


engineers | scientists | innovators



7-9 Burroway Road, Wentworth Point, NSW 2127

RobertsCo 1 March 2022 21067 RAP Addendum



# **Quality Management**

## **Document Distribution**

| Issue/Revision | Issue 1                                                           | Revision 1                                                        | Revision 2                                                          |
|----------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|
| Remarks        | DRAFT                                                             | DRAFT                                                             | FINAL                                                               |
| Date           | 13 January 2022                                                   | 18 February 2022                                                  | 1 March 2022                                                        |
| Prepared by    | Edward Munnings                                                   | Edward Munnings                                                   | Edward Munnings                                                     |
| Signature      | DRAFT                                                             | DRAFT                                                             | E.M.                                                                |
| Reviewed by    | Peter Moore                                                       | Peter Moore                                                       | Peter Moore                                                         |
| Signature      | DRAFT                                                             | DRAFT                                                             | A                                                                   |
| File reference | AU121067 Draft RAP<br>Addendum 13Jan21                            | 21067 Draft RAP Addendum<br>18Feb22                               | 21067 Final RAP Addendum<br>1Mar22                                  |
| Distribution   | <ul><li>RobertsCo</li><li>Geosyntec Electronic<br/>File</li></ul> | <ul><li>RobertsCo</li><li>Geosyntec Electronic<br/>File</li></ul> | <ul><li> RobertsCo</li><li> Geosyntec Electronic<br/>File</li></ul> |

This report was prepared in accordance with the scope of services set out in the contract between Geosyntec Consultants Pty Ltd (ABN 23 154 745 525) and the client.

#### Geosyntec Consultants Pty Ltd ABN 23 154 745 525 www.geosyntec.com.au

## **Executive Summary**

Geosyntec Consultants Pty Ltd (Geosyntec) was engaged by RobertsCo Pty Ltd (the Client), as the Environmental Consultant for the Sydney Olympic Park High School (SOPHS) redevelopment project, located on 7-9 Burroway Road, Wentworth Point, NSW (the project site). The main role of the Environmental Consultant is to facilitate the delivery of investigation, remediation and validation activities to render the site suitable for the proposed end use. A Remediation Action Plan (RAP) Addendum is required to document recent Data Gap Investigation (DGI) works and present any required amendments to the existing Parsons Brinckerhoff (PB) 2015 RAP based on the findings of the DGI, prior to commencement of the main remediation and development works. The site location is presented in Figure 1 and the site layout is presented in Figure 2, Appendix A.

The site is legally identified as part of Lots 202, 203 and 204, DP 1216628, and occupies an area of approximately 0.95 ha. The proposed redevelopment is understood to include school buildings and open space areas within the development footprint, and is consistent with the definition of 'HIL C' as presented in Schedule B1 of National Environment Protection (Assessment of Site Contamination) Measure (1999) as amended in 2013 (NEPM 2013), which includes public open space land use and secondary schools.

Mr Andrew Lau from JBS&G, an NSW EPA accredited Contaminated Land Auditor (the Auditor), has been appointed by Schools Infrastructure NSW to conduct an audit of the proposed school development with respect to land contamination. This is to ensure that the investigations and any remedial works are undertaken in accordance with the requirements of the NSW Contaminated Land Management Act (1997) so that the land is fit for purpose.

The site is impacted with contaminants associated with previous light industrial land use, filling, hazardous building materials, and suspected petroleum storage and infrastructure.

A Remediation Action Plan (RAP) was prepared by Parsons Brinckerhoff (PB) in 2015 for a portion of land identified as Area 1 (part of a wider area known as Stage 1), which included the site:

 Parsons Brinckerhoff (January 2015) Detailed Remediation Action Plan – Infrastructure Delivery Wentworth Point Development (Ref: 2207004B-RES-REP-001 RevC), referred to herein as the PB (2015) RAP.

The PB (2015) RAP specifically related to infrastructure delivery, including the construction of Ridge Road, which is located in the western portion of the site. The Auditor previously endorsed the PB (2015) RAP, with the endorsement relating to the intent of the RAP at that time i.e., Infrastructure Delivery, as the high school land use had not been determined at that time.

In 2019, Stage 1 remediation works were undertaken on the wider peninsula site which involved the placement of a cap on part of the area occupied by the proposed school site. The capping works were undertaken by Landcom with Zoic Environmental being the environmental consultant and Mr Andrew Lau appointed as the NSW EPA accredited Site Auditor for these works. Details of the capping works were presented in the following document:

• Zoic Environmental (March 2020) Interim Validation Report Early Works Package Headland Park Wentworth Point Development, 7, 9 and 11 Burroway Road, Wentworth Point, NSW 2127 (Ref: 18170 EW VAL).

The report confirms the placement of capping material in the same configuration that is presently located in this area with the completed works being endorsed by the Site Auditor pertaining to infrastructure delivery (Ridge Road), in accordance with the PB (2015) RAP. These works are referred to as the 'Zoic 2019-2020' remediation works'.

When the high school development was confirmed for the site, Geosyntec recommended that the PB (2015) RAP be used as the basis for any remediation works that are proposed to be undertaken



on the site in the future, given that the risk overall profile for the area had not changed and that under NEPM 2013 the site still falls into same land use category (HIL C as presented in Schedule B1). It is understood that rather than preparing an entirely new RAP for remediation of the site, it was requested that a RAP Addendum be prepared to document the site-specific remediation and validation requirements to be followed in conjunction with the PB (2015) RAP capping strategy during the main remediation works, to make the site suitable for the proposed High School use. It is understood that this approach has been endorsed by the Auditor.

Prior to the commencement of the early works, Geosyntec prepared a Sampling Analysis and Quality Plan (SAQP) (Geosyntec (19 November 2021) Sampling Analysis and Quality Plan – Sydney Olympic Park High School). The SAQP details the DGI works and validation works required to be undertaken in accordance with the Auditor endorsed RAP to ensure that the site is suitable to the proposed land use. The Geosyntec (2021) SAQP was endorsed by the Auditor.

This RAP Addendum Report documents the DGI works completed alongside the early works component of the proposed development, in accordance with the Auditor endorsed Geosyntec (2021) SAQP, and presents required amendments / additions to the PB (2015) RAP based on the DGI findings. The DGI included the following scope of work:

- Excavation of test pits in locations of former underground storage tanks (USTs) and other infrastructure, including two UST locations, former Mechanics Pit which was uncovered during excavation works and a former Wash Bay.
- Confirmation of groundwater conditions with sampling from existing wells at the site.
- Confirmation of landfill gas conditions with monitoring from existing wells at the site.
- Assessment of tidal influences on ground gas at the site through collection of continuous water level and ground gas data.

Key findings of the DGI are presented below:

- UST Location 1, UST Location 2 and the Former Mechanic Pit Location have been identified as areas requiring remediation due to the presence of remnant infrastructure, observations of hydrocarbon odour and sheen during test pitting, and several exceedances of adopted site suitability criteria for total recoverable hydrocarbons. Remediation requirements are outlined in Section 11.
- The Former Wash Bay Location was not identified as an area requiring remediation, with no
  observations of contamination made during investigation activities, and no exceedances of
  adopted HSL C criteria for secondary school grounds.
- Groundwater at the site does not require remediation, with chemical results considered to be representative of regional conditions given that much of the wider peninsula comprises former landfilled areas.
- The gas screening value (GSV) using data from the DGI was calculated to be 1.34 L/hr (Max. Methane (15.1%v/v) x Max. BH Flow (8.9 L/hr), which gives a characteristic situation (CS) of CS3 (moderate risk). This is within the historical range for the site (CS2 to CS4) and therefore the current design assumptions for the gas mitigation system detailed in the Draft Design and Verification Plan (DVP) for CS4 can be retained.
- Ground gas concentrations appeared to be primarily affected by diurnal effects, with no clear correlation between tidal cycles and standing water level or landfill gas. It is therefore concluded that tidal activity does not affect ground gas behaviour at the site.

#### Amendments / Additions to the PB (2015) RAP

Based on the findings of the DGI and the layout of the proposed development, Geosyntec presented RAP Amendments in Section 11 of this report, including the following:



- Validation Criteria Updates;
- Remediation Requirements of USTs and Other Infrastructure;
- A Validation Works Sampling and Analysis Plan;
- Requirements for the Reinstatement of Marker and Capping Layer Following Excavations;
- Management Measures for the Previously Placed Cap in the Western Portion of the Site; and
- Discussion of Ground Gas Protection System (GGPS)

Following remediation and validation activities, a long term environmental management plan (EMP) will be prepared for the site which will document ongoing management requirements for the entire site including the GGPS.

On the basis of the DGI results, the site can be made suitable for the proposed high school development, providing that the requirements of the 2015 PB (2015) RAP and this RAP Addendum are implemented.



## **Table of Contents**

| 1  | Introduction                              | 1  |
|----|-------------------------------------------|----|
| 2  | Site Identification and Conditions        | 4  |
| 3  | Environmental Setting of the Site         | 5  |
| 4  | Data Quality Objectives                   | 7  |
| 5  | Sampling and Analysis Plan                | 17 |
| 6  | Evaluation of QA/QC                       | 20 |
| 7  | Site Assessment Criteria                  | 22 |
| 8  | Field Observations and Laboratory Results | 27 |
| 9  | Conceptual Site Model                     | 33 |
| 10 | Discussion                                | 36 |
| 11 | RAP Amendments                            | 37 |
| 12 | References                                | 41 |
| 13 | Limitations                               | 42 |
|    |                                           |    |

## Appendices

| Appendix A | Figures                          |
|------------|----------------------------------|
| Appendix B | Result Summary Tables and Charts |
| Appendix C | Laboratory Certificates          |
| Appendix D | Calibration Certificates         |
| Appendix E | BOM Barometric Pressure Data     |
| Appendix F | RPD Tables                       |
| Appendix G | QA/QC Assessment                 |
| Appendix H | Test Pit Logs                    |
| Appendix I | GME Field Logs                   |
| Appendix J | Photographic Log                 |
|            |                                  |

## **1** Introduction

Geosyntec Consultants Pty Ltd (Geosyntec) was engaged by RobertsCo Pty Ltd (the Client), as the Environmental Consultant for the Sydney Olympic Park High School (SOPHS) redevelopment project, located on 7-9 Burroway Road, Wentworth Point, NSW (the project site). The main role of the Environmental Consultant is to facilitate the delivery of investigation, remediation and validation activities to render the site suitable for the proposed end use. A Remediation Action Plan (RAP) Addendum is required to document recent Data Gap Investigation (DGI) works and present any required amendments to the existing Parsons Brinckerhoff (PB) 2015 RAP based on the findings of the DGI, prior to commencement of the main remediation and development works. The site location is presented in Figure 1 and the site layout is presented in Figure 2, Appendix A.

The site is legally identified as part of Lots 202, 203 and 204, DP 1216628, and occupies an area of approximately 0.95 ha. The proposed redevelopment is understood to include school buildings and open space areas within the development footprint, and is consistent with the definition of 'HIL C' as presented in Schedule B1 of National Environment Protection (Assessment of Site Contamination) Measure (1999) as amended in 2013 (NEPM 2013), which includes public open space land use and secondary schools.

Mr Andrew Lau from JBS&G, an NSW EPA accredited Contaminated Land Auditor (the Auditor), has been appointed by Schools Infrastructure NSW to conduct an audit of the proposed school development with respect to land contamination. This is to ensure that the investigations and any remedial works are undertaken in accordance with the requirements of the NSW Contaminated Land Management Act (1997) so that the land is fit for purpose.

## 1.1 Background

The site is impacted with contaminants associated with previous light industrial land use, filling, hazardous building materials, and petroleum storage and infrastructure.

A Remediation Action Plan (RAP) was prepared by Parsons Brinckerhoff (PB) in 2015 for a portion of land identified as Area 1 (part of a wider area known as Stage 1), which included the site:

 Parsons Brinckerhoff (January 2015) Detailed Remediation Action Plan – Infrastructure Delivery Wentworth Point Development (Ref: 2207004B-RES-REP-001 RevC), referred to herein as the PB (2015) RAP.

The PB (2015) RAP specifically related to infrastructure delivery, including the construction of Ridge Road, which is located in the western portion of the site. The Auditor previously endorsed the PB (2015) RAP, with the endorsement relating to the intent of the RAP at that time i.e., Infrastructure Delivery, as the high school land use had not been determined at that time.

In 2019, Stage 1 remediation works were undertaken on the wider peninsula site which involved the placement of a cap on part of the area occupied by the proposed school site. The capping works were undertaken by Landcom with Zoic Environmental being the environmental consultant and Mr Andrew Lau appointed as the NSW EPA accredited Site Auditor for these works. Details of the capping works were presented in the following document:

 Zoic Environmental (March 2020) Interim Validation Report Early Works Package Headland Park Wentworth Point Development, 7, 9 and 11 Burroway Road, Wentworth Point, NSW 2127 (Ref: 18170 EW VAL).

The report confirms the placement of capping material in the same configuration that is presently located in this area with the completed works being endorsed by the Site Auditor pertaining to

infrastructure delivery (Ridge Road), in accordance with the PB (2015) RAP. These works are referred to as the 'Zoic 2019-2020' remediation works'.

When the high school development was confirmed for the site, Geosyntec recommended that the PB (2015) RAP be used as the basis for any remediation works that are proposed to be undertaken on the site in the future, given that the risk overall profile for the area had not changed and that under NEPM 2013 the site still falls into same land use category (HIL C as presented in Schedule B1). It is understood that rather than preparing an entirely new RAP for remediation of the site, it was requested that a RAP Addendum be prepared to document the site-specific remediation and validation requirements to be followed in conjunction with the PB (2015) RAP capping strategy during the main remediation works, to make the site suitable for the proposed High School use. It is understood that this approach has been endorsed by the Auditor.

Prior to the commencement of the early works, Geosyntec prepared a Sampling Analysis and Quality Plan (SAQP) (Geosyntec (19 November 2021) Sampling Analysis and Quality Plan – Sydney Olympic Park High School). The SAQP details the DGI works and validation works required to be undertaken in accordance with the Auditor endorsed RAP to ensure that the site is suitable to the proposed land use. The Geosyntec (2021) SAQP was endorsed by the Auditor.

This RAP Addendum Report documents the DGI works completed alongside the early works component of the proposed development, in accordance with the Auditor endorsed Geosyntec (2021) SAQP, and presents required amendments / additions to the PB (2015) RAP based on the DGI findings.

### 1.2 Proposed Development

The proposed redevelopment is understood to include school buildings and open space areas within the development footprint. The proposed building layout is presented in Figure 3, Appendix A.

The early works component of the proposed development, completed during November and December 2021, involved removal of the previous concrete slab to facilitate the DGI works and undertaking the investigative works, followed by placement of a high visibility marker layer and capping layer consisting of material previously placed on the west of the site (known as Ridge Road) as part of the Zoic 2019-2020 remediation works.

### 1.3 Objective

The objective of the DGI works were to close out previously identified data gaps relating to the contamination status of the site and inform any amendments to the PB (2015) RAP, to allow the site to be remediated and made suitable for the proposed intended use as a high school.

### 1.4 Scope of Work

To achieve the objective, the following has been completed in accordance with the (2021) SAQP:

- Excavation of test pits in locations of former underground storage tanks (USTs) and other infrastructure, including two UST locations and former Wash Bay. During these excavations, an unidentified Mechanics Pit was uncovered which was then also included in the DGI.
- An assessment of the presence of Asbestos Containing Material across the project site.
- Confirmation of groundwater conditions with sampling from existing wells at the site.
- Confirmation of landfill gas conditions with monitoring from existing wells at the site.



• Assessment of tidal influences on ground gas at the site through collection of continuous water level and ground gas data.

## **1.5 Regulatory Framework**

Field activities and reporting were carried out in general accordance with the following guidelines and regulations:

- NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure, Schedule A and Schedules B(1)-B(9). National Environment Protection Council, Adelaide, as amended in April 2013 [referred to herein as NEPM (2013)].
- NSW Department of Urban Affairs and Planning (1998) Managing Land Contamination: Planning Guidelines: SEPP 55 Remediation of Land, August 1998.
- NSW EPA (2020) Consultants Reporting on Contaminated Land Contaminated Land Guidelines.
- Contaminated Land Management Act 1997.
- Environmental Planning and Assessment Act (EPA Act) 1979 / State Environmental Planning Policy No. 55 (2020): Remediation of Land (SEPP 55).
- NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. NSW EPA, Sydney.
- NSW EPA (2014) Waste Classification Guidelines: Part A Classifying Waste.
- Safe Work Australia (2019a) How to Manage and Control Asbestos in the Workplace.
- Safe Work Australia (2019b) How to Safely Remove Asbestos Code of Practice.
- WA DoH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.
- Work Health and Safety Act (2011) and Regulations (2017).



## 2 Site Identification and Conditions

## 2.1 Site Identification

The site location is shown in Figure 1, with the site layout plan in Figure 2, Appendix A. Information in the following section was sourced from the Zoic Environmental Pty Ltd (Zoic) (2019) SAQP – Headland Park (File reference: 18170 SAQP Peninsula Park Landcom 19Feb19 Final) for 7, 9 and 11 Burroway Road, Wentworth Point, NSW 2127, which encompassed the site. The site identification and land use details include:

| Title                     | Details                                                                                                                                                                               |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Street Address:           | Part of 7-9 Burroway Road, Wentworth Point, NSW 2127                                                                                                                                  |
| Property Description:     | Part of Lots 202, 203 and 204, DP 1216628                                                                                                                                             |
| Current Site Ownership:   | NSW Department of Education                                                                                                                                                           |
| Geographical Coordinates: | Lat: -33.823734°<br>Long: 151.080786°                                                                                                                                                 |
| Property Size:            | Approximately 0.95 hectares                                                                                                                                                           |
| Local Government Area:    | City of Parramatta Council (formerly Auburn City Council)                                                                                                                             |
| Zoning – Existing:        | B1 Neighbourhood Centre, R4 High Density Residential and RE1 Public Recreation<br>(Auburn Local Environmental Plan (ALEP) 2010 and Draft Parramatta Local Environmental<br>Plan 2020) |

#### Table 2.1: Site Identification

## 2.2 Surrounding Land Use

Land uses immediately adjoining the Site are described as follows:

#### Table 2.3: Immediate Site Surrounds

| Title  | Details                                                                                                                     |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------|--|
| North: | Vacant land comprising part of the proposed Wentworth Point Peninsula Park redevelopment area followed by Parramatta River. |  |
| East:  | Vacant land comprising part of the Wentworth Point Marina and Rowing Club redevelopment area followed by Homebush Bay.      |  |
| South: | Burroway Road followed by a construction site.                                                                              |  |
| West:  | Wentworth Point Public School followed by Marina Square Shopping Mall.                                                      |  |

In addition to the above, it is noted that several former landfill areas are located around the Wentworth Point area in which the site is located. These were generally active between the 1950s and 1980s



# 3 Environmental Setting of the Site

## 3.1 Site Condition

The site condition is based on published information and a review of past reports and is presented in Table 3.1.

#### **Table 3.1: General Site Conditions**

| Title                                                                   | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Topography and<br>Drainage:                                             | The site is less than 10m Australian Height Datum (AHD). In general, the site is relatively level and has been subjected to historical filling associated with land reclamation which has altered topography. Surface water is expected to infiltrate into unsealed areas or consist of overland flow and ultimately drain to the Parramatta River or Homebush Bay which are located to the north and east of the site respectively.                                                                                                                                                                                                                                                                                                  |  |
| Site Surface &<br>Vegetation:                                           | The site surface consists of concrete slabs in the centre and eastern portions, and previously placed VENM material in the western portion.<br>Vegetation at the site comprises some trees and shrubs growing between the concrete slabs and some grasses growing on the VENM material.                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Condition of<br>Buildings &<br>Roads:                                   | There are currently no buildings or roads onsite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Relevant Local<br>Sensitive<br>Environments:                            | Local sensitive receiving environments include Parramatta River and Homebush Bay, located away from the northern and eastern boundaries respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Condition of the<br>site since issue of<br>2020 Interim Audit<br>Advice | By the completion of the Zoic 2019-2020 Remediation and Validation works, the western portion of the site has been capped with a minimum thickness of 500mm VENM in accordance with the PB (2015) RAP. No changes occurred at the site, including the validated western portion and existing hardstand in the remainder of the site, between the completion of the Zoic 2019-2020 works and the commencement of early works in October 2021, other than the placement and removal of some construction offices on existing hardstand areas and the appearance of some weeds across the site surface (See Figure 6, Appendix A). The composition of the capping material imported as VENM has not changed since its placement in 2019. |  |

## 3.2 Geology, Hydrogeology and Hydrology

The geology, hydrogeology and hydrology is summarised in Table 3.2. This information has been extracted from PB (2015) RAP.

| Title                   | Details                                                                                                                                                                                                                                                                                                                               |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geology Map Conditions: | Section 2.4.2 in the PB (2015) RAP states that the Sydney 1:100,000 scale Geological Series Sheet 9130 indicates that the site is underlain by fluvial soils of the Birrong Soil Landscape Group.                                                                                                                                     |
| Soil Map Conditions:    | Table 2.2 in the PB (2015) RAP provides a summary of the ground conditions at the site:                                                                                                                                                                                                                                               |
|                         | • The site is underlain by a layer of fill at depths ranging between 0-2.4m below ground level (bgl). The composition of the fill is variable across the site comprising clay, gravelly sand, sand, clayey sand, sandy clay, gravels, and anthropogenic materials including crushed sandstone, shale, brick, concrete and terracotta. |

| Title                                                      | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | Varying amounts of slag, seashells, charcoal, and blue metal gravels were also observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                            | • Beneath the fill layer lies a layer of natural soils comprising grey, dark grey, and black clays, sand and sandy clay. The natural materials were reported as soft and wet and were representative of either dredged materials from adjacent Parramatta River, salt march or mangrove bed materials. The depths of this layer range between 1-4.8m deep.                                                                                                                                                                                        |
|                                                            | • The natural soils are underlain by a highly weathered, grey sandstone, which was encountered at 4.4-4.8mbgl.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Acid Sulfate Soils:                                        | Section 2.4.2 in the PB (2015) RAP states that the Prospect/Parramatta River 1:25,000<br>Acid Sulfate Soils Risk Map indicates that the site is classified as 'Disturbed Terrain'<br>that includes filled areas that occur during the reclamation of low lying swamps for<br>urban development. Other activities that result in the classification of a disturbed terrain<br>include dredging, heavy ground disturbance through urban development and/or<br>construction of dams or levees.                                                       |
| Depth to Groundwater:                                      | Standing water levels at the site as informed by the PB (2015) RAP which indicates groundwater is encountered between 0.6-3.7m bgl with an average of 1.7m bgl.                                                                                                                                                                                                                                                                                                                                                                                   |
| Direction and Rate of<br>Groundwater Flow:                 | Table 2.4 in the PB (2015) RAP states that the direction of groundwater flow onsite was inferred to the northwest and northeast towards Parramatta River and Homebush Bay, respectively.                                                                                                                                                                                                                                                                                                                                                          |
| Summary of Monitoring Wells &<br>Use of Water Abstraction: | Section 2.4.2.1 in the PB (2015) RAP provides a summary of the registered bore search results completed by GHD in 2009. The search of NSW Department of Primary Industries Office of Water All Groundwater Map identified six (6) licenced bores within 1km of the site boundaries.                                                                                                                                                                                                                                                               |
|                                                            | Four of the bores are located to the north of Parramatta River and are therefore not<br>considered relevant to the site. Two wells were south of Parramatta River and are<br>detailed below:                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | <ul> <li>Registered bore GW067978 – located east of Homebush Bay and registered for<br/>irrigation purposes. The bore was installed in 1992, to a total depth of 180 m.<br/>Groundwater was encountered in the sandstone bedrock aquifer in multiple water<br/>bearing zones including: 65-65.1m (indicative of freshwater conditions); 71.4-<br/>71.5m (indicative of saline conditions); 78.4-83m in the sandstone bedrock<br/>(indicative of highly saline conditions); and 91.2-102m (indicative of highly saline<br/>conditions).</li> </ul> |
|                                                            | <ul> <li>Registered bore GW107955 – located at 1 Bennelong Road and registered for<br/>monitoring purposes. The bore was installed to a total depth of 5m. No further<br/>details regarding the depth to groundwater or the geology encountered was<br/>available for this bore.</li> </ul>                                                                                                                                                                                                                                                       |
| Nearest Water Body:                                        | The closest receiving water body from the site is the adjoining Parramatta River and Homebush Bay to the north and east of the site, respectively.                                                                                                                                                                                                                                                                                                                                                                                                |

## 4 Data Quality Objectives

The data quality objective (DQO) process is a systematic planning tool based on the scientific method for establishing criteria for data quality and for developing data collection designs. The DQO defines the experimental process required to test a hypothesis.

The DQO process has been developed to ensure that efforts relating to data collection are cost effective, by eliminating unnecessary, duplicative or overly precise data whilst at the same time, ensuring the data collected is of sufficient quality and quantity to support defensible decision making.

It is recognised that the most efficient way to accomplish these goals is to establish criteria for defensible decision making before data collection begins and develop a data collection design based on these criteria. By using the DQO process to plan the investigation effort, the relevant parties can improve the effectiveness, efficiency and defensibility of a decision in a resource and cost effective manner.

## 4.1 Guidance Documents

DQOs have been developed to detail the type of data that is needed to meet the overall objectives of this project (refer to Section 1.2), including the Data Gap Investigation and Validation Strategy. The DQOs have been developed in general accordance with guidelines made or approved by NSW EPA.

## 4.2 Process for DQO Development

The DQO process consists of seven steps, which are designed to clarify the study objectives, define the appropriate type of data and specify tolerable levels of potential decision errors. The seven-step DQO process adopted for the works is as follows:

- Step 1 Defining the Problem. The first step in the DQO process is to 'define the problem' that has initiated the investigation;
- Step 2 Identify the Decision. The second step in the process is to define the decision statement that the study will attempt to resolve;
- Step 3 Identify Inputs to the Decision. In this step, the different types of information needed to resolve the decision statement are identified;
- Step 4 Define the Study Boundaries;
- Step 5 Develop a Decision Rule;
- Step 6 Specify Limits on Decision Errors; and
- Step 7 Optimise the Design for obtaining the Data.

## 4.3 Step 1 – Defining the Problem

### 4.3.1 Concise Description of the Problem

The site has been planned to be redeveloped into Sydney Olympic Park High School, including school buildings and a play area. Previous investigations have identified contaminated soil, potential petroleum (diesel) storage infrastructure and a wash down area, asbestos, and potential acid sulfate soils that require management.



#### **Data Gap Investigation**

The problem is previously identified data gaps require additional investigation in order to:

- Confirm hazardous ground gas ratings to inform the design of the gas mitigation system.
- Assess potential for tidal influences on ground gas at the site.
- Locate suspected underground storage tanks (USTs) and identify any associated contamination and whether any remedial works are required.
- Confirm groundwater conditions at the site and assess risk towards Parramatta River and Homebush Bay.

#### Validation Strategy

The problem is how the site will be remediated to address the identified potential health and environmental risks in relation to the identified contamination and if the remediation can be integrated into the proposed redevelopment works and construction methodologies to avoid large scale disturbance or generation of significant quantities of waste requiring offsite disposal.

The matters considered within the validation strategy are:

- What work is required (i.e., survey data) to validate the remediation strategy?
- How many soil samples should be collected to suitably validate any reuse of the cut-to-fill materials onsite?
- What sampling design (i.e. locations, layout, frequency) should be used to achieve the DQOs?

It is noted that Section 7.5.3 in the PB (2015) RAP states that 'cut-to-fill material' and/or spoil material for reuse (below the cap) will require to be validated in order to evaluate its suitability for reuse onsite. Section 6.4.7 in the PB (2015) RAP states that any fill material generated during piling works for the construction of retaining walls, service excavation or stormwater drains should be validated for reuse onsite, and if suitable, reused beneath the capping layer.

However, Section 4.1 in the PB (2015) RAP states that, 'based on the proposed remediation strategy that will provide a cap over the identified contaminated fill, exposure to the identified COPCs in the material below the cap is considered to be mitigated by the presence of the cap. Hence, separate remediation criteria for material below the cap was not presented'.

On this basis, any cut-to-fill material to be placed under the cap is not proposed to be validated as part of the validation works, with the exception of the following (if required as part of the development):

- Construction of earth retaining walls associated with the proposed new roads and pavements where the walls can be constructed using 'a profile of validated, clean onsite cut-to-fill material (compacted in controlled layers), and imported material to provide stability'. Any cut-to-fill materials to be used for the construction of earth retaining walls will be validated as per the requirements outlined in the PB (2015) RAP.
- Any other situations where reuse of cut-to-fill materials or spoil above the cap is proposed.

The above deviation from the PB (2015) RAP has been approved by the Site Auditor (email dated 29 October 2018) as part of the previous remediation works across the wider Stage 1 Area.

Section 6.6.2 in the PB (2015) RAP states that field pH measurements of excavated material will need to be undertaken to determine whether treatment / neutralisation is required prior to reuse or disposal. This will be conducted by the appointed Principal Contractor.



## 4.4 Step 2 – Identify the Decision

Based on the decision-making process for assessing urban redevelopment sites detailed in Appendix A of NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd edition) and modified to relate to the specific redevelopment requirements for the proposed Data Gap Investigation, remediation and validation works, the following decisions are required to be made:

#### **Data Gap Investigation**

- Are hazardous ground gas ratings within the historical range between CS2 and CS4? Do landfill gas concentrations pose a risk to human health?
- Does tidal activity influence ground gas behaviour at the site?
- Are USTs or other infrastructure present? Do chemical concentrations in soil adjacent to these pose a risk to future site users/environment?
- Do chemical concentrations in site groundwater pose a risk to environmental receptors?

#### **Validation Strategy**

- Will chemical concentrations in excavated spoil and/or site soils intended to be reused as fill
  onsite pose a risk to future site users/environment following removal of infrastructure and
  impacted soils in the UST, wash bay and mechanical pit areas?
- Is the spoil/soil material (including material from removal of the USTs, Mechanics Pit and Wash bay) to be disposed offsite classified in accordance with waste classification guidelines?
- Does the imported material used for the capping layer comply with VENM/ENM criteria?
- Has the site been adequately capped?

## 4.5 Step 3 – Identification of Inputs into the Decision

#### 4.5.1 List of Informational Inputs Needed to Resolve the Decision Statement

The information inputs required include:

#### **Data Gap Investigation**

- Relevant historical data from previous reports
- Conceptual site model presented in Section 4
- Observations made during the proposed field works
- Results from manual and continuous ground gas monitoring of existing wells at the site.
- Results from a level logger deployed at the site.
- The locations of USTs and the former infrastructure (i.e. the former wash bay) were
  determined by correlating known locations from a previous GHD investigation with historical
  aerial photographs which will be investigated using test pits / trenching. Visual inspection of
  trenching excavations in potential UST and wash bay locations, and results from soils collected
  from trenches if USTs are identified. Note that USTs are not permitted to be removed as part of
  the approved early works.
- Adopted site criteria being NEPM 2013 Health Investigation/Screening Levels for Secondary Schools Land Use (HIL/HSL-C (outdoor areas)/HSL-A/B (building footprints) for soils, Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) (2018) Default Guideline Values for Marine Waters with 95% protection level and PFAS National



Environmental Management Plan (2020) (NEMP 2020) Human Health (non-potable and recreational uses) and Ecological (slightly to moderately disturbed ecosystem) criteria.

#### **Validation Strategy**

- Results from the validation and waste classification works, including chemical results from samples collected from the UST, Mechanics Pit and Wash bay areas.
- Visual inspection of site areas, soils and ground works during remediation on a regular basis (including photographic records) (including the UST, Mechanics Pit and Wash bay areas).
- Adopted site criteria being NEPM 2013 Health Investigation/Screening Levels for Secondary Schools Land Use (HIL/HSL-C).
- Information obtained from VENM / ENM source sites (e.g., VENM certificates, ENM classification documentation), and results from the VENM / ENM sampling works.
- Pre-and post-survey data to confirm capping thickness.

#### 4.5.2 List of Environmental Variables or Characteristics that will be Measured

#### **Data Gap Investigation**

The Data Gap Investigation will require the following parameters to be measured:

- Landfill gas concentrations (i.e. methane, carbon dioxide, oxygen, carbon monoxide and hydrogen sulfide) will be determined using an appropriately calibrated landfill gas analyser, and Biosystems Gas Flux (or similar) for one location, to be selected based on initial hand-held landfill gas monitoring results. Atmospheric pressure, flow rate and pressure differential will also be recorded.
- Groundwater level will be recorded continuously for a set period of time covering several tidal cycles using a level logger for in well location, to be selected based on initial results, representativeness of ground gas conditions at the site and proximity to Parramatta River.
- Soil samples from trenching excavations near any identified USTs or other infrastructure will be analysed for total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX) and polycyclic aromatic hydrocarbons (PAH). Selected soil samples may be analysed for PFAS as a screening measure.
- Groundwater samples from selected existing wells will be analysed for 8 heavy metals, ammonia, phenols and per-and-poly fluoroalkyl substances (PFAS).

#### Validation Strategy

The PB (2015) RAP has presented the following characteristics, which will be measured:

- Cut-to-fill material and other excavated materials generated from the site for onsite reuse: Representative soil samples will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, iron, lead, nickel, zinc), total recoverable hydrocarbons (TRHs), benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAHs) and asbestos (ACM and 500ml). ASLP will be conducted for metals and PAHs where necessary. We note that the PB (2015) RAP has proposed the SPOCAS test for ASS analysis, however, Geosyntec considers the chromium reducible sulfur suite (CRS) test is a more reliable indicator for ASS presence.
- Material requiring offsite disposal: Representative soil samples will be analysed for: heavy metals, total petroleum hydrocarbons (TPHs), BTEX, PAHs, CRS test and asbestos (presence



/ absence only). The specific contaminant concentrations (SCCs) and toxicity characteristics leaching procedure (TCLP) data will determine waste classification.

- **Capping material**: The following information will be reviewed prior to material importation as we understand that there is a net deficit of soil available on the site to complete capping:
  - Relevant VENM certificate or ENM assessment provided by the source site/s
  - Published site history information such as historical aerial photography and NSW EPA records
  - Visual inspection at the source site/s to confirm the material meets the definition of VENM or ENM
  - Regular visual inspection of the material at arrival
  - Representative soil samples will be collected and confirmed as VENM/ENM by testing for: heavy metals, TPH, BTEX, PAHs, electrical conductivity (EC) and pH, in accordance with the requirements under the Excavated Natural Material Resource Recovery Order 2014.
  - The above findings will be presented to the Site Auditor. Material will not be imported onsite for use without prior approval by the Site Auditor.
- **Survey data** will be collected prior to, and post installation of the capping layer to confirm capping layer thickness.
- Regular site inspections during remediation works. **Photographic records** (e.g., during installation of marker layer) will be collected and included in the Validation Report.

### 4.5.3 Identification of Site Criteria for Each Medium of Concern

#### **Data Gap Investigation**

The criteria that will be adopted for the data gap investigation works are outlined below:

- NSW EPA (2020) Hazardous Ground Gas Guidelines will be adopted with respect to assessment of landfill gas. This will include consideration of gas concentration, flow rate, gas screening values, characteristic gas situation and prevailing atmospheric pressure.
- It is considered that use of SafeWork NSW (2018) Workplace Exposure Standards for Airborne Contaminants is appropriate for use in the Gas Monitoring Well Network beneath the site. It should be noted that the recorded concentrations are taken within the ground and the criteria are designed to be applied to the atmosphere thus adding a further layer of conservatism. Where site users and construction workers are present in these areas, it is considered unlikely that they would be exposed to concentrations in the ground or that their exposure time will be greater than 8hrs per day and consequently the adopted criteria would also be protective of their health.
  - SafeWork NSW (2018) TWA screening criteria for hydrogen sulfide: 10 ppm
  - SafeWork NSW (2018) TWA screening criteria for carbon monoxide: 30 ppm
  - Additionally, AS2865 1995 Safe Working in a Confined Space guidelines will used for oxygen (>19.5%v/v).
- Soil samples collected from UST / diesel infrastructure trenches will be compared to NEPM (2013) Health Investigation Levels (HIL) and Health Screening Levels (HSL) for C Secondary Schools for sandy soil (0 to <1m depths) given the proposed land use and NEPM (2013) Management Limits for Total Petroleum Hydrocarbons for residential, parkland and public open space use for coarse soil.</li>
- Groundwater samples will be compared to Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) (2018) Default Guideline Values for Marine Waters with 95%



protection level and PFAS National Environmental Management Plan (2020) (NEMP 2020) Human Health (non-potable and recreational uses) and Ecological (slightly to moderately disturbed ecosystem) criteria.

- Any contact with potential acid sulfate soils will be assessed in accordance with NSW Acid Sulfate Soils Management Advisory Committee (1998) Acid Sulfate Soil Assessment Guidelines (AASSMAC 1998) where required.
- Aesthetic considerations will also be taken into account during investigation activities, particularly the presence of hydrocarbon sheens and/or odours in groundwater.

#### Validation Strategy

The criteria that will be adopted for the validation works are outlined below:

- For spoil/soil intended for onsite reuse, the material will be compared to:
  - NEPM (2013) Health Investigation Levels (HIL) C.
  - Health Screening Levels (HSL) A/B as required by NEPM (2013) for assessment of secondary schools, for sand soil.
  - NEPM (2013) Management Limits for Total Petroleum Hydrocarbons for residential, parkland and public open space use for coarse soil.
- Where soils are to be placed below the cap, an assessment of risk towards potential receptors will also be made in addition to comparison against the above criteria, given that the cap will act as a barrier to underlying fill soils.
- Any soils proposed to be used for tree planting, landscaping or garden bed areas will be assessed against NEPM (2013) Ecological Investigation and Screening Levels (EILs and ESLs). Ecological criteria will only be applicable to soils present within the top 2m of these locations.
- Material to be disposed offsite will be compared to NSW EPA (2014) Waste Classification Guidelines – Part 1, Classifying Waste and Part 4 Acid Sulfate Soils (where required) to determine the materials' waste classification and inform disposal options.
- Capping material will be assessed as described in Table 7.1 of the SAQP. Validation samples will be collected in general accordance with the NSW EPA (2014) The Excavated Natural Material Order. If ENM materials are used, the results will be compared to the criteria presented in the NSW EPA (2014) The Excavated Natural Material Order.
- Capping thickness will be determined from pre-and post-capping survey data to ensure compliance with the approved capping design requirements as described in Section 6 and the PB (2015) RAP. Any changes to the final capping design are required to be reviewed and endorsed by the appointed Site Auditor prior to implementation.

Ecological criteria are not considered relevant as the site is expected to be capped with concrete hardstand or clean topsoil. Given the presence of the marker layer, it is anticipated that only trees with shallow roots will be planted onsite. If large trees are required to be planted in any area of the site, modifications to the depth of the capping layer will need to be considered.

### 4.5.4 Identification of Analytical Methods that are required for Chemicals of Potential Concern so that Assessment can be made Relative to the Site Criteria

The table below outlines the analytical methods of the NATA accredited primary laboratory Eurofins.



#### Table 5.1 Summary of Soil Analytical Methods

| Analyte            | Soil                                                                                                                                 | LOR (mg/kg)  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Asbestos           | AS4964-2004 (Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia May 2009) | 0.001%w/w    |
| Mercury            | US EPA 7470/1                                                                                                                        | 0.1 mg/kg    |
| Other Metals       | US EPA 6010, 6020                                                                                                                    | 0.1-5 mg/kg  |
| Acid Sulfate Soils | ASSL Methods Guidelines Version 2.1                                                                                                  | Various      |
| TRH                | P&T GC/MS GC/FID (USEPA 8260/8000) NEPM 2013 Schedule B3                                                                             | 20-100 mg/kg |
| SVOC               | GC/MS (USEPA 8270) NEPM 2013 Schedule B3                                                                                             | 0.5-5 mg/kg  |
| VOC                | P&T GC/MS USEPA 8260 NEPM 2013 Schedule B3                                                                                           | 0.5-1 mg/kg  |

#### **Table 5.2: Groundwater Analytical Methods**

| Analyte | Analytical Method                                 | LOR (µg/L) |
|---------|---------------------------------------------------|------------|
| TPH     | P&T GC/MS GC/FID (USEPA 8260/8000)                | 10-100     |
| PAH     | Capillary GC/MS in SIM (USEPA SW 846 - 8270B)     | 1-2        |
| Mercury | Cold Vapour AAS (USEPA 7471A)                     | 0.05       |
| Metals  | ICP-OES (USEPA 200.7)                             | 0.1-1.0    |
| VOCs    | P&T GC-MS (USEPA 8260B)                           | 1-2        |
| PFAS    | LC-MS/MS (USEPA Method 537.1-169) NEMP (2020) 2.0 | 0.01-0.02  |

## 4.6 Step 4 – Defining the Study Boundaries

#### 4.6.1 Detailed Description of the Spatial and Temporal Boundaries of the Problem

The lateral boundary of the remediation area is presented in Figure 2, Appendix A.

The vertical study boundary is nominated to extend to the required depth for the cut-to-fill program for the redevelopment, or by the maximum depth of UST trenching excavations (maximum target depth 4m below existing ground level (bgl) or at interception of groundwater which is anticipated to be at approximately 3m bgl or shallower, beyond which deeper excavation may not be possible due to test pit collapse).

### 4.7 Step 5 – Developing Decision Rules

The decision rules adopted to answer the decisions outlined in Section 5.4 are summarised in the following table:

#### Table 5.3 Summary of Decision Rules

#### No. Decision to be Made Decision Rule

## Data Gap Investigation

| 1     | ratings within the historical<br>range between CS2 and<br>CS4? Do landfill gas                                                                                                        | If concentrations of landfill gas generate ratings are between CS2 and CS4 inclusive,<br>then YES, ratings are within the historical range and the current design assumptions<br>for the gas mitigation system will likely be retained. If ratings fall outside this range,<br>then the answer is NO. If the rating is greater than CS4, then the current design<br>assumptions must be reconsidered.<br>Landfill gas will be assessed in accordance with NSW EPA (2020) Guidelines for the<br>Assessment and Management of Sites Affected by Hazardous Ground Gases,<br>including consideration of landfill gas concentrations, flow rates, gas screening values<br>and characteristic gas situations. If results are less than the adopted site criteria then<br>the decision is no, and landfill gas does not pose a risk. |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | Does tidal activity<br>influence ground gas<br>behaviour at the site?                                                                                                                 | If ground gas parameters are correlated with tidal movements, then the answer is YES, otherwise, the answer is NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3     | Are USTs or other<br>infrastructure present? Do<br>chemical concentrations in<br>soil adjacent to USTs or<br>other infrastructure pose a<br>risk to future site<br>users/environment? | Observations during trenching will determine presence/absence of USTs and other infrastructure.<br>If the soil analytical results are less than the adopted site criteria then the decision is no, and soil contaminant concentrations do not pose a risk. If results are above the adopted criteria, then the answer is YES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4     | Do chemical<br>concentrations in site<br>groundwater pose a risk to<br>environmental receptors?                                                                                       | If the groundwater analytical results are less than the adopted site criteria then the decision is no, and groundwater contaminant concentrations do not pose a risk. If results are above the adopted criteria, then the answer is YES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Valio | dation Strategy                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1     | Will chemical concentrations in spoil/site                                                                                                                                            | For the spoil/site soil, to determine suitability for secondary school use, the following criteria will be adopted with respect to the decision-making process:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|   | concentrations in spoil/site<br>soil intended to be reused<br>as fill pose a risk to future<br>site users/environment<br>following removal of<br>infrastructure and<br>impacted soils in the UST,<br>wash bay and mechanical<br>pit areas? | • If the soil results are less than the adopted site criteria (HL/HSL C / HSL A/B and TPH Management Limits for residential, parkland and public open space/secondary schools) then the decision is no and the remediation strategy is acceptable.                                                                                                                                                                                                                             |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Does the imported<br>material used for the<br>capping layer comply with<br>VENM/ENM criteria?                                                                                                                                              | Where relevant documentation provided by the source site, site history review, visual observations from inspections and chemical analysis indicate compliance with VENM/ENM criteria then the decision is yes. Otherwise the decision is no.<br>Where the decision is yes, the material is appropriate to be used on site. Where the decision is no, the material must not be used onsite.<br>In addition to the above, no materials can be imported onsite for use with prior |
| 3 | Has the site been                                                                                                                                                                                                                          | approval by the Site Auditor.<br>If the survey data indicates that there is a capping layer of minimum of 500mm then                                                                                                                                                                                                                                                                                                                                                           |
|   | adequately capped?                                                                                                                                                                                                                         | the answer is yes. Otherwise the answer is no.                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## 4.8 Step 6 – Specify the Limits on Decision Errors

# 4.8.1 Decision-maker's Tolerable Decision Error Rates Based on Consideration of the Consequences of Making an Incorrect Decision

The pre-determined data quality indicators (DQIs) established for the project, for both the Data Gap Investigation and Validation Strategy, are discussed below in relation to precision, accuracy, representativeness, comparability and completeness (PARCC parameters) as required by Step 6 of the DQO process.

| DQO                                                                        | Frequency                                                   | Data Quality Indicator                                                                                                                                     |
|----------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precision                                                                  |                                                             |                                                                                                                                                            |
| Intra-laboratory field duplicates                                          | 1/20 samples soil;                                          | 30% RPD <sup>1</sup>                                                                                                                                       |
|                                                                            | 1/20 samples groundwater.                                   |                                                                                                                                                            |
| Inter-laboratory field duplicates                                          | 1/20 samples soil;                                          | _                                                                                                                                                          |
|                                                                            | 1/20 samples groundwater.                                   |                                                                                                                                                            |
| Laboratory duplicates                                                      | 1/20 samples                                                | 30% RPD <sup>1</sup>                                                                                                                                       |
| Laboratory method blanks                                                   | 1/20 samples                                                | < LOR                                                                                                                                                      |
| Accuracy                                                                   |                                                             |                                                                                                                                                            |
| Matrix spikes                                                              | 1/20 samples                                                | 70 to 130%R for metals and<br>–inorganics                                                                                                                  |
| Laboratory control spike                                                   | 1/20 samples                                                | 60-140%R for organics                                                                                                                                      |
| Surrogate spike                                                            | 1/20 samples                                                | <sup>—</sup> 10-140%R for sVOC and speciated phenols                                                                                                       |
| Representativeness                                                         |                                                             |                                                                                                                                                            |
| Sampling handling storage and transport appropriate for media and analytes | All samples                                                 | Yes                                                                                                                                                        |
| Rinsate Blanks                                                             | 1 per equipment per day (if applicable)                     | <lor< td=""></lor<>                                                                                                                                        |
| Trip Blank                                                                 | 1 per sample batch soil;<br>1 per sample batch groundwater. | <lor< td=""></lor<>                                                                                                                                        |
| Trip Spike                                                                 | 1 per sample batch soil;<br>1 per sample batch groundwater. | 60-140%R for organics                                                                                                                                      |
| Samples extracted and analysed within                                      | All samples                                                 | Hold Times:                                                                                                                                                |
| holding times.                                                             |                                                             | 14 days - organics                                                                                                                                         |
|                                                                            |                                                             | 6 months – inorganics                                                                                                                                      |
| Leak testing of ground gas wells                                           | N/A                                                         | Leak testing of existing wells was<br>conducted as part of previous<br>investigations and is therefore not<br>proposed for this data gap<br>investigation. |
| Response zones of ground gas wells unflooded                               | All wells                                                   | All wells to be gauged as part of gas<br>monitoring works to ensure response<br>zone remains unflooded to allow for                                        |

#### Table 6.4 DQO and DQI



| DQO                                                                                                     | Frequency   | Data Quality Indicator                               |
|---------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|
|                                                                                                         |             | drawing of surrounding gases from the soil formation |
| Comparability                                                                                           |             |                                                      |
| Standard operating procedures used for<br>sample collection and handling (including<br>decontamination) | All samples | Yes                                                  |
| Standard analytical methods used for all analyses                                                       | All samples | Yes                                                  |
| Consistent field conditions, sampling staff and laboratory analysis                                     | All samples | Yes                                                  |
| Limits of reporting appropriate and consistent                                                          | All samples | Yes                                                  |
| Completeness                                                                                            |             |                                                      |
| Soil description and COCs completed and appropriate                                                     | All samples | Yes                                                  |
| Appropriate documentation for testing                                                                   | All samples | Yes                                                  |
| Data set to be 95% complete after validation                                                            | All samples | Yes                                                  |

1 - If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

## 4.9 Step 7 – Optimise the Design

# 4.9.1 The Optimum Manner in which to Collect the Data Required to meet the Objectives for the Assessment and which will meet the Project DQOs

With consideration to NSW EPA (1995) Sampling Design Guidelines; the review of existing environmental data; and, the evaluation of operational decision rules, a resource-effective sampling and analysis plan is presented in Section 7 of the report, for both the Data Gap Investigation and Validation Strategy.

## 5 Sampling and Analysis Plan

This section provides details of the proposed sampling and analysis plan from the Geosyntec (2021) SAQP, outlining methodologies to be adopted to ensure that the proposed Data Gap Investigation works meet the requirements of guidelines made or approved by NSW EPA. A sampling and analysis plan for remaining validation works is presented in Section 11 as part of the RAP Amendments.

#### Table 6.1: Sampling and Analysis Plan

| Sampling Item                            | Data Gap Investigation - Sampling and Analysis Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Pattern / Density<br>Rationale: | The locations of USTs have been determined by correlating known locations from a previous GHD investigation with historical aerial photographs which will be investigated using test pits. Targeted soil samples are proposed to be collected from trenching excavations if USTs or other infrastructure are found. Four test pits will be dug around the perimeter of each UST if possible and the wash bay site to the depth of groundwater which is shallow (2-3m below ground level). Samples will be collected at a rate of 2 samples per test pit, or one sample per identified soil horizon including fill and natural soils. Samples will also be targeted towards identified potential contamination. These locations will be surveyed using a GPS coordinates to allow subsequent location following completion of the early works.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | Ground gas monitoring is proposed to be conducted from each of the previously installed Greencap (2021) wells (GG1 to GG9). From the perspective of the eventual gas design and technical specification, the proposed buildings have been divided into three parts, namely the sports hall which is covered by wells GG1 and GG2, the eastern school building which is covered by wells GG3 to GG7 inclusive and the southwestern school building which is covered by wells GG8 and GG9. The number of existing wells is considered sufficient to characterise the ground gas regime for each of these footprints when the historical ground gas results from GHD, those from Greencap and those proposed within the SAQP are considered as a whole. Section 3.4.2 of the NSW (2020) Hazardous Ground Gas Guidelines states that the number and density of boreholes required on a particular site will be a matter of professional judgement and that it should take into account the sensitivity of the land use (secondary school), the nature of the source (regional filling), heterogeneity of the ground conditions (at least 2 wells per building to account for heterogeneity) and robustness of the CSM (based on the previous investigation and to be confirmed by the Data Gap Investigation). |
|                                          | Groundwater monitoring is proposed to be conducted from four of the previously installed Greencap (2021) wells with enough water column to facilitate low flow sampling methods (Hydrasleeves) (GG2, GG5, GG6 and GG8). Where groundwater is encountered in locations with identified USTs, and contamination is apparent (sheen, odour), grab samples of groundwater will also be taken directly from test pits for screening purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Soil Sampling Devices /<br>Techniques    | Samples will be collected by appropriately trained and experienced Geosyntec Environmental Scientists in accordance with standard operating procedures based on NEPM (2013), AS4482.1-2005, AS4482.2-1999 and other relevant guidelines made or approved by NSW EPA as appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sampling Depths                          | Soil samples from UST test pits will be taken from depths observed to be potentially contaminated (e.g. if odour or staining are observed), or in the absence of indicators of contamination they will be taken from depths which align with the sides and base of the UST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selection of Samples for<br>Analysis:    | Soil that is observed having visual or olfactory indicators of contamination and/or have PID screening values above background levels will be selected. In lieu of soil displaying the above characteristics, a representative sample will be obtained as outlined in the sampling density rationale above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Sampling Item                                         | Data Gap Investigation - Sampling and Analysis Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Splitting Techniques                           | Soil samples will be split into two parts with minimal disturbance or mixing to reduce loss of volatiles. One part will form the primary sample and the second part will be placed into a zip lock bag for PID screening. Where a duplicate or triplicate sample is required, a similar procedure will be adopted but the sample will be split into three or four parts respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample Container Selection:                           | Soil and groundwater sample containers will be supplied by the laboratory and generally comprise glass jars / bottles with integrated Teflon seals to prevent loss of volatiles. Approved containers will be used for collection of groundwater PFAS samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Decontamination<br>Procedures:                        | Where possible disposable / dedicated sampling equipment will be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample Handling and<br>Preservation Procedures:       | Soil samples will be logged using the USCS and details of any discolouration, staining, odours or other indicators of contamination noted.<br>Samples will be placed into laboratory supplied containers using a clean pair of nitrile gloves.<br>Acid sulfate soil samples will be placed in snap lock bags and the air removed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PFAS-specific Sampling and<br>Analysis considerations | <ul> <li>Sampling and analysis will be conducted in accordance with NEMP (2018), with specific consideration given to the following elements:</li> <li>No Teflon coated products will be used during sampling.</li> <li>Eurofins is NATA accredited for the analysis of PFAS using an in house method based on USEPA 537 and ASTM D7359-D8.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Field Calibration and<br>Screening Protocols          | Calibrated field instruments will be supplied by an environmental equipment supplier.<br>Measurement of background concentrations in ambient air will be conducted prior to each reading to account for sensor drift. The result will be record on a field data sheet along with date, location details (batch details) and depth.<br>For PID sampling, a small hole will be punched into the zip lock bag sample. The tip of the PID will be inserted into the bag and the maximum concentration noted on the borehole record sheet.<br>The Biosystems Gas Flux (or similar) will be pre-calibrated upon receipt from the supplier and will be checked to ensure it is functioning properly with a fully charged battery or reliable power source prior to deployment.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Groundwater Monitoring Well<br>Sampling               | Groundwater sampling of four existing Greencap (2021) wells will be conducted by an appropriately trained and experienced Geosyntec Environmental Scientist in accordance with a standard operating procedure based on EPA Victoria (2000) Water Sampling Guidelines.<br>Standing water levels will be determined using an interface probe, which can also detect the thickness of any NAPL if present.<br>Hydrasleeves suitable for PFAS sample collection will be installed in the wells to be within the water column for at least 48 hours.<br>Field parameters including DO, temperature, pH, EC and ORP will be measured during sample collection after 48 hours of hydrasleeves being installed.<br>Where hydrasleeve sampling is not possible, low flow sampling methods (i.e. peristaltic pump) will be used.<br>Well Purge Data Record Sheets will be completed for each well, which detail the sampling date, project number, operator, well ID, weather, gauge data (including depth to water and depth to bottom and depth to product if present), water quality data and general comments.<br>Relevant onsite and offsite wells will be gauged and surveyed to estimate the hydraulic gradient in the area. |
| Landfill Gas Monitoring                               | Monitoring will be conducted in accordance with NSW (2020) Hazardous Ground Gas Guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



#### Sampling Item Data Gap Investigation - Sampling and Analysis Plan

Landfill gas detectors (e.g. GA5000 or similar) will be used to collect measurements of methane, carbon dioxide, carbon monoxide, hydrogen sulfide and oxygen in landfill gas wells.

An initial gas monitoring event will be completed from each of the Greencap wells.

A Biosystems Gas Flux (or similar) or similar will then be deployed in the location with the highest result based on historical results and the confirmatory first round of handheld ground gas monitoring for the continuous measurement of gas concentrations and borehole pressure.

An additional handheld gas monitoring event will be completed during continuous monitoring at the site (from all wells), during falling atmospheric pressure for reference purposes.

When the historical data and the data to be collected during the Data Gap Investigation are considered as a whole, the monitoring period is considered to be sufficient for characterisation of ground gas conditions at the site. Additionally, as per section 3.4.6 of the NSW EPA Hazardous Ground Gas guidelines, continuous monitoring equipment (CME) can reduce the number of monitoring events through the overall time period required. CME will allow the investigation obtain data from a variety of meteorological conditions, including capture of likely worst case meteorological scenarios as defined in the NSW (2020) Hazardous Ground Gas Guidelines.



# 6 Evaluation of QA/QC

### 6.1.1 Field QA/QC Sampling

The methodology for obtaining QA/QC samples was conducted as follows:

#### **Duplicate Samples**

In accordance with NEPM (2013), at least 5% of soil samples and groundwater samples were duplicates collected in the field for analysis at the primary laboratory. They were collected from the same sampling point and divided into two separate and unrelated sample containers for analysis at the same laboratory (intra-laboratory precision).

- Soil duplicate: DUP1 (soil) = TS2-1\_0.4-0.6
- Groundwater duplicate: DUP1 (water) = GG01

#### **Triplicate Split Samples**

At least 5% of soil samples and groundwater samples were duplicates collected in the field for analysis at the secondary laboratory. They were collected from the same sampling point and divided into two separate and unrelated sample containers for analysis at the secondary laboratory (inter-laboratory precision).

- Soil triplicate = TRIP1 (soil) = TS2-1\_0.4-0.6
- Groundwater triplicate = TRIP1 (water) = GG01

#### **Trip Spike and Trip Blank**

Trip spike samples are held during field sampling to assess loss of volatile from samples during transit, while trip blanks are collected to assess whether contamination may have been introduced to samples during shipping and field handling activities.

Trip spike and trip blank were not tested as part of the soil sampling event.

Given that soil sampling was conducted for screening purposes to assist with determining remediation requirements, the absence of trip spike and blank are not considered affect the outcome of the assessment, and the data is considered fit for purpose. Additionally, given that samples were collected based on standard procedures including zero headspace and tight seal of the sample jar lid, and that concentrations of volatile compounds were generally noted to be close to the laboratory detection limits, the loss of volatile compounds is considered unlikely.

One trip blank was tested during groundwater sampling activities:

• Groundwater trip blank = tripblank

No trip spike was tested as part of the groundwater sampling event. Given that all volatile results were reported below their respective laboratory limits of detection, it is considered that loss of volatile is unlikely to have occurred during laboratory transit.

#### 6.1.2 QA/QC Results

#### Field QA/QC

Soil samples were taken with clean disposable nitrile gloves directly from the auger flights with care taken to collect soil that had not come in contact with the auger stem. Samples were then placed in laboratory-supplied sample containers with Teflon sealed lid, with zero headspace and tight seal.



Groundwater samples were collected using clean dedicated tubing at each well to prevent any potential cross contamination and were placed into laboratory supplied containers. Field filtering for metal analysis was not conducted in the field and was requested to be undertaken by the laboratory.

Groundwater trip blank results were below laboratory detection limits indicating low likelihood of cross contamination of samples.

The QA/QC results for soil and groundwater duplicate (intra-laboratory) and triplicate (interlaboratory) samples are summarised below with results presented in Appendix F.

Based on the information referenced above, it was concluded that the data is of an acceptable quality to achieve the objectives of this study, with the following comments:

- a. Relative Percent Differences (RPDs) calculated for inter-laboratory samples for TRH >C16-34 are indicative of heterogeneous composition within the fill material.
- b. Relative Percent Differences (RPDs) calculated for inter-laboratory and intra-laboratory samples for arsenic, copper and nickel are likely a result of concentrations being close to the laboratory detection limit.

#### Laboratory QA/QC

Samples were received and analysed by the primary and secondary laboratories with attempt to cool samples evident and within sample holding times. Soil samples were received by the laboratory on the same day as sampling, and as such there was insufficient time for temperatures lower than 10-14°C to be reached inside the eskies.

Laboratory limits of reporting (LOR) for PAHs were raised form <0.1mg/kg to <1mg/kg for soil samples TS2-1\_1.0-1.2, TS2-2\_1.0-1.2 and TS2-4\_1.2-1.4 due to interferences from analytes other than those being tested. Raised LOR were below adopted criteria, and were relatively low in comparison to detections of some PAHs in the samples, and therefore, this is not considered to affect the outcome of the assessment.

Some matrix spikes were not able to be completed due to high concentrations of analytes in some samples causing interference. Those which were able to be completed without interference, however, reported percentage recoveries within the acceptable range.

Detailed QA/QC results are presented on the laboratory testing certificates presented in Appendix C and summarised in Table G-1 in Appendix G.



## 7 Site Assessment Criteria

The proposed redevelopment is understood to include school buildings and open space areas within the development footprint.

Therefore, the criteria adopted for the site comprised criteria for secondary school and open space land use as outlined below.

## 7.1 Assessment Criteria for Soil

Soil analytical results were assessed against the guidelines listed below, with the adopted soil criteria summarised in Table 7.1:

- NEPM (2013) Health Investigation Levels (HIL) C.
- Health Screening Levels (HSL) C and A/B as required by NEPM (2013) for assessment of secondary schools, for sandy soil. HSL C applies to secondary school grounds, and HSL A/B applies to secondary school buildings.
- NEPM (2013) Management Limits for Total Petroleum Hydrocarbons for residential, parkland and public open space use for coarse soil.

Ecological criteria are not considered relevant as the site is expected to be capped with additional material followed by concrete hardstand or clean topsoil to facilitate construction of the school.

#### Table 7.1: Adopted Soil Site Suitability Criteria (mg/kg)

| NEPM (2013) Soil<br>Site Suitability<br>Criteria | HIL C – Public<br>Open Space /<br>Recreational<br>(mg/kg) | Soil HSL A/B Low –<br>High Density<br>Residential<br>(Secondary School<br>Buildings) for Sand<br>Soil, 0 to <1m<br>(mg/kg) | Recreational<br>(Secondary School<br>Grounds) for Sand | Hydrocarbon<br>Management Limits<br>for Residential,<br>Parkland and<br>Public Open Space,<br>Coarse Soil Type |
|--------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| TRH                                              |                                                           |                                                                                                                            |                                                        |                                                                                                                |
| F1                                               | -                                                         | 45                                                                                                                         | NL                                                     | 700                                                                                                            |
| F2                                               | -                                                         | 110                                                                                                                        | NL                                                     | 1,000                                                                                                          |
| F3 (>C16-C34)                                    | -                                                         | -                                                                                                                          | -                                                      | 2,500                                                                                                          |
| F4 (>C34-C40)                                    | -                                                         | -                                                                                                                          | -                                                      | 10,000                                                                                                         |
| BTEX                                             |                                                           |                                                                                                                            |                                                        |                                                                                                                |
| Benzene                                          | -                                                         | 0.5                                                                                                                        | NL                                                     | -                                                                                                              |
| Toluene                                          | -                                                         | 160                                                                                                                        | NL                                                     | -                                                                                                              |
| Ethylbenzene                                     | -                                                         | 55                                                                                                                         | NL                                                     | -                                                                                                              |
| Xylenes (Total)                                  | -                                                         | 40                                                                                                                         | NL                                                     | -                                                                                                              |
| PAHs                                             |                                                           |                                                                                                                            |                                                        |                                                                                                                |
| Naphthalene                                      | -                                                         | 3                                                                                                                          | NL                                                     | -                                                                                                              |
| Benzo(a)pyrene                                   | 3                                                         | -                                                                                                                          | -                                                      | -                                                                                                              |
| Total PAHs                                       | 300                                                       | -                                                                                                                          | -                                                      | -                                                                                                              |
| Heavy Metals                                     |                                                           |                                                                                                                            |                                                        |                                                                                                                |
| Arsenic                                          | 300                                                       | -                                                                                                                          | -                                                      | -                                                                                                              |
| Cadmium                                          | 90                                                        | -                                                                                                                          | -                                                      | -                                                                                                              |



| NEPM (2013) Soil<br>Site Suitability<br>Criteria | HIL C – Public<br>Open Space /<br>Recreational<br>(mg/kg) | Soil HSL A/B Low –<br>High Density<br>Residential<br>(Secondary School<br>Buildings) for Sand<br>Soil, 0 to <1m<br>(mg/kg) | Recreational<br>(Secondary School<br>Grounds) for Sand | Hydrocarbon<br>Management Limits<br>for Residential,<br>Parkland and<br>Public Open Space,<br>Coarse Soil Type |
|--------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Chromium (VI)                                    | 300                                                       | -                                                                                                                          | -                                                      | -                                                                                                              |
| Copper                                           | 17000                                                     | -                                                                                                                          | -                                                      | -                                                                                                              |
| Lead                                             | 600                                                       | -                                                                                                                          | -                                                      | -                                                                                                              |
| Mercury                                          | 80                                                        | -                                                                                                                          | -                                                      | -                                                                                                              |
| Nickel                                           | 1200                                                      | -                                                                                                                          | -                                                      | -                                                                                                              |
| Zinc                                             | 30000                                                     | -                                                                                                                          | -                                                      | -                                                                                                              |
| OCPs                                             |                                                           |                                                                                                                            |                                                        |                                                                                                                |
| DDT+DDE+DDD                                      | 400                                                       | -                                                                                                                          | -                                                      | -                                                                                                              |
| DDT                                              | -                                                         | -                                                                                                                          | -                                                      | -                                                                                                              |
| Aldrin and dieldrin                              | 10                                                        | -                                                                                                                          | -                                                      | -                                                                                                              |
| Chlordane                                        | 70                                                        | -                                                                                                                          | -                                                      | -                                                                                                              |
| Endosulfan                                       | 340                                                       | -                                                                                                                          | -                                                      | -                                                                                                              |
| Endrin                                           | 20                                                        | -                                                                                                                          | -                                                      | -                                                                                                              |
| Heptachlor                                       | 10                                                        | -                                                                                                                          | -                                                      | -                                                                                                              |
| НСВ                                              | 10                                                        | -                                                                                                                          | -                                                      | -                                                                                                              |
| PCBs                                             |                                                           |                                                                                                                            |                                                        |                                                                                                                |
| PCBs                                             | 1                                                         | -                                                                                                                          | -                                                      | -                                                                                                              |
| Asbestos                                         |                                                           |                                                                                                                            |                                                        |                                                                                                                |
| Asbestos                                         | Presence                                                  |                                                                                                                            |                                                        |                                                                                                                |

## 7.2 Waste Classification

Given that excavation and disposal of soils from identified UST and other infrastructure locations may be required as part of the main remediation works, soil results were also compared against NSW Environment Protection Authority (EPA) Waste Classification Criteria found in the NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste. Chemical assessment was required as the material included a mixture of soil and anthropogenic inclusions. Waste Classification CT1, SCC1 and TCLP1 criteria for General Solid Waste are displayed in Table 7.2. The relevant Waste Classification are listed below:

- NSW EPA Waste Classification CT1 Criteria for General Solid Waste
- NSW EPA Waste Classification TCLP1 and SCC1 Criteria for General Solid Waste

#### Table 6.2. Waste Classification Criteria for General Solid Waste.

| NSW EPA (2014) General Solid<br>Waste          | CT1 (mg/kg) | CT2 (mg/kg) |
|------------------------------------------------|-------------|-------------|
| ТРН                                            |             |             |
| TPH C <sub>6</sub> – C <sub>9</sub> Fraction   | 650         | 2,600       |
| TPH C <sub>10</sub> – C <sub>36</sub> Fraction | 10,000      | 40,000      |

Geosyntec<sup>D</sup> consultants

| NSW EPA (2014) General Solid<br>Waste | CT1 (mg/kg) | CT2 (mg/kg)   |
|---------------------------------------|-------------|---------------|
| BTEX                                  |             |               |
| Benzene                               | 10          | 40            |
| Toluene                               | 288         | 1,152         |
| Ethylbenzene                          | 600         | 2,400         |
| Xylenes (Total)                       | 1,000       | 40            |
| PAHs                                  |             |               |
| Benzo (a) Pyrene                      | 0.8         | 3.2           |
| Total PAHs                            | 200         | 800           |
| Heavy Metals                          |             |               |
| Arsenic                               | 100         | 400           |
| Cadmium                               | 20          | 80            |
| Chromium (VI)                         | 100         | 400 (as CrVI) |
| Lead                                  | 100         | 400           |
| Mercury                               | 4           | 16            |
| Nickel                                | 40          | 160           |
| PCBs                                  |             |               |
| Total PCBs                            | 50          | 50            |
| Pesticides                            |             |               |
| Total Pesticides                      | 250         | 1000          |

## 7.3 Assessment Criteria for Groundwater

Groundwater analytical results were assessed against the guidelines listed below, with adopted groundwater criteria summarised in Table 7.3:

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) (2018) Default Guideline Values for Marine Waters with 95% protection level, noted to be generally consistent with NEPM (2013) Groundwater Investigation Levels (GILs) for Marine Waters taken from Table 1C.
- NEPM (2013) Groundwater HSLs: HSL A/B Residential use (required for secondary school buildings) for sandy soil taken from Table 1A(4).
- PFAS National Environmental Management Plan (2020) (NEMP 2020) Human Health (nonpotable and recreational uses) and Ecological (slightly to moderately disturbed ecosystem) criteria.
- Consideration of aesthetic impacts to groundwater on site during sampling activities with respect to maintaining visual amenity.

| NEPM (2013) Groundwater Site<br>Suitability Criteria | ANZG 95% toxicant criteria for<br>Marine Waters / NEPM (2013)<br>GILs for Marine Waters (µg/L) | Groundwater HSL A&B for 2m to<br><4m Depth and Sand Soil Type<br>(μg/L) |
|------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Benzene                                              | 700 (ANZG) / 500 (NEPM)                                                                        | 800                                                                     |
| Toluene                                              | 180                                                                                            | NL                                                                      |

#### Table 6.3. Adopted Groundwater Site Suitability Criteria

| NEPM (2013) Groundwater Site<br>Suitability Criteria | ANZG 95% toxicant criteria for<br>Marine Waters / NEPM (2013)<br>GILs for Marine Waters (μg/L) | Groundwater HSL A&B for 2m to<br><4m Depth and Sand Soil Type<br>(µg/L) |
|------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Ethylbenzene                                         | 80                                                                                             | NL                                                                      |
| Xylenes (o)                                          | 75 (ANZG-unknown protection level) /<br>350 (NEPM)                                             | NL                                                                      |
| Xylenes (m+p)                                        | 200 (NEPM – as p-xylene only)                                                                  | NL                                                                      |
| Xylenes (Total)                                      | -                                                                                              | NL                                                                      |
| Naphthalene                                          | 70 (ANZG) / 50 (NEPM)                                                                          | NL                                                                      |
| F1                                                   | -                                                                                              | 1000                                                                    |
| F2                                                   | -                                                                                              | 1000                                                                    |
| Arsenic                                              | 13 / 24*                                                                                       | -                                                                       |
| Cadmium                                              | 55 (ANZG) / 7 (NEPM)                                                                           | -                                                                       |
| Chromium                                             | 27 / 4.4**                                                                                     | -                                                                       |
| Copper                                               | 1.3                                                                                            | -                                                                       |
| Lead                                                 | 4.4                                                                                            | -                                                                       |
| Mercury                                              | 0.4 (ANZG) / 0.1 (NEPM)                                                                        | -                                                                       |
| Nickel                                               | 70 (ANZG) / 7 (ANZG)                                                                           | -                                                                       |
| Zinc                                                 | 15                                                                                             | -                                                                       |
| Benzo(a)pyrene                                       | 0.2                                                                                            | -                                                                       |
| Naphthalene                                          | 16                                                                                             | -                                                                       |
| Anthracene                                           | 0.4                                                                                            | -                                                                       |
| Fluoranthene                                         | 1.4                                                                                            | -                                                                       |
| Phenanthrene                                         | 2                                                                                              | -                                                                       |

\*ANZG 0.013mg/L = AsV ; 0.024mg/L = AsIII

\*\* ANZG/NEPM 27 μg/L = CrIII unknown protection level ; 4.4 μg/L = CrVI

#### Table 8.2 PFAS NEMP 2020 Criteria Values

| Parameter    | Health-based Guidance Values (Non-<br>Potable and Recreational Use) (µg/L) | Aquatic Ecosystem: Freshwater/Marine<br>Guideline Values 95% Species<br>Protection* (μg/L) |
|--------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| PFOS         | -                                                                          | 0.13                                                                                       |
| PFOA         | 10                                                                         | 220                                                                                        |
| PFOS + PFHxS | 2                                                                          | -                                                                                          |

\*Note 3 of Table 5 in NEMP (2020) states 'The WQG advise that the 99% level of protection be used for ...slightly to moderately disturbed systems. This approach is generally adopted for chemicals that bioaccumulate and biomagnify in wildlife.'

Given that NEMP (2020) criteria have been applied as a screening measure only, the 95% Species Protection Guideline Values have been adopted.

## 7.4 Assessment of Ground Gas

NSW EPA (2020) Hazardous Ground Gas Guidelines will be adopted with respect to assessment of landfill gas. This will include consideration of gas concentration, flow rate, gas screening values, characteristic gas situation and prevailing atmospheric pressure.

It is considered that use of SafeWork NSW (2018) Workplace Exposure Standards for Airborne Contaminants is appropriate for use in the Gas Monitoring Well Network beneath the site. It should be noted that the recorded concentrations are taken within the ground and the criteria are designed to be applied to the atmosphere thus adding a further layer of conservatism. Where site users and construction workers are present in these areas, it is considered unlikely that they would be exposed to concentrations in the ground or that their exposure time will be greater than 8hrs per day and consequently the adopted criteria would also be protective of their health.

- SafeWork NSW (2018) TWA screening criteria for hydrogen sulfide: 10 ppm
- SafeWork NSW (2018) TWA screening criteria for carbon monoxide: 30 ppm
- Additionally, AS2865 1995 Safe Working in a Confined Space guidelines will used for oxygen (>19.5%v/v).



## 8 Field Observations and Laboratory Results

## 8.1 Subsurface Observations & Soil Laboratory Results

The key observations made during the works conducted are summarised as follows:

- Surface conditions consisted of areas of exposed site soils where the concrete slab had been removed and areas of crushed sandstone where the capping layer had been placed.
- A summary of ground conditions from each of the investigation areas is presented below. Detailed ground conditions are documented in test pit logs presented in Appendix H and results summary tables are presented in Appendix B. A photographic log is presented in Appendix J.

| Location                              | Field Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Laboratory                                                                                                                                                                                                                                                                                                                            | Notes                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UST Location 1<br>30 November<br>2021 | Three (3) test pits (TS1-1, TS1-2 and TS1-3)<br>to the north, west and south of the UST<br>location. A slab was located to the east on<br>the adjoining property preventing<br>construction of a test pit.<br>Encountered soils comprised either sand or<br>silty clay fill from surface to approx. 0.4-0.6 m<br>below ground level (mbgl), underlain by fill<br>sands to end depth (1 mbgl).<br>Soil samples were collected from the first fill<br>layer and the underlying sand fill layer for<br>each test pit (TL 6 soil samples).<br>Hydrocarbon odour was noted from<br>approximately 0.4-0.6m below ground level<br>(mbgl), with sheen noted in encountered<br>water seepage.<br>One grab sample of water was collected. | screening criteria are listed below:<br>• TRH >C10-16 in TS1-3_0.2-0.4<br>(590mg/kg) and TS1-3_0.6-0.8<br>(120mg/kg) above adopted<br>HSL criteria.                                                                                                                                                                                   | This has been identified<br>as a location requiring<br>remediation as part of<br>the main works.<br>Location has been<br>recorded to allow tank<br>removal during main<br>remediation works.<br>Temporarily left in situ<br>beneath geotextile<br>marker and capping<br>material.<br>Survey location shown<br>in Figure 9, grid 7A. |
| UST Location 2<br>3 December 2021     | Four (4) test pits (TS2-1, TS2-2, TS2-3 and<br>TS2-4) to the north, west, south and east of<br>the UST location.<br>Encountered soils comprised either clayey<br>sand or sandy clay fill from surface to approx<br>1.0 mbgl, underlain by fill sands to end depth<br>(2.0 mbgl).<br>Soil samples were collected from the first fill<br>layer and the underlying sand fill layer for<br>each test pit (TL 8 soil samples).<br>Hydrocarbon odour was noted from<br>approximately 0.4-0.6m below ground level<br>(mbgl), with sheen noted in encountered<br>water seepage.<br>One grab sample of water was collected.                                                                                                              | <ul> <li>(950mg/kg) above adopted<br/>HSL criteria, and management<br/>limit criteria for TS2-2_1.0-1.2.</li> <li>Exceedances of adopted<br/>preliminary waste classification<br/>criteria are listed below:</li> <li>BaP in TS2-2_0.4-0.6<br/>(2.1mg/kg) and TS2-3_1.2-1.4<br/>(2.2mg/kg) above CT1 criteria<br/>for GSW.</li> </ul> | This has been identified<br>as a location requiring<br>remediation as part of<br>the main works.<br>Location has been<br>recorded to allow tank<br>removal during main<br>remediation works.<br>Temporarily left in situ<br>beneath geotextile<br>marker and capping<br>material.<br>Survey location shown<br>in Figure 9, grid 4G. |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The grab sample was analysed for BTEX. No exceedances of adopted criteria were recorded for the water grab sample.                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                     |
| Location                              | Two test pits in this location, one in the north<br>(WB1) and one in the south (WB2).<br>Encountered soils comprised sandy clay fill<br>from surface to end depth (1.0 mbgl).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exceedances of adopted site<br>screening criteria are listed below:<br>• TRH >C10-16 in WB1_0-0.2<br>(600mg/kg) above adopted<br>HSL A/B criteria. Given that the<br>Wash Bay area is not located                                                                                                                                     | This is not identified as<br>a location requiring<br>remediation.<br>Location has been<br>recorded. Location                                                                                                                                                                                                                        |

#### Table 9.1: USTs and Former Infrastructure Preliminary Findings

## Geosyntec<sup>▶</sup> consultants

| Location                        | Field Observations                                                                                                                                                                                                                                                                                                                                                                                                        | Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Notes                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Soil samples were collected from near surface and at depth for each test pit (TL 4 samples).                                                                                                                                                                                                                                                                                                                              | in a proposed building footprint area, HSL A/B does not apply.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | shown in Figure 9 in yellow.                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                           | Exceedances of adopted<br>preliminary waste classification<br>criteria are listed below:                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                           | BaP in WB1_0-0.2 (0.84mg/kg) and<br>WB2_0.8-1.0 (2.2mg/kg) above<br>CT1 criteria for GSW.                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                   |
| Former Mechanic<br>Pit Location | <ul> <li>Identified during concrete pull. One test pit in<br/>this location.</li> </ul>                                                                                                                                                                                                                                                                                                                                   | Exceedances of adopted site screening criteria are listed below:                                                                                                                                                                                                                                                                                                                                                                                                                                                     | This has been identified<br>as a location requiring<br>remediation as part of<br>the main works.<br>Location has been<br>recorded.<br>Some soils removed<br>from within the pit have<br>been tested and<br>confirmed as Restricted<br>Solid Waste (RSW) and<br>will be removed as part<br>of remediation works.<br>Survey location shown<br>in Figure 8, as<br>'contaminated area'. |
| 24 November<br>2021             | gravel, sand, silt and clay fill with inclusions<br>of demolition waste (incl. bricks and<br>concrete) from surface to end depth (1.0<br>mbgl).<br>Soil samples were collected form near<br>surface and at depth (TL 3 samples).<br>Hydrocarbon odour was noted from<br>approximately 0.4-0.6m below ground level<br>(mbgl), with sheen noted in encountered<br>water seepage.<br>One grab sample of water was collected. | <ul> <li>TRH &gt;C6-10 in VEX1-3<br/>(51mg/kg) above adopted HSL<br/>criteria.</li> <li>TRH &gt;C10-16 in VEX1-2<br/>(700mg/kg) and VEX1-3<br/>(910mg/kg) above adopted<br/>HSL criteria.</li> <li>TRH &gt;C16-34 in VEX1-2<br/>(18000mg/kg) and VEX1-3<br/>(4300mg/kg) above adopted<br/>management limit criteria.</li> <li>Exceedances of adopted<br/>preliminary waste classification<br/>criteria are listed below:</li> <li>TPH C10-C36 in VEX1-2<br/>(20,000mg/kg) above CT1<br/>criteria for GSW.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                           | The grab sample was analysed for<br>BTEX, TRH and PAH. No<br>exceedances of adopted criteria<br>were recorded for the water grab<br>sample, however concentrations of<br>hydrocarbons indicated impacts<br>from the former mechanics pit.                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |

#### 8.1.1 Asbestos Observations During Marker Layer Inspections

During site surface inspections prior to placement of the marker layer and cap as part of the early works area, three asbestos-containing fibre cement fragments material (ACM) were observed on the surface in the northeast of the site on exposed fill soils. The fragments were confirmed to contain asbestos by a licenced asbestos assessor and were removed from the site with a surface clearance certificate issued by a Licensed Asbestos Assessor prior to placement of the marker layer. The locations of the observed fragments are shown in Figure 5, Appendix A.

It is noted that historical investigations also identified ACM in soils at the site, specifically the west and centre of the site. ACM will still be present in underlying soils beneath the marker layer across the site.

#### 8.2 **Groundwater Observations & Laboratory Results**

#### **Groundwater Observations** 8.2.1

The following section presents an overview of field observations of groundwater encountered during groundwater sampling activities. Copies of field observations sheets are provided in Appendix I.

- Standing water levels were measured between 0.72m bgl in GG09 and 1.75 GG01.
- No phase separated hydrocarbon (PSH) or hydrocarbon sheen was observed during groundwater sampling.
- Groundwater quality field parameters are summarised below: in Table 8.2.

| Well ID | Temp (°C) | рН   | Redox (mV) | Dissolved<br>Oxygen<br>(ppm) | Conductivity<br>(mS/cm) | Comments                                                |
|---------|-----------|------|------------|------------------------------|-------------------------|---------------------------------------------------------|
| GG01    | 22.6      | 9.42 | -128.1     | 14.3                         | 4.386                   | Clear to slightly<br>turbid, no odour<br>or sheen noted |
| GG05    | 21.9      | 9.77 | -98.6      | 0.62                         | 1.397                   | no odour or<br>sheen noted                              |
| GG06    | 23.8      | 8.87 | -71.2      | 0.08                         | 1.255                   | Clear to slightly<br>turbid, no odour<br>or sheen noted |
| GG09    | 20.9      | 8.02 | -119.4     | 0.34                         | 0.869                   | Clear to turbid,<br>no odour or<br>sheen noted          |

#### Table 9.2 Groundwater Physiochemical Parameters

Groundwater conditions were slightly alkaline to alkaline (pH 8.02 to 9.77). Reducing conditions were recorded in all groundwater wells. Electrical conductivity ranged between 0.869 mS/cm and 4.386 mS/cm, indicating brackish groundwater conditions.

### 8.2.2 Groundwater Results

Groundwater results from sampled wells GG01, GG05, GG06 and GG09, were either below laboratory detection limits or adopted criteria, with the following exceptions:

- Copper in GG01, GG05 and GG06 at concentrations ranging between 0.002 mg/L and 0.008 mg/L, above the adopted ANZG (2018) marine 95% protection default guideline value of 0.0013 mg/L.
- Ammonia in GG01 and GG05 at concentrations of 5.3 mg/L and 2.3 mg/L, respectively, above the adopted ANZG (2018) marine 95% protection default guideline value of 0.91 mg/L.

Metals concentrations are considered to be representative of background concentrations for heavily urbanised areas of Sydney.

The presence of ammonia can be attributed to either landfill conditions in the wider area or from the degradation of buried vegetation as the area was formerly covered in mangroves. It is noted that higher pH levels result in higher ammonia concentrations, and lower pH levels result in higher ammonium concentrations, with the concentrations of ammonia and ammonium directly proportional to pH.. Above pH 9 most ammonium converts to ammonia. Stabilised pH in GG01 and GG05, wells with the highest ammonia concentrations, were pH 9.42 and 9.77 respectively. This suggests that the higher ammonia concentrations are attributable to the higher pH (>9) in these locations, with concentrations reflective of localised pH conditions rather than reflecting conditions throughout groundwater at the site.

Per-and-poly fluoroalkyl substances (PFAS) were detected in all sampled wells. Concentrations were comparable between all tested locations (PFOS  $0.13 - 0.51 \mu g/L$ , PFOA  $0.02 - 0.08 \mu g/L$ , PFHxS  $0.02 - 0.12 \mu g/L$ ), including upgradient (GG09) and downgradient (GG01) locations. This suggests that migration of PFAS onto the site from adjoining areas is likely and that the recorded PFAS concentrations in groundwater are likely representative of regional conditions given that much of the peninsula area is former landfill.



#### 8.2.3 Groundwater Continuous SWL Results

A level logger and barometric pressure logger were deployed in well GG2 on 22 November 2021 at 10:00am and retrieved on 8 December 2021 at 1:30pm, with a total deployment period of two weeks and three days. Raw pressure data was converted to produce submergence levels, which were then adjusted to provide standing water level (SWL) values. SWL ranged between 1.87 mbgl (22.11.21, 10:00am) and 1.64 mbgl (30.11.21, 12:30pm). Groundwater sampling on 1 December 2021 required temporary removal of the level logger, which resulted in several non-representative readings, which were removed from the dataset for the purpose of chart generation.

Comparison of continuous SWL data from against tidal data for Wentworth Point (Transport for NSW Tides 2021-2022 chart, converted for location within Paramatta River) did not reveal any obvious tidal influence on groundwater at the site, however comparison against daily rainfall (BOM Sydney Olympic Park Weather Station) did identify that SWL decrease (i.e. water level rose) following rainfall events, and decrease (i.e. water level fell) during subsequent periods of now rainfall. Charts comparing SWL against tides for Wentworth Point are presented in Appendix B.

### 8.3 Ground Gas Observations and Results

The following section presents an overview of field observations and weather conditions encountered during the ground gas monitoring activities. Gas monitoring results are provided in Appendix B and calibration certificates are presented in Appendix D.

#### 8.3.1 Atmospheric Conditions

Falling atmospheric pressure may be associated with movement/egress of gas from the ground surface. As recommended in NSW EPA (2020), a worst-case meteorological scenario is to be determined by a fifth percentile three-hour pressure decrease based on a two-year (April 2019 to March 2021) data set for Bureau of Meteorology (BOM) weather station at Sydney Airport (No.066037). The data identifies a pressure drop of 2.3mb in a 3-hour period.

Landfill gas monitoring using hand-held instruments was conducted on 16 November 2021. Daily weather observations are readily available online and are presented for 9am and 3pm (a 6-hour period) in Appendix E and thus monitoring for the worst-case scenario event was to be timed in an effort to achieve a 4.6mb or greater drop over a 6-hour period for hand-held monitoring. Atmospheric conditions during continuous monitoring were able to be assessed against a 2.3mb decrease over a 3-hour due to the availability of hourly data.

#### Hand-held Landfill Gas Monitoring:

12:00pm to 2:00pm on 16 November 2021: 9am (1015.9mb) and 3pm (1017.1mb) = 1.2 mb increase.

Worst-case scenario conditions did not eventuate during the hand-held monitoring round.

#### **Continuous Monitoring:**

A Gas Flux unit was deployed in well GG1 on 16 November 2021at 4:50pm and retrieved on 6 January 2022 at 1:15pm, with a total deployment period of seven weeks and two days. The Gas Flux unit collected continuous (hourly) data for methane, carbon dioxide, oxygen, carbon monoxide, hydrogen sulfide, borehole flow and barometric pressure. It is noted that during the deployment of the Gas Flux unit in well GG1, 'worst-case meteorological scenario' conditions eventuated on several occasions (based on site specific 3-hourly barometric pressure data collected by the Gas Flux unit). The greatest five pressure drops are summarised below:

• 18 November 2021 – 11:58pm (1020.79mb) and 15:03pm (1017.43) = 3.36 mb decrease.

- 19 November 2021 12:19am (1015.51 mb) and 3:23am (1011.67 mb) = 3.84 mb decrease.
- 25 November 2021 12:15pm (1012.15mb) and 3:20pm (1008.79mb) = 3.36 mb decrease.
- 7 December 2021 11:31am (1014.07mb) and 2:35pm (1010.71mb) = 3.36 mb decrease.
- 9 December 2021 12:27am (1015.51mb) and 3:32am (1011.19mb) = 4.32 mb decrease.

Pressure drops recorded by the Gas Flux unit were generally consistent with those reported by BOM weather station at Sydney Airport.

#### 8.3.2 Ground Gas Results

A summary of landfill gas monitoring results collected as part of the DGI is presented in Appendix B. The results can be summarised as follows:

- Standing water levels were recorded between 0.49m bgl (GG10 and GG12) and 1.94m bgl (GG2). No full flooding of response zones was recorded, with unflooded response zones ranging between 0.14m (GG12) and 1.24m (GG2), enabling screening of ground gas conditions in the surrounding geology for all monitored wells.
- Methane concentrations above the adopted NSW (2020) criteria of 1% v/v were recorded in GG1 (4.2%v/v), GG4 (2.3%v/v) and GG10 (15.1%v/v). Methane concentrations are summarised below in Table 9.4.
- Borehole gas flow ranged between <0.1 and 0.3 L/hr (GG3 and GG10). A negative flow of -0.6 L/hr was also noted in GG1.</li>
- Carbon concentrations above the adopted NSW (2020) criteria of 5%v/v were recorded in GG1 (6.0%v/v), GG3 (7.2%v/v), GG4 (6.0%v/v), GG5 (6.2%v/v) and GG6 (5.6%v/v). Carbon dioxide concentrations are summarised below in Table 9.4.
- Oxygen concentrations below the minimum 19.5%v/v guideline presented in AS2865 1995 Safe Working in a Confined Space were recorded in all wells. Oxygen concentrations are summarised below in Table 9.4.
- Hydrogen sulfide was recorded at concentrations ranging from <1 to 3 ppm, below the SafeWork NSW (2018) TWA screening criteria of 10 ppm.
- Carbon monoxide was recorded at concentrations ranging from <1 to 3 ppm below the SafeWork NSW (2018) TWA screening criteria of 30 ppm.
- The Gas Flux unit deployed in well GG1 successfully collected hourly ground gas data between 16 November 2021 and 6 January 2021. A graphical representation of the results is presented in Appendix B and the spreadsheet of downloaded data can be provided on request. Concentrations of methane ranged from below detection limits (<0.01%v/v) to 2.74%v/v. Methane concentrations peaked in the period immediately following deployment and gradually decreased over the following two days before stabilising at <0.01%v/v by 12:00pm on 18 November 2021. Between 18 November 2021 and the end of the deployment period (6 January 2021), concentrations fluctuated between <0.01%v/v and 0.05%v/v.</li>
- Following the stabilisation period (2 days after deployment), carbon dioxide ranged between 7.39%v/v and 10.52%v/v, oxygen ranged between 0.60%v/v and 2.74%v/v, hydrogen sulfide ranged between <0.01 and 0.67ppm, and carbon monoxide ranged between 0.01 and 1.62ppm.</li>
- Borehole flow in GG01 ranged between 0 L/hr and 8.9 L/hr, with the maximum flow recorded on 18 November 2021 at 3pm during a worst-case scenario pressure drop event (3.36mb decrease over 3 hours).
- No odour was noted during monitoring activities.

#### Table 9.4: Ground Gas Results Summary

# 

| Well ID                | Methane<br>(%v/v) | Carbon Dioxide<br>(%v/v) | Oxygen<br>(%v/v) | Borehole Flow<br>(L/hr) |
|------------------------|-------------------|--------------------------|------------------|-------------------------|
| Adopted Criteria       | 1%v/v             | 5%v/v                    | <19.5%v/v        | N/A                     |
| GG01                   | 4.2               | 6                        | 0.8              | -0.6                    |
| GG01 (Continuous Max.) | 2.7               | 10.5                     | 0.6              | 8.9                     |
| GG02                   | 0.8               | 4.7                      | 0                | 0.1                     |
| GG03                   | 0                 | 7.2                      | 6.2              | 0.3                     |
| GG04                   | 2.3               | 6                        | 0                | 0.1                     |
| GG05                   | 0                 | 6.2                      | 0.1              | 0                       |
| GG06                   | 0                 | 5.6                      | 0                | 0                       |
| GG07                   | 0.5               | 5.6                      | 0                | 0.2                     |
| GG08                   | 0.1               | 2                        | 0                | 0                       |
| GG09                   | 0.3               | 2.7                      | 0                | 0                       |
| GG10                   | 15.1              | 0.1                      | 0.1              | 0.3                     |
| GG11                   |                   | No                       | t Monitored      |                         |
| GG12                   | 0                 | 4.6                      | 3.5              | 0.1                     |



### 9 Conceptual Site Model

The conceptual site model (CSM) has been adapted from the PB (2015) RAP which pertains to the site exclusively, and has been updated based on the DGI findings. The CSM incorporates site setting details, measures contamination concentrations, the geology, hydrogeology and surrounding land use in order to identify potentially significant source-pathway-receptor (SPR) linkages in relation to potential risks to human health and the environment.

#### 9.1 Sources

The primary sources of the contaminants of potential concern (COPCs) were identified as the following:

- Fill material contaminated with heavy metals, benzo(a)pyrene, total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAHs) and asbestos (bonded and friable).
- Hazardous ground gases generated by underlying filled organic materials and decaying organic matter in underlying sediments, including bulk gases such as methane, carbon dioxide, carbon monoxide and hydrogen sulfide as well as volatile organic compounds (VOCs) in the form of soil vapour.
- Former petroleum / diesel storage infrastructure including Underground Storage Tanks (USTs), Mechanics Pit and Wash Bay, potentially containing or leaking total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX) and polycyclic aromatic hydrocarbons (PAHs).
- Soils comprising iron sulfides. The predominant ASS sulfidic mineral is pyrite (FeS2), an iron disulfide. The subsequent exposure of oxygen and water leads to the generation of sulfuric acid.

#### 9.2 Pathways

For an exposure to occur, a complete pathway must exist between the source of contamination and the receptor. Where the exposure pathway is incomplete, there is no exposure, and hence no risk.

An exposure pathway consists of the following elements:

- Source (e.g. spills, leaks, etc.).
- Release mechanism (e.g. leaching, volatilisation).
- Transport media (e.g. soil, groundwater, sediment, surface water, air).
- Exposure point, where the receptor comes in contact with the contamination (e.g. groundwater from an extraction bore, vapours inside a building or in ambient air).
- Exposure route (e.g. inhalation, ingestion, dermal contact).

Where the pathway for chemical from the source to the receptor is incomplete, there is no incremental risk due to the presence of that contamination.

#### **Preferential Pathways**

Preferential migration pathways typically includes more permeable granular material around existing sub-surface utilities that allows greater migration of impacted groundwater or soil gas / vapour when compared to the site geology. Preferential migration pathways for hazardous ground gas ingress into proposed buildings may include areas around foundations or service entries. The



potential effects of preferential migration pathways will need to be considered in any subsequent stages of assessment as more site specific data becomes available.

A review of the possible exposure pathways was provided in the PB (2015) RAP and was based on the proposed future use as high density residential development. This has been adapted for the site which is proposed for secondary school and outdoor open space uses as defined in NEPM (2013).

The primary pathways by which future site users could be exposed to the source of contamination on the site are considered to be:

- Direct contact (including accidental ingestion) with contaminated soil
- Inhalation of dust derived from contaminated soil (including asbestos fibres)
- Inhalation or explosion of hazardous ground gas during earthworks or due to accumulation in enclosed spaces.
- Migration of hazardous ground gases through potential preferential pathways in the fill into future site buildings, and subsequent inhalation due to accumulation in enclosed spaces or potential ignition and explosion.

The potential pathway by which the environment could be exposed to contamination is via the lateral migration of dissolved contaminants in shallow groundwater and subsequent discharge to surface water environment. Excavation of soil comprising iron sulfides may lead to the generation of sulfuric acid and leaching of metals which may be released to the nearby waterbodies.

#### 9.3 Receptors

Given the proposed high school land use, the receptors of interest (onsite) include:

- Site users including students, staff and visitors
- Site workers (during bulk earthworks phase)
- Intrusive maintenance workers (post development)
- Users of adjacent areas, including the existing school playing field to the west and future playing field proposed to be located to the north although this area will be entirely capped
- Eventual site vegetation / plants as part of landscaping at the site
- Groundwater below the site which is considered to flow towards Parramatta River (ecological receptors) which is located to the north of the site
- Homebush Bay which is located to the east of the site (ecological receptors)

With respect to human receptors, direct contact with site soils following completion and opening of the school is considered very unlikely for site users (students, staff and visitors) and users of adjacent areas under normal circumstances, and thus no complete SPR linkage is considered to exist.

Hazardous ground gas pathways, including preferential pathways, will be considered as part of the design and implementation of gas mitigation measures. In line with the NSW (2020) Hazardous Ground Gas Guidelines, such gas mitigation measures are required to include multiple lines of contingency to prevent ingress of gas into site buildings, with built-in conservatism proportionate to the risk-rating. The eventual gas mitigation system will also be subject to verification testing and third-party audit as part of the validation process.

Onsite ecological receptors (vegetation/plants forming part of eventual landscaping at the site) are considered unlikely to have direct contact with potential contamination in site soils or groundwater



given that they would be planted in imported growing medium underlain by up to 2m of VENM, both of which will be validated against ecological criteria prior to import to the site.

With respect to the surface water receptors, Parramatta River and Homebush Bay, the surface water assessment completed by GHD in 2013 titled 'Report for Homebush Bay West Surface Water Investigation' concluded that there was 'no evidence of a significant pollutant linkage in respect of petroleum hydrocarbons in groundwater between the Stage 1 area and surface water quality in the adjacent Parramatta River'. Given these previous findings, that no petroleum hydrocarbon groundwater contamination has been identified in any of the tested groundwater wells including downgradient locations and the distance of over 100m between the site and Parramatta River, surface water ecosystems are not considered to have a potentially complete SPR linkage.

#### 9.4 Potentially Complete SPR Linkages

The following scenarios are considered to present potentially complete SPR linkages:

- Direct contact (including accidental ingestion) with contaminated soil for site workers (during bulk earthworks phase) and intrusive maintenance workers (post development)
- Inhalation of dust derived from contaminated soil (including asbestos fibres) and hazardous ground gas for site workers (during bulk earthworks phase) and intrusive maintenance workers (post development). Explosion risk is also presented by hazardous ground gases.
- Migration of hazardous ground gases through potential preferential pathways in the fill into future site buildings, and subsequent inhalation due to accumulation in enclosed spaces or potential ignition and explosion represents a potentially complete SPR linkage if left unmitigated, however it is noted that this pathway will be removed by the eventual landfill gas protection system required to be design for the site in accordance with NSW (2020) hazardous Ground Gas Guidelines.
- Disturbance of soil sufides with the subsequent release of acid and metals into the surface waterbodies during bulk excavation and piling works.



### 10 Discussion

Discussion of the Data Gap Investigation findings is presented below.

#### 10.1 USTs and Other Infrastructure

UST Location 1, UST Location 2 and the Former Mechanic Pit Location have been identified as areas requiring remediation due to the presence of remnant infrastructure, observations of hydrocarbon odour and sheen during test pitting, and several exceedances of adopted site suitability criteria for total recoverable hydrocarbons. Remediation requirements are outlined below in Section 11.

Preliminary waste classification of soils from these locations finds that soils currently have a classification of special waste (asbestos) - restricted solid waste due to several exceedances of CT1 criteria for benzo (a) pyrene and total petroleum hydrocarbons, and due to previous asbestos finds in the subsurface of the site. Confirmatory chemical testing including toxicity characteristic leachate procedure (TCLP) and silica gel clean up testing may lower the current waste classification of the soils to special waste (asbestos) - general solid waste (GSW) if results are favourable.

The Former Wash Bay Location was not identified as an area requiring location, with no observations of contamination made during investigation activities, and no exceedances of adopted HSL C criteria for secondary school grounds, given the wash bay area is located in a proposed school outdoor area.

#### 10.2 Groundwater

Groundwater at the site does not require remediation, with chemical results considered to be representative of regional conditions given that much of the wider peninsula comprises former landfilled areas.

#### 10.3 Ground Gas

#### **Gas Rating**

The gas screening value (GSV) using data from the DGI was calculated to be 1.34 L/hr (Max. Methane  $(15.1\% v/v) \times Max$ . BH Flow (8.9 L/hr), which gives a characteristic situation (CS) of CS3 (moderate risk). This is within the historical range for the site (CS2 to CS4) and therefore the current design assumptions for the gas mitigation system detailed in the Draft Design and Verification Plan (DVP) for CS4 can be retained.

#### **Tidal Influence**

Several charts have been generated including comparison between tidal cycle, rainfall, standing water level and ground gas concentrations at the site, which are presented in Appendix B. Ground gas concentrations (based on carbon dioxide, given that other gases were not present at concentrations high enough to provide meaningful indication of conditions) appeared to be primarily affected by diurnal effects, with no clear correlation to tidal cycles or standing water level. It is therefore concluded that tidal activity does not affect ground gas behaviour at the site.



### 11 RAP Amendments

Based on the findings of the DGI and the layout of the proposed development, Geosyntec recommends the following updates to the PB (2015) RAP for implementation during the remaining remediation and validation activities in order to make the site suitable for the proposed high school use. Validation works will be conducted in consideration of the locations of landscaped areas, proposed service trenches and piling locations, design plans for which are presented as Figures 7-9, 10 and 11, respectively.

#### 11.1 Validation Criteria Update

Given that the proposed layout of the proposed high school development has been finalised, validation criteria for BTEX and TRH (health screening levels (HSL)) specific to the location of buildings and outdoor areas can be adopted, given that NEPM (2013) allocates separate criteria for secondary school buildings as opposed to secondary school grounds (outdoor areas).

HSL validation criteria will be adopted as follows, in accordance with NEPM (2013):

- School Building Footprints: HSL A/B
- School Grounds (outdoor areas): HSL C

Proposed building footprints are shown in Figures 3, 7 and 8. All other validation criteria will remain the same as those presented in the PB (2015) RAP.

#### 11.2 Remediation of USTs and Other Infrastructure

Given the identification of former USTs and other infrastructure, an update to the PB (2015) RAP detailing specific remediation requirements for these areas is needed.

Remediation of UST Location 1, UST Location 2 and the Former Mechanic Pit Location is required as part of the main remediation works for the site based on the findings of the DGI. Remediation of these areas will include:

- Excavation of remaining infrastructure and impacted soils
- Waste classification and offsite disposal of excavated soils if unsuitable to be placed under the cap
- Validation of the remaining in-situ soils from the walls and base of the excavation
- Back-filling of the resulting excavation with validated imported fill
- Inclusion of the backfilled excavations beneath the final caping layer

Specific remediation and validation activities relating to the above (e.g. waste classification, validation of imported soils, validation of capping layer) will be conducted in accordance with the PB (2015) RAP, noting that if site-won fill soils are to be used beneath the cap, an assessment of risk towards potential receptors will also be made in addition to comparison against adopted criteria, given that the cap will act as a barrier to underlying fill soils.

#### 11.3 Validation Works Sampling and Analysis Plan

A sampling and analysis plan for these activities is presented below in Table 11.1, which has been adapted from the sampling and analysis plan for validation works presented in the Auditor Endorsed Geosyntec (2021) SAQP:

| Sampling Item                            | Validation Works - Sampling and Analysis Plan                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Pattern /                       | Spoil / cut-to-fill material for onsite reuse                                                                                                                                                                                                                                                                                                                                                  |
| Density Rationale:                       | A minimum of one sample per 100m <sup>3</sup> will be collected in order to evaluate its suitability for reuse onsite. The number of samples required are not known at this stage, as it is understood that the cut and fill plan is currently being reviewed.                                                                                                                                 |
|                                          | The number of samples required to be collected for spoil material generated via piling, trenching and/or excavation works for the retention basins cannot be determined at this stage, as the volumes of material are unknown. However, the proposed sampling frequency of 1:100m <sup>3</sup> is considered to be adequate to determine reuse suitability.                                    |
|                                          | VENM/ENM material                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | A minimum frequency of three samples for volumes less than 500 tonnes to verify the quality of the material, which aligns with the NSW EPA (2014) Excavated Natural Material Order.                                                                                                                                                                                                            |
|                                          | Waste Classification                                                                                                                                                                                                                                                                                                                                                                           |
|                                          | Materials that require offsite disposal will have one sample collected per source type (if there are distinct sources), or one sample per 250m <sup>3</sup> subject to a minimum of three samples.                                                                                                                                                                                             |
|                                          | For soil stockpiles with a volume less than 200m <sup>3</sup> , the sampling frequency will be one sample per 25m <sup>3</sup> in accordance with the NEPM (2013).                                                                                                                                                                                                                             |
|                                          | USTs and Mechanics Pit                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | As part of validation of the USTs and Mechanics Pit, samples will be collected from the walls and base of the excavation following removal works in accordance with NSW EPA technical guidelines.                                                                                                                                                                                              |
| Soil Sampling<br>Devices /<br>Techniques | Samples will be collected by appropriately trained and experienced Geosyntec Environmental Scientists in accordance with standard operating procedures based on NEPM (2013), AS4482.1-2005, AS4482.2-1999 and other relevant guidelines made or approved by NSW EPA as appropriate.                                                                                                            |
|                                          | Soil samples will be collected using clean nitrile gloves taken from material not in direct contact with the sampling equipment e.g. excavator bucket. Soil samples will be collected by gloved hand from stockpiled materials.                                                                                                                                                                |
| Sampling Depths                          | Given the proposed bulk excavation works, it is anticipated that soil samples will mostly collect from either site surface or from stockpiles. Excavated spoil generated from piling is also likely to be sampled on site surface.                                                                                                                                                             |
| Selection of Samples<br>for Analysis:    | Soil that is observed having visual or olfactory indicators of contamination and/or have PID screening values above background levels will be selected. In lieu of soil displaying the above characteristics, a representative sample will be obtained as outlined in the sampling density rationale above.                                                                                    |
| Sample Splitting<br>Techniques           | Soil samples will be split into two parts with minimal disturbance or mixing to reduce loss of volatiles.<br>One part will form the primary sample and the second part will be placed into a zip lock bag for PID<br>screening. Where a duplicate or triplicate sample is required, a similar procedure will be adopted but<br>the sample will be split into three or four parts respectively. |
| Sample Container<br>Selection:           | Soil and groundwater sample containers will be supplied by the laboratory and generally comprise glass jars / bottles with integrated Teflon seals to prevent loss of volatiles. Approved containers will be used for collection of groundwater PFAS samples.                                                                                                                                  |
| Decontamination                          | Where possible disposable / dedicated sampling equipment will be used.                                                                                                                                                                                                                                                                                                                         |
| Procedures:                              | Reusable sampling equipment will be decontaminated between sampling events. The decontamination procedure will comprise brushing off loose soil / debris; scrubbing using a Decon 90 solution; rinsing with water; and, drying.                                                                                                                                                                |
| Sample Handling<br>and Preservation      | Soil samples will be logged using the USCS and details of any discolouration, staining, odours or other indicators of contamination noted.                                                                                                                                                                                                                                                     |
| Procedures:                              | Samples will be placed into laboratory supplied containers using a clean pair of nitrile gloves.                                                                                                                                                                                                                                                                                               |
|                                          | Acid sulfate soil samples will be placed in snap lock bags and the air removed.                                                                                                                                                                                                                                                                                                                |
|                                          | Asbestos samples will be placed in double snap lock bags provided by laboratory.                                                                                                                                                                                                                                                                                                               |
|                                          | All sampling containers will be labelled with the project number, date, sampler initials and sample depth.                                                                                                                                                                                                                                                                                     |
|                                          | The containers will be placed into a chilled Esky and transported to the laboratory under chain of custody procedures to ensure that extraction can occur within holding times.                                                                                                                                                                                                                |

#### Table 11.1 Validation Works – Sampling and Analysis Plan



#### Sampling Item Validation Works - Sampling and Analysis Plan

Field Calibration and<br/>Screening ProtocolsCalibrated field instruments will be supplied by an environmental equipment supplier.<br/>Measurement of background concentrations in ambient air will be conducted prior to each reading to<br/>account for sensor drift. The result will be record on a field data sheet along with date, location<br/>details (batch details) and depth.For PID sampling, a small hole will be punched into the zip lock bag sample. The tip of the PID will<br/>be inserted into the bag and the maximum concentration noted on the borehole record sheet.

#### 11.4 Reinstatement of Marker and Capping Layer Following Excavations

There are numerous cases in which excavation through the temporary capping and marker layer placed as part of the early works may be required during the main remediation works, such as services installation, for piling and remediation of the USTs and Mechanics Pit. Such excavations through the capping and marker layer may cause underlying potentially contaminated soils to be exposed. The following management measures should be implemented where excavations breach the capping and marker layer:

- Soils will be managed in accordance with Geosyntec (2021) CEMP Environmental Controls (Section 4 of CEMP), including appropriate stockpiling and classification of soils to be disposed of offsite.
- When the purpose of the excavation is completed, and any associated validation sampling has been conducted the marker layer and cap must be reinstated to meet the requirements of the capping strategy presented in the PB (2015) RAP, including placement of new marker with overlapping to provide continuity with adjoining marker, and backfilling with VENM.
- Where piles are used, no reinstatement will be required as the pile will occupy the diameter of the hole drilled with direct connection to adjoining marker layer.
- At the completion of final capping works, a final site surface survey will be conducted which will enable verification that the cap meets the minimum required thickness.

#### 11.5 Management of Previously Placed Cap in the Western Portion of the Site

The minimum capping thickness of 500mm was exceeded in the western portion of the site along the proposed roadway (Ridge Road) as part of the Zoic 2019-2020 remediation works. It was understood at that time that the surplus imported VENM would be used for capping across the remainder of the site. Given that material from Ridge Road will be moved to achieve this, it is essential that management measures are implemented to ensure the requirement of a 500mm cap is maintained within in this previously validated area.

#### 11.5.1 Use of Surplus Material During Early Works

The use of this surplus material commenced with the early works, with spreading across the remainder of the site to form a temporary cap to facilitate the main remediation works (as documented in the Geosyntec (2022) Interim Validation Report). During the scraping of surplus material from Ridge Road and placement across other areas of the site as part of the recent early works, care was taken to ensure that sufficient cap remained in the previously validated Ridge Road portion, with the level of Ridge Road still notably higher than the surrounding areas of the site.



#### 11.5.2 Management of Previously Placed Cap During Main Remediation Works

There is no intention to excavate through the existing cap in the previously validated western portion of the site and therefore the integrity of the previously placed is unlikely to be compromised as part of planned remediation activities. However, in the event that excavations are required in this area, the procedures outlined above in Section 11.3 must be implemented to ensure that the remedial requirements presented in the PB (2014) RAP are still met, and the cap in the western portion of the site is not compromised. At the completion of final capping works, final survey data from the western portion of the site will be compared to Zoic (2019-2020) marker layer survey data in this area to ensure that a minimum 500mm of cap remains at the completion of remedial works.

#### **11.6 Ground Gas Mitigation**

Ground gas risks at the site are to be managed by the ground gas protection measures proposed to be incorporated into the school development. The remediation strategy items in the PB (2015) RAP relating to the Stage 1 area which includes the site currently only refers to levelling and capping activities. Ground gas protection measures are discussed for buildings proposed for the Stage 2 area, but not Stage 1 where the site is located, given that the end use of the site had not yet been determined at that time. An update to the PB (2015) RAP discussing the proposed ground gas mitigation system for the development is therefore required.

Geosyntec has prepared a draft Ground Gas Protection System (GGPS) Design and Verification Plan (DVP) for the site which includes design assumptions in line with the characteristic situation CS4 which was previously generated for the site, and confirmed to be appropriate by the DGI findings. The DVP is currently undergoing review by the Auditor. Once Auditor endorsement has been obtained, the DVP will be finalised and implemented. GGPS measures will be incorporated into the construction of the school buildings and the system will be validated in accordance with the DVP. Validation of the system will be documented in a separate GGPS validation report. At completion of the school grounds excluding the building footprints and one for the GGPS.

Following remediation and validation activities, a long term environmental management plan (EMP) will be prepared for the site which will document ongoing management requirements for the entire site including the GGPS.

#### 11.7 Management Plan

Once the entire site has been remediated in accordance with the PB (2015) RAP and this RAP Addendum and has achieved Auditor sign off, a Long-Term Environmental Management Plan (LTEMP) is required for the ongoing site management.

The LTEMP must include as a minimum, a background of site contamination history, outline of remediation works completed, provisions/protocols for excavation within the cap, provisions/protocol for excavation below the marker layer, and provisions/protocols for any environmental monitoring.

#### 11.8 Conclusion

On the basis of the DGI results, the site can be made suitable for the proposed high school development, providing that the requirements of the 2015 PB (2015) RAP and this RAP Addendum are implemented.



### 12 References

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

AS 4482 (1999) Guide to the sampling and investigation of potentially contaminated soil. Standards Australia, Sydney.

HEPA (2020) PFAS National Environmental Management Plan, Version 2.0, January 2020 [NEMP 2.0].

NEPM (2013) National Environment Protection (Assessment of Site Contamination) Measure, Schedule A and Schedules B(1)-B(9). National Environment Protection Council, Adelaide.

NHMRC/NRMMC (2011) Australian Drinking Water Guidelines. National Health and Medical Research Council and National Resource Management Ministerial Council of Australia and New Zealand.

NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. NSW EPA, Sydney.

NSW EPA (2014) NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste

NSW EPA (2015) Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997. NSW DECC, Sydney.

NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd edition). NSW EPA, Sydney.

NSW EPA (2020) Consultants Reporting on Contaminated Land - Contaminated Land Guidelines.

WA DoH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.



### 13 Limitations

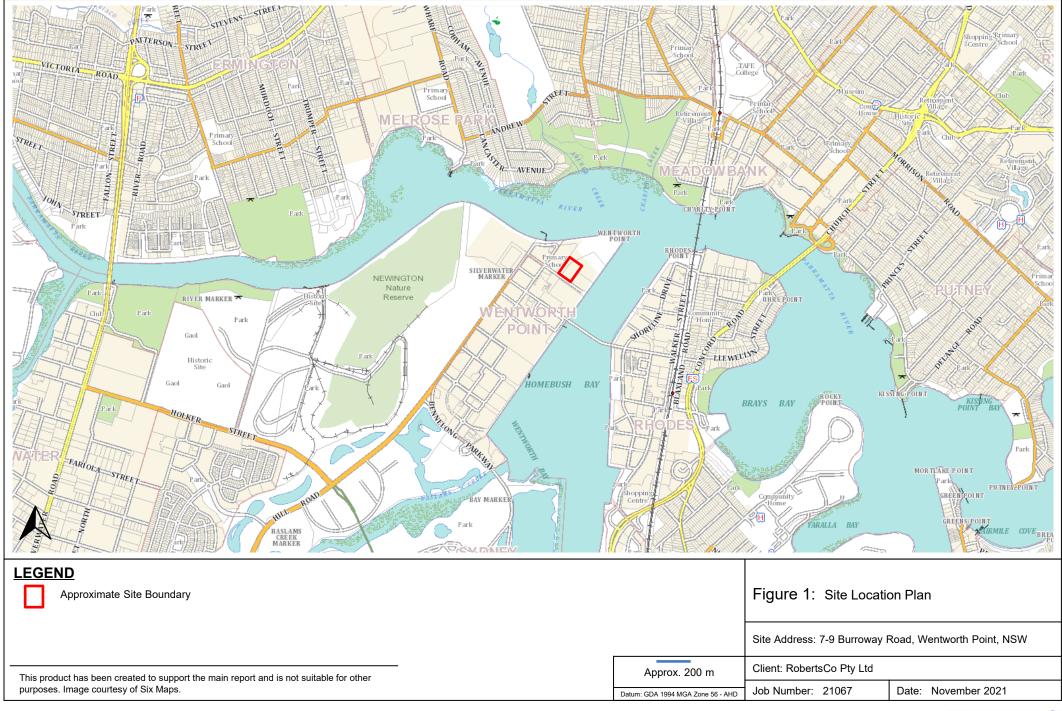
This report has been prepared by Geosyntec Consultants Pty Ltd ("Geosyntec") for use by the Client who commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the Client and other parties. The findings of this report are based on the scope of work outlined in Section 1. The report has been prepared specifically for the Client for the purposes of the commission, and use by any explicitly nominated third party in the agreement between Geosyntec and the Client. No warranties, express or implied, are offered to any third parties and no liability will be accepted for use or interpretation of this report by any third party (other than where specifically nominated in an agreement with the Client).

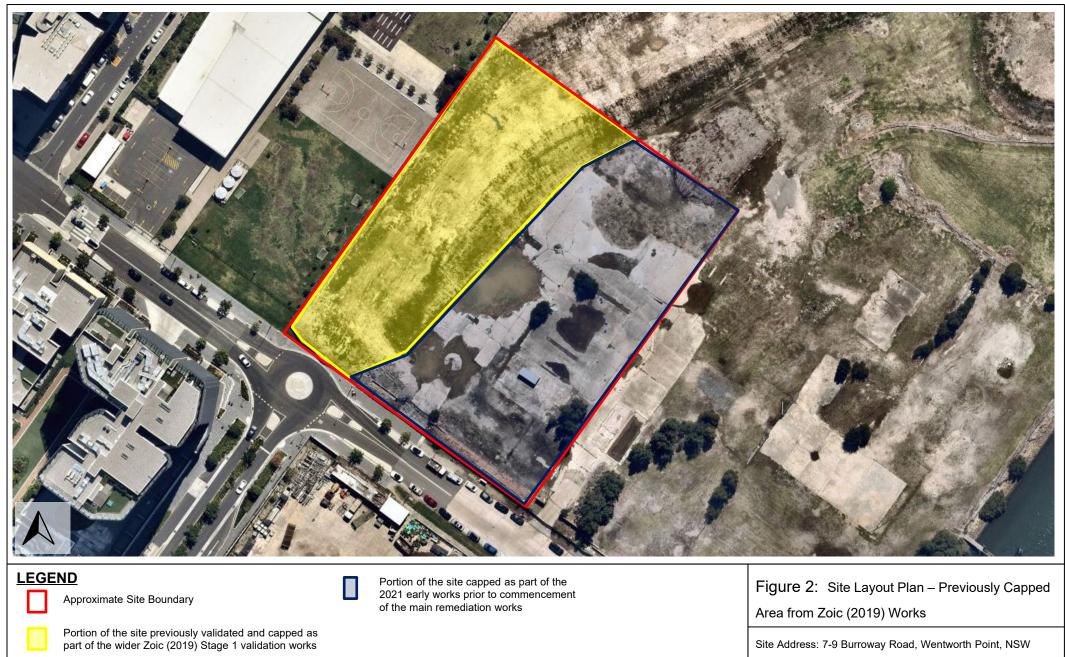
This report relates to only this project and all results, conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose. This report should not be reproduced without prior approval by the Client, or amended in any way without prior written approval by Geosyntec.

Geosyntec's assessment was limited strictly to identifying environmental conditions associated with the subject property area as identified in the scope of work and does not include evaluation of any other issues.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigation.

This report does not comment on any regulatory obligations based on the findings. This report relates only to the objectives stated and does not relate to any other work conducted for the Client.


The absence of any identified hazardous or toxic materials on the site should not be interpreted as a guarantee that such materials do not exist on the site.

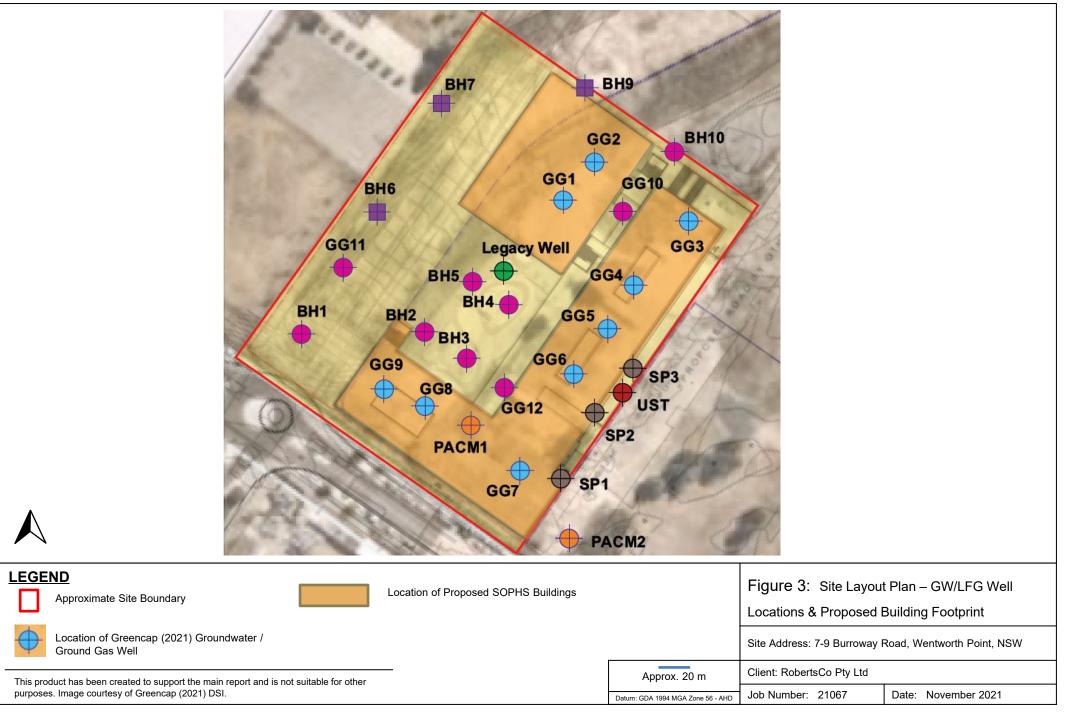

All conclusions regarding the site are the professional opinions of the Geosyntec personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, Geosyntec has not independently verified and assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of Geosyntec, or developments resulting from situations outside the scope of this project.

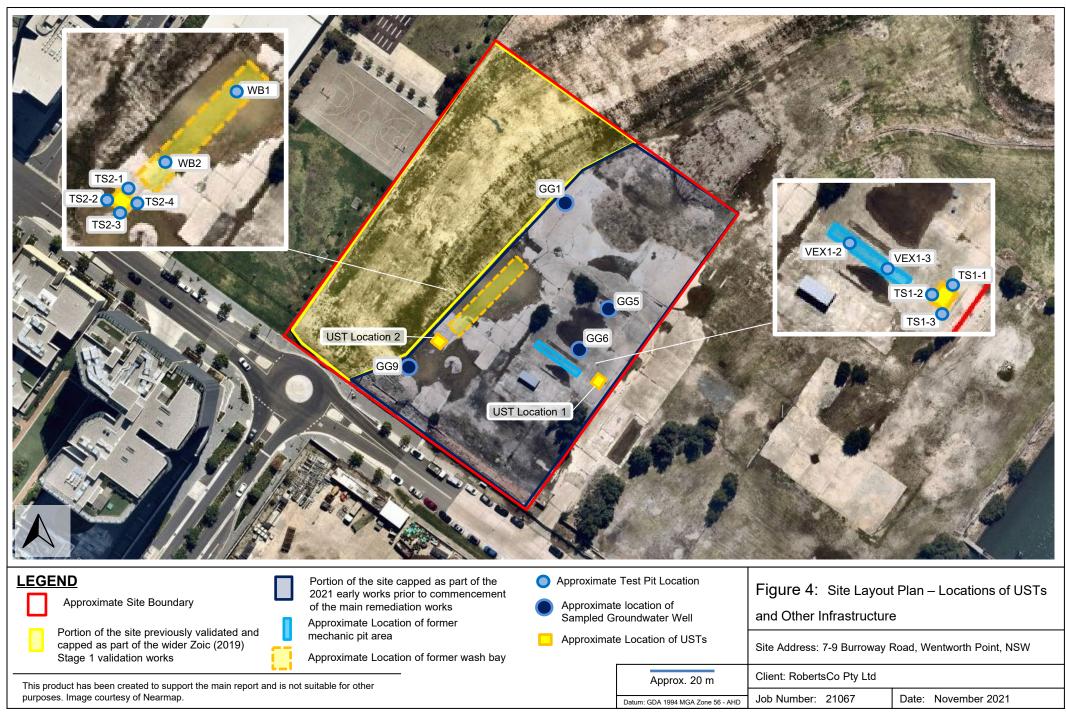
Geosyntec is not engaged in environmental assessment and reporting for the purpose of advertising sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity purposes. The Client acknowledges that this report is for its exclusive use.

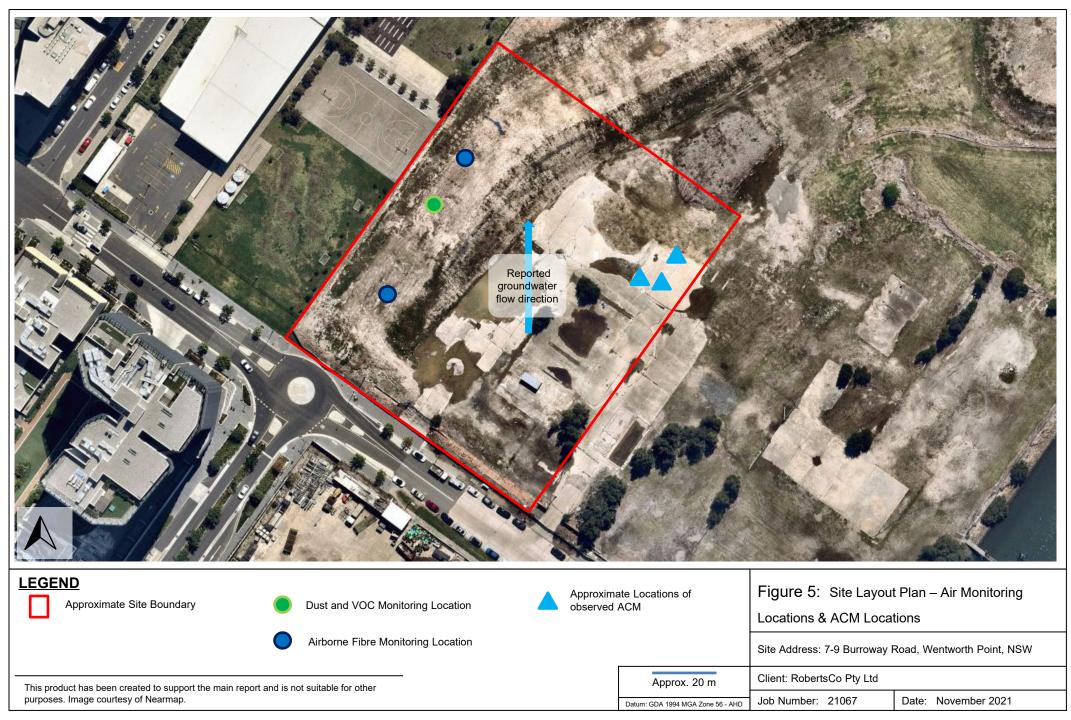


## Appendix A Figures







This product has been created to support the main report and is not suitable for other purposes. Image courtesy of Nearmap.


 Approx. 20 m
 Client: RobertsCo Pty Ltd

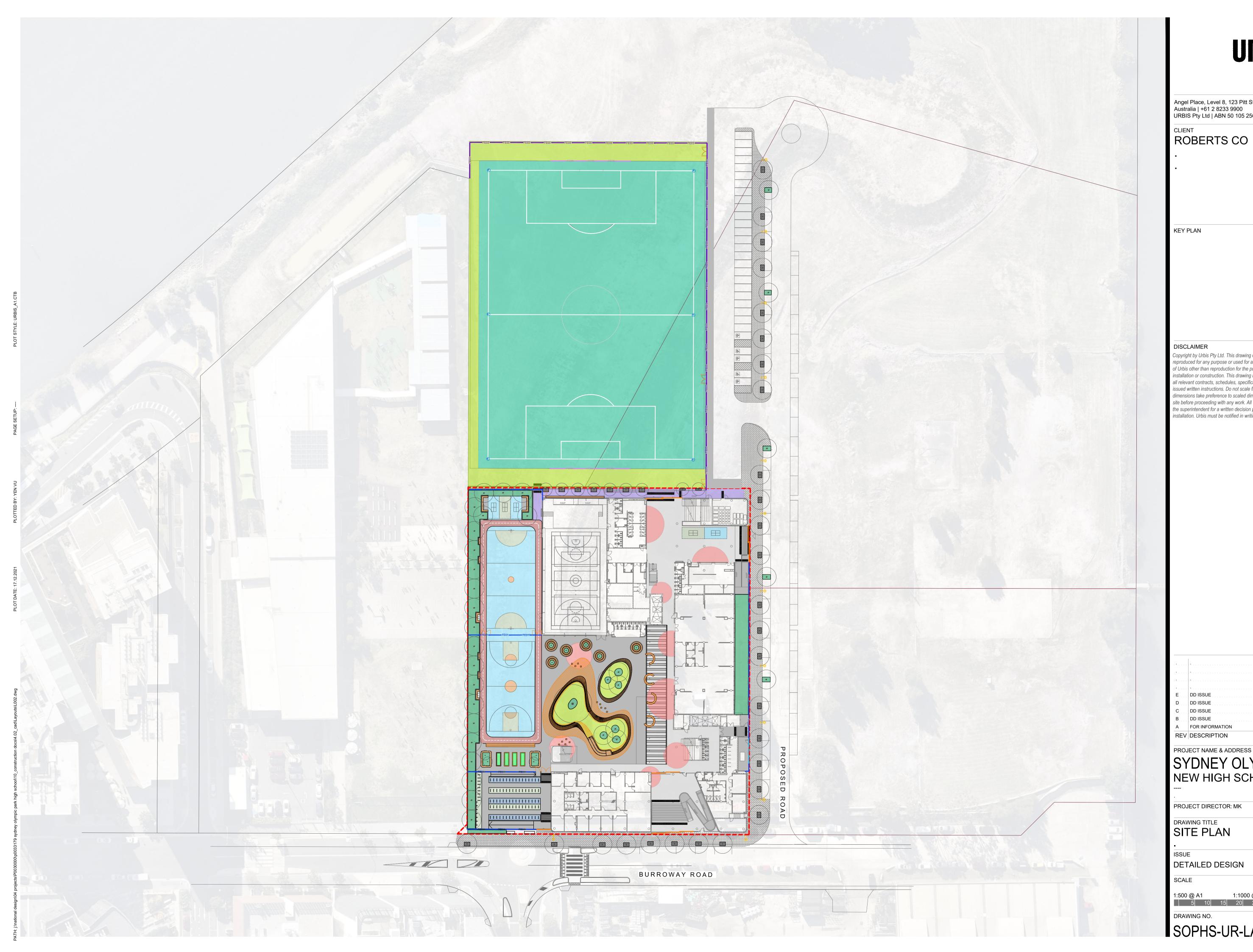
 Datum: GDA 1994 MGA Zone 56 - AHD
 Job Number: 21067
 Date: November 2021

Geosyntec<sup>D</sup>










Site Address: 7-9 Burroway Road, Wentworth Point, NSW

This product has been created to support the main report and is not suitable for other purposes. Image courtesy of Nearmap.

| Approx. 20 m                      | Client: RobertsCo Pty Ltd |                     |
|-----------------------------------|---------------------------|---------------------|
| Datum: GDA 1994 MGA Zone 56 - AHD | Job Number: 21067         | Date: November 2021 |

## Geosyntec<sup>▷</sup>





1:500 @ A1 1:1000 @ A3

SCALE

ISSUE DETAILED DESIGN

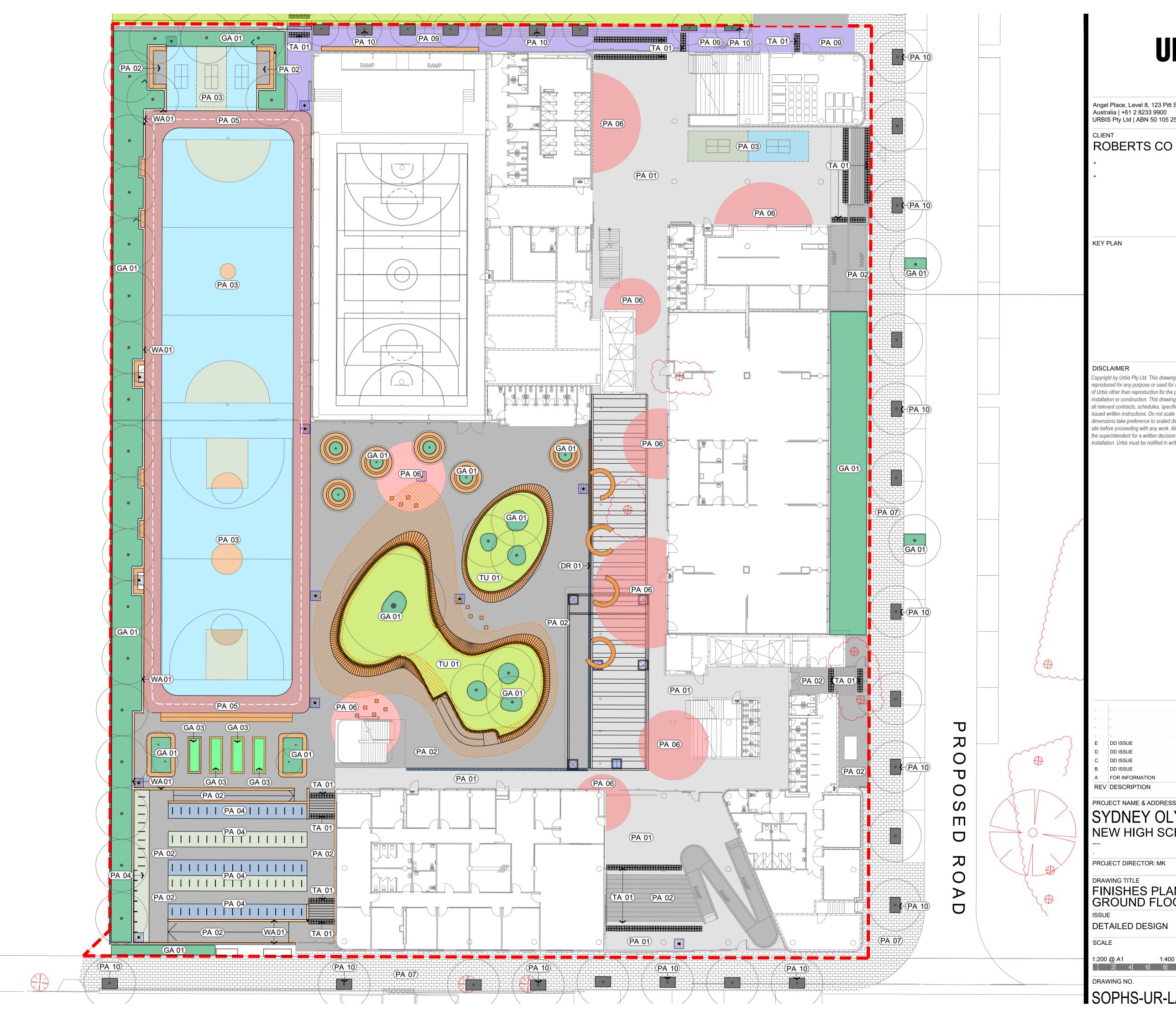
DRAWING TITLE

PROJECT DIRECTOR: MK

## PROJECT NAME & ADDRESS SYDNEY OLYMPIC PARK NEW HIGH SCHOOL


PROJECT NO.

P0033179


|            |                 | ·     |             | • • • • • • • • • |
|------------|-----------------|-------|-------------|-------------------|
|            |                 | ••••• | • • • • • • | •                 |
|            |                 | ·     |             | •                 |
|            |                 | · ·   | • • • • •   | •                 |
| . <b>E</b> | DD ISSUE        | YV.   | MK          | 17/12/2021        |
| . <b>D</b> | DD ISSUE        | YV    | MK          | 03/12/2021        |
| C          | DD ISSUE        | YV    | MK          | 01/12/2021        |
| B          | DD ISSUE        | YV    | MK          | 26/11/2021        |
| А          | FOR INFORMATION | YV    | MK          | 19/11/2021        |
| REV        | DESCRIPTION     | DWN   | СНК         | DATE              |
|            |                 |       |             |                   |

DISCLAIMER Copyright by Urbis Pty Ltd. This drawing or parts thereof may not be reproduced for any purpose or used for another project without the consent of Urbis other than reproduction for the purposes of actual ordering, supply, installation or construction. This drawing must be read in conjunction with all relevant contracts, schedules, specifications, drawings and any other issued written instructions. Do not scale from drawings. Written figured dimensions take preference to scaled dimension and must be verified on site before proceeding with any work. All discrepancies must be referred to the superintendent for a written decision prior to ordering, supply or installation. Urbis must be notified in writing of any discrepancies.

KEY PLAN



Angel Place, Level 8, 123 Pitt Street | Sydney NSW 2000 Australia | +61 2 8233 9900 URBIS Pty Ltd | ABN 50 105 256 228



### REVISION DRAWING NO. SOPHS-UR-LA-L0-L201 E

 
 1:200 @ A1
 1:400 @ A3

 2
 4

 6
 8

 10 m
 1:400 @ A3

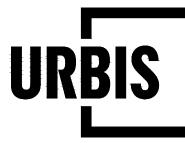
SCALE

DETAILED DESIGN

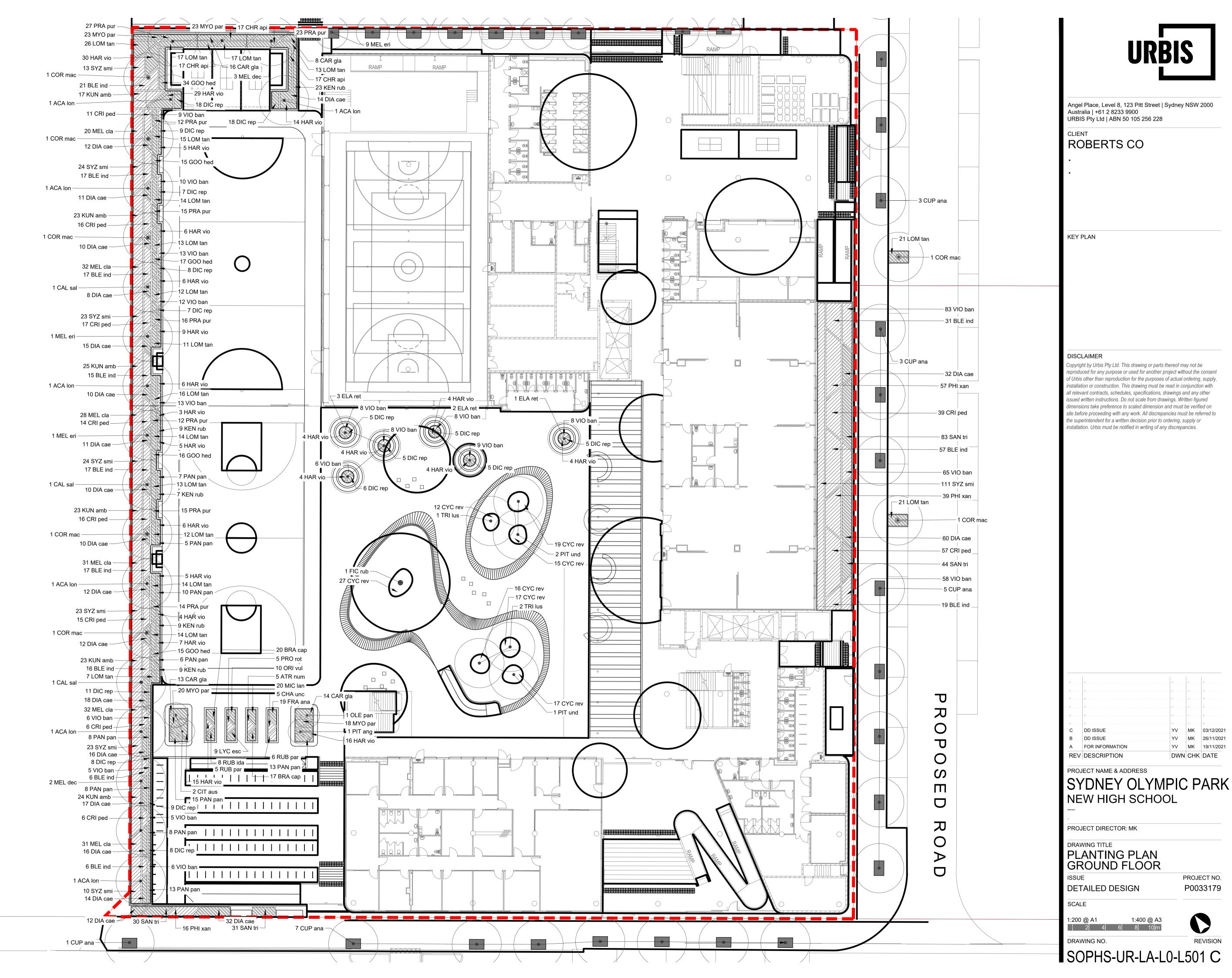
PROJECT NO. P0033179

ISSUE

FINISHES PLAN GROUND FLOOR


PROJECT DIRECTOR: MK

## PROJECT NAME & ADDRESS SYDNEY OLYMPIC PARK NEW HIGH SCHOOL


| • • • • • | ••••••••••••••••••••••••••••••••••••••• | •••••         | • • • • • | · · · · · · · · · |
|-----------|-----------------------------------------|---------------|-----------|-------------------|
| • • • • • | ••••••••••••••••••••••••••••••••••••••• | · · · · · · · | • • • • • | • • • • • • • • • |
| • • • • • | ••••••••••••••••••••••••••••••••••••••• | ·· · · · · ·  |           | • • • • • • • • • |
| • • • • • |                                         | ·· · · · · ·  | • • • • • | • • • • • • • • • |
| E,        | DD ISSUE                                | YV            | MK        | 17/12/2021        |
| <b>D</b>  | DD ISSUE                                | YV.           | MK        | 03/12/2021        |
| C         | DD ISSUE                                | YV.           | MK        | 01/12/2021        |
| B         | DD ISSUE                                | YV.           | MK        | 26/11/2021        |
| А         | FOR INFORMATION                         | YV            | MK        | 19/11/2021        |
| REV       | DESCRIPTION                             | DWN           | СНК       | DATE              |
|           |                                         |               |           |                   |

Copyright by Urbis Pty Ltd. This drawing or parts thereof may not be reproduced for any purpose or used for another project without the consent of Urbis other than reproduction for the purposes of actual ordering, supply, installation or construction. This drawing must be read in conjunction with all relevant contracts, schedules, specifications, drawings and any other issued written instructions. Do not scale from drawings. Written figured dimensions take preference to scaled dimension and must be verified on site before proceeding with any work. All discrepancies must be referred to the superintendent for a written decision prior to ordering, supply or installation. Urbis must be notified in writing of any discrepancies.

## DISCLAIMER



Angel Place, Level 8, 123 Pitt Street | Sydney NSW 2000 Australia | +61 2 8233 9900 URBIS Pty Ltd | ABN 50 105 256 228



### REVISION DRAWING NO. SOPHS-UR-LA-L0-L501 C

1:200 @ A1 1:400 @ A3 2 4 6 8 10m

SCALE

ISSUE DETAILED DESIGN PROJECT NO.

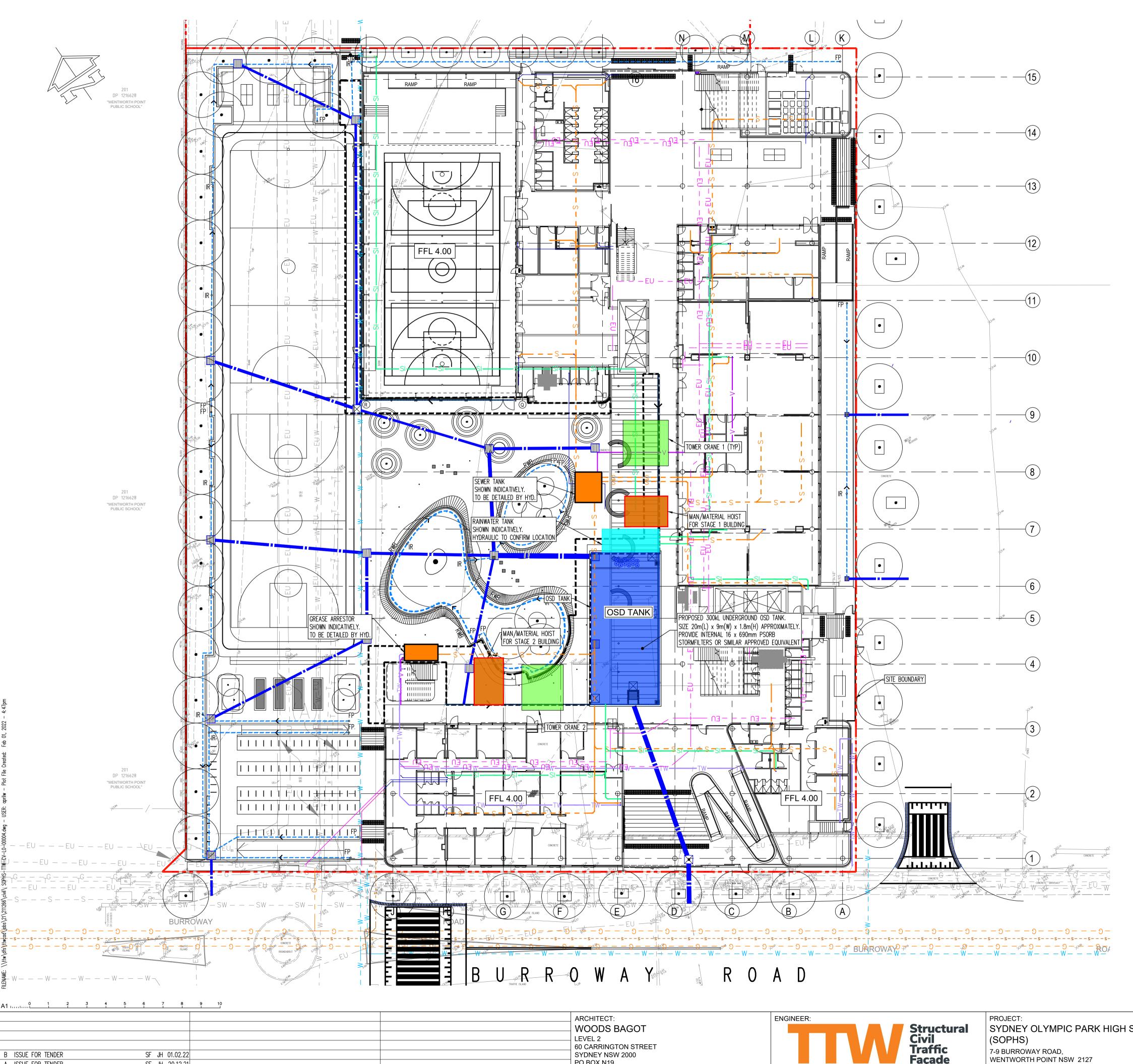
MK 03/12/2021

MK 26/11/2021

MK 19/11/2021

DWN CHK DATE

P0033179


URBIS

DRAWING TITLE PLANTING PLAN GROUND FLOOR

DD ISSUE

DD ISSUE

FOR INFORMATION

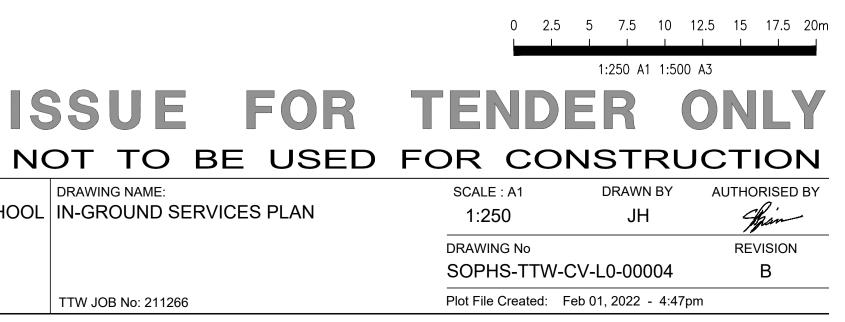


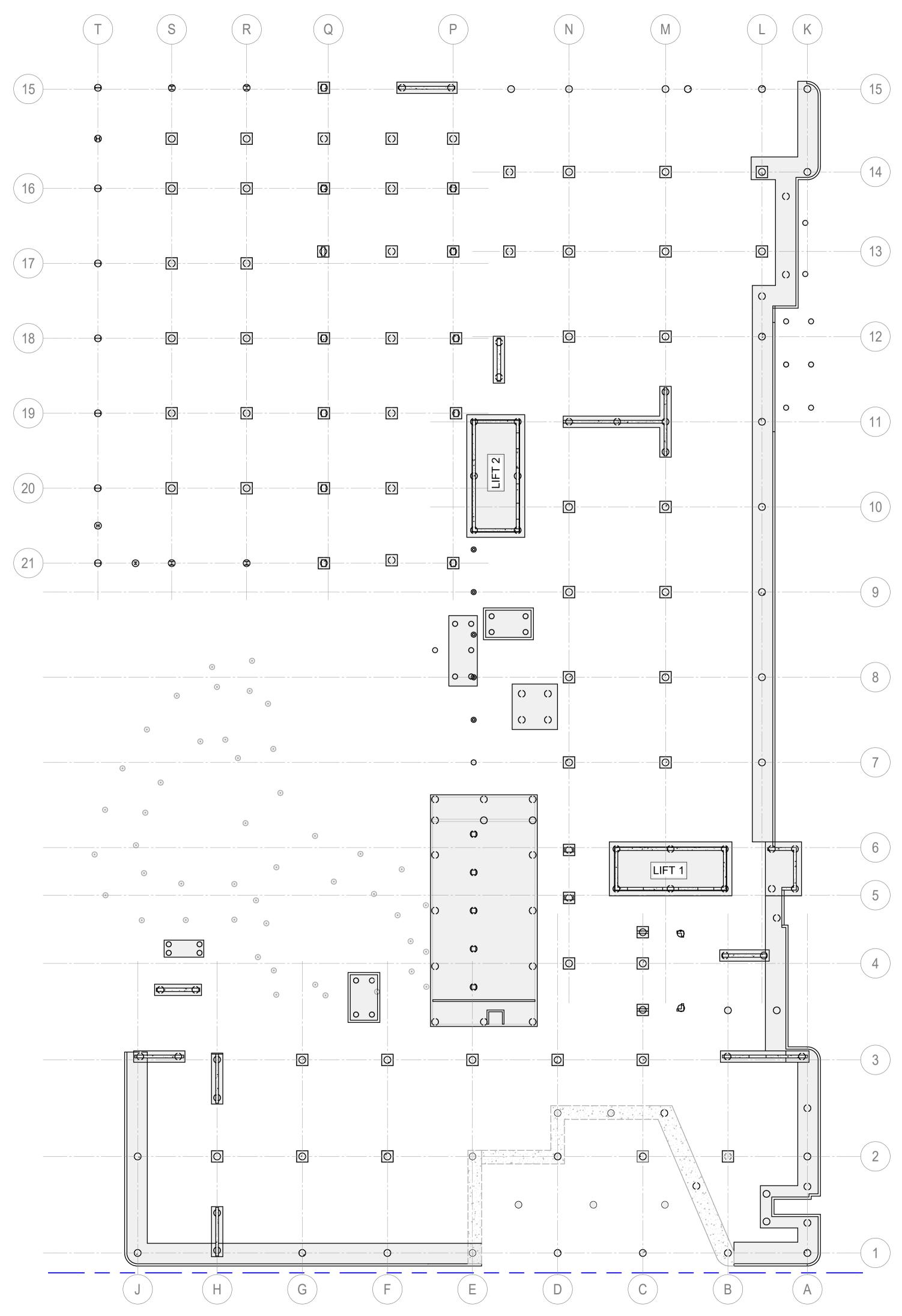
|                    |                |                 |             |                 |             | _ w |
|--------------------|----------------|-----------------|-------------|-----------------|-------------|-----|
|                    |                |                 |             |                 |             |     |
|                    |                |                 |             |                 |             | 60  |
| B ISSUE FOR TENDER | SF JH 01.02.22 |                 |             |                 |             | SYI |
| A ISSUE FOR TENDER | SF JH 20.12.21 |                 |             |                 |             | PO  |
| REV DESCRIPTION    | CHK DR DATE    | REV DESCRIPTION | CHK DR DATE | REV DESCRIPTION | CHK DR DATE | GR  |

D BOX N19 ROSVENOR PLACE NSW 1220 SYDNEY OLYMPIC PARK HIGH SCHOOL IN-GROUND SERVICES PLAN WENTWORTH POINT NSW 2127

THIS DRAWING IS COPYRIGHT AND IS THE PROPERTY OF TAYLOR THOMSON WHITTING (NSW) PTY LTD AND MUST NOT BE USED WITHOUT AUTHORISATION. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT NOTES ON DRAWING SOPHS-TTW-CV-L0-00001

### **EXISTING SERVICES LEGEND**


| — S — — – S — — —                      | Existing sewer                  |
|----------------------------------------|---------------------------------|
| - $        -$                          | Existing water                  |
| —————————————————————————————————————— | Existing underground electrical |
| —————————————————————————————————————— | Existing aerial electrical      |
| $   \top$ $  \top$ $-$                 | Existing communications         |
| — — — G — — — G —                      | Existing gas                    |
| SW                                     | Existing stormwater             |
|                                        |                                 |


#### PROPOSED SERVICES LEGEND \* Hydraulics Engineer (hyd.)

| nyaraulies Engineer (nya.)    |                                     |
|-------------------------------|-------------------------------------|
| * Electrical Engineer (elec.) |                                     |
| - S                           | Proposed sewer (from hyd.)          |
| - — — W —                     | Proposed water (from hyd.)          |
| — — — G —                     | Proposed gas (from hyd.)            |
| TW                            | Trade waste (from hyd.)             |
| V                             | Vent (from hyd.)                    |
| - S                           | Sanitary Drainage (from hyd.)       |
| SI                            | Siphonic Stormwater (from hyd.)     |
|                               | Underground electrical (from elec.) |
|                               | Proposed stormwater pipe            |
|                               |                                     |

#### NOTE:

- COORDINATION OF SERVICES UNDER BUILDINGS INCLUDING GROUND GAS REQUIREMENTS BY OTHERS.
- REFER TO SITE PLAN FOR RETAINING WALLS
- NO SERVICES CLASH DETECTION HAS BEEN UNDERTAKEN
- NO GROUND IMPROVEMENT (SETTLEMENT) SYSTEM IS SHOWN.









1. REFER TO 1:100 OUTLINE PLANS FOR DETAILED LAYOUTS

RevDescription170% SCHEMATIC DESIGN2SCHEMATIC DESIGN380% TENDER4DRAFT DD ISSUE5ISSUED FOR INFORMATION

**Date** 23.09.21

30.09.21

09.11.21

20.12.21

25.01.22

This drawing is copyright and is the property of TTW and must not be used without authorisation. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT NOTES ON DRAWING NO. 0001

Key Plan

Project SYDNEY OLYMPIC PARK HIGH SCHOOL



## NOT FOR CONSTRUCTION



## Appendix B Result Summary Tables and Charts

|                                   |                                              |                          |                           |                        | BTEX          |                         |                  |                       |                              |                                |                            | TRH                                             |                                     |                                 |                                |       |                           | TPH                       |                     |                                   | Metals        |
|-----------------------------------|----------------------------------------------|--------------------------|---------------------------|------------------------|---------------|-------------------------|------------------|-----------------------|------------------------------|--------------------------------|----------------------------|-------------------------------------------------|-------------------------------------|---------------------------------|--------------------------------|-------|---------------------------|---------------------------|---------------------|-----------------------------------|---------------|
|                                   |                                              | m<br>M/Maphthalene (VOC) | eu<br>Beu<br>Beu<br>Mg/kg | au<br>Toluene<br>mg/kg | Ethy Ibenzene | Xylene (m & p)<br>wg/kg | BA<br>Kylene (o) | ax/84<br>Xylene Total | By/8<br>C6-C10 Fraction (F1) | but C6-C10 (F1 minus<br>BarEX) | Bay >C10-C16 Fraction (F2) | 3 >C10-C16 Fraction (F2<br>3 minus Naphthalene) | a<br>sk/s<br>S216-C34 Fraction (F3) | by<br>by<br>by<br>Fraction (F4) | 3 >C10-C40 Fraction<br>筋 (Sum) | mg/kg | gy/gg<br>C10-C14 Fraction | mg/gg<br>C15-C28 Fraction | ay C29-C36 Fraction | bad C10-C36 Fraction<br>bay (Sum) | pea-<br>mg/kg |
| EQL                               |                                              | 1                        | 0.2                       | 0.5                    | 1             | 2                       | 1                | 3                     | 25                           | 25                             | 50                         | 50                                              | 100                                 | 100                             | 50                             | 25    | 50                        | 100                       | 100                 | 50                                | 1             |
|                                   | nt Limits in Res / Parkland, Coarse Soil     |                          |                           |                        | _             | -                       | _                | -                     | 700                          |                                | 1.000                      |                                                 | 2.500                               | 10.000                          |                                |       |                           |                           |                     |                                   |               |
| NSW 2014 General Solid Waste CT1  |                                              |                          | 10                        | 288                    | 600           |                         |                  | 1.000                 | ,00                          |                                | 2,500                      |                                                 | 2,500                               | 10,000                          |                                | 650   |                           |                           |                     | 10,000                            | 100           |
| NSW 2014 Restricted Solid Waste C |                                              |                          | 40                        | 1.152                  | 2.400         |                         |                  | 4.000                 |                              |                                |                            |                                                 |                                     |                                 |                                | 2,600 |                           |                           |                     | 40.000                            | 400           |
|                                   | ISL for Vapour Intrusion, Sand, >=0m, <1m    |                          |                           |                        |               |                         |                  |                       |                              |                                |                            |                                                 |                                     |                                 |                                |       |                           |                           |                     |                                   |               |
|                                   | il HSL for Vapour Intrusion, Sand, >=0m, <1m | 3                        | 0.5                       | 160                    | 55            |                         |                  | 40                    |                              | 45                             |                            | 110                                             |                                     |                                 |                                |       |                           |                           |                     |                                   |               |
| NEPM 2013 Table 1A(1) HILs Rec C  |                                              |                          |                           |                        |               |                         |                  |                       |                              |                                |                            |                                                 |                                     |                                 |                                |       |                           |                           |                     |                                   | 600           |
| Field ID<br>TS1-1 0.2-0.4         | Date<br>30/11/2021                           | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 2             |
| TS1-1_0.6-0.8                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 1             |
|                                   | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 6             |
| TS1-2_0.8-1.0                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 25            |
| TS1-3_0.2-0.4                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | 590                        | 590                                             | 150                                 | <100                            | 740                            | <25   | 450                       | 260                       | <100                | 710                               | 8             |
| TS1-3_0.6-0.8                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | 120                        | 120                                             | <100                                | <100                            | 120                            | <25   | 87                        | <100                      | <100                | 90                                | 1             |
| TS2-1_0.4-0.6                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 17            |
| DUP1 (TS2-1_0.4-0.6)              | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 14            |
| TS2-1_1.0-1.2                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | 30                           | 30                             | 530                        | 530                                             | 620                                 | <100                            | 1,200                          | <25   | 200                       | 960                       | <100                | 1,200                             | 16            |
| TS2-2_0.4-0.6                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 71            |
| TS2-2_1.0-1.2                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | 1,300                      | 1,300                                           | 1,100                               | <100                            | 2,400                          | <25   | 560                       | 1,900                     | <100                | 2,400                             | 2             |
| TS2-3_0.4-0.6                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 12            |
| TS2-3_1.2-1.4                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | 61                         | 61                                              | 140                                 | <100                            | 200                            | <25   | <50                       | 170                       | <100                | 170                               | 34            |
| TS2-4_0.4-0.6                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | 10            |
| TS2-4_1.2-1.4                     | 30/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | 950                        | 950                                             | 1,200                               | <100                            | 2,100                          | <25   | 410                       | 1,700                     | <100                | 2,100                             | 18            |
| VEX1-2                            | 25/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | 31                           | 31                             | 700                        | 700                                             | 18,000                              | 4,400                           | 23,000                         | <25   | 390                       | 9,900                     | 9,700               | 20,000                            | -             |
| VEX1-3                            | 25/11/2021                                   | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | 51                           | 51                             | 910                        | 910                                             | 4,300                               | 990                             | 6,200                          | <25   | 530                       | 3,300                     | 1,900               | 5,700                             | -             |
| WB1_0-0.2                         | 1/12/2021                                    | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | 600                        | 600                                             | 270                                 | <100                            | 870                            | <25   | 270                       | 500                       | 140                 | 910                               | -             |
| WB1_0.8-1.0                       | 1/12/2021                                    | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | -             |
| WB2_0.2-0.4                       | 1/12/2021                                    | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | <u> </u>      |
| WB2_0.8-1.0                       | 1/12/2021                                    | <1                       | <0.2                      | <0.5                   | <1            | <2                      | <1               | <3                    | <25                          | <25                            | <50                        | <50                                             | <100                                | <100                            | <50                            | <25   | <50                       | <100                      | <100                | <50                               | <u> </u>      |



|                                               |                               |                                  |       |                     |                     |                             |                 |                                     |                                      |                                   | PAH                                                                                              |                    |                                 |                |                                         |                                    |                      |                  |                  |                                 |
|-----------------------------------------------|-------------------------------|----------------------------------|-------|---------------------|---------------------|-----------------------------|-----------------|-------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|--------------------|---------------------------------|----------------|-----------------------------------------|------------------------------------|----------------------|------------------|------------------|---------------------------------|
|                                               |                               | Benzo(b+j+k)fluoranth<br>ax) ene | mg/gg | a<br>Acenaphthylene | Anthracene<br>My/8d | 표<br>(a)<br>anthracene<br>a | Benzo(a) pyrene | Benzo(a)pyrene TEQ<br>청 calc (zero) | 3 Benzo(a)pyrene TEQ<br>S calc(half) | Benzo(a)pyrene TEQ<br>a calc(PQL) | 표<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | chrysene<br>Bay/Ba | 3<br>전<br>bibenz(a,h)anthracene | mg/gg<br>bg/gg | ana | Ball Indeno(1,2,3-<br>a c,d)pyrene | mg/gg<br>Maphthalene | Ba//Bhenanthrene | By/rene<br>Ba/kg | Baths (Sum of<br>Bay positives) |
| EQL                                           |                               | 0.2                              | 0.1   | 0.1                 | 0.1                 | 0.1                         | 0.05            | 0.05                                | 0.05                                 | 0.05                              | 0.1                                                                                              | 0.1                | 0.1                             | 0.1            | 0.1                                     | 0.1                                | 0.1                  | 0.1              | 0.1              | 0.05                            |
| NEPM 2013 Table 1B(7) Management Limits i     | n Res / Parkland, Coarse Soil | 0.2                              | 011   | 011                 | 0.11                | 0.1                         | 0.05            | 0.05                                | 0.05                                 | 0.05                              | 0.1                                                                                              | 011                | 011                             | 011            | 0.1                                     | 0.1                                | 011                  | 011              | 011              | 0.05                            |
| NSW 2014 General Solid Waste CT1 (No Leach    |                               |                                  |       |                     |                     |                             | 0.8             |                                     |                                      |                                   |                                                                                                  |                    |                                 |                |                                         |                                    |                      |                  |                  |                                 |
| NSW 2014 Restricted Solid Waste CT2 (No Leach |                               |                                  |       |                     |                     |                             | 3.2             |                                     |                                      |                                   |                                                                                                  |                    |                                 |                |                                         |                                    |                      |                  |                  |                                 |
| NEPM 2013 Table 1A(3) Rec C Soil HSL for Var  |                               |                                  |       |                     |                     |                             | - J.L           |                                     |                                      |                                   |                                                                                                  |                    |                                 |                |                                         |                                    |                      |                  |                  |                                 |
| NEPM 2013 Table 1A(3) Res A/B Soil HSL for V  |                               |                                  |       |                     |                     |                             |                 |                                     |                                      |                                   |                                                                                                  |                    |                                 |                |                                         |                                    | 3                    |                  |                  |                                 |
| NEPM 2013 Table 1A(1) HILs Rec C Soil         |                               |                                  |       |                     |                     |                             |                 | 3                                   | 3                                    | 3                                 |                                                                                                  |                    |                                 |                |                                         |                                    |                      |                  |                  | 300                             |
| Field ID<br>TS1-1 0.2-0.4                     | Date<br>30/11/2021            | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | <0.05                           |
| TS1-1_0.2-0.4<br>TS1-1_0.6-0.8                | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | < 0.05          | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | <0.05                           |
| TS1-1_0.8-0.8<br>TS1-2 0.2-0.4                | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | < 0.05          | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | <0.05                           |
| TS1-2_0.2-0.4<br>TS1-2_0.8-1.0                | 30/11/2021                    | 0.2                              | <0.1  | <0.1                | 0.1                 | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | 1.3              | <0.05<br>6.6                    |
| TS1-3 0.2-0.4                                 | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | 0.1                                     | <0.1                               | 0.1                  | <0.1             | <0.1             | 0.0                             |
| TS1-3_0.6-0.8                                 | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | <0.05                           |
| TS2-1 0.4-0.6                                 | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | < 0.05          | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | <0.05                           |
| DUP1 (TS2-1 0.4-0.6)                          | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | <0.05                           |
| TS2-1_1.0-1.2                                 | 30/11/2021                    | 0.3                              | <1    | <1                  | <1                  | 0.2                         | 0.2             | <0.5                                | <0.5                                 | <0.5                              | 0.1                                                                                              | 0.2                | <0.1                            | 0.4            | <1                                      | <0.1                               | <1                   | <1               | 0.6              | 2.1                             |
| TS2-2 0.4-0.6                                 | 30/11/2021                    | 2.1                              | <0.1  | 0.2                 | 0.2                 | 1.5                         | 2.1             | 2.7                                 | 2.7                                  | 2.7                               | 0.8                                                                                              | 1.3                | 0.2                             | 2.5            | <0.1                                    | 0.6                                | <0.1                 | 0.6              | 2.7              | 15                              |
| TS2-2 1.0-1.2                                 | 30/11/2021                    | <0.2                             | 2.9   | <1                  | 3.7                 | 0.1                         | 0.08            | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | 0.2                | <0.1                            | 0.4            | 4.2                                     | <0.1                               | <1                   | 3.9              | 0.6              | 16                              |
| TS2-3 0.4-0.6                                 | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | < 0.05                          |
|                                               | 30/11/2021                    | 2.3                              | <0.1  | 0.4                 | 1.0                 | 1.9                         | 2.2             | 2.8                                 | 2.8                                  | 2.8                               | 0.8                                                                                              | 1.6                | 0.1                             | 3.6            | 0.3                                     | 0.6                                | 0.1                  | 1.9              | 3.5              | 20                              |
| <br>TS2-4_0.4-0.6                             | 30/11/2021                    | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | 0.1             | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | 0.1                | <0.1                            | 0.2            | <0.1                                    | <0.1                               | <0.1                 | <0.1             | 0.2              | 0.67                            |
|                                               | 30/11/2021                    | 0.6                              | <1    | <1                  | <1                  | 0.4                         | 0.53            | 0.6                                 | 0.7                                  | 0.7                               | 0.2                                                                                              | 0.5                | <0.1                            | 1              | <1                                      | 0.2                                | <1                   | <1               | 1.2              | 4.4                             |
| VEX1-2                                        | 25/11/2021                    | <0.2                             | <0.1  | <0.1                | 0.2                 | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | 0.1            | <0.1                                    | <0.1                               | 0.6                  | 0.3              | 0.3              | 1.6                             |
| VEX1-3                                        | 25/11/2021                    | 0.2                              | <0.1  | <0.1                | 0.2                 | 0.2                         | 0.2             | <0.5                                | <0.5                                 | <0.5                              | 0.1                                                                                              | 0.2                | <0.1                            | 0.4            | 0.3                                     | <0.1                               | 0.4                  | 0.5              | 0.6              | 3.3                             |
| WB1_0-0.2                                     | 1/12/2021                     | 1                                | <0.1  | <0.1                | 0.2                 | 0.7                         | 0.84            | 1                                   | 1.1                                  | 1.1                               | 0.3                                                                                              | 0.6                | <0.1                            | 1.3            | <0.1                                    | 0.2                                | <0.1                 | 0.5              | 1.2              | 6.9                             |
| WB1_0.8-1.0                                   | 1/12/2021                     | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | <0.05           | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | < 0.05                          |
| WB2_0.2-0.4                                   | 1/12/2021                     | <0.2                             | <0.1  | <0.1                | <0.1                | <0.1                        | 0.06            | <0.5                                | <0.5                                 | <0.5                              | <0.1                                                                                             | <0.1               | <0.1                            | <0.1           | <0.1                                    | <0.1                               | <0.1                 | <0.1             | <0.1             | 0.06                            |
| WB2_0.8-1.0                                   | 1/12/2021                     | 2.0                              | <0.1  | 0.2                 | 0.4                 | 1.6                         | 2.2             | 2.8                                 | 2.8                                  | 2.8                               | 0.8                                                                                              | 1.3                | 0.2                             | 3.0            | 0.1                                     | 0.6                                | <0.1                 | 1.0              | 2.9              | 16                              |



|                                                   |                             |                        |                 | BTI             | EX                |                       | BTEX TRH        |                        |                               |                          |                           |                     |  |  |  |
|---------------------------------------------------|-----------------------------|------------------------|-----------------|-----------------|-------------------|-----------------------|-----------------|------------------------|-------------------------------|--------------------------|---------------------------|---------------------|--|--|--|
|                                                   | -                           | 3<br>Naphthalene (VOC) | Benzene<br>M8/R | Toluene<br>H8/r | T <sup>da</sup> T | 전<br>지 Xylene (m & p) | Xylene (o)<br>۲ | 돈 C6-C10 Fraction (F1) | 版 C6-C10 (F1 minus<br>つ BTEX) | 전 >C10-C16 Fraction (F2) | ස් >C16-C34 Fraction (F3) | 西<br>万<br>万<br>(F4) |  |  |  |
| EQL                                               |                             | 0.001                  | 1               | 1               | 1                 | 2                     | 1               | 10                     | 10                            | 50                       | 100                       | 100                 |  |  |  |
| ANZG (2018) Marine Water 95% LOSP Toxicant DGVs   |                             | 0.07                   | 700             | 180             | 80                |                       |                 |                        |                               |                          |                           |                     |  |  |  |
| NEPM(2013) Table 1C GILs, Marine Waters           |                             | 0.05                   | 500             |                 |                   |                       |                 |                        |                               |                          |                           |                     |  |  |  |
| NEPM 2013 Table 1A(4) Res HSL A & B GW for Vapou  | ·Intrusion, Sand, >=2m, <4m |                        | 800             |                 |                   |                       |                 |                        | 1,000                         |                          |                           |                     |  |  |  |
| NEPM 2013 Table 1A(4) Rec HSL C GW for Vapour Int | usion, Sand, >=2m, <4m      |                        |                 |                 |                   |                       |                 |                        |                               |                          |                           |                     |  |  |  |
| Field ID Date                                     | 1                           |                        |                 |                 |                   |                       |                 |                        |                               |                          |                           |                     |  |  |  |
| GG01 1/12                                         | /2021                       | < 0.001                | <1              | <1              | <1                | <2                    | <1              | <10                    | <10                           | <50                      | <100                      | <100                |  |  |  |
| DUP 1 (GG01) 1/12                                 | /2021                       | <0.001                 | <1              | <1              | <1                | <2                    | <1              | <10                    | <10                           | <50                      | <100                      | <100                |  |  |  |
|                                                   | /2021                       | <0.001                 | <1              | <1              | <1                | <2                    | <1              | <10                    | <10                           | <50                      | <100                      | <100                |  |  |  |
|                                                   | /2021                       | <0.001                 | <1              | <1              | <1                | <2                    | <1              | <10                    | <10                           | <50                      | <100                      | <100                |  |  |  |
|                                                   | /2021                       | <0.001                 | <1              | <1              | <1                | <2                    | <1              | <10                    | <10                           | <50                      | <100                      | <100                |  |  |  |
| Tripblank 1/12                                    | /2021                       | <0.001                 | <1              | <1              | <1                | <2                    | <1              | <10                    | <10                           | -                        | -                         | -                   |  |  |  |



|                                                 |                    |                    |                                 | Metals            |                 |                    |                   |                 | Phenols         | Inorganics   |
|-------------------------------------------------|--------------------|--------------------|---------------------------------|-------------------|-----------------|--------------------|-------------------|-----------------|-----------------|--------------|
|                                                 | Arsenic (filtered) | Cadmium (filtered) | Chromium (III+VI)<br>(filtered) | Copper (filtered) | Lead (filtered) | Mercury (filtered) | Nickel (filtered) | Zinc (filtered) | Phenolics Total | Ammonia as N |
|                                                 | mg/L               | mg/L               | mg/L                            | mg/L              | mg/L            | mg/L               | mg/L              | mg/L            | μg/L            | mg/L         |
| EQL                                             | 0.001              | 0.0001             | 0.001                           | 0.001             | 0.001           | 0.00005            | 0.001             | 0.001           | 50              | 0.005        |
| ANZG (2018) Marine Water 95% LOSP Toxicant DGVs | 0.013 / 0.024*     | 0.0055             | 0.0274 / 0.0044**               | 0.0013            | 0.0044          | 0.0004             | 0.07              | 0.015           |                 | 0.91         |
| NEPM(2013) Table 1C GILs, Marine Waters         | 0.013 / 0.024*     | 0.0007             | 0.027/ 0.0044**                 | 0.0013            | 0.0044          | 0.0001             | 0.007             | 0.015           |                 |              |

| Field ID     | Date      |       |         |        |        |        |           |        |        |     |      |
|--------------|-----------|-------|---------|--------|--------|--------|-----------|--------|--------|-----|------|
| GG01         | 1/12/2021 | 0.002 | <0.0001 | <0.001 | 0.002  | <0.001 | <0.00005  | 0.001  | <0.001 | <50 | 5.3  |
| DUP 1 (GG01) | 1/12/2021 | 0.002 | <0.0001 | <0.001 | <0.001 | <0.001 | <0.00005  | <0.001 | <0.001 | -   | -    |
| GG05         | 1/12/2021 | 0.004 | <0.0001 | <0.001 | 0.008  | <0.001 | <0.00005  | <0.001 | <0.001 | <50 | 2.3  |
| GG06         | 1/12/2021 | 0.002 | <0.0001 | <0.001 | 0.002  | <0.001 | < 0.00005 | 0.002  | <0.001 | <50 | 0.11 |
| GG09         | 1/12/2021 | 0.003 | <0.0001 | <0.001 | <0.001 | <0.001 | <0.00005  | <0.001 | <0.001 | <50 | 0.76 |
| Tripblank    | 1/12/2021 | -     | -       | -      | -      | -      | -         | -      | -      | -   | -    |

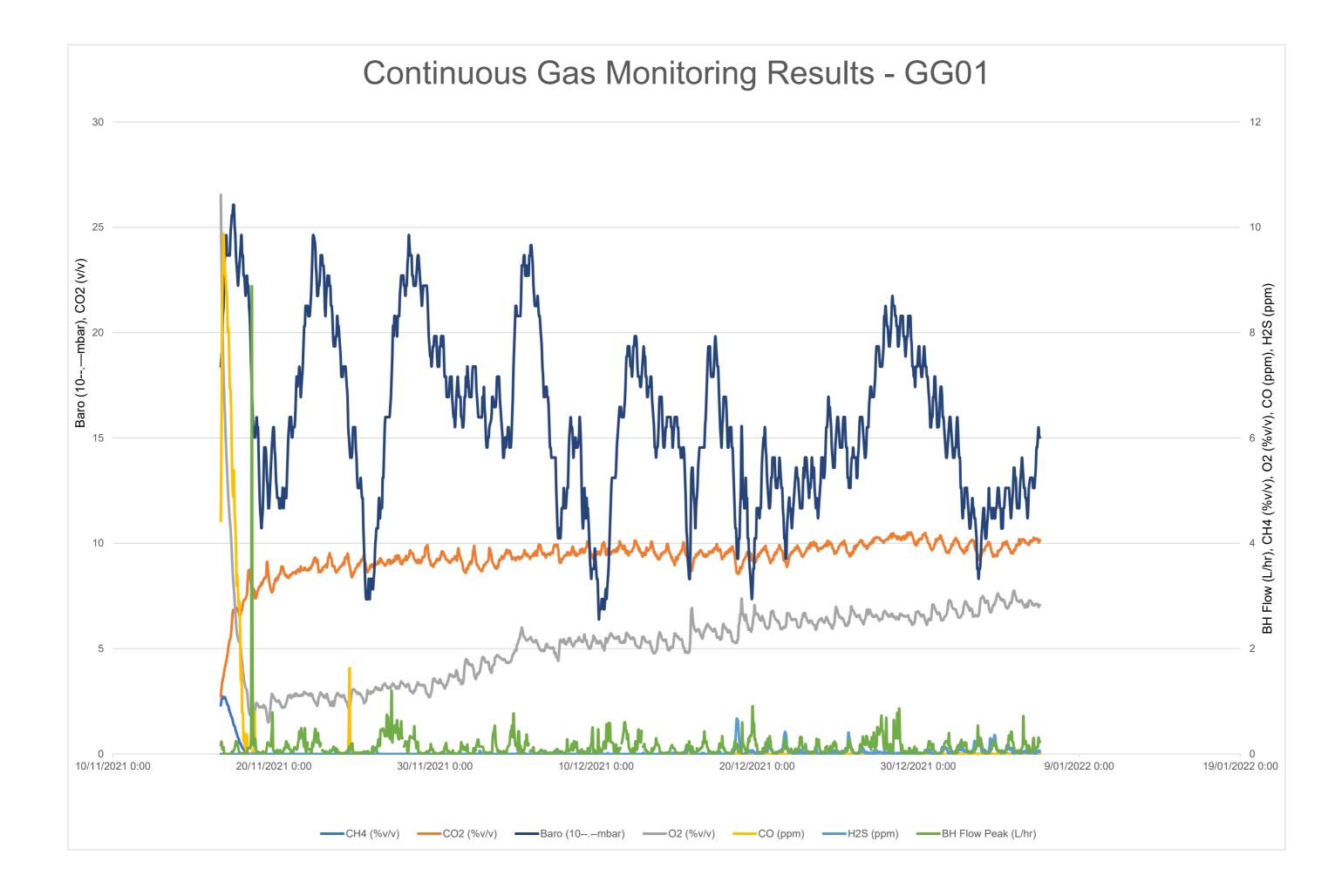
\*0.013mg/L = AsV ; 0.024mg/L = AsIII

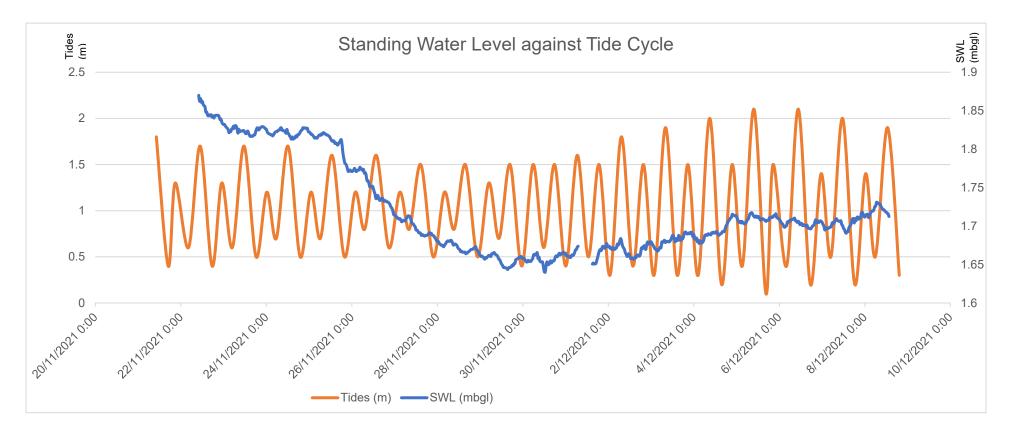
\*\* 0.0274 / 0.027mg/L = CrIII unknown protection level ; 0.0044mg/L = CrVI

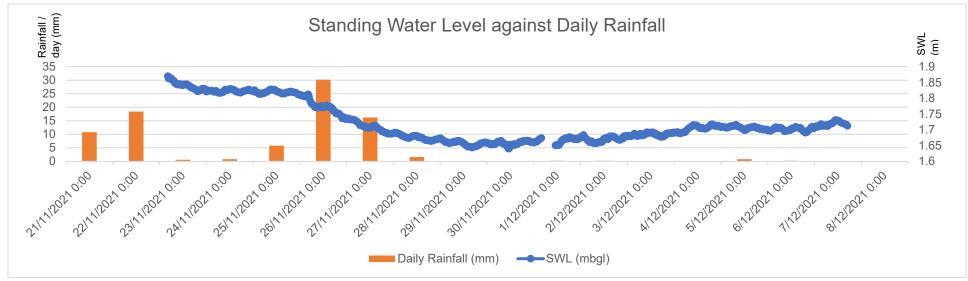


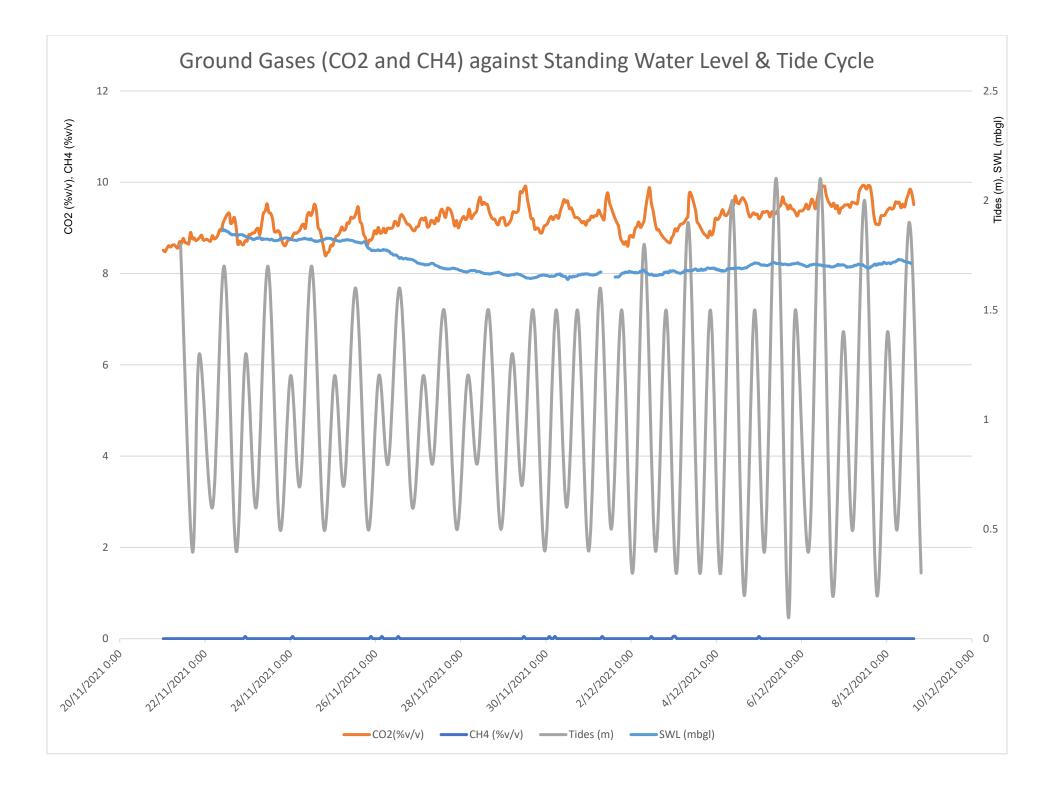
|                                                     |                            |                                | РАН          |                |            |                   |                   |                           |          |                            |              |          |                               |             |              |        |                    |                            |
|-----------------------------------------------------|----------------------------|--------------------------------|--------------|----------------|------------|-------------------|-------------------|---------------------------|----------|----------------------------|--------------|----------|-------------------------------|-------------|--------------|--------|--------------------|----------------------------|
|                                                     |                            | Benzo(b+j+k)fluoranth<br>: ene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene | , Benzo(a) pyrene | ,<br>Benzo(g,h,i)perylene | Chrysene | ,<br>Dibenz(a,h)anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-<br>c c,d)pyrene | Naphthalene | Phenanthrene | Pyrene | Benzo(a)pyrene TEQ | PAHs (Sum of<br>positives) |
|                                                     |                            | mg/L<br>0.002                  | μg/L         | μg/L           | μg/L       | μg/L              | μg/L              | μg/L                      | μg/L     | μg/L                       | μg/L         | μg/L     | μg/L                          | μg/L        | μg/L         | μg/L   | mg/L               | mg/L                       |
| EQL                                                 |                            |                                | 1            | 1              | 1          | 1                 | 1                 | 1                         | 1        | 1                          | 1            | 1        | 1                             | 1           | 1            | 1      | 0.005              | 0.001                      |
| ANZG (2018) Marine Water 95% LOSP Toxicant DGVs     |                            |                                |              |                | 0.4        |                   | 0.2               |                           |          |                            | 1.4          |          |                               | 70          | 2            |        |                    |                            |
| NEPM(2013) Table 1C GILs, Marine Waters             |                            |                                |              |                |            |                   |                   |                           |          |                            |              |          |                               | 50          |              |        |                    |                            |
| NEPM 2013 Table 1A(4) Res HSL A & B GW for Vapour   | Intrusion, Sand, >=2m, <4m |                                |              |                |            |                   |                   |                           |          |                            |              |          |                               |             |              |        |                    |                            |
| NEPM 2013 Table 1A(4) Rec HSL C GW for Vapour Intro | usion, Sand, >=2m, <4m     |                                |              |                |            |                   |                   |                           |          |                            |              |          |                               |             |              |        |                    |                            |
| Field ID Date                                       |                            |                                |              |                |            |                   |                   |                           |          |                            |              |          |                               |             |              |        |                    |                            |
| GG01 1/12,                                          | /2021                      | <0.002                         | <1           | <1             | <1         | <1                | <1                | <1                        | <1       | <1                         | <1           | <1       | <1                            | <1          | <1           | <1     | <0.005             | 0                          |
| DUP 1 (GG01) 1/12,                                  | /2021                      | <0.002                         | <1           | <1             | <1         | <1                | <1                | <1                        | <1       | <1                         | <1           | <1       | <1                            | <1          | <1           | <1     | < 0.005            | 0                          |
| GG05 1/12,                                          | /2021                      | <0.002                         | <1           | <1             | <1         | <1                | <1                | <1                        | <1       | <1                         | <1           | <1       | <1                            | <1          | <1           | <1     | < 0.005            | 0                          |
| GG06 1/12,                                          | /2021                      | <0.002                         | <1           | <1             | <1         | <1                | <1                | <1                        | <1       | <1                         | <1           | <1       | <1                            | <1          | <1           | <1     | < 0.005            | 0                          |
| GG09 1/12,                                          | /2021                      | <0.002                         | <1           | <1             | <1         | <1                | <1                | <1                        | <1       | <1                         | <1           | <1       | <1                            | <1          | <1           | <1     | <0.005             | 0                          |
| Tripblank 1/12,                                     | /2021                      | -                              | -            | -              | -          | -                 | -                 | -                         | -        | -                          | -            | -        | -                             | -           | -            | -      | -                  | -                          |

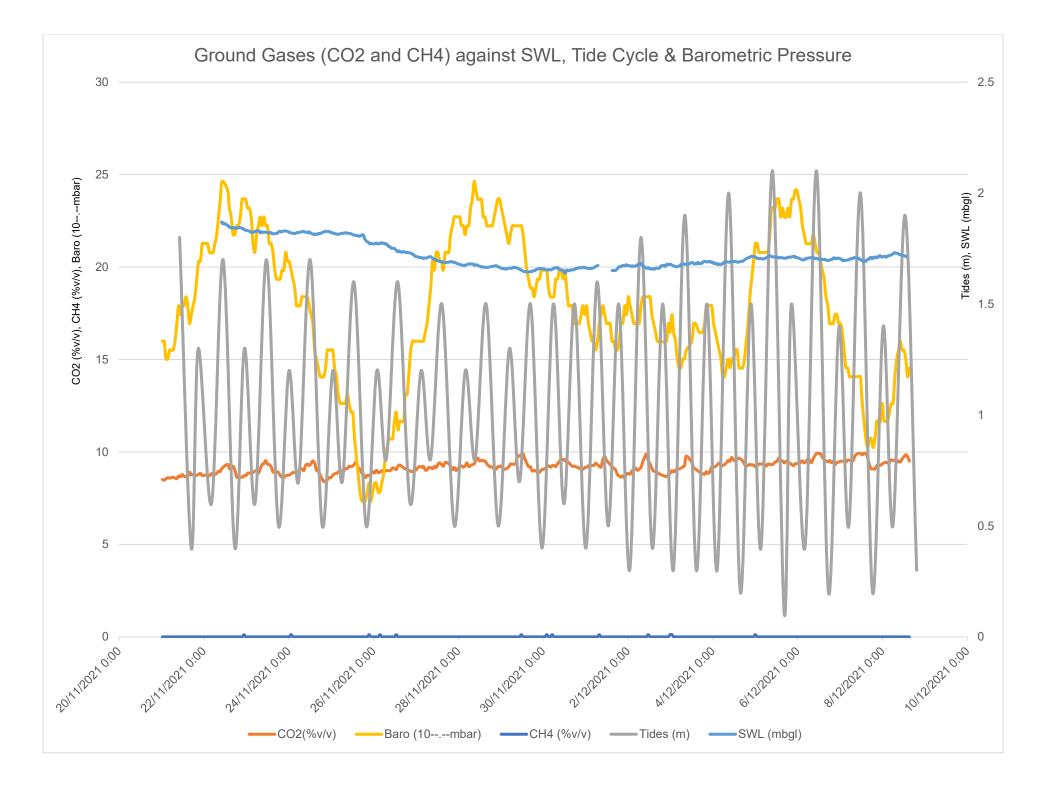



|                                   | Perfluoroalkane Carboxylic       | (n:2) Fluorotelomer Sulfonic                 |                                              |                                          |                                         |                       |             |                              |
|-----------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------|-------------|------------------------------|
|                                   | Acids                            | Acid                                         | ds                                           | Perfluoroalkan                           | e Sulfonic Acids                        | PFAS                  |             |                              |
|                                   | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer sulfonic<br>acid (6:2 FTS) | 8:2 Fluorotelomer sulfonic<br>acid (8:2 FTS) | Perfluorohexane sulfonic<br>acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Sum of PFHxS and PFOS | Sum of PFAS | Sum of PFAS (PFOS +<br>PFOA) |
|                                   | μg/L                             | μg/L                                         | μg/L                                         | μg/L                                     | μg/L                                    | μg/L                  | μg/L        | μg/L                         |
| EQL                               | 0.01                             | 0.01                                         | 0.02                                         | 0.01                                     | 0.01                                    | 0.01                  | 0.01        | 0.01                         |
| PFAS NEMP 2020 Interim Marine 95% | 220                              |                                              |                                              |                                          | 0.13                                    |                       |             |                              |
| PFAS NEMP 2020 Interim Marine 99% | 19                               |                                              |                                              |                                          | 0.00023                                 |                       |             |                              |
| Field ID Date                     |                                  |                                              |                                              |                                          |                                         |                       |             |                              |


| Field ID     | Date      |      |       |       |      |      |      |      |      |
|--------------|-----------|------|-------|-------|------|------|------|------|------|
| GG01         | 1/12/2021 | 0.08 | <0.01 | <0.02 | 0.08 | 0.13 | 0.21 | 0.29 | 0.21 |
| DUP 1 (GG01) | 1/12/2021 | -    | -     | -     | -    | -    | -    | -    | -    |
| GG05         | 1/12/2021 | 0.02 | <0.01 | <0.02 | 0.07 | 0.51 | 0.59 | 0.61 | 0.54 |
| GG06         | 1/12/2021 | 0.03 | <0.01 | <0.02 | 0.02 | 0.02 | 0.04 | 0.07 | 0.05 |
| GG09         | 1/12/2021 | 0.02 | <0.01 | <0.02 | 0.12 | 0.09 | 0.21 | 0.23 | 0.11 |
| Tripblank    | 1/12/2021 | -    | -     | -     | -    | -    | -    | -    | -    |





| Date:       | 16.11.21 |                          |               |                                                    |        |
|-------------|----------|--------------------------|---------------|----------------------------------------------------|--------|
| Start time: | 12:00pm  | Start Pressure (GA5000): | 1018mb        | Sydney Airport Weather Station Pressure (BOM) 9am: | 1015.9 |
| End time:   | 2:00pm   | End Pressure (GA5000):   | 1018mb        | Sydney Airport Weather Station Pressure (BOM) 3pm: | 1017.1 |
|             |          | Pressure Change:         | 0mb (neutral) | Pressure Change (6 hrs):                           | +1.2mb |


| Parameter                                                           | Accuracy                                                      |                                                 |                                                 |                                               |                                                 |                                                  |                                                  |                                               |                                               |                                               |                                                 |                                               |                                                  |
|---------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| Well #                                                              |                                                               | GG1                                             | GG2                                             | GG3                                           | GG4                                             | GG5                                              | GG6                                              | GG7                                           | GG8                                           | GG9                                           | GG10                                            | GG11                                          | GG12                                             |
| Date                                                                |                                                               | 16.11.21                                        | 16.11.21                                        | 16.11.21                                      | 16.11.21                                        | 16.11.21                                         | 16.11.21                                         | 16.11.21                                      | 16.11.21                                      | 16.11.21                                      | 16.11.21                                        | 16.11.21                                      | 16.11.21                                         |
| Round #                                                             |                                                               | 1                                               | 1                                               | 1                                             | 1                                               | 1                                                | 1                                                | 1                                             | 1                                             | 1                                             | 1                                               | 1                                             | 1                                                |
| Methane (%v/v)                                                      | GA5000: +/- 3%@60%<br>GFM: 0.2%@5%,<br>1.0%@30%,<br>3.0%@100% | 4.2                                             | 0.8                                             | 0                                             | 2.3                                             | 0                                                | 0                                                | 0.5                                           | 0.1                                           | 0.3                                           | 15.1                                            | -                                             | 0                                                |
| Carbon Dioxide<br>(%v/v)                                            | GA5000: +/- 3%@40%<br>GFM: 0.1%@10%,<br>3.0%@50%              | 6                                               | 4.7                                             | 7.2                                           | 6                                               | 6.2                                              | 5.6                                              | 5.6                                           | 2                                             | 2.7                                           | 0.1                                             | -                                             | 4.6                                              |
| Oxygen (%v/v)                                                       | GA5000: 0.2%<br>GFM: 0.5%                                     | 0.8                                             | 0                                               | 6.2                                           | 0                                               | 0.1                                              | 0                                                | 0                                             | 0                                             | 0                                             | 0.1                                             | -                                             | 3.5                                              |
| Hydrogen Sulphide<br>(ppm)                                          | GA5000: 20<br>GFM: 5% of fs                                   | 0                                               | 2                                               | 2                                             | 2                                               | 2                                                | 2                                                | 2                                             | 2                                             | 1                                             | 3                                               | -                                             | 3                                                |
| Carbon Monoxide<br>(ppm)                                            | GA5000: 20<br>GFM: 5% of fs                                   | 0                                               | 1                                               | 2                                             | 1                                               | 3                                                | 2                                                | 1                                             | 1                                             | 2                                             | 2                                               | -                                             | 3                                                |
| Borehole Flow<br>(L/hr)                                             | GA5000: 0.5-3<br>GFM: 0.1 L/hr                                | -0.6                                            | 0.1                                             | 0.3                                           | 0.1                                             | 0                                                | 0                                                | 0.2                                           | 0                                             | 0                                             | 0.3                                             | -                                             | 0.1                                              |
| Borehole Pressure<br>(Pa)                                           | GA5000: 3<br>GFM: +300/-100Pa                                 | -4                                              | -0.03                                           | 0.1                                           | 0.1                                             | -0.07                                            | -0.07                                            | 0.02                                          | 0                                             | 0                                             | 0.15                                            | -                                             | -0.03                                            |
| Slotted Section (m<br>bgl) (Greencap<br>(2021) DSI)                 | Not applicable                                                | 0.7 - 1.5                                       | 0.7 - 3.5                                       | 0.5 - 1.0                                     | 0.7 - 1.5                                       | 0.7 - 6.0                                        | 0.7 - 2.0                                        | 0.7 - 1.5                                     | 0.7 - 2.5                                     | 0.7 - 1.2                                     | 0.3 - 0.5                                       | 0.3 - 0.5                                     | 0.35 - 0.55                                      |
| TL Well Depth (m<br>bgl) (Greencap<br>(2021) DSI)                   | Not applicable                                                | 1.5                                             | 3.5                                             | 1                                             | 1.5                                             | 6                                                | 2                                                | 1.5                                           | 2.5                                           | 1.2                                           | 0.5                                             | 0.5                                           | 0.55                                             |
| TL Depth of Drilled<br>Borehole (m bgl)<br>(Greencap (2021)<br>DSI) | Top of casing                                                 | 2.5                                             | 3.5                                             | 3.9                                           | 1.7                                             | 8                                                | 2.3                                              | 1.6                                           | 3                                             | 1.2                                           | 3                                               | 0.5                                           | 3                                                |
| Screened Soil<br>Horizon (Greencap<br>(2021) DSI)                   | Not applicable                                                | Fill: 0.2 - 1.2<br>Fill?/Natural?:<br>1.2 - 2.6 | Fill: 0.2 - 1.2<br>Fill?/Natural?:<br>1.2 - 2.6 | Fill: 0 - 1.5<br>Fill?/Natural?:<br>1.5 - 2.7 | Fill: 0.2 - 1.0<br>Fill?/Natural?:<br>1.0 - 1.5 | Fill: 0.15 - 3.0<br>Fill?/Natural?:<br>3.0 - 6.0 | Fill: 0.15 - 0.9<br>Fill?/Natural?:<br>0.9 - 2.3 | Fill: 0 - 0.9<br>Fill?/Natural?:<br>0.9 - 1.6 | Fill: 0 - 0.5<br>Fill?/Natural?:<br>0.5 - 2.6 | Fill: 0 - 0.8<br>Fill?/Natural?:<br>0.8 - 1.2 | Fill: 0.2 - 1.8<br>Fill?/Natural?:<br>1.8 - 2.5 | Fill: 0 - 0.3<br>Fill?/Natural?:<br>0.3 - 0.5 | Fill: 0.25 - 1.5<br>Fill?/Natural?:<br>1.5 - 2.3 |
| Stickup (m)                                                         | Not applicable                                                | 0                                               | 0                                               | 0                                             | 0                                               | 0                                                | 0                                                | 0                                             | 0                                             | 0                                             | 0                                               | 0                                             | 0                                                |
| SWL (m toc)                                                         | m BgI toc                                                     | 1.36                                            | 1.94                                            | 0.84                                          | 1.35                                            | 1.31                                             | 1.3                                              | 1.13                                          | 0.91                                          | 0.9                                           | 0.49                                            | -                                             | 0.49                                             |
| Additional<br>Comments                                              | Not applicable                                                | Water pooled<br>inside gatic cover              | Water pooled<br>inside gatic cover              | -                                             | -                                               | -                                                | -                                                | -                                             | -                                             | -                                             | -                                               | Not sampled                                   | -                                                |













## Appendix C Laboratory Certificates

| Envirol B mail         Envirol B GROUP - National phone number 1300 424 344         Perchask with Laboratories           Clinit/Georynte:         Clinit/Friget Nam: Number / Site et (il report title):         21087b - 21087b                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |              | ent      | Clie      | <b>Y</b> - | Y      | ΓOD               | CUST           | IN OF C                               | CHA                                   |                |                                        | d Confident |                                               | [Co      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|------------|--------|-------------------|----------------|---------------------------------------|---------------------------------------|----------------|----------------------------------------|-------------|-----------------------------------------------|----------|
| Client:Georyntec         Client Project Name / Number / Site at: (le report title):         Ph: 68 397 256 / Watemptoma           Contact Person: Hayden Davies         2057 - Wentworth Point         25 Reach Divis, Couple Site, Si                                                                                                                                                                                                                                                                                                                                      | 424 344                                                                                                               | 300 424 3    | ber 13   | e num     | phon       | al p   | Nationa           | OUP - N        |                                       |                                       |                |                                        |             |                                               |          |
| Contact Person: Hayden Davies         21067 - Wentworth Point         Melbaurn Educ Fundalb Strides           Protect Mar: Peter Moore         PO No.         Banger: Hayden Davies         Date results required:         Standard           Address:         Suite 1, level 9, 189 Kent street, Sydney 2000         Or choose standard         Standard         Melbaurn Educ Fundabbane Educines           Phone:         92518070 Mob: 0451021512         Additional report format: esdat / equils /         Melbaurn Educ Fundabbane Educines           Individend advies@Geosyntlec.com         additional report format: esdat / equils /         Bate Status /         Bate Status /           Individend multipact multipact multipact formation         Tests Required         Commonstat         Commonstat           Madden davies@Geosyntlec.com         additional report format: esdat / equils /         Bate Status /         Bate Status /           Sample Information         Tests Required         Commonstat         Commonstat         Commonstat           1         TS1-1, 0,2-0,4         30/11/2021         x         Image: status /         Image: status /         Image: status /           2         TS1-2, 0,2-0,4         30/11/2021         x         Image: status /         Image: status /         Image: status /           3         TS1-2, 0,2-0,4         30/11/2021         X         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ite etc (ie report title):                                                                                            | ame / I      | oiect N  | Proj      | Client I   |        | Client:Geosyntec  |                |                                       |                                       |                |                                        | Clie        |                                               |          |
| Project Mgr. Peter Moore         PO No.:         Point         Descent Dive, Cryptic Mdil, Nr. 319           Sampler: Nayden Davies         Envirolab Quote No.:         Envirolab Quote No.:         Pho 1982         Pho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       | , ,          |          |           | -          | -      | 1                 |                |                                       |                                       |                | ayden Davies                           |             |                                               | <u>⊨</u> |
| Address:         Date results required:         Standard<br>Or choose: standard<br>Address:         Standard<br>Do the results required:         Standard<br>Or choose: standard<br>Address:         Provide<br>Standard           Phone:         92518070 Mob: 0451021512         Additional report format: esdat / equis /<br>Email:         Bitkenspiller: Envirolab Services<br>address:         Bitkenspiller: Envirolab Services<br>address:         Bitkenspiller: Envirolab Services<br>Dot 100 Services<br>Dot 100 Services           Email:         Lab Comments:         Lab Comments:         Date results required         Date results required         Date results required:<br>Address:         Date results required:<br>Dot 100 Services         Date results required:<br>Dot 100 Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |              |          |           |            | .:     | PO No.            |                |                                       |                                       |                | -                                      |             |                                               |          |
| Address:         Date results:         Standard<br>for choose: standard<br>for |                                                                                                                       |              |          | e No. :   | o Quote    | lab (  | Envirol           |                |                                       |                                       |                |                                        |             |                                               |          |
| Suite 1, level 9, 189 Kent street, Sydney 2000         Or choose: standard<br>Audional report format: estat / equis /<br>Babb         Bridenz Office: Envirolab Services<br>Babb         Barvin Office: Envirolab Services<br>Babb         Barvin Office: Envirolab Services<br>Babb         Barvin Office: Envirolab Services<br>Barvin Office: Envirolab Servin Office: Envirolab Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standard                                                                                                              |              |          |           |            |        |                   |                |                                       |                                       |                |                                        |             | ess:                                          | Adr      |
| Email:         Lab Comments:         Date formation         Comments:         Date formation formation         Comments:         Date formation         Comments:         Date formation formation formation formation         Depth         Date formation formation         Depth         Date formation formatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |              |          | in advan  | orm lab i  | Inform | Note: In<br>apply |                |                                       |                                       |                | Suite 1, level 9                       | 2           |                                               |          |
| Email:         Unit 7, 17 Wiles Rd, Berlmah, NT 0820<br>Ph: 08 967 1201 / devine@decosyntec.com.           Sample information         Depth         Date sampled         Ref.         Sec.         Control of the sec.         Sec.         Control of the sec.         Sec.         Control of the sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | equis /                                                                                                               | at / equis / | t: esdat |           | -          | _      |                   |                | .021512                               | Mob: 0451                             | 9251807        |                                        |             | 1e:                                           | Pho      |
| havden.davies@geosyntec.com           rests Required         Come           Sample information         Depth         Date sampled         Sample information         Come           Envirolab         Client Sample ID or information         Depth         Date sampled         Sample if         Sample if         Provide information         Provide information sample a           1         TS1-1_0.2-0.4         30/11/2021         x               Provide information sample a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |              |          |           | ments:     | omm    | Lab Cor           |                |                                       |                                       |                |                                        |             | il:                                           | Em       |
| edward.munnings@geosyntec.com           Tests Required         Come           Envirolab         Cilent Sample ID or information         Depth         Date sampled         Image: Second Seco                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |              |          |           |            |        |                   | . com          | ore@geosyntec                         | Poter mor                             | @geosyntec.com | havden davies@g                        | havde       |                                               |          |
| Sample information         Tests Required         Common Communication         Depth Sample ID or information         Depth Sample ID         Date sample ID         Sample ID         Client Sample ID or information         Depth Sample ID         Date sample ID         Sample ID         Client Sample ID         Depth Sample ID         Date sample ID         Sample ID         Depth Sample ID         Date sample ID         Sample ID         Sample ID         Sample ID         Depth Sample ID         Depth Sample ID         Date sample ID         Sample ID         Sample ID         Sample ID         Depth Sample ID         Depth Sample ID         Date sample ID         Sample ID         Sample ID         Sample ID         Depth Sample ID         Date sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |              |          |           |            |        |                   | <u></u>        |                                       |                                       |                |                                        | nayue       |                                               | L        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tests Required                                                                                                        |              |          |           |            |        | 1                 |                |                                       |                                       |                |                                        |             |                                               |          |
| i       TS1-1_0.2-0.4 $30/11/2021$ x       i       i         z       TS1-1_0.6_0.8 $30/11/2021$ x       i       i         z       TS1-2_0.2-0.4 $30/11/2021$ x       i       i         z       TS1-2_0.2-0.4 $30/11/2021$ x       i       i         z       TS1-2_0.2-0.4 $30/11/2021$ x       i       i         y       TS1-2_0.8-1.0 $30/11/2021$ x       i       i         y       TS1-3_0.2-0.4 $30/11/2021$ x       i       i         y       TS1-3_0.6-0.8 $30/11/2021$ x       i       i         y       TS2-1_0.4-0.6 $30/11/2021$ x       i       i         z       TS2-1_0.4-0.6 $30/11/2021$ x       i       i         z       TS2-1_0.4-0.6 $30/11/2021$ x       i       i       i         y       TS2-2_0.4-0.6 $30/11/2021$ x       i       i       i       i         y       TS2-2_1.0-1.2 $30/11/2021$ x       i       i       i       i         y       TS2-3_0.4-0.6 $30/11/2021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                       |              |          |           | Ī          |        | 1                 | 1              |                                       |                                       |                | ······································ |             | - 1                                           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       |              |          | PAHs      | TRH/BTEX   |        | Combo 2           |                | Date sampled                          | Depth                                 |                | lient Sample ID or ir                  | Client Si   |                                               |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · <del>    -   -   -   -  </del>                                                                                      |              |          |           |            | +      | + x               | <b>┼────┤</b>  | 30/11/2021                            | ├                                     | 0.2-0.4        | TS1-1 0.2-0                            |             | 1                                             | F        |
| 3       TS1-2_0.2-0.4       30/11/2021       x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |              |          |           |            |        | 1                 |                |                                       |                                       |                |                                        |             | 2                                             | -        |
| Li       %TS1-2_0.8-1.0       30/11/2021       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |              |          |           |            | +      |                   | 1              |                                       |                                       |                |                                        |             |                                               |          |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + |              |          |           |            | +      |                   | ++             |                                       |                                       |                |                                        |             | <u></u>                                       | -        |
| %       TS1-3_0.6-0.8       30/11/2021       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x <td></td> <td></td> <td>_  </td> <td></td> <td></td> <td>+</td> <td>-</td> <td>┨───┤</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |              | _        |           |            | +      | -                 | ┨───┤          |                                       |                                       |                |                                        |             |                                               | -        |
| 7       TS2-1_0.4-0.6       30/11/2021       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x <td>+ + + - +</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>+</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td>_</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + + + - +                                                                                                             |              |          |           |            | -      |                   | +              |                                       | · · · · · · · · · · · · · · · · · · · |                |                                        |             |                                               | _        |
| g       TS2-1_1.0-1.2       30/11/2021       x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |              |          |           |            | +      |                   |                |                                       |                                       |                |                                        |             |                                               |          |
| e1       TS2-2_0.4-0.6       30/11/2021       x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |              |          |           |            |        |                   | +              | · · · · · · · · · · · · · · · · · · · |                                       |                |                                        |             |                                               |          |
| Io         TS2-2_1.0-1.2         30/11/2021         x         Image: Constraint of the state of the st                                                                                                                                                                                                                                                                                                            |                                                                                                                       |              |          |           |            | + -    |                   |                |                                       |                                       |                |                                        |             | <u> </u>                                      |          |
| II         TS2-3_0.4-0.6         30/11/2021         x <th< td=""><td>+ + + - + - + - + - + - + - + - + - + -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>' -                                   </u></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + + + - + - + - + - + - + - + - + - + -                                                                               |              |          |           |            |        |                   |                |                                       |                                       |                |                                        |             | <u>' -                                   </u> |          |
| Y2         TS2-3_1.2-1.4         30/11/2021         x <th< td=""><td></td><td></td><td>-+-</td><td></td><td></td><td>-</td><td>-</td><td>╂┦</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |              | -+-      |           |            | -      | -                 | ╂┦             |                                       |                                       |                |                                        |             |                                               |          |
| 13 TS2-4_0.4-0.6 30/11/2021 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ╉╴┼╺┽╼┾╌┿╸                                                                                                            |              |          |           |            |        | _                 | /              |                                       | · · · · · · · · · · · · · · · · · · · |                |                                        |             |                                               | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |              |          |           |            | +      |                   | <b></b> /      |                                       | ++                                    |                |                                        |             | 12.                                           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |              |          |           |            | +      |                   | <b>↓</b> !     |                                       |                                       |                |                                        |             |                                               | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |              |          |           |            | +      | ×                 | + <sup> </sup> | 30/11/2021                            |                                       |                |                                        | 1           | <u>14</u>                                     | <u> </u> |
| 15 DUP1 30/11/2021 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                              |              |          |           |            | _      |                   | +              |                                       |                                       |                |                                        |             |                                               |          |
| TRIP1 30/11/2021 × Rease forward to euroflus (IURH/BUEX/R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |              |          |           |            |        | <u> </u>          | !              |                                       | l                                     |                |                                        |             |                                               | <u> </u> |
| i k WB1_0-0.2 1/12/2021 x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |              |          |           |            | _      | <u> </u>          |                |                                       | <b>└────┤</b>                         |                |                                        |             | 16                                            |          |
| 1/12/2021 X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |              |          | x         | x          | 1:     | <u> </u>          |                |                                       |                                       |                |                                        |             | 12                                            |          |
| (\$ WB2_0.2-0.4 1/12/2021 x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |              |          | x         | x          |        |                   |                |                                       | L                                     |                | · · · · · · · · · · · · · · · · · · ·  |             |                                               |          |
| 1/12/2021 X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |              |          |           |            |        |                   |                |                                       |                                       |                |                                        |             |                                               | L        |
| Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | included in the extract                                                                                               | be inclu     | is to b  | nples     | r san      | ter    | in wat            | oresent i      | d sediment p                          | d settle                              | box if observ  | se tick the box                        | Please ti   | - <b>F</b>                                    | E        |
| Relinquished by (Company): Geosyntec Received by (Company): ELS Sight Lab Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |              |          |           | iny):      | npan   | by (Com           | Received b     |                                       |                                       | yntec          | Company): Geosyntee                    | by (Compar  | nquished t                                    | Re       |
| Print Name: Hayden Davies Print Name: K- Cue ve Job number: 28/29 0 Cooling: (Ice ) Ice pack / Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       | i -          | resile   |           |            |        |                   |                |                                       |                                       | Davies         |                                        |             |                                               |          |
| Date & Time:       1/12/2021       Date & Time:       1/615       0/-12 - 2021       Temperature:       1/4       Security seal:       Intact / Broker         Signature:       Signature:       Signature:       TAT Req - SAME day / 1 / 2 / 3 / 4 / STD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temperature: 1                                                                                                        | 421          | . 12 . 2 | 0         | 5          | 615    |                   |                |                                       |                                       |                | 021                                    | /12/2021    |                                               | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT Req - SAME 02                                                                                                     | 70           | <u></u>  | <u>re</u> | -7         |        | <u></u>           | [signature:    |                                       |                                       | <u></u>        |                                        |             |                                               |          |
| $\begin{cases} 20 & TSI_GW \\ 30/11 & X \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       | -            |          |           |            |        | $\sim$            |                |                                       |                                       |                |                                        |             |                                               | 7        |
| (21 T52-GW 30/11 X<br>Form 302_V004 X Issue date: 21 May 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                     |              | 2019     | 21 Mav 3  | e date: '  | 5110   | ×                 |                | 30/11                                 |                                       | - UM           | 752-0                                  |             |                                               | <u> </u> |

.

| 10.   |           |          |      |  |
|-------|-----------|----------|------|--|
| LCODA | right and | Confider | tial |  |
|       |           |          |      |  |

.

## CHAIN OF CUSTODY - Client

| [Copyright a                 | nd Confidential]                                        |              | <u> </u>      |              | _            |                     |                    |             |                |        |          |          |          |            |             |               | ι                            | ト                  | >8                  | lated in                                                      | - c 2/12- |
|------------------------------|---------------------------------------------------------|--------------|---------------|--------------|--------------|---------------------|--------------------|-------------|----------------|--------|----------|----------|----------|------------|-------------|---------------|------------------------------|--------------------|---------------------|---------------------------------------------------------------|-----------|
|                              |                                                         |              | AIN OF        |              |              |                     |                    |             |                |        |          |          |          | -          | Τ           | 12 A          | <u>ney Lab</u> -<br>shley St | Enviro<br>Chatsu   | lab Serv<br>vood, N |                                                               |           |
|                              |                                                         | ENVI         | ROLAB G       | ROUP -       | Natio        | nal ph              | one n              | umbe        | 1300           | 424    | 344      |          |          |            |             |               | <u>h Lab -</u> N             |                    |                     |                                                               |           |
| Client:Geosy                 |                                                         |              |               |              |              |                     |                    |             | ber / Sit      |        |          | ort titl | (a).     |            | -           | 16-1<br>Ph: ( | 8 Hayde<br>08 9317 :         | n Crt, N<br>2505 / | /iγaree,<br>lab@mj  | WA 6154<br>pl.com.au                                          |           |
|                              | on: Hayden Davies                                       |              |               |              |              |                     |                    |             | - Went         |        |          |          |          |            | 1           | Mel           | ourne l                      | <u>ab</u> - En     | virolab S           | Services                                                      |           |
|                              | Peter Moore                                             |              |               |              | PO N         | o.:                 |                    |             |                |        |          | _        |          |            | -           | 25 R          | esearch                      | Drive (            | rovdon              | i South, VIC 3136<br>irne@envirolab.com.au                    |           |
| Sampler: Ha                  | den Davies                                              |              |               |              |              | olab Qu             |                    |             |                |        |          |          |          |            | 1           |               |                              |                    |                     | Services                                                      |           |
| Audress:                     | Suite 1 Jours 9 100 Kenter                              |              |               |              | Date         | results             | require            | ed:         |                |        | Sta      | ndard    |          |            | 1           | 7a Tf         | he Parad                     | e. Non             | vood. S/            | A 5067                                                        | 281290    |
|                              | Suite 1, level 9, 189 Kent st                           | reet, Sydney | y 2000        |              |              | oose: s<br>Inform l |                    |             | urgent tu      | marou  | nd is re | quired   | - surch  | arges      |             | Brisb         | ane Offi                     | <u>ce</u> - En     | virolab S           | e@envirolab.com.au<br>Services                                | COUR      |
| Phone:                       | 9251807                                                 | 0 Mob: 04    | 51021512      |              |              | onal re             | port fo            | ormat: e    | sdat / e       | nuis / |          | _        |          |            | 4           | 20a,<br>Ph: 0 | 7 3266 9                     | epot St,<br>532 /  | Banyo,<br>brisbane  | . QLD 4014<br>e@envirolab.com.au                              |           |
| Email:                       |                                                         |              |               |              |              | ommen               |                    |             |                |        |          |          |          |            | -           | Darw          | in Office                    | - Envi             | rolab Se            | rvices                                                        |           |
| l                            | havden davice@reasuret                                  | Det          |               |              |              |                     |                    |             |                |        |          |          |          |            | 1           | Unit          | 7.17Wi                       | lloc Rd            | Rorrim              | ah, NT 0820<br>Penvirolab.com.au                              |           |
|                              | havden.davies@geosyntec.com<br>edward.munning           | m Peter.ma   | oore@geosynte | c.com        |              |                     |                    |             |                |        |          |          |          |            |             |               |                              |                    |                     |                                                               |           |
|                              | Sample informa                                          |              |               |              |              |                     |                    | <del></del> |                |        |          |          |          |            |             |               |                              |                    |                     |                                                               |           |
|                              |                                                         | T            | <u> </u>      | <del>Ť</del> | - 1 2        | <u> </u>            | 1 22 1             | <u> </u>    | 1 - 25/5       |        | Tests    | Requi    | red 🤟    | - <u>1</u> | <u> </u>    |               | <u> </u>                     |                    |                     | Comments                                                      |           |
| Envirolab<br>Sample ID       | Client Sample ID or information                         | Depth        | Date sampled  |              | Cambo 2      | TRH/BTEX            | PAHS               | TRH/VTEXN   |                |        |          |          |          |            |             |               |                              |                    |                     | Provide as much<br>information about the<br>sample as you can |           |
|                              | TS1-1_0.2-0.4                                           | +            | 30/11/2021    |              | x            | +                   |                    | +           | +              |        | ┼──      | <u> </u> | <b> </b> |            | +           | <u> </u>      | <u> </u>                     | <u> </u>           |                     |                                                               | [         |
| 2                            | TS1-1_0.6_0.8                                           |              | 30/11/2021    |              | x x          | +                   | <u> </u>           | <u>+</u> —  | ┼──┤           |        |          | ┢──      |          | +          | + -         |               |                              | <u> </u>           | <u> </u>            |                                                               |           |
| 3                            | TS1-2_0.2-0.4                                           |              | 30/11/2021    |              | <u> </u> Â   | +                   |                    |             |                |        |          |          |          |            | +           |               |                              |                    | <u> </u>            |                                                               |           |
| <u> </u>                     | TS1-2_0.8-1.0                                           | -            | 30/11/2021    |              | <u> </u>     |                     | <u> </u>           |             |                |        |          | <u> </u> |          |            | +           |               | ┢──-                         |                    | ļ                   |                                                               |           |
| 5                            | TS1-3_0.2-0.4                                           |              | 30/11/2021    | _            | Î            | +                   |                    |             | + -+           |        | ╞──-     |          |          | +          |             |               | <u> </u>                     |                    | <b> </b>            |                                                               |           |
| 6                            | TS1-3_0.6-0.8                                           |              | 30/11/2021    |              | 1 x          | +                   | -                  |             |                |        |          |          |          |            |             |               | ┣                            |                    |                     |                                                               |           |
| 2                            | TS2-1_0.4-0.6                                           | 1            | 30/11/2021    |              | x            | <u> </u>            |                    | <u> </u>    | ╀──┦           |        |          |          |          | ╀──-       |             |               |                              |                    | ┢──                 |                                                               |           |
| 8                            | TS2-1_1.0-1.2                                           |              | 30/11/2021    |              | x            |                     |                    |             | <del>   </del> | _      |          |          |          |            | <b> </b>    |               |                              |                    | <u> </u>            |                                                               |           |
| 9                            | TS2-2_0.4-0.6                                           |              | 30/11/2021    |              | x            | 1                   |                    |             | ┼──┤           |        |          | <u> </u> |          | +          |             |               |                              |                    | <u> </u>            |                                                               |           |
| 10                           | TS2-2_1.0-1.2                                           |              | 30/11/2021    |              | x            |                     |                    | _           | ╞──╁           |        |          |          |          |            |             |               | ┨───                         |                    |                     |                                                               |           |
| 11                           | TS2-3_0.4-0.6                                           |              | 30/11/2021    |              | x            |                     |                    |             |                |        |          |          |          |            |             |               |                              |                    |                     |                                                               |           |
| 12                           | TS2-3_1.2-1.4                                           |              | 30/11/2021    | <u>+</u>     | x            | <u> </u>            |                    |             | ┝╸╶┥           |        |          |          |          | +          |             |               |                              | _                  | <u> </u>            |                                                               |           |
| 13                           | TS2-4_0.4-0.6                                           |              | 30/11/2021    | 1            | x            |                     |                    |             | ┼──┼           |        |          |          | _        | ┢───       |             |               |                              |                    |                     |                                                               |           |
| 4                            | TS2-4_1.2-1.4                                           |              | 30/11/2021    | †            | x            |                     |                    |             | ┟──┼           | _      |          |          |          | <u> </u>   |             |               | _                            |                    |                     |                                                               |           |
| 18                           | DUP1                                                    |              | 30/11/2021    | 1            | x            |                     | -+                 |             | 1              |        |          |          |          |            |             |               |                              |                    |                     |                                                               |           |
|                              | TRIP1                                                   |              | 30/11/2021    | ·            | x            |                     |                    |             | $\vdash$       |        |          |          |          | <u> </u>   |             |               |                              |                    | L                   | L                                                             |           |
| "lo                          | WB1_0-0.2                                               |              | 1/12/2021     | 1            | ├ <u>^</u> - | x                   | X                  |             | ┝──┼╸          |        |          |          |          |            | <u>  </u> ! | nease t       | orward                       | to eu              | rofins              | (TRH/BTEX/PAHs/Lead                                           |           |
| $\mathbf{n}$                 | WB1_0.8-1.0                                             |              | 1/12/2021     | †            |              | Â                   | $\hat{\mathbf{x}}$ |             | ┟╼╼┟           | -      |          | {        |          |            | <u> </u>    | ├             |                              |                    |                     |                                                               |           |
| 18                           | WB2_0.2-0.4                                             |              | 1/12/2021     | †            |              | x                   | $\frac{1}{x}$      |             | ┝──┟╸          |        |          |          |          |            | — —         |               |                              |                    |                     |                                                               |           |
| 9                            | WB2_0.8-1.0                                             |              | 1/12/2021     |              |              | Â                   | $\frac{2}{x}$      |             | ┝──┼           |        |          |          |          |            |             | $\vdash$      |                              |                    |                     |                                                               |           |
| 20                           | TS1-GW                                                  |              | 1/12/2021     |              |              | $\vdash^{\uparrow}$ | $\rightarrow$      |             | └──┼           |        |          |          |          |            |             | ├             |                              |                    |                     |                                                               |           |
| 21                           | TS2-GW                                                  |              | 1/12/2021     |              |              |                     | -+                 |             | _              |        |          |          |          |            |             | ┝──┦          |                              |                    |                     | · · · · · · · · · · · · · · · · · · ·                         |           |
| <u>P</u>                     | lease tick the box if observe<br>y (Company): Geosyntec | d settled    | l sediment p  | resent ir    | wate         | r san               | ioles              | is to       | be inc         | Jud    | ed in    | the      | avtr     |            |             |               |                              |                    |                     |                                                               |           |
|                              |                                                         |              |               | Received b   | y (Comp      | any):               |                    |             |                | Lah    | Use O    | nlv      | CAU      |            | n an        | u/or          | anaiy                        | ISIS               |                     |                                                               |           |
| rint Name:<br>ate & Time 1/1 | Hayden Davies                                           |              |               | Print Name   |              |                     | ······             |             |                | _      | _        | umber    | 7        | 44 - 24 E  |             | <u> </u>      | Coolin                       | a: Te              | <u>e / To</u>       | e pack / None                                                 |           |
| gnature:                     |                                                         |              |               | Date & Tim   | e:           |                     |                    |             |                |        | Temp     | eratur   | e:       |            |             |               | Securi                       | tv co:             | al: Int             | act / Broken / Name                                           |           |
|                              |                                                         |              |               | Signature:   |              |                     |                    |             |                | ľ      | ΓΑΤ Β    | leg - l  | SAM      | E dav      | / 1         | 12            | / 3                          | 14                 | / ST                | n                                                             |           |



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

## SAMPLE RECEIPT ADVICE

| Client Details |                                             |
|----------------|---------------------------------------------|
| Client         | Geosyntec                                   |
| Attention      | Hayden Davies, Peter Moore, Edward Munnings |

| Sample Login Details                 |                        |
|--------------------------------------|------------------------|
| Your reference                       | 2107 - Wentworth Point |
| Envirolab Reference                  | 284290                 |
| Date Sample Received                 | 01/12/2021             |
| Date Instructions Received           | 01/12/2021             |
| Date Results Expected to be Reported | 08/12/2021             |

| Sample Condition                                       |                  |
|--------------------------------------------------------|------------------|
| Samples received in appropriate condition for analysis | Yes              |
| No. of Samples Provided                                | 19 Soil, 2 Water |
| Turnaround Time Requested                              | Standard         |
| Temperature on Receipt (°C)                            | 14               |
| Cooling Method                                         | Ice              |
| Sampling Date Provided                                 | YES              |

| Comments |
|----------|
| Nil      |

Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID     | VTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | Acid Extractable metalsin soil | BTEX in Water |
|---------------|----------------------------|-------------------------|--------------|--------------------------------|---------------|
| TS1-1_0.2-0.4 | ✓                          | ✓                       | ✓            | ✓                              |               |
| TS1-1_0.6-0.8 | ✓                          | ✓                       | ✓            |                                |               |
| TS1-20.2-0.4  | ✓                          | ✓                       |              |                                |               |
| TS1-2_0.8-1.0 | ✓                          | ✓                       |              |                                |               |
| TS1-30.2-0.4  | ✓                          | ✓                       |              |                                |               |
| TS1-3_0.6-0.8 | ✓                          | ✓                       |              |                                |               |
| TS2-1_0.4-0.6 | ✓                          | ✓                       |              |                                |               |
| TS2-1_1.0-1.2 | ✓                          | ✓                       |              |                                |               |
| TS2-2_0.4-0.6 | ✓                          | ✓                       | ✓            | ✓                              |               |
| TS2-2_1.0-1.2 | ✓                          |                         |              |                                |               |
| TS2-3_0.4-0.6 | $\checkmark$               | ✓                       |              |                                |               |
| TS2-3_1.2-1.4 | ✓                          | ✓                       | ✓            |                                |               |
| TS2-4_0.4-0.6 | ✓                          | ✓                       |              |                                |               |
| TS2-4_1.2-1.4 | $\checkmark$               | ✓                       | ✓            | $\checkmark$                   |               |
| DUP1          | ✓                          | ✓                       | ✓            | ✓                              |               |
| WB1_0-0.2     | ✓                          | $\checkmark$            |              |                                |               |
| WB1_0.8-1.0   | $\checkmark$               | ✓                       |              |                                |               |
| WB2_0.2-0.4   | ✓                          | ✓                       | ✓            |                                |               |
| WB2_0.8-1.0   | ✓                          | ✓                       | ✓            |                                |               |
| TS1-GW        |                            |                         |              |                                | $\checkmark$  |
| TS2-GW        |                            |                         |              |                                | $\checkmark$  |

The ' $\checkmark$ ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

## **CERTIFICATE OF ANALYSIS 284290**

| Client Details |                                                      |
|----------------|------------------------------------------------------|
| Client         | Geosyntec                                            |
| Attention      | Hayden Davies, Peter Moore, Edward Munnings          |
| Address        | Suite 1, Level 9, 189 Kent Street, Sydney, NSW, 2000 |

| Sample Details                       |                        |
|--------------------------------------|------------------------|
| Your Reference                       | 2107 - Wentworth Point |
| Number of Samples                    | 19 Soil, 2 Water       |
| Date samples received                | 01/12/2021             |
| Date completed instructions received | 01/12/2021             |

## **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                 |                                                                      |
|--------------------------------|----------------------------------------------------------------------|
| Date results requested by      | 08/12/2021                                                           |
| Date of Issue                  | 06/12/2021                                                           |
| NATA Accreditation Number 29   | 1. This document shall not be reproduced except in full.             |
| Accredited for compliance with | SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |

**Results Approved By** Dragana Tomas, Senior Chemist Liam Timmins, Chemist Manju Dewendrage, Prep Team Leader Thomas Lovatt, Chemist

## Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 284290 Revision No: R00



Page | 1 of 21

| vTRH(C6-C10)/BTEXN in Soil           |       |               |               |               |               |               |
|--------------------------------------|-------|---------------|---------------|---------------|---------------|---------------|
| Our Reference                        |       | 284290-1      | 284290-2      | 284290-3      | 284290-4      | 284290-5      |
| Your Reference                       | UNITS | TS1-1_0.2-0.4 | TS1-1_0.6-0.8 | TS1-2_0.2-0.4 | TS1-2_0.8-1.0 | TS1-3_0.2-0.4 |
| Date Sampled                         |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample                       |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date extracted                       | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed                        | -     | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    |
| TRH C6 - C9                          | mg/kg | <25           | <25           | <25           | <25           | <25           |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg | <25           | <25           | <25           | <25           | <25           |
| vTPH $C_6$ - $C_{10}$ less BTEX (F1) | mg/kg | <25           | <25           | <25           | <25           | <25           |
| Benzene                              | mg/kg | <0.2          | <0.2          | <0.2          | <0.2          | <0.2          |
| Toluene                              | mg/kg | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| Ethylbenzene                         | mg/kg | <1            | <1            | <1            | <1            | <1            |
| m+p-xylene                           | mg/kg | <2            | <2            | <2            | <2            | <2            |
| o-Xylene                             | mg/kg | <1            | <1            | <1            | <1            | <1            |
| Naphthalene                          | mg/kg | <1            | <1            | <1            | <1            | <1            |
| Total +ve Xylenes                    | mg/kg | <3            | <3            | <3            | <3            | <3            |
| Surrogate aaa-Trifluorotoluene       | %     | 95            | 99            | 115           | 100           | 105           |

| vTRH(C6-C10)/BTEXN in Soil                           |       |               |               |               |               |               |
|------------------------------------------------------|-------|---------------|---------------|---------------|---------------|---------------|
| Our Reference                                        |       | 284290-6      | 284290-7      | 284290-8      | 284290-9      | 284290-10     |
| Your Reference                                       | UNITS | TS1-3_0.6-0.8 | TS2-1_0.4-0.6 | TS2-1_1.0-1.2 | TS2-2_0.4-0.6 | TS2-2_1.0-1.2 |
| Date Sampled                                         |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample                                       |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date extracted                                       | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed                                        | -     | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25           | <25           | <25           | <25           | <25           |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25           | <25           | 30            | <25           | <25           |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25           | <25           | 30            | <25           | <25           |
| Benzene                                              | mg/kg | <0.2          | <0.2          | <0.2          | <0.2          | <0.2          |
| Toluene                                              | mg/kg | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| Ethylbenzene                                         | mg/kg | <1            | <1            | <1            | <1            | <1            |
| m+p-xylene                                           | mg/kg | <2            | <2            | <2            | <2            | <2            |
| o-Xylene                                             | mg/kg | <1            | <1            | <1            | <1            | <1            |
| Naphthalene                                          | mg/kg | <1            | <1            | <1            | <1            | <1            |
| Total +ve Xylenes                                    | mg/kg | <3            | <3            | <3            | <3            | <3            |
| Surrogate aaa-Trifluorotoluene                       | %     | 107           | 106           | 101           | 106           | 104           |

| vTRH(C6-C10)/BTEXN in Soil                           |       |               |               |               |               |            |
|------------------------------------------------------|-------|---------------|---------------|---------------|---------------|------------|
| Our Reference                                        |       | 284290-11     | 284290-12     | 284290-13     | 284290-14     | 284290-15  |
| Your Reference                                       | UNITS | TS2-3_0.4-0.6 | TS2-3_1.2-1.4 | TS2-4_0.4-0.6 | TS2-4_1.2-1.4 | DUP1       |
| Date Sampled                                         |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021 |
| Type of sample                                       |       | Soil          | Soil          | Soil          | Soil          | Soil       |
| Date extracted                                       | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021 |
| Date analysed                                        | -     | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021 |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25           | <25           | <25           | <25           | <25        |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25           | <25           | <25           | <25           | <25        |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25           | <25           | <25           | <25           | <25        |
| Benzene                                              | mg/kg | <0.2          | <0.2          | <0.2          | <0.2          | <0.2       |
| Toluene                                              | mg/kg | <0.5          | <0.5          | <0.5          | <0.5          | <0.5       |
| Ethylbenzene                                         | mg/kg | <1            | <1            | <1            | <1            | <1         |
| m+p-xylene                                           | mg/kg | <2            | <2            | <2            | <2            | <2         |
| o-Xylene                                             | mg/kg | <1            | <1            | <1            | <1            | <1         |
| Naphthalene                                          | mg/kg | <1            | <1            | <1            | <1            | <1         |
| Total +ve Xylenes                                    | mg/kg | <3            | <3            | <3            | <3            | <3         |
| Surrogate aaa-Trifluorotoluene                       | %     | 95            | 97            | 101           | 102           | 96         |
| vTRH(C6-C10)/BTEXN in Soil                           |       |               |               |               |               |            |
| Our Reference                                        |       | 284290-16     | 284290-17     | 284290-18     | 284290-19     |            |
| Your Reference                                       | UNITS | WB1_0-0.2     | WB1_0.8-1.0   | WB2_0.2-0.4   | WB2_0.8-1.0   |            |

| Our Reference                                        |       | 284290-16  | 284290-17   | 284290-18   | 284290-19   |
|------------------------------------------------------|-------|------------|-------------|-------------|-------------|
| Your Reference                                       | UNITS | WB1_0-0.2  | WB1_0.8-1.0 | WB2_0.2-0.4 | WB2_0.8-1.0 |
| Date Sampled                                         |       | 1/12/2021  | 1/12/2021   | 1/12/2021   | 1/12/2021   |
| Type of sample                                       |       | Soil       | Soil        | Soil        | Soil        |
| Date extracted                                       | -     | 02/12/2021 | 02/12/2021  | 02/12/2021  | 02/12/2021  |
| Date analysed                                        | -     | 03/12/2021 | 03/12/2021  | 03/12/2021  | 03/12/2021  |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        | <25         | <25         | <25         |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25        | <25         | <25         | <25         |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        | <25         | <25         | <25         |
| Benzene                                              | mg/kg | <0.2       | <0.2        | <0.2        | <0.2        |
| Toluene                                              | mg/kg | <0.5       | <0.5        | <0.5        | <0.5        |
| Ethylbenzene                                         | mg/kg | <1         | <1          | <1          | <1          |
| m+p-xylene                                           | mg/kg | <2         | <2          | <2          | <2          |
| o-Xylene                                             | mg/kg | <1         | <1          | <1          | <1          |
| Naphthalene                                          | mg/kg | <1         | <1          | <1          | <1          |
| Total +ve Xylenes                                    | mg/kg | <3         | <3          | <3          | <3          |
| Surrogate aaa-Trifluorotoluene                       | %     | 103        | 110         | 103         | 106         |

| svTRH (C10-C40) in Soil                                      |       |               |               |               |               |               |
|--------------------------------------------------------------|-------|---------------|---------------|---------------|---------------|---------------|
| Our Reference                                                |       | 284290-1      | 284290-2      | 284290-3      | 284290-4      | 284290-5      |
| Your Reference                                               | UNITS | TS1-1_0.2-0.4 | TS1-1_0.6-0.8 | TS1-2_0.2-0.4 | TS1-2_0.8-1.0 | TS1-3_0.2-0.4 |
| Date Sampled                                                 |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample                                               |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date extracted                                               | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed                                                | -     | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50           | <50           | <50           | <50           | 450           |
| TRH C15 - C28                                                | mg/kg | <100          | <100          | <100          | <100          | 260           |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | <100          | <100          | <100          | <100          | <100          |
| Total +ve TRH (C10-C36)                                      | mg/kg | <50           | <50           | <50           | <50           | 710           |
| TRH >C10 -C16                                                | mg/kg | <50           | <50           | <50           | <50           | 590           |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50           | <50           | <50           | <50           | 590           |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | <100          | <100          | <100          | <100          | 150           |
| TRH >C34 -C40                                                | mg/kg | <100          | <100          | <100          | <100          | <100          |
| Total +ve TRH (>C10-C40)                                     | mg/kg | <50           | <50           | <50           | <50           | 740           |
| Surrogate o-Terphenyl                                        | %     | 90            | 94            | 87            | 84            | 98            |

| svTRH (C10-C40) in Soil               |       |               |               |               |               |               |
|---------------------------------------|-------|---------------|---------------|---------------|---------------|---------------|
| Our Reference                         |       | 284290-6      | 284290-7      | 284290-8      | 284290-9      | 284290-10     |
| Your Reference                        | UNITS | TS1-3_0.6-0.8 | TS2-1_0.4-0.6 | TS2-1_1.0-1.2 | TS2-2_0.4-0.6 | TS2-2_1.0-1.2 |
| Date Sampled                          |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample                        |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date extracted                        | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed                         | -     | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg | 87            | <50           | 200           | <50           | 560           |
| TRH C15 - C28                         | mg/kg | <100          | <100          | 960           | <100          | 1,900         |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg | <100          | <100          | <100          | <100          | <100          |
| Total +ve TRH (C10-C36)               | mg/kg | 90            | <50           | 1,200         | <50           | 2,400         |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg | 120           | <50           | 530           | <50           | 1,300         |
| TRH >C10 - C16 less Naphthalene (F2)  | mg/kg | 120           | <50           | 530           | <50           | 1,300         |
| TRH >C16 -C34                         | mg/kg | <100          | <100          | 620           | <100          | 1,100         |
| TRH >C34 -C40                         | mg/kg | <100          | <100          | <100          | <100          | <100          |
| Total +ve TRH (>C10-C40)              | mg/kg | 120           | <50           | 1,200         | <50           | 2,400         |
| Surrogate o-Terphenyl                 | %     | 95            | 89            | #             | 81            | #             |

| svTRH (C10-C40) in Soil               |       |               |               |               |               |            |
|---------------------------------------|-------|---------------|---------------|---------------|---------------|------------|
| Our Reference                         |       | 284290-11     | 284290-12     | 284290-13     | 284290-14     | 284290-15  |
| Your Reference                        | UNITS | TS2-3_0.4-0.6 | TS2-3_1.2-1.4 | TS2-4_0.4-0.6 | TS2-4_1.2-1.4 | DUP1       |
| Date Sampled                          |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021 |
| Type of sample                        |       | Soil          | Soil          | Soil          | Soil          | Soil       |
| Date extracted                        | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021 |
| Date analysed                         | -     | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021    | 03/12/2021 |
| TRH C10 - C14                         | mg/kg | <50           | <50           | <50           | 410           | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg | <100          | 170           | <100          | 1,700         | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg | <100          | <100          | <100          | <100          | <100       |
| Total +ve TRH (C10-C36)               | mg/kg | <50           | 170           | <50           | 2,100         | <50        |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg | <50           | 61            | <50           | 950           | <50        |
| TRH >C10 - C16 less Naphthalene (F2)  | mg/kg | <50           | 61            | <50           | 950           | <50        |
| TRH >C16 -C34                         | mg/kg | <100          | 140           | <100          | 1,200         | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg | <100          | <100          | <100          | <100          | <100       |
| Total +ve TRH (>C10-C40)              | mg/kg | <50           | 200           | <50           | 2,100         | <50        |
| Surrogate o-Terphenyl                 | %     | 83            | 100           | 77            | #             | 79         |

| svTRH (C10-C40) in Soil                                      |       |            |             |             |             |
|--------------------------------------------------------------|-------|------------|-------------|-------------|-------------|
| Our Reference                                                |       | 284290-16  | 284290-17   | 284290-18   | 284290-19   |
| Your Reference                                               | UNITS | WB1_0-0.2  | WB1_0.8-1.0 | WB2_0.2-0.4 | WB2_0.8-1.0 |
| Date Sampled                                                 |       | 1/12/2021  | 1/12/2021   | 1/12/2021   | 1/12/2021   |
| Type of sample                                               |       | Soil       | Soil        | Soil        | Soil        |
| Date extracted                                               | -     | 02/12/2021 | 02/12/2021  | 02/12/2021  | 02/12/2021  |
| Date analysed                                                | -     | 03/12/2021 | 03/12/2021  | 03/12/2021  | 03/12/2021  |
| TRH C10 - C14                                                | mg/kg | 270        | <50         | <50         | <50         |
| TRH C15 - C28                                                | mg/kg | 500        | <100        | <100        | <100        |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | 140        | <100        | <100        | <100        |
| Total +ve TRH (C10-C36)                                      | mg/kg | 910        | <50         | <50         | <50         |
| TRH >C <sub>10</sub> -C <sub>16</sub>                        | mg/kg | 600        | <50         | <50         | <50         |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | 600        | <50         | <50         | <50         |
| TRH >C16 -C34                                                | mg/kg | 270        | <100        | <100        | <100        |
| TRH >C34 -C40                                                | mg/kg | <100       | <100        | <100        | <100        |
| Total +ve TRH (>C10-C40)                                     | mg/kg | 870        | <50         | <50         | <50         |
| Surrogate o-Terphenyl                                        | %     | 93         | 87          | 80          | 85          |

| PAHs in Soil                   |       |               |               |               |               |               |
|--------------------------------|-------|---------------|---------------|---------------|---------------|---------------|
| Our Reference                  |       | 284290-1      | 284290-2      | 284290-3      | 284290-4      | 284290-5      |
| Your Reference                 | UNITS | TS1-1_0.2-0.4 | TS1-1_0.6-0.8 | TS1-2_0.2-0.4 | TS1-2_0.8-1.0 | TS1-3_0.2-0.4 |
| Date Sampled                   |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample                 |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date extracted                 | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed                  | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Naphthalene                    | mg/kg | <0.1          | <0.1          | <0.1          | <0.1          | 0.1           |
| Acenaphthylene                 | mg/kg | <0.1          | <0.1          | <0.1          | <0.1          | <0.1          |
| Acenaphthene                   | mg/kg | <0.1          | <0.1          | <0.1          | <0.1          | <0.1          |
| Fluorene                       | mg/kg | <0.1          | <0.1          | <0.1          | <0.1          | 0.1           |
| Phenanthrene                   | mg/kg | <0.1          | <0.1          | <0.1          | 0.5           | <0.1          |
| Anthracene                     | mg/kg | <0.1          | <0.1          | <0.1          | 0.2           | <0.1          |
| Fluoranthene                   | mg/kg | <0.1          | <0.1          | <0.1          | 1.1           | <0.1          |
| Pyrene                         | mg/kg | <0.1          | <0.1          | <0.1          | 1.3           | <0.1          |
| Benzo(a)anthracene             | mg/kg | <0.1          | <0.1          | <0.1          | 0.6           | <0.1          |
| Chrysene                       | mg/kg | <0.1          | <0.1          | <0.1          | 0.7           | <0.1          |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2          | <0.2          | <0.2          | 0.9           | <0.2          |
| Benzo(a)pyrene                 | mg/kg | <0.05         | <0.05         | <0.05         | 0.84          | <0.05         |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1          | <0.1          | <0.1          | 0.2           | <0.1          |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1          | <0.1          | <0.1          | <0.1          | <0.1          |
| Benzo(g,h,i)perylene           | mg/kg | <0.1          | <0.1          | <0.1          | 0.4           | <0.1          |
| Total +ve PAH's                | mg/kg | <0.05         | <0.05         | <0.05         | 6.6           | 0.2           |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5          | <0.5          | <0.5          | 1.0           | <0.5          |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5          | <0.5          | <0.5          | 1.1           | <0.5          |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5          | <0.5          | <0.5          | 1.1           | <0.5          |
| Surrogate p-Terphenyl-d14      | %     | 94            | 93            | 88            | 86            | 87            |

| PAHs in Soil                   |       |               |               |               |               |               |
|--------------------------------|-------|---------------|---------------|---------------|---------------|---------------|
| Our Reference                  |       | 284290-6      | 284290-7      | 284290-8      | 284290-9      | 284290-10     |
| Your Reference                 | UNITS | TS1-3_0.6-0.8 | TS2-1_0.4-0.6 | TS2-1_1.0-1.2 | TS2-2_0.4-0.6 | TS2-2_1.0-1.2 |
| Date Sampled                   |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample                 |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date extracted                 | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed                  | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Naphthalene                    | mg/kg | <0.1          | <0.1          | <1            | <0.1          | <1            |
| Acenaphthylene                 | mg/kg | <0.1          | <0.1          | <1            | 0.2           | <1            |
| Acenaphthene                   | mg/kg | <0.1          | <0.1          | <1            | <0.1          | 2.9           |
| Fluorene                       | mg/kg | <0.1          | <0.1          | <1            | <0.1          | 4.2           |
| Phenanthrene                   | mg/kg | <0.1          | <0.1          | <1            | 0.6           | 3.9           |
| Anthracene                     | mg/kg | <0.1          | <0.1          | <1            | 0.2           | 3.7           |
| Fluoranthene                   | mg/kg | <0.1          | <0.1          | 0.4           | 2.5           | 0.4           |
| Pyrene                         | mg/kg | <0.1          | <0.1          | 0.6           | 2.7           | 0.6           |
| Benzo(a)anthracene             | mg/kg | <0.1          | <0.1          | 0.2           | 1.5           | 0.1           |
| Chrysene                       | mg/kg | <0.1          | <0.1          | 0.2           | 1.3           | 0.2           |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2          | <0.2          | 0.3           | 2.1           | <0.2          |
| Benzo(a)pyrene                 | mg/kg | <0.05         | <0.05         | 0.2           | 2.1           | 0.08          |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1          | <0.1          | <0.1          | 0.6           | <0.1          |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1          | <0.1          | <0.1          | 0.2           | <0.1          |
| Benzo(g,h,i)perylene           | mg/kg | <0.1          | <0.1          | 0.1           | 0.8           | <0.1          |
| Total +ve PAH's                | mg/kg | <0.05         | <0.05         | 2.1           | 15            | 16            |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5          | <0.5          | <0.5          | 2.7           | <0.5          |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5          | <0.5          | <0.5          | 2.7           | <0.5          |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5          | <0.5          | <0.5          | 2.7           | <0.5          |
| Surrogate p-Terphenyl-d14      | %     | 91            | 89            | 85            | 87            | 90            |

| PAHs in Soil                   |       |               |               |               |               |            |
|--------------------------------|-------|---------------|---------------|---------------|---------------|------------|
| Our Reference                  |       | 284290-11     | 284290-12     | 284290-13     | 284290-14     | 284290-15  |
| Your Reference                 | UNITS | TS2-3_0.4-0.6 | TS2-3_1.2-1.4 | TS2-4_0.4-0.6 | TS2-4_1.2-1.4 | DUP1       |
| Date Sampled                   |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021 |
| Type of sample                 |       | Soil          | Soil          | Soil          | Soil          | Soil       |
| Date extracted                 | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021 |
| Date analysed                  | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021 |
| Naphthalene                    | mg/kg | <0.1          | 0.1           | <0.1          | <1            | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1          | 0.4           | <0.1          | <1            | <0.1       |
| Acenaphthene                   | mg/kg | <0.1          | <0.1          | <0.1          | <1            | <0.1       |
| Fluorene                       | mg/kg | <0.1          | 0.3           | <0.1          | <1            | <0.1       |
| Phenanthrene                   | mg/kg | <0.1          | 1.9           | <0.1          | <1            | <0.1       |
| Anthracene                     | mg/kg | <0.1          | 1.0           | <0.1          | <1            | <0.1       |
| Fluoranthene                   | mg/kg | <0.1          | 3.6           | 0.2           | 1             | <0.1       |
| Pyrene                         | mg/kg | <0.1          | 3.5           | 0.2           | 1.2           | <0.1       |
| Benzo(a)anthracene             | mg/kg | <0.1          | 1.9           | <0.1          | 0.4           | <0.1       |
| Chrysene                       | mg/kg | <0.1          | 1.6           | 0.1           | 0.5           | <0.1       |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2          | 2.3           | <0.2          | 0.6           | <0.2       |
| Benzo(a)pyrene                 | mg/kg | <0.05         | 2.2           | 0.1           | 0.53          | <0.05      |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1          | 0.6           | <0.1          | 0.2           | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1          | 0.1           | <0.1          | <0.1          | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | <0.1          | 0.8           | <0.1          | 0.2           | <0.1       |
| Total +ve PAH's                | mg/kg | <0.05         | 20            | 0.67          | 4.4           | <0.05      |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5          | 2.8           | <0.5          | 0.6           | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5          | 2.8           | <0.5          | 0.7           | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5          | 2.8           | <0.5          | 0.7           | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 90            | 88            | 85            | 87            | 87         |

| PAHs in Soil                   |       |            |             |             |             |
|--------------------------------|-------|------------|-------------|-------------|-------------|
| Our Reference                  |       | 284290-16  | 284290-17   | 284290-18   | 284290-19   |
| Your Reference                 | UNITS | WB1_0-0.2  | WB1_0.8-1.0 | WB2_0.2-0.4 | WB2_0.8-1.0 |
| Date Sampled                   |       | 1/12/2021  | 1/12/2021   | 1/12/2021   | 1/12/2021   |
| Type of sample                 |       | Soil       | Soil        | Soil        | Soil        |
| Date extracted                 | -     | 02/12/2021 | 02/12/2021  | 02/12/2021  | 02/12/2021  |
| Date analysed                  | -     | 02/12/2021 | 02/12/2021  | 02/12/2021  | 02/12/2021  |
| Naphthalene                    | mg/kg | <0.1       | <0.1        | <0.1        | <0.1        |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1        | <0.1        | 0.2         |
| Acenaphthene                   | mg/kg | <0.1       | <0.1        | <0.1        | <0.1        |
| Fluorene                       | mg/kg | <0.1       | <0.1        | <0.1        | 0.1         |
| Phenanthrene                   | mg/kg | 0.5        | <0.1        | <0.1        | 1.0         |
| Anthracene                     | mg/kg | 0.2        | <0.1        | <0.1        | 0.4         |
| Fluoranthene                   | mg/kg | 1.3        | <0.1        | <0.1        | 3.0         |
| Pyrene                         | mg/kg | 1.2        | <0.1        | <0.1        | 2.9         |
| Benzo(a)anthracene             | mg/kg | 0.7        | <0.1        | <0.1        | 1.6         |
| Chrysene                       | mg/kg | 0.6        | <0.1        | <0.1        | 1.3         |
| Benzo(b,j+k)fluoranthene       | mg/kg | 1          | <0.2        | <0.2        | 2.0         |
| Benzo(a)pyrene                 | mg/kg | 0.84       | <0.05       | 0.06        | 2.2         |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | 0.2        | <0.1        | <0.1        | 0.6         |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1        | <0.1        | 0.2         |
| Benzo(g,h,i)perylene           | mg/kg | 0.3        | <0.1        | <0.1        | 0.8         |
| Total +ve PAH's                | mg/kg | 6.9        | <0.05       | 0.06        | 16          |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | 1.0        | <0.5        | <0.5        | 2.8         |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | 1.1        | <0.5        | <0.5        | 2.8         |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | 1.1        | <0.5        | <0.5        | 2.8         |
| Surrogate p-Terphenyl-d14      | %     | 84         | 86          | 86          | 86          |

| Acid Extractable metals in soil |       |               |               |               |               |               |
|---------------------------------|-------|---------------|---------------|---------------|---------------|---------------|
| Our Reference                   |       | 284290-1      | 284290-2      | 284290-3      | 284290-4      | 284290-5      |
| Your Reference                  | UNITS | TS1-1_0.2-0.4 | TS1-1_0.6-0.8 | TS1-2_0.2-0.4 | TS1-2_0.8-1.0 | TS1-3_0.2-0.4 |
| Date Sampled                    |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample                  |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date prepared                   | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed                   | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Lead                            | mg/kg | 2             | 1             | 6             | 25            | 8             |
| Acid Extractable metals in soil |       |               |               |               |               | _             |
| Our Reference                   |       | 284290-6      | 284290-7      | 284290-8      | 284290-9      | 284290-10     |
| Your Reference                  | UNITS | TS1-3_0.6-0.8 | TS2-1_0.4-0.6 | TS2-1_1.0-1.2 | TS2-2_0.4-0.6 | TS2-2_1.0-1.2 |

| Your Reference | UNITS | TS1-3_0.6-0.8 | TS2-1_0.4-0.6 | TS2-1_1.0-1.2 | TS2-2_0.4-0.6 | TS2-2_1.0-1.2 |
|----------------|-------|---------------|---------------|---------------|---------------|---------------|
| Date Sampled   |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Type of sample |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Date prepared  | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Date analysed  | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    |
| Lead           | mg/kg | 1             | 17            | 16            | 71            | 2             |

| Acid Extractable metals in soil |       |               |               |               |               |            |
|---------------------------------|-------|---------------|---------------|---------------|---------------|------------|
| Our Reference                   |       | 284290-11     | 284290-12     | 284290-13     | 284290-14     | 284290-15  |
| Your Reference                  | UNITS | TS2-3_0.4-0.6 | TS2-3_1.2-1.4 | TS2-4_0.4-0.6 | TS2-4_1.2-1.4 | DUP1       |
| Date Sampled                    |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021 |
| Type of sample                  |       | Soil          | Soil          | Soil          | Soil          | Soil       |
| Date prepared                   | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021 |
| Date analysed                   | -     | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021    | 02/12/2021 |
| Lead                            | mg/kg | 12            | 34            | 10            | 18            | 14         |

| Dur Reference284290-1284290-2284290-2284290-3284290-3284290-3284290-3Your ReferenceUNITSTS1-1_0.2-0.4TS1-1_0.6-0.8TS1-2_0.2-0.4TS1-2_0.8-1.0TS1-3_0.2-0.4Date Sampled30/11/202130/11/202130/11/202130/11/202130/11/202130/11/2021Date prepared-2/12/20212/12/20212/12/20212/12/20212/12/20212/12/2021Date prepared-2/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Date analysed-81015131015Obsture284290-6284290-7284290-8284290-7284290-8284290-7Out ReferenceUNITSTS1-3_0.6-0.8TS2-1_0.4-0TS2-1_1-0.1TS2-2_0.4-0.6TS2-2_1.0-1.2Out ReferenceUNITSTS1-3_0.6-0.8TS2-1_0.4-0TS2-1_1-0.1TS2-2_0.4-0.6TS2-2_1.0-1.2Date sampledUNITSTS1-3_0.6-0.8TS2-1_0.4-0TS2-1_0.1-130/11/202130/11/2021Date sampled-3/12/20213/12/20213/12/20213/12/20212/12/2021Date prepared-2/12/20213/12/20213/12/20212/12/20212/12/2021Date sampled-3/12/20213/12/20213/12/20213/12/20213/12/2021Date sampled-SoilTS2-3_0.4-0.6TS2-4_1.2-1.4DUP1Date sampledUNITSTS2-3_0.4-0.6TS2-3_1.2-1.1TS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maintune       |       |               |               |               |               |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|---------------|---------------|---------------|---------------|---------------|
| Normal         UNITS         TS1-1_02-0.4         TS1-1_0.8-0.8         TS1-2_0.2-0.4                                                                                                                                                                                                                                                                                                 | Moisture       |       | 284200 1      | 284200.2      | 284200.2      | 284200 4      | 284200 5      |
| CanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadianCanadi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |       |               |               |               |               |               |
| Type of sampleSoilSoilSoilSoilSoilSoilSoilSoilSoilDate prepared-2/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Date analysed-3/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Molsure%1015131015Dur ReferenceUNITS284290-60284290-70284290-80284290-60284290-60Cour ReferenceUNITSTS1-3.0-6.8TS2-1.0-1.0TS2-2.0-4.00TS2-2.0-1.030/11/2021Date preparedUNITS30/11/202130/11/202130/11/202130/11/202130/11/202130/11/2021Date prepared-13/12/20203/12/20212/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed-3/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Date repared284290-11284290-1312/12/20212/12/20212/12/20212/12/20213/12/2021Date repared3/12/20213/12/20213/12/20213/12/20213/12/20213/11/20213/11/2021Date reparedSoilSoilSoilSoilSoilSoilSoilSoilDate prepared21/2/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Date prepared<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Your Reference | UNITS | 151-1_0.2-0.4 | 151-1_0.6-0.8 | 151-2_0.2-0.4 | 151-2_0.8-1.0 | 151-3_0.2-0.4 |
| Add prepared          2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021           Date analysed          3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021           Molsture         %         10         15         13         10         15           Adjetare         284290-6         284290-7         284290-8         284290-9         284290-10           Adjetare         UNITS         TS1-3_0.6-0.8         TS2-1_0.4-0.6         TS2-1_0.1-1.2         TS2-2_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6         TS2-4_0.4-0.6<                                                                                                                                                                                                                                                                                                                                                                                                           | Date Sampled   |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Date analysed-3/12/20213/12/20213/12/20213/12/20213/12/2021Moisture%1015131015Moisture2284290-6284290-7284290-8284290-8284290-10Cour ReferenceUNITSTS1-3_0.6-0.8TS2-1_0.4-06TS2-1_1.0-1.2TS2-2_0.4-0.6TS2-2_1.0-1.2Cour ReferenceUNITS30/11/202130/11/202130/11/202130/11/202130/11/202130/11/2021Date Sampled-SoilSoilSoilSoilSoilSoilSoilSoilSoilDate prepared-2/12/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed-2/12/20212/12/20212/12/20212/12/20212/12/20213/12/20213/12/2021Our Reference2/12/20212/12/20212/12/20212/12/20212/12/20212/12/20213/11/2021Out Reference2/12/20212/12/20212/12/20213/11/20213/11/20213/11/20213/11/20213/11/2021Out Reference2/12/20212/12/20212/12/20212/12/20213/12/20213/12/20213/12/20213/12/2021Out Reference2/12/20212/12/20212/12/20213/12/20213/12/20213/12/2021Out Reference2/12/20212/12/20212/12/202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type of sample |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Moisture%1015131015Adisture284290-10284290-70284290-80284290-90284290-90284290-10Your ReferenceUNITSTS1-3_0.6-0.8TS2-1_0.4-0.6TS2-1_1.0-1.2TS2-2_0.4-0.6TS2-2_1.0-1.2Date Sampled030/11/202130/11/202130/11/202130/11/202130/11/2021Date prepared-2/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed-3/12/20213/12/20213/12/20213/12/20213/12/2021Adistare%1716121712Dur ReferenceUNITSTS2-3_0.4-0.6TS2-3_1.2-1.4TS2-4_0.4-0.6TS2-4_1.2-1.4Dur ReferenceUNITSTS2-3_0.4-0.6TS2-3_1.2-1.4TS2-4_0.4-0.6TS2-4_1.2-1.4Dur ReferenceUNITSTS2-3_0.4-0.6TS2-4_1.2-1.4DUP1Dur ReferenceUNITSTS2-3_0.4-0.6TS2-4_1.2-1.4DUP1Date analysed-3/12/20213/11/20213/0/11/20213/0/11/2021Ade sampled-2/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed2/12/20212/12/20213/12/20213/12/2021Ade sampled-2/12/20212/12/20213/12/20213/12/20213/12/2021Ade sampled-2/12/20212/12/20213/12/20213/12/20213/12/2021Date analysed2/12/20211/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date prepared  | -     | 2/12/2021     | 2/12/2021     | 2/12/2021     | 2/12/2021     | 2/12/2021     |
| Addisture         Each         Face         Face         Face         Face           Addisture         284290-6         284290-6         284290-7         284290-8         284290-9         284290-10           Our Reference         UNITS         TS1-3_0.6-0.8         TS2-1_0.4-0.6         TS2-1_1.0-1.2         TS2-2_0.4-0.6         TS2-2_1.0-1.2           Date Sampled         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         <                                                                                                                                                                                                                                                                                                                                                                                                             | Date analysed  | -     | 3/12/2021     | 3/12/2021     | 3/12/2021     | 3/12/2021     | 3/12/2021     |
| Dur Reference284290-6284290-7284290-8284290-9284290-9284290-10Your ReferenceUNITSTS1-3_0.6-0.8TS2-1_0.4-0.6TS2-1_1.0-1.2TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-1_0.1-230/11/202130/11/202130/11/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/2021<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moisture       | %     | 10            | 15            | 13            | 10            | 15            |
| Dur Reference284290-6284290-7284290-8284290-9284290-9284290-10Your ReferenceUNITSTS1-3_0.6-0.8TS2-1_0.4-0.6TS2-1_1.0-1.2TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-2_0.4-0.6TS2-1_0.1-230/11/202130/11/202130/11/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/20212/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/12/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/20213/11/2021<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moisture       | '     | '             | '             |               |               |               |
| Date sampledImage: Constraint of the sampled <th< td=""><td>Our Reference</td><td></td><td>284290-6</td><td>284290-7</td><td>284290-8</td><td>284290-9</td><td>284290-10</td></th<> | Our Reference  |       | 284290-6      | 284290-7      | 284290-8      | 284290-9      | 284290-10     |
| Type of sampleSoilSoilSoilSoilSoilSoilSoilDate prepared-2/12/20212/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed-3/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Moisture%1716121712Moisture284290-11284290-12284290-13284290-14284290-14284290-15Dur ReferenceUNITS752-3_0.40.6752-3_1.2-1.4752-4_0.40.6752-4_1.2-1.4DUP1Date sampled0.0111/202130/11/202130/11/202130/11/202130/11/202130/11/2021Date sampled.SoilSoilSoilSoilSoilSoilSoilDate prepared.2/12/20212/12/20212/12/20212/12/20212/12/20212/12/2021Date prepared.3/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Dur Reference.3/12/20213/12/20213/12/20213/12/20213/12/20215/01Cour ReferenceCour ReferenceCour ReferenceCour ReferenceCour ReferenceCour Referen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Your Reference | UNITS | TS1-3_0.6-0.8 | TS2-1_0.4-0.6 | TS2-1_1.0-1.2 | TS2-2_0.4-0.6 | TS2-2_1.0-1.2 |
| Date prepared $ 2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $2/84290-13$ $2/84290-13$ $2/84290-14$ $2/84290-15$ $2/84290-15$ $2/84290-15$ $2/84290-16$ $2/84290-13$ $2/84290-14$ $2/84290-15$ $2/12/2021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/01/12021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ <td>Date Sampled</td> <td></td> <td>30/11/2021</td> <td>30/11/2021</td> <td>30/11/2021</td> <td>30/11/2021</td> <td>30/11/2021</td>                                                                                                                                                                                                                                                                                                                                                                          | Date Sampled   |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Date analysed-3/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Moisture%1716121712Moisture22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222210101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type of sample |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Moisture%1716121712Moisture284290-11284290-12284290-13284290-14284290-14284290-15Our ReferenceUNITS7S2-3,0.4.067S2-3,1.2.1.47S2-4,0.4.067S2-4,1.2.1.4DUP1Date Sampled030/11/202130/11/202130/11/202130/11/202130/11/202130/11/2021Date prepared02/12/20212/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed0%8.41115245.0Moisture0284290-16284290-17284290-18284290-18284290-19Our ReferenceUNITS284290-16284290-17284290-18284290-18284290-19Moisture00284290-171/12/20211/12/20211/12/2021Moisture00284290-16284290-17284290-18284290-18Our ReferenceUNITS0284290-121/12/20211/12/20211/12/2021Moisture001/12/20211/12/20211/12/20211/12/2021Our ReferenceUNITS00000Out ReferenceUNITS00000Out ReferenceUNITS00000Out ReferenceUNITS000000Out ReferenceUNITS000000Out Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date prepared  | -     | 2/12/2021     | 2/12/2021     | 2/12/2021     | 2/12/2021     | 2/12/2021     |
| Moisture         284290-11         284290-12         284290-13         284290-14         284290-15           Your Reference         UNITS         TS2-3_0.4.0.6         TS2-3_1.2.1.4         TS2-4_0.4.0.6         TS2-4_1.2.1.4         DUP1           Date Sampled         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         30/11/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         2/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         3/12/2021         5.0           Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date analysed  | -     | 3/12/2021     | 3/12/2021     | 3/12/2021     | 3/12/2021     | 3/12/2021     |
| Dur Reference284290-11284290-12284290-13284290-14284290-14284290-15Your ReferenceUNITSTS2-3_0.4.06TS2-3_1.2.1.4TS2-4_0.4.06TS2-4_1.2.1.4DUP1Date Sampled30/11/202130/11/202130/11/202130/11/202130/11/202130/11/2021Type of sample-SoilSoilSoilSoilSoilSoilDate prepared-2/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed-3/12/20213/12/20213/12/20213/12/20213/12/2021Moisture284290-16284290-17284290-18284290-19Your Reference284290-16284290-17284290-18284290-19Your Reference881_0-0.2WB1_0.8.1.0WB2_0.2.0.4WB2_0.8.1.0Your Reference1/12/20211/12/20211/12/20211/12/2021Your Reference-SoilSoilSoilSoilYour ReferenceSoilSoilSoilYour ReferenceSoilSoilSoilYour ReferenceSoilSoilSoilYour ReferenceSoilSoilSoilYour ReferenceSoilSoilSoilYour ReferenceSoilSoilSoilYour ReferenceSoilSoilSoil<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Moisture       | %     | 17            | 16            | 12            | 17            | 12            |
| Your ReferenceUNITSTS2-3_0.4.06TS2-3_1.2.1.4TS2-4_0.4.06TS2-4_1.2.1.4DUP1Date Sampled30/11/202130/11/202130/11/202130/11/202130/11/202130/11/2021Type of sampleSoilSoilSoilSoilSoilSoilDate prepared2/12/20212/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed3/12/20213/12/20213/12/20213/12/20213/12/20213/12/2021Moisture284290-16284290-17284290-18284290-19Our ReferenceWB1_0.0.2WB1_0.8.1.0WB2_0.2.0.4WB2_0.8.1.0Our Reference1/12/20211/12/20211/12/2021Our ReferenceSoilSoilSoilSoilDate sampled1/12/20211/12/20211/12/2021Type of sampleSoilSoilSoilSoilDate prepared2/12/20212/12/20211/30/11900Date analysed3/12/20213/12/20213/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Moisture       |       |               |               |               |               |               |
| Date Sampled         Sol/11/2021                                                                                                                                                                                                                                                                                                                                    | Our Reference  |       | 284290-11     | 284290-12     | 284290-13     | 284290-14     | 284290-15     |
| Type of sampleSoilSoilSoilSoilSoilDate prepared2/12/20212/12/20212/12/20212/12/20212/12/2021Date analysed3/12/20213/12/20213/12/20213/12/20213/12/2021Moisture%8.41115245.0Moisture284290-16284290-17284290-18284290-19Our ReferenceUNITSVB1_0-0.2VB1_0.8-1.0VB2_0.2-0.4VB2_0.8-1.0Our Reference1/12/20211/12/20211/12/20211/12/20211/12/2021Out a ference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Your Reference | UNITS | TS2-3_0.4-0.6 | TS2-3_1.2-1.4 | TS2-4_0.4-0.6 | TS2-4_1.2-1.4 | DUP1          |
| Date prepared $ 2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ $2/12/2021$ Date analysed $ 3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ Moisture $         -$ Moisture $                                                                                                                              -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date Sampled   |       | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    | 30/11/2021    |
| Date analysed $\cdot$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ $3/12/2021$ Moisture $\cdot$ Dur ReferenceUNITS $284290-16$ $284290-17$ $284290-18$ $284290-19$ $284290-19$ $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                               | Type of sample |       | Soil          | Soil          | Soil          | Soil          | Soil          |
| Moisture%8.41115245.0Moisture $201$ Reference $284290.16$ $284290.17$ $284290.18$ $284290.19$ Our ReferenceUNITS $VB1_0.02$ $VB1_0.8.10$ $VB2_0.2.04$ $VB2_0.8.10$ Oute SampledUNITS $Soil$ $Soil$ $Soil$ $Soil$ $Soil$ Opte of sample $ 2/12/2021$ $2/12/2021$ $2/12/2021$ $1/301/1900$<br>$12:43:12 PMOute analysed 3/12/20213/12/20213/12/20213/12/20213/12/2021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date prepared  | -     | 2/12/2021     | 2/12/2021     | 2/12/2021     | 2/12/2021     | 2/12/2021     |
| Moisture         284290-16         284290-17         284290-18         284290-19           Your Reference         UNITS         WB1_0-0.2         WB1_0.8-1.0         WB2_0.2-0.4         WB2_0.8-1.0           Date Sampled         1/12/2021         1/12/2021         1/12/2021         1/12/2021           Type of sample         -         2/12/2021         2/12/2021         2/12/2021         1/3/01/1900           Date prepared         -         3/12/2021         3/12/2021         3/12/2021         3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date analysed  | -     | 3/12/2021     | 3/12/2021     | 3/12/2021     | 3/12/2021     | 3/12/2021     |
| Dur Reference         284290-16         284290-17         284290-18         284290-19           Your Reference         UNITS         WB1_0-0.2         WB1_0.8-1.0         WB2_0.2-0.4         WB2_0.8-1.0           Date Sampled         1/12/2021         1/12/2021         1/12/2021         1/12/2021         1/12/2021           Type of sample         Soil         Soil         Soil         Soil         Soil           Date prepared         -         2/12/2021         2/12/2021         2/12/2021         13/01/1900           Date analysed         -         3/12/2021         3/12/2021         3/12/2021         3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Moisture       | %     | 8.4           | 11            | 15            | 24            | 5.0           |
| Your Reference         UNITS         WB1_0-0.2         WB1_0.8-1.0         WB2_0.2-0.4         WB2_0.8-1.0           Date Sampled         1/12/2021         1/12/2021         1/12/2021         1/12/2021         1/12/2021           Type of sample         Soil         Soil         Soil         Soil         Soil           Date prepared         -         2/12/2021         2/12/2021         13/01/1900<br>12:43:12 PM           Date analysed         -         3/12/2021         3/12/2021         3/12/2021         3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Moisture       |       |               |               |               |               | -             |
| Date Sampled         1/12/2021         1/12/2021         1/12/2021         1/12/2021           Type of sample         Soil         Soil         Soil         Soil         Soil           Date prepared         -         2/12/2021         2/12/2021         1/12/2021         13/01/1900           Date analysed         -         3/12/2021         3/12/2021         3/12/2021         3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Our Reference  |       | 284290-16     | 284290-17     | 284290-18     | 284290-19     |               |
| Type of sample         Soil         Soil         Soil         Soil           Date prepared         -         2/12/2021         2/12/2021         2/12/2021         13/01/1900<br>12:43:12 PM           Date analysed         -         3/12/2021         3/12/2021         3/12/2021         3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Your Reference | UNITS | WB1_0-0.2     | WB1_0.8-1.0   | WB2_0.2-0.4   | WB2_0.8-1.0   |               |
| Date prepared     -     2/12/2021     2/12/2021     2/12/2021     13/01/1900<br>12:43:12 PM       Date analysed     -     3/12/2021     3/12/2021     3/12/2021     3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date Sampled   |       | 1/12/2021     | 1/12/2021     | 1/12/2021     | 1/12/2021     |               |
| Date analysed         -         3/12/2021         3/12/2021         3/12/2021         3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type of sample |       | Soil          | Soil          | Soil          | Soil          |               |
| Date analysed         -         3/12/2021         3/12/2021         3/12/2021         3/12/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date prepared  | -     | 2/12/2021     | 2/12/2021     | 2/12/2021     |               |               |
| Moisture % 18 16 10 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date analysed  | -     | 3/12/2021     | 3/12/2021     | 3/12/2021     |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Moisture       | %     | 18            | 16            | 10            | 20            |               |

| BTEX in Water                  |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference                  |       | 284290-20  | 284290-21  |
| Your Reference                 | UNITS | TS1-GW     | TS2-GW     |
| Date Sampled                   |       | 1/12/2021  | 1/12/2021  |
| Type of sample                 |       | Water      | Water      |
| Date extracted                 | -     | 02/12/2021 | 02/12/2021 |
| Date analysed                  | -     | 03/12/2021 | 03/12/2021 |
| Benzene                        | µg/L  | <1         | <1         |
| Toluene                        | µg/L  | <1         | <1         |
| Ethylbenzene                   | µg/L  | <1         | <1         |
| m+p-xylene                     | µg/L  | 3          | <2         |
| o-xylene                       | µg/L  | 2          | <1         |
| Surrogate Dibromofluoromethane | %     | 100        | 100        |
| Surrogate toluene-d8           | %     | 99         | 99         |
| Surrogate 4-BFB                | %     | 106        | 106        |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008   | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Metals-020  | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Org-020     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Org-020     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | <ol> <li>'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> <li>'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> <li>'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></li></pql></li></pql></li></ol> |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.<br>Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| QUALITY CONT                         | ROL: vTRH | (C6-C10) | /BTEXN in Soil |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|--------------------------------------|-----------|----------|----------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                     | Units     | PQL      | Method         | Blank      | # | Base       | Dup.       | RPD | LCS-7      | 284290-2   |
| Date extracted                       | -         |          |                | 02/12/2021 | 1 | 02/12/2021 | 02/12/2021 |     | 02/12/2021 | 02/12/2021 |
| Date analysed                        | -         |          |                | 03/12/2021 | 1 | 03/12/2021 | 03/12/2021 |     | 03/12/2021 | 03/12/2021 |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg     | 25       | Org-023        | <25        | 1 | <25        | <25        | 0   | 106        | 94         |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg     | 25       | Org-023        | <25        | 1 | <25        | <25        | 0   | 106        | 94         |
| Benzene                              | mg/kg     | 0.2      | Org-023        | <0.2       | 1 | <0.2       | <0.2       | 0   | 94         | 83         |
| Toluene                              | mg/kg     | 0.5      | Org-023        | <0.5       | 1 | <0.5       | <0.5       | 0   | 98         | 87         |
| Ethylbenzene                         | mg/kg     | 1        | Org-023        | <1         | 1 | <1         | <1         | 0   | 111        | 98         |
| m+p-xylene                           | mg/kg     | 2        | Org-023        | <2         | 1 | <2         | <2         | 0   | 114        | 102        |
| o-Xylene                             | mg/kg     | 1        | Org-023        | <1         | 1 | <1         | <1         | 0   | 103        | 92         |
| Naphthalene                          | mg/kg     | 1        | Org-023        | <1         | 1 | <1         | <1         | 0   | [NT]       | [NT]       |
| Surrogate aaa-Trifluorotoluene       | %         |          | Org-023        | 109        | 1 | 95         | 96         | 1   | 110        | 95         |

| QUALITY CONT                         | QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil |     |         |       |    |            |            |     | Spike Recovery % |      |
|--------------------------------------|---------------------------------------------|-----|---------|-------|----|------------|------------|-----|------------------|------|
| Test Description                     | Units                                       | PQL | Method  | Blank | #  | Base       | Dup.       | RPD | [NT]             | [NT] |
| Date extracted                       | -                                           |     |         | [NT]  | 11 | 02/12/2021 | 02/12/2021 |     |                  | [NT] |
| Date analysed                        | -                                           |     |         | [NT]  | 11 | 03/12/2021 | 03/12/2021 |     |                  | [NT] |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg                                       | 25  | Org-023 | [NT]  | 11 | <25        | <25        | 0   |                  | [NT] |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg                                       | 25  | Org-023 | [NT]  | 11 | <25        | <25        | 0   |                  | [NT] |
| Benzene                              | mg/kg                                       | 0.2 | Org-023 | [NT]  | 11 | <0.2       | <0.2       | 0   |                  | [NT] |
| Toluene                              | mg/kg                                       | 0.5 | Org-023 | [NT]  | 11 | <0.5       | <0.5       | 0   |                  | [NT] |
| Ethylbenzene                         | mg/kg                                       | 1   | Org-023 | [NT]  | 11 | <1         | <1         | 0   |                  | [NT] |
| m+p-xylene                           | mg/kg                                       | 2   | Org-023 | [NT]  | 11 | <2         | <2         | 0   |                  | [NT] |
| o-Xylene                             | mg/kg                                       | 1   | Org-023 | [NT]  | 11 | <1         | <1         | 0   |                  | [NT] |
| Naphthalene                          | mg/kg                                       | 1   | Org-023 | [NT]  | 11 | <1         | <1         | 0   |                  | [NT] |
| Surrogate aaa-Trifluorotoluene       | %                                           |     | Org-023 | [NT]  | 11 | 95         | 107        | 12  |                  | [NT] |

| QUALITY CO                            | NTROL: svT | RH (C10- | -C40) in Soil |            | Duplicate |            |            |     | Spike Recovery % |            |
|---------------------------------------|------------|----------|---------------|------------|-----------|------------|------------|-----|------------------|------------|
| Test Description                      | Units      | PQL      | Method        | Blank      | #         | Base       | Dup.       | RPD | LCS-7            | 284290-2   |
| Date extracted                        | -          |          |               | 03/12/2021 | 1         | 02/12/2021 | 02/12/2021 |     | 03/12/2021       | 02/12/2021 |
| Date analysed                         | -          |          |               | 03/12/2021 | 1         | 03/12/2021 | 03/12/2021 |     | 03/12/2021       | 03/12/2021 |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg      | 50       | Org-020       | <50        | 1         | <50        | <50        | 0   | 99               | 71         |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg      | 100      | Org-020       | <100       | 1         | <100       | <100       | 0   | 96               | 84         |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg      | 100      | Org-020       | <100       | 1         | <100       | <100       | 0   | 73               | 107        |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg      | 50       | Org-020       | <50        | 1         | <50        | <50        | 0   | 99               | 71         |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg      | 100      | Org-020       | <100       | 1         | <100       | <100       | 0   | 96               | 84         |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg      | 100      | Org-020       | <100       | 1         | <100       | <100       | 0   | 73               | 107        |
| Surrogate o-Terphenyl                 | %          |          | Org-020       | 85         | 1         | 90         | 81         | 11  | 100              | 94         |

| QUALITY CO                            | NTROL: svT | RH (C10 | -C40) in Soil |       |    | Du         | plicate    |     | Spike Re | covery % |
|---------------------------------------|------------|---------|---------------|-------|----|------------|------------|-----|----------|----------|
| Test Description                      | Units      | PQL     | Method        | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date extracted                        | -          |         |               |       | 11 | 02/12/2021 | 02/12/2021 |     |          | [NT]     |
| Date analysed                         | -          |         |               |       | 11 | 03/12/2021 | 03/12/2021 |     |          | [NT]     |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg      | 50      | Org-020       |       | 11 | <50        | <50        | 0   |          | [NT]     |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg      | 100     | Org-020       |       | 11 | <100       | <100       | 0   |          | [NT]     |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg      | 100     | Org-020       |       | 11 | <100       | <100       | 0   |          | [NT]     |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg      | 50      | Org-020       |       | 11 | <50        | <50        | 0   |          | [NT]     |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg      | 100     | Org-020       |       | 11 | <100       | <100       | 0   |          | [NT]     |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg      | 100     | Org-020       |       | 11 | <100       | <100       | 0   |          | [NT]     |
| Surrogate o-Terphenyl                 | %          |         | Org-020       | [NT]  | 11 | 83         | 84         | 1   | [NT]     | [NT]     |

| QUAL                      | ITY CONTRC | L: PAHs | in Soil     |            |   | Spike Re   | Spike Recovery % |     |            |            |
|---------------------------|------------|---------|-------------|------------|---|------------|------------------|-----|------------|------------|
| Test Description          | Units      | PQL     | Method      | Blank      | # | Base       | Dup.             | RPD | LCS-7      | 284290-2   |
| Date extracted            | -          |         |             | 02/12/2021 | 1 | 02/12/2021 | 02/12/2021       |     | 02/12/2021 | 02/12/2021 |
| Date analysed             | -          |         |             | 02/12/2021 | 1 | 02/12/2021 | 02/12/2021       |     | 02/12/2021 | 02/12/2021 |
| Naphthalene               | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | 103        | 92         |
| Acenaphthylene            | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Acenaphthene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | 91         | 93         |
| Fluorene                  | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | 107        | 109        |
| Phenanthrene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | 104        | 102        |
| Anthracene                | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Fluoranthene              | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | 90         | 90         |
| Pyrene                    | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | 99         | 97         |
| Benzo(a)anthracene        | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Chrysene                  | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | 95         | 91         |
| Benzo(b,j+k)fluoranthene  | mg/kg      | 0.2     | Org-022/025 | <0.2       | 1 | <0.2       | <0.2             | 0   | [NT]       | [NT]       |
| Benzo(a)pyrene            | mg/kg      | 0.05    | Org-022/025 | <0.05      | 1 | <0.05      | <0.05            | 0   | 108        | 106        |
| Indeno(1,2,3-c,d)pyrene   | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Dibenzo(a,h)anthracene    | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Benzo(g,h,i)perylene      | mg/kg      | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1             | 0   | [NT]       | [NT]       |
| Surrogate p-Terphenyl-d14 | %          |         | Org-022/025 | 91         | 1 | 94         | 96               | 2   | 92         | 91         |

| QUALIT                    | Y CONTRO | L: PAHs | in Soil     |       |    | Du         | plicate    |     | Spike Recovery % |      |
|---------------------------|----------|---------|-------------|-------|----|------------|------------|-----|------------------|------|
| Test Description          | Units    | PQL     | Method      | Blank | #  | Base       | Dup.       | RPD | [NT]             | [NT] |
| Date extracted            | -        |         |             | [NT]  | 11 | 02/12/2021 | 02/12/2021 |     |                  | [NT] |
| Date analysed             | -        |         |             | [NT]  | 11 | 02/12/2021 | 02/12/2021 |     |                  | [NT] |
| Naphthalene               | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Acenaphthylene            | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Acenaphthene              | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Fluorene                  | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Phenanthrene              | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Anthracene                | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Fluoranthene              | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Pyrene                    | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Benzo(a)anthracene        | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Chrysene                  | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Benzo(b,j+k)fluoranthene  | mg/kg    | 0.2     | Org-022/025 | [NT]  | 11 | <0.2       | <0.2       | 0   |                  | [NT] |
| Benzo(a)pyrene            | mg/kg    | 0.05    | Org-022/025 | [NT]  | 11 | <0.05      | <0.05      | 0   |                  | [NT] |
| Indeno(1,2,3-c,d)pyrene   | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Dibenzo(a,h)anthracene    | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Benzo(g,h,i)perylene      | mg/kg    | 0.1     | Org-022/025 | [NT]  | 11 | <0.1       | <0.1       | 0   |                  | [NT] |
| Surrogate p-Terphenyl-d14 | %        |         | Org-022/025 | [NT]  | 11 | 90         | 89         | 1   |                  | [NT] |

| QUALITY CONT                     | ROL: Acid E          | Extractabl | e metals in soil           |               |         | Du         | plicate         |     | Spike Re         | covery %         |
|----------------------------------|----------------------|------------|----------------------------|---------------|---------|------------|-----------------|-----|------------------|------------------|
| Test Description                 | Units                | PQL        | Method                     | Blank         | #       | Base       | Dup.            | RPD | LCS-7            | 284290-2         |
| Date prepared                    | -                    |            |                            | 02/12/2021    | 1       | 02/12/2021 | 02/12/2021      |     | 02/12/2021       | 02/12/2021       |
| Date analysed                    | -                    |            |                            | 02/12/2021    | 1       | 02/12/2021 | 02/12/2021      |     | 02/12/2021       | 02/12/2021       |
| Lead                             | mg/kg                | 1          | Metals-020                 | <1            | 1       | 2          | 1               | 67  | 96               | 100              |
|                                  |                      |            |                            |               |         |            |                 |     |                  |                  |
|                                  |                      | ytractabl  | o motals in soil           |               |         | Du         | nlicato         |     | Spiko Po         |                  |
| QUALITY CONT                     |                      |            |                            | Disala        |         |            | plicate         | DDD | ·                | covery %         |
| QUALITY CONT<br>Test Description | ROL: Acid E<br>Units | Extractabl | e metals in soil<br>Method | Blank         | #       | Du<br>Base | plicate<br>Dup. | RPD | Spike Re<br>[NT] | covery %<br>[NT] |
|                                  |                      |            |                            | Blank<br>[NT] | #<br>11 |            |                 | RPD | ·                |                  |
| Test Description                 | Units                |            |                            |               |         | Base       | Dup.            | RPD | [NT]             | [NT]             |

| QUALIT                         | Y CONTROL | : BTEX ir | n Water |            |    | Du         | plicate    |     | Spike Re   | covery % |
|--------------------------------|-----------|-----------|---------|------------|----|------------|------------|-----|------------|----------|
| Test Description               | Units     | PQL       | Method  | Blank      | #  | Base       | Dup.       | RPD | LCS-W3     | [NT]     |
| Date extracted                 | -         |           |         | 02/12/2021 | 20 | 02/12/2021 | 02/12/2021 |     | 02/12/2021 |          |
| Date analysed                  | -         |           |         | 03/12/2021 | 20 | 03/12/2021 | 03/12/2021 |     | 03/12/2021 |          |
| Benzene                        | µg/L      | 1         | Org-023 | <1         | 20 | <1         | <1         | 0   | 122        |          |
| Toluene                        | µg/L      | 1         | Org-023 | <1         | 20 | <1         | <1         | 0   | 124        |          |
| Ethylbenzene                   | µg/L      | 1         | Org-023 | <1         | 20 | <1         | <1         | 0   | 120        |          |
| m+p-xylene                     | µg/L      | 2         | Org-023 | <2         | 20 | 3          | 3          | 0   | 120        |          |
| o-xylene                       | µg/L      | 1         | Org-023 | <1         | 20 | 2          | 2          | 0   | 116        |          |
| Surrogate Dibromofluoromethane | %         |           | Org-023 | 106        | 20 | 100        | 101        | 1   | 100        |          |
| Surrogate toluene-d8           | %         |           | Org-023 | 99         | 20 | 99         | 100        | 1   | 100        |          |
| Surrogate 4-BFB                | %         |           | Org-023 | 106        | 20 | 106        | 105        | 1   | 104        | [NT]     |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

## Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

## **Report Comments**

TRH Soil C10-C40 NEPM - # Percent recovery for the surrogate/matrix spike is not possible to report as the high concentration of analytes in samples 284290-8,10 and 14 have caused interference.

PAHs in Soil - The PQL has been raised due to interferences from analytes (other than those being tested) in samples 284290-8,10,14.

| 199                                                                                          | TAT Req - SAME day           | ľ                                                                                                        | >                                                       |                        |                          |                          |                                                                                        | 1                        |
|----------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------|--------------------------|--------------------------|----------------------------------------------------------------------------------------|--------------------------|
| ion and/or analysis<br>                                                                      | TAT Req - SAME da            |                                                                                                          |                                                         |                        | 30/11                    |                          | TSI_ GW                                                                                | 5                        |
| ion and/or analysis<br>Cooling:(Ice / Ice pack / None<br>Security seal: Intact / Broken / Nó | 1 STINGARDING                | Les last                                                                                                 | (101                                                    | Signature:             | CAND                     | 144                      |                                                                                        | Signature:               |
| ion and/or analysis                                                                          |                              | N. 1. 19 - 2014                                                                                          |                                                         | Print Name:            | Mahn.                    | 1,44                     | Hayden Davies                                                                          | Print Name:              |
| ion and/or analysis                                                                          | 2                            | 2                                                                                                        | ompany):                                                | Received by (Company): | di interiore             | THE ST                   | Relinquished by (Company): Geosyntec                                                   | <b>Relinquished by</b>   |
|                                                                                              | uded in the extract          | l mai                                                                                                    | ater san                                                | present in w           | d sediment               | ed settle                | Please tick the box if observed settled sediment present in water samples is to be     | PIC                      |
|                                                                                              |                              | ×                                                                                                        | ×                                                       |                        | 1/12/2021                |                          | WB2_0.8-1.0                                                                            | 14                       |
|                                                                                              |                              | ×                                                                                                        | ×                                                       |                        | 1/12/2021                |                          | WB2_0.2-0.4                                                                            | \$1                      |
|                                                                                              |                              | ×                                                                                                        | ×                                                       |                        | 1/12/2021                |                          | WB1_0.8-1.0                                                                            | [7]                      |
|                                                                                              |                              | ×                                                                                                        | ×                                                       |                        | 1/12/2021                |                          | WB1_0-0.2                                                                              | i,                       |
| Please forward to eurofins (TRH/BTEX/PAHs/Lead                                               |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TRIP1                                                                                  | i                        |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | DUP1                                                                                   | 15                       |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS2-4_1.2-1.4                                                                          | 15                       |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS2-4_0.4-0.6                                                                          | 13                       |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS2-3_1.2-1.4                                                                          | 21                       |
|                                                                                              |                              |                                                                                                          | Ê                                                       | ×                      | 30/11/2021               |                          | TS2-3_0.4-0.6                                                                          | 11                       |
|                                                                                              |                              |                                                                                                          | Ê                                                       | ×                      | 30/11/2021               |                          | TS2-2_1.0-1.2                                                                          | 10                       |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS2-2_0.4-0.6                                                                          | 2                        |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS2-1_1.0-1.2                                                                          | 3                        |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS2-1_0.4-0.6                                                                          | 4                        |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS1-3_0.6-0.8                                                                          | 5                        |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS1-3_0.2-0.4                                                                          | m                        |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 30/11/2021               |                          | TS1-2_0.8-1.0                                                                          | 5                        |
|                                                                                              |                              |                                                                                                          | ×                                                       |                        | 20/11/2021               |                          |                                                                                        | J.                       |
|                                                                                              |                              |                                                                                                          | : ×                                                     |                        | 30/11/2021               |                          | TS1-1_0.6_0.8                                                                          | N                        |
|                                                                                              |                              |                                                                                                          | *                                                       |                        | T707/TT/0C               |                          | 121-1 U.2-U,4                                                                          |                          |
|                                                                                              |                              |                                                                                                          |                                                         |                        | 20/11/02                 | T                        | 7000 1 12T                                                                             |                          |
| Provide as much<br>information about the<br>sample as you can                                |                              | PAHs                                                                                                     | Combo 2<br>TRH/BTEX                                     |                        | Date sampled             | Depth                    | Client Sample ID or Information                                                        | Envirolab<br>Sample ID   |
| Comments                                                                                     | Tests Required               |                                                                                                          |                                                         |                        |                          | ition                    | Sample information                                                                     |                          |
|                                                                                              |                              | +847105                                                                                                  | 412 t                                                   |                        | bore@geosynte<br>tec.com | n Peter.mo<br>@geosynt   | hayden.davies@geosyntec.com Peter.moore@geosyntec.com<br>edward.munnings@geosyntec.com |                          |
| Unit 7, 17 Willes Rd, Berrimah, NT 0820<br>Ph: 08 8967 1201 / darwin@envirolab.com.au        | maultin                      | Englins                                                                                                  | ents                                                    | Lab                    |                          |                          |                                                                                        | Email:                   |
| Danwin Office - Envirolab Services                                                           |                              |                                                                                                          | itional repo                                            | Add                    | 1021512                  | 92518070 Mob: 0451021512 | 9251807                                                                                | Phone:                   |
| Brisbane Office Envirolab Services<br>20a, 10-20 Depot St, Banyo, QLD 4014<br>               | und is required - surcharges | Or choose: standard<br>Note: Inform lab in advance if urgent turnaround is required - surcharge<br>apply | Or choose: standard<br>Note: Inform lab in adv<br>apply | Or app                 | 2000                     | eet, Sydney              | Suite 1, level 9, 189 Kent street, Sydney 2000                                         |                          |
| 7a The Parade, Norwood, SA 5067<br>Ph: 08 7087 6800 / adelaide@envirolab.com.au              | Standard                     | quired:                                                                                                  | Date results required:                                  | Dat                    |                          |                          |                                                                                        | Address:                 |
| Adelaide Office - Envirolab Services                                                         |                              | e No, :                                                                                                  | irolab Quot                                             | Env                    |                          |                          | n Davies                                                                               | Sampler: Havden Davies   |
| ph: 03 9763 2500 / melbourne@envirolab.com.au                                                |                              |                                                                                                          | PO No.:                                                 | РО                     |                          |                          | ter Moore                                                                              | Project Mgr: Peter Moore |
| Melbourne Lab - Envirolab Services                                                           | h Point                      | Client Project Name / Number / Site etc. (re report nue):<br>21067 - Wentworth Point                     | int Project n                                           | Clie                   |                          |                          | c<br>Havden Davies                                                                     | Client:Geosyntec         |
| 16-18 Hayden Crt, Myaree, WA 6154<br>Ph: 08 9317 2505 / lab@mpl.com.au                       | 424 344                      | ENVIROLAB GROUP - National phone number 1300 424                                                         | onal phon                                               | ROUP - Nati            | ROLAB GR                 | ENVI                     | " CHB                                                                                  |                          |
| perth I ah - MPt Laboratories                                                                |                              |                                                                                                          |                                                         |                        | <br>                     |                          |                                                                                        | 2                        |

.



#### **Eurofins Environment Testing Australia Pty Ltd**

Sydney

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane Unit F3, Building F 
 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 1/21 Smallwood Place NATA # 1261 Site # 18217

NATA # 1261 Site # 20794

ABN: 91 05 0159 898 Newcastle Perth 4/52 Industrial Drive

Mayfield East NSW 2304

PO Box 60 Wickham 2293

NATA # 1261 Site # 25079

Phone : +61 2 4968 8448

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

www.eurofins.com.au

EnviroSales@eurofins.com

Auckland

#### Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Limited NZBN: 9429046024954

35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

## **Sample Receipt Advice**

| Company name:      | Geosyntec Consultants Pty Ltd |
|--------------------|-------------------------------|
| Contact name:      | Peter Moore                   |
| Project name:      | WENTWORTH POINT               |
| Project ID:        | 21067                         |
| Turnaround time:   | 5 Day                         |
| Date/Time received | Dec 2, 2021 2:34 PM           |
| Eurofins reference | 847105                        |

#### **Sample Information**

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. /
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

#### **Notes**

#### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Asim Khan on phone : or by email: AsimKhan@eurofins.com

Results will be delivered electronically via email to Peter Moore - Peter.Moore@geosyntec.com.

## Global Leader - Results you can trust

| 🔅 eurof                                            | ins              |                                  |         | Eurofins Environme<br>ABN: 50 005 085 521                                                                 | ent Te                   | sting /      | Austra                                | Ltd                    | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898     | Eurofins Environment<br>NZBN: 9429046024954                                                     | Testing NZ Limited                                                                                      |
|----------------------------------------------------|------------------|----------------------------------|---------|-----------------------------------------------------------------------------------------------------------|--------------------------|--------------|---------------------------------------|------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| web: www.eurofins.com.a<br>email: EnviroSales@euro | J. Env           | ironment                         | Testing | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3<br>Phone : +61 3 8564 500<br>NATA # 1261 Site # 125 | U<br>175 1<br>0 L<br>4 P |              | Building<br>Road<br>ve Wes<br>+61 2 9 |                        | NATA # 2377 Site # 2370                         | Auckland<br>35 O'Rorke Road<br>Penrose, Auckland 1061<br>Phone : +64 9 526 45 51<br>IANZ # 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston, Christchurch 7675<br>Phone : 0800 856 450<br>IANZ # 1290 |
| Company Name<br>Address:                           |                  | Consultants Pt<br>el 9, 189 Kent |         |                                                                                                           |                          | R<br>P       | rder  <br>eport<br>hone<br>ax:        | 847105<br>02 9251 8070 | Received:<br>Due:<br>Priority:<br>Contact Name: | Dec 2, 2021 2:34 P<br>Dec 9, 2021<br>5 Day<br>Peter Moore                                       | м                                                                                                       |
| Project Name:<br>Project ID:                       | WENTWOR<br>21067 | TH POINT                         |         |                                                                                                           |                          |              |                                       |                        | Eurofins Analytica                              | al Services Manager :                                                                           | Asim Khan                                                                                               |
|                                                    |                  | Imple Detail                     |         |                                                                                                           | Lead                     | Moisture Set | Eurofins Suite B4                     |                        |                                                 |                                                                                                 |                                                                                                         |
| Melbourne Laborato                                 |                  |                                  | 4       |                                                                                                           | x                        | x            | x                                     |                        |                                                 |                                                                                                 |                                                                                                         |
| Brisbane Laborat                                   |                  |                                  | 4       |                                                                                                           |                          |              |                                       |                        |                                                 |                                                                                                 |                                                                                                         |
| Mayfield Laborato                                  |                  |                                  |         |                                                                                                           |                          |              |                                       |                        |                                                 |                                                                                                 |                                                                                                         |
| Perth Laboratory                                   | -                |                                  |         |                                                                                                           |                          |              |                                       |                        |                                                 |                                                                                                 |                                                                                                         |
| External Laborato                                  | ry               | 1                                | 1       |                                                                                                           |                          |              |                                       |                        |                                                 |                                                                                                 |                                                                                                         |
| No Sample ID                                       | Sample Date      | Sampling<br>Time                 | Matrix  | LAB ID                                                                                                    |                          |              |                                       |                        |                                                 |                                                                                                 |                                                                                                         |
| 1 TRIP1                                            | Nov 30, 2021     |                                  | Soil    | S21-De11001                                                                                               | X                        | X            | X                                     |                        |                                                 |                                                                                                 |                                                                                                         |
| Test Counts                                        |                  |                                  |         |                                                                                                           | 1                        | 1            | 1                                     |                        |                                                 |                                                                                                 |                                                                                                         |



Geosyntec Consultants Pty Ltd Suite 1, Level 9, 189 Kent Street Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

| Attention: |
|------------|
|------------|

Peter Moore

Report Project name Project ID Received Date 847105-S WENTWORTH POINT 21067 Dec 02, 2021

| Client Sample ID                                  |     |       | TRIP1        |
|---------------------------------------------------|-----|-------|--------------|
| Sample Matrix                                     |     |       | Soil         |
| Eurofins Sample No.                               |     |       | S21-De11001  |
| Date Sampled                                      |     |       | Nov 30, 2021 |
| Test/Reference                                    | LOR | Unit  |              |
| Total Recoverable Hydrocarbons                    |     | 0     |              |
| TRH C6-C9                                         | 20  | mg/kg | < 20         |
| TRH C10-C14                                       | 20  | mg/kg | < 20         |
| TRH C15-C28                                       | 50  | mg/kg | 110          |
| TRH C29-C36                                       | 50  | mg/kg | < 50         |
| TRH C10-C36 (Total)                               | 50  | mg/kg | 110          |
| Naphthalene <sup>N02</sup>                        | 0.5 | mg/kg | < 0.5        |
| TRH C6-C10                                        | 20  | mg/kg | < 20         |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20  | mg/kg | < 20         |
| TRH >C10-C16                                      | 50  | mg/kg | < 50         |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50  | mg/kg | < 50         |
| TRH >C16-C34                                      | 100 | mg/kg | 100          |
| TRH >C34-C40                                      | 100 | mg/kg | < 100        |
| TRH >C10-C40 (total)*                             | 100 | mg/kg | 100          |
| BTEX                                              |     |       |              |
| Benzene                                           | 0.1 | mg/kg | < 0.1        |
| Toluene                                           | 0.1 | mg/kg | < 0.1        |
| Ethylbenzene                                      | 0.1 | mg/kg | < 0.1        |
| m&p-Xylenes                                       | 0.2 | mg/kg | < 0.2        |
| o-Xylene                                          | 0.1 | mg/kg | < 0.1        |
| Xylenes - Total*                                  | 0.3 | mg/kg | < 0.3        |
| 4-Bromofluorobenzene (surr.)                      | 1   | %     | 111          |
| Polycyclic Aromatic Hydrocarbons                  |     | _     |              |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5 | mg/kg | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5 | mg/kg | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5 | mg/kg | 1.2          |
| Acenaphthene                                      | 0.5 | mg/kg | < 0.5        |
| Acenaphthylene                                    | 0.5 | mg/kg | < 0.5        |
| Anthracene                                        | 0.5 | mg/kg | < 0.5        |
| Benz(a)anthracene                                 | 0.5 | mg/kg | < 0.5        |
| Benzo(a)pyrene                                    | 0.5 | mg/kg | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5 | mg/kg | < 0.5        |
| Benzo(g.h.i)perylene                              | 0.5 | mg/kg | < 0.5        |
| Benzo(k)fluoranthene                              | 0.5 | mg/kg | < 0.5        |
| Chrysene                                          | 0.5 | mg/kg | < 0.5        |
| Dibenz(a.h)anthracene                             | 0.5 | mg/kg | < 0.5        |



| Client Sample ID<br>Sample Matrix |     |       | TRIP1<br>Soil |
|-----------------------------------|-----|-------|---------------|
| Eurofins Sample No.               |     |       | S21-De11001   |
| Date Sampled                      |     |       | Nov 30, 2021  |
| Test/Reference                    | LOR | Unit  |               |
| Polycyclic Aromatic Hydrocarbons  |     |       |               |
| Fluoranthene                      | 0.5 | mg/kg | < 0.5         |
| Fluorene                          | 0.5 | mg/kg | < 0.5         |
| Indeno(1.2.3-cd)pyrene            | 0.5 | mg/kg | < 0.5         |
| Naphthalene                       | 0.5 | mg/kg | < 0.5         |
| Phenanthrene                      | 0.5 | mg/kg | < 0.5         |
| Pyrene                            | 0.5 | mg/kg | < 0.5         |
| Total PAH*                        | 0.5 | mg/kg | < 0.5         |
| 2-Fluorobiphenyl (surr.)          | 1   | %     | 115           |
| p-Terphenyl-d14 (surr.)           | 1   | %     | 147           |
| Heavy Metals                      |     |       |               |
| Lead                              | 5   | mg/kg | 16            |
| % Moisture                        | 1   | %     | 12            |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                          | Testing Site | Extracted    | Holding Time |
|----------------------------------------------------------------------|--------------|--------------|--------------|
| Eurofins Suite B4                                                    |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                 | Sydney       | Dec 07, 2021 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Dec 07, 2021 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Dec 07, 2021 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| BTEX                                                                 | Sydney       | Dec 07, 2021 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                     | Sydney       | Dec 07, 2021 | 14 Days      |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water             |              |              |              |
| Heavy Metals                                                         | Sydney       | Dec 07, 2021 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS |              |              |              |
| % Moisture                                                           | Sydney       | Dec 06, 2021 | 14 Days      |
| - Method: LTM-GEN-7080 Moisture                                      |              |              |              |

|          | eurofi                                  | ns                                                    |                                  |         | Eurofins Environme<br>ABN: 50 005 085 521                                                                 |                          |                     | Austra                          | ia Pty Lt |                                                                                                                                          |                                                                                                                                               | ABN: 91 05 0159 898                                                                                    | Eurofins Environment Testing NZ Limited NZBN: 9429046024954                                     |                                                                                                         |  |
|----------|-----------------------------------------|-------------------------------------------------------|----------------------------------|---------|-----------------------------------------------------------------------------------------------------------|--------------------------|---------------------|---------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| web: www | w.eurofins.com.au<br>viroSales@eurofins | Envi                                                  | ironment                         | Testing | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3<br>Phone : +61 3 8564 500<br>NATA # 1261 Site # 125 | U<br>175 1<br>0 L<br>4 P | ane Cov<br>hone : + | Road<br>/e West<br>+61 2 9      |           | Brisbane           1/21 Smallwood Place           Murarrie QLD 4172           Phone : +61 7 3902 4600           NATA # 1261 Site # 20794 | Newcastle<br>4/52 Industrial Drive<br>Mayfield East NSW 2304<br>PO Box 60 Wickham 2293<br>Phone : +61 2 4968 8448<br>NATA # 1261 Site # 25079 | Perth<br>46-48 Banksia Road<br>Welshpool WA 6106<br>Phone : +61 8 6253 4444<br>NATA # 2377 Site # 2370 | Auckland<br>35 O'Rorke Road<br>Penrose, Auckland 1061<br>Phone : +64 9 526 45 51<br>IANZ # 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston, Christchurch 7675<br>Phone : 0800 856 450<br>IANZ # 1290 |  |
|          | ipany Name:<br>ress:                    |                                                       | Consultants Pf<br>el 9, 189 Kent |         |                                                                                                           |                          | Re<br>Pl            | rder I<br>eport<br>hone:<br>ax: |           | 847105<br>02 9251 8070                                                                                                                   |                                                                                                                                               | Received:<br>Due:<br>Priority:<br>Contact Name:                                                        | Dec 2, 2021 2:34 P<br>Dec 9, 2021<br>5 Day<br>Peter Moore                                       | М                                                                                                       |  |
| -        | ect Name:<br>ect ID:                    | WENTWOR<br>21067                                      | TH POINT                         |         |                                                                                                           |                          |                     |                                 |           |                                                                                                                                          |                                                                                                                                               | Eurofins Analytica                                                                                     | l Services Manager :                                                                            | Asim Khan                                                                                               |  |
|          |                                         |                                                       | mple Detail                      |         |                                                                                                           | Lead                     | Moisture Set        | Eurofins Suite B4               |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
|          |                                         | ory - NATA # 12                                       |                                  | 54      |                                                                                                           | x                        | x                   | x                               |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
|          |                                         | <u>- NATA # 1261 :</u><br>y - NATA # 126 <sup>2</sup> |                                  | 4       |                                                                                                           |                          |                     | <u>^</u>                        |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
|          |                                         | - NATA # 1261                                         |                                  |         |                                                                                                           |                          |                     | 1                               |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
|          |                                         | IATA # 2377 Sit                                       |                                  |         |                                                                                                           |                          |                     |                                 |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| Extern   | nal Laboratory                          |                                                       |                                  |         |                                                                                                           |                          |                     |                                 |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| No       | Sample ID                               | Sample Date                                           | Sampling<br>Time                 | Matrix  | LAB ID                                                                                                    |                          |                     |                                 |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 1 T      | rrip1                                   | Nov 30, 2021                                          |                                  | Soil    | S21-De11001                                                                                               | Х                        | Х                   | Х                               |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| Test C   | Counts                                  |                                                       |                                  |         |                                                                                                           | 1                        | 1                   | 1                               |           |                                                                                                                                          |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

| onits                                    |                                    |                                                                  |
|------------------------------------------|------------------------------------|------------------------------------------------------------------|
| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         | ug/L: micrograms per litre                                       |
| ppm: Parts per million                   | ppb: Parts per billion             | %: Percentage                                                    |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units | MPN/100mL: Most Probable Number of organisms per 100 millilitres |
|                                          |                                    |                                                                  |

#### Terms

| Terma            |                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| COC              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version                                                                                                            |
| CP               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
| WA DWER          | Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA                                                                                      |
|                  |                                                                                                                                                                    |

#### QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs..

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

| Test                             | Units  | Result 1 | Accept | tance Pass<br>its Limits | Qualifying<br>Code |
|----------------------------------|--------|----------|--------|--------------------------|--------------------|
| Method Blank                     |        |          |        |                          |                    |
| Total Recoverable Hydrocarbons   |        |          |        |                          |                    |
| TRH C6-C9                        | mg/kg  | < 20     | 20     | ) Pass                   |                    |
| TRH C10-C14                      | mg/kg  | < 20     | 20     | ) Pass                   |                    |
| TRH C15-C28                      | mg/kg  | < 50     | 50     | ) Pass                   |                    |
| TRH C29-C36                      | mg/kg  | < 50     | 50     | ) Pass                   |                    |
| Naphthalene                      | mg/kg  | < 0.5    | 0.5    | 5 Pass                   |                    |
| TRH C6-C10                       | mg/kg  | < 20     | 20     | ) Pass                   |                    |
| TRH >C10-C16                     | mg/kg  | < 50     | 50     | ) Pass                   |                    |
| TRH >C16-C34                     | mg/kg  | < 100    | 10     | 0 Pass                   |                    |
| TRH >C34-C40                     | mg/kg  | < 100    | 10     | 0 Pass                   |                    |
| Method Blank                     |        |          |        |                          |                    |
| BTEX                             |        |          |        |                          |                    |
| Benzene                          | mg/kg  | < 0.1    | 0.1    | 1 Pass                   |                    |
| Toluene                          | mg/kg  | < 0.1    | 0.1    | 1 Pass                   |                    |
| Ethylbenzene                     | mg/kg  | < 0.1    | 0.4    |                          |                    |
| m&p-Xylenes                      | mg/kg  | < 0.2    | 0.2    |                          |                    |
| o-Xylene                         | mg/kg  | < 0.1    | 0.1    |                          |                    |
| Xylenes - Total*                 | mg/kg  | < 0.3    | 0.3    |                          |                    |
| Method Blank                     | 1 3 3  |          |        |                          |                    |
| Polycyclic Aromatic Hydrocarbons |        |          |        |                          |                    |
| Acenaphthene                     | mg/kg  | < 0.5    | 0.5    | 5 Pass                   |                    |
| Acenaphthylene                   | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Anthracene                       | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Benz(a)anthracene                | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Benzo(a)pyrene                   | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Benzo(b&j)fluoranthene           | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Benzo(g.h.i)perylene             | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Benzo(k)fluoranthene             | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Chrysene                         | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Dibenz(a.h)anthracene            | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Fluoranthene                     | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Fluorene                         | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Indeno(1.2.3-cd)pyrene           | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Naphthalene                      | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Phenanthrene                     | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Pyrene                           | mg/kg  | < 0.5    | 0.5    |                          |                    |
| Method Blank                     | Ing/kg | < 0.0    |        |                          |                    |
| Heavy Metals                     |        |          |        |                          |                    |
| Lead                             | mg/kg  | < 5      | 5      | Pass                     |                    |
| LCS - % Recovery                 | ing/kg |          |        | 1 435                    |                    |
| Total Recoverable Hydrocarbons   |        |          |        |                          |                    |
| TRH C6-C9                        | %      | 101      | 70-1   | 30 Pass                  |                    |
| TRH C10-C14                      | %      | 70       | 70-1   |                          |                    |
| Naphthalene                      | %      | 111      | 70-1   |                          |                    |
| TRH C6-C10                       | %      | 98       | 70-1   |                          |                    |
| TRH >C10-C16                     | %      | 85       | 70-1   |                          |                    |
| LCS - % Recovery                 | /0     |          |        |                          |                    |
| BTEX                             |        |          |        |                          |                    |
| Benzene                          | %      | 106      | 70-1   | 30 Pass                  |                    |
| Toluene                          | %      | 99       | 70-1   |                          |                    |
| Ethylbenzene                     | %      | 99<br>97 | 70-1   |                          |                    |



| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result 1                                                                                                                                                                                                                                                                                                               | Acceptance<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass<br>Limits                                               | Qualifying<br>Code |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|
| m&p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                     | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Xylenes - Total*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                     | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                    |
| Polycyclic Aromatic Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                    |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Benzo(b&j)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                     | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Benzo(g.h.i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Dibenz(a.h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Indeno(1.2.3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 129                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         |                    |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                    | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | газэ                                                         |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [                                                            |                    |
| Heavy Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400                                                                                                                                                                                                                                                                                                                    | 00.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dees                                                         |                    |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106                                                                                                                                                                                                                                                                                                                    | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass                                                         | O                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Camula ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result 1                                                                                                                                                                                                                                                                                                               | Acceptance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pass                                                         | Qualifying         |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result 1                                                                                                                                                                                                                                                                                                               | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limits                                                       | Code               |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limits                                                       | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result 1                                                                                                                                                                                                                                                                                                               | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Source<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result 1<br>82                                                                                                                                                                                                                                                                                                         | Limits           70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pass                                                         | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Source<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result 1<br>82<br>108                                                                                                                                                                                                                                                                                                  | Limits           70-130           70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Source<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result 1<br>82<br>108<br>82                                                                                                                                                                                                                                                                                            | Limits           70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pass                                                         | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Source<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result 1<br>82<br>108                                                                                                                                                                                                                                                                                                  | Limits           70-130           70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass<br>Pass                                                 | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Source<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result 1<br>82<br>108<br>82                                                                                                                                                                                                                                                                                            | Limits 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pass<br>Pass<br>Pass                                         | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Source<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result 1<br>82<br>108<br>82                                                                                                                                                                                                                                                                                            | Limits 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pass<br>Pass<br>Pass                                         | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                        | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Source<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81                                                                                                                                                                                                                                                                    | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pass<br>Pass<br>Pass                                         | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                   | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result 1<br>82<br>108<br>82<br>71<br>Result 1                                                                                                                                                                                                                                                                          | Limits 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass<br>Pass<br>Pass<br>Pass                                 | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                        | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Source<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81                                                                                                                                                                                                                                                                    | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pass<br>Pass<br>Pass<br>Pass<br>Pass                         | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene                                                                                                                                                                                                                                                                                                                                                                                                             | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74                                                                                                                                                                                                                                                              | Limits<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                 | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                             | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74<br>71                                                                                                                                                                                                                                                        | Limits<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes                                                                                                                                                                                                                                                                                                                                                                              | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74<br>71<br>73                                                                                                                                                                                                                                                  | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene                                                                                                                                                                                                                                                                                                                                                                  | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74<br>71<br>73<br>72                                                                                                                                                                                                                                            | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*                                                                                                                                                                                                                                                                                                                                              | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74<br>71<br>73<br>72                                                                                                                                                                                                                                            | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*<br>Spike - % Recovery                                                                                                                                                                                                                                                                                                                        | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74<br>71<br>73<br>72<br>73                                                                                                                                                                                                                                      | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*<br>Spike - % Recovery<br>Polycyclic Aromatic Hydrocarbon                                                                                                                                                                                                                                                                                     | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Source NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74<br>71<br>73<br>72<br>73<br>Result 1                                                                                                                                                                                                                          | Limits<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*<br>Spike - % Recovery<br>Polycyclic Aromatic Hydrocarbon<br>Acenaphthene                                                                                                                                                                                                                                                                     | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result 1<br>82<br>108<br>82<br>71<br>Result 1<br>81<br>74<br>71<br>73<br>72<br>73<br>72<br>73<br>Result 1<br>86                                                                                                                                                                                                        | Limits<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70-10<br>70 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*<br>Spike - % Recovery<br>Polycyclic Aromatic Hydrocarbon<br>Acenaphthene<br>Acenaphthylene                                                                                                                                                                                                                                                   | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82                                                                                                            | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*<br>Spike - % Recovery<br>Polycyclic Aromatic Hydrocarbon<br>Acenaphthene<br>Acenaphthylene<br>Anthracene                                                                                                                                                                                                                                     | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82           83                                                                                               | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*<br>Spike - % Recovery<br>Polycyclic Aromatic Hydrocarbon<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benz(a)anthracene                                                                                                                                                                                                                | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                            | Result 1           82           108           82           71           Result 1           81           74           71           73           Result 1           86           82           83           100                                                                                                           | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery<br>Total Recoverable Hydrocarbons<br>TRH C6-C9<br>Naphthalene<br>TRH C6-C10<br>TRH >C10-C16<br>Spike - % Recovery<br>BTEX<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene<br>Xylenes - Total*<br>Spike - % Recovery<br>Polycyclic Aromatic Hydrocarbon<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benz(a)anthracene<br>Benzo(b&j)fluoranthene                                                                                                                                                                                      | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Source NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                   | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82           83           100           95           94                                                       | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(g.h.i)perylene                                                                                                                                                                                                                                                       | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684 | Source  NCP NCP NCP NCP NCP NCP NCP NCP NCP NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %                                                 | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82           83           100           95           94           106                                         | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery         Total Recoverable Hydrocarbons         TRH C6-C9         Naphthalene         TRH C6-C10         TRH >C10-C16         Spike - % Recovery         BTEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total*         Spike - % Recovery         Polycyclic Aromatic Hydrocarbon         Acenaphthene         Acenaphthylene         Anthracene         Benzo(a)pyrene         Benzo(b&j)fluoranthene         Benzo(b&j)fluoranthene         Benzo(k)fluoranthene                         | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %                                                 | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82           83           100           95           94           106           75                            | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery         Total Recoverable Hydrocarbons         TRH C6-C9         Naphthalene         TRH C6-C10         TRH >C10-C16         Spike - % Recovery         BTEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total*         Spike - % Recovery         Polycyclic Aromatic Hydrocarbon         Acenaphthene         Acenaphthylene         Anthracene         Benzo(a)pyrene         Benzo(b&j)fluoranthene         Benzo(b&j)fluoranthene         Chrysene                                     | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %             | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82           83           100           95           94           106           75           82               | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery         Total Recoverable Hydrocarbons         TRH C6-C9         Naphthalene         TRH C6-C10         TRH >C10-C16         Spike - % Recovery         BTEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total*         Spike - % Recovery         Polycyclic Aromatic Hydrocarbon         Acenaphthylene         Anthracene         Benzo(a)pyrene         Benzo(b&j)fluoranthene         Benzo(g.h.i)perylene         Benzo(k)fluoranthene         Chrysene         Dibenz(a.h)anthracene | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           % | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82           83           100           95           94           106           75           82           103 | Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |
| Spike - % Recovery         Total Recoverable Hydrocarbons         TRH C6-C9         Naphthalene         TRH C6-C10         TRH >C10-C16         Spike - % Recovery         BTEX         Benzene         Toluene         Ethylbenzene         m&p-Xylenes         o-Xylene         Xylenes - Total*         Spike - % Recovery         Polycyclic Aromatic Hydrocarbon         Acenaphthene         Acenaphthylene         Anthracene         Benzo(a)pyrene         Benzo(b&j)fluoranthene         Benzo(b&j)fluoranthene         Chrysene                                     | S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-De11005<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684<br>S21-No69684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %           %             | Result 1           82           108           82           71           Result 1           81           74           71           73           72           73           Result 1           86           82           83           100           95           94           106           75           82               | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Code               |



# Environment Testing

| Test                             | Lab Sample ID              | QA<br>Source | Units          | Result 1       |                |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|----------------------------|--------------|----------------|----------------|----------------|----------|----------------------|----------------|--------------------|
| Phenanthrene                     | S21-No69684                | NCP          | %              | 82             |                |          | 70-130               | Pass           |                    |
| Pyrene                           | S21-No69684                | NCP          | %              | 83             |                |          | 70-130               | Pass           |                    |
| Spike - % Recovery               |                            |              |                |                |                |          |                      |                |                    |
| Heavy Metals                     |                            |              |                | Result 1       |                |          |                      |                |                    |
| Lead                             | S21-De11005                | NCP          | %              | 92             |                |          | 75-125               | Pass           |                    |
| Test                             | Lab Sample ID              | QA<br>Source | Units          | Result 1       |                |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                        |                            |              |                | 1              | i              |          | 1                    | r              |                    |
| Total Recoverable Hydrocarbons   |                            |              |                | Result 1       | Result 2       | RPD      |                      |                |                    |
| TRH C6-C9                        | S21-De07281                | NCP          | mg/kg          | < 20           | < 20           | <1       | 30%                  | Pass           |                    |
| TRH C10-C14                      | S21-De11001                | CP           | mg/kg          | < 20           | < 20           | <1       | 30%                  | Pass           |                    |
| TRH C15-C28                      | S21-De11001                | CP           | mg/kg          | 110            | 190            | 53       | 30%                  | Fail           | Q15                |
| TRH C29-C36                      | S21-De11001                | CP           | mg/kg          | < 50           | < 50           | <1       | 30%                  | Pass           |                    |
| Naphthalene                      | S21-De07281                | NCP          | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| TRH C6-C10                       | S21-De07281                | NCP          | mg/kg          | < 20           | < 20           | <1       | 30%                  | Pass           |                    |
| TRH >C10-C16                     | S21-De11001                | CP           | mg/kg          | < 50           | 54             | 47       | 30%                  | Fail           | Q15                |
| TRH >C16-C34                     | S21-De11001                | CP           | mg/kg          | 100            | 170            | 48       | 30%                  | Fail           | Q15                |
| TRH >C34-C40                     | S21-De11001                | CP           | mg/kg          | < 100          | < 100          | <1       | 30%                  | Pass           |                    |
| Duplicate                        |                            |              |                |                |                |          | •                    |                |                    |
| BTEX                             |                            |              |                | Result 1       | Result 2       | RPD      |                      |                |                    |
| Benzene                          | S21-De07281                | NCP          | mg/kg          | < 0.1          | < 0.1          | <1       | 30%                  | Pass           |                    |
| Toluene                          | S21-De07281                | NCP          | mg/kg          | < 0.1          | < 0.1          | <1       | 30%                  | Pass           |                    |
| Ethylbenzene                     | S21-De07281                | NCP          | mg/kg          | < 0.1          | < 0.1          | <1       | 30%                  | Pass           |                    |
| m&p-Xylenes                      | S21-De07281                | NCP          | mg/kg          | < 0.2          | < 0.2          | <1       | 30%                  | Pass           |                    |
| o-Xylene                         | S21-De07281                | NCP          | mg/kg          | < 0.1          | < 0.1          | <1       | 30%                  | Pass           |                    |
| Xylenes - Total*                 | S21-De07281                | NCP          | mg/kg          | < 0.3          | < 0.3          | <1       | 30%                  | Pass           |                    |
| Duplicate                        |                            |              |                |                |                |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons |                            |              |                | Result 1       | Result 2       | RPD      |                      |                |                    |
| Acenaphthene                     | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Acenaphthylene                   | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Anthracene                       | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Benz(a)anthracene                | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Benzo(a)pyrene                   | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene           | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene             | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene             | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Chrysene                         | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene            | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Fluoranthene                     | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Fluorene                         | S21-De11001                | CP           | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | S21-De11001                | CP           |                |                |                |          | 30%                  | Pass           |                    |
| Naphthalene                      | S21-De11001<br>S21-De11001 | CP           | mg/kg<br>mg/kg | < 0.5<br>< 0.5 | < 0.5<br>< 0.5 | <1<br><1 | 30%                  | Pass           |                    |
| Phenanthrene                     | S21-De11001                | CP           |                |                |                |          | 30%                  | Pass           |                    |
|                                  |                            | CP           | mg/kg          | < 0.5          | < 0.5          | <1       |                      |                |                    |
| Pyrene                           | S21-De11001                |              | mg/kg          | < 0.5          | < 0.5          | <1       | 30%                  | Pass           |                    |
| Duplicate                        |                            |              |                | Beault 4       | Beaut 0        | 000      |                      |                |                    |
| Heavy Metals                     | 004 De 11001               | 0.5          |                | Result 1       | Result 2       | RPD      | 2001                 | <b>F</b> -1    | 015                |
| Lead                             | S21-De11001                | CP           | mg/kg          | 16             | 24             | 37       | 30%                  | Fail           | Q15                |
| Duplicate                        |                            |              |                |                |                | 000      |                      |                |                    |
|                                  | 004 D                      | 0-           |                | Result 1       | Result 2       | RPD      |                      |                |                    |
| % Moisture                       | S21-De11001                | CP           | %              | 12             | 11             | 1.0      | 30%                  | Pass           |                    |



# **Environment Testing**

#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).                                                                                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N02 | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. |
| N04 | F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.                                                                                                                              |
| N07 | Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs                                                                                                                                                                                                       |
| Q15 | The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.                                                                                                                                                                                                                                                    |

#### Authorised by:

Asim Khan Andrew Sullivan John Nguyen Roopesh Rangarajan

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Metal (NSW)

Senior Analyst-Volatile (NSW)

Senior Analyst-Organic (NSW)

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

| [Copyright a           | nd Confidenti | a]                            | CHA         | IN OF                                 | CUST       | OD                | Υ-      | C                     | ien       | t         |                                              |           |           |         |       |          | Sydney I              | Lab - E       | nvirolab<br>Lhatswoo   | Servic             | es<br>N 2067                                                  |
|------------------------|---------------|-------------------------------|-------------|---------------------------------------|------------|-------------------|---------|-----------------------|-----------|-----------|----------------------------------------------|-----------|-----------|---------|-------|----------|-----------------------|---------------|------------------------|--------------------|---------------------------------------------------------------|
|                        | -             | ะคาวรี้เริญเศย                |             |                                       |            |                   |         |                       |           | -         |                                              |           |           |         |       |          |                       |               |                        |                    | envirolab.com.au                                              |
|                        |               | @mpl                          | ENVI        | ROLAB GR                              | OUP - N    | ationa            | l pho   | ne nu                 | mber      | 1300 4    | 424 3                                        | 344       |           |         |       | <u> </u> | Perth La<br>L6-18 Ha  | b-MP<br>avden | PL Labora<br>Crt, Mya  | atories<br>aree. W | /A 6154                                                       |
| Client:Geosy           | Intec         |                               |             |                                       |            | Client F          | Project | Name                  | / Numb    | er / Site | e etc (i                                     | ie repo   | t title)  | :       |       | ſ        | h: 08 9               | 317 25        | 605 / lab              | @mpl.              | .com.au                                                       |
| Contact Pers           | son: Hayden D | avies                         |             |                                       |            |                   |         |                       | 21067     | Wentv     | worth                                        | Point     |           |         |       |          |                       |               | <u>b</u> - Enviro      |                    | rvices<br>outh, VIC 3136                                      |
| Project Mgr:           | Peter Moore   |                               |             |                                       |            | PO No.:           |         |                       |           |           |                                              |           |           |         |       |          |                       |               |                        |                    | e@envirolab.com.au                                            |
| Sampler: Ha            | yden Davies   |                               |             |                                       |            | Envirol           | ab Quo  | te No.                | :         |           |                                              |           |           |         |       |          | Adelaide              | e Offic       | e Envir                | olab Se            | rvices                                                        |
| Address:               |               |                               |             |                                       |            | Date re           | sults r | equired               | i:        |           |                                              | Stan      | dard      |         |       |          |                       |               | , Norwo                |                    | 5067<br>@envirolab.com.au                                     |
|                        | S             | uite 1, level 9, 189 Kent str | eet, Sydney | 2000                                  |            | Or choo           |         |                       |           |           |                                              |           |           |         |       |          |                       |               |                        | _                  | _                                                             |
|                        |               |                               |             |                                       |            | Note: In<br>apply | form la | b in adv              | ance if u | rgent tui | rnarour                                      | nd is req | uired - s | surchar | ges   | 2        | 20a, 10-              | 20 Dep        |                        | anyo, Q            | QLD 4014                                                      |
| Phone:                 |               | 9251807                       | 0 Mob: 045  | 1021512                               |            |                   | nal rep | ort for               | mat: es   | dat / eo  | quis /                                       |           | <u> </u>  |         |       | f        | Ph: 07 3              | 266 95        | 532 / bri              | sbane@             | @envirolab.com.au                                             |
| Email:                 | ······        |                               |             |                                       |            | Lab Co            | mment   | s:                    | ·         |           |                                              |           | ·         |         |       | [<br>1   | Darwin (<br>Jnit 7, 1 | Office        | - Envirol<br>es Rd. Br | ab Serv            | vices<br>h. NT 0820                                           |
| 1                      |               |                               |             |                                       | i          |                   |         |                       |           |           |                                              |           |           |         |       |          |                       |               |                        |                    | envirolab.com.au                                              |
|                        | ···           |                               |             |                                       |            |                   |         |                       |           |           |                                              |           |           |         |       |          |                       |               |                        |                    |                                                               |
|                        | navde         | n.davies@geosyntec.cor        |             | ore@geosyntec                         | .com       |                   | -       |                       |           |           |                                              |           |           |         |       |          | -                     |               |                        | <u> </u>           |                                                               |
|                        |               | Sample informa                |             |                                       | T          |                   | r       |                       | <u> </u>  | ·····     | T                                            | lests     | Require   | 30      | 1     |          |                       |               |                        | <u> </u>           | Comments                                                      |
| Envirolab<br>Sample ID | Client Sa     | mple ID or information        | Depth       | Date sampled                          |            | I'RH /BTEX        | PAH S   | Hold                  |           |           |                                              |           |           |         |       |          |                       |               |                        |                    | Provide as much<br>information about the<br>sample as you can |
| (                      | UEX           | 1-1                           |             | 25/11/2                               | +          |                   | 145c    | ×                     |           |           |                                              | +         |           |         |       |          |                       |               |                        |                    | Soil                                                          |
| 2                      |               | cl-2                          |             | N                                     | +          | X                 | X       |                       |           |           | · · ·                                        | +         |           |         |       |          |                       |               |                        |                    | Soil                                                          |
| 2                      | VEX           |                               |             | ~                                     |            | ×                 | ×       |                       |           |           | <u> </u>                                     |           |           |         |       |          |                       |               |                        |                    | water                                                         |
| 4                      | UEX           |                               |             | ~                                     | 1          | ×                 | ×       | i                     |           | 1         | 1                                            | -         |           |         |       |          |                       |               |                        |                    | 501                                                           |
|                        |               |                               | -           |                                       |            | <u> </u>          | •       |                       |           |           | <u>†                                    </u> |           |           |         |       |          |                       |               |                        |                    |                                                               |
|                        |               | ·                             | -           |                                       |            |                   |         |                       |           | 1         | <u> </u>                                     |           |           |         |       |          | $\rightarrow$         |               |                        |                    | · · · · · · · · · · · · · · · · · · ·                         |
|                        | -             | • <u>•</u> •····              |             | · · · · · · · · · · · · · · · · · · · |            |                   |         |                       |           |           | 1                                            |           |           |         | ·     |          |                       |               |                        |                    |                                                               |
|                        |               | <u></u>                       |             |                                       |            |                   |         |                       |           |           |                                              |           |           |         | -     |          | -                     |               |                        |                    |                                                               |
|                        |               | - ·                           | +           |                                       | +          |                   |         |                       |           |           | 1                                            |           |           |         |       |          | -+                    |               |                        |                    |                                                               |
|                        | Please tic    | k the box if observ           | ed settle   | d sediment u                          | bresent i  | n wate            | ersa    | mple                  | s is to   | be ir     | nclu                                         | ded in    | 1 the     | extr    | actio | n and    |                       | anal          | vsis                   |                    |                                                               |
| Relinquishe            | d by (Company |                               |             | <b>r</b>                              | Received b |                   |         |                       |           |           | _                                            |           |           | _       |       |          |                       | _             |                        | -                  | l                                                             |
| Print Name:            |               | Hayden Davies                 |             |                                       | Print Name |                   | THA     | $\tilde{\mathcal{V}}$ | <u> </u>  |           |                                              |           | umbe      |         | 936   | 36       |                       | Cooli         | ng:(1                  | :e)/ I(            | ce pack / None                                                |
| Date & Time            | 8             | 25/114                        |             |                                       | Date & Tim |                   | 251     | 11/21                 | Ċ         | 120       | 0                                            |           | eratu     |         | 10    |          |                       | Secu          | rity se                | al: 🛵              | tact) / Broken / None                                         |
| Signature:             |               |                               |             |                                       | Signature: |                   | -       | ~                     |           |           |                                              | TAT       | Req -     | SAM     | E day | / 1      | / 2                   | / 3           | / 4                    | <u>7 ST</u>        | D                                                             |

. 1

.

Λ.

÷,€

Ş.

9

5



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# SAMPLE RECEIPT ADVICE

| Client Details |             |
|----------------|-------------|
| Client         | Geosyntec   |
| Attention      | Peter Moore |

| Sample Login Details                 |                         |
|--------------------------------------|-------------------------|
| Your reference                       | 21067 - Wentworth Point |
| Envirolab Reference                  | 283836                  |
| Date Sample Received                 | 25/11/2021              |
| Date Instructions Received           | 25/11/2021              |
| Date Results Expected to be Reported | 02/12/2021              |

| Sample Condition                                       |                 |
|--------------------------------------------------------|-----------------|
| Samples received in appropriate condition for analysis | Yes             |
| No. of Samples Provided                                | 3 Soil, 1 Water |
| Turnaround Time Requested                              | Standard        |
| Temperature on Receipt (°C)                            | 10              |
| Cooling Method                                         | Ice             |
| Sampling Date Provided                                 | YES             |

Comments Nil

Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID | VTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | vTRH(C6-C10)/BTEXN in Water | svTRH (C10-C40) in Water | PAHsin Water | On Hold      |
|-----------|----------------------------|-------------------------|--------------|-----------------------------|--------------------------|--------------|--------------|
| VEX1-1    |                            |                         |              |                             |                          |              | $\checkmark$ |
| VEX1-2    | $\checkmark$               | $\checkmark$            | $\checkmark$ |                             |                          |              |              |
| VEXW1-1   |                            |                         |              | $\checkmark$                | $\checkmark$             | $\checkmark$ |              |
| VEX1-3    | $\checkmark$               | $\checkmark$            | $\checkmark$ |                             |                          |              |              |

The ' $\checkmark$ ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.



#### **CERTIFICATE OF ANALYSIS 283836**

| Client Details |                                                      |
|----------------|------------------------------------------------------|
| Client         | Geosyntec                                            |
| Attention      | Peter Moore                                          |
| Address        | Suite 1, Level 9, 189 Kent Street, Sydney, NSW, 2000 |

| Sample Details                       |                         |
|--------------------------------------|-------------------------|
| Your Reference                       | 21067 - Wentworth Point |
| Number of Samples                    | 3 Soil, 1 Water         |
| Date samples received                | 25/11/2021              |
| Date completed instructions received | 25/11/2021              |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                                       |            |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Date results requested by                                                                            | 02/12/2021 |  |  |  |  |
| Date of Issue                                                                                        | 01/12/2021 |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |  |

Results Approved By Dragana Tomas, Senior Chemist Manju Dewendrage, Prep Team Leader Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 283836 Revision No: R00



Page | 1 of 19

| vTRH(C6-C10)/BTEXN in Soil                           |       |            |            |
|------------------------------------------------------|-------|------------|------------|
| Our Reference                                        |       | 283836-2   | 283836-4   |
| Your Reference                                       | UNITS | VEX1-2     | VEX1-3     |
| Date Sampled                                         |       | 25/11/2021 | 25/11/2021 |
| Type of sample                                       |       | Soil       | Soil       |
| Date extracted                                       | -     | 26/11/2021 | 26/11/2021 |
| Date analysed                                        | -     | 29/11/2021 | 29/11/2021 |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        | <25        |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | 31         | 51         |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | 31         | 51         |
| Benzene                                              | mg/kg | <0.2       | <0.2       |
| Toluene                                              | mg/kg | <0.5       | <0.5       |
| Ethylbenzene                                         | mg/kg | <1         | <1         |
| m+p-xylene                                           | mg/kg | <2         | <2         |
| o-Xylene                                             | mg/kg | <1         | <1         |
| Naphthalene                                          | mg/kg | <1         | <1         |
| Total +ve Xylenes                                    | mg/kg | <3         | <3         |
| Surrogate aaa-Trifluorotoluene                       | %     | 90         | 93         |

| svTRH (C10-C40) in Soil               |       |            |            |
|---------------------------------------|-------|------------|------------|
| Our Reference                         |       | 283836-2   | 283836-4   |
| Your Reference                        | UNITS | VEX1-2     | VEX1-3     |
| Date Sampled                          |       | 25/11/2021 | 25/11/2021 |
| Type of sample                        |       | Soil       | Soil       |
| Date extracted                        | -     | 26/11/2021 | 26/11/2021 |
| Date analysed                         | -     | 28/11/2021 | 28/11/2021 |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg | 390        | 530        |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg | 9,900      | 3,300      |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg | 9,700      | 1,900      |
| Total +ve TRH (C10-C36)               | mg/kg | 20,000     | 5,700      |
| TRH >C10 -C16                         | mg/kg | 700        | 910        |
| TRH >C10 - C16 less Naphthalene (F2)  | mg/kg | 700        | 910        |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg | 18,000     | 4,300      |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg | 4,400      | 990        |
| Total +ve TRH (>C10-C40)              | mg/kg | 23,000     | 6,200      |
| Surrogate o-Terphenyl                 | %     | #          | #          |

| PAHs in Soil                   |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference                  |       | 283836-2   | 283836-4   |
| Your Reference                 | UNITS | VEX1-2     | VEX1-3     |
| Date Sampled                   |       | 25/11/2021 | 25/11/2021 |
| Type of sample                 |       | Soil       | Soil       |
| Date extracted                 | -     | 26/11/2021 | 26/11/2021 |
| Date analysed                  | -     | 26/11/2021 | 26/11/2021 |
| Naphthalene                    | mg/kg | 0.6        | 0.4        |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       |
| Fluorene                       | mg/kg | <0.1       | 0.3        |
| Phenanthrene                   | mg/kg | 0.3        | 0.5        |
| Anthracene                     | mg/kg | 0.2        | 0.2        |
| Fluoranthene                   | mg/kg | 0.1        | 0.4        |
| Pyrene                         | mg/kg | 0.3        | 0.6        |
| Benzo(a)anthracene             | mg/kg | <0.1       | 0.2        |
| Chrysene                       | mg/kg | <0.1       | 0.2        |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2       | 0.2        |
| Benzo(a)pyrene                 | mg/kg | <0.05      | 0.2        |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | <0.1       | 0.1        |
| Total +ve PAH's                | mg/kg | 1.6        | 3.3        |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 80         | 82         |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 283836-2   | 283836-4   |
| Your Reference | UNITS | VEX1-2     | VEX1-3     |
| Date Sampled   |       | 25/11/2021 | 25/11/2021 |
| Type of sample |       | Soil       | Soil       |
| Date prepared  | -     | 26/11/2021 | 26/11/2021 |
| Date analysed  | -     | 29/11/2021 | 29/11/2021 |
| Moisture       | %     | 20         | 19         |

| vTRH(C6-C10)/BTEXN in Water                         |       |            |
|-----------------------------------------------------|-------|------------|
| Our Reference                                       |       | 283836-3   |
| Your Reference                                      | UNITS | VEXW1-1    |
| Date Sampled                                        |       | 25/11/2021 |
| Type of sample                                      |       | Water      |
| Date extracted                                      | -     | 25/11/2021 |
| Date analysed                                       | -     | 26/11/2021 |
| TRH C <sub>6</sub> - C <sub>9</sub>                 | µg/L  | 29         |
| TRH C <sub>6</sub> - C <sub>10</sub>                | µg/L  | 52         |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | µg/L  | 47         |
| Benzene                                             | µg/L  | 2          |
| Toluene                                             | µg/L  | 1          |
| Ethylbenzene                                        | µg/L  | 2          |
| m+p-xylene                                          | µg/L  | <2         |
| o-xylene                                            | µg/L  | <1         |
| Naphthalene                                         | µg/L  | 3          |
| Surrogate Dibromofluoromethane                      | %     | 107        |
| Surrogate toluene-d8                                | %     | 99         |
| Surrogate 4-BFB                                     | %     | 100        |

| svTRH (C10-C40) in Water                                     |       |            |
|--------------------------------------------------------------|-------|------------|
| Our Reference                                                |       | 283836-3   |
| Your Reference                                               | UNITS | VEXW1-1    |
| Date Sampled                                                 |       | 25/11/2021 |
| Type of sample                                               |       | Water      |
| Date extracted                                               | -     | 26/11/2021 |
| Date analysed                                                | -     | 27/11/2021 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | µg/L  | 2,400      |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | µg/L  | 28,000     |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | µg/L  | 20,000     |
| Total +ve TRH (C10-C36)                                      | µg/L  | 50,000     |
| TRH >C10 - C16                                               | µg/L  | 4,600      |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | µg/L  | 4,600      |
| TRH >C <sub>16</sub> - C <sub>34</sub>                       | μg/L  | 41,000     |
| TRH >C <sub>34</sub> - C <sub>40</sub>                       | µg/L  | 9,500      |
| Total +ve TRH (>C10-C40)                                     | μg/L  | 55,000     |
| Surrogate o-Terphenyl                                        | %     | #          |

| PAHs in Water             |       |            |
|---------------------------|-------|------------|
| Our Reference             |       | 283836-3   |
| Your Reference            | UNITS | VEXW1-1    |
| Date Sampled              |       | 25/11/2021 |
| Type of sample            |       | Water      |
| Date extracted            | -     | 26/11/2021 |
| Date analysed             | -     | 29/11/2021 |
| Naphthalene               | µg/L  | 2          |
| Acenaphthylene            | µg/L  | <1         |
| Acenaphthene              | µg/L  | <1         |
| Fluorene                  | µg/L  | <1         |
| Phenanthrene              | µg/L  | 1          |
| Anthracene                | µg/L  | <1         |
| Fluoranthene              | µg/L  | <1         |
| Pyrene                    | µg/L  | 1          |
| Benzo(a)anthracene        | µg/L  | <1         |
| Chrysene                  | µg/L  | <1         |
| Benzo(b,j+k)fluoranthene  | µg/L  | <2         |
| Benzo(a)pyrene            | µg/L  | <1         |
| Indeno(1,2,3-c,d)pyrene   | µg/L  | <1         |
| Dibenzo(a,h)anthracene    | µg/L  | <1         |
| Benzo(g,h,i)perylene      | µg/L  | <1         |
| Benzo(a)pyrene TEQ        | µg/L  | <5         |
| Total +ve PAH's           | µg/L  | 4.3        |
| Surrogate p-Terphenyl-d14 | %     | 78         |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008   | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Org-020     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Org-020     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.<br>For soil results:-<br>1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql> |
| Org-023     | Water samples are analysed directly by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-023   | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.<br>Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes. |

| QUALITY CONT                         | QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil |     |         |            |      |      | Duplicate Spike |      |            | covery % |
|--------------------------------------|---------------------------------------------|-----|---------|------------|------|------|-----------------|------|------------|----------|
| Test Description                     | Units                                       | PQL | Method  | Blank      | #    | Base | Dup.            | RPD  | LCS-12     | [NT]     |
| Date extracted                       | -                                           |     |         | 26/11/2021 | [NT] |      | [NT]            | [NT] | 26/11/2021 |          |
| Date analysed                        | -                                           |     |         | 29/11/2021 | [NT] |      | [NT]            | [NT] | 29/11/2021 |          |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg                                       | 25  | Org-023 | <25        | [NT] |      | [NT]            | [NT] | 85         |          |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg                                       | 25  | Org-023 | <25        | [NT] |      | [NT]            | [NT] | 85         |          |
| Benzene                              | mg/kg                                       | 0.2 | Org-023 | <0.2       | [NT] |      | [NT]            | [NT] | 84         |          |
| Toluene                              | mg/kg                                       | 0.5 | Org-023 | <0.5       | [NT] |      | [NT]            | [NT] | 79         |          |
| Ethylbenzene                         | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT]            | [NT] | 87         |          |
| m+p-xylene                           | mg/kg                                       | 2   | Org-023 | <2         | [NT] |      | [NT]            | [NT] | 87         |          |
| o-Xylene                             | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT]            | [NT] | 80         |          |
| Naphthalene                          | mg/kg                                       | 1   | Org-023 | <1         | [NT] |      | [NT]            | [NT] | [NT]       |          |
| Surrogate aaa-Trifluorotoluene       | %                                           |     | Org-023 | 93         | [NT] |      | [NT]            | [NT] | 87         |          |

| QUALITY CO                            | QUALITY CONTROL: svTRH (C10-C40) in Soil |     |         |            |      |      |      |      | Spike Re   | covery % |
|---------------------------------------|------------------------------------------|-----|---------|------------|------|------|------|------|------------|----------|
| Test Description                      | Units                                    | PQL | Method  | Blank      | #    | Base | Dup. | RPD  | LCS-12     | [NT]     |
| Date extracted                        | -                                        |     |         | 26/11/2021 | [NT] |      | [NT] | [NT] | 26/11/2021 |          |
| Date analysed                         | -                                        |     |         | 28/11/2021 | [NT] |      | [NT] | [NT] | 28/11/2021 |          |
| TRH C <sub>10</sub> - C <sub>14</sub> | mg/kg                                    | 50  | Org-020 | <50        | [NT] |      | [NT] | [NT] | 101        |          |
| TRH C <sub>15</sub> - C <sub>28</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 112        |          |
| TRH C <sub>29</sub> - C <sub>36</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 109        |          |
| TRH >C <sub>10</sub> -C <sub>16</sub> | mg/kg                                    | 50  | Org-020 | <50        | [NT] |      | [NT] | [NT] | 101        |          |
| TRH >C <sub>16</sub> -C <sub>34</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 112        |          |
| TRH >C <sub>34</sub> -C <sub>40</sub> | mg/kg                                    | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 109        |          |
| Surrogate o-Terphenyl                 | %                                        |     | Org-020 | 72         | [NT] | [NT] | [NT] | [NT] | 79         | [NT]     |

| QUALI                     | QUALITY CONTROL: PAHs in Soil |      |             |            |      |      | Duplicate |      |            | Spike Recovery % |  |  |
|---------------------------|-------------------------------|------|-------------|------------|------|------|-----------|------|------------|------------------|--|--|
| Test Description          | Units                         | PQL  | Method      | Blank      | #    | Base | Dup.      | RPD  | LCS-12     | [NT]             |  |  |
| Date extracted            | -                             |      |             | 26/11/2021 | [NT] |      | [NT]      | [NT] | 26/11/2021 |                  |  |  |
| Date analysed             | -                             |      |             | 26/11/2021 | [NT] |      | [NT]      | [NT] | 26/11/2021 |                  |  |  |
| Naphthalene               | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | 88         |                  |  |  |
| Acenaphthylene            | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | [NT]       |                  |  |  |
| Acenaphthene              | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | 81         |                  |  |  |
| Fluorene                  | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | 82         |                  |  |  |
| Phenanthrene              | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | 96         |                  |  |  |
| Anthracene                | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | [NT]       |                  |  |  |
| Fluoranthene              | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | 84         |                  |  |  |
| Pyrene                    | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | 91         |                  |  |  |
| Benzo(a)anthracene        | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | [NT]       |                  |  |  |
| Chrysene                  | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | 87         |                  |  |  |
| Benzo(b,j+k)fluoranthene  | mg/kg                         | 0.2  | Org-022/025 | <0.2       | [NT] |      | [NT]      | [NT] | [NT]       |                  |  |  |
| Benzo(a)pyrene            | mg/kg                         | 0.05 | Org-022/025 | <0.05      | [NT] |      | [NT]      | [NT] | 96         |                  |  |  |
| Indeno(1,2,3-c,d)pyrene   | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | [NT]       |                  |  |  |
| Dibenzo(a,h)anthracene    | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | [NT]       |                  |  |  |
| Benzo(g,h,i)perylene      | mg/kg                         | 0.1  | Org-022/025 | <0.1       | [NT] |      | [NT]      | [NT] | [NT]       |                  |  |  |
| Surrogate p-Terphenyl-d14 | %                             |      | Org-022/025 | 88         | [NT] |      | [NT]      | [NT] | 88         |                  |  |  |

| QUALITY CONTI                        | ROL: vTRH( | C6-C10)/E | BTEXN in Water |            |      | Du   | plicate | Spike Recovery % |            |      |
|--------------------------------------|------------|-----------|----------------|------------|------|------|---------|------------------|------------|------|
| Test Description                     | Units      | PQL       | Method         | Blank      | #    | Base | Dup.    | RPD              | LCS-W2     | [NT] |
| Date extracted                       | -          |           |                | 25/11/2021 | [NT] |      | [NT]    | [NT]             | 25/11/2021 |      |
| Date analysed                        | -          |           |                | 26/11/2021 | [NT] |      | [NT]    | [NT]             | 26/11/2021 |      |
| TRH C <sub>6</sub> - C <sub>9</sub>  | μg/L       | 10        | Org-023        | <10        | [NT] |      | [NT]    | [NT]             | 83         |      |
| TRH C <sub>6</sub> - C <sub>10</sub> | μg/L       | 10        | Org-023        | <10        | [NT] |      | [NT]    | [NT]             | 83         |      |
| Benzene                              | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]    | [NT]             | 86         |      |
| Toluene                              | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]    | [NT]             | 83         |      |
| Ethylbenzene                         | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]    | [NT]             | 82         |      |
| m+p-xylene                           | μg/L       | 2         | Org-023        | <2         | [NT] |      | [NT]    | [NT]             | 82         |      |
| o-xylene                             | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]    | [NT]             | 78         |      |
| Naphthalene                          | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Surrogate Dibromofluoromethane       | %          |           | Org-023        | 100        | [NT] |      | [NT]    | [NT]             | 103        |      |
| Surrogate toluene-d8                 | %          |           | Org-023        | 97         | [NT] |      | [NT]    | [NT]             | 105        |      |
| Surrogate 4-BFB                      | %          |           | Org-023        | 92         | [NT] |      | [NT]    | [NT]             | 112        |      |

| QUALITY CON                            | TROL: svTF | RH (C10-0 | C40) in Water |            |      | Du   | plicate |      | Spike Re   | covery % |
|----------------------------------------|------------|-----------|---------------|------------|------|------|---------|------|------------|----------|
| Test Description                       | Units      | PQL       | Method        | Blank      | #    | Base | Dup.    | RPD  | LCS-W2     | [NT]     |
| Date extracted                         | -          |           |               | 26/11/2021 | [NT] |      | [NT]    | [NT] | 26/11/2021 |          |
| Date analysed                          | -          |           |               | 27/11/2021 | [NT] |      | [NT]    | [NT] | 27/11/2021 |          |
| TRH C <sub>10</sub> - C <sub>14</sub>  | µg/L       | 50        | Org-020       | <50        | [NT] |      | [NT]    | [NT] | 120        |          |
| TRH C <sub>15</sub> - C <sub>28</sub>  | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 120        |          |
| TRH C <sub>29</sub> - C <sub>36</sub>  | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 109        |          |
| TRH >C <sub>10</sub> - C <sub>16</sub> | µg/L       | 50        | Org-020       | <50        | [NT] |      | [NT]    | [NT] | 120        |          |
| TRH >C <sub>16</sub> - C <sub>34</sub> | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 120        |          |
| TRH >C <sub>34</sub> - C <sub>40</sub> | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 109        |          |
| Surrogate o-Terphenyl                  | %          |           | Org-020       | 87         | [NT] |      | [NT]    | [NT] | 104        |          |

| QUALIT                    | QUALITY CONTROL: PAHs in Water |     |             |            |      |      |      |      | Spike Recovery % |      |  |  |
|---------------------------|--------------------------------|-----|-------------|------------|------|------|------|------|------------------|------|--|--|
| Test Description          | Units                          | PQL | Method      | Blank      | #    | Base | Dup. | RPD  | LCS-W2           | [NT] |  |  |
| Date extracted            | -                              |     |             | 26/11/2021 | [NT] |      | [NT] | [NT] | 26/11/2021       |      |  |  |
| Date analysed             | -                              |     |             | 29/11/2021 | [NT] |      | [NT] | [NT] | 29/11/2021       |      |  |  |
| Naphthalene               | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 98               |      |  |  |
| Acenaphthylene            | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | [NT]             |      |  |  |
| Acenaphthene              | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 98               |      |  |  |
| Fluorene                  | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 110              |      |  |  |
| Phenanthrene              | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 110              |      |  |  |
| Anthracene                | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | [NT]             |      |  |  |
| Fluoranthene              | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 112              |      |  |  |
| Pyrene                    | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 110              |      |  |  |
| Benzo(a)anthracene        | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | [NT]             |      |  |  |
| Chrysene                  | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 86               |      |  |  |
| Benzo(b,j+k)fluoranthene  | μg/L                           | 2   | Org-022/025 | <2         | [NT] |      | [NT] | [NT] | [NT]             |      |  |  |
| Benzo(a)pyrene            | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | 110              |      |  |  |
| Indeno(1,2,3-c,d)pyrene   | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | [NT]             |      |  |  |
| Dibenzo(a,h)anthracene    | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | [NT]             |      |  |  |
| Benzo(g,h,i)perylene      | μg/L                           | 1   | Org-022/025 | <1         | [NT] |      | [NT] | [NT] | [NT]             |      |  |  |
| Surrogate p-Terphenyl-d14 | %                              |     | Org-022/025 | 85         | [NT] |      | [NT] | [NT] | 85               |      |  |  |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

### **Report Comments**

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate/matrix spike is not possible to report as the high concentration of analytes in sample #3 have caused interference.

TRH Soil C10-C40 NEPM - # Percent recovery for the surrogate/matrix spike is not possible to report as the high concentration of analytes in sample #2 and 4 have caused interference.

| [Copyright a               | nd Confidential]                               | CHA        | IN OF                                 | CUST                    | OD                                                        | Y -     | CI           | ien          | t              |              |                   |                 |              |          |                                                                                                                                                                                                                       | 12 Ash  | ley St, C | hatswo   | b Service<br>od, NSV | es<br>V 2067<br>envirolab.com.au         |           |
|----------------------------|------------------------------------------------|------------|---------------------------------------|-------------------------|-----------------------------------------------------------|---------|--------------|--------------|----------------|--------------|-------------------|-----------------|--------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|----------------------|------------------------------------------|-----------|
| EN                         |                                                | ENVI       |                                       | 0UP - N                 | lationa                                                   | l pho   | ne nu        | mber 1       | . <b>300</b> 4 | 124 3        | 44                |                 |              |          |                                                                                                                                                                                                                       |         |           |          | atories<br>aree, W   |                                          |           |
| Client:Geosy               |                                                |            |                                       |                         | 1                                                         |         |              | / Numbe      |                |              | _                 | t title):       |              |          |                                                                                                                                                                                                                       |         |           |          |                      | com.au                                   |           |
|                            | ion: Hayden Davies                             |            |                                       |                         |                                                           | -       |              | 21067 -      |                |              |                   |                 |              |          |                                                                                                                                                                                                                       |         |           |          | rolab Se             |                                          |           |
| Project Mgr:               | Peter Moore                                    |            |                                       |                         | PO No.:                                                   |         | _            |              |                |              | _                 |                 |              |          |                                                                                                                                                                                                                       |         |           |          |                      | outh, VIC 3136<br>@envirolab.com.a       | 3U        |
| Sampler: Ha                | yden Davies                                    | · · · ·    |                                       |                         | Envirola                                                  | ab Quo  | te No.       | ;            |                |              | -                 |                 |              |          |                                                                                                                                                                                                                       | Adelai  | de Offic  | e - Envi | rolab Se             | rvices                                   |           |
| Address:                   | Suite 1, level 9, 189 Kent stre                | et, Sydney | 2000                                  |                         | Date rea<br>Or choo<br><i>Note: In</i><br><i>apply</i> :: | se: st  | andard       |              | rgent tur      | naroun       | Stan<br>d is requ |                 | -<br>urcharg | ges      | <u>Adelaide Office</u> - Envirolab Services<br>7a The Parade, Norwood, SA 5067<br>Ph: 08 7087 6800 / adelaide@envirolab.com.au<br><u>Brisbane Office</u> - Envirolab Services<br>20a, 10-20 Depot St, Banyo, QLD 4014 |         |           |          |                      |                                          |           |
| Phone:                     | 92518070                                       | Mob: 045   | 1021512                               |                         |                                                           | nal rep | ort for      | mat: esc     | lat / eq       | juis /       |                   |                 |              | -        |                                                                                                                                                                                                                       |         |           | •        | -                    | Denvirolab.com.au                        |           |
| Email:                     | hayden.davies@geosyntec.com<br>edward.munnings |            |                                       | .com                    | Lab Cor                                                   | nment   | S            |              |                |              |                   |                 |              |          |                                                                                                                                                                                                                       | Unit 7, | 17 Will   | es Rd, E |                      | vices<br>h, NT 0820<br>nvirolab.com.au   |           |
|                            | Sample informat                                | ion        | · · · · · · · · · · · · · · · · · · · |                         |                                                           |         |              |              | · ·            |              | Tests I           | Require         | d            |          |                                                                                                                                                                                                                       |         |           |          | <i>.</i>             | Comme                                    | ents 🦾    |
| Envirolab<br>Sample ID     | Client Sample ID or information                | Depth      | Date sampled                          |                         | Combo 4                                                   | Ammonia | PFAS (short) | Heavy metals | TRH/BTEX       | PAHs         |                   |                 |              |          | ,                                                                                                                                                                                                                     | -       | 1.0       |          |                      | Provide as<br>information<br>sample as y | about the |
| 1                          | GG01                                           |            | 1/12/2021                             |                         | : x :                                                     | x       | x            |              |                |              | <u> </u>          |                 |              |          |                                                                                                                                                                                                                       |         |           |          |                      | [                                        | ,         |
| 2                          | GG05                                           | ••• ;      | 1/12/2021                             |                         | X                                                         | X       | x            |              |                | <u> </u>     |                   |                 | -            |          | · •                                                                                                                                                                                                                   | •       |           |          |                      |                                          |           |
| 3                          | GG06                                           | - ÷ •      | 1/12/2021                             |                         | X                                                         | x       | X            |              | •              |              |                   |                 |              | 3        |                                                                                                                                                                                                                       |         |           |          |                      |                                          |           |
| 4                          | GG09                                           | · ·        | 1/12/2021                             |                         | X                                                         | x       | x            |              |                |              |                   |                 |              | -        |                                                                                                                                                                                                                       |         | ,         | <u> </u> |                      | 1                                        |           |
| S                          | DUP1                                           |            | 1/12/2021                             |                         |                                                           |         |              | х            | x              | X            |                   |                 | [            |          |                                                                                                                                                                                                                       |         |           |          |                      |                                          |           |
| 6-                         | TRIP1                                          |            | 1/12/2021                             |                         |                                                           |         |              | х            | x              | x            |                   |                 |              |          | -                                                                                                                                                                                                                     |         |           |          | Ple                  | ase sand to                              | Eurofins  |
| X6                         | Tripblank                                      |            | 1/12/2021                             |                         |                                                           |         |              |              | X              |              |                   |                 |              |          |                                                                                                                                                                                                                       |         |           |          |                      |                                          |           |
|                            |                                                | •          |                                       |                         |                                                           |         |              |              |                |              |                   |                 |              |          |                                                                                                                                                                                                                       |         |           |          |                      | •                                        |           |
|                            |                                                |            |                                       |                         |                                                           |         |              |              |                |              |                   |                 |              |          |                                                                                                                                                                                                                       |         |           |          |                      |                                          |           |
|                            | Please tick the box if observe                 | ed settle  | d sediment p                          |                         |                                                           |         |              |              |                |              |                   |                 |              |          |                                                                                                                                                                                                                       |         | anal      | ysis     |                      |                                          |           |
|                            | by (Company): Geosyntec                        | <u> </u>   | · · · ·                               | Received                |                                                           |         |              |              | DN             | <u>EyLab</u> | Use (             | Only            |              | <u> </u> |                                                                                                                                                                                                                       |         | <u>:</u>  | -        |                      |                                          | Q.        |
| Print Name:<br>Date & Time | Hayden Davies                                  |            |                                       | Print Nam<br>Date & Tin |                                                           | 戸井      | AN           |              | 1515           |              |                   | umber<br>eratur |              |          | 240                                                                                                                                                                                                                   |         |           |          |                      | ce pack / None<br>tact / Broken          |           |
| Date of think              |                                                | ·          |                                       | Signature               |                                                           | 116     | 12           |              | 117            | 2            | TAT               |                 |              |          |                                                                                                                                                                                                                       | _       | / 3       |          | / S1                 |                                          | / 140116  |

.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# SAMPLE RECEIPT ADVICE

| Client Details |               |
|----------------|---------------|
| Client         | Geosyntec     |
| Attention      | Hayden Davies |

| Sample Login Details                 |                         |
|--------------------------------------|-------------------------|
| Your reference                       | 21067 - Wentworth Point |
| Envirolab Reference                  | 284396                  |
| Date Sample Received                 | 02/12/2021              |
| Date Instructions Received           | 02/12/2021              |
| Date Results Expected to be Reported | 09/12/2021              |

| Sample Condition                                       |          |
|--------------------------------------------------------|----------|
| Samples received in appropriate condition for analysis | Yes      |
| No. of Samples Provided                                | 6 Water  |
| Turnaround Time Requested                              | Standard |
| Temperature on Receipt (°C)                            | 5        |
| Cooling Method                                         | Ice      |
| Sampling Date Provided                                 | YES      |

Comments Nil

Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |  |  |  |  |  |  |  |  |
|------------------------------|--------------------------------|--|--|--|--|--|--|--|--|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |  |  |  |  |  |  |  |  |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |  |  |  |  |  |  |  |  |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |  |  |  |  |  |  |  |  |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID | vTRH(C6-C10)/BTEXN in Water | svTRH (C10-C40) in Water | PAHsin Water | Total Phenolicsin Water | HM in water - dissolved | Ammonia as N in water | PFAS in Waters Short |
|-----------|-----------------------------|--------------------------|--------------|-------------------------|-------------------------|-----------------------|----------------------|
| GG01      | $\checkmark$                | $\checkmark$             | $\checkmark$ | $\checkmark$            | $\checkmark$            | ✓                     | $\checkmark$         |
| GG05      | $\checkmark$                | $\checkmark$             | $\checkmark$ | $\checkmark$            | $\checkmark$            | √                     | $\checkmark$         |
| GG06      | $\checkmark$                | $\checkmark$             | $\checkmark$ | $\checkmark$            | $\checkmark$            | ✓                     | $\checkmark$         |
| GG09      | $\checkmark$                | $\checkmark$             | $\checkmark$ | $\checkmark$            | $\checkmark$            | ✓                     | $\checkmark$         |
| DUP       | $\checkmark$                | $\checkmark$             | $\checkmark$ |                         | $\checkmark$            |                       |                      |
| Tripblank | $\checkmark$                |                          |              |                         |                         |                       |                      |

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.



#### **CERTIFICATE OF ANALYSIS 284396**

| Client Details |                                                      |
|----------------|------------------------------------------------------|
| Client         | Geosyntec                                            |
| Attention      | Hayden Davies                                        |
| Address        | Suite 1, Level 9, 189 Kent Street, Sydney, NSW, 2000 |

| Sample Details                       |                         |
|--------------------------------------|-------------------------|
| Your Reference                       | 21067 - Wentworth Point |
| Number of Samples                    | 6 Water                 |
| Date samples received                | 02/12/2021              |
| Date completed instructions received | 02/12/2021              |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                    |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Date results requested by                                                             | 09/12/2021                                                         |  |  |  |
| Date of Issue                                                                         | 09/12/2021                                                         |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                    |  |  |  |
| Accredited for compliance with ISC                                                    | /IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |

#### **Results Approved By**

Alexander Mitchell Maclean, Senior Chemist Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Liam Timmins, Chemist Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Water                         |       |            |            |            |            |            |
|-----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                       |       | 284396-1   | 284396-2   | 284396-3   | 284396-4   | 284396-5   |
| Your Reference                                      | UNITS | GG01       | GG05       | GG06       | GG09       | DUP 1      |
| Date Sampled                                        |       | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 |
| Type of sample                                      |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted                                      | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| Date analysed                                       | -     | 06/12/2021 | 06/12/2021 | 06/12/2021 | 06/12/2021 | 06/12/2021 |
| TRH C <sub>6</sub> - C <sub>9</sub>                 | µg/L  | <10        | <10        | <10        | <10        | <10        |
| TRH C <sub>6</sub> - C <sub>10</sub>                | µg/L  | <10        | <10        | <10        | <10        | <10        |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | µg/L  | <10        | <10        | <10        | <10        | <10        |
| Benzene                                             | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Toluene                                             | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Ethylbenzene                                        | µg/L  | <1         | <1         | <1         | <1         | <1         |
| m+p-xylene                                          | μg/L  | <2         | <2         | <2         | <2         | <2         |
| o-xylene                                            | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Naphthalene                                         | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Surrogate Dibromofluoromethane                      | %     | 106        | 106        | 105        | 105        | 107        |
| Surrogate toluene-d8                                | %     | 100        | 98         | 99         | 100        | 99         |
| Surrogate 4-BFB                                     | %     | 105        | 105        | 105        | 104        | 106        |

| vTRH(C6-C10)/BTEXN in Water                         |       |            |
|-----------------------------------------------------|-------|------------|
| Our Reference                                       |       | 284396-6   |
| Your Reference                                      | UNITS | Tripblank  |
| Date Sampled                                        |       | 01/12/2021 |
| Type of sample                                      |       | Water      |
| Date extracted                                      | -     | 03/12/2021 |
| Date analysed                                       | -     | 06/12/2021 |
| TRH C <sub>6</sub> - C <sub>9</sub>                 | μg/L  | <10        |
| TRH C <sub>6</sub> - C <sub>10</sub>                | μg/L  | <10        |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | μg/L  | <10        |
| Benzene                                             | µg/L  | <1         |
| Toluene                                             | µg/L  | <1         |
| Ethylbenzene                                        | µg/L  | <1         |
| m+p-xylene                                          | μg/L  | <2         |
| o-xylene                                            | μg/L  | <1         |
| Naphthalene                                         | μg/L  | <1         |
| Surrogate Dibromofluoromethane                      | %     | 103        |
| Surrogate toluene-d8                                | %     | 99         |
| Surrogate 4-BFB                                     | %     | 103        |

| svTRH (C10-C40) in Water               |       |            |            |            |            |            |
|----------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                          |       | 284396-1   | 284396-2   | 284396-3   | 284396-4   | 284396-5   |
| Your Reference                         | UNITS | GG01       | GG05       | GG06       | GG09       | DUP 1      |
| Date Sampled                           |       | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 |
| Type of sample                         |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted                         | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| Date analysed                          | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| TRH C <sub>10</sub> - C <sub>14</sub>  | µg/L  | <50        | <50        | <50        | <50        | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>  | µg/L  | <100       | <100       | <100       | <100       | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>  | μg/L  | <100       | <100       | <100       | <100       | <100       |
| TRH >C <sub>10</sub> - C <sub>16</sub> | µg/L  | <50        | <50        | <50        | <50        | <50        |
| TRH >C16 - C34                         | µg/L  | <100       | <100       | <100       | <100       | <100       |
| TRH >C <sub>34</sub> - C <sub>40</sub> | µg/L  | <100       | <100       | <100       | <100       | <100       |
| Surrogate o-Terphenyl                  | %     | 88         | 91         | 87         | 80         | 81         |

| PAHs in Water             |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference             |       | 284396-1   | 284396-2   | 284396-3   | 284396-4   | 284396-5   |
| Your Reference            | UNITS | GG01       | GG05       | GG06       | GG09       | DUP 1      |
| Date Sampled              |       | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 |
| Type of sample            |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted            | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| Date analysed             | -     | 06/12/2021 | 06/12/2021 | 06/12/2021 | 06/12/2021 | 06/12/2021 |
| Naphthalene               | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Acenaphthylene            | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Acenaphthene              | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Fluorene                  | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Phenanthrene              | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Anthracene                | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Fluoranthene              | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Pyrene                    | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(a)anthracene        | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Chrysene                  | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(b,j+k)fluoranthene  | μg/L  | <2         | <2         | <2         | <2         | <2         |
| Benzo(a)pyrene            | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Indeno(1,2,3-c,d)pyrene   | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Dibenzo(a,h)anthracene    | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(g,h,i)perylene      | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(a)pyrene TEQ        | µg/L  | <5         | <5         | <5         | <5         | <5         |
| Total +ve PAH's           | µg/L  | NIL (+)VE  |
| Surrogate p-Terphenyl-d14 | %     | 90         | 86         | 82         | 88         | 84         |

| Total Phenolics in Water    |       |            |            |            |            |
|-----------------------------|-------|------------|------------|------------|------------|
| Our Reference               |       | 284396-1   | 284396-2   | 284396-3   | 284396-4   |
| Your Reference              | UNITS | GG01       | GG05       | GG06       | GG09       |
| Date Sampled                |       | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 |
| Type of sample              |       | Water      | Water      | Water      | Water      |
| Date extracted              | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| Date analysed               | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| Total Phenolics (as Phenol) | mg/L  | <0.05      | <0.05      | <0.05      | <0.05      |

| HM in water - dissolved |       |            |            |            |            |            |
|-------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference           |       | 284396-1   | 284396-2   | 284396-3   | 284396-4   | 284396-5   |
| Your Reference          | UNITS | GG01       | GG05       | GG06       | GG09       | DUP 1      |
| Date Sampled            |       | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 |
| Type of sample          |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared           | -     | 08/12/2021 | 08/12/2021 | 08/12/2021 | 08/12/2021 | 08/12/2021 |
| Date analysed           | -     | 08/12/2021 | 08/12/2021 | 08/12/2021 | 08/12/2021 | 08/12/2021 |
| Arsenic-Dissolved       | μg/L  | 2          | 4          | 2          | 3          | 2          |
| Cadmium-Dissolved       | µg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chromium-Dissolved      | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Copper-Dissolved        | µg/L  | 2          | 8          | 2          | <1         | <1         |
| Lead-Dissolved          | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Mercury-Dissolved       | µg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Nickel-Dissolved        | μg/L  | 1          | <1         | 2          | <1         | <1         |
| Zinc-Dissolved          | μg/L  | <1         | <1         | <1         | <1         | <1         |

| Miscellaneous Inorganics |       |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|
| Our Reference            |       | 284396-1   | 284396-2   | 284396-3   | 284396-4   |
| Your Reference           | UNITS | GG01       | GG05       | GG06       | GG09       |
| Date Sampled             |       | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 |
| Type of sample           |       | Water      | Water      | Water      | Water      |
| Date prepared            | -     | 02/12/2021 | 02/12/2021 | 02/12/2021 | 02/12/2021 |
| Date analysed            | -     | 02/12/2021 | 02/12/2021 | 02/12/2021 | 02/12/2021 |
| Ammonia as N in water    | mg/L  | 5.3        | 2.3        | 0.11       | 0.76       |

| PFAS in Waters Short                               |       |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                      |       | 284396-1   | 284396-2   | 284396-3   | 284396-4   |
| Your Reference                                     | UNITS | GG01       | GG05       | GG06       | GG09       |
| Date Sampled                                       |       | 01/12/2021 | 01/12/2021 | 01/12/2021 | 01/12/2021 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| Date analysed                                      | -     | 03/12/2021 | 03/12/2021 | 03/12/2021 | 03/12/2021 |
| Perfluorohexanesulfonic acid - PFHxS               | µg/L  | 0.08       | 0.07       | 0.02       | 0.12       |
| Perfluorooctanesulfonic acid PFOS                  | µg/L  | 0.13       | 0.51       | 0.02       | 0.09       |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.08       | 0.02       | 0.03       | 0.02       |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 99         | 98         | 97         | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 91         | 92         | 93         | 96         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 95         | 97         | 96         | 96         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 97         | 97         | 98         | 98         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 111        | 113        | 114        | 107        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 99         | 106        | 132        | 114        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 106        | 108        | 127        | 108        |
| Total Positive PFHxS & PFOS                        | µg/L  | 0.21       | 0.59       | 0.04       | 0.21       |
| Total Positive PFOA & PFOS                         | µg/L  | 0.21       | 0.54       | 0.05       | 0.11       |
| Total Positive PFAS                                | µg/L  | 0.29       | 0.61       | 0.07       | 0.23       |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-031   | Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish).<br>Solids are extracted in a caustic media prior to analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Inorg-057   | Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals-021  | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metals-022  | Determination of various metals by ICP-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Org-020     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                               |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MS/MS/S. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Org-023     | Water samples are analysed directly by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Org-029     | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.                                                                                                                                                                                                                                                                                                                                                                                 |
|             | Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|             | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CONTR                        | ROL: vTRH(( | C6-C10)/E | BTEXN in Water |            |   | Du         | plicate    |     | Spike Re   | covery % |
|--------------------------------------|-------------|-----------|----------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                     | Units       | PQL       | Method         | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | [NT]     |
| Date extracted                       | -           |           |                | 03/12/2021 | 1 | 03/12/2021 | 06/12/2021 |     | 03/12/2021 |          |
| Date analysed                        | -           |           |                | 06/12/2021 | 1 | 06/12/2021 | 07/12/2021 |     | 06/12/2021 |          |
| TRH C <sub>6</sub> - C <sub>9</sub>  | µg/L        | 10        | Org-023        | <10        | 1 | <10        | <10        | 0   | 120        |          |
| TRH C <sub>6</sub> - C <sub>10</sub> | µg/L        | 10        | Org-023        | <10        | 1 | <10        | <10        | 0   | 120        |          |
| Benzene                              | µg/L        | 1         | Org-023        | <1         | 1 | <1         | <1         | 0   | 120        |          |
| Toluene                              | µg/L        | 1         | Org-023        | <1         | 1 | <1         | <1         | 0   | 122        |          |
| Ethylbenzene                         | µg/L        | 1         | Org-023        | <1         | 1 | <1         | <1         | 0   | 119        |          |
| m+p-xylene                           | µg/L        | 2         | Org-023        | <2         | 1 | <2         | <2         | 0   | 119        |          |
| o-xylene                             | µg/L        | 1         | Org-023        | <1         | 1 | <1         | <1         | 0   | 114        |          |
| Naphthalene                          | µg/L        | 1         | Org-023        | <1         | 1 | <1         | <1         | 0   | [NT]       |          |
| Surrogate Dibromofluoromethane       | %           |           | Org-023        | 101        | 1 | 106        | 104        | 2   | 98         |          |
| Surrogate toluene-d8                 | %           |           | Org-023        | 98         | 1 | 100        | 100        | 0   | 100        |          |
| Surrogate 4-BFB                      | %           |           | Org-023        | 104        | 1 | 105        | 99         | 6   | 107        |          |

| QUALITY CON                            | TROL: svTF | RH (C10-0 | C40) in Water |            |      | Du   | plicate |      | Spike Re   | covery % |
|----------------------------------------|------------|-----------|---------------|------------|------|------|---------|------|------------|----------|
| Test Description                       | Units      | PQL       | Method        | Blank      | #    | Base | Dup.    | RPD  | LCS-W1     | [NT]     |
| Date extracted                         | -          |           |               | 03/12/2021 | [NT] |      | [NT]    | [NT] | 03/12/2021 |          |
| Date analysed                          | -          |           |               | 03/12/2021 | [NT] |      | [NT]    | [NT] | 03/12/2021 |          |
| TRH C <sub>10</sub> - C <sub>14</sub>  | µg/L       | 50        | Org-020       | <50        | [NT] |      | [NT]    | [NT] | 107        |          |
| TRH C <sub>15</sub> - C <sub>28</sub>  | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 113        |          |
| TRH C <sub>29</sub> - C <sub>36</sub>  | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 109        |          |
| TRH >C <sub>10</sub> - C <sub>16</sub> | µg/L       | 50        | Org-020       | <50        | [NT] |      | [NT]    | [NT] | 107        |          |
| TRH >C <sub>16</sub> - C <sub>34</sub> | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 113        |          |
| TRH >C <sub>34</sub> - C <sub>40</sub> | µg/L       | 100       | Org-020       | <100       | [NT] |      | [NT]    | [NT] | 109        |          |
| Surrogate o-Terphenyl                  | %          |           | Org-020       | 77         | [NT] |      | [NT]    | [NT] | 89         |          |

| QUALIT                    | Y CONTROL | .: PAHs in | n Water     |            |      | Du   | plicate |      | Spike Rec  | overy % |
|---------------------------|-----------|------------|-------------|------------|------|------|---------|------|------------|---------|
| Test Description          | Units     | PQL        | Method      | Blank      | #    | Base | Dup.    | RPD  | LCS-W2     | [NT]    |
| Date extracted            | -         |            |             | 03/12/2021 | [NT] |      | [NT]    | [NT] | 03/12/2021 |         |
| Date analysed             | -         |            |             | 06/12/2021 | [NT] |      | [NT]    | [NT] | 06/12/2021 |         |
| Naphthalene               | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 92         |         |
| Acenaphthylene            | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Acenaphthene              | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 89         |         |
| Fluorene                  | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 109        |         |
| Phenanthrene              | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 104        |         |
| Anthracene                | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Fluoranthene              | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 90         |         |
| Pyrene                    | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 95         |         |
| Benzo(a)anthracene        | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Chrysene                  | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 83         |         |
| Benzo(b,j+k)fluoranthene  | μg/L      | 2          | Org-022/025 | <2         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Benzo(a)pyrene            | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | 110        |         |
| Indeno(1,2,3-c,d)pyrene   | μg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Dibenzo(a,h)anthracene    | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Benzo(g,h,i)perylene      | µg/L      | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Surrogate p-Terphenyl-d14 | %         |            | Org-022/025 | 92         | [NT] |      | [NT]    | [NT] | 88         |         |

| QUALITY CO                  | QUALITY CONTROL: Total Phenolics in Water |      |           |            |   |            |            |     | Spike Recovery % |      |  |
|-----------------------------|-------------------------------------------|------|-----------|------------|---|------------|------------|-----|------------------|------|--|
| Test Description            | Units                                     | PQL  | Method    | Blank      | # | Base       | Dup.       | RPD | LCS-W2           | [NT] |  |
| Date extracted              | -                                         |      |           | 03/12/2021 | 1 | 03/12/2021 | 03/12/2021 |     | 03/12/2021       | [NT] |  |
| Date analysed               | -                                         |      |           | 03/12/2021 | 1 | 03/12/2021 | 03/12/2021 |     | 03/12/2021       | [NT] |  |
| Total Phenolics (as Phenol) | mg/L                                      | 0.05 | Inorg-031 | <0.05      | 1 | <0.05      | <0.05      | 0   | 102              | [NT] |  |

| QUALITY CC         | NTROL: HN | 1 in water | - dissolved |            |   | Duj        | plicate    |     | Spike Re   | covery %   |
|--------------------|-----------|------------|-------------|------------|---|------------|------------|-----|------------|------------|
| Test Description   | Units     | PQL        | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 284396-1   |
| Date prepared      | -         |            |             | 08/12/2021 | 1 | 08/12/2021 | 08/12/2021 |     | 08/12/2021 | 08/12/2021 |
| Date analysed      | -         |            |             | 08/12/2021 | 1 | 08/12/2021 | 08/12/2021 |     | 08/12/2021 | 08/12/2021 |
| Arsenic-Dissolved  | µg/L      | 1          | Metals-022  | <1         | 1 | 2          | 1          | 67  | 97         | [NT]       |
| Cadmium-Dissolved  | µg/L      | 0.1        | Metals-022  | <0.1       | 1 | <0.1       | <0.1       | 0   | 96         | [NT]       |
| Chromium-Dissolved | µg/L      | 1          | Metals-022  | <1         | 1 | <1         | <1         | 0   | 95         | [NT]       |
| Copper-Dissolved   | µg/L      | 1          | Metals-022  | <1         | 1 | 2          | 1          | 67  | 95         | [NT]       |
| Lead-Dissolved     | µg/L      | 1          | Metals-022  | <1         | 1 | <1         | <1         | 0   | 94         | [NT]       |
| Mercury-Dissolved  | µg/L      | 0.05       | Metals-021  | <0.05      | 1 | <0.05      | [NT]       |     | 108        | 84         |
| Nickel-Dissolved   | µg/L      | 1          | Metals-022  | <1         | 1 | 1          | 1          | 0   | 97         | [NT]       |
| Zinc-Dissolved     | µg/L      | 1          | Metals-022  | <1         | 1 | <1         | <1         | 0   | 95         | [NT]       |

| QUALITY CC         | NTROL: HM | 1 in water | - dissolved |       |      | Du   | plicate |      | Spike Re | ecovery %  |
|--------------------|-----------|------------|-------------|-------|------|------|---------|------|----------|------------|
| Test Description   | Units     | PQL        | Method      | Blank | #    | Base | Dup.    | RPD  | [NT]     | 284396-2   |
| Date prepared      | -         |            |             | [NT]  | [NT] |      | [NT]    | [NT] |          | 08/12/2021 |
| Date analysed      | -         |            |             | [NT]  | [NT] |      | [NT]    | [NT] |          | 08/12/2021 |
| Arsenic-Dissolved  | µg/L      | 1          | Metals-022  | [NT]  | [NT] |      | [NT]    | [NT] |          | 95         |
| Cadmium-Dissolved  | µg/L      | 0.1        | Metals-022  | [NT]  | [NT] |      | [NT]    | [NT] |          | 96         |
| Chromium-Dissolved | µg/L      | 1          | Metals-022  | [NT]  | [NT] |      | [NT]    | [NT] |          | 93         |
| Copper-Dissolved   | µg/L      | 1          | Metals-022  | [NT]  | [NT] |      | [NT]    | [NT] |          | 88         |
| Lead-Dissolved     | µg/L      | 1          | Metals-022  | [NT]  | [NT] |      | [NT]    | [NT] |          | 88         |
| Nickel-Dissolved   | µg/L      | 1          | Metals-022  | [NT]  | [NT] |      | [NT]    | [NT] |          | 90         |
| Zinc-Dissolved     | µg/L      | 1          | Metals-022  | [NT]  | [NT] | [NT] | [NT]    | [NT] | [NT]     | 100        |

| QUALITY COI           | QUALITY CONTROL: Miscellaneous Inorganics |       |           |                   |      |      |      |      | Spike Recovery % |      |  |
|-----------------------|-------------------------------------------|-------|-----------|-------------------|------|------|------|------|------------------|------|--|
| Test Description      | Units                                     | PQL   | Method    | Blank # Base Dup. |      |      |      | RPD  | [NT]             |      |  |
| Date prepared         | -                                         |       |           | 02/12/2021        | [NT] |      | [NT] | [NT] | 02/12/2021       | [NT] |  |
| Date analysed         | -                                         |       |           | 02/01/2021        | [NT] |      | [NT] | [NT] | 02/01/2021       | [NT] |  |
| Ammonia as N in water | mg/L                                      | 0.005 | Inorg-057 | <0.005            | [NT] | [NT] | [NT] | [NT] | 91               | [NT] |  |

| QUALITY CO                                         | ONTROL: PI | AS in W | aters Short |            |   | Du         | plicate    |     | Spike Re   | covery % |
|----------------------------------------------------|------------|---------|-------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                                   | Units      | PQL     | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W2     | [NT]     |
| Date prepared                                      | -          |         |             | 03/12/2021 | 1 | 03/12/2021 | 03/12/2021 |     | 03/12/2021 |          |
| Date analysed                                      | -          |         |             | 03/12/2021 | 1 | 03/12/2021 | 03/12/2021 |     | 03/12/2021 |          |
| Perfluorohexanesulfonic acid - PFHxS               | µg/L       | 0.01    | Org-029     | <0.01      | 1 | 0.08       | 0.07       | 13  | 101        |          |
| Perfluorooctanesulfonic acid PFOS                  | µg/L       | 0.01    | Org-029     | <0.01      | 1 | 0.13       | 0.13       | 0   | 105        |          |
| Perfluorooctanoic acid PFOA                        | µg/L       | 0.01    | Org-029     | <0.01      | 1 | 0.08       | 0.07       | 13  | 103        |          |
| 6:2 FTS                                            | µg/L       | 0.01    | Org-029     | <0.01      | 1 | <0.01      | <0.01      | 0   | 105        |          |
| 8:2 FTS                                            | µg/L       | 0.02    | Org-029     | <0.02      | 1 | <0.02      | <0.02      | 0   | 113        |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |         | Org-029     | 101        | 1 | 99         | 99         | 0   | 102        |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |         | Org-029     | 97         | 1 | 91         | 88         | 3   | 98         |          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |         | Org-029     | 98         | 1 | 95         | 99         | 4   | 99         |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |         | Org-029     | 98         | 1 | 97         | 97         | 0   | 96         |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |         | Org-029     | 111        | 1 | 111        | 114        | 3   | 105        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |         | Org-029     | 113        | 1 | 99         | 91         | 8   | 110        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |         | Org-029     | 121        | 1 | 106        | 114        | 7   | 115        |          |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

## Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

## **Report Comments**

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

| Suite 1, level 9, 189 Kent street, Sydney 2000       Or choose: standard       Or choose: standard         Note: Inform lab in advance if urgent turnaround is required - surcharges         apply       92518070 Mob: 0451021512       Additional report format: esdat / equis /         barden deviae       0151021512       Lab Comments: | Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512      | e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | t Person: Hayden Davies<br>:Mgr: Peter Moore<br>rr: Hayden Davies<br>::<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Geosyntec<br>t Person: Hayden Davies<br>: Mgr: Peter Moore<br>r: Hayden Davies<br>s:<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512<br>bayden davies Geospie Davies December 2000 | Geosyntec<br>t Person: Hayden Davies<br>: Mgr: Peter Moore<br>r: Hayden Davies<br>s:<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Bavies<br>Bavies<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | Envire Envire Envirence Envirence Envirence Envire |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 512                                                                                                                                                                                                                                                                                                                                          | Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512 | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512                                                             | Davies<br>'e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512                                                                                                                       | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512                                                                          | Environ     Environ       Davies     - N       'e                                                               | ENVIROLAB GROUP - N<br>Pavies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000<br>92518070 Mob: 0451021512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                              | Suite 1, level 9, 189 Kent street, Sydney 2000                             | Suite 1, level 9, 189 Kent street, Sydney 2000                             | e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                             | e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                             | Davies<br>'e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                            | Davies<br>'e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                        | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                                                                                    | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                                      | ENVIROLAB GROUP - N       Davies       'e       'e       Suite 1, level 9, 189 Kent street, Sydney 2000         | ENVIROLAB GROUP - N<br>Pavies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                              | Suite 1, level 9, 189 Kent street, Sydney 2000                             | Suite 1, level 9, 189 Kent street, Sydney 2000                             | e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                             | e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                             | Davies<br>'e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                            | Davies<br>'e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                        | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                                                                                    | Davies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                                      | ENVIROLAB GROUP - N       Davies       e       e       Suite 1, level 9, 189 Kent street, Sydney 2000           | ENVIROLAB GROUP - N<br>Pavies<br>e<br>Suite 1, level 9, 189 Kent street, Sydney 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                            |                                                                                 | G                                                                               | 0<br>10                                                                                   | Davies<br>°                                                                                                                                           | Cavies<br>(°                                                                                                                                                                                                     | Pavies<br>e                                                                                                                                                        | Bavies                                                                                                          | enviimpel ENVIROLAB GROUP - N<br>Bavies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                            | ď                                                                               | G                                                                               | Ce<br>Ce                                                                                  | Davies                                                                                                                                                | Ce<br>Ce                                                                                                                                                                                                         | Davies                                                                                                                                                             | Bavies                                                                                                          | envilisourae<br>ENVIROLAB GROUP - N<br>Davies<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Issue date: 21 May 2019

Page 1 of 1

4



#### **Eurofins Environment Testing Australia Pty Ltd**

Sydney

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane Unit F3, Building F 1/21 Smallwood Place NATA # 1261 Site # 18217

 
 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

#### Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Limited ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

#### **Sample Receipt Advice**

| Company name:      | Geosyntec Consultants Pty Ltd |
|--------------------|-------------------------------|
| Contact name:      | Peter Moore                   |
| Project name:      | WENTWORTH POINT               |
| Project ID:        | 21067                         |
| Turnaround time:   | 5 Day                         |
| Date/Time received | Dec 3, 2021 2:30 PM           |
| Eurofins reference | 847951                        |

#### **Sample Information**

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. /
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

#### **Notes**

#### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Asim Khan on phone : or by email: AsimKhan@eurofins.com

Results will be delivered electronically via email to Peter Moore - Peter.Moore@geosyntec.com.

## Global Leader - Results you can trust

| 🔅 eurofin                                                   |                                                    |                  |                                                                                                              | Eurofins Environme<br>ABN: 50 005 085 521 | ent Te            | sting Australia Pty Lto                                                                                      | ł                                                                                                                                             |                                                                                                        | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                     | ns ARL Pty Ltd         Eurofins Environment Testing NZ Limited           05 0159 898         NZBN: 9429046024954 |           |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| web: www.eurofins.com.au<br>email: EnviroSales@eurofins.com |                                                    | Testing          | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 31<br>Phone : +61 3 8564 5000<br>NATA # 1261 Site # 1254 |                                           |                   | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Newcastle<br>4/52 Industrial Drive<br>Mayfield East NSW 2304<br>PO Box 60 Wickham 2293<br>Phone : +61 2 4968 8448<br>NATA # 1261 Site # 25079 | Perth<br>46-48 Banksia Road<br>Welshpool WA 6106<br>Phone : +61 8 6253 4444<br>NATA # 2377 Site # 2370 | Auckland<br>35 O'Rorke Road<br>Penrose, Auckland 1061<br>Phone : +64 9 526 45 51<br>IANZ # 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston, Christchurch 7675<br>Phone : 0800 856 450<br>IANZ # 1290          |           |  |  |  |
| Company Name:<br>Address:                                   | Geosyntec C<br>Suite 1, Leve<br>Sydney<br>NSW 2000 |                  |                                                                                                              |                                           |                   | Order No.:<br>Report #:<br>Phone:<br>Fax:                                                                    | 847951<br>02 9251 8070                                                                                                                        |                                                                                                        | Received:<br>Due:<br>Priority:<br>Contact Name:                                                 | Dec 3, 2021 2:30 F<br>Dec 10, 2021<br>5 Day<br>Peter Moore                                                       | М         |  |  |  |
| Project Name:                                               | WENTWORT                                           | TH POINT         |                                                                                                              |                                           |                   |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
| Project ID:                                                 | 21067                                              |                  |                                                                                                              |                                           |                   | 1                                                                                                            |                                                                                                                                               |                                                                                                        | Eurofins Analytica                                                                              | Il Services Manager :                                                                                            | Asim Khan |  |  |  |
|                                                             | Sar                                                | mple Detail      |                                                                                                              |                                           | Eurofins Suite B7 |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
| Melbourne Laboratory                                        | •                                                  |                  | 4                                                                                                            |                                           |                   |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
| Sydney Laboratory - I<br>Brisbane Laboratory                |                                                    |                  | 4                                                                                                            |                                           | X                 | -                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
| Mayfield Laboratory -                                       |                                                    |                  |                                                                                                              |                                           | -                 | 1                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
| Perth Laboratory - NA                                       |                                                    |                  |                                                                                                              |                                           |                   | 1                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
| External Laboratory                                         |                                                    |                  |                                                                                                              |                                           |                   | ]                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
|                                                             | Sample Date                                        | Sampling<br>Time | Matrix                                                                                                       | LAB ID                                    |                   |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
| 1 TRIP1 D                                                   | Dec 01, 2021                                       |                  | Water                                                                                                        | S21-De17103                               | Х                 | 1                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |
|                                                             |                                                    |                  | Water                                                                                                        | 021 0011100                               |                   | -                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                                  |           |  |  |  |



Geosyntec Consultants Pty Ltd Suite 1, Level 9, 189 Kent Street Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

| Attention: |
|------------|
|------------|

Peter Moore

Report Project name Project ID Received Date 847951-W WENTWORTH POINT 21067 Dec 03, 2021

| Client Sample ID                                  |       |      | TRIP1        |
|---------------------------------------------------|-------|------|--------------|
| Sample Matrix                                     |       |      | Water        |
| Eurofins Sample No.                               |       |      | S21-De17103  |
| Date Sampled                                      |       |      | Dec 01, 2021 |
| Test/Reference                                    | LOR   | Unit |              |
| Total Recoverable Hydrocarbons                    |       |      |              |
| TRH C6-C9                                         | 0.02  | mg/L | < 0.02       |
| TRH C10-C14                                       | 0.05  | mg/L | < 0.05       |
| TRH C15-C28                                       | 0.1   | mg/L | < 0.1        |
| TRH C29-C36                                       | 0.1   | mg/L | < 0.1        |
| TRH C10-C36 (Total)                               | 0.1   | mg/L | < 0.1        |
| Naphthalene <sup>N02</sup>                        | 0.01  | mg/L | < 0.01       |
| TRH C6-C10                                        | 0.02  | mg/L | < 0.02       |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 0.02  | mg/L | < 0.02       |
| TRH >C10-C16                                      | 0.05  | mg/L | < 0.05       |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 0.05  | mg/L | < 0.05       |
| TRH >C16-C34                                      | 0.1   | mg/L | < 0.1        |
| TRH >C34-C40                                      | 0.1   | mg/L | < 0.1        |
| TRH >C10-C40 (total)*                             | 0.1   | mg/L | < 0.1        |
| BTEX                                              |       |      |              |
| Benzene                                           | 0.001 | mg/L | < 0.001      |
| Toluene                                           | 0.001 | mg/L | < 0.001      |
| Ethylbenzene                                      | 0.001 | mg/L | < 0.001      |
| m&p-Xylenes                                       | 0.002 | mg/L | < 0.002      |
| o-Xylene                                          | 0.001 | mg/L | < 0.001      |
| Xylenes - Total*                                  | 0.003 | mg/L | < 0.003      |
| 4-Bromofluorobenzene (surr.)                      | 1     | %    | 102          |
| Polycyclic Aromatic Hydrocarbons                  |       |      |              |
| Acenaphthene                                      | 0.001 | mg/L | < 0.001      |
| Acenaphthylene                                    | 0.001 | mg/L | < 0.001      |
| Anthracene                                        | 0.001 | mg/L | < 0.001      |
| Benz(a)anthracene                                 | 0.001 | mg/L | < 0.001      |
| Benzo(a)pyrene                                    | 0.001 | mg/L | < 0.001      |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.001 | mg/L | < 0.001      |
| Benzo(g.h.i)perylene                              | 0.001 | mg/L | < 0.001      |
| Benzo(k)fluoranthene                              | 0.001 | mg/L | < 0.001      |
| Chrysene                                          | 0.001 | mg/L | < 0.001      |
| Dibenz(a.h)anthracene                             | 0.001 | mg/L | < 0.001      |
| Fluoranthene                                      | 0.001 | mg/L | < 0.001      |
| Fluorene                                          | 0.001 | mg/L | < 0.001      |
| Indeno(1.2.3-cd)pyrene                            | 0.001 | mg/L | < 0.001      |



| Client Sample ID<br>Sample Matrix<br>Eurofins Sample No. |           |      | TRIP1<br>Water<br>S21-De17103 |
|----------------------------------------------------------|-----------|------|-------------------------------|
| Date Sampled                                             |           |      | Dec 01, 2021                  |
| Test/Reference                                           | LOR       | Unit |                               |
| Polycyclic Aromatic Hydrocarbons                         |           |      |                               |
| Naphthalene                                              | <br>0.001 | mg/L | < 0.001                       |
| Phenanthrene                                             | <br>0.001 | mg/L | < 0.001                       |
| Pyrene                                                   | 0.001     | mg/L | < 0.001                       |
| Total PAH*                                               | 0.001     | mg/L | < 0.001                       |
| 2-Fluorobiphenyl (surr.)                                 | 1         | %    | 51                            |
| p-Terphenyl-d14 (surr.)                                  | 1         | %    | 88                            |
| Heavy Metals                                             |           |      |                               |
| Arsenic                                                  | 0.001     | mg/L | < 0.001                       |
| Cadmium                                                  | 0.0002    | mg/L | < 0.0002                      |
| Chromium                                                 | 0.001     | mg/L | < 0.001                       |
| Copper                                                   | 0.001     | mg/L | 0.001                         |
| Lead                                                     | 0.001     | mg/L | < 0.001                       |
| Mercury                                                  | 0.0001    | mg/L | < 0.0001                      |
| Nickel                                                   | 0.001     | mg/L | 0.002                         |
| Zinc                                                     | 0.005     | mg/L | < 0.005                       |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                          | Testing Site | Extracted    | Holding Time |
|----------------------------------------------------------------------|--------------|--------------|--------------|
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                 | Sydney       | Dec 10, 2021 | 7 Days       |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Dec 08, 2021 | 7 Days       |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Dec 10, 2021 | 7 Days       |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| BTEX                                                                 | Sydney       | Dec 08, 2021 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                     | Sydney       | Dec 10, 2021 | 7 Days       |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water             |              |              |              |
| Metals M8                                                            | Sydney       | Dec 10, 2021 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS |              |              |              |

| 🎎 eur                                                       | 🔅 eurofins |                                                    |                                                                                                              | Eurofins Environment Testing Australia Pty Ltd<br>ABN: 50 005 085 521 |             |                                                                                                              |                                                                                                                                               |                                                                                                        | ABN: 91 05 0159 898                                                                             | Eurofins Environment Testing NZ Limited NZBN: 9429046024954                                             |                                                            |           |  |
|-------------------------------------------------------------|------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|--|
| web: www.eurofins.com.au<br>email: EnviroSales@eurofins.com |            | Testing                                            | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 31<br>Phone : +61 3 8564 5000<br>NATA # 1261 Site # 1254 |                                                                       |             | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Newcastle<br>4/52 Industrial Drive<br>Mayfield East NSW 2304<br>PO Box 60 Wickham 2293<br>Phone : +61 2 4968 8448<br>NATA # 1261 Site # 25079 | Perth<br>46-48 Banksia Road<br>Welshpool WA 6106<br>Phone : +61 8 6253 4444<br>NATA # 2377 Site # 2370 | Auckland<br>35 O'Rorke Road<br>Penrose, Auckland 1061<br>Phone : +64 9 526 45 51<br>IANZ # 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston, Christchurch 7675<br>Phone : 0800 856 450<br>IANZ # 1290 |                                                            |           |  |
| Company N<br>Address:                                       | Name:      | Geosyntec C<br>Suite 1, Leve<br>Sydney<br>NSW 2000 |                                                                                                              |                                                                       |             |                                                                                                              | Order No.:<br>Report #:<br>Phone:<br>Fax:                                                                                                     | 847951<br>02 9251 8070                                                                                 |                                                                                                 | Received:<br>Due:<br>Priority:<br>Contact Name:                                                         | Dec 3, 2021 2:30 F<br>Dec 10, 2021<br>5 Day<br>Peter Moore | м         |  |
| Project Nar                                                 |            | WENTWORT                                           | TH POINT                                                                                                     |                                                                       |             |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
| Project ID:                                                 |            | 21067                                              |                                                                                                              |                                                                       |             |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 | Eurofins Analytica                                                                                      | I Services Manager :                                       | Asim Khan |  |
|                                                             |            | Sa                                                 | mple Detail                                                                                                  |                                                                       |             | Eurofins Suite B7                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
|                                                             |            | y - NATA # 120                                     |                                                                                                              | 54                                                                    |             |                                                                                                              | -                                                                                                                                             |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
|                                                             |            | NATA # 1261 \$                                     |                                                                                                              | 4                                                                     |             | X                                                                                                            | 4                                                                                                                                             |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
|                                                             |            | <u>- NATA # 1261</u><br>NATA # 1261                |                                                                                                              |                                                                       |             |                                                                                                              | -                                                                                                                                             |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
|                                                             |            | TA # 2377 Sit                                      |                                                                                                              |                                                                       |             |                                                                                                              | 1                                                                                                                                             |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
| External Lab                                                |            |                                                    |                                                                                                              |                                                                       |             |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
| No Samp                                                     | ple ID     | Sample Date                                        | Sampling<br>Time                                                                                             | Matrix                                                                | LAB ID      |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
| 1 TRIP1                                                     | C          | Dec 01, 2021                                       |                                                                                                              | Water                                                                 | S21-De17103 | Х                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |
| Test Counts                                                 |            |                                                    |                                                                                                              |                                                                       |             | 1                                                                                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |                                                            |           |  |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

| onits                                    |                                    |                                                                  |
|------------------------------------------|------------------------------------|------------------------------------------------------------------|
| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         | ug/L: micrograms per litre                                       |
| ppm: Parts per million                   | ppb: Parts per billion             | %: Percentage                                                    |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units | MPN/100mL: Most Probable Number of organisms per 100 millilitres |
|                                          |                                    |                                                                  |

#### Terms

| Terms            |                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| COC              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version                                                                                                            |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
| WA DWER          | Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA                                                                                      |
|                  |                                                                                                                                                                    |

#### QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs..

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

| Test                             | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-------|----------|----------------------|----------------|--------------------|
| Method Blank                     |       |          |                      |                |                    |
| Total Recoverable Hydrocarbons   |       |          |                      |                |                    |
| TRH C6-C9                        | mg/L  | < 0.02   | 0.02                 | Pass           |                    |
| TRH C10-C14                      | mg/L  | < 0.05   | 0.05                 | Pass           |                    |
| TRH C15-C28                      | mg/L  | < 0.1    | 0.1                  | Pass           |                    |
| TRH C29-C36                      | mg/L  | < 0.1    | 0.1                  | Pass           |                    |
| Naphthalene                      | mg/L  | < 0.01   | 0.01                 | Pass           |                    |
| TRH C6-C10                       | mg/L  | < 0.02   | 0.02                 | Pass           |                    |
| TRH >C10-C16                     | mg/L  | < 0.05   | 0.05                 | Pass           |                    |
| TRH >C16-C34                     | mg/L  | < 0.1    | 0.1                  | Pass           |                    |
| TRH >C34-C40                     | mg/L  | < 0.1    | 0.1                  | Pass           |                    |
| Method Blank                     |       |          |                      |                |                    |
| BTEX                             |       |          |                      |                |                    |
| Benzene                          | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Toluene                          | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Ethylbenzene                     | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| m&p-Xylenes                      | mg/L  | < 0.002  | 0.002                | Pass           |                    |
| o-Xylene                         | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Xylenes - Total*                 | mg/L  | < 0.003  | 0.003                | Pass           |                    |
| Method Blank                     |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons |       |          |                      |                |                    |
| Acenaphthene                     | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Acenaphthylene                   | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Anthracene                       | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Benz(a)anthracene                | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Benzo(a)pyrene                   | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Benzo(b&i)fluoranthene           | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Benzo(g.h.i)perylene             | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Benzo(k)fluoranthene             | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Chrysene                         | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Dibenz(a.h)anthracene            | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Fluoranthene                     | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Fluorene                         | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Naphthalene                      | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Phenanthrene                     | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Pyrene                           | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Method Blank                     |       | 101001   | 0.001                | 1 400          |                    |
| Heavy Metals                     |       |          |                      |                |                    |
| Arsenic                          | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Cadmium                          | mg/L  | < 0.0002 | 0.0002               | Pass           |                    |
| Chromium                         | mg/L  | < 0.001  | 0.0002               | Pass           |                    |
| Copper                           | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Lead                             | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Mercury                          | mg/L  | < 0.0001 | 0.0001               | Pass           |                    |
| Nickel                           | mg/L  | < 0.001  | 0.0001               | Pass           |                    |
| Zinc                             | mg/L  | < 0.005  | 0.001                | Pass           |                    |
| LCS - % Recovery                 |       |          | 0.000                | 1 000          |                    |
| Total Recoverable Hydrocarbons   |       |          |                      |                |                    |
| TRH C6-C9                        | %     | 96       | 70-130               | Pass           |                    |
| TRH C10-C14                      | %     | 97       | 70-130               | Pass           |                    |
| Naphthalene                      | %     | 108      | 70-130               | Pass           |                    |



| Test                           |               |              | Units  | Result 1 |          | Acceptance<br>Limits           | Pass<br>Limits         | Qualifying<br>Code |
|--------------------------------|---------------|--------------|--------|----------|----------|--------------------------------|------------------------|--------------------|
| TRH C6-C10                     |               |              | %      | 97       |          | 70-130                         | Pass                   |                    |
| TRH >C10-C16                   |               |              | %      | 121      |          | 70-130                         | Pass                   |                    |
| LCS - % Recovery               |               |              |        |          |          |                                |                        |                    |
| втех                           |               |              |        |          |          |                                |                        |                    |
| Benzene                        |               |              | %      | 105      |          | 70-130                         | Pass                   |                    |
| Toluene                        |               |              | %      | 104      |          | 70-130                         | Pass                   |                    |
| Ethylbenzene                   |               |              | %      | 102      |          | 70-130                         | Pass                   |                    |
| m&p-Xylenes                    |               |              | %      | 102      |          | 70-130                         | Pass                   |                    |
| o-Xylene                       |               |              | %      | 103      |          | 70-130                         | Pass                   |                    |
| Xylenes - Total*               |               |              | %      | 103      |          | 70-130                         | Pass                   |                    |
| LCS - % Recovery               |               |              |        | ·        |          |                                |                        |                    |
| Polycyclic Aromatic Hydrocarbo | ns            |              |        |          |          |                                |                        |                    |
| Acenaphthene                   |               |              | %      | 71       |          | 70-130                         | Pass                   |                    |
| Acenaphthylene                 |               |              | %      | 74       |          | 70-130                         | Pass                   |                    |
| Anthracene                     |               |              | %      | 92       |          | 70-130                         | Pass                   |                    |
| Benz(a)anthracene              |               |              | %      | 87       |          | 70-130                         | Pass                   |                    |
| Benzo(a)pyrene                 |               |              | %      | 106      |          | 70-130                         | Pass                   |                    |
| Benzo(b&j)fluoranthene         |               |              | %      | 101      |          | 70-130                         | Pass                   |                    |
| Benzo(g.h.i)perylene           |               |              | %      | 92       |          | 70-130                         | Pass                   |                    |
| Benzo(k)fluoranthene           |               |              | %      | 125      |          | 70-130                         | Pass                   |                    |
| Chrysene                       |               |              | %      | 90       |          | 70-130                         | Pass                   |                    |
| Dibenz(a.h)anthracene          |               |              | %      | 95       |          | 70-130                         | Pass                   |                    |
| Fluoranthene                   |               |              | %      | 96       |          | 70-130                         | Pass                   |                    |
| Fluorene                       |               |              | %      | 93       |          | 70-130                         | Pass                   |                    |
| Indeno(1.2.3-cd)pyrene         |               |              | %      | 98       |          | 70-130                         | Pass                   |                    |
| Phenanthrene                   |               |              | %      | 92       |          | 70-130                         | Pass                   |                    |
| Pyrene                         |               |              | %      | 98       |          | 70-130                         | Pass                   |                    |
| LCS - % Recovery               |               |              | 70     | 00       |          | 10130                          | 1 433                  |                    |
| Heavy Metals                   |               |              |        |          |          | T                              |                        |                    |
| Arsenic                        |               |              | %      | 105      |          | 80-120                         | Pass                   |                    |
| Cadmium                        |               |              | %      | 94       |          | 80-120                         | Pass                   |                    |
| Chromium                       |               |              | %      | 89       |          | 80-120                         | Pass                   |                    |
| Copper                         |               |              | %      | 83       |          | 80-120                         | Pass                   |                    |
| Lead                           |               |              | %      | 94       |          | 80-120                         | Pass                   |                    |
|                                |               |              | %      | 94       |          |                                |                        |                    |
| Mercury                        |               |              |        |          |          | 80-120                         | Pass                   |                    |
| Nickel                         |               |              | %<br>% | 85<br>87 |          | 80-120                         | Pass<br>Pass           |                    |
| Zinc<br>Test                   | Lab Sample ID | QA<br>Source | Units  | Result 1 |          | 80-120<br>Acceptance<br>Limits | Pass<br>Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery             |               |              |        |          |          |                                |                        |                    |
| Total Recoverable Hydrocarbons |               |              |        | Result 1 |          |                                |                        |                    |
| TRH C10-C14                    | S21-De17792   | NCP          | %      | 96       |          | 70-130                         | Pass                   |                    |
| TRH >C10-C16                   | S21-De17792   | NCP          | %      | 119      |          | 70-130                         | Pass                   |                    |
| Spike - % Recovery             |               |              | 70     |          |          |                                |                        |                    |
| Heavy Metals                   |               |              |        | Result 1 |          |                                |                        |                    |
| Cadmium                        | S21-De04872   | NCP          | %      | 102      |          | 75-125                         | Pass                   |                    |
| Chromium                       | S21-De04872   | NCP          | %      | 102      |          | 75-125                         | Pass                   |                    |
| Copper                         | S21-De04872   | NCP          | %      | 89       |          | 75-125                         | Pass                   |                    |
| Lead                           | S21-De04872   | NCP          | %      | 97       | <u> </u> | 75-125                         | Pass                   | <u> </u>           |
| Mercury                        | S21-De04872   | NCP          | %      | 93       | <u> </u> | 75-125                         | Pass                   |                    |
|                                |               |              | /0     | 30       |          | 10 120                         | 1 435                  | L                  |
| Nickel                         | S21-De04872   | NCP          | %      | 92       |          | 75-125                         | Pass                   |                    |



| Test                             | Lab Sample ID              | QA<br>Source | Units    | Result 1          |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|----------------------------|--------------|----------|-------------------|----------|-----|----------------------|----------------|--------------------|
| Duplicate                        |                            |              |          |                   |          |     |                      |                |                    |
| Total Recoverable Hydrocarbons   |                            |              |          | Result 1          | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                        | S21-De09411                | NCP          | mg/L     | < 0.02            | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                      | S21-De15740                | NCP          | mg/L     | < 0.05            | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                      | S21-De15740                | NCP          | mg/L     | < 0.1             | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH C29-C36                      | S21-De15740                | NCP          | mg/L     | < 0.1             | < 0.1    | <1  | 30%                  | Pass           |                    |
| Naphthalene                      | S21-De09411                | NCP          | mg/L     | < 0.01            | < 0.01   | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                       | S21-De09411                | NCP          | mg/L     | < 0.02            | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH >C10-C16                     | S21-De15740                | NCP          | mg/L     | < 0.05            | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH >C16-C34                     | S21-De15740                | NCP          | mg/L     | < 0.1             | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH >C34-C40                     | S21-De15740                | NCP          | mg/L     | < 0.1             | < 0.1    | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                            |              |          |                   |          |     |                      |                |                    |
| BTEX                             |                            |              |          | Result 1          | Result 2 | RPD |                      |                |                    |
| Benzene                          | S21-De09411                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Toluene                          | S21-De09411                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                     | S21-De09411                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                      | S21-De09411                | NCP          | mg/L     | < 0.002           | < 0.002  | <1  | 30%                  | Pass           |                    |
| o-Xylene                         | S21-De09411                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Xylenes - Total*                 | S21-De09411                | NCP          | mg/L     | < 0.003           | < 0.003  | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                            |              | <u>J</u> |                   |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons | 5                          |              |          | Result 1          | Result 2 | RPD |                      |                |                    |
| Acenaphthene                     | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Acenaphthylene                   | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Anthracene                       | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene                | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene                   | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene           | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene             | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene             | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Chrysene                         | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene            | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Fluoranthene                     | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Fluorene                         | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Naphthalene                      | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Phenanthrene                     | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Pyrene                           | S21-De20090                | NCP          | mg/L     | < 0.001           | < 0.001  | <1  | 30%                  | Pass           |                    |
| Duplicate                        | 321-De20030                |              | mg/∟     | < 0.001           | < 0.001  |     | 5078                 | 1 855          |                    |
| Heavy Metals                     |                            |              |          | Pocult 1          | Result 2 | RPD |                      |                |                    |
| Arsenic                          | S21-De15675                | NCP          | mg/L     | Result 1<br>0.005 | 0.005    | 4.0 | 30%                  | Pass           |                    |
| Cadmium                          | S21-De15675<br>S21-De15675 | NCP          | mg/L     | 0.005             | 0.005    | 2.0 | 30%                  | Pass           |                    |
| Chromium                         | S21-De15675                | NCP          |          |                   | 0.0046   | 3.0 | 30%                  | Pass           |                    |
|                                  |                            |              | mg/L     | 0.013             |          |     |                      |                |                    |
| Copper                           | S21-De15675                | NCP          | mg/L     | 1.2               | 1.2      | 4.0 | 30%                  | Pass           |                    |
| Lead                             | S21-De15675                | NCP          | mg/L     | 0.028             | 0.029    | 5.0 | 30%                  | Pass           |                    |
| Mercury                          | S21-De15675                | NCP          | mg/L     | 0.0003            | 0.0004   | 6.0 | 30%                  | Pass           |                    |
| Nickel                           | S21-De15675                | NCP          | mg/L     | 0.020             | 0.021    | 4.0 | 30%                  | Pass           |                    |
| Zinc                             | S21-De15675                | NCP          | mg/L     | 1.3               | 1.3      | 2.0 | 30%                  | Pass           |                    |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).                                                                                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N02 | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. |
| N04 | F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.                                                                                                                              |
| N07 | Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs                                                                                                                                                                                                       |

#### Authorised by:

Asim Khan Andrew Sullivan John Nguyen Roopesh Rangarajan Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW) Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



# Appendix D Calibration Certificates

### Multi Parameter Water Meter

Instrument Serial No. YSI Quatro Pro Plus 13D100012



1300 137 067

| Item          | Test                    | Pass         | Comments                               |
|---------------|-------------------------|--------------|----------------------------------------|
| Battery       | Charge Condition        | 1            |                                        |
|               | Fuses                   | $\checkmark$ |                                        |
|               | Capacity                | 1            |                                        |
| Switch/keypad | Operation               | 1            |                                        |
| Display       | Intensity               | 1            |                                        |
|               | Operation<br>(segments) | <b>√</b>     |                                        |
| Grill Filter  | Condition               | 1            |                                        |
|               | Seal                    | 1            |                                        |
| PCB           | Condition               | 1            |                                        |
| Connectors    | Condition               | $\checkmark$ |                                        |
| Sensor        | 1. pH                   | 1            |                                        |
|               | 2. mV                   | 1            |                                        |
|               | 3. EC                   | 1            |                                        |
|               | 4. D.O                  | 1            |                                        |
|               | 5. Temp                 | ✓            |                                        |
| Alarms        | Beeper                  | ✓            |                                        |
|               | Settings                | 1            |                                        |
| Software      | Version                 | 1            |                                        |
| Data logger   | Operation               | ✓            |                                        |
| Download      | Operation               | 1            |                                        |
| Other tests:  |                         |              | and a start from the second day of the |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor      | Serial no | Standard Solutions | Certified |               | Instrument Reading |
|-------------|-----------|--------------------|-----------|---------------|--------------------|
|             |           |                    |           | Number        |                    |
| 1. pH 10.00 |           | pH 10.00           |           | 364961        | pH 10.01           |
| 2. pH 7.00  |           | pH 7.00            |           | 368081        | pH 7.00            |
| 3. pH 4.00  |           | pH 4.00            |           | 367234        | pH 4.10            |
| 4. mV       |           | 231.8mV            |           | 365451/370891 | 227.4mV            |
| 5. EC       |           | 2.76mS             |           | 362912        | 2.74mS             |
| 6. D.O      |           | 0.00ppm            |           | 371864        | 0.00ppm            |
| 7. Temp     |           | 21.4°C             |           | MultiTherm    | 21.1°C             |

Calibrated by:

**Michelle Wagner** 

Calibration date:

Next calibration due:

31/12/2021

30/11/2021

PID Calibration Certificate

Instrument PhoCheck Tiger Serial No. T-114170



## Air-Met Scientific Pty Ltd 1300 137 067

| ltem          | Test                    | Pass         |           |        | Comments             | 3    |
|---------------|-------------------------|--------------|-----------|--------|----------------------|------|
| Battery       | Charge Condition        | $\checkmark$ |           |        |                      |      |
|               | Fuses                   | $\checkmark$ |           |        |                      |      |
|               | Capacity                | $\checkmark$ |           |        |                      |      |
|               | Recharge OK?            | $\checkmark$ |           |        |                      |      |
| Switch/keypad | Operation               | ✓ .          |           |        |                      |      |
| Display       | Intensity               | $\checkmark$ |           |        |                      |      |
|               | Operation<br>(segments) | $\checkmark$ |           |        |                      |      |
| Grill Filter  | Condition               | ✓            |           |        |                      |      |
|               | Seal                    | $\checkmark$ |           |        |                      |      |
| oump          | Operation               | $\checkmark$ |           |        |                      |      |
|               | Filter                  | 1            |           |        |                      |      |
|               | Flow                    | $\checkmark$ |           |        |                      |      |
|               | Valves, Diaphragm       | $\checkmark$ |           |        |                      |      |
| PCB           | Condition               | $\checkmark$ |           |        |                      |      |
| Connectors    | Condition               | $\checkmark$ |           |        |                      |      |
| Sensor        | PID                     | $\checkmark$ | 10.6ev    |        |                      |      |
| Alarms        | Beeper                  | 1            | Low       | High   | TWA                  | STEL |
| Aldinis       | Settings                | 1            | 50ppm     | 100ppm | N/A                  | N/A  |
| Software      | Version                 | 1            | Looppin . | 1.0000 | - Line in the second |      |
| Data logger   | Operation               | 1            |           |        |                      |      |
| Download      | Operation               | 1            |           |        |                      |      |
| Other tests:  | - Paration              |              |           |        |                      |      |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor   | Serial no | Calibration gas and | Certified | Gas bottle | Instrument Reading |
|----------|-----------|---------------------|-----------|------------|--------------------|
|          |           | concentration       |           | No         |                    |
| PID Lamp |           | 93ppm Isobutylene   | NATA      | SY361      | 92.8ppm            |

Calibrated by: Kylie Rawlings

Calibration date:

Next calibration due:

16/05/2022

17/11/2021

Oil / Water Interface Meter

Instrument Interface Meter (30M) Serial No. 348884



Comments Pass Item Test Compartment Battery  $\checkmark$ Capacity Cleaned/Decon.  $\checkmark$ Probe  $\checkmark$ Operation Connectors Condition 1 1 ~ Cleaned Tape Check 1 Checked for cuts At surface level  $\checkmark$ Instrument Test

## Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:Gary NeedsCalibration date:19/11/2021Next calibration due:18/01/2022

Document

Revision

KF501 D

kenelec TSI Dusttrak scientific Calibration Certificate

Report Number: DT219035

Page 1 of 2

|                                                                                                                                             | Air-Met Scientifi                                                                                                                               |                                                                                                                  |                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| ustomer                                                                                                                                     | 7-11 Ceylon Str                                                                                                                                 | eet                                                                                                              |                                                                                         |
| ddress                                                                                                                                      | Nunawading, V                                                                                                                                   | ic 3131                                                                                                          |                                                                                         |
|                                                                                                                                             | Mee Lan                                                                                                                                         |                                                                                                                  |                                                                                         |
| Contact                                                                                                                                     | TSI Dusttrak                                                                                                                                    |                                                                                                                  |                                                                                         |
| quipment                                                                                                                                    | 8533                                                                                                                                            |                                                                                                                  |                                                                                         |
| Nodel                                                                                                                                       | 8533174311                                                                                                                                      |                                                                                                                  |                                                                                         |
| Serial Number                                                                                                                               | December 17,                                                                                                                                    | 2020                                                                                                             |                                                                                         |
| Calibration Date                                                                                                                            | As Found Fail                                                                                                                                   | ed                                                                                                               |                                                                                         |
| Condition as Received                                                                                                                       |                                                                                                                                                 |                                                                                                                  | Calibration Due                                                                         |
|                                                                                                                                             |                                                                                                                                                 | Instruments<br>Serial No.                                                                                        | 8/01/2021                                                                               |
|                                                                                                                                             | Model No.                                                                                                                                       | 71002264                                                                                                         | 15/01/2021                                                                              |
| Measurement Variable                                                                                                                        | 8587A                                                                                                                                           | 1260416                                                                                                          | 15/01/2021                                                                              |
| Photometer                                                                                                                                  | 2700                                                                                                                                            | 4146296                                                                                                          | 20/12/2020                                                                              |
| DC Voltage (Keithley)                                                                                                                       | 276140-SP                                                                                                                                       | 41401016005                                                                                                      | 20/12/2020<br>Mar-21                                                                    |
| Pressure                                                                                                                                    | 4140                                                                                                                                            | 698880                                                                                                           | Mar-21                                                                                  |
| Flow and Temperature                                                                                                                        | 19518                                                                                                                                           | 702200                                                                                                           | Jul-23                                                                                  |
| 1 um PSL                                                                                                                                    | 19520                                                                                                                                           | 187001                                                                                                           | Jul-25                                                                                  |
| 2.8 um PSL                                                                                                                                  | DC-10                                                                                                                                           |                                                                                                                  |                                                                                         |
| 10 um PSL                                                                                                                                   |                                                                                                                                                 | NTAL CONDITIONS                                                                                                  |                                                                                         |
|                                                                                                                                             |                                                                                                                                                 |                                                                                                                  |                                                                                         |
|                                                                                                                                             | Ambient Temp                                                                                                                                    | 52%RH                                                                                                            |                                                                                         |
|                                                                                                                                             | Humidity                                                                                                                                        | 990hPa                                                                                                           |                                                                                         |
| Barc                                                                                                                                        | metric Pressure                                                                                                                                 |                                                                                                                  |                                                                                         |
| Baro                                                                                                                                        |                                                                                                                                                 |                                                                                                                  |                                                                                         |
|                                                                                                                                             |                                                                                                                                                 |                                                                                                                  | in tions A                                                                              |
| Kenelec Scientific Pty L<br>All performance and acce<br>test and calibration data<br>adjusted to respirable ma<br>particles and verified on | td Certifies That :-<br>eptance tests required were<br>supplied by Kenelec Scientif<br>ass standard ISO 12103-1 A<br>the TSI calibration bench. | successfully conducted accordi<br>ic has been obtained using Emo<br>I Test Dust. Calibration of sizing           | ng to required open<br>ery Oil and has been nominally<br>g is performed using the above |
|                                                                                                                                             | ocedures Followed: LABP1                                                                                                                        | In the second  |                                                                                         |
| Pro                                                                                                                                         | oceutico i contrationali                                                                                                                        | ¥                                                                                                                |                                                                                         |
|                                                                                                                                             | opproved Signatory:                                                                                                                             | And the second |                                                                                         |
| A                                                                                                                                           | Date: 18/12                                                                                                                                     | 0000                                                                                                             |                                                                                         |

This Calibration Certificate shall not be reproduced



## Appendix E BOM Barometric Pressure Data

## Sydney Airport, New South Wales November 2021 Daily Weather Observations



**Australian Government** 

**Bureau of Meteorology** 

|           |          | Ten  | nps  | Bain  | Evan  | Sun   | Max  | wind g | ust   |      |    | 9a      | m    |      |        |      |    | 3р      | m    |      |        |
|-----------|----------|------|------|-------|-------|-------|------|--------|-------|------|----|---------|------|------|--------|------|----|---------|------|------|--------|
| Date      | Day      | Min  | Мах  | Rain  | Evap  | Sun   | Dirn | Spd    | Time  | Temp | RH | Cld     | Dirn | Spd  | MSLP   | Temp | RH | Cld     | Dirn | Spd  | MSLP   |
|           |          | °C   | °C   | mm    | mm    | hours |      | km/h   | local | °C   | %  | eighths |      | km/h | hPa    | °C   | %  | eighths |      | km/h | hPa    |
| 1         | Мо       | 13.4 | 23.4 | 0     | 5.2   | 4.3   | NNE  | 41     | 11:23 | 18.9 | 57 | 7       | W    | 11   | 1026.5 | 21.6 | 51 | 7       | NE   | 24   | 1024.0 |
| 2         | Tu       | 16.0 | 25.4 | 0     | 6.6   | 11.1  | E    | 50     | 12:34 | 20.5 | 70 | 3       | ENE  | 24   | 1027.7 | 23.7 | 45 | 5       | ENE  | 31   | 1026.4 |
| 3         | We       | 17.9 | 25.3 | 0     | 7.4   | 10.9  | NE   | 54     | 13:04 | 21.9 | 49 | 3       | N    | 24   | 1026.9 | 23.4 | 46 | 7       | NE   | 41   | 1022.9 |
| 4         | Th       | 18.4 | 22.1 | 0     | 10.0  | 0.0   | N    | 31     | 08:46 | 20.5 | 67 | 8       | NE   | 20   | 1021.5 | 19.5 | 77 | 8       | NE   | 17   | 1020.6 |
| 5         | Fr       | 16.7 | 23.2 | 12.4  | 1.4   | 1.6   | NE   | 41     | 15:12 | 18.8 | 91 | 8       | ESE  | 7    | 1021.5 | 21.7 | 64 | 7       | ENE  | 31   | 1018.9 |
| 6         | Sa       | 17.3 | 25.6 | 0.2   | 4.6   | 11.6  | NNE  | 56     | 17:53 | 21.1 | 61 | 2       | WNW  | 9    | 1015.9 | 24.8 | 52 | 1       | NE   | 33   | 1010.7 |
| 7         | Su       | 17.9 | 25.7 | 0     | 7.6   | 0.5   | W    | 35     | 12:06 | 19.8 | 84 | 8       | W    | 13   | 1009.8 | 20.9 | 82 | 8       | NNW  | 13   | 1006.8 |
| 8         | Мо       | 17.4 | 23.5 | 11.0  | 1.0   | 7.2   | S    | 33     | 22:35 | 19.3 | 90 | 7       | SSE  | 11   | 1008.2 | 21.1 | 73 | 6       | SE   | 19   | 1007.7 |
| 9         | Tu       | 16.6 | 23.5 | 0.8   | 6.8   | 8.2   | SSW  | 31     | 04:33 | 18.7 | 84 | 7       | S    | 19   | 1013.0 | 21.6 | 67 | 6       | E    | 17   | 1010.7 |
| 10        | We       | 17.7 | 22.1 | 0     | 4.4   | 0.4   | NE   | 37     | 20:51 | 22.1 | 75 | 7       | WNW  | 13   | 1009.1 | 19.8 | 94 | 8       | ENE  | 9    | 1006.9 |
| 11        | Th       | 17.1 | 18.8 | 11.8  | 1.2   | 0.0   | S    | 54     | 05:20 | 17.7 | 86 | 8       | S    | 35   | 1006.5 | 17.0 | 79 | 8       | SE   | 26   | 1005.9 |
| 12        | Fr       | 13.1 | 19.1 | 18.8  | 5.2   | 4.0   | SSE  | 41     | 23:04 | 14.8 | 96 | 8       | WSW  | 19   | 998.1  | 18.3 | 81 | 6       | SSE  | 26   | 994.5  |
| 13        | Sa       | 14.7 | 22.4 | 0.2   | 4.4   | 7.5   | WNW  | 78     | 08:33 | 18.3 | 41 | 3       | WNW  | 48   | 998.2  | 21.4 | 34 | 7       | WNW  | 44   | 997.4  |
| 14        | Su       | 13.0 | 23.6 | 0.2   | 10.2  | 10.7  | NW   | 70     | 16:54 | 17.2 | 39 | 7       | WNW  | 31   | 1007.7 | 21.5 | 26 | 5       | W    | 44   | 1003.9 |
| 15        | Мо       | 12.4 | 23.3 | 0     | 6.4   | 11.8  | WSW  | 65     | 15:06 | 17.0 | 37 | 1       | W    | 24   | 1007.5 | 21.5 | 27 | 3       | WSW  | 39   | 1007.0 |
| 16        | Tu       | 13.7 | 19.6 | 0     | 8.8   | 13.0  | SW   | 48     | 07:54 | 16.2 | 40 | 1       | SW   | 33   | 1015.9 | 18.0 | 42 | 1       | SE   | 28   | 1017.1 |
| 17        | We       | 13.6 | 21.4 | 0     | 8.0   | 10.1  | ENE  | 39     | 15:24 | 16.6 | 72 | 5       | S    | 20   | 1024.6 | 20.3 | 53 | 2       | E    | 24   | 1022.6 |
| 18        | Th       | 15.8 | 25.1 | 0     | 8.0   | 11.3  | NNE  | 54     | 17:04 | 21.1 | 59 | 3       | N    | 15   | 1021.2 | 23.6 | 54 | 1       | NE   | 33   | 1015.5 |
| 19        | Fr       | 18.9 | 29.7 | 0     | 7.6   | 3.4   | SSW  | 63     | 17:00 | 20.0 | 80 | 8       | NE   | 9    | 1013.4 | 28.8 | 37 | 8       | NE   | 30   | 1010.0 |
| 20        | Sa       | 16.7 | 19.6 | 0.2   | 4.2   | 0.2   | S    | 48     | 15:43 | 18.1 | 85 | 8       | SSE  | 17   | 1010.7 | 17.7 | 87 | 8       | SSE  | 30   | 1010.8 |
| 21        | Su       | 14.9 | 18.6 | 12.0  | 3.6   | 0.0   | S    | 54     | 11:37 | 16.2 | 95 | 8       | SSE  | 30   | 1016.3 | 15.5 | 98 | 8       | SSE  | 43   | 1015.8 |
| 22        | Мо       | 15.0 | 20.3 | 14.4  | 2.0   | 4.0   | SSE  | 46     | 23:24 | 18.0 | 79 | 7       | S    | 35   | 1022.4 | 19.2 | 73 | 5       | S    | 30   | 1021.1 |
| 23        | Tu       | 16.1 | 22.1 | 2.6   | 4.8   | 2.6   | ESE  | 31     | 23:06 | 19.8 | 77 | 7       | E    | 24   | 1021.2 | 19.8 | 86 | 7       | S    | 24   | 1019.1 |
| 24        | We       | 17.9 | 26.8 | 0.2   | 2.2   | 3.8   | NNE  | 56     | 16:18 | 21.8 | 80 | 8       | ENE  | 7    | 1017.3 | 26.1 | 61 | 7       | NE   | 28   | 1014.0 |
| 25        | Th       |      | 25.4 | 4.0   | 5.0   | 0.2   | NE   | 37     | 17:42 | 22.0 | 85 | 8       | NNE  | 13   | 1011.7 | 23.4 | 84 | 7       | NE   | 17   | 1007.2 |
| 26        | Fr       | 16.4 | 18.7 | 35.6  | 8.8   | 0.0   | S    | 74     | 13:01 | 17.4 | 93 | 8       | S    | 41   | 1009.0 | 18.1 | 87 | 8       | S    | 52   | 1009.9 |
| 27        | Sa       | 15.5 | 18.5 | 8.0   | 2.6   | 0.7   | SSE  | 67     | 23:06 | 16.4 | 90 | 8       | SSE  | 46   | 1018.1 | 17.8 | 73 | 7       | S    | 48   | 1018.7 |
| 28        | Su       | 15.2 | 19.1 | 1.0   | 4.6   | 4.1   | SSE  | 54     | 08:33 | 16.8 | 76 | 5       | S    | 33   | 1022.4 | 18.7 | 65 | 7       | SSE  | 33   | 1021.1 |
| 29        | Мо       | 14.2 | 21.7 | 0     | 4.0   | 3.2   | SE   | 28     | 13:14 | 17.9 | 66 | 7       | SSE  | 19   | 1021.1 | 20.0 | 55 | 6       | E    | 17   | 1018.5 |
| 30        | Tu       | 17.6 | 23.6 | 0.2   | 5.8   | 0.0   | NE   | 26     | 16:39 | 19.3 | 79 | 8       | S    | 11   | 1018.7 | 19.0 | 95 | 8       | SE   | 15   | 1016.5 |
| Statistic | s for No |      |      |       |       |       |      |        |       |      |    |         |      |      |        |      |    |         |      |      |        |
|           | Mean     | 15.9 | 22.6 |       | 5.4   | 4.9   |      |        |       | 18.8 | 72 | 6       |      | 22   | 1015.4 | 20.8 | 64 | 6       |      | 28   | 1013.4 |
|           | Lowest   | 12.4 | 18.5 |       | 1.0   | 0.0   |      |        |       | 14.8 | 37 | 1       | #    | 7    | 998.1  | 15.5 | 26 | 1       | ENE  | 9    | 994.5  |
|           | Highest  | 18.9 | 29.7 | 35.6  | 10.2  | 13.0  | WNW  | 78     |       | 22.1 | 96 | 8       | WNW  | 48   | 1027.7 | 28.8 | 98 | 8       | S    | 52   | 1026.4 |
|           | Total    |      |      | 133.6 | 162.4 | 146.4 |      |        |       |      |    |         |      |      |        |      |    |         |      |      |        |

Observations were drawn from Sydney Airport AMO {station 066037}

IDCJDW2125.202111 Prepared at 16:00 UTC on 2 Jan 2022 Copyright © 2022 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

## Sydney Airport, New South Wales December 2021 Daily Weather Observations



**Australian Government** 

\*\* Bureau of Meteorology

|             |          | Ten        | nps         | Pain | Even  | Sum   | Max  | wind g | ust   |      |    | 9       | am   |                                       |        |            |        | 3µ          | m            |            |        |
|-------------|----------|------------|-------------|------|-------|-------|------|--------|-------|------|----|---------|------|---------------------------------------|--------|------------|--------|-------------|--------------|------------|--------|
| Date        | Day      | Min        | Мах         | Rain | Evap  | Sun   | Dirn | Spd    | Time  | Temp | RH | Cld     | Dirn | Spd                                   | MSLP   | Temp       | RH     | Cld         | Dirn         | Spd        | MSLP   |
|             |          | °C         | °C          | mm   | mm    | hours |      | km/h   | local | °C   | %  | eighths |      | km/h                                  | hPa    | °C         | %      | eighths     |              | km/h       | hPa    |
| 1           | We       | 18.6       | 27.3        | 1.2  | 2.0   | 6.9   | ENE  | 39     | 11:43 | 22.9 | 75 | 7       |      | 11                                    | 1016.3 | 25.7       | 54     | 5           | NNE          | 30         | 1014.6 |
| 2           | Th       | 19.0       | 27.3        | 0.2  | 6.4   | 10.9  | NE   | 48     | 18:18 | 24.6 | 61 | 3       |      | 13                                    | 1017.2 | 26.7       | 55     | 1           | ENE          | 31         | 1015.2 |
| 3           | Fr       | 19.1       | 28.0        | 0    | 8.8   | 8.0   | S    | 63     | 12:45 | 25.0 | 62 | 0       |      | 13                                    | 1014.2 | 20.2       | 86     | 8           | S            | 46         | 1015.3 |
| 4           | Sa       | 17.5       | 21.0        | 0    | 5.6   | 0.2   | S    | 54     | 15:59 | 18.9 | 86 | 8       | S    | 28                                    | 1013.8 | 20.0       | 71     | 7           | S            | 39         | 1013.5 |
| 5           | Su       | 16.4       | 20.5        | 0.8  | 8.0   | 0.0   | SSE  | 52     | 01:42 | 17.1 | 82 | 8       |      | 30                                    | 1021.7 | 18.9       | 57     | 8           | SE           | 28         | 1022.2 |
| 6           | Мо       | 16.2       | 23.4        | 0.6  | 5.0   | 0.0   | ENE  | 37     | 10:52 | 19.4 | 60 | 8       |      | 7                                     | 1020.4 | 20.7       | 52     | 8           | NE           | 22         | 1017.6 |
| 7           | Tu       | 17.9       | 28.7        | 0    | 3.0   | 6.6   | ENE  | 37     | 13:52 | 22.7 | 61 | 7       |      | 13                                    | 1012.7 | 25.5       | 60     | 3           | ENE          | 31         | 1008.9 |
| 8           | We       | 17.0       | 19.2        | 1.4  | 5.4   | 0.0   | S    | 61     | 03:11 | 17.4 | 87 | 8       |      | 35                                    | 1014.5 | 17.9       | 85     | 8           | S            | 31         | 1013.0 |
| 9           | Th       | 16.0       | 22.3        | 2.6  | 1.8   | 8.0   | S    | 43     | 14:47 | 18.9 | 89 | 6       |      | 17                                    | 1010.7 | 21.9       | 75     | 5           | SSE          | 26         | 1007.6 |
| 10          | Fr       | 14.3       | 22.1        | 17.2 | 6.4   | 4.7   | SW   | 57     | 22:24 | 19.1 | 55 | 1       | WNW  | 22                                    | 1005.7 | 15.3       | 92     | 8           | WSW          | 30         | 1006.4 |
| 11          | Sa       | 14.4       | 20.2        | 10.8 | 5.2   | 8.0   | S    | 65     | 11:26 | 17.0 | 68 | 7       |      | 41                                    | 1014.9 | 19.6       | 62     | 3           | S            | 46         | 1014.8 |
| 12          | Su       | 15.5       | 20.8        | 0    | 7.4   | 10.5  | S    | 48     | 13:34 | 18.0 | 73 | 6       |      | 30                                    | 1018.5 | 19.5       | 70     | 2           | S            | 33         | 1016.6 |
| 13          | Мо       | 15.9       | 22.1        | 0    | 7.8   | 11.6  | SSW  | 31     | 23:09 | 19.6 | 59 | 3       | 1    | 15                                    | 1016.5 | 20.8       | 64     | 1           | SSE          | 24         | 1014.0 |
| 14          | Tu       | 15.7       | 24.3        | 0    | 8.0   | 11.6  | SE   | 30     | 11:14 | 19.9 | 68 | 7       |      | 9                                     | 1015.0 | 23.0       | 59     | 7           | ESE          | 20         | 1014.6 |
| 15          | We       | 17.2       | 29.9        | 0    | 5.0   | 12.1  | SSW  | 57     | 19:01 | 22.7 | 62 | 0       |      | 11                                    | 1013.7 | 29.2       | 39     | 1           | NE           | 28         | 1008.8 |
| 16          | Th       | 19.7       | 24.7        | 4.0  | 11.6  | 6.3   | SSE  | 43     | 13:34 | 21.9 | 81 | 7       | S    | 26                                    | 1013.1 | 20.8       | 71     | 7           | SE           | 30         | 1013.6 |
| 17          | Fr       | 17.6       | 26.2        | 0.6  | 6.2   | 6.3   | NE   | 44     | 17:57 | 20.5 | 74 | 7       | SE   | 13                                    | 1018.4 | 23.9       | 54     | 3           | ENE          | 28         | 1015.3 |
| 18          | Sa       | 19.5       | 31.9        | 0    | 5.2   | 10.8  | SW   | 59     | 22:21 | 25.0 | 62 | 7       |      | 15                                    | 1013.9 | 29.2       | 54     | 5           | NNE          | 37         | 1009.5 |
| 19          | Su       | 21.3       | 35.8        | 3.4  | 11.4  | 4.4   | WNW  | 83     | 17:47 | 27.5 | 57 | 7       |      | 24                                    | 1009.3 | 33.6       | 28     | 7           | W            | 41         | 1006.0 |
| 20          | Мо       | 20.3       | 29.2        | 0.2  | 8.0   | 10.4  | ENE  | 39     | 15:07 | 22.8 | 77 | 7       | 1    | 20                                    | 1014.1 | 28.3       | 60     | 1           | NE           | 30         | 1011.2 |
| 21          | Tu       | 21.0       | 29.2        | 0.2  | 7.2   | 13.4  | SSW  | 35     | 21:38 | 25.3 | 54 | 1       | S    | 15                                    | 1012.5 | 28.0       | 44     | 1           | SE           | 20         | 1009.9 |
| 22          | We       | 21.2       | 26.6        | 0    | 12.2  | 2.5   | S    | 35     | 23:11 | 21.9 | 78 | 8       | S    | 24                                    | 1012.6 | 25.1       | 62     | 7           | SE           | 26         | 1010.9 |
| 23          | Th       |            | 27.4        | 5.0  | 6.2   | 1.3   | NE   | 39     | 14:43 | 22.1 | 90 | 8       | SSE  | 13                                    | 1012.5 | 24.2       | 80     | 7           | ENE          | 26         | 1010.8 |
| 24          | Fr       | 19.4       | 26.4        | 3.2  | 1.6   | 9.8   | S    | 50     | 02:20 | 21.3 | 84 | 4       | S    | 35                                    | 1015.3 | 23.3       | 76     | 1           | SSE          | 24         | 1013.2 |
| 25          | Sa       | 20.5       | 30.3        | 0.2  | 5.0   | 10.6  | NNE  | 54     | 16:15 | 25.6 | 67 | 3       |      | 13                                    | 1014.9 | 29.4       | 55     | 1           | NE           | 33         | 1012.0 |
| 26          | Su       | 20.3       | 24.5        | 0    | 12.8  | 4.0   | S    | 70     | 17:46 | 22.5 | 82 | 7       | _    | 28                                    | 1015.0 | 23.8       | 81     | 7           | S            | 33         | 1013.1 |
| 27          | Мо       |            | 21.7        | 2.6  | 6.4   | 1.6   | S    | 59     | 02:00 | 19.5 | 81 | 7       | 1    | 44                                    | 1017.8 | 20.9       | 75     | 7           | S            | 43         | 1017.3 |
| 28          | Tu       | 16.1       | 21.3        | 15.4 | 6.4   | 3.5   | S    | 52     | 17:08 | 19.7 | 60 | 7       |      | 31                                    | 1020.0 | 18.0       | 80     | 7           | S            | 24         | 1019.2 |
| 29          | We       | 14.8       | 23.9        | 7.6  | 5.4   | 7.8   | SW   | 37     | 04:03 | 18.3 | 76 | 6       | WNW  | 11                                    | 1019.3 | 22.6       | 60     | 7           | SE           | 19         | 1017.4 |
| 30          | Th       | 16.1       | 26.8        | 4.0  | 5.0   | 12.9  | NE   | 41     | 14:59 | 22.3 | 57 | 1       | W    | 11                                    | 1017.7 | 25.7       | 50     | 1           | ENE          | 26         | 1015.9 |
| 31          | Fr       | 18.7       | 29.4        | 0    | 11.2  | 12.6  | NNE  | 56     | 17:04 | 23.1 | 57 | 1       | NNW  | 13                                    | 1016.4 | 27.2       | 52     | 1           | NE           | 31         | 1013.9 |
| Statistic   | s for De |            |             |      |       |       |      |        |       |      |    |         |      | · · · · · · · · · · · · · · · · · · · |        |            |        |             |              |            |        |
|             | Mean     | 17.8       | 25.6        |      | 6.7   | 7.0   |      |        |       | 21.4 | 70 | 5       |      | 20                                    | 1015.1 | 23.5       | 63     |             |              | 30         | 1013.3 |
|             | Lowest   | 14.3       | 19.2        |      | 1.6   | 0.0   |      |        |       | 17.0 | 54 | 0       |      | 7                                     | 1005.7 | 15.3       | 28     | 1           | SE           | 19         | 1006.0 |
|             | Highest  | 21.3       | 35.8        | 17.2 | 12.8  | 13.4  | WNW  | 83     |       | 27.5 | 90 | 8       | S    | 44                                    | 1021.7 | 33.6       | 92     | 8           | S            | 46         | 1022.2 |
| Chaarvation | Total    | un from Ci | (dray Airpa | 81.2 | 207.6 | 217.3 |      |        |       |      |    |         |      |                                       |        | CJDW2125.3 | 202112 | )repared at | 12:00 LITC ( | n 7 lon 20 |        |

Observations were drawn from Sydney Airport AMO {station 066037}

IDCJDW2125.202112 Prepared at 13:00 UTC on 7 Jan 2022 Copyright © 2022 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

## Sydney Airport, New South Wales January 2022 Daily Weather Observations



**Australian Government** 

Bureau of Meteorology

|           |            | Terr     | nps     | Rain   | Evap   | Sun   | Max  | wind g | ust   |      |    | 9a      | m    |      |        |      |    | 3р      | m    |      |        |
|-----------|------------|----------|---------|--------|--------|-------|------|--------|-------|------|----|---------|------|------|--------|------|----|---------|------|------|--------|
| Date      | Day        | Min      | Max     | Kalli  | ⊏∨ар   | Sun   | Dirn | Spd    | Time  | Temp | RH | Cld     | Dirn | Spd  | MSLP   | Temp | RH | Cld     | Dirn | Spd  | MSLP   |
|           |            | °C       | °C      | mm     | mm     | hours |      | km/h   | local | °C   | %  | eighths |      | km/h | hPa    | °C   | %  | eighths |      | km/h | hPa    |
| 1         | Sa         | 21.1     | 28.5    | 0      | 10.6   | 9.3   | NE   | 52     | 14:38 | 24.0 | 59 | 7       | NNE  | 31   | 1014.5 | 26.8 | 52 | 7       | NE   | 35   | 1011.2 |
| 2         | Su         | 21.2     | 29.9    | 0      | 7.6    | 12.8  | NNE  | 54     | 16:58 | 25.3 | 63 | 1       | NNE  | 17   | 1011.1 | 28.7 | 53 | 1       | NE   | 33   | 1007.9 |
| 3         | Мо         | 21.3     | 27.9    | 0      | 11.4   | 11.7  | NNE  | 31     | 23:05 | 25.2 | 58 | 2       | WSW  | 9    | 1010.8 | 26.6 | 58 | 2       | SE   | 19   | 1010.4 |
| 4         | Tu         | 21.0     | 28.1    | 0      | 8.0    | 12.0  | SE   | 33     | 04:59 | 24.0 | 74 | 5       | S    | 19   | 1011.6 | 27.0 | 57 | 3       | SE   | 28   | 1011.2 |
| 5         | We         | 20.7     | 26.7    | 2.6    | 9.4    | 1.1   | NNE  | 46     | 22:00 | 21.8 | 94 | 7       | SE   | 19   | 1012.8 | 22.6 | 90 | 7       | ESE  | 28   | 1011.3 |
| 6         | Th         | 21.0     | 28.1    | 13.2   | 2.8    | 8.1   | NE   | 61     | 13:56 | 24.9 | 74 | 6       | ENE  | 30   | 1014.2 | 27.1 | 62 | 7       | NE   | 43   | 1013.4 |
| 7         | Fr         | 22.5     | 27.5    | 1.4    | 5.8    | 1.2   | NE   | 67     | 15:23 | 23.2 | 92 | 8       | NE   | 31   | 1014.1 | 26.6 | 72 | 7       | NNE  | 41   | 1011.4 |
| 8         | Sa         | 19.6     | 31.3    | 24.4   | 2.2    | 9.1   | WNW  | 54     | 23:18 | 23.6 | 79 | 7       | NNW  | 19   | 1009.5 | 29.8 | 52 | 4       | ESE  | 24   | 1009.0 |
| 9         | Su         |          | 26.2    | 0.2    | 8.0    | 1.0   | S    | 37     | 23:26 | 21.6 | 86 | 5       | S    | 30   | 1016.1 | 22.7 | 85 | 8       | S    | 22   | 1016.1 |
| 10        | Мо         | 21.2     | 28.9    | 0.2    | 4.0    | 5.1   | NE   | 39     | 15:01 | 25.4 | 77 | 7       | NE   | 19   | 1019.0 | 27.3 | 66 | 7       | ENE  | 28   | 1018.0 |
| 11        | Tu         | 22.6     | 28.8    | 0      | 5.6    | 4.3   | ENE  | 43     | 12:52 | 26.1 | 73 | 7       | NNE  | 22   | 1020.0 | 26.1 | 70 | 8       | NE   | 28   | 1018.4 |
| 12        | We         | 21.2     | 25.0    | 0      | 6.2    | 4.3   | s    | 44     | 15:24 | 22.4 | 85 | 6       | S    | 22   | 1020.1 | 23.8 | 75 | 7       | SSE  | 26   | 1018.6 |
| 13        | Th         | 18.8     |         | 13.4   | 5.2    |       |      |        |       | 22.0 | 84 | 7       | S    | 9    | 1018.8 |      |    |         |      |      |        |
| Statistic | cs for the | first 13 | days of | Januar | y 2022 |       |      |        |       |      |    |         |      |      |        |      |    |         |      |      |        |
|           | Mean       | 21.0     | 28.1    |        | 6.7    | 6.7   |      |        |       | 23.8 | 76 | 5       |      | 21   | 1014.8 | 26.3 | 66 | 5       |      | 29   | 1013.1 |
|           | Lowest     | 18.8     | 25.0    |        | 2.2    | 1.0   |      |        |       | 21.6 | 58 | 1       | #    | 9    | 1009.5 | 22.6 | 52 | 1       | SE   | 19   | 1007.9 |
|           | Highest    | 22.6     | 31.3    | 24.4   | 11.4   | 12.8  | NE   | 67     |       | 26.1 | 94 | 8       | #    | 31   | 1020.1 | 29.8 | 90 | 8       | NE   | 43   | 1018.6 |
|           | Total      |          |         | 55.4   | 86.8   | 80.0  |      |        |       |      |    |         |      |      |        |      |    |         |      |      |        |

http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf



## Appendix F RPD Tables

|                      |               |            |                |                   |         |         |              |                |            |              | 1                    |                           |                        |                                             |                        |                        |                            | . <u> </u> |
|----------------------|---------------|------------|----------------|-------------------|---------|---------|--------------|----------------|------------|--------------|----------------------|---------------------------|------------------------|---------------------------------------------|------------------------|------------------------|----------------------------|------------|
|                      |               |            |                |                   |         |         | BTEX         |                |            |              |                      |                           |                        | TRH                                         |                        |                        |                            | Metals     |
|                      |               |            |                | Naphthalene (VOC) | Benzene | Toluene | Ethylbenzene | Xylene (m & p) | Xylene (o) | Xylene Total | C6-C10 Fraction (F1) | C6-C10 (F1 minus<br>BTEX) | >C10-C16 Fraction (F2) | >C10-C16 Fraction (F2<br>minus Naphthalene) | >C16-C34 Fraction (F3) | >C34-C40 Fraction (F4) | >C10-C40 Fraction<br>(Sum) | Lead       |
|                      |               |            |                | mg/kg             | mg/kg   | mg/kg   | mg/kg        | mg/kg          | mg/kg      | mg/kg        | mg/kg                | mg/kg                     | mg/kg                  | mg/kg                                       | mg/kg                  | mg/kg                  | mg/kg                      | mg/kg      |
| EQL                  |               |            |                | 1                 | 0.2     | 0.5     | 1            | 2              | 1          | 3            | 25                   | 25                        | 50                     | 50                                          | 100                    | 100                    | 50                         | 1          |
| Lab Report<br>Number | Field ID      | Date       | Matrix<br>Type |                   |         |         |              |                |            |              |                      |                           |                        |                                             |                        |                        |                            |            |
| 284290               | TS2-1_0.4-0.6 | 30/11/2021 | Soil           | <1                | <0.2    | <0.5    | <1           | <2             | <1         | <3           | <25                  | <25                       | <50                    | <50                                         | <100                   | <100                   | <50                        | 17         |
| 284290               | DUP1 (soil)   | 30/11/2021 | Soil           | <1                | <0.2    | <0.5    | <1           | <2             | <1         | <3           | <25                  | <25                       | <50                    | <50                                         | <100                   | <100                   | <50                        | 14         |
| RPD                  | •             | •          | •              | 0                 | 0       | 0       | 0            | 0              | 0          | 0            | 0                    | 0                         | 0                      | 0                                           | 0                      | 0                      | 0                          | 19         |
| 284290               | TS2-1_0.4-0.6 | 30/11/2021 | Soil           | <1                | <0.2    | <0.5    | <1           | <2             | <1         | <3           | <25                  | <25                       | <50                    | <50                                         | <100                   | <100                   | <50                        | 17         |
| 284290               | TRIP1 (soil)  | 30/11/2021 | Soil           | <0.5              | <0.1    | <0.1    | <0.1         | <0.2           | <0.1       | <0.3         | <20                  | <20                       | <50                    | <50                                         | 100                    | <100                   | 100                        | 16         |
| RPD                  |               |            |                | 0                 | 0       | 0       | 0            | 0              | 0          | 0            | 0                    | 0                         | 0                      | 0                                           | 67                     | 0                      | 120                        | 6          |

|                              |              |                |            |                    |                 |                      | PA       | AH                    |              |          |                             |             |              |        |                            |
|------------------------------|--------------|----------------|------------|--------------------|-----------------|----------------------|----------|-----------------------|--------------|----------|-----------------------------|-------------|--------------|--------|----------------------------|
| Benzo(b+j+k)fluoranth<br>ene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a) anthracene | Benzo(a) pyrene | Benzo(g,h,i)perylene | Chrysene | Dibenz(a,h)anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-<br>c,d)pyrene | Naphthalene | Phenanthrene | Pyrene | PAHs (Sum of<br>positives) |
| mg/kg                        | mg/kg        | mg/kg          | mg/kg      | mg/kg              | mg/kg           | mg/kg                | mg/kg    | mg/kg                 | mg/kg        | mg/kg    | mg/kg                       | mg/kg       | mg/kg        | mg/kg  | mg/kg                      |
| 0.2                          | 0.1          | 0.1            | 0.1        | 0.1                | 0.05            | 0.1                  | 0.1      | 0.1                   | 0.1          | 0.1      | 0.1                         | 0.1         | 0.1          | 0.1    | 0.05                       |

|               |               |            | Matrix |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|---------------|---------------|------------|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Lab Report Nu | ım Field ID   | Date       | Туре   |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 284290        | TS2-1_0.4-0.6 | 30/11/2021 | Soil   | <0.2 | <0.1  | <0.1  | <0.1  | <0.1  | <0.05 | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.05 |
| 284290        | DUP1 (soil)   | 30/11/2021 | Soil   | <0.2 | <0.1  | <0.1  | <0.1  | <0.1  | <0.05 | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.05 |
| RPD           |               |            |        | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 284290        | TS2-1_0.4-0.6 | 30/11/2021 | Soil   | <0.2 | <0.1  | <0.1  | <0.1  | <0.1  | <0.05 | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.05 |
| 284290        | TRIP1 (soil)  | 30/11/2021 | Soil   | -    | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 |
| RPD           |               |            |        | -    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

\*RPDs of 30% or higher are highlighted

EQL

\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

\*\*\*Where one result is recorded as non-detect and the other is detected, the RPD is calculated using the LOR x0.5



|                                                 |                                   |                                |                        |                                               |                            | RT                                                                              | EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                           | TRH                                                                                               |                                         |                                  |                                    |                                  |                                                                                 | Me                               | etals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                   |                 |
|-------------------------------------------------|-----------------------------------|--------------------------------|------------------------|-----------------------------------------------|----------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------|----------------------------------|---------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-----------------|
|                                                 |                                   |                                |                        |                                               |                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                               |                           | (F2)                                                                                              | (F3)                                    | (F4)                             |                                    | _                                |                                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                   |                 |
|                                                 |                                   |                                |                        | Vaphthalene (VOC)                             | 3enzene                    | Toluene                                                                         | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ylene (m & p)                           | Xylene (o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C6-C10 Fraction (F1)                                                            | C6-C10 (F1 minus<br>BTEX) | >C10-C16 Fraction                                                                                 | >C16-C34 Fraction                       | C34-C40 Fraction                 | Arsenic (filtered)                 | Cadmium (filtered)               | Chromium (III+VI)<br>(filtered)                                                 | Copper (filtered)                | .ead (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mercury (filtered)           | Vickel (filtered) | Zinc (filtered) |
|                                                 |                                   |                                |                        | mg/L                                          | μg/L                       | μg/L                                                                            | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/L                                     | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L                                                                            | μg/L                      | μg/L                                                                                              | μg/L                                    | μg/L                             | mg/L                               | mg/L                             | mg/L                                                                            | mg/L                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                         | mg/L              | mg/L            |
| EQL                                             |                                   |                                |                        | 0.001                                         | 1                          | 1                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                              | 10                        | 50                                                                                                | 100                                     | 100                              | 0.001                              | 0.0001                           | 0.001                                                                           | 0.001                            | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00005                      | 0.001             | 0.001           |
| Lab Report<br>Number                            | Field ID                          | Date                           | Matrix<br>Type         |                                               |                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                           |                                                                                                   |                                         |                                  |                                    |                                  |                                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                   |                 |
| 284396                                          | GG01                              | 1/12/2021                      | Water                  | < 0.001                                       | <1                         | <1                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <2                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <10                                                                             | <10                       | <50                                                                                               | <100                                    | <100                             | 0.002                              | < 0.0001                         | <0.001                                                                          | 0.002                            | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.00005                    | 0.001             | <0.001          |
| 284396                                          | DUP 1 (water)                     | 1/12/2021                      | Water                  | < 0.001                                       | <1                         | <1                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <2                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <10                                                                             | <10                       | <50                                                                                               | <100                                    | <100                             | 0.002                              | < 0.0001                         | <0.001                                                                          | <0.001                           | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00005                     | <0.001            | <0.001          |
| RPD                                             |                                   |                                |                        | 0                                             | 0                          | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                               | 0                         | 0                                                                                                 | 0                                       | 0                                | 0                                  | 0                                | 0                                                                               | 67                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                            | 0                 | 0               |
| 284396                                          | GG01                              | 1/12/2021                      | Water                  | <0.001                                        | <1                         | <1                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <2                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <10                                                                             | <10                       | <50                                                                                               | <100                                    | <100                             | 0.002                              | <0.0001                          | <0.001                                                                          | 0.002                            | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00005                     | 0.001             | <0.001          |
| 284396<br>RPD                                   | TRIP 1 (water)                    | 1/12/2021                      | Water                  | <0.01<br>0                                    | <1<br>0                    | <1<br>0                                                                         | <1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2<br>0                                  | <1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <20<br>0                                                                        | <20<br>0                  | <50<br>0                                                                                          | <100<br>0                               | <100<br>0                        | < 0.001<br>120                     | < 0.0002<br>0                    | < 0.001<br>0                                                                    | 0.001                            | < 0.001<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.0001<br>0                | 0.002<br>67       | < 0.005<br>0    |
|                                                 |                                   |                                |                        |                                               |                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                           |                                                                                                   |                                         |                                  |                                    |                                  |                                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                   |                 |
|                                                 |                                   |                                |                        |                                               |                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                           | PAH                                                                                               |                                         |                                  |                                    |                                  |                                                                                 | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                   |                 |
|                                                 |                                   |                                |                        | Benzo(b+j+k)fluoranth<br>ene                  | Acenaphthene               | Acenaphthylene                                                                  | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benz(a)anthracene                        | Benzo(a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(g, h, i) perylene                                                         | Chrysene                  | Dibenz(a,h)anthracene                                                                             | Fluoranthene                            | Fluorene                         | Indeno(1,2,3-<br>c,d)pyrene        | Naphthalene                      | Phenanthrene                                                                    | Pyrene                           | Benzo(a)pyrene TEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAHs (Sum of<br>positives)   |                   |                 |
|                                                 |                                   |                                |                        | 점 Benzo(b+j+k)fluoranth<br>거 ene              | μg/L                       | Ϋ́<br>μg/L                                                                      | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>_µg/L                                | Benzo(a)<br>۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>μg/L                                                                        | Chrysene<br>              | 떤 Dibenz(a,h)anthracene                                                                           | Huora<br>Hg/T                           | μg/L                             | μg/L                               | μg/L                             | μ <sub>g</sub> /L                                                               | μg/L                             | ଞ୍ଚ<br>ଅଷ୍ଟ୍ର<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a PAHs (Sum<br>7/ positives) |                   |                 |
| EQL                                             |                                   |                                |                        | Benzo(b+j+k)fluoranth<br>Ma<br>Benzo<br>C0000 | 1                          | Ac                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Be                                       | Benzo(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Be                                                                              | eue<br>CPL/Seu<br>Hg/L    | Dibenz(a,h)anthracene                                                                             | Fluora                                  | <u> </u>                         |                                    |                                  | Phena                                                                           | _                                | Benzo(a)pyrene T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAHs (Sum<br>positives)      |                   |                 |
| EQL<br>Lab Report<br>Number                     | Field ID                          | Date                           | Matrix<br>Type         | mg/L                                          | μg/L                       | Ϋ́<br>μg/L                                                                      | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>_µg/L                                | Benzo(a)<br>۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>μg/L                                                                        |                           | 떤 Dibenz(a,h)anthracene                                                                           | Huora<br>Hg/T                           | μg/L                             | μg/L                               | μg/L                             | μ <sub>g</sub> /L                                                               | μg/L                             | ଞ୍ଚ<br>ଅଷ୍ଟ୍ର<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a PAHs (Sum<br>7/ positives) |                   |                 |
| Lab Report<br>Number                            | Field ID                          | Date                           | Туре                   | mg/L<br>0.002                                 | μg/L<br>1                  | Ϋ́Υ                                                                             | μg/L<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u></u> μg/L<br>1                        | (a)<br>μg/L<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u> μg/L<br>1                                                               | 1                         | 기 Dibenz(a,h)anthracene                                                                           | ε<br>οημ<br>μg/L<br>1                   | μg/L<br>1                        | μg/L<br>1                          | μg/L<br>1                        | eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>eu<br>e | μg/L<br>1                        | T Benzo(a)<br>mg/L<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Positives)                   |                   |                 |
| Lab Report                                      | Field ID<br>GG01<br>DUP 1 (water) | Date<br>1/12/2021<br>1/12/2021 |                        | mg/L                                          | μg/L                       | Ϋ́<br>μg/L                                                                      | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>_µg/L                                | Benzo(a)<br>۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>μg/L                                                                        |                           | 떤 Dibenz(a,h)anthracene                                                                           | Huora<br>Hg/T                           | μg/L                             | μg/L                               | μg/L                             | μ <sub>g</sub> /L                                                               | μg/L                             | ଞ୍ଚ<br>ଅଷ୍ଟ୍ର<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a PAHs (Sum<br>7/ positives) |                   |                 |
| Lab Report<br>Number<br>284396                  | GG01                              | 1/12/2021                      | Type<br>Water          | mg/L           0.002           <0.002         | μg/L<br>1                  | Ϋ́           μg/L           1                                                   | μ <b>g/L</b> 1 </th <th><u>₩</u><br/>μg/L<br/>1</th> <th>μg/L<br/>1<br/>&lt;1</th> <th><u> <u> </u> <u>μg/L</u> <u> 1</u></u></th> <th>1</th> <th>1</th> <th>εο<br/>ημ<br/>μg/L<br/>1<br/>&lt;1</th> <th>μg/L<br/>1</th> <th>μg/L<br/>1<br/>&lt;1</th> <th>μg/L<br/>1</th> <th>ευ<br/>μg/L<br/>1<br/>&lt;1</th> <th>μg/L<br/>1</th> <th>L august (a) b/itene (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</th> <th>Positives)</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>₩</u><br>μg/L<br>1                    | μg/L<br>1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> <u> </u> <u>μg/L</u> <u> 1</u></u>                                          | 1                         | 1                                                                                                 | εο<br>ημ<br>μg/L<br>1<br><1             | μg/L<br>1                        | μg/L<br>1<br><1                    | μg/L<br>1                        | ευ<br>μg/L<br>1<br><1                                                           | μg/L<br>1                        | L august (a) b/itene (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Positives)                   |                   |                 |
| Lab Report<br>Number<br>284396<br>284396        | GG01                              | 1/12/2021                      | Type<br>Water          | mg/L<br>0.002<br><0.002<br><0.002             | μg/L<br>1<br><1<br><1      | Υ           μg/L           1           <1           <1                          | μ <b>g/L</b> 1 1 </1</th <th>₩<br/>µg/L<br/>1<br/>&lt;1<br/>&lt;1</th> <th>е) одина (а)<br/>нду.<br/>1<br/>&lt;1<br/>&lt;1<br/>&lt;1</th> <th>Ξ           μg/L           1           &lt;1           &lt;1</th> <th>1<br/>&lt;1<br/>&lt;1</th> <th>I     I       I     I       I     I</th> <th>елоника<br/>иву/L<br/>1<br/>&lt;1<br/>&lt;1</th> <th>μg/L<br/>1<br/>&lt;1<br/>&lt;1</th> <th>μ<b>g/L</b><br/>1<br/>&lt;1<br/>&lt;1</th> <th>μg/L<br/>1<br/>&lt;1<br/>&lt;1</th> <th>ечания<br/>ну и и и и и и и и и и и и и и и и и и и</th> <th>μg/L<br/>1<br/>&lt;1<br/>&lt;1</th> <th>н тана страна с</th> <th>Dositives)</th> <th></th> <th></th> | ₩<br>µg/L<br>1<br><1<br><1               | е) одина (а)<br>нду.<br>1<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ξ           μg/L           1           <1           <1                          | 1<br><1<br><1             | I     I       I     I       I     I                                                               | елоника<br>иву/L<br>1<br><1<br><1       | μg/L<br>1<br><1<br><1            | μ <b>g/L</b><br>1<br><1<br><1      | μg/L<br>1<br><1<br><1            | ечания<br>ну и и и и и и и и и и и и и и и и и и и                              | μg/L<br>1<br><1<br><1            | н тана страна с | Dositives)                   |                   |                 |
| Lab Report<br>Number<br>284396<br>284396<br>RPD | GG01<br>DUP 1 (water)             | 1/12/2021<br>1/12/2021         | Type<br>Water<br>Water | 0.002                                         | μg/L<br>1<br><1<br><1<br>0 | ğ           μg/L           1           <1           <1           <1           0 | μg/L<br>1<br><1<br><1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u> μg/L<br>1<br><1<br><1<br><1<br>0 | (e)<br>grad (grad (g | χ           μg/L           1           <1           <1           <1           0 | 1<br><1<br><1<br>0        | J         Dipenz(a,h)anthracene           1         1           1         1           1         1 | <mark>ир/L</mark><br>1<br><1<br><1<br>0 | μg/L<br>1<br><1<br><1<br><1<br>0 | μ <b>g/L</b><br>1<br><1<br><1<br>0 | μg/L<br>1<br><1<br><1<br><1<br>0 | μεγμ<br>μεγμ<br>1<br><1<br><1<br>0                                              | μg/L<br>1<br><1<br><1<br><1<br>0 | н тана страна с | bositives)                   |                   |                 |

\*RPDs of 30% or higher are highlighted

\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

\*\*\*Where one result is recorded as non-detect and the other is detected, the RPD is calculated using the LOR x0.5





## Appendix G QA/QC Assessment

Geosyntec<sup>D</sup> consultants

| Data Quality<br>Objective                                                           | Sampling<br>Frequency | Frequency Achieved?                                                                                                                                                                                                                                                  | DQI                                                                                                                                                                             | DQI Met?                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precision                                                                           |                       |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Intra-Laboratory Field<br>Duplicates                                                | 1/20 samples          | Partial. 1 intra-laboratory<br>duplicates for 22 primary soil<br>samples and 1 intra-laboratory<br>duplicate for 4 primary<br>groundwater samples.<br>Frequency exceedance by 2<br>samples for soil is not<br>considered to affect the<br>outcome of the assessment. | >5xLOR: 50% RPD                                                                                                                                                                 | Yes, noting soil TRH >C16-<br>34 result of 67% RPD likely<br>due to sample<br>heterogeneity, and<br>groundwater copper result<br>of 67% due to<br>concentrations being close<br>to the laboratory detection<br>limits.                                                                                                                                                                              |
| Inter-Laboratory Field<br>Duplicates                                                | 1/20 samples          | Partial. 1 inter-laboratory<br>duplicate for 22 primary soil<br>samples and 1 intra-laboratory<br>duplicate for 4 primary<br>groundwater samples.<br>Frequency exceedance by 2<br>samples for soil is not<br>considered to affect the<br>outcome of the assessment.  | >5xLOR: 50% RPD                                                                                                                                                                 | Yes, noting groundwater<br>arsenic, copper and nickel<br>result of 67% due to<br>concentrations being close<br>to the laboratory detection<br>limits.                                                                                                                                                                                                                                               |
| Laboratory duplicates                                                               | 1/20 samples          | Yes                                                                                                                                                                                                                                                                  | >5xLOR: 50% RPD                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                 |
| Laboratory method<br>blanks                                                         | 1/10 samples          | Yes                                                                                                                                                                                                                                                                  | < LOR<br>Not required for<br>asbestos                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                 |
| Accuracy                                                                            |                       |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Matrix spikes                                                                       | 1/10 samples          | Yes                                                                                                                                                                                                                                                                  | Acceptable<br>recoveries:<br>70 to 130% for<br>metals and<br>inorganics<br>60-140% for organics<br>10-140% for sVOC<br>and speciated<br>phenols<br>Not required for<br>asbestos | Yes, noting that some<br>matrix spikes were not able<br>to be completed due to high<br>concentrations of analytes<br>in some samples causing<br>interference. Those which<br>were able to be completed<br>without interference,<br>however, reported<br>percentage recoveries<br>within the acceptable<br>range, therefore this is not<br>considered to affect the<br>outcome of the<br>assessment. |
| Laboratory control spike                                                            | 1/10 samples          | Yes                                                                                                                                                                                                                                                                  | As Matrix spikes<br>Not required for<br>asbestos                                                                                                                                | Yes.                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate spike                                                                     | 1/10 samples          | Yes                                                                                                                                                                                                                                                                  | As Matrix spikes<br>Not required for<br>asbestos                                                                                                                                | Yes.                                                                                                                                                                                                                                                                                                                                                                                                |
| Representativeness                                                                  |                       |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sampling handling<br>storage and transport<br>appropriate for media and<br>analytes | All                   | Yes                                                                                                                                                                                                                                                                  | Received by<br>laboratory cooled and<br>with container in<br>good condition                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rinsate blanks                                                                      | NA                    | NA                                                                                                                                                                                                                                                                   | <lor< td=""><td>NA</td></lor<>                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trip Spike and Trip Blank                                                           | (1 per media          | Yes                                                                                                                                                                                                                                                                  | <lor as="" by<br="" specified="">laboratory</lor>                                                                                                                               | Partial: Trip blank < LOR<br>for groundwater, no trip<br>blank for groundwater and<br>no trip spike taken for either<br>soil or groundwater.                                                                                                                                                                                                                                                        |

## Table G-1 QA/QC Assessment

Geosyntec<sup>D</sup> consultants

| Data Quality<br>Objective                                                                                     | Sampling<br>Frequency | Frequency Achieved? | DQI                      | DQI Met?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               |                       |                     |                          | Given that soil sampling<br>was conducted for<br>screening purposes to<br>assist with determining<br>remediation requirements,<br>the absence of trip spike<br>and blank are not<br>considered affect the<br>outcome of the<br>assessment, and the data<br>is considered fit for<br>purpose. Additionally, given<br>that samples were collected<br>based on standard<br>procedures including zero<br>headspace and tight seal of<br>the sample jar lid, and that<br>concentrations of volatile<br>compounds were generally<br>noted to be close to the<br>laboratory detection limits,<br>the loss of volatile<br>compounds is considered<br>unlikely. |
| Samples extracted and                                                                                         | All                   | Yes                 | Hold Times:              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| analysed within holding                                                                                       |                       |                     | 7 days - organics        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| imes.                                                                                                         |                       |                     | 6 months –<br>inorganics |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Comparability                                                                                                 |                       |                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Standard operating<br>procedures used for<br>sample collection and<br>handling (including<br>decontamination) | All Samples           | Yes                 | Yes                      | Yes, noting that field filters<br>were not available and<br>unpreserved groundwater<br>samples were sent to the<br>laboratory for filtering and<br>preservation prior to<br>testing. The dissolved<br>metal content of the<br>submitted samples is<br>unlikely to have changed<br>between sample collection<br>in the field and filtering at<br>the laboratory, and<br>therefore this is not<br>considered to affect the<br>outcome of the<br>assessment.                                                                                                                                                                                              |
| Standard analytical<br>methods used for all<br>analyses                                                       | All Samples           | Yes                 | Yes                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Consistent field<br>conditions, sampling staff<br>and laboratory analysis                                     | All Samples           | Yes                 | Yes                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Limits of reporting<br>appropriate and<br>consistent                                                          | All Samples           | Yes                 | Yes                      | Yes, noting that LOR for<br>PAHs were raised form<br><0.1mg/kg to <1mg/kg for<br>soil samples TS2-1_1.0-<br>1.2, TS2-2_1.0-1.2 and<br>TS2-4_1.2-1.4 due to<br>interferences from analytes<br>other than those being<br>tested. Raised LOR were<br>below adopted criteria, and<br>were relatively low in<br>comparison to detections of<br>some PAHs in the samples,                                                                                                                                                                                                                                                                                    |



| Data Quality<br>Objective                                 | Sampling<br>Frequency | Frequency Achieved? | DQI | DQI Met?                                                                                                   |
|-----------------------------------------------------------|-----------------------|---------------------|-----|------------------------------------------------------------------------------------------------------------|
|                                                           |                       |                     |     | and therefore, this is not<br>considered to affect the<br>outcome of the<br>assessment.                    |
| Completeness                                              |                       |                     |     |                                                                                                            |
| Soil description and<br>COCs completed and<br>appropriate | All Samples           | Yes                 | Yes | Yes, borehole logs and<br>laboratory certificates are<br>presented in Appendices H<br>and C, respectively. |
| Appropriate documentation for testing                     | All Samples           | Yes                 | Yes | Yes                                                                                                        |
| Data set to be 95% complete after validation              | All Samples           | Yes                 | Yes | Yes                                                                                                        |



### Appendix H Test Pit Logs



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| Depth (m) | PID (ppm) | ples          |       | Graphic Log  | Material Description                    | ture     | Additional Observations                                 |
|-----------|-----------|---------------|-------|--------------|-----------------------------------------|----------|---------------------------------------------------------|
| Deptl     | ) (I      | Samples       | Water | Grap         |                                         | Moisture |                                                         |
| -         | -         | •             | -     | Ŵ            | FILL: Sand, coarse grained, grey, loose | -        | NO, NS, NFC, NI. UST visible.                           |
|           |           |               |       | $\otimes$    |                                         |          |                                                         |
| 0.1       |           |               |       | $\otimes$    |                                         |          |                                                         |
|           |           |               |       | $\otimes$    |                                         |          |                                                         |
| 0.2       |           | TS1-1_0.2-0.4 | _     | $\otimes$    |                                         |          |                                                         |
|           |           | _             |       | $\bigotimes$ |                                         |          |                                                         |
| 0.3       | 0.6       |               |       | $\bigotimes$ |                                         |          |                                                         |
|           |           |               |       | $\otimes$    |                                         |          |                                                         |
| 0.4       |           |               |       | $\bigotimes$ |                                         |          |                                                         |
|           |           |               |       | $\bigotimes$ |                                         |          |                                                         |
| 0.5       |           |               |       | $\bigotimes$ |                                         |          |                                                         |
|           |           |               |       | $\bigotimes$ |                                         |          |                                                         |
| 0.6       |           |               |       | $\bigotimes$ |                                         |          |                                                         |
|           |           | TS1-1_0.6-0.8 |       | $\otimes$    | FILL: Coarse grained, cream, loose      |          | Hydrocarbon odour and sheen noted, NFC NI. UST visible. |
| 0.7       | 8.1       |               |       | $\otimes$    |                                         |          |                                                         |
|           | 0.1       |               |       | $\otimes$    |                                         |          |                                                         |
| 0.8       |           |               |       | $\otimes$    |                                         |          |                                                         |
| 0.0       |           |               |       | $\bigotimes$ |                                         |          |                                                         |
|           |           |               |       | $\bigotimes$ |                                         |          |                                                         |
| 0.9       |           |               |       | $\bigotimes$ |                                         |          |                                                         |
|           |           |               |       | $\bigotimes$ |                                         |          |                                                         |
| 1         |           |               |       | ***          | End of Test Pit at 1.0m at target depth |          |                                                         |
|           |           |               |       |              |                                         |          |                                                         |
| 1.1       |           |               |       |              |                                         |          |                                                         |
|           |           |               |       |              |                                         |          |                                                         |
| 1.2       |           |               |       |              |                                         |          |                                                         |
|           |           |               |       |              |                                         |          |                                                         |
| 1.3       |           |               |       |              |                                         |          |                                                         |
|           |           |               |       |              |                                         |          |                                                         |
| 1.4       |           |               |       |              |                                         |          |                                                         |



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| Depth (m) | PID (ppm) | Samples       | Water | Graphic Log  | Material Description                                          | Moisture | Additional Observations                                   |
|-----------|-----------|---------------|-------|--------------|---------------------------------------------------------------|----------|-----------------------------------------------------------|
|           |           |               |       |              | FILL: Silty clay, red/grey mixture, firm, med-high plasticity |          | NO, NS, NFC, NI. UST visible.                             |
| .1        |           |               |       |              |                                                               |          |                                                           |
| .2        |           | TS1-2_0.2-0.4 | -     | $\bigotimes$ |                                                               |          |                                                           |
| .3        | 0.8       |               |       |              |                                                               |          |                                                           |
| .4        |           |               |       |              |                                                               |          |                                                           |
|           |           |               |       |              |                                                               |          |                                                           |
| .5        |           |               |       | XX           | FILL: Coarse grained, grey/cream, loose                       |          | Hydrocarbon odour and sheen noted, NF<br>NI. UST visible. |
| .6        |           |               |       |              |                                                               |          |                                                           |
| .7        |           |               |       |              |                                                               |          |                                                           |
| .8        |           | TS1-2_0.8-1.0 |       |              |                                                               |          |                                                           |
| .9        | 14        | _             |       |              |                                                               |          |                                                           |
|           |           |               |       |              |                                                               |          |                                                           |
|           |           |               |       | ×××          | End of Test Pit at 1.0m at target depth                       |          |                                                           |
| .1        |           |               |       |              |                                                               |          |                                                           |
| .2        |           |               |       |              |                                                               |          |                                                           |
| .3        |           |               |       |              |                                                               |          |                                                           |
| .4        |           |               |       |              |                                                               |          |                                                           |



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| СОММ      | IENTS     | NO = No Odour, N | NS = No | o Stainin    | g, NFC = No Potential Asbestos Containing Fibre (      | Cement F | ragments, NI = No Observed Inclusions                    |
|-----------|-----------|------------------|---------|--------------|--------------------------------------------------------|----------|----------------------------------------------------------|
| Depth (m) | PID (ppm) | Samples          | Water   | Graphic Log  | Material Description                                   | Moisture | Additional Observations                                  |
|           |           |                  |         |              | FILL: Sandy clay, coarse grained, grey, low plasticity |          | Hydrocarbon odour noted, NS, NFC, NI.<br>UST visible.    |
| 0.1       |           |                  |         |              |                                                        |          |                                                          |
|           |           |                  |         | $\bigotimes$ |                                                        |          |                                                          |
| 0.2       |           | TS1-3_0.2-0.4    |         |              |                                                        |          |                                                          |
| 0.3       | 1.4       |                  |         | $\bigotimes$ |                                                        |          |                                                          |
|           |           |                  |         |              |                                                        |          |                                                          |
| 0.4       |           |                  |         | XX           | FILL: Coarse grained, grey, loose                      |          | Hydrocarbon odour and sheen noted, NFC, NI. UST visible. |
| 0.5       |           |                  |         |              |                                                        |          |                                                          |
|           |           |                  |         | $\bigotimes$ |                                                        |          |                                                          |
| 0.6       |           | TS1-3_0.6-0.8    |         | $\bigotimes$ |                                                        |          |                                                          |
| 0.7       | 12        |                  |         |              |                                                        |          |                                                          |
|           |           |                  |         | $\bigotimes$ |                                                        |          |                                                          |
| 0.8       |           |                  |         | XX           |                                                        |          |                                                          |
| 0.9       |           |                  |         |              |                                                        |          |                                                          |
|           |           |                  |         | $\bigotimes$ |                                                        |          |                                                          |
| -1        |           |                  |         | ×××          | End of Test Pit at 1.0m at target depth                |          |                                                          |
| - 1.1     |           |                  |         |              |                                                        |          |                                                          |
|           |           |                  |         |              |                                                        |          |                                                          |
| 1.2       |           |                  |         |              |                                                        |          |                                                          |
| 1.3       |           |                  |         |              |                                                        |          |                                                          |
|           |           |                  |         |              |                                                        |          |                                                          |
| 1.4       |           |                  |         |              |                                                        |          |                                                          |
|           |           |                  |         |              |                                                        |          |                                                          |



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| Depth (m)  | PID (ppm) | Samples                       | Water | Graphic Log  | Material Description                                   | Moisture | Additional Observations         |
|------------|-----------|-------------------------------|-------|--------------|--------------------------------------------------------|----------|---------------------------------|
| .1         |           |                               |       |              | FILL: Sandy clay, brown, medium plasticity, firm       |          | NO, NS, NFC, NI.                |
| 2          |           |                               |       |              |                                                        |          |                                 |
| 3<br>4     |           |                               |       | $\bigotimes$ |                                                        |          |                                 |
| 5          | 0.1       | TS2-1_0.4-0.6,<br>DUP1, TRIP1 |       |              |                                                        |          |                                 |
| .6         |           |                               | 1     |              |                                                        |          |                                 |
| 0.7<br>0.8 |           |                               |       |              |                                                        |          |                                 |
| ).9        |           |                               |       | $\bigotimes$ |                                                        |          |                                 |
|            |           | TS2-1_1.0-1.2                 | -     | $\bigotimes$ | FILL: Sandy clay, grey/dark grey, firm, low plasticity |          | Hydrocarbon odour, NS, NFC, NI. |
| 1.1        | 0.8       | 102-1_1.0-1.2                 |       |              | THEL. Sandy Slay, grey/dark grey, inth, low plasticity |          |                                 |
| .2         |           |                               | -     | $\bigotimes$ |                                                        |          |                                 |
| 1.3        |           |                               |       |              |                                                        |          |                                 |
| 1.4        |           |                               |       | $\bigotimes$ |                                                        |          |                                 |
| .5         |           |                               |       |              |                                                        |          |                                 |
| l.6<br>I.7 |           |                               |       |              |                                                        |          |                                 |
| .8         |           |                               |       |              |                                                        |          |                                 |
| .9         |           |                               |       |              |                                                        |          |                                 |
| •          |           |                               |       |              | End of Test Pit at 2.0m at target depth                |          |                                 |
| .1         |           |                               |       |              |                                                        |          |                                 |
| .2         |           |                               |       |              |                                                        |          |                                 |
| 2.3<br>2.4 |           |                               |       |              |                                                        |          |                                 |



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| Depth (m) | PID (ppm) | Samples       | Water | Graphic Log  | Material Description                              | Moisture | Additional Observations         |
|-----------|-----------|---------------|-------|--------------|---------------------------------------------------|----------|---------------------------------|
| -         | _         |               | -     | $\sim$       | FILL: Sandy clay, coarse grained, brown, loose,   |          | NO, NS, NFC, Shell inclusions   |
| 1         |           |               |       | $\bigotimes$ | low plasticity                                    |          |                                 |
| .2        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .3        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .4        |           | TS2-2_0.4-0.6 |       | $\bigotimes$ |                                                   |          |                                 |
| .5        | 0.3       |               |       | $\bigotimes$ |                                                   |          |                                 |
| .6        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .7        |           |               |       | žžž          |                                                   |          |                                 |
| .8        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .9        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           | TS2-2_1.0-1.2 | -     | XXX          | FILL: Sand, coarse grained, grey/dark grey, loose | -        | Hydrocarbon odour, NS, NFC, NI. |
| .1        | 108       |               |       | $\bigotimes$ |                                                   |          |                                 |
| .2        |           |               | _     | $\bigotimes$ |                                                   |          |                                 |
| .3        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .4        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .5        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .6        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .7        |           |               |       | <u>ڳڳ</u>    |                                                   |          |                                 |
| .8        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .9        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           |               |       |              | End of Test Pit at 2.0m at target depth           |          |                                 |
| .1        |           |               |       |              |                                                   |          |                                 |
| .2        |           |               |       |              |                                                   |          |                                 |
| .3        |           |               |       |              |                                                   |          |                                 |



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| Depth (m) | PID (ppm) | Samples       | Water | Graphic Log  | Material Description                               | Moisture | Additional Observations         |
|-----------|-----------|---------------|-------|--------------|----------------------------------------------------|----------|---------------------------------|
| _         | -         | 0,            | -     | $\sim$       | FILL: Clayey sand, coarse grained, yellow / cream, | -        | NO, NS, NFC, NI.                |
| .1        |           |               |       | $\bigotimes$ | loose                                              |          |                                 |
| ).2       |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .3        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .4        |           | TS2-3_0.4-0.6 |       | $\bigotimes$ |                                                    |          |                                 |
| 5         | 2         |               |       | $\bigotimes$ |                                                    |          |                                 |
| .6        |           |               | -     | $\bigotimes$ |                                                    |          |                                 |
| .7        |           |               |       | XXX          |                                                    |          |                                 |
| .8        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .9        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
|           |           |               |       | XX           | FILL: Sand, coarse grained, grey/dark grey, loose  |          | Hydrocarbon odour, NS, NFC, NI. |
| .1        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .2        |           | TS2-3_1.2-1.4 |       | $\bigotimes$ |                                                    |          |                                 |
| .3        | 16        |               |       | $\bigotimes$ |                                                    |          |                                 |
| .4        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .5        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .6        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .7        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .8        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
| .9        |           |               |       | $\bigotimes$ |                                                    |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                    |          |                                 |
|           |           |               |       |              | End of Test Pit at 2.0m at target depth            |          |                                 |
| .1        |           |               |       |              |                                                    |          |                                 |
| .2        |           |               |       |              |                                                    |          |                                 |
| .3        |           |               |       |              |                                                    |          |                                 |



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| Depth (m) | PID (ppm) | Samples       | Water | Graphic Log  | Material Description                              | Moisture | Additional Observations         |
|-----------|-----------|---------------|-------|--------------|---------------------------------------------------|----------|---------------------------------|
| ž         | P         | ő             | >     | Ū<br>XXX     | FILL: Sandy clay, yellow / cream, loose, low      | ž        | NO, NS, NFC, Shell inclusions.  |
| .1        |           |               |       | $\bigotimes$ | plasticty                                         |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| .2        |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| ).3       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| ).4       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           | _         | TS2-4_0.4-0.6 |       | $\bigotimes$ |                                                   |          |                                 |
| ).5       | 3         |               |       | $\bigotimes$ |                                                   |          |                                 |
| ).6       |           |               | -     | $\bigotimes$ |                                                   |          |                                 |
| 0.7       |           |               |       | XXX          |                                                   |          |                                 |
| D.8       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| ).9       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 1         |           |               |       | $\bigotimes$ | FILL: Sand, coarse grained, grey/dark grey, loose |          | Hydrocarbon odour, NS, NFC, NI. |
| 1.1       |           |               |       | $\bigotimes$ | FILL. Sand, coarse grained, grey/dark grey, loose |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 1.2       |           | TS2-4_1.2-1.4 |       | $\bigotimes$ |                                                   |          |                                 |
| 1.3       | 18        |               |       | $\otimes$    |                                                   |          |                                 |
| 1.4       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
|           |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 1.5       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 1.6       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 1.7       |           |               |       | XXX          |                                                   |          |                                 |
| 1.8       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 1.0       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 1.9       |           |               |       | $\bigotimes$ |                                                   |          |                                 |
| 2         |           |               |       | $\bigotimes$ | End of Toot Dit at 2 0m at target death           |          |                                 |
| 2.1       |           |               |       |              | End of Test Pit at 2.0m at target depth           |          |                                 |
|           |           |               |       |              |                                                   |          |                                 |
| 2.2       |           |               |       |              |                                                   |          |                                 |
| 2.3       |           |               |       |              |                                                   |          |                                 |



DRILLING COMPANY N/A DRILLING METHOD Excavator TOTAL DEPTH 1.0

COORDINATES -COORD SYS -SURFACE ELEVATION -LOGGED BY HD CHECKED BY EM

| сомм      | IENTS     | NO = No Odour, I                                                            | NS = N | o Stainin   | g, NFC = No Potential Asbestos Containing Fibre Cen                                          | nent Fi  | ragments, NI = No Observed Inclusions                                       |
|-----------|-----------|-----------------------------------------------------------------------------|--------|-------------|----------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------|
| Depth (m) | PID (ppm) | Samples                                                                     | Water  | Graphic Log | Material Description                                                                         | Moisture | Additional Observations                                                     |
| 0.1       |           | UEX1-1 (top<br>material),<br>UEX1-3<br>(stockpiled<br>beside<br>excavation) |        |             | FILL: Clayey sand / sandy clay, coarse grained, yellow to grey, low plasticity               |          | NO, NS, NFC, NI.                                                            |
| - 0.2     |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 0.3       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 0.4       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 0.5       |           | UEX1-2                                                                      | -      |             | FILL: Mixture of demolition waste and gravels in sandy silty clay matrix, dark grey to black |          | Hydrocarbon odour, NFC, Inclusions of gravels and demolition waste (bricks, |
| 0.6       |           |                                                                             |        |             |                                                                                              |          | concrete general demoliton waste)                                           |
| 0.7       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 0.8       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 0.9       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| -1        |           |                                                                             |        |             | End of Excavation at 1.0m at target depth                                                    |          |                                                                             |
| - 1.1     |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 1.2       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 1.3       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| 1.4       |           |                                                                             |        |             |                                                                                              |          |                                                                             |
| _         |           |                                                                             |        |             |                                                                                              |          |                                                                             |



### Appendix I GME Field Logs



| 1.54                        |                                            |                       |                          |               |                      | Job In                | formatio       | n          |                |              |                                                                         |
|-----------------------------|--------------------------------------------|-----------------------|--------------------------|---------------|----------------------|-----------------------|----------------|------------|----------------|--------------|-------------------------------------------------------------------------|
| Date:                       | 12/21                                      |                       |                          |               |                      |                       |                |            |                |              |                                                                         |
|                             | ame: RE                                    | Me                    | oberts                   | 6             | wwp                  |                       |                | Project N  | Number: 2      | 1067         |                                                                         |
| Site Locat                  | tion: 3                                    | Burrow                |                          |               |                      |                       | Point          | Operator   | C H 0          |              |                                                                         |
| Well ID:                    | GGO                                        |                       | 9.                       |               |                      |                       |                | Weather    | fine           |              |                                                                         |
|                             |                                            | -                     |                          |               |                      | Equ                   | ipment         | 1244       |                | 2            |                                                                         |
| Water qua                   | ality equipm                               | ent descript          | tion:                    |               | and areas            | and the second second | a Strangerster |            |                |              |                                                                         |
| Interface p                 | probe descr                                | iption:               |                          |               |                      |                       |                |            |                |              |                                                                         |
| Purging e                   | quipment:                                  |                       | Bailer                   | type:         | Plastic              | Т                     | eflon          |            |                |              |                                                                         |
| (please ci                  |                                            |                       | 2                        | type:         | Peristalti           | Su Su                 | bmersible      | Micro      | o-purge        | Amazon       | Other:                                                                  |
| Depth of i                  | nstalled tub                               | ing (mTOC)            | ): O. 8                  | 5             |                      |                       |                |            |                |              |                                                                         |
|                             |                                            | 34124                 | 1.1.1                    | We            | ell Gaugir           | ig and Pu             | rge Volu       | me Calo    | culations      |              |                                                                         |
| Casing Di                   | ameter                                     |                       | 25mn                     | n 50m         | im 100r              | mm 12                 | 5mm   1        | 50mm       | 200mm          | 250mm        | 300mm                                                                   |
| Conversio                   |                                            |                       | 0.98                     | 1.96          | 7.85                 | 31                    | 4 4            | 9.1        | 70.7           | 125.7        | 196.3                                                                   |
| (volume in fa<br>Total Well | Depth (-)                                  |                       |                          |               |                      |                       | Depti          | n to Produ | uct (if preser | 1.1.1        | r = radius in cm                                                        |
|                             | m (-) _<br>lumn (x) C<br>m(x)              |                       | actor (=) L              | itres per 1   |                      | le                    |                | r          | n              | h            | = height of water column in cm                                          |
|                             |                                            |                       |                          |               | W                    | ater Qua              | lity Parar     | neters     |                |              |                                                                         |
| Beginning                   | purge time                                 | 16:45                 | 5                        |               |                      |                       |                | Ending p   | ourge time:    | 17:20        |                                                                         |
| Litres                      | Time                                       | рН                    | Temp °C                  | Cond<br>mS/cm | DO<br>ppm            | Redox<br>mV           | SWL<br>mTOC    |            |                | Commen       | ts / observations                                                       |
| 0                           | 16:45                                      | 8:25                  | 21.2                     | 903           | 1.65                 | 45.3                  | 0.72           | Clean      | r, turk        | sid A        | Jo , NS                                                                 |
| ١                           | 16:50                                      | 8:19                  | 21.0                     | 897           | 1.23                 | -9.7                  | 0.73           |            | /              | in .         |                                                                         |
| 2                           | 16:55                                      | 8:14                  | 21.0                     | 882           | 0.94                 | -54.3                 |                |            |                |              |                                                                         |
| 3                           | 17:00                                      | 8.69                  | 21.0                     | 879           | 0.54                 | -104.3                | 0.73           |            |                |              |                                                                         |
| 4                           | 17:05                                      | and the second second | 21.0                     | 872           | 0.39                 | -1124                 |                |            |                | 31           |                                                                         |
| 5                           | 17:10                                      | 8.01                  | 20.9                     | 863           |                      | -118.4                |                |            | 12 (Jan 2000)  | N            |                                                                         |
| b                           | 17:15                                      | 8.03                  | 20.9                     | 867           | 0.32                 |                       |                |            |                | N            |                                                                         |
| 1                           | 17:20                                      | 8.02                  | 20.9                     | 869           |                      | -119-4                | 0.73           |            |                | XC           |                                                                         |
|                             |                                            |                       |                          |               |                      |                       |                |            |                |              |                                                                         |
|                             |                                            |                       |                          |               |                      |                       |                |            |                |              |                                                                         |
|                             |                                            |                       |                          |               |                      |                       |                |            |                |              |                                                                         |
| 0000000000000               | lisation<br>iteria                         | +/- 0.05              | +/- 10%                  | +/- 3%        | +/- 10%              | +/- 10%               |                |            | -              |              | / turbid / very turbid / no odour /<br>our, and changes in pumping rate |
|                             | arameters                                  | ]                     | Volume<br>unt of water p |               | ling<br>the well dry | purged?               | YN             |            | *pH, temp, o   | cond reading | is not necessary if well is purged dry                                  |
|                             |                                            |                       | <u> </u>                 |               |                      |                       | C Checl        | s          |                |              |                                                                         |
| Was pre-c                   | cleaning sar<br>cleaning sar<br>umentation | mpling equi           | pment prop               | erly protec   |                      |                       |                | (          |                | A            |                                                                         |
| Were air t                  | pubbles pres                               | sent in vials         | at time of               | collection?   |                      |                       |                |            | Y N N          | A            | filtered                                                                |
|                             |                                            |                       |                          |               |                      |                       |                |            |                |              |                                                                         |

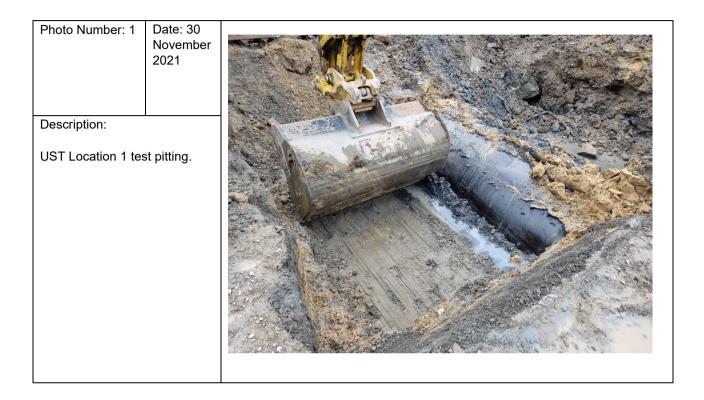


|                      |                        |                  |              |               |                      | Job I       | nformatio   | on         |                    |        |                                                                         |
|----------------------|------------------------|------------------|--------------|---------------|----------------------|-------------|-------------|------------|--------------------|--------|-------------------------------------------------------------------------|
| Date: 1/             | 12/21                  |                  |              |               |                      |             |             |            |                    |        |                                                                         |
| Project Na           | ame: RE                | MG               | Lobert       | 5 (0          | ww                   | ρ           |             | Project N  | lumber:            | 21067  |                                                                         |
| Site Locat           | tion: 2                | Burro            |              | 0 1           |                      |             | n Point     | Operator   | · H · O            |        |                                                                         |
| Well ID:             | GG06                   | 00110            | 5            |               |                      | VOIT        |             | Weather    | fire               | 1      |                                                                         |
|                      | 4 100                  |                  |              |               | 1940                 | Ea          | uipment     | -          | Contraction of the |        |                                                                         |
| Mater qua            | ality equipm           | ent descript     | ion:         |               |                      | -9          |             |            |                    |        |                                                                         |
|                      | probe descr            |                  |              |               |                      |             |             |            |                    |        |                                                                         |
| Purging ed           |                        | • # 1000 48.00   | Bailer       | type:         | Plastic              | 1           | Feflon      |            |                    |        |                                                                         |
| (please cir          | rlce)                  |                  | Pump         | type:         | Peristalti           | ) s         | ubmersible  | Micro      | o-purge            | Amazon | Other:                                                                  |
| Depth of ir          | nstalled tubi          | ing (mTOC)       | : 1.45       | in            |                      |             |             |            |                    |        |                                                                         |
|                      |                        |                  | 162.6        | We            | Il Gaugir            | g and P     | urge Volu   | ume Calo   | ulations           | 1.1.25 |                                                                         |
| Casing Dia           | ameter                 |                  | 25mm         | n 50m         | m 100r               | nm 12       | 25mm        | 150mm      | 200mm              | 250mm  | 300mm                                                                   |
| Conversio            | on Factor              |                  | 0.98         | 1.96          | 7.85                 | 3           | 1.4         | 49.1       | 70.7               | 125.7  | 196.3                                                                   |
| volume in fa         | ctor L/m)<br>Depth (-) | Water level      | (=) Water    | Column        |                      |             | Dept        | h to Produ | Ict (if prese      | nt)    | r = radius in cm                                                        |
| Water Col            | lumn (x) C             | m<br>onversion F | actor (=) Li | itres per 1   | L                    |             |             | n          | n                  | h      | = height of water column in cm                                          |
|                      | a service se           |                  | number of    | 319731        | W                    | ater Qua    | ality Para  |            |                    |        |                                                                         |
|                      | purge time             |                  | •            |               | 100                  | I           | 1011        | Ending p   | ourge time:        |        |                                                                         |
| Litres               | Time                   | pН               | Temp °C      | Cond<br>mS/cm | DO<br>ppm            | Redox<br>mV | SWL<br>mTOC |            |                    | Commen | ts / observations                                                       |
| 0                    | 16.05                  | 8.60             | 23.4         | 1262          | 0.06                 | -43.5       | 1-07        | CI         | eur                | Slight | ly turbid, No, NS.                                                      |
| 1                    | 16:10                  | 8.14             | 23.4         | 1257          | 0.04                 | -60.1       | 1-07        |            | /                  | "      |                                                                         |
| 2                    | 16:15                  | 8.09             | 23.4         | 1259          | 0.04                 | - 57.0      | 11-07       |            |                    | v      |                                                                         |
| 3                    | 16:21                  | \$.03            | 23.8         | 1255          | 0.08                 | -67.5       |             |            |                    | 4      |                                                                         |
| 4                    | 16:26                  |                  | 23.8         | 1251          | 0.08                 |             |             |            |                    |        |                                                                         |
| 5                    | 16:31                  | 1.00             | 23.8         |               | 0.08                 |             | 1           |            |                    | 5      |                                                                         |
| 6                    | 16:36                  | 8.87             | 238          |               |                      | -71.2       | 1.01        |            |                    | ~      |                                                                         |
|                      | 10.50                  | 0.01             | 620          | 1655          | 0.00                 |             | (           |            |                    | 1      |                                                                         |
|                      |                        |                  |              |               |                      |             |             |            |                    |        |                                                                         |
|                      |                        |                  |              |               |                      |             |             |            |                    |        |                                                                         |
|                      |                        |                  |              |               |                      |             |             |            |                    |        |                                                                         |
|                      |                        |                  |              |               |                      |             |             |            |                    |        |                                                                         |
|                      |                        |                  |              |               |                      |             |             |            |                    |        |                                                                         |
|                      |                        |                  |              |               |                      |             |             |            |                    |        |                                                                         |
|                      | lisation               | +/- 0.05         | +/- 10%      | +/- 3%        | +/- 10%              | +/- 10%     |             |            | -                  |        | / turbid / very turbid / no odour /<br>our, and changes in pumping rate |
|                      | teria                  | Total Well       | Volume       |               |                      |             | 1           | Signtou    | 1997 - AM 1990     |        | is not necessary if well is purged dry                                  |
| WD: 1<br>Did field p | arameters              | Actual amou      | Y N NA       |               | ling<br>the well dry | purged?     | YN          |            |                    |        |                                                                         |
|                      | (In starty)            | 12.14.20         |              |               |                      | Field       | QC Chec     | ks         |                    |        |                                                                         |
| Nas pre-c            | leaning sar            | npling equip     | oment used   | for these     | samples?             |             |             |            |                    |        |                                                                         |
|                      |                        | npling equip     |              |               |                      | ntaminatio  | on?         | F          | 0N                 |        |                                                                         |
|                      |                        | of equipme       |              |               |                      |             |             | F          | M N N              | IA     |                                                                         |
|                      |                        | sent in vials    |              |               |                      |             |             | F          | -                  | IA     |                                                                         |
|                      |                        | ls field filter  |              |               |                      |             |             | F          |                    | Alab   | filtered.                                                               |
| Nas samr             |                        |                  |              |               |                      |             |             |            |                    |        |                                                                         |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 132.4                          |                  |                    |                    |                | Job Ir      | offormation | n         |               |              |                 |                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|--------------------|--------------------|----------------|-------------|-------------|-----------|---------------|--------------|-----------------|--------------------------------------------|
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/21                          |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
| Project Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ame: DE                        | M Rol            | berts              | CO V               | JWP            |             |             | Project   | Number:       | 21067        |                 |                                            |
| Site Locat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: 3 B                      | uccous           | an Ro              | ad W               | leature        | oth F       | (ain)       | Operato   |               |              |                 |                                            |
| Well ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GGO                            |                  | Sre                |                    | 41.000         |             | 0           | Weathe    | r fine        |              |                 |                                            |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1-                           |                  | -                  |                    | 101 21 1       | Equ         | uipment     |           | 0.1775        |              |                 | 0                                          |
| Water qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ality equipme                  | ent descript     | ion:               |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | probe descr                    |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
| Purging e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | quipment:                      |                  | Bailer             | type:              | Plastic        | т           | eflon       |           |               |              |                 |                                            |
| (please ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rlce)                          |                  | Pump               | type:              | Peristalti     | SI SI       | ubmersible  | Micr      | o-purge       | Amazon       | Other           | r:                                         |
| Depth of i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nstalled tubi                  | ing (mTOC)       | 2.50               | n                  |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | 3115.22          |                    | We                 | II Gaugir      | ng and Pu   | urge Volu   | ume Cal   | culations     | Sec. Sec.    | THE COL         |                                            |
| Casing Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ameter                         |                  | 25mm               | n 50m              | m 100r         | mm 12       | 5mm         | 150mm     | 200mm         | 250mm        | 300mm           |                                            |
| Conversio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on Factor                      |                  | 0.98               | 1.96               | 7.85           | 31          | .4          | 49.1      | 70.7          | 125.7        | 196.3           |                                            |
| (volume in fa<br>Total Wel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I Depth (-)                    | Water level      | (=) Water          | Column             |                |             | Dept        | h to Prod | uct (if prese | nt)          | r = radius in c | m                                          |
| Water Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m (-) _<br>lumn (x) C<br>m (x) | m<br>onversion F | (=)<br>actor (=) L | m<br>itres per 1 \ | Well Volum     | ne          |             | 1         | m             | h            | = height of wa  | ater column in cm                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m (x)                          |                  | (-)                |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-1-1-1-                       |                  | -                  | 2                  | N              | /ater Qua   | lity Para   |           |               |              |                 |                                            |
| Beginning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | purge time                     |                  |                    |                    |                | 1           | 10111       | Ending    | purge time:   | 17.00        |                 |                                            |
| Litres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time                           | pН               | Temp °C            | Cond<br>mS/cm      | DO<br>ppm      | Redox<br>mV | SWL<br>mTOC |           |               | Comment      | ts / observatio | ons                                        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13:56                          | 8.72             | 23.7               | 4959               | 3.6            | -95.2       | 1.75        | Cle       | ar, s         | lightly      | turbid          | 1, NO, NS                                  |
| ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:02                          | 9.20             | 23.2               | 4490               | 4.6            | -119.1      | 1.75        |           |               | 11           |                 |                                            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:10                          | G.70             | 23.8               | 4430               | 7.6            | 126.4       | 1.75        |           |               | 11           |                 |                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:14                          | 9.88             | 22.8               | 4388               | 8.2            | - 127.2     | 1.75        |           |               | 11           |                 |                                            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:19                          | 9.39             | 22.5               | 4373               | 14.9           | - 127.0     | 1.75        |           |               | 15           |                 |                                            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:23                          | 9.39             | 22.7               | 4393               | 14.6           | - 127.0     | 1.75        |           |               | 11           |                 |                                            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:23                          | 9.42             | 22.6               | 4386               | 14.3           | - 128.1     | 1.75        | 5         |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
| 11624334934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lisation<br>iteria             | +/- 0.05         | +/- 10%            | +/- 3%             | +/- 10%        | +/- 10%     |             |           |               |              |                 | turbid / no odour /<br>ges in pumping rate |
| WD' 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.                            | Total Well       |                    | 1                  | I              |             |             |           | *pH, temp,    | cond reading | s not necessary | r if well is purged dry                    |
| and the second se | parameters s                   |                  | N NA               |                    |                | y purged?   | Y Ŋ         |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             | QC Chec     | ks        |               |              | 164743          |                                            |
| Was pre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cleaning sar                   | mpling equir     | oment user         | d for these        | samples?       |             |             | -         | (Y) N         |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cleaning sar                   |                  |                    |                    |                | ontaminatio | on?         | ŀ         | 1 N           |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                | o num nati  |             | ŀ         | -             | A            |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | umentation                     |                  |                    |                    |                |             |             | -         | -             | IA           |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bubbles pres                   |                  |                    |                    |                |             |             | ŀ         |               |              | 011-1           |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ple for meta                   |                  | eu prior to        | preservatio        | 511 <b>5</b> ( |             |             | L         |               | Lab.         | filtered        |                                            |
| DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/Trip                         |                  |                    |                    |                |             |             |           |               |              |                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                  |                    |                    |                |             |             |           |               |              |                 |                                            |

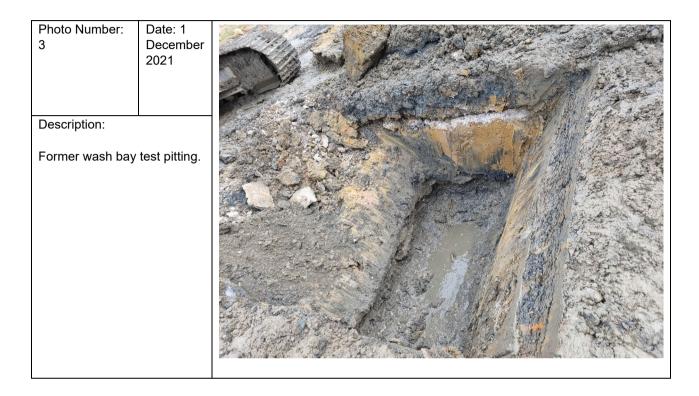



|                                                                                                                 | a line de la                              |                                                               | Berge II                                |                                   |                      | Job In      | formatio    | n              | a dille                                                                       |              | and the sector with a                                                   |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------------------------|-----------------------------------|----------------------|-------------|-------------|----------------|-------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------|
| Date: 1                                                                                                         | 112                                       |                                                               |                                         |                                   |                      |             |             |                |                                                                               |              |                                                                         |
| Project Na                                                                                                      |                                           | MRC                                                           | herts                                   | Col                               | UNP                  |             |             | Project N      | Number: 2                                                                     | 1067         |                                                                         |
| Site Locat                                                                                                      | 0                                         | Burr                                                          | nuch                                    | locul                             | l, wer               | twork       | - Point     | Operator: H -D |                                                                               |              |                                                                         |
| Well ID:                                                                                                        | GGO                                       |                                                               | J                                       | . 0120                            |                      |             |             | Weather        | fine                                                                          |              |                                                                         |
|                                                                                                                 |                                           |                                                               |                                         |                                   |                      | Equ         | uipment     | 6              |                                                                               | -            | 22122222                                                                |
| Water qua                                                                                                       | ality equipm                              | ent descript                                                  | ion:                                    |                                   |                      |             |             |                |                                                                               |              |                                                                         |
| Interface p                                                                                                     | probe descr                               | iption:                                                       |                                         |                                   |                      |             |             |                |                                                                               |              |                                                                         |
| Purging e                                                                                                       | quipment:                                 |                                                               | Bailer                                  | type:                             | Plastic              | т           | eflon       |                |                                                                               |              |                                                                         |
| (please ci                                                                                                      |                                           |                                                               | Pump                                    |                                   | Peristalti           | Su Su       | Ibmersible  | Micro          | o-purge                                                                       | Amazon       | Other:                                                                  |
| Depth of in                                                                                                     | nstalled tub                              | ing (mTOC)                                                    | 5.5n                                    | n                                 |                      |             |             |                |                                                                               |              |                                                                         |
| n <u>e</u> sta                                                                                                  |                                           | 11.00                                                         |                                         | We                                | ell Gaugir           | ig and Pu   | irge Volu   | me Calo        | culations                                                                     |              |                                                                         |
| Casing Dia                                                                                                      | ameter                                    |                                                               | 25mm                                    | n 50m                             | m 100r               | mm 12       | 5mm 1       | 50mm           | 200mm                                                                         | 250mm        | 300mm                                                                   |
| Conversio                                                                                                       |                                           |                                                               | 0.98                                    | 1.96                              | 7.85                 | 31          | .4 4        | 9.1            | 70.7                                                                          | 125.7        | 196.3                                                                   |
| (volume in fa<br>Total Well                                                                                     | Depth (-)                                 | Water level                                                   |                                         |                                   |                      |             | Depti       |                | uct (if preser                                                                |              | r = radius in cm                                                        |
|                                                                                                                 | umn (x) C                                 | onversion F                                                   | actor (=) L                             | itres per 1                       |                      | le          |             | r              | n                                                                             | h            | <ul> <li>height of water column in cm</li> </ul>                        |
|                                                                                                                 |                                           |                                                               |                                         |                                   | W                    | ater Qua    | lity Parar  | neters         |                                                                               |              | the second second second                                                |
| Beginning                                                                                                       | purge time                                | 15:15                                                         |                                         |                                   |                      |             |             | Ending p       | ourge time:                                                                   | 15:48        |                                                                         |
| Litres                                                                                                          | Time                                      | рН                                                            | Temp °C                                 | Cond<br>mS/cm                     | DO<br>ppm            | Redox<br>mV | SWL<br>mTOC |                |                                                                               | Commen       | ts / observations                                                       |
| 0                                                                                                               | 15:15                                     | 8.98                                                          | 97.7                                    | 1559                              | 0.21                 | -51.4       | 1.08        | Clea           | ur, No                                                                        | NS           |                                                                         |
| 1                                                                                                               | 15:21                                     | 9.32                                                          | 22.0                                    | 1506                              | 0.20                 | -55.5       |             | 0.0            | N                                                                             | 1 10-5       |                                                                         |
| 2                                                                                                               | 15.26                                     | 9.29                                                          | 22.0                                    | 1490                              | 0.19                 | -68.2       | 1.06        |                | N                                                                             |              |                                                                         |
| 3                                                                                                               | 15:30                                     | 9.53                                                          | 22.0                                    | 1384                              | 6.25                 |             |             |                | M                                                                             |              |                                                                         |
| 4                                                                                                               | 15:35                                     | 9.79                                                          | 21.9                                    | 1381                              | 0.62                 | -90.3       | 1.06        |                | 16                                                                            |              |                                                                         |
| 5                                                                                                               | 15:38                                     | 9.74                                                          | 21.9                                    | 1370                              | 0.61                 | - 92.5      | 1.00        |                | X <sub>X</sub>                                                                |              |                                                                         |
| 6                                                                                                               | 15:43                                     | 9.73                                                          | 21.9                                    | 1401                              | 0.62                 |             | 1.00        |                | n                                                                             |              |                                                                         |
| 7                                                                                                               | 15:48                                     | 9.77                                                          | 21.9                                    | 1397                              | 0.62                 |             | 1-00        |                | 4                                                                             |              |                                                                         |
|                                                                                                                 |                                           |                                                               |                                         |                                   |                      |             |             |                |                                                                               |              |                                                                         |
|                                                                                                                 |                                           |                                                               |                                         |                                   |                      |             |             |                |                                                                               |              |                                                                         |
|                                                                                                                 |                                           |                                                               |                                         |                                   |                      |             |             |                |                                                                               |              |                                                                         |
| La Persona de | l<br>lisation<br>teria                    | +/- 0.05                                                      | +/- 10%                                 | +/- 3%                            | +/- 10%              | +/- 10%     |             |                |                                                                               |              | / turbid / very turbid / no odour /<br>our, and changes in pumping rate |
| WO: S<br>Did field p                                                                                            | ·86m                                      |                                                               | Volume<br>int of water p                |                                   | ling<br>the well dry | purged?     | Y (N)       |                | *pH, temp, e                                                                  | cond reading | is not necessary if well is purged dry                                  |
| P                                                                                                               |                                           |                                                               | <u> </u>                                |                                   |                      | -           | QC Checl    | (S             |                                                                               |              |                                                                         |
| Was pre-c<br>Was docu<br>Were air b                                                                             | leaning sar<br>umentation<br>pubbles pres | npling equip<br>npling equip<br>of equipment<br>sent in vials | oment prop<br>nt conducte<br>at time of | erly protec<br>ed?<br>collection? | ted from co          |             |             |                | Y     N       Y     N       Y     N       Y     Q       Y     Q       Y     Q | A            | filtered.                                                               |
| vvas samp                                                                                                       | ble for meta                              | Is field filter                                               |                                         | preservatio                       |                      |             |             | L              |                                                                               | . las        | tinerea.                                                                |



### Appendix J Photographic Log




| Client Name: | Site Location:                             | Project Number: |
|--------------|--------------------------------------------|-----------------|
| RobertsCo    | 7-9 Burroway Road, Wentworth<br>Point, NSW | 21067           |







| Client Name: | Site Location:                             | Project Number: |
|--------------|--------------------------------------------|-----------------|
| RobertsCo    | 7-9 Burroway Road, Wentworth<br>Point, NSW | 21067           |



| Photo Number: 4                                                                    | Date: 30<br>November<br>2021 |  |
|------------------------------------------------------------------------------------|------------------------------|--|
| Description:                                                                       |                              |  |
| Marker layer place<br>northern portion of<br>noting geofabric ov<br>approx. 500mm. | the site,                    |  |
|                                                                                    |                              |  |



#### Client Name:

Site Location:

#### Project Number:

RobertsCo

7-9 Burroway Road, Wentworth 2 Point, NSW

21067



| Photo Number: 6      | Date: 1<br>December<br>2021 |                                               |
|----------------------|-----------------------------|-----------------------------------------------|
| Description: Marke   | er layer                    |                                               |
| placement in the c   | entral                      |                                               |
| portion of the site. |                             | Martin and and and and and and and and and an |
|                      |                             |                                               |



| Client Name: | Site Location:                             | Project Number: |
|--------------|--------------------------------------------|-----------------|
| RobertsCo    | 7-9 Burroway Road, Wentworth<br>Point, NSW | 21067           |



| Photo Number: 8       | Date: 1<br>December<br>2021 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description:          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Capping placemen      | it in the                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| central portion of th | ne site.                    | and the second s |
|                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                             | and a start and a start and a start and a start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                             | The set of the set of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                             | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Client Name: | Site Location:                             | Project Number: |
|--------------|--------------------------------------------|-----------------|
| RobertsCo    | 7-9 Burroway Road, Wentworth<br>Point, NSW | 21067           |







| Client Name: | Site Location:                             | Project Number: |
|--------------|--------------------------------------------|-----------------|
| RobertsCo    | 7-9 Burroway Road, Wentworth<br>Point, NSW | 21067           |

| Photo Number:<br>11                                                                                                                                                   | Date: 8<br>December<br>2021                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| Description:<br>View across the si<br>southeast showing<br>capping using mat<br>the western portion<br>noting final level di<br>between Ridges R<br>rest of the site. | completed<br>erial from<br>of the site,<br>fference |  |

| Photo Number:<br>12                                                                                                                                                                                   | Date: 8<br>December<br>2021                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Description:                                                                                                                                                                                          |                                                                                                |  |
| View across the sit<br>southwest showing<br>capping using mate<br>the western portion<br>noting final level di<br>between Ridges R<br>rest of the site. Ca<br>former mechanics<br>being conducted (or | completed<br>erial from<br>of the site,<br>fference<br>oad and the<br>oping of the<br>pit area |  |



| Client Name: | Site Location:                             | Project Number: |
|--------------|--------------------------------------------|-----------------|
| RobertsCo    | 7-9 Burroway Road, Wentworth<br>Point, NSW | 21067           |



## We are engineers, scientists <sup>and</sup> innovators



BRISBANE OFFICE PO Box 41 Indooroopilly Centre QLD 4068 SYDNEY OFFICE Suite 1, Level 9, 189 Kent Street Sydney NSW 2000 MELBOURNE OFFICE Level 26, 360 Collins Street Melbourne VIC 3000

www.geosyntec.com.au