg/kg	-	-	-	97
% Moisture	1	%	31	16	38	22
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	-	28
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	-	5.9
Organochlorine Pesticides	1	1				
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
а-ВНС	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Toxaphene	0.1	mg/kg	-	-	-	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	134
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	97
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	11

Client Sample ID			BH25 0.0-0.1	BH26 0.0-0.1	BH27 0.0-0.1	D.12.5.21
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30224	N21-My30226	N21-My30227	N21-My30229
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM		Offic				
TRH C6-C9	20	ma/ka	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
	50	mg/kg	< 50	56	82	93
TRH C15-C28		mg/kg	< 50	< 50	< 50	
TRH C29-C36 TRH C10-C36 (Total)	50 50	mg/kg			82	< 50
,	50	mg/kg	< 50	56	02	93
BTEX	l .					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	76	76	77	82
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	1.3	1.9	2.3
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.5	2.2	2.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.8	2.4	2.8
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	0.9	1.3	1.3
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.0	1.5	1.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.6	0.9	1.2
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	0.8	1.2	1.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.7	1.2	1.4
Chrysene	0.5	mg/kg	< 0.5	1.0	1.4	1.6
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	3.5	3.6	3.9
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	0.6	0.8	1.0
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	2.2	1.2	1.0
Pyrene	0.5	mg/kg	< 0.5	3.2	3.5	4.0
Total PAH*	0.5	mg/kg	< 0.5	14.5	16.6	18.7
2-Fluorobiphenyl (surr.)	1	%	104	108	110	94
p-Terphenyl-d14 (surr.)	1	%	110	109	107	94
Total Recoverable Hydrocarbons - 2013 NEPM						+
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	120	150
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	120	150

Client Sample ID			BH25 0.0-0.1	BH26 0.0-0.1	BH27 0.0-0.1	D.12.5.21
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30224	N21-My30226	N21-My30227	N21-My30229
Date Sampled			May 12, 2021	May 12, 2021	May 12, 2021	May 12, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	-	4.2	-	-
Cadmium	0.4	mg/kg	-	< 0.4	-	-
Chromium	5	mg/kg	-	37	-	-
Copper	5	mg/kg	-	26	-	-
Lead	5	mg/kg	-	55	-	-
Mercury	0.1	mg/kg	-	< 0.1	-	-
Nickel	5	mg/kg	-	63	-	-
Zinc	5	mg/kg	-	94	-	-
% Moisture	1	%	45	15	20	15

Client Sample ID			D1.12.5.21	SS1 0.0-0.1	SS2 0.0-0.1	SS3 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30230	N21-My30233	N21-My30234	N21-My30236
Date Sampled			May 12, 2021	May 13, 2021	May 13, 2021	May 13, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 100
TRH C15-C28	50	mg/kg	< 50	< 50	88	68
TRH C29-C36	50	mg/kg	< 50	< 50	100	320
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	188	388
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	87	INT	79	91
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 250
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			D1.12.5.21	SS1 0.0-0.1	SS2 0.0-0.1	SS3 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30230	N21-My30233	N21-My30234	N21-My30236
Date Sampled			May 12, 2021	May 13, 2021	May 13, 2021	May 13, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	<u> </u>	•				
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	97	97	97	75
p-Terphenyl-d14 (surr.)	1	%	101	95	97	63
Total Recoverable Hydrocarbons - 2013 N	EPM Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 250
TRH >C16-C34	100	mg/kg	< 100	< 100	190	340
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	170
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	190	510
Heavy Metals						
Arsenic	2	mg/kg	9.6	2.6	8.5	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	15	18	6.8	-
Copper	5	mg/kg	20	21	38	-
Lead	5	mg/kg	9.2	6.8	49	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	16	13	9.4	-
Zinc	5	mg/kg	68	57	270	-
% Moisture	1	%	4.8	11	14	31

Client Sample ID Sample Matrix			SS4 0.0-0.1 Soil	SS5 0.0-0.1 Soil	SS6 0.0-0.1 Soil	SS7 0.0-0.1 Soil
Eurofins Sample No.			N21-My30237	N21-My30239	N21-My30240	N21-My30242
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021
Test/Reference	LOR	Unit	Way 13, 2021	Way 13, 2021	Way 13, 2021	Way 13, 2021
Total Recoverable Hydrocarbons - 1999 NEPM Fraction		Offic				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 100
TRH C15-C28	50	mg/kg	73	< 50	52	310
TRH C29-C36	50	mg/kg	110	< 50	58	570
TRH C10-C36 (Total)	50	mg/kg	183	< 50	110	880
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	80	75	87	85

				_		
Client Sample ID			SS4 0.0-0.1	SS5 0.0-0.1	SS6 0.0-0.1	SS7 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30237	N21-My30239	N21-My30240	N21-My30242
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 250
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.7	< 0.5	0.9	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	0.6	< 0.5	1.0	< 0.5
Total PAH*	0.5	mg/kg	1.3	< 0.5	2.9	< 0.5
2-Fluorobiphenyl (surr.)	1	%	98	96	91	90
p-Terphenyl-d14 (surr.)	1	%	96	94	99	78
Total Recoverable Hydrocarbons - 2013 NEPM Fra		1				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 250
TRH >C16-C34	100	mg/kg	130	< 100	< 100	760
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	360
TRH >C10-C40 (total)*	100	mg/kg	130	< 100	< 100	1120
Heavy Metals		T				
Arsenic	2	mg/kg	3.6	-	5.6	5.8
Cadmium	0.4	mg/kg	0.5	-	0.6	1.4
Chromium	5	mg/kg	7.1	-	17	26
Copper	5	mg/kg	20	-	59	50
Lead	5	mg/kg	180	-	220	500
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Nickel	5	mg/kg	6.9	-	17	16
Zinc	5	mg/kg	190	-	390	820
0/ Majoturo		0/	40	00	20	0.0
% Moisture	1	%	12	28	22	9.9
Organochlorine Pesticides	0.4	T "			2.1	+ .
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	< 0.5
	0.05	mg/kg	-	-	< 0.05	< 0.5
4.4'-DDE 4.4'-DDT	0.05	mg/kg	_	_	< 0.05	< 0.5

Client Sample ID			SS4 0.0-0.1	SS5 0.0-0.1	SS6 0.0-0.1	SS7 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-My30237	N21-My30239	N21-My30240	N21-My30242
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Aldrin	0.05	mg/kg	-	-	< 0.05	< 0.5
b-BHC	0.05	mg/kg	-	-	< 0.05	< 0.5
d-BHC	0.05	mg/kg	-	-	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	-	-	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	-	-	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	-	-	< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	< 0.5
Endrin	0.05	mg/kg	-	-	< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	-	-	< 0.05	< 0.5
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	< 0.5
Heptachlor	0.05	mg/kg	-	-	< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	< 0.5
Methoxychlor	0.2	mg/kg	-	-	< 0.2	< 0.5
Toxaphene	0.1	mg/kg	-	-	< 0.1	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	< 1
Dibutylchlorendate (surr.)	1	%	-	-	121	85
Tetrachloro-m-xylene (surr.)	1	%	-	-	91	97

Client Sample ID Sample Matrix Eurofins Sample No.			SS8 0.0-0.1 Soil N21-My30244
Date Sampled			May 12, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions	1	
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	62
TRH C10-C36 (Total)	50	mg/kg	62
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20

Client Sample ID			SS8 0.0-0.1
Sample Matrix			Soil
Eurofins Sample No.			N21-My30244
Date Sampled			May 12, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons	,	-	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	93
p-Terphenyl-d14 (surr.)	1	%	91
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
TRH >C10-C16	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Heavy Metals	1 .00	19,9	1.00
Arsenic	2	mg/kg	3.8
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	7.4
Copper	5	mg/kg	45
Lead	5	mg/kg	89
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	9.4
Zinc	5	mg/kg	83
		1g/.kg	
% Moisture	1	%	13

Page 12 of 31

- Method: LTM-ORG-2220 OCP & PCB in Soil and Water

Environment Testing

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 20, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 20, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 20, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins Suite B4			
Polycyclic Aromatic Hydrocarbons	Sydney	May 20, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 20, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	May 20, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	May 17, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	May 21, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	May 21, 2021	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 20, 2021	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			_
Organochlorine Pesticides	Sydney	May 20, 2021	14 Days

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

May 14, 2021 12:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID:

NEW20P-0194

Order No.: Report #:

Fax:

795526

Phone: 02 4968 4468 02 4960 9775 **Priority: Contact Name:**

Due:

Received:

Eurofins Analytical Services Manager: Andrew Black

May 21, 2021

Emma Coleman

5 Day

			mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melb	ourne Laborate									Х			\vdash			
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Bris	bane Laborator	y - NATA Site#	20794													
Pert	h Laboratory - N	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # :	25079													
Exte	rnal Laboratory	<u>'</u>		1	i											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH13 0.0-0.1	May 12, 2021		Soil	N21-My30203							Х		Х		
2	BH13 0.0-0.2	May 12, 2021		Soil	N21-My30204		Х									
3	BH14 0.0-0.1	May 12, 2021		Soil	N21-My30205							Х		Х		
4	BH15 0.0-0.1	May 12, 2021		Soil	N21-My30206						Х	Х		Х		
5	BH15 0.0-0.2	May 12, 2021		Soil	N21-My30207		Х									
6	BH16 0.0-0.1	May 12, 2021		Soil	N21-My30208							Х		Х		
7	BH16 0.0-0.2	May 12, 2021		Soil	N21-My30209		Х									
8	BH17 0.0-0.2	May 12, 2021		Soil	N21-My30210		Х									
9	BH17 0.4-0.5	May 12, 2021		Soil	N21-My30211							Х		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2 1

Site # 1254 & 14271

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland C 35 O'Rorke Road 4: Penrose, Auckland 1061 R Phone: +64 9 526 45 51 P IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Order No.: Report #:

795526 02 4968 4468

Phone: 02 4966 **Fax:** 02 4966

02 4960 9775

Received: May 14, 2021 12:00 PM

 Due:
 May 21, 2021

 Priority:
 5 Day

Contact Name: Emma Coleman

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	bourne Laborate									Х						
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	'36													
May	field Laboratory	/ - NATA Site #	25079													
Exte	rnal Laboratory	<u>/</u>			_											
10	BH18 0.0-0.1	May 12, 2021		Soil	N21-My30212						Х	Х				
11	BH18 0.0-0.2	May 12, 2021		Soil	N21-My30213		Х									
12	BH18 0.4-0.5	May 12, 2021		Soil	N21-My30214							Х		Х		Ш
13	BH19 0.0-0.1	May 12, 2021		Soil	N21-My30215							Х			Х	
14	BH20 0.0-0.2	May 12, 2021		Soil	N21-My30216		Х									
15	BH20 0.4-0.5	May 12, 2021		Soil	N21-My30217							Х			Х	
16	BH21 0.0-0.2	May 12, 2021		Soil	N21-My30218		Х									
17	BH21 0.4-0.5	May 12, 2021		Soil	N21-My30219		Х									
18	BH22 0.0-0.1	May 12, 2021		Soil	N21-My30220							Х			Х	
19	BH23 0.0-0.1	May 12, 2021		Soil	N21-My30221							Х			Х	
20	BH24 0.0-0.1	May 12, 2021		Soil	N21-My30222					Х	Х	Х	Х	Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Order No.: Report #:

795526

Phone: 02 4968 4468 Fax:

02 4960 9775

Received: May 14, 2021 12:00 PM

New Zealand

Due: May 21, 2021 **Priority:** 5 Day

Emma Coleman **Contact Name:**

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	oourne Laborate									Х						
Syd	ney Laboratory	ney Laboratory - NATA Site # 18217								Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	736													
May	field Laboratory	y - NATA Site #	25079													
Exte	rnal Laboratory	<u>/</u>		1												
21	BH24 0.0-0.2	May 12, 2021		Soil	N21-My30223		Х									
22	BH25 0.0-0.1	May 12, 2021		Soil	N21-My30224							Х			Х	
23	BH25 0.0-0.2	May 12, 2021		Soil	N21-My30225		Х									Ш
24	BH26 0.0-0.1	May 12, 2021		Soil	N21-My30226							Х		Х		
25	BH27 0.0-0.1	May 12, 2021		Soil	N21-My30227							Х			Х	
26	BH27 0.0-0.2	May 12, 2021		Soil	N21-My30228		Х									
27	D.12.5.21	May 12, 2021		Soil	N21-My30229							Х			Х	
28	D1.12.5.21	May 12, 2021		Soil	N21-My30230							Х		Х		
29	TB.13.5.21	May 12, 2021		Water	N21-My30231											Х
30	TB.13.5.21	May 12, 2021		Water	N21-My30232				Х							
31	SS1 0.0-0.1	May 13, 2021		Soil	N21-My30233							Х		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2 1

Site # 1254 & 14271

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Contact Name:

Received:

Priority:

Due:

 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

May 14, 2021 12:00 PM

May 21, 2021

Emma Coleman

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Order No.: Report #:

795526

Phone: 02 4968 4468 **Fax:** 02 4960 9775

Eurofins Analytical Services Manager : Andrew Black

5 Day

New Zealand

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	bourne Laborat	tory - NATA Site	# 1254 & 14271										Х			
Syd	ney Laboratory	/ - NATA Site # 1		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
		ry - NATA Site #														
		NATA Site # 237														
		y - NATA Site #	25079													
Exte	ernal Laborator	•														
32	SS2 0.0-0.1	May 13, 2021	Soil		N21-My30234							Х		Х		
33	SS2 0.0-0.2	May 13, 2021	Soil		N21-My30235		Х									
34	SS3 0.0-0.1	May 13, 2021	Soil		N21-My30236	Х						Х			Х	Щ
35	SS4 0.0-0.1	May 13, 2021	Soil		N21-My30237							Х		Х		Щ
36	SS4 0.0-0.2	May 13, 2021	Soil		N21-My30238		Х									
37	SS5 0.0-0.1	May 13, 2021	Soil	I	N21-My30239							Х			Х	
38	SS6 0.0-0.1	May 13, 2021	Soil	I	N21-My30240						Х	Х		Х		
39	SS6 0.0-0.2	May 13, 2021	Soil	I	N21-My30241		Х									
40	SS7 0.0-0.1	May 13, 2021	Soil	I	N21-My30242						Х	Х		Х		
41	SS7 0.0-0.2	May 13, 2021	Soil	I	N21-My30243		Х									
42	SS8 0.0-0.1	May 12, 2021	Soil	l	N21-My30244							Х		Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

795526

02 4968 4468

02 4960 9775

Order No.:

Report #:

Phone:

Fax:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194 Received: May 14, 2021 12:00 PM

Due: May 21, 2021

Priority: 5 Day Emma Coleman **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

New Zealand

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Mell	oourne Laborate	ory - NATA Site									Х					
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site #	25079													
Exte	rnal Laboratory	<u> </u>														
43	BH13 0.4-0.5	May 12, 2021		Soil	N21-My30282				Х							
44	BH13 0.65- 0.75	May 12, 2021		Soil	N21-My30283				Х							
45	BH13 0.9-1.0	May 12, 2021		Soil	N21-My30284				Х							
46	BH14 0.0-0.2	May 12, 2021		Soil	N21-My30285				Х							
47	BH14 0.4-0.5	May 12, 2021		Soil	N21-My30286				Х							
48	BH14 0.6-0.7	May 12, 2021		Soil	N21-My30287				Х							
49	BH14 0.9-1.0	May 12, 2021		Soil	N21-My30288				Х							
50	BH15 0.4-0.5	May 12, 2021		Soil	N21-My30289				Х							
51	BH15 0.9-1.0	May 12, 2021		Soil	N21-My30290				Х							
52	BH15 1.0-1.1	May 12, 2021		Soil	N21-My30291				Х							

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

795526

02 4968 4468

02 4960 9775

Order No.:

Report #:

Phone:

Fax:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID:

NEW20P-0194

Received: May 14, 2021 12:00 PM

Due: May 21, 2021

Priority: 5 Day Emma Coleman **Contact Name:**

			mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
		ory - NATA Site		271									Х			
		- NATA Site # 1				Х	Х	Х	Х	X	Х	X	Х	Х	Х	Х
		y - NATA Site #														\vdash
		NATA Site # 237														\vdash
		· - NATA Site # :	25079													\vdash
53	rnal Laboratory BH16 0.4-0.5	May 12, 2021		Soil	N21-My30292				Х							\vdash
54	BH16 0.4-0.3	May 12, 2021		Soil	N21-My30292				X							\vdash
55	BH17 0.0-0.1	May 12, 2021		Soil	N21-My30293				X							\vdash
56	BH17 0.0-0.1	May 12, 2021		Soil	N21-My30294				X							\vdash
57	BH17 1.0-1.1	May 12, 2021		Soil	N21-My30295				X							\vdash
58	BH18 0.6-0.7	May 12, 2021		Soil	N21-My30297				X							
59	BH18 0.7-0.8	May 12, 2021		Soil	N21-My30297			Х								\Box
60	BH18 1.2-1.3	May 12, 2021		Soil	N21-My30298			X								\vdash
61	BH19 0.0-0.2	May 13, 2021		Soil	N21-My30300				Х							\Box
62	BH20 0.0-0.1	May 12, 2021		Soil	N21-My30301				X							
63	BH20 1.0-1.1	May 12, 2021		Soil	N21-My30302				X							

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

02 4968 4468

02 4960 9775

Phone:

Fax:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

NEWCASTLE JOCKEY CLUB

Project ID:

Company Name:

Address:

NEW20P-0194

Order No.: Received: May 14, 2021 12:00 PM Report #: 795526

Due: May 21, 2021

Priority: 5 Day Emma Coleman **Contact Name:**

			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH			
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	271									Х			
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory															
	h Laboratory - N															
	field Laboratory		25079													
	rnal Laboratory	1 1														
64	BH21 0.0-0.1	May 12, 2021		Soil	N21-My30303				X							
65	BH21 0.7-0.8	May 12, 2021		Soil	N21-My30304				Х							
66	BH22 0.0-0.2	May 12, 2021		Soil	N21-My30305				Х							
67	BH22 0.4-0.55	May 12, 2021		Soil	N21-My30306				Х							\square
68	BH22 0.55- 0.85	May 12, 2021		Soil	N21-My30307				Х							
69	BH23 0.0-0.2	May 12, 2021		Soil	N21-My30308				Х							
70	BH23 0.4-0.5	May 12, 2021		Soil	N21-My30309				Х							
71	BH23 0.5-0.6	May 12, 2021		Soil	N21-My30310				Х							
72	BH25 0.3-0.4	May 12, 2021		Soil	N21-My30311				Х							
73	BH26 0.0-0.2	May 12, 2021		Soil	N21-My30312				Х							

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261
Phone : +61 2 Phone : +61 2

Site # 1254 & 14271

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

May 21, 2021

Emma Coleman

May 14, 2021 12:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Qualtest

2 Murray Dwyer Circuit

Mayfield West

NSW 2304

Project Name:

Company Name:

Address:

NEWCASTLE JOCKEY CLUB

Project ID: NEW20P-0194

Order No.: Report #:

795526

Phone: 02 4968 4468 **Fax:** 02 4960 9775

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Organochlorine Pesticides	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	Eurofins Suite B4	BTEXN and Volatile TRH
Melk	ourne Laborato									Х						
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N	NATA Site # 237	36													
May	field Laboratory	/ - NATA Site # :	25079													
Exte	rnal Laboratory	'														
74	BH26 0.4-0.5	May 12, 2021		Soil	N21-My30313				Х							
75	BH26 0.5-0.6	May 12, 2021		Soil	N21-My30314				Х							
76	BH27 0.3-0.4	May 12, 2021		Soil	N21-My30315				Х							
77	BH27 0.6-0.7	May 12, 2021		Soil	N21-My30316			Х								
78	SS1 0.0-0.2	May 13, 2021		Soil	N21-My30317				Х							
79	SS3 0.0-0.2								Х							
80	SS5 0.0-0.2	May 13, 2021	N21-My30319				Х									
81	SS8 0.0-0.2	May 12, 2021		Soil	N21-My30320				Х							
Test	Counts					1	15	3	37	1	5	25	1	15	9	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptano Limits	e Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	,g,g	1 2 1		1	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene		< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	1 1			
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	-
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		Т			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	,,			+	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Heavy Metals					-
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
LCS - % Recovery		T T		ı	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	91	70-130	Pass	
TRH C10-C14	%	89	70-130	Pass	
LCS - % Recovery		T T		1	
BTEX					
Benzene	%	93	70-130	Pass	
Toluene	%	96	70-130	Pass	
Ethylbenzene	%	96	70-130	Pass	
m&p-Xylenes	%	96	70-130	Pass	
o-Xylene	%	95	70-130	Pass	
Xylenes - Total*	%	96	70-130	Pass	
LCS - % Recovery		T T		I	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	92	70-130	Pass	
TRH C6-C10	%	91	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	107	70-130	Pass	-
Acenaphthylene	%	106	70-130	Pass	-
Anthracene	%	102	70-130	Pass	
Benz(a)anthracene	%	101	70-130	Pass	-
Benzo(a)pyrene	%	108	70-130	Pass	-
Benzo(b&j)fluoranthene	%	98	70-130	Pass	
Benzo(g.h.i)perylene	%	102	70-130	Pass	
Benzo(k)fluoranthene	%	111	70-130	Pass	
Chrysene	%	120	70-130	Pass	
Dibenz(a.h)anthracene	%	95	70-130	Pass	-
Fluoranthene	%	118	70-130	Pass	
Fluorene	%	108	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene			%	91		70-130	Pass	
Naphthalene			%	118		70-130	Pass	
Phenanthrene			%	109		70-130	Pass	
Pyrene			%	121		70-130	Pass	
LCS - % Recovery				•				
Total Recoverable Hydrocarbons	- 2013 NEPM Frac	tions						
TRH >C10-C16			%	86		70-130	Pass	
LCS - % Recovery						•		
Heavy Metals								
Arsenic			%	101		80-120	Pass	
Cadmium			%	102		80-120	Pass	
Chromium			%	104		80-120	Pass	
Copper			%	101		80-120	Pass	
Lead			%	105		80-120	Pass	
Mercury			%	109		80-120	Pass	
Nickel			%	104		80-120	Pass	
Zinc			//	99		80-120	Pass	
LCS - % Recovery			/0	1 33		1 50-120	1 1 433	
Conductivity (1:5 aqueous extract a	at 25°C as rec.)		%	85	T	70-130	Pass	
LCS - % Recovery	20 0 as 160.)		/0			10-130	1 033	
Organochlorine Pesticides					T			
			%	04		70 120	Pass	
Chlordanes - Total				94		70-130		
4.4'-DDD			%	79		70-130	Pass	
4.4'-DDE			%	93		70-130	Pass	
4.4'-DDT			%	117		70-130	Pass	
a-BHC			%	86		70-130	Pass	
Aldrin			%	94		70-130	Pass	
b-BHC			%	87		70-130	Pass	
d-BHC			%	86		70-130	Pass	
Dieldrin			%	83		70-130	Pass	
Endosulfan I			%	87		70-130	Pass	
Endosulfan II			%	88		70-130	Pass	
Endosulfan sulphate			%	77		70-130	Pass	
Endrin			%	71		70-130	Pass	
Endrin aldehyde			%	76		70-130	Pass	
Endrin ketone			%	80		70-130	Pass	
g-BHC (Lindane)			%	94		70-130	Pass	
Heptachlor			%	79		70-130	Pass	
Heptachlor epoxide			%	92		70-130	Pass	
Hexachlorobenzene			%	93		70-130	Pass	
Methoxychlor			%	112		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	N21-My30203	CP	%	78		70-130	Pass	
Spike - % Recovery					1	1		
BTEX		, ,		Result 1				
Benzene	N21-My30203	CP	%	81		70-130	Pass	
Toluene	N21-My30203	CP	%	84		70-130	Pass	
Ethylbenzene	N21-My30203	CP	%	82		70-130	Pass	
m&p-Xylenes	N21-My30203	CP	%	84		70-130	Pass	
o-Xylene Xylenes - Total*	N21-My30203 N21-My30203	CP CP	% %	82		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1			
Naphthalene	N21-My30203	CP	%	86	70-130	Pass	
TRH C6-C10	N21-My30203	CP	%	77	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Zinc	S21-My32393	NCP	%	88	75-125	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	N21-My30205	CP	%	89	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbo	ns			Result 1			
Acenaphthene	S21-My21715	NCP	%	96	70-130	Pass	
Acenaphthylene	S21-My21715	NCP	%	88	70-130	Pass	
Anthracene	S21-My21715	NCP	%	76	70-130	Pass	
Benz(a)anthracene	S21-My21715	NCP	%	74	70-130	Pass	
Benzo(a)pyrene	S21-My21715	NCP	%	76	70-130	Pass	
Benzo(b&j)fluoranthene	S21-My21715	NCP	%	81	70-130	Pass	
Benzo(g.h.i)perylene	S21-My21715	NCP	%	74	70-130	Pass	
Benzo(k)fluoranthene	S21-My21715	NCP	%	80	70-130	Pass	
Chrysene	S21-My21715	NCP	%	80	70-130	Pass	
Dibenz(a.h)anthracene	S21-My21715	NCP	%	71	70-130	Pass	
Fluoranthene	S21-My21715	NCP	%	99	70-130	Pass	
Fluorene	S21-My21715	NCP	%	86	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-My21715	NCP	%	77	70-130	Pass	
Naphthalene	S21-My21715	NCP	%	103	70-130	Pass	
Phenanthrene	S21-My21715	NCP	%	80	70-130	Pass	
Pyrene	S21-My21715	NCP	% 	96	70-130	Pass	
Spike - % Recovery	321-Wy21713	INCF	/0	90	70-130	r ass	
Total Recoverable Hydrocarbons	2012 NEDM Front	iono		Result 1			
TRH >C10-C16	N21-My30205	CP	%	90	70-130	Pass	
Spike - % Recovery	NZ1-WIY30205	CP	70	90	70-130	Pass	
				Dogult 1			
Organochlorine Pesticides	CO4 M::00700	NOD	0/	Result 1	70.400	Dana	
Chlordanes - Total	S21-My26790	NCP	%	114	70-130	Pass	
4.4'-DDD	S21-My26790	NCP	%	79	70-130	Pass	
4.4'-DDE	S21-My26790	NCP	%	109	70-130	Pass	
a-BHC	S21-My26790	NCP	%	92	70-130	Pass	
Aldrin	S21-My26790	NCP	%	115	70-130	Pass	
b-BHC	S21-My26790	NCP	%	77	70-130	Pass	
d-BHC	S21-My26790	NCP	%	81	70-130	Pass	
Dieldrin	S21-My26790	NCP	%	105	70-130	Pass	
Endosulfan I	S21-My26790	NCP	%	100	70-130	Pass	
Endosulfan II	S21-My26790	NCP	%	97	70-130	Pass	
Endosulfan sulphate	S21-My26790	NCP	%	95	70-130	Pass	
Endrin	S21-My26790	NCP	%	78	70-130	Pass	
Endrin aldehyde	S21-My26790	NCP	%	87	70-130	Pass	
Endrin ketone	S21-My26790	NCP	%	91	70-130	Pass	
g-BHC (Lindane)	S21-My26790	NCP	%	110	70-130	Pass	
Heptachlor	S21-My26790	NCP	%	78	70-130	Pass	
Heptachlor epoxide	S21-My26790	NCP	%	106	70-130	Pass	
Hexachlorobenzene	S21-My26790	NCP	%	108	70-130	Pass	
Spike - % Recovery							
Heavy Metals		1 -		Result 1			
Arsenic	N21-My30233	CP	%	113	75-125	Pass	
Cadmium	N21-My30233	CP	%	117	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chromium	N21-My30233	CP	%	111			75-125	Pass	
Copper	N21-My30233	CP	%	103			75-125	Pass	
Lead	N21-My30233	CP	%	111			75-125	Pass	
Mercury	N21-My30233	CP	%	114			75-125	Pass	
Nickel	N21-My30233	CP	%	107			75-125	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	N21-My30239	CP	%	84			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	N21-My30239	СР	%	74			70-130	Pass	
Toluene	N21-My30239	СР	%	85			70-130	Pass	
Ethylbenzene	N21-My30239	СР	%	90			70-130	Pass	
m&p-Xylenes	N21-My30239	СР	%	87			70-130	Pass	
o-Xylene	N21-My30239	СР	%	83			70-130	Pass	
Xylenes - Total*	N21-My30239	CP	%	86			70-130	Pass	
Spike - % Recovery					<u> </u>			7 0.00	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	N21-My30239	CP	%	74			70-130	Pass	
TRH C6-C10	N21-My30239	CP	%	84			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		,							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	N21-My30203	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	N21-My30203	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	N21-My30203	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	N21-My30203	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	, , , , , , , , , , , , , , , , , , , ,								
BTEX				Result 1	Result 2	RPD			
Benzene	N21-My30203	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	N21-My30203	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	N21-My30203	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	N21-My30203	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	N21-My30203	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	N21-My30203	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	112111111111111111111111111111111111111						22.12	7 0.00	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	N21-My30203	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
· ·	<u> </u>						30%	Pass	
TRH C6-C10	1 N21-WV30203	L CP	ma/ka	< 20	< 20	<1	3070		
TRH C6-C10 Duplicate	N21-My30203	СР	mg/kg	< 20	< 20	<1	30%		
Duplicate		CP	mg/kg				30%		
Duplicate Polycyclic Aromatic Hydrocarbon	ns			Result 1	Result 2	RPD		Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene	ns N21-My30203	СР	mg/kg	Result 1 < 0.5	Result 2 < 0.5	RPD <1	30%	Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene	N21-My30203 N21-My30203	CP CP	mg/kg mg/kg	Result 1 < 0.5 < 0.5	Result 2 < 0.5 < 0.5	RPD <1 <1	30% 30%	Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene	N21-My30203 N21-My30203 N21-My30203	CP CP CP	mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1	30% 30% 30%	Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP CP CP	mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Polycyclic Aromatic Hydrocarbor Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203 N21-My30203	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons	•			Result 1	Result 2	RPD			
Naphthalene	N21-My30203	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	N21-My30203	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	N21-My30203	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	1421-Wy30203		l ilig/kg	\ 0.5	V 0.5		30 /8	1 033	
Total Recoverable Hydrocarbons -	2013 NEDM Fract	ione		Result 1	Result 2	RPD			
TRH >C10-C16	N21-My30203	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	N21-My30203	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	N21-My30203	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	N21-Wy30203	CF	ilig/kg	<u> </u>	V 100	<u> </u>	30 /8	Fass	
Organochlorine Pesticides				Result 1	Result 2	RPD	Π	1	
	C24 My26702	NCP	m a/l.a				200/	Pass	
Chlordanes - Total	S21-My26793		mg/kg	< 0.1	< 0.1	<1	30%	 	
4.4'-DDD	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-My26793	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-My26793	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				T.				1	
				Result 1	Result 2	RPD			
% Moisture	N21-My30217	CP	%	31	31	1.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions	T	Result 1	Result 2	RPD			
TRH C6-C9	N21-My30221	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	N21-My30221	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	N21-My30221	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	N21-My30221	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	N21-My30221	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	N21-My30221	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	N21-My30221	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	N21-My30221	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	N21-My30221	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	N21-My30221	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	N21-My30221	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	N21-My30221	СР	mg/kg	< 20	< 20	<1	30%	Pass	
				•					

-									
Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD		+	
Acenaphthene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	N21-My30221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -		ions	1	Result 1	Result 2	RPD			
TRH >C10-C16	N21-My30221	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	N21-My30221	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	N21-My30221	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1	1 1				
	-			Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-My38547	NCP	uS/cm	32	31	2.2	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	N21-My30222	СР	pH Units	5.9	6.0	<1	30%	Pass	
Duplicate				ı	, , , , , , , , , , , , , , , , , , ,				
Heavy Metals	-		1	Result 1	Result 2	RPD			
Arsenic	N21-My30230	CP	mg/kg	9.6	9.4	2.0	30%	Pass	
Cadmium	N21-My30230	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N21-My30230	CP	mg/kg	15	14	1.0	30%	Pass	
Copper	N21-My30230	CP	mg/kg	20	18	11	30%	Pass	
Lead	N21-My30230	CP	mg/kg	9.2	7.9	16	30%	Pass	
Mercury	N21-My30230	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N21-My30230	CP	mg/kg	16	16	1.0	30%	Pass	
Zinc	N21-My30230	CP	mg/kg	68	50	30	30%	Pass	
Duplicate				1					
	·	1	1	Result 1	Result 2	RPD			
% Moisture	N21-My30234	CP	%	14	16	14	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -			1	Result 1	Result 2	RPD		1	
TRH C6-C9	N21-My30237	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
втех	-	1	1	Result 1	Result 2	RPD		1	
Benzene	N21-My30237	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	N21-My30237	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	N21-My30237	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	N21-My30237	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	N21-My30237	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
- · · · · · · · · · · · · · · · · · · ·		1		1 00	< 0.3	<1	30%	Pass	
Xylenes - Total*	N21-My30237	CP	mg/kg	< 0.3	< 0.5		0070	1 . 0.00	
-	N21-My30237	CP	mg/kg	< 0.3	< 0.5		0070	1	
Xylenes - Total*			mg/kg	< 0.3	Result 2	RPD	3070	1 400	
Xylenes - Total* Duplicate			mg/kg				30%	Pass	

Duplicate										
Total Recoverable Hydroc	arbons - 1999 NEPM Fract		Result 1	Result 2	RPD					
TRH C6-C9	N21-My30239	N21-My30239 CP mg/kg				<1	30%	Pass		
TRH C6-C9 N21-My30239 CP mg/kg < 20 < 1 30% Pass Duplicate										
BTEX				Result 1	Result 2	RPD				
Benzene	N21-My30239	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Toluene	N21-My30239	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Ethylbenzene	N21-My30239	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
m&p-Xylenes	N21-My30239	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass		
o-Xylene	N21-My30239	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Xylenes - Total*	N21-My30239	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass		
Duplicate										
Total Recoverable Hydroc	arbons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD				
Naphthalene	N21-My30239	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
TRH C6-C10	N21-My30239	СР	mg/kg	< 20	< 20	<1	30%	Pass		

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted Yes

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Charl Du Preez Senior Analyst-Inorganic (NSW) Emily Rosenberg Senior Analyst-Metal (VIC) Senior Analyst-Metal (NSW) John Nauven Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order : ES2118733

QUALTEST LABORATORY(NSW) PTY LTD

Contact : EMMA COLEMAN

Address : 8 IRONBARK CLOSE WARABROOK

NEW SOUTH WALES 4053

Telephone : 02 4968 4468

Project : NEW20P-0194 Newcastle Jockey Club

Order number

Client

C-O-C number

Sampler · BILLY SNOW

Site

Quote number : EN/333

No. of samples received : 2 No. of samples analysed : 1 Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

: 277-289 Woodpark Road Smithfield NSW Australia 2164 Address

Telephone : +61-2-8784 8555

Date Samples Received : 19-May-2021 15:00

Date Analysis Commenced : 21-May-2021

: 26-May-2021 17:28 Issue Date

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Inorganics, Smithfield, NSW Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Senior Chemist Volatiles Sydney Organics, Smithfield, NSW Sanjeshni Jyoti

Page : 2 of 6 Work Order : ES2118733

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project NEW20P-0194 Newcastle Jockey Club

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

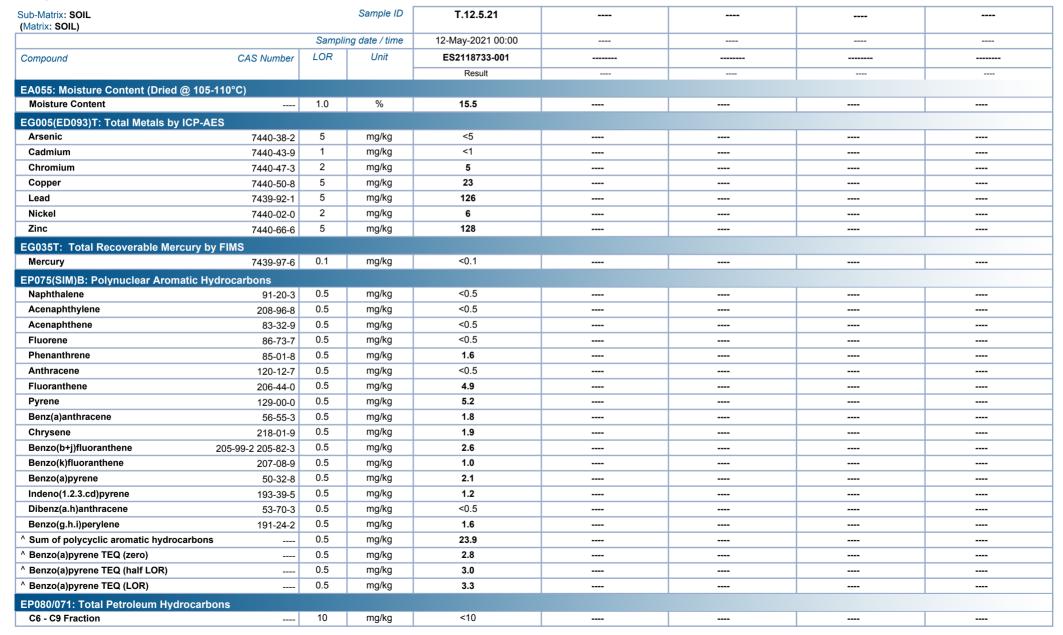
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

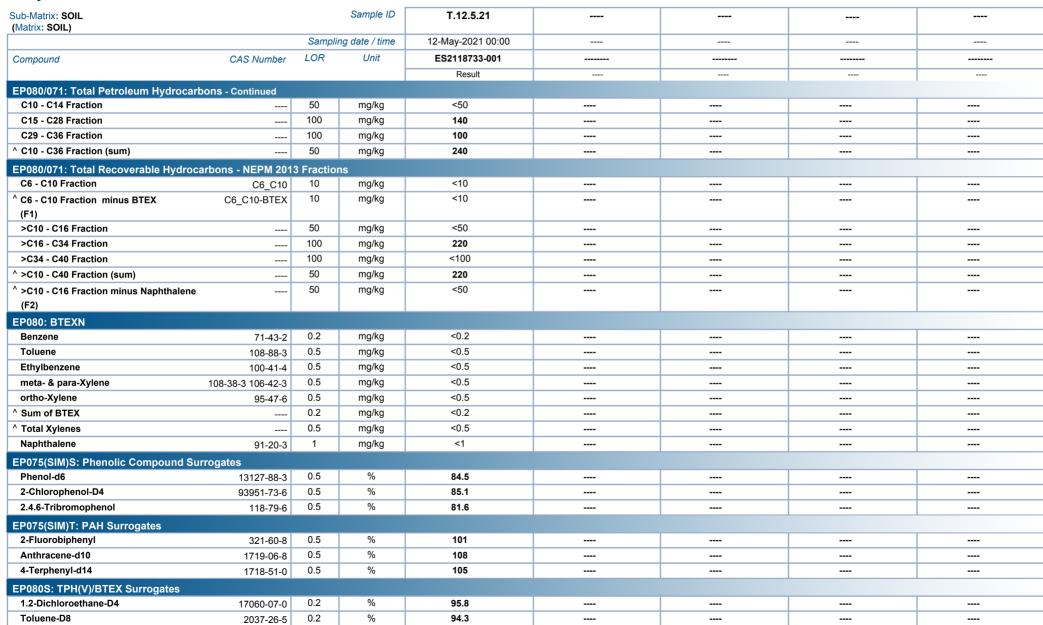

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 6 Work Order : ES2118733

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project NEW20P-0194 Newcastle Jockey Club

Analytical Results



Page : 4 of 6 Work Order : ES2118733

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project NEW20P-0194 Newcastle Jockey Club

Analytical Results

Page : 5 of 6 : ES2118733 Work Order

: QUALTEST LABORATORY(NSW) PTY LTD : NEW20P-0194 Newcastle Jockey Club Client

Project

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	T.12.5.21	 	
		Sampli	ng date / time	12-May-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2118733-001	 	
				Result	 	
EP080S: TPH(V)/BTEX Surrogates	s - Continued					
4-Bromofluorobenzene	460-00-4	0.2	%	99.1	 	

Page : 6 of 6 : ES2118733 Work Order

: QUALTEST LABORATORY(NSW) PTY LTD : NEW20P-0194 Newcastle Jockey Club Client

Project

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2118733** Page : 1 of 4

Client : QUALTEST LABORATORY(NSW) PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA COLEMAN Telephone : +61-2-8784 8555
Project : NEW20P-0194 Newcastle Jockey Club Date Samples Received : 19-May-2021

Site : --- Issue Date : 26-May-2021

Sampler : BILLY SNOW No. of samples received : 2
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES2118733

Client : QUALTEST LABORATORY(NSW) PTY LTD
Project : NEW20P-0194 Newcastle Jockey Club

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrix: SOIL				Evaluation	i: 🗴 = Holding time	breach; ✓ = With	in holding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) T.12.5.21	12-May-2021				25-May-2021	26-May-2021	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) T.12.5.21	12-May-2021	25-May-2021	08-Nov-2021	✓	25-May-2021	08-Nov-2021	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) T.12.5.21	12-May-2021	25-May-2021	09-Jun-2021	1	26-May-2021	09-Jun-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) T.12.5.21	12-May-2021	21-May-2021	26-May-2021	✓	24-May-2021	30-Jun-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) T.12.5.21	12-May-2021	21-May-2021	26-May-2021	✓	24-May-2021	26-May-2021	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) T.12.5.21	12-May-2021	21-May-2021	26-May-2021	1	24-May-2021	26-May-2021	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) T.12.5.21	12-May-2021	21-May-2021	26-May-2021	1	24-May-2021	26-May-2021	✓

Page : 3 of 4
Work Order : ES2118733

Client : QUALTEST LABORATORY(NSW) PTY LTD
Project : NEW20P-0194 Newcastle Jockey Club

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SQI**L. Evaluation: **x** = Quality Control frequency not within specification: ✓ = Quality Control frequency within specification.

Matrix: SOIL				Evaluatio	n: × = Quality Co	not within specification ; ✓ = Quality Control frequency within specification	
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : ES2118733

Client : QUALTEST LABORATORY(NSW) PTY LTD
Project : NEW20P-0194 Newcastle Jockey Club

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Fumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.