

APPENDIX E - ADDENDUM TRAFFIC IMPACT ASSESSMENT

Luddenham Advanced Resource Recovery Centre Addendum Traffic Impact Assessment

Prepared for Coombes Property Group and KLF Holdings April 2021

Servicing projects throughout Australia and internationally

SYDNEY Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE Level 3, 175 Scott Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE Level 1, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE Ground floor, 188 Normanby Road Southbank VIC 3006 T 03 9993 1900

PERTH Level 6, 191 St Georges Terrace Perth WA 6000

CANBERRA PO Box 9148 Deakin ACT 2600

www.emmconsulting.com.au

Luddenham Advanced Resource Recovery Centre

Addendum Traffic Impact Assessment

Prepared for Coombes Property Group and KLF Holdings April 2021

EMM Sydney Ground floor, 20 Chandos Street St Leonards NSW 2065

T 02 9493 9500E info@emmconsulting.com.au

www.emmconsulting.com.au

Luddenham Advanced Resource Recovery Centre

Addendum Traffic Impact Assessment

Report Number		
J190749 RP53		
Client		
Coombes Property Group and KLF Holdings		
Date		
28 April 2021		
Version		
v2 Final		

Prepared by

KWali

Eric Lei Traffic Engineer 28 April 2021

Approved by

Abdullah Uddin Associate Traffic Engineer 28 April 2021

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collect ed at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

1	Introduction						
	1.1 Background						
	1.2	Project ov	verview	3			
	1.3	Project re	finements	4			
		1.3.1	Revised transport strategy	4			
		1.3.2	Proposed road upgrades	6			
		1.3.3	Revised traffic numbers	7			
		1.3.4	ARRC layout refinements	8			
	1.4	Purpose a	and scope of this report	8			
2	Traffic	generatio	on	10			
	2.1	Baseline t	traffic volumes	10			
	2.2	Traffic ge	neration	10			
	2.3	Traffic dis	stribution	12			
	2.4	Cumulativ	ve traffic	13			
		2.4.1	Quarry reactivation	13			
		2.4.2	Quarry infilling	13			
		2.4.3	Cumulative traffic	14			
3	Impac	t assessme	ent	16			
	3.1	Intersecti	on performance	16			
	3.2	Mid-block	k capacity analysis	19			
		3.2.1	Road capacity	19			
		3.2.2	Adams Road mid-block traffic impact	20			
	3.3	Road safe	ety	21			
	3.4	Internal t	raffic movements	22			
	3.5	Queuing	analysis	22			
4	Summ	ary and co	onclusion	24			
5	Refere	ences		25			
Atta	chmen	ts					

Attachment A Summary of meeting with TfNSW and Council on 25 March 2021	A.26
---	------

Attachment B Intersection traffic survey	B.27
Attachment C Updated STFM outputs	C.28
Attachment D Swept paths	D.29
Attachment E SIDRA results	E.30

Tables

Table 2.1	A comparison of traffic generation between the EIS TIA and Addendum TIA	11
Table 2.2	Cumulative traffic generation	14
Table 3.1	Intersection LOS standards	16
Table 3.2	SIDRA modelling results for The Northern Road/Adams Road	17
Table 3.3	SIDRA modelling results for Elizabeth Drive/Adams Road	17
Table 3.4	SIDRA modelling results for Elizabeth Drive/Luddenham Road	18
Table 3.5	RMS (now TfNSW) roadway hourly capacity for a two-lane two-way rural road (70 km/h speed li	mit) 19
Table 3.6	Typical mid-block capacities for urban roads with interrupted flow	20
Table 3.7	Urban road peak hour lane flows per direction	20
Table 3.8	Adams Road mid-block traffic (2024)	21
Table 3.9	Adams Road mid-block traffic (2029)	21
Table 3.10	Daily traffic generation (2029)	22
Table 3.11	Queuing analysis	23

Figures

Figure 1.1	Revised transport strategy	5
Figure 1.2	Upgrade to Elizabeth Drive/Adams Road intersection	7
Figure 2.1	2024 baseline traffic volumes	10
Figure 2.2	2029 baseline traffic volumes	10
Figure 2.3	Additional ARRC traffic generation in 2024	12
Figure 2.4	Additional ARRC traffic generation in 2029	12
Figure 2.5	Quarry traffic generation in 2024	13
Figure 2.6	Quarry rehabilitation traffic generation in 2029	14
Figure 2.7	Development with cumulative traffic generation in 2024	15
Figure 2.8	Development with cumulative traffic generation in 2029	15

1 Introduction

1.1 Background

In late 2019, CFT No 13 Pty Ltd, a member of Coombes Property Group (CPG), acquired the property at 275 Adams Road, Luddenham New South Wales (NSW) (Lot 3 in DP 623799, 'the subject property') within the Liverpool City Council municipality. The subject property is host to an existing shale/clay quarry.

CPG in partnership with KLF (the applicants) are seeking to construct and operate an advanced resource recovery centre (the ARRC) on the subject property (the project). The project is classed as a State Significant Development (SSD) under the State Environmental Planning Policy (State and Regional Development) 2011 (SRD SEPP).

A traffic impact assessment (TIA) was prepared by EMM Consulting Pty Limited (EMM) to support the Environmental Impact Statement (EIS) for the project. The TIA addressed the Secretary's Environmental Assessment Requirements (SEARs) and assessed the potential traffic impacts associated with the project.

Since the submission of the EIS, refinements have been made to the project in response to further detailed design, submissions received on the EIS and in response to further consultation with government agencies. A Submissions Report that responds to submissions made by agencies, organisations, and the community, has been prepared by EMM. The Submissions Report also describes the additional activities undertaken relating to the project since exhibition of the EIS, including a summary of project refinements, further technical studies undertaken, and stakeholder and community engagement activities.

This Addendum TIA forms part of the Submissions Report and has been prepared to assess the potential traffic and transport impacts of the refined project.

Separate to the ARRC project, the applicants have submitted an application to modify the existing quarry consent to allow quarry operations on the subject property to recommence (Modification 5, also referred to as MOD 5). This application is currently being assessed by DPIE. The applicants also intend to lodge a future modification application to modify the quarry consent to allow infilling of the quarry void with non-recyclable construction and demolition waste from the ARRC. Pending approval of MOD 5 and the future modification application, quarry extraction will be carried out concurrently to ARRC construction and operation until December 2024 after which time quarry infill will be carried out concurrently to the ARRC operations until such time as the quarry void is filled and rehabilitated ready for final agribusiness land use.

1.2 Project overview

A detailed description of the project was provided in Chapter 2 of the EIS (EMM 2020a). The key components of the ARRC project are as follows:

- construction and operation of an advanced construction and demolition resource recovery centre;
- accepting and processing up to 600,000 tonnes per annum (tpa) of waste for recycling;
- despatch of approximately 540,000 tpa of recycled product;
- despatch of approximately 60,000 tpa of unrecyclable material either to an offsite licensed waste facility or to the adjacent quarry void (the later will be subject to separate approval);
- upgrade of the access road from the subject property to Adams Road;

- use of the access road from the subject property to Adams Road;
- the ARRC will not accept putrescibles, liquid or hazardous waste; and
- the ARRC will operate up to 24 hours a day, 7 days per week.

1.3 Project refinements

Refinements to the project as described in Chapter 2 of the EIS are detailed in Section 3.1 of the Submissions Report. The traffic-related refinements relevant to this Addendum report are summarised below.

1.3.1 Revised transport strategy

The ARRC is centrally located and will service demand for resource recovery services from existing and developing areas in Western Sydney and the Aerotropolis. Access to the ARRC is required from the north via Elizabeth Drive to provide recycling services to developed areas to the north and east. Access is also required from the south via The Northern Road to service developed areas and developing areas in the Aerotropolis, including the Aerotropolis Core to the south.

The TIA (EMM 2020b) prepared for the EIS (EIS TIA) presented two traffic distribution scenarios for the ARRC development. The first traffic distribution scenario considered all ARRC-related heavy vehicles (that are greater 3 tonnes) accessing the ARRC from Elizabeth Drive. This scenario assumed the existing load limit on Adams Road would remain south of the site access pending future upgrades. The second traffic distribution scenario considered ARRC-related heavy vehicles accessing the ARRC with an even distribution from Elizabeth Drive and The Northern Road following the upgrade and subsequent lifting of the load limit of Adams Road south of the site access.

Consultation with TfNSW and Liverpool City Council has continued since the submission of the EIS. TfNSW raised safety concerns in relation to the right hand turn for heavy vehicles into Adams Road from Elizabeth Drive.

In response to TfNSW's concerns, CPG and KLF have updated their approach to ARRC access and have developed a revised transport strategy for the ARRC. The revised transport strategy was discussed at a meeting with TfNSW, Liverpool City Council and the Department of Planning, Industry and Environment on 25 March 2021. A summary of the meeting outcomes is presented in Attachment A.

The revised strategy is shown in Figure 3.1 and proposes heavy vehicle and light vehicle access the ARRC via Elizabeth Drive with the exception that no vehicles will access the site via Elizabeth Drive west. Access would also be provided via The Northern Road. Lifting the load limit on Adams Road south of the site would be enabled by CPG and KLF upgrading the pavement between the site access and Anton Road and upgrading the pavement between south of Anton Road by other parties.

The existing culvert on Elizabeth Drive directly west of the Elizabeth Drive/Adams Road intersection is a constraint to providing a right-hand turn treatment capable of meeting Austroads standards. Accordingly, the right-hand turn movement from Elizabeth Drive into Adams Road will be restricted for ARRC development traffic. The intersection will be upgraded by CPG and KLF to improve the other turn movements (left turn into Adams Road, and left and right turns out of Adams Road).

Luddenham Advanced Resource

creating opportunities

Recovery Centre

Addendum TIA

Figure 1.1

KEY

🔲 Study area

Watercourse/drainage line

- Proposed transport strategy Western Sydney airport
- ARRC impact area
- Waterbody
- Major road
- Minor road
- ······ Track

1.3.2 Proposed road upgrades

The proposed transport strategy will require the following upgrades:

- Upgrade of turn treatments at the Elizabeth Drive/Adams Road intersection and restriction of the right-hand turn from Elizabeth Drive west into Adams Road as follows (refer proposed layout in Figure 1.2 and preliminary concept sketch in Attachment D):
 - provision of a 90 m deceleration left-hand turn lane into Adams Road to meet the Austroads guidelines;
 - provision of short left hand turn lane on Adams Road into Elizabeth Drive to minimise queueing on Adams Road;
 - widening of existing Elizabeth Drive/Adams Road intersection to accommodate B-double swept paths; and
 - prohibiting the right-hand turn from Elizabeth Drive west into Adams Road for all inbound vehicles requiring these vehicles to access the ARRC using The Northern Road and the Adams Road south of the ARRC.
- Pavement upgrades on Adams Road between Elizabeth Drive and Anton Road to enable the existing 3-tonne load limit to be lifted. It is noted pavement upgrades will likely be carried out between the site access and Elizabeth Drive as part of the quarry reactivation (MOD 5). Pavement upgrades on Adams Road between The Northern Road and Anton Road will be carried out as part of road upgrades required for the Western Sydney Airport (WSA).
- Road widening will also be required at the site access/Adams Road intersection to allow B-doubles to turn into the ARRC site without encroachment.

Figure 1.2 Upgrade to Elizabeth Drive/Adams Road intersection

1.3.3 Revised traffic numbers

The TIA assumed extremely conservative incoming average load of 4.4 t based on weighbridge records from KLF's Camellia recycling facility which accepts waste from existing residential and commercial areas. The ARRC will accept some loads from similar sources to KLF's Camellia recycling facility. However, it is expected to accept a far larger portion of waste in large trucks (eg truck and dogs) from industrial, commercial and major infrastructure construction/demolition projects in the rapidly developing areas around the ARRC.

The traffic assumptions were inconsistently reported in the TIA and Section 2.2.3 of the EIS project description.

The EIS project description outlined the following, more realistic assumptions regarding incoming waste:

• approximately 150,000–200,000 tpa bulk waste transfer from other facilities within the KLF group and other recycling facilities that do not have the ability to recycle to level that will be achieved by the ARRC (assumed to arrive in 30 t loads);

- approximately 100,000–200,000 tpa waste from construction, industrial and commercial sites logistically close to the ARRC (conservatively assumed to arrive in 4.4 t loads);
- approximately 100,000–200,000 tpa bulk general solid waste/excavated materials from projects logistically close to the facility (assumed to arrive in 30 t loads).

This Addendum TIA accounts for these more realistic operational assumptions (refer Section 2.2).

1.3.4 ARRC layout refinements

Minor refinements to the ARRC layout and design have also been made in response to submissions received and further conceptual design. Refinements to the ARRC layout relevant to this Addendum include:

- the addition of another inbound weighbridge to remove the potential for queuing to occur on the internal ARRC access road;
- a change to the direction that heavy vehicles dispatching products will travel through the ARRC warehouse (refer to Section 3.4 and swept paths contained in Attachment D);
- minor refinements to the location of ARRC warehouse entry and exit points to accommodate the safe movement of B-doubles through the ARRC site (refer swept paths contained in Attachment D); and
- minor refinements to the layout and access arrangements of the light vehicle carpark to meet car park compliance with the relevant Australian standards.

1.4 Purpose and scope of this report

This Addendum TIA has been prepared to assess the potential traffic and transport impacts of the refined project including consideration of the revised ARRC transport strategy, revised traffic numbers, proposed road upgrades and traffic movements within the ARRC.

At the request of TfNSW, this Addendum TIA uses the latest TfNSW Strategic Travel Forecasting Model (STFM) outputs for the AM and PM peak periods. TfNSW provided updated STFM outputs for traffic volumes on Elizabeth Drive, Luddenham Road and Adams Road north of the site access in February 2021 and STFM outputs for traffic volumes on The Northern Road and Adams Road south of the site access in March 2021.

This Addendum TIA provides an update on the EIS TIA by considering the updated STFM outputs and the updated ARRC development traffic. This Addendum also includes a cumulative assessment of other developments on the subject property, namely the quarry reactivation and quarry rehabilitation at the site.

Two scenarios are considered in this Addendum for the future years 2024 and 2029:

- baseline traffic cases including surveyed/STFM adjusted traffic; and
- cumulative subject property development traffic cases including baseline traffic, ARRC development traffic and
 - for 2024, the quarry reactivation traffic; and
 - for 2029, the quarry rehabilitation traffic.

The existing intersection operations as outlined in the EIS TIA are unchanged and therefore not reproduced in this Addendum. For the future years, 2024, 2029, the surveyed 2020 traffic volumes have been adjusted by using the

STFM traffic model. The surveyed traffic volumes and the STFM outputs are presented in Attachment B and Attachment C respectively.

This Addendum addresses the years 2024 and 2029 scenarios due to the uncertainties regarding the future road network and traffic volumes beyond 2029.

2 Traffic generation

2.1 Baseline traffic volumes

The 2024 and 2029 peak hourly baseline traffic volumes are presented in Figure 2.1 and Figure 2.2 respectively.

Figure 2.2 2029 baseline traffic volumes

2.2 Traffic generation

As noted in Section 1.3.3, this Addendum accounts for more realistic operational assumptions regarding incoming waste. Specifically, the assumption that 400,000 tpa of waste will arrive via 30 t loads (on average) and 200,000 tpa will arrive by 4.4 t loads (on average).

While light vehicles (ie utility vehicles, cars and trailers) will access the ARRC and will be accommodated within the designated hand unloading area, the numbers of these vehicles are likely to be low due to the ARRC's strategic

location at the vicinity of existing and developing commercial and industrial areas, rather than small scale residential developments.

KLF's operational experiences at its other facilities also note a generally low patronage of light vehicles. Around 10 light vehicles a day are expected to deliver waste which equates to 1 light vehicle per hour. In addition, there will be around 42 light vehicle movements a day associated with ARRC staff and visitors (ie sales representatives).

While it is proposed to operate the ARRC seven days per week, the number of active days in a year has be updated to 300 days (six days per week, minus public holidays) from 252 days in the EIS TIA as this is believed to better represent the split between weekday and weekend traffic.

A comparison of the development traffic assumed in the EIS TIA and in this Addendum is presented in Table 2.1.

Table 2.1 A comparison of traffic generation between the EIS TIA and Addendum TIA

Assumptions	EIS TIA	Addendum TIA
Active days per year	252	300
Incoming waste truck loading capacity		
-400,000 tpa	4.4 t	30 t
-200,000 tpa	4.4 t	4.4 t
Outgoing waste truck loading capacity		
-600,000 tpa	33.5 t	30 t
Daily heavy vehicle traffic movements	1,224	525
AM peak hourly heavy vehicle traffic movements	184	79
PM peak hourly heavy vehicle traffic movements	62	27
Daily light vehicle traffic movements	84	104
AM peak hourly light vehicle traffic movements	42	44
PM peak hourly light vehicle traffic movements	0	2

The ARRC's maximum light and heavy vehicle traffic generation is presented in Table 2.1 However, there will be a reduction in the heavy vehicle traffic numbers in 2024 and 2029 scenarios as follows:

- in 2024 which is the ramp up period, the ARRC is expected to accept up to 300,000 tpa, with the following heavy vehicle traffic generation:
 - daily heavy vehicle traffic movements of 263 movements;
 - AM peak hourly heavy vehicle traffic movements of 40 movements;
 - PM peak hourly heavy vehicle traffic movements of 14 movements;
- in 2029 when quarry rehabilitation is in progress, approximately 10% of the products being unrecyclable materials will be landfilled at the quarry site, where there will only be 540,000 tpa outgoing waste with the following heavy vehicle traffic generation:
 - daily heavy vehicle traffic movements of 512 movements;
 - AM peak hourly heavy vehicle traffic movements of 77 movements; and

- PM peak hourly heavy vehicle traffic movements of 26 movements.

The staff and visitor arrivals to the site are assumed to coincide with the AM peak hour. There will also be 2 light vehicle movements (1 inbound and 1 outbound) per hour throughout the day delivering waste to and from the site.

The AM peak hourly heavy vehicle movements (79 movements) presented in Table 2.1 are made up of 29.4 trucks delivering waste and 10 trucks dispatching waste, totalling 39.4 trucks or 79 movements.

2.3 Traffic distribution

The revised transport strategy is shown in Figure 1.1. As noted in Section 1.3.1, the light and heavy vehicle right turn movements from Elizabeth Drive into Adams Road will be restricted and instead vehicles originating north-west of the site will approach the site via The Northern Road/Adams Road intersection.

Figure 2.3 and Figure 2.4 present the ARRC-related peak hour traffic distribution in 2024 and 2029 respectively.

Figure 2.3 Additional ARRC traffic generation in 2024

Figure 2.4 Additional ARRC traffic generation in 2029

2.4 Cumulative traffic

2.4.1 Quarry reactivation

Following the reactivation of the quarry (MOD 5), up to 100 heavy vehicle movements per day with a peak of 10 heavy vehicle movements per hour will access the quarry. All MOD 5 heavy vehicle traffic will approach and depart via Elizabeth Drive east (north of the site access). Light vehicles approaching the site from the west will all be via The Northern Road. Quarry operations will cease in December 2024 as per the existing quarry consent. Quarry traffic in 2024 is presented in Figure 2.5

Figure 2.5 Quarry traffic generation in 2024

2.4.2 Quarry infilling

As noted in Section 1.1, the applicants also intend to lodge a future modification application to modify the quarry consent to allow infilling of the quarry void with non-recyclable construction and demolition waste from the ARRC. Assuming approval of the future modification application, quarry infilling will be carried out concurrently to the ARRC operations from 2025 until such time as the quarry void is filled and rehabilitated ready for final agribusiness land use.

It has been assumed that quarry rehabilitation will require 150,000 tpa of material in addition to the non-recyclable residues from the ARRC. Assuming 300 active days in a year and load arriving in 30 t trucks, the process will generate 33 daily truck movements, or 4 truck movements in the peak hours.

The expected traffic distribution of quarry infilling in 2029 is shown in Figure 2.6. As per the revised transport strategy, quarry rehabilitation traffic originating from the west will access the subject property via The Northern Road and Adams Road south of the site access rather than Elizabeth Drive west.

Figure 2.6 Quarry rehabilitation traffic generation in 2029

2.4.3 Cumulative traffic

Cumulative traffic numbers have been derived by combining the baseline TfNSW volumes with the ARRC traffic generation, quarry reactivation (2024) and quarry infilling (2029). Table 2.2 presents the ARRC and the cumulative traffic generation in 2024 and in 2029.

Table 2.2 Cumulative traffic generation

Year	Development	Vehicle type	Daily movements	AM peak hourly movements	PM peak hourly movements
2024	ARRC	Light vehicles	104	44	2
		Heavy vehicles	263	40	14
	Quarry reactivation	Light vehicles	30	15	0
		Heavy vehicles	100	10	10
2029	ARRC	Light vehicles	104	44	2
		Heavy vehicles	512	77	26
	Quarry infilling	Light vehicles	0	0	0
		Heavy vehicles	33	4	4

Cumulative traffic volumes are shown in 2024 and 2029 in Figure 2.7 and Figure 2.8 respectively.

Figure 2.8 Development with cumulative traffic generation in 2029

3 Impact assessment

3.1 Intersection performance

The key intersections have been modelled with the SIDRA Intersection 9.0 software; a micro-analytical tool for individual intersections and linked intersection-network modelling. The modelling is based on the traffic survey data detailed in Section 2. SIDRA provides the following performance indicators:

- Degree of saturation (DOS) the total usage of the intersection expressed as a factor of 1 with 1 representing 100% use/saturation (eg 0.8 = 80% saturation);
- Average delay (DEL) the average delay in seconds encountered by all vehicles passing through the intersection. It is often important to review the average delay of each approach as a side road could have a long delay time, while the large free flowing major traffic will provide an overall low average delay;
- Level of service (LOS) this is a categorisation of average delay, intended for simple reference; and
- 95% queue lengths (Q95) is defined to be the queue length in metres that has only a 5% probability of being exceeded during the analysed time period. It transforms the average delay into measurable distance units.

The LOS is a good indicator of overall performance for individual intersections, with each level summarised in Table 6.1.

Table 3.1 Intersection LOS standards

Level of service	Average delay (seconds per vehicle)	Traffic signals, roundabout	Priority intersection ('Stop' and 'Give Way')				
A	<14	Good operation	Good operations				
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity				
С	29 to 42	Satisfactory	Satisfactory, but accident study required				
D	43 to 56	Operating near capacity	Near capacity and accident study required				
E	57 to 70	At capacity. At traffic signals, incidents will cause extensive delays.	At capacity; required other control mode				
		Roundabouts require other control mode.					
F	>71	Unsatisfactory with excessive queuing	Unsatisfactory with excessive queuing; required other control mode				

Source: RTA Guide to Traffic Generating Development (RTA 2002)

The SIDRA results for the key affected intersections are presented in the following tables.

Table 3.2 SIDRA modelling results for The Northern Road/Adams Road

Control/ Scenarios		AM Pea	ık			PM Peak				
Signalised	Traffic volume	DEL [seconds] (movement)	LOS	DOS	Q95 [m] (approach)	Traffic volume	DEL [seconds] (movement)	LOS	DOS	Q95 [m] (approach)
2024 baseline traffic	2,969	32.4 (overall)	С	0.904	218.4 (south)	3,181	34.2 (overall)	С	0.916	274.4 (north)
2024 dev with cumulative traffic	3,048	32.3 (overall)	С	0.904	218.4 (south)	3,192	34.3 (overall)	С	0.916	274.4 (north)
2029 baseline traffic	3,539	32.2 (overall)	С	0.861	332.9 (south)	3,657	35.5 (overall)	С	0.902	319.9 (north)
2029 dev with cumulative traffic	3,634	33.9 (overall)	С	0.866	339.5 (south)	3,676	33.8 (overall)	С	0.922	305.8 (north)

Key findings:

- the intersection will operate at LOS C in the AM and PM peak hours in 2024 and 2029, with or without the development and cumulative traffic;
- with development and cumulative traffic, the intersection will operate close to capacity but the impact of the development traffic is marginal; and
- the longest queues will occur on The Northern Road, on the south approach during the AM peak hour and on the north approach during the PM peak hour.

Table 3.3 SIDRA modelling results for Elizabeth Drive/Adams Road

Control/ Scenarios		AM Pea		PM Peak						
Priority controlled	Traffic volume	DEL [seconds] (movement)	LOS	DOS	Q95 [m] (approach)	Traffic volume	DEL [seconds] (movement)	LOS	DOS	Q95 [m] (approach)
2024 baseline traffic	1,421	13.5 (RT from southwest approach)	A	0.482	7.7 (northwest)	1,489	14.2 (RT from southwest approach)	A	0.472	20.7 (northwest)
2024 dev with cumulative traffic	1,457	15.2 (RT from southwest approach)	В	0.483	8.5 (northwest)	1,506	15.3 (RT from southwest approach)	В	0.473	21.1 (northwest)
2029 baseline traffic	1,418	12.3 (RT from southwest approach)	A	0.456	5.9 (southwest)	1,342	11.0 (RT from southwest approach)	A	0.386	10.1 (northwest)

Table 3.3 SIDRA modelling results for Elizabeth Drive/Adams Road

Control/ AM Peak Scenarios					PM Peak					
2029 dev with cumulative traffic	1,455	13.3 (RT from southwest approach)	В	0.456	6.3 (southwest)	1,357	11.4 (RT from southwest approach)	A	0.387	10.2 (northwest)

Key findings:

- all approaches (including the right turn movement from Adams Road) will operate at LOS A in the AM and PM peak hours in 2024 and 2029 without the development and cumulative traffic;
- with development and cumulative traffic, all approaches will operate at LOS B or better in the AM and PM peak hours with ample of spare capacity (56%) to accommodate additional traffic; and
- the longest queues (up to 21.1 m) will occur in the northwest approach (Elizabeth Drive west) in the AM and PM peak hours in 2024. In 2029, the longest queues will occur in the southwest and northwest approach in the AM and PM peak hours respectively.

Table 3.4 SIDRA modelling results for Elizabeth Drive/Luddenham Road

Control/ Scenarios		AM Pea	ak			PM Peak									
Priority controlled	Traffic volume	DEL [seconds] (movement)	LOS	DOS	Q95 [m] (approach)	Traffic volume	DEL [seconds] (movement)	LOS	DOS	Q95 [m] (approach)					
2024 baseline traffic	1,741	18.5 (RT from northeast approach)	В	0.416	16.5 (northeast)	1,854	21.4 (RT from northeast approach)	В	0.780	40.6 (northeast)					
2024 dev with cumulative traffic	1,747	18.7 (RT from northeast approach)	В	0.421	16.5 (northeast)	1,857	21.7 (RT from northeast approach)	В	0.785	41.2 (northeast)					
2029 baseline traffic	1,667	16.5 (RT from northeast approach)	В	0.391	16.1 (northeast)	1,638	15.1 (RT from northeast approach)	В	0.607	25.4 (northeast)					
2029 dev with cumulative traffic	1,679	16.8 (RT from northeast approach)	В	0.393	16.1 (northeast)	1,642	15.3 (RT from northeast approach)	В	0.612	25.7 (northeast)					

Key findings:

- all approaches (including the right turn movement from Luddenham Road) will operate at LOS B or better in the AM and PM peak hours in 2024 and 2029, with or without the development and cumulative traffic;
- even with development and cumulative traffic, the intersection will still have 20% spare capacity to accommodate additional traffic; and

• the longest queues (up to 41.2 m) will occur in the northeast approach for the right turning vehicles from Luddenham Road to Elizabeth Drive during the AM and PM peak hours.

Details of the SIDRA results are presented in Attachment E.

3.2 Mid-block capacity analysis

The mid-block levels of service on rural and urban roads are assessed based on a vehicle's average travel speed. At low traffic volumes and under ideal conditions, drivers are able to travel at their desired speed without interference. As traffic volumes increase, and as roadway, terrain and traffic conditions become less than ideal, drivers are affected by the presence of other vehicles on the road and bunches form in the traffic stream.

Elizabeth Drive and The Northern Road are state arterial roads which carry regional traffic. These two roads are currently either being upgraded or planning to be upgraded (Department of Planning, Industry, and Environment 2019), which should have adequate mid-block capacities. The project-related traffic generation will only contribute a small proportion to their baseline traffic volumes. Therefore, in this report the mid-block capacity analysis has only been conducted for Adams Road.

Adams Road is currently a rural road with low to moderate traffic volumes. However, the road will become more urbanised following the development of the Western Sydney Airport. Therefore, for the year 2024 traffic scenarios, mid-block capacity analysis is undertaken as a rural road and for the future 2029 scenarios, the capacity analysis is undertaken as a rural road and for the future 2029 scenarios, the capacity analysis is undertaken as a rural road and for the future 2029 scenarios, the capacity analysis is undertaken as a rural road and for the future 2029 scenarios, the capacity analysis is undertaken as a rural road and for the future 2029 scenarios, the capacity analysis is undertaken as an urbanised road.

3.2.1 Road capacity

i Existing rural nature (2024)

Table 4.5 of *Guide to Traffic Generating Developments* (RTA 2002) provides the two-way hourly traffic capacities (ie number of vehicles per hour) for two-lane roads for different Levels of Service with a design speed of 100 km/h based on different terrain types. The capacities assume 60% of traffic is travelling in one direction and 40% is travelling in the other direction. For an 80 km/h design speed, the capacities are between 85–95% of the capacity for a 100 km/h design speed.

The existing posted speed limit along Adams Road is 70 km/h which indicates a design speed of 80 km/h, as the design speed is generally 10 km/h higher than operating speed. Thus, the capacity of Adams Road is 90% of the capacity for a 100 km/h design speed.

The capacities for each LOS transition (ie the combined number of vehicles travelling in both directions at where the LOS decreases) are provided in Table 3.5.

Table 3.5RMS (now TfNSW) roadway hourly capacity for a two-lane two-way rural road (70 km/h
speed limit)

Terrain	Level of service transition	ice Effect of percentage of heavy vehicles (in traffic flow) 0% 5% 10% 15%										
		0%	5%	10%	15%							
Level	A/B*	284	266	252	239							
	B/C	567	531	504	477							
	C/D	927	873	828	783							

D/E	1,467	1,395	1,332	1,269	
E/F	2,367	2,250	2,151	2,061	

Notes: *Assumed to be 50% of upper limit of B/C LOS.

ii Future urban nature (2029)

The Austroads *Guide to Traffic Management Part 3: Traffic Studies and Analysis* (Austroads 2016) provides typical mid-block capacities for various types of urban roads. These are provided in Table 3.6.

Table 3.6 Typical mid-block capacities for urban roads with interrupted flow

Type of lane		One-way mid-block capacity per lane (passenger cars per hour)
Median or inner lane	Divided road	1,000
	Undivided road	900
Middle lane (of a 3-lane carriageway)	Divided road	900
	Undivided road	1,000
Kerb lane	Adjacent to parking lane	900
	Occasional parked vehicles	600
	Clearway conditions	900

Source: Austroads (2016).

Based on its existing configuration as an undivided road, Adams Road has an urban capacity of 900 vehicles per hour per lane for clearway conditions, which is not affected by the proportion of heavy vehicles in the traffic flow.

The maximum peak hour flow for each LOS, for one lane of unidirectional travel, based on volume/capacity ratios applicable for rural roads in level terrain with no sight distance restriction on overtaking are provided in Table 3.7. These are indicative figures based on the rural volume/capacity ratios for a maximum lane capacity of 900 vehicles per hour in each direction.

Table 3.7 Urban road peak hour lane flows per direction

Level of service	Flow (passenger cars per hour)
A	120
В	240
c	380
D	570
E	900

3.2.2 Adams Road mid-block traffic impact

The mid-block capacities of Adams Road in 2024 and the predicted peak hour traffic volumes (baseline + cumulative site traffic) provided in Table 3.8

Table 3.8Adams Road mid-block traffic (2024)

Scenario	Location on Adams Road	Peak hour volume	Heavy vehicle percentage	Level of Service
Baseline	North of site access	414 (AM) / 446 (PM)	0.7% (AM) / 0.2% (PM)	В
	South of site access	534 (AM) / 552 (PM)	11.0% (AM) / 4.7% (PM)	С
Development with	North of site access	448 (AM) / 462 (PM)	6.3% (AM) / 3.2% (PM)	В
cumulative traffic	South of site access	609 (AM) / 562 (PM)	13.8% (AM) / 6.4% (PM)	С

In 2024, Adams Road will operate at a LOS B north of the site access and LOS C south of the site access, with or without the development (Table 3.8).

The mid-block capacities of Adams Road in 2029 and the predicted peak hour traffic volumes (baseline + cumulative site traffic) are provided under urban traffic conditions in Table 3.9.

Table 3.9Adams Road mid-block traffic (2029)

Scenario	Location on Adams Road	Direction	Peak hour volume	Level of Service
Baseline	North of site access	Northbound	444 (AM) / 409 (PM)	D
		Southbound	75 (AM) / 153 (PM)	В
	South of site access	Northbound	283 (AM) / 165 (PM)	С
		Southbound	355 (AM) / 500 (PM)	D
Development with	North of site access	Northbound	465 (AM) / 418 (PM)	D
cumulative traffic		Southbound	89 (AM) / 158 (PM)	В
	South of site access	Northbound	352 (AM) / 176 (PM)	С
		Southbound	376 (AM) / 507 (PM)	D

In 2024, Adams Road will operate at a LOS D with or without the development (Table 3.9).

3.3 Road safety

Assuming the 4-hour peak periods in the STFM results represent 40% of the daily traffic, the ARRC traffic generation will represent up to 4.77% of the daily traffic in the vicinity of the site in 2029. The ARRC traffic generation will represent a larger proportion of the total traffic in 2029 compared to 2024 because the ARRC is expected to only process up to 300,000 tpa in 2024.

The daily cumulative subject property traffic generation compared to the overall road network traffic is presented in Table 3.10.

Table 3.10Daily traffic generation (2029)

Location	Baseline daily traffic	ARRC and cumulative daily traffic generation	Post development with cumulative daily traffic	Percentage of increase due to ARRC development
Adams Road north of site access	7,318	235	7,553	3.11%
Adams Road south of site access	8,285	415	8,700	4.77%
Elizabeth Drive	8,155	133	8,288	1.60%
The Northern Road	26,195	211	26,406	0.80%

3.4 Internal traffic movements

The proposed movement of vehicles through the ARRC site has been revised since the submission of the EIS. Inbound vehicles dropping off waste will access the ARRC warehouse via the inbound weighbridges, entering the warehouse via the second entrance of the warehouse's eastern side and exiting via the southern warehouse exit. The majority of vehicles picking up recycled product are expected to have their tares pre-recorded. Accordingly, vehicles picking up recycled product will enter the western entrance of the ARRC and be loaded directly from the product bays before exiting the warehouse via the northern exit on the eastern side and travelling around the outside of the ARRC warehouse to access the outbound weighbridge. A low proportion of vehicles picking up product (ie 1-2 per hour) will need to have their tare's recorded prior to picking up product. These vehicles will drive directly through the warehouse via the western entrance and do a loop around to the outbound weighbridge before re-entering the western warehouse entrance to be loaded.

All outbound vehicles will travel through the outbound weighbridge

Vehicles that have entered the western entrance and picked up product will give way to inbound vehicles before turning right out of the ARRC warehouse, these vehicles travelling around the south-east corner of the ARRC warehouse will then give way to vehicles exiting the southern entrance of the warehouse (ie vehicles that have just unloaded). These priority movements are shown on the revised swept paths contained in Attachment D. These internal swept paths also show vehicles can manoeuvre safely through the ARRC site.

3.5 Queuing analysis

The updated site layout provides two inbound weighbridges and one outbound weighbridge. There are two truck entry points into the ARRC building which separates heavy vehicles unloading waste (waste receival) and loading waste (waste dispatch).

The inbound weighbridges will only be used by trucks delivering waste. During peak operation, there will be up to 29 heavy vehicles delivering waste in the AM peak hour (refer Section 2.2). Assuming a 2-minute wait time (from KLF previous experience) at the weighbridge, the 98th percentile queue will be three vehicles (ie five vehicles including the vehicles at the weighbridges). The driveway leading to the incoming weighbridges will be able to fully accommodate this queue length without any queuing on the internal access road that will be shared with other activities within the subject property (ie quarry reactivation traffic or quarry rehabilitation traffic).

The outbound weighbridge will be used by all heavy vehicles. During peak operation, there will be up to 10 heavy vehicles dispatching waste (refer Section 2.2). When combined with the waste receival trucks, there will be up to 39 trucks in the AM peak hour. Assuming a 90 s wait time at the weighbridge (from KLF previous experience of less wait time on the exit weighbridge as waste inspection not required), the 98th percentile queue will be eight vehicles

(ie nine vehicles including the vehicle at the weighbridge). The revised ARRC layout and internal traffic movement strategy will adequately accommodate this queue length (refer to discussion on priority movements in Section 3.4 and shown in Attachment D).

A summary of the queuing analysis is presented in Table 3.11.

Table 3.11Queuing analysis

	Inbound	Outbound
Total arriving per hour	29 vehicles	39 vehicles
Wait time	120 s	90 s
Number of weighbridges	2	1
Queue including vehicle at weighbridge (98% confidence interval)	5 vehicles	9 vehicles
Queue excluding vehicle at weighbridge (98% confidence interval)	3 vehicles (2 vehicles before a weighbridge and 1 vehicle before another weighbridge)	8 vehicles (120 m)
Length of driveway before the weighbridges	95 m	60 m to the warehouse southern entry. As noted in Section 3.4, vehicles delivering waste, exiting the southern warehouse exit (maximum of 29 vehicles per hour) will be given priority over vehicles dispatching recycled product. Queuing will be accommodated on the internal access road around the south-eastern corner of the ARRC warehouse.

It is expected that vehicles could take up to 10 minutes to unload waste. The average arrival rate of waste receival trucks of approximately 2 minutes (29 trucks per hour) entail that waste unloading area will need to accommodate a maximum of five trucks unloading simultaneously.

Similarly, assuming loading waste will take up to 10 minutes, the average arrival rate of waste dispatch trucks of approximately 6 minutes (10 trucks per hour) entails that waste loading area will need to accommodate two trucks loading simultaneously, which could be easily accommodated within the recycled product and non-recyclable residues area of the warehouse.

A swept path assessment has been undertaken to confirm site manoeuvrability of the updated ARRC layout. Five heavy vehicles (up to three 26-m B-doubles and two 19-m Articulated Vehicles) are able to unload waste simultaneously and independent to one another. The swept paths are presented in Attachment D.

4 Summary and conclusion

This addendum traffic report addresses the traffic impact associated with ARRC and potential cumulative traffic impacts as a result of the quarry reactivation, quarry rehabilitation, as well as the development of the Aerotropolis. The outcomes of the assessment are as follows:

- The Northern Road/Adams Road intersection has been upgraded as part of The Northern Road upgrade project and with future signalisation will operate at LOS C in 2024 and 2029 under all traffic scenarios (with or without development and cumulative traffic);
- the Elizabeth Drive/Adams Road intersection will operate at LOS A under all traffic scenarios in 2024 and 2029 without the development traffic. The additional development and cumulative traffic will change the LOS of the right turn movement from Adams Road to LOS B which is acceptable in the Sydney's urbanised areas;
- the Elizabeth Drive/Luddenham Road intersection will operate at LOS B under all traffic scenarios;
- the mid-block traffic on Adams Road at a worst case will have LOS C and D in 2024 and 2029 respectively. The development and cumulative traffic do not alter the mid-block LOS;
- by 2029, the development and cumulative traffic represents up to 4.77% of the daily road network traffic which is marginal given the significant road network alternation and upgrade in the area as part of the aerotropolis development; and
- the queuing analysis indicates ARRC traffic will be fully accommodated within the ARRC driveway and no spillage will occur on the internal road.

5 References

Austroads. 2017. Guide to Road Design Part 4A: Unsignalised & Signalised Intersections.

- -. 2016. Guide to Traffic Management Part 3: Traffic Studies and Analysis.
- Department of Planning, Industry, and Environment. 2019. "Western Sydney Aerotropolis Community Consultation Report."
- EMM. 2020a. "Luddenham Resource Recovery Centre, Environmental Impact Statement, prepared for Coombes Property Group and KLF Holdings Pty Ltd."

RTA. 2002. Guide to Traffic Generating Developments.

Attachment A

Summary of meeting with TfNSW and Council on 25 March 2021

Eric Lei

From: Sent: To: Subject: Phil Towler Tuesday, March 30, 2021 4:32 PM Janet Krick; Abdullah Uddin; Eric Lei FW: Luddenham Quarry - MOD5 and ARRC - transport options

Philip Towler

Associate Director

T 02 9493 9500

M 0409 702 050

www.emmconsulting.com.au

From: Phil Towler

Sent: Thursday, 25 March 2021 4:06 PM

To: Pahee Rathan <Pahee.RATHAN@transport.nsw.gov.au>; Charles Wiafe <WiafeC@liverpool.nsw.gov.au>
Cc: Chris.Ritchie@planning.nsw.gov.au; Michael Coombes <michael@coombesgroup.com.au>; John Scarlis
<john@klfholdings.com.au>; Felix Liu <Felix.Liu@transport.nsw.gov.au>; Robert Rutledge
<Robert.Rutledge@transport.nsw.gov.au>; Ellen Luu <Ellen.Luu@planning.nsw.gov.au>; William Hodgkinson
<William.Hodgkinson@planning.nsw.gov.au>; Rachel Cumming <rachel.cumming@transport.nsw.gov.au>; Louise
Moran <louise.m.moran@transport.nsw.gov.au>
Subject: Luddenham Quarry - MOD5 and ARRC - transport options

Good afternoon Pahee and Charles,

Thank you for your time this morning to discuss the transport options for the Luddenham Quarry MOD5 (quarry reactivation) and Advanced Resource Recovery Centre SSD (ARRC). It was very helpful to understand your position and plans regarding the project and wider network upgrades.

Our understanding of the discussion, main outcomes and next steps are as follows:

Changes to the road network:

- Potential upgrades to Elizabeth Drive in the early planning stage timing of upgrades unknown
- The configuration and timing of realignment of Adams Road to join Luddenham Road are currently unknown
- Adams Road south of Antons Road to be upgraded as part of WSA development likely to be within the next 1-3 years but exact timing unknown

MOD5:

- Up to 19-m trucks only
- Quarry operations to December 2024
- Quarry trucks will not use Elizabeth Drive west of Adams Road so there will be no right-hand turns into Adams Road from Elizabeth Drive
- TfNSW and Council support:
 - The pavement upgrade (at applicant's cost) to the northern end of Adams Road (Quarry access road to Elizabeth Drive) to allow lifting the load limit on northern Adams Road

- Line-marking to be improved at the Elizabeth Drive/Adams Road intersection (at applicant's cost) applicants to provide drawing of proposed line marking
- No other Elizabeth Drive/Adams Road intersection upgrades for MOD5
- These works will be completed by the applicant as soon as Mod 5 and any other required approvals are granted

ARRC:

PRIOR to upgrade of Elizabeth Drive and/or realignment of northern Adams Road:

- Pavement upgrades/rehabilitation of Adams Road between the Quarry access road and Anton Road (at applicant's cost) to allow the load limit on this section to be lifted and trucks to access The Northern Road:
 - Detailed assessment (similar to that for the northern section of Adams Road) and lifting of the load limit to be advanced in parallel with the ARRC application
 - These works would follow the upgrade of Adams Road south of Anton Road that are being undertaken as part of WSA works, and would be prior to operation of the ARRC
- TfNSW and Council support interim upgrade of Elizabeth Drive/Adams Road intersection (at applicant's cost) as follows:
 - Exit from site into Adams Road in either direction
 - Left-turn from Elizabeth Drive into Adams Road (deceleration lane)
 - o Left-turn from Adams Road to Elizabeth Drive (widening proposed to allow left and right turn lanes)
 - Right-turn from Adams Road to Elizabeth Drive contingent on swept path analysis demonstrating 26-m long B-Double trucks stay within lanes
 - No right-turn from Elizabeth Drive to Adams Road for heavy or light vehicles remove short right-hand turn lane from ARRC proposal

AFTER upgrade of Elizabeth Drive and/or realignment of northern Adams Road:

- Elizabeth Drive/Adams Road intersection:
 - Left-turn from Elizabeth Drive into Adams Road TfNSW considering position and unlikely to be resolved for some time
 - All other turns unlikely to be permitted
 - All parties to consider issues when TfNSW forms a view on likely changes in the long term.

Again, thank you for your time and please let me know if any corrections are required to this summary.

Best regards

Phil

Philip Towler

Associate Director

SYDNEY | Ground floor, 20 Chandos Street, St Leonards NSW 2065

Please consider the environment before printing my email.

This email and any files transmitted with it are confidential and are only to be read or used by the intended recipient as it may contain confidential information. Confidentiality or privilege is not waived or lost by erroneous transmission. If you have received this email in error, or are not the intended recipient, please notify the sender immediately and delete this email from your computer. You must not disclose, distribute, copy or use the information herein if you are not the intended recipient.

Attachment B

Intersection traffic survey

Project Name Adams Road intesection with The Northern Road

Project Date

11/27/2019

Image: Note the series of the serie	•																			
Image: First state Image:			NOI	RTHERN RO	AD WESTBO	UND			AD	AMS ROAD	SOUTHBOL	IND		NORTHERN ROAD EASTBOUND						
I Min IV HV LV HV LV+HV LV HV LV+HV LV HV LV+HV LV+HV LV+HV LV HV LV+HV LV+HV LV HV LV+HV LV LV HV LV+HV LV LV HV LV+HV LV L			STRAIGHT			RIGHT			LEFT			RIGHT			LEFT			STRAIGHT		
27-Nov-19 600-614 100 15 14 0 14 8 2 100 0 0 0 0 0 100 118 24 142 281 27-Nov-19 615-629 130 17 147 11 2 13 19 0 19 0 0 0 3 0 3 166 28 194 376 27-Nov-19 630-64 117 24 141 23 2 25 26 1 27 2 0 2 3 0 3 117 27 144 342 27-Nov-19 630-64 121 22 143 12 11 14 12 1 2 2 4 93 24 117 342 27-Nov-19 70-714 133 15 148 17 0 14 14 1 2 3 13 14 140 20 143 31 14 14 14 14 14 14 14 14	15 Mins	LV	нν	LV+HV	LV	нν	LV+HV	LV	нν	LV+HV	LV	нv	LV+HV	LV	HV	LV+HV	LV	НV	LV+HV	Totals
27-Nor-19 $51-629$ 130 17 147 111 2 13 19 0 19 0 0 0 3 0 3 166 28 194 376 27 -Nor-19 $51-65$ 111 24 111 23 2 25 26 11 27 2 0 2 33 0 3 117 27 144 342 27 -Nor-19 $51-65$ 121 22 133 12 12 13 16 13 16 11 27 21 0 11 22 44 93 24 117 295 27 -Nor-19 $70-74$ 133 15 148 17 0 17 9 2 11 2 13 12 44 93 24 140 332 27 -Nor-19 $71-7$ 133 15 148 17 0 17 9 2 11 2 13 13 142 20 140 332 27 -Nor-19 $71-7$ 150 140 12 12 12 12 12 12 12 12 12 13 12 12 13 12 13 12 13 12 12 12 13 12 <t< td=""><td>27-Nov-19 600-614</td><td>100</td><td>15</td><td>115</td><td>14</td><td>0</td><td>14</td><td>8</td><td>2</td><td>10</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>118</td><td>24</td><td>142</td><td>281</td></t<>	27-Nov-19 600-614	100	15	115	14	0	14	8	2	10	0	0	0	0	0	0	118	24	142	281
27-Nor-19 $630-644$ 117 24 141 23 2 25 26 1 27 2 0 2 3 0 3 117 27 144 342 27 -Nor-19 $65-59$ 121 22 143 12 1 13 16 1 17 1 0 1 2 2 4 93 24 117 295 27 -Nor-19 $70-74$ 133 15 148 17 0 17 9 2 11 2 1 3 13 14 120 20 140 333 27 -Nor-19 $715-79$ 140 125 160 17 9 2 11 2 3 10 13 142 200 140 333 27 -Nor-19 $715-79$ 160 12 126 11 27 13 11 14 12 3 10 13 142 20 162 331 27 -Nor-19 $73-74$ 150 160 12 126 12 <td>27-Nov-19 615-629</td> <td>130</td> <td>17</td> <td>147</td> <td>11</td> <td>2</td> <td>13</td> <td>19</td> <td>0</td> <td>19</td> <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>0</td> <td>3</td> <td>166</td> <td>28</td> <td>194</td> <td>376</td>	27-Nov-19 615-629	130	17	147	11	2	13	19	0	19	0	0	0	3	0	3	166	28	194	376
27-Nov-19645-6591212214312113161717101224932411729527-Nov-1970-7141331514817017921121313141202014033327-Nov-1975-72914012122126127131114111212310331422016233127-Nov-1975-72913010120127131212713111414122481114012016233127-Nov-1973-7415016016027770722481114014015236927-Nov-1975-751131316027770722481112015236927-Nov-1975-75113131261921223031613140141120<	27-Nov-19 630-644	117	24	141	23	2	25	26	1	27	2	0	2	3	0	3	117	27	144	342
27-Nov-19 103 15 148 17 0 17 9 2 11 2 1 3 13 14 12 20 140 20 140 333 $27-Nov-19$ $75-72$ 140 12 152 26 11 27 13 14 11 2 3 10 31 12 20 162 371 $27-Nov-19$ $70-74$ 150 10 10 100 27 7 0 7 2 4 8 1 9 133 19 152 359 $27-Nov-19$ $74-74$ 10 7 0 7 2 2 4 8 1 9 133 19 152 359 $27-Nov-19$ $74-74$ $8-74$ 2 2 4 8 1 6 4 10 10 12 20 152 359 $27-Nov-19$ $8-84$ 102	27-Nov-19 645-659	121	22	143	12	1	13	16	1	17	1	0	1	2	2	4	93	24	117	295
27-Nov-19715-72914012015226012713114123103131422016237127-Nov-1970-74150101002702770722481091331915235927-Nov-1974-579113131261901921223303404171814535927-Nov-1980-841022012221192122233034044310144533027-Nov-1980-8410220122239110 <td>27-Nov-19 700-714</td> <td>133</td> <td>15</td> <td>148</td> <td>17</td> <td>0</td> <td>17</td> <td>9</td> <td>2</td> <td>11</td> <td>2</td> <td>1</td> <td>3</td> <td>13</td> <td>1</td> <td>14</td> <td>120</td> <td>20</td> <td>140</td> <td>333</td>	27-Nov-19 700-714	133	15	148	17	0	17	9	2	11	2	1	3	13	1	14	120	20	140	333
27-Nov-19 $30-744$ 1501601602702707072248191331915235927-Nov-19 $45-759$ 11313126190192122330340410121814532027-Nov-19 $80-814$ 1022012222123911010130340410412328227-Nov-19 $81-829$ 107181251201219101010101013034301410342828227-Nov-19 $81-829$ 107181251201219112010101013110141228227-Nov-19 $81-829$ 107181261701219112010111	27-Nov-19 715-729	140	12	152	26	1	27	13	1	14	1	2	3	10	3	13	142	20	162	371
27-Nov-19 $745-75$ 113 133 126 19 0 19 21 2 23 3 0 3 4 0 4 127 18 145 320 27-Nov-19 $80-814$ 102 200 122 22 1 23 9 1 10 1 0 1 30 0 33 0 33 0 13 10 <	27-Nov-19 730-744	150	10	160	27	0	27	7	0	7	2	2	4	8	1	9	133	19	152	359
27-Nov-19 80-844 102 20 122 21 23 9 1 10 1 0 1 3 0 3 109 14 282 27-Nov-19 81-829 107 18 125 12 0 12 19 1 20 1 0 1 3 0 3 109 14 128 282 27-Nov-19 81-829 107 18 126 12 19 1 20 1 0 1 2 2 4 82 16 98 260 27-Nov-19 83-84 108 18 16 16 1 0 1 4 1 4 8 16 98 260 27-Nov-19 84-85 97 120 10 16 16 16 1 4 1 <td< td=""><td>27-Nov-19 745-759</td><td>113</td><td>13</td><td>126</td><td>19</td><td>0</td><td>19</td><td>21</td><td>2</td><td>23</td><td>3</td><td>0</td><td>3</td><td>4</td><td>0</td><td>4</td><td>127</td><td>18</td><td>145</td><td>320</td></td<>	27-Nov-19 745-759	113	13	126	19	0	19	21	2	23	3	0	3	4	0	4	127	18	145	320
27-Nov-19 815-829 107 18 125 12 0 12 19 1 20 1 0 1 2 2 4 82 16 98 260 27-Nov-19 830-84 108 18 126 17 0 17 16 2 18 1 0 1 4 3 7 98 22 120 289 27-Nov-19 84-859 97 23 10 2 12 18 12 2 1 3 8 0 8 32 120 120 247 27-Nov-19 84-859 97 23 100 2 12 8 4 12 2 1 3 8 0 8 73 19 92 247 27-Nov-19 84-8 207 162 210 17 17 188 16 6 22 60 12 72 1378 251 1629	27-Nov-19 800-814	102	20	122	22	1	23	9	1	10	1	0	1	3	0	3	109	14	123	282
27-Nov-19 830-844 108 18 126 17 0 17 16 2 18 1 0 1 4 3 7 98 22 120 289 27-Nov-19 84-859 97 23 100 2 12 8 4 12 2 1 3 8 0 8 73 19 92 247 27-Nov-19 84-859 97 23 100 2 12 8 4 12 2 1 3 8 0 8 73 19 92 247 27-Nov-19 84-8 207 1625 210 9 219 171 17 188 16 6 22 60 12 72 1378 251 1629 1418 207 1625 210 91 171 17 188 16 6 22 60 12 72 1378 251 1629	27-Nov-19 815-829	107	18	125	12	0	12	19	1	20	1	0	1	2	2	4	82	16	98	260
27-Nov-19 845-859 97 23 120 10 2 12 8 4 12 2 1 3 8 0 8 73 19 92 247 110 1418 207 1625 210 9 219 171 17 188 16 6 22 60 12 72 1378 251 1629	27-Nov-19 830-844	108	18	126	17	0	17	16	2	18	1	0	1	4	3	7	98	22	120	289
1418 207 1625 210 9 219 171 17 188 16 6 22 60 12 72 1378 251 1629	27-Nov-19 845-859	97	23	120	10	2	12	8	4	12	2	1	3	8	0	8	73	19	92	247
		1418	207	1625	210	9	219	171	17	188	16	6	22	60	12	72	1378	251	1629	

		NOF	RTHERN RO	AD WESTBC	UND			AD	AMS ROAD	SOUTHBOL	UTHBOUND NORTHERN					AD EASTBO			
		STRAIGHT			RIGHT			LEFT			RIGHT			LEFT		STRAIGHT			
Hourly	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
600-700	468	78	546	60	5	65	69	4	73	3	0	3	8	2	10	494	103	597	1294
615-715	501	78	579	63	5	68	70	4	74	5	1	6	21	3	24	496	99	595	1346
630-730	511	73	584	78	4	82	64	5	69	6	3	9	28	6	34	472	91	563	1341
645-745	544	59	603	82	2	84	45	4	49	6	5	11	33	7	40	488	83	571	1358
700-800	536	50	586	89	1	90	50	5	55	8	5	13	35	5	40	522	77	599	1383
715-815	505	55	560	94	2	96	50	4	54	7	4	11	25	4	29	511	71	582	1332
730-830	472	61	533	80	1	81	56	4	60	7	2	9	17	3	20	451	67	518	1221
745-845	430	69	499	70	1	71	65	6	71	6	0	6	13	5	18	416	70	486	1151
800-900	414	79	493	61	3	64	52	8	60	5	1	6	17	5	22	362	71	433	1078

Project Name Adams Road intesection with The Northern Road

Project Date

11/27/2019

		NO	RTHERN RO	AD WESTBC	UND			AD	AMS ROAD	SOUTHBOL	JND		NORTHERN ROAD EASTBOUND						
		LEFT			STRAIGHT			STRAIGHT			RIGHT			LEFT					
15 Mins	LV	нν	LV+HV	LV	нν	LV+HV	LV	нν	LV+HV	LV	HV	LV+HV	LV	нν	LV+HV	LV	нv	LV+HV	Totals
27-Nov-19 1500-1514	102	15	117	9	2	11	19	2	21	3	1	4	0	2	2	99	11	110	265
27-Nov-19 1515-1529	114	25	139	18	1	19	15	3	18	3	1	4	3	1	4	128	16	144	328
27-Nov-19 1530-1544	108	20	128	11	2	13	27	3	30	4	0	4	5	0	5	107	13	120	300
27-Nov-19 1545-1559	136	20	156	10	2	12	24	0	24	1	0	1	2	0	2	144	18	162	357
27-Nov-19 1600-1614	144	16	160	15	0	15	21	0	21	2	1	3	2	1	3	129	19	148	350
27-Nov-19 1615-1629	156	10	166	12	2	14	31	1	32	4	4	8	2	0	2	147	11	158	380
27-Nov-19 1630-1644	128	17	145	9	1	10	24	4	28	2	0	2	0	0	0	137	10	147	332
27-Nov-19 1645-1659	144	15	159	12	0	12	28	3	31	2	0	2	1	1	2	136	11	147	353
27-Nov-19 1700-1714	181	17	198	18	0	18	39	0	39	5	0	5	3	0	3	130	8	138	401
27-Nov-19 1715-1729	169	11	180	16	0	16	27	0	27	3	1	4	2	0	2	165	9	174	403
27-Nov-19 1730-1744	168	10	178	24	1	25	16	1	17	5	0	5	5	2	7	139	7	146	378
27-Nov-19 1745-1759	119	4	123	16	0	16	11	0	11	4	0	4	5	0	5	120	11	131	290
	1669	180	1849	170	11	181	282	17	299	38	8	46	30	7	37	1581	144	1725	

	NORTHERN ROAD WESTBOUND							ADAMS ROAD SOUTHBOUND						NORTHERN ROAD EASTBOUND					
	STRAIGHT			RIGHT			LEFT			RIGHT			LEFT			STRAIGHT			
Hourly	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
1500-1600	460	80	540	48	7	55	85	8	93	11	2	13	10	3	13	478	58	536	1250
1515-1615	502	81	583	54	5	59	87	6	93	10	2	12	12	2	14	508	66	574	1335
1530-1630	544	66	610	48	6	54	103	4	107	11	5	16	11	1	12	527	61	588	1387
1545-1645	564	63	627	46	5	51	100	5	105	9	5	14	6	1	7	557	58	615	1419
1600-1700	572	58	630	48	3	51	104	8	112	10	5	15	5	2	7	549	51	600	1415
1615-1715	609	59	668	51	3	54	122	8	130	13	4	17	6	1	7	550	40	590	1466
1630-1730	622	60	682	55	1	56	118	7	125	12	1	13	6	1	7	568	38	606	1489
1645-1745	662	53	715	70	1	71	110	4	114	15	1	16	11	3	14	570	35	605	1535
1700-1800	637	42	679	74	1	75	93	1	94	17	1	18	15	2	17	554	35	589	1472
Project Name Adams Road intesection with Elizabeth Road

Project Date

11/27/2019

		ELIZ	ABETH DRI	VE WESTBO	UND			ELI	ZABETH DR	IVE EASTBO	UND			AD	AMS ROAD	NORTHBOU	IND		
		LEFT			STRAIGHT			STRAIGHT			RIGHT			LEFT			RIGHT		
15mins	LV	HV	LV+HV	LV	HV	LV+HV	LV	ΗV	LV+HV	LV	ΗV	LV+HV	LV	нν	LV+HV	LV	нv	LV+HV	Totals
27-Nov-19 600-614	4	0	4	73	5	78	115	15	130	7	2	9	12	0	12	4	0	4	237
27-Nov-19 615-629	7	0	7	82	3	85	155	28	183	17	1	18	16	0	16	1	0	1	310
27-Nov-19 630-644	7	0	7	114	5	119	138	27	165	26	1	27	23	0	23	9	0	9	350
27-Nov-19 645-659	9	0	9	70	8	78	131	12	143	19	1	20	11	0	11	6	0	6	267
27-Nov-19 700-714	5	0	5	77	19	96	131	10	141	5	0	5	17	0	17	7	0	7	271
27-Nov-19 715-729	4	0	4	81	22	103	158	18	176	7	0	7	23	0	23	4	0	4	317
27-Nov-19 730-744	3	0	3	77	6	83	158	7	165	8	0	8	26	0	26	15	1	16	301
27-Nov-19 745-759	6	0	6	107	7	114	108	13	121	11	1	12	24	0	24	5	0	5	282
27-Nov-19 800-814	3	0	3	77	5	82	105	13	118	10	0	10	25	0	25	9	0	9	247
27-Nov-19 815-829	5	1	6	94	21	115	95	16	111	14	3	17	10	0	10	8	0	8	267
27-Nov-19 830-844	4	0	4	71	11	82	81	13	94	9	0	9	15	0	15	2	0	2	206
27-Nov-19 845-859	0	1	1	70	8	78	62	17	79	7	4	11	14	0	14	5	0	5	188
	57	2	59	993	120	1113	1437	189	1626	140	13	153	216	0	216	75	1	76	

		ELIZ	ZABETH DRI	VE WESTBO	UND			ELI	ZABETH DR	VE EASTBO	UND			AD	AMS ROAD	NORTHBOL	JND		
		LEFT			STRAIGHT			STRAIGHT			RIGHT			LEFT			RIGHT		
Hourly	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
600-700	27	0	27	339	21	360	539	82	621	69	5	74	62	0	62	20	0	20	1164
615-715	28	0	28	343	35	378	555	77	632	67	3	70	67	0	67	23	0	23	1198
630-730	25	0	25	342	54	396	558	67	625	57	2	59	74	0	74	26	0	26	1205
645-745	21	0	21	305	55	360	578	47	625	39	1	40	77	0	77	32	1	33	1156
700-800	18	0	18	342	54	396	555	48	603	31	1	32	90	0	90	31	1	32	1171
715-815	16	0	16	342	40	382	529	51	580	36	1	37	98	0	98	33	1	34	1147
730-830	17	1	18	355	39	394	466	49	515	43	4	47	85	0	85	37	1	38	1097
745-845	18	1	19	349	44	393	389	55	444	44	4	48	74	0	74	24	0	24	1002
800-900	12	2	14	312	45	357	343	59	402	40	7	47	64	0	64	24	0	24	908

Project Name Adams Road intesection with Elizabeth Road

Project Date

11/27/2019

		ELIZ	ZABETH DRI	VE WESTBO	UND			ELI	IZABETH DR	IVE EASTBO	UND			AD	AMS ROAD	NORTHBOU	JND		
		LEFT			STRAIGHT			STRAIGHT			RIGHT			LEFT			RIGHT		
15 Mins	15 Mins LV HV LV+HV LV HV			HV	LV+HV	LV	HV	LV+HV	LV	нν	LV+HV	LV	нν	LV+HV	LV	HV	LV+HV	Totals	
27-Nov-19 1500-1514	5	0	5	81	19	100	79	17	96	15	0	15	15	1	16	5	0	5	237
27-Nov-19 1515-1529	5	0	5	108	5	113	101	7	108	21	0	21	15	2	17	4	0	4	268
27-Nov-19 1530-1544	7	0	7	115	13	128	98	6	104	24	1	25	12	0	12	5	0	5	281
27-Nov-19 1545-1559	8	0	8	128	13	141	111	6	117	25	0	25	11	0	11	4	0	4	306
27-Nov-19 1600-1614	5	1	6	108	12	120	131	7	138	14	0	14	21	0	21	3	0	3	302
27-Nov-19 1615-1629	3	0	3	168	6	174	123	4	127	23	0	23	26	0	26	9	0	9	362
27-Nov-19 1630-1644	10	0	10	189	9	198	108	8	116	20	1	21	15	1	16	6	0	6	367
27-Nov-19 1645-1659	6	1	7	170	16	186	107	1	108	34	0	34	8	0	8	7	0	7	350
27-Nov-19 1700-1714	13	0	13	183	8	191	114	4	118	37	0	37	12	0	12	5	0	5	376
27-Nov-19 1715-1729	5	0	5	164	7	171	122	3	125	32	0	32	15	0	15	6	0	6	354
27-Nov-19 1730-1744	10	1	11	172	9	181	119	5	124	25	0	25	25	0	25	6	0	6	372
27-Nov-19 1745-1759	5	0	5	94	4	98	109	3	112	14	0	14	11	0	11	2	0	2	242
	82	3	85	1680	121	1801	1322	71	1393	284	2	286	186	4	190	62	0	62	

		ELIZ	ZABETH DRI	VE WESTBO	UND			ELI	ZABETH DR	IVE EASTBO	UND			AD	AMS ROAD	NORTHBOU	JND		
		LEFT			STRAIGHT			STRAIGHT			RIGHT			LEFT			RIGHT		
Hourly	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
1500-1600	25	0	25	432	50	482	389	36	425	85	1	86	53	3	56	18	0	18	1092
1515-1615	25	1	26	459	43	502	441	26	467	84	1	85	59	2	61	16	0	16	1157
1530-1630	23	1	24	519	44	563	463	23	486	86	1	87	70	0	70	21	0	21	1251
1545-1645	26	1	27	593	40	633	473	25	498	82	1	83	73	1	74	22	0	22	1337
1600-1700	24	2	26	635	43	678	469	20	489	91	1	92	70	1	71	25	0	25	1381
1615-1715	32	1	33	710	39	749	452	17	469	114	1	115	61	1	62	27	0	27	1455
1630-1730	34	1	35	706	40	746	451	16	467	123	1	124	50	1	51	24	0	24	1447
1645-1745	34	2	36	689	40	729	462	13	475	128	0	128	60	0	60	24	0	24	1452
1700-1800	33	1	34	613	28	641	464	15	479	108	0	108	63	0	63	19	0	19	1344

Project Name Luddenham Road Intesection with Elizabeth Road

Project Date

11/27/2019

		FLIZ	ABETH DRI	VE WESTBO	UND			LU.	DDENHAM	SOUTHBOL	IND			FLI	ZABETH DRI	IVE FASTBO	UND		
		STRIAGHT			RIGHT			LEFT			RIGHT			LEFT			STRAIGHT		
15 Mins	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
27-Nov-19 600-614	53	6	59	33	0	33	39	3	42	16	1	17	49	1	50	88	13	101	302
27-Nov-19 615-629	68	3	71	36	0	36	56	3	59	10	0	10	47	0	47	128	21	149	372
27-Nov-19 630-644	92	4	96	53	0	53	54	5	59	19	0	19	69	0	69	114	20	134	430
27-Nov-19 645-659	47	7	54	34	1	35	35	2	37	17	0	17	49	0	49	117	9	126	318
27-Nov-19 700-714	58	17	75	43	0	43	24	0	24	9	1	10	57	0	57	118	8	126	335
27-Nov-19 715-729	57	22	79	47	0	47	28	1	29	16	0	16	84	0	84	143	15	158	413
27-Nov-19 730-744	55	7	62	46	0	46	32	0	32	17	0	17	72	0	72	135	7	142	371
27-Nov-19 745-759	65	9	74	69	0	69	26	3	29	17	0	17	65	1	66	97	10	107	362
27-Nov-19 800-814	48	6	54	57	1	58	31	1	32	11	0	11	53	0	53	88	8	96	304
27-Nov-19 815-829	60	29	89	29	1	30	27	2	29	16	0	16	40	0	40	84	16	100	304
27-Nov-19 830-844	58	9	67	37	5	42	23	0	23	11	0	11	39	3	42	64	13	77	262
27-Nov-19 845-859	37	13	50	34	2	36	17	3	20	20	0	20	38	0	38	55	17	72	236
	698	132	830	518	10	528	392	23	415	179	2	181	662	5	667	1231	157	1388	

		ELIZ	ABETH DRI	VE WESTBO	UND			LU	JDDENHAM	SOUTHBOL	JND			ELI	ZABETH DR	IVE EASTBO	UND		
		STRIAGHT			RIGHT			LEFT			RIGHT			LEFT			STRAIGHT		
Hourly	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
600-700	260	20	280	156	1	157	184	13	197	62	1	63	214	1	215	447	63	510	1422
615-715	265	31	296	166	1	167	169	10	179	55	1	56	222	0	222	477	58	535	1455
630-730	254	50	304	177	1	178	141	8	149	61	1	62	259	0	259	492	52	544	1496
645-745	217	53	270	170	1	171	119	3	122	59	1	60	262	0	262	513	39	552	1437
700-800	235	55	290	205	0	205	110	4	114	59	1	60	278	1	279	493	40	533	1481
715-815	225	44	269	219	1	220	117	5	122	61	0	61	274	1	275	463	40	503	1450
730-830	228	51	279	201	2	203	116	6	122	61	0	61	230	1	231	404	41	445	1341
745-845	231	53	284	192	7	199	107	6	113	55	0	55	197	4	201	333	47	380	1232
800-900	203	57	260	157	9	166	98	6	104	58	0	58	170	3	173	291	54	345	1106

Project Name Luddenham Road Intesection with Elizabeth Road

Project Date

11/27/2019

		ELIZ	ZABETH DRI	VE WESTBO	UND			LU	IDDENHAM	SOUTHBOU	IND			ELI	ZABETH DRI	VE EASTBO	UND		
		STRIAGHT			RIGHT			LEFT			RIGHT			LEFT			STRAIGHT		
15 Mins	LV	HV	LV+HV	LV	ΗV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
27-Nov-19 1500-1514	67	16	83	22	3	25	37	0	37	30	1	31	13	0	13	57	21	78	267
27-Nov-19 1515-1529	85	6	91	24	1	25	50	0	50	42	0	42	28	1	29	71	11	82	319
27-Nov-19 1530-1544	73	9	82	30	3	33	51	3	54	33	3	36	20	0	20	66	5	71	296
27-Nov-19 1545-1559	100	16	116	48	0	48	63	0	63	52	0	52	19	1	20	65	9	74	373
27-Nov-19 1600-1614	96	9	105	26	1	27	66	1	67	46	0	46	29	1	30	70	7	77	352
27-Nov-19 1615-1629	135	7	142	44	0	44	79	2	81	61	2	63	21	1	22	66	1	67	419
27-Nov-19 1630-1644	156	6	162	28	3	31	54	1	55	54	0	54	23	1	24	60	8	68	394
27-Nov-19 1645-1659	143	16	159	19	1	20	61	0	61	45	0	45	23	0	23	68	1	69	377
27-Nov-19 1700-1714	140	7	147	34	1	35	65	0	65	64	0	64	21	0	21	75	4	79	411
27-Nov-19 1715-1729	158	8	166	38	0	38	84	0	84	52	0	52	14	1	15	70	4	74	429
27-Nov-19 1730-1744	164	8	172	40	0	40	67	0	67	46	0	46	30	0	30	70	5	75	430
27-Nov-19 1745-1759	82	4	86	27	0	27	41	0	41	46	3	49	23	0	23	72	2	74	300
	1399	112	1511	380	13	393	718	7	725	571	9	580	264	6	270	810	78	888	

		ELIZ	ABETH DRI	VE WESTBO	UND			LU	JDDENHAM	SOUTHBOL	IND			ELI	ZABETH DR	IVE EASTBO	UND		
		STRIAGHT			RIGHT			LEFT			RIGHT			LEFT			STRAIGHT		
Hourly	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	LV	HV	LV+HV	Totals
1500-1600	325	47	372	124	7	131	201	3	204	157	4	161	80	2	82	259	46	305	1255
1515-1615	354	40	394	128	5	133	230	4	234	173	3	176	96	3	99	272	32	304	1340
1530-1630	404	41	445	148	4	152	259	6	265	192	5	197	89	3	92	267	22	289	1440
1545-1645	487	38	525	146	4	150	262	4	266	213	2	215	92	4	96	261	25	286	1538
1600-1700	530	38	568	117	5	122	260	4	264	206	2	208	96	3	99	264	17	281	1542
1615-1715	574	36	610	125	5	130	259	3	262	224	2	226	88	2	90	269	14	283	1601
1630-1730	597	37	634	119	5	124	264	1	265	215	0	215	81	2	83	273	17	290	1611
1645-1745	605	39	644	131	2	133	277	0	277	207	0	207	88	1	89	283	14	297	1647
1700-1800	544	27	571	139	1	140	257	0	257	208	3	211	88	1	89	287	15	302	1570

Attachment C

Updated STFM outputs

Attachment D

COMMENTS

A3

NOTES: 1. Lanes 3.5 m wide minimum. 2. The left turn bay is 90 m long with a taper of 30 m.

	CLIENT:	CPG&KLF		
on	DRG. #:	EMM-101		-
	PROJECT #:	J190749	REV:	2
	SCALE:	1:500		

SCALE:

1:500

DARRIER DARRIER BLINE BLINE BU	
Sydney Suite 01	ה דודנב:
Ground Floor	eth Drive/Adams Road
2 Chandos Street,	ו
St Leonards NSW 2065 Rev Date COMMENT Date Comment Drawn Reviewed PROJECT: Luddenham ARRC Drawn Cliable Line N www.emmconsulting.com.au 2 12/04/21 REMORATION E 1 <td>Marking Plan</td>	Marking Plan

COMMENTS

A3

NOTES: 1. Lanes 3.5 m wide minimum. 2. The left turn bay is 90 m long with a taper of 30 m.

	CLIENT:	CPG&KLF		
on	DRG. #:	EMM-103		-
	PROJECT #:	J190749	REV:	2
	SCALE:	1:500		

Attachment E

Site: 101 [2024 baseline The Northern Rd/ Adams Rd AM scenario 2 (Site Folder: General)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Practical Cycle Time)

Vehio	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLOV [Total	AND WS HV]	ARRI FLO [Tota	IVAL WS I HV] %	Deg. Satn	Aver. Delay	Level of Service	95% [Ql [Veh.	BACK OF JEUE Dist]	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed
South	: The N	Northern I	Road	VCII/II	70	v/C	360		Ven					NIII/11
1b	L3	18	17.6	18	17.6	0.022	16.6	LOS B	0.3	2.8	0.42	0.67	0.42	52.8
2	T1	1380	14.3	1380	14.3	0.809	24.8	LOS B	27.8	218.4	0.92	0.87	0.98	51.8
3a	R1	199	5.3	199	5.3	*0.540	24.8	LOS B	4.5	32.9	0.94	0.80	0.94	39.1
Appro	ach	1597	13.2	1597	13.2	0.809	24.7	LOS B	27.8	218.4	0.92	0.86	0.97	50.7
North	East: A	dams Ro	ad											
24a	L1	271	7.8	271	7.8	*0.407	20.3	LOS B	6.4	48.2	0.79	0.77	0.79	50.2
8	T1	1	0.0	1	0.0	0.005	40.7	LOS C	0.0	0.3	0.92	0.56	0.92	37.7
26b	R3	35	51.5	35	51.5	*0.428	56.4	LOS D	1.6	16.4	1.00	0.74	1.00	30.0
Appro	ach	306	12.7	306	12.7	0.428	24.5	LOS B	6.4	48.2	0.81	0.77	0.81	46.6
North	The N	lorthern F	Road											
7b	L3	58	21.8	58	21.8	0.111	19.9	LOS B	1.0	8.7	0.68	0.73	0.68	44.7
8	T1	941	19.4	941	19.4	*0.904	48.0	LOS D	25.1	204.5	1.00	1.07	1.34	39.0
9a	R1	18	17.6	18	17.6	0.118	49.0	LOS D	0.8	6.1	0.95	0.70	0.95	35.8
Appro	ach	1017	19.5	1017	19.5	0.904	46.4	LOS D	25.1	204.5	0.98	1.05	1.30	39.1
South	West: /	Adams R	oad											
30a	L1	24	17.4	24	17.4	0.056	33.5	LOS C	0.8	6.5	0.78	0.68	0.78	39.6
2	T1	1	0.0	1	0.0	0.005	39.6	LOS C	0.0	0.3	0.92	0.54	0.92	26.4
32b	R3	24	17.4	24	17.4	0.249	53.3	LOS D	1.1	8.8	0.98	0.71	0.98	32.1
Appro	ach	49	17.0	49	17.0	0.249	43.4	LOS D	1.1	8.8	0.88	0.69	0.88	35.3
All Ve	hicles	2969	15.4	2969	15.4	0.904	32.4	LOS C	27.8	218.4	0.93	0.91	1.06	45.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian M	lovement	Perforr	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: The No	rthern Road									
P11 Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.6	34.2	0.52
P12 Stage 2	53	17.1	LOS B	0.1	0.1	0.87	0.87	40.9	30.9	0.76
P1B ^{Slip/} Bypass	53	39.3	LOS D	0.1	0.1	0.94	0.94	58.0	24.3	0.42
NorthEast: Add	ama Dood									
NorthEast. Aua	ams Road									
P3 Full	53	39.3	LOS D	0.1	0.1	0.94	0.94	71.2	41.5	0.58

North: The Norther	n Road									
P31 Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.6	34.2	0.52
P32 Stage 2	53	39.3	LOS D	0.1	0.1	0.94	0.94	63.1	30.9	0.49
P3B Slip/ Bypass	53	17.1	LOS B	0.1	0.1	0.87	0.87	35.8	24.3	0.68
SouthWest: Adams	s Road									
P1 Full	53	39.3	LOS D	0.1	0.1	0.94	0.94	70.4	40.5	0.57
All Pedestrians	421	33.7	LOS D	0.1	0.1	0.92	0.92	58.8	32.6	0.55

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:26 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 baseline Elizabeth Dr/ Adams Rd AM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
21	L2	13	0.0	13	0.0	0.007	6.9	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	182	15.6	182	15.6	0.099	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	195	14.6	195	14.6	0.099	0.5	NA	0.0	0.0	0.00	0.04	0.00	78.4
North	West: E	Elizabeth	Drive											
28	T1	803	12.1	803	12.1	0.482	0.2	LOS A	1.0	7.7	0.10	0.06	0.11	77.3
29	R2	78	4.1	78	4.1	0.482	8.3	LOS A	1.0	7.7	0.10	0.06	0.11	72.3
Appro	bach	881	11.4	881	11.4	0.482	0.9	NA	1.0	7.7	0.10	0.06	0.11	77.2
South	nWest: /	Adams R	oad											
30	L2	256	0.0	256	0.0	0.141	6.9	LOS A	0.6	4.3	0.26	0.59	0.26	54.7
32	R2	89	0.0	89	0.0	0.204	13.5	LOS A	0.6	4.0	0.74	0.91	0.78	55.5
Appro	bach	345	0.0	345	0.0	0.204	8.6	LOS A	0.6	4.3	0.38	0.67	0.39	55.0
All Ve	hicles	1421	9.0	1421	9.0	0.482	2.7	NA	1.0	7.7	0.16	0.21	0.16	70.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:26 PM

Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 baseline Elizabeth Dr/ Luddenham Rd AM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmano	e:									
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>l</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
22	T1	274	19.6	274	19.6	0.154	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
23	R2	171	0.6	171	0.6	0.226	11.3	LOS A	1.0	6.8	0.65	0.87	0.66	55.6
Appro	bach	444	12.3	444	12.3	0.226	4.4	NA	1.0	6.8	0.25	0.34	0.25	68.4
North	East: L	uddenha	m Roa	b										
24	L2	359	5.6	359	5.6	0.404	10.9	LOS A	2.2	16.5	0.61	0.91	0.80	54.5
26	R2	149	1.4	149	1.4	0.416	18.5	LOS B	1.6	11.5	0.81	0.99	1.09	53.9
Appro	bach	508	4.3	508	4.3	0.416	13.1	LOS A	2.2	16.5	0.67	0.93	0.88	54.3
North	West: E	Elizabeth	Drive											
27	L2	260	0.0	260	0.0	0.135	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	65.4
28	T1	528	10.6	528	10.6	0.279	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
Appro	bach	788	7.1	788	7.1	0.279	2.3	NA	0.0	0.0	0.00	0.21	0.00	72.0
All Ve	hicles	1741	7.6	1741	7.6	0.416	6.0	NA	2.2	16.5	0.26	0.45	0.32	65.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:26 PM

Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

Site: 101 [2024 baseline The Northern Rd/ Adams Rd PM scenario 2 (Site Folder: General)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Practical Cycle Time)

Vehio	cle Mo	vement	Perfo	rmanc	e:									
Mov	Turn	DEMA	AND	ARRI	VAL	Deg.	Aver.	Level of	95% B	ACK OF	Prop.	Effective A	ver. No.	Aver.
ID		FLO	WS	FLO	WS	Satn	Delay	Service	QU [\/ob	EUE Dict 1	Que	Stop	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		TALE		km/h
South	: The N	orthern l	Road											
1b	L3	22	9.5	22	9.5	0.025	16.5	LOS B	0.4	3.3	0.40	0.67	0.40	52.9
2	T1	1243	8.0	1243	8.0	0.657	19.3	LOS B	22.2	166.0	0.79	0.71	0.79	56.2
3a	R1	127	1.7	127	1.7	*0.396	28.0	LOS B	3.5	24.7	0.93	0.77	0.93	36.6
Appro	ach	1393	7.5	1393	7.5	0.657	20.1	LOS B	22.2	166.0	0.80	0.72	0.80	54.7
North	East: A	dams Ro	ad											
24a	L1	372	3.7	372	3.7	*0.604	31.3	LOS C	11.2	80.9	0.89	0.88	0.89	44.7
8	T1	1	0.0	1	0.0	0.005	44.9	LOS D	0.0	0.3	0.92	0.56	0.92	36.1
26b	R3	53	6.0	53	6.0	*0.561	61.5	LOS E	2.7	20.2	1.00	0.77	1.06	31.9
Appro	ach	425	4.0	425	4.0	0.604	35.1	LOS C	11.2	80.9	0.90	0.87	0.91	42.6
North	The N	Iorthern F	Road											
7b	L3	29	28.6	29	28.6	0.051	18.8	LOS B	0.5	4.8	0.60	0.70	0.60	46.1
8	T1	1272	6.2	1272	6.2	*0.916	49.1	LOS D	37.2	274.4	1.00	1.07	1.28	38.5
9a	R1	23	9.1	23	9.1	0.143	53.3	LOS D	1.1	8.2	0.95	0.71	0.95	34.4
Appro	ach	1324	6.8	1324	6.8	0.916	48.5	LOS D	37.2	274.4	0.99	1.06	1.26	38.5
South	West:	Adams R	oad											
30a	L1	19	11.1	19	11.1	0.043	36.3	LOS C	0.7	5.4	0.79	0.67	0.79	38.9
2	T1	1	0.0	1	0.0	0.005	43.8	LOS D	0.0	0.3	0.92	0.54	0.92	24.9
32b	R3	19	11.1	19	11.1	0.208	58.6	LOS E	1.0	7.3	0.98	0.70	0.98	31.1
Appro	ach	39	10.8	39	10.8	0.208	47.4	LOS D	1.0	7.3	0.88	0.68	0.88	34.4
All Ve	hicles	3181	6.8	3181	6.8	0.916	34.2	LOS C	37.2	274.4	0.89	0.88	1.01	44.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perforn	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	lime	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: The North	ern Roac	l								
P11 Stage 1	53	44.3	LOS E	0.1	0.1	0.94	0.94	70.6	34.2	0.48
P12 Stage 2	53	19.9	LOS B	0.1	0.1	0.88	0.88	43.7	30.9	0.71
P1B ^{Slip/} Bypass	53	44.3	LOS E	0.1	0.1	0.94	0.94	63.0	24.3	0.39
NorthEast: Adam	s Road									
P3 Full	53	44.3	LOS E	0.1	0.1	0.94	0.94	76.2	41.5	0.54

North: The Norther	n Road									
P31 Stage 1	53	44.3	LOS E	0.1	0.1	0.94	0.94	70.6	34.2	0.48
P32 Stage 2	53	44.3	LOS E	0.1	0.1	0.94	0.94	68.0	30.9	0.45
P3B Slip/ Bypass	53	19.9	LOS B	0.1	0.1	0.88	0.88	38.6	24.3	0.63
SouthWest: Adams	s Road									
P1 Full	53	44.3	LOS E	0.1	0.1	0.94	0.94	75.4	40.5	0.54
All Pedestrians	421	38.2	LOS D	0.1	0.1	0.93	0.93	63.3	32.6	0.52

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:38 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 baseline Elizabeth Dr/ Adams Rd PM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
21	L2	18	5.9	18	5.9	0.010	7.1	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	373	5.9	373	5.9	0.191	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	391	5.9	391	5.9	0.191	0.4	NA	0.0	0.0	0.00	0.03	0.00	78.8
North	West: E	Elizabeth	Drive											
28	T1	647	2.8	647	2.8	0.472	1.2	LOS A	2.9	20.7	0.33	0.16	0.42	73.2
29	R2	176	0.0	176	0.0	0.472	9.7	LOS A	2.9	20.7	0.33	0.16	0.42	62.2
Appro	bach	823	2.2	823	2.2	0.472	3.0	NA	2.9	20.7	0.33	0.16	0.42	72.1
South	West: /	Adams R	oad											
30	L2	197	0.0	197	0.0	0.129	7.5	LOS A	0.5	3.8	0.39	0.64	0.39	53.9
32	R2	79	0.0	79	0.0	0.194	14.2	LOS A	0.6	3.9	0.76	0.91	0.79	55.0
Appro	bach	276	0.0	276	0.0	0.194	9.4	LOS A	0.6	3.9	0.49	0.72	0.50	54.4
All Ve	hicles	1489	2.8	1489	2.8	0.472	3.5	NA	2.9	20.7	0.27	0.23	0.33	68.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:38 PM

Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 baseline Elizabeth Dr/ Luddenham Rd PM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>F</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
22	T1	467	6.5	467	6.5	0.242	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
23	R2	99	1.1	99	1.1	0.080	8.4	LOS A	0.4	2.5	0.45	0.66	0.45	58.5
Appro	bach	566	5.6	566	5.6	0.242	1.5	NA	0.4	2.5	0.08	0.12	0.08	75.1
North	East: L	uddenha	m Roa	b										
24	L2	516	0.0	516	0.0	0.415	8.7	LOS A	2.5	17.7	0.48	0.72	0.53	57.8
26	R2	385	0.0	385	0.0	0.780	21.4	LOS B	5.8	40.6	0.88	1.24	2.12	52.0
Appro	bach	901	0.0	901	0.0	0.780	14.1	LOS A	5.8	40.6	0.65	0.94	1.21	54.2
North	West: E	Elizabeth	Drive											
27	L2	89	1.2	89	1.2	0.047	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	65.0
28	T1	297	5.0	297	5.0	0.152	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	386	4.1	386	4.1	0.152	1.6	NA	0.0	0.0	0.00	0.15	0.00	73.6
All Ve	hicles	1854	2.6	1854	2.6	0.780	7.7	NA	5.8	40.6	0.34	0.52	0.61	62.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:38 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

Site: 101 [2029 baseline The Northern Rd/ Adams Rd AM scenario 2 (Site Folder: General)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Vehic	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLOV [Total veb/h	AND WS HV] %	ARR FLO [Tota veh/h	IVAL WS I HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% [Ql [Veh. veh	BACK OF JEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: The N	Northern I	Road	VOII/II	,,,	110	000		Voll					
1b	L3	29	14.3	29	14.3	0.032	16.3	LOS B	0.6	4.7	0.38	0.68	0.38	52.9
2	T1	1599	14.4	1599	14.4	*0.861	28.7	LOS C	42.4	332.9	0.89	0.89	0.98	49.1
3a	R1	228	5.1	228	5.1	*0.716	33.3	LOS C	7.8	57.1	1.00	0.84	1.06	33.2
Appro	ach	1857	13.2	1857	13.2	0.861	29.1	LOS C	42.4	332.9	0.90	0.88	0.98	47.6
North	East: A	dams Ro	ad											
24a	L1	331	8.0	331	8.0	0.558	31.6	LOS C	11.4	85.1	0.87	0.85	0.87	43.7
8	T1	1	0.0	1	0.0	0.005	49.1	LOS D	0.1	0.4	0.92	0.56	0.92	34.7
26b	R3	43	51.2	43	51.2	*0.649	70.3	LOS E	2.6	25.8	1.00	0.81	1.18	26.9
Appro	ach	375	12.9	375	12.9	0.649	36.1	LOS C	11.4	85.1	0.89	0.84	0.91	40.8
North	The N	lorthern F	Road											
7b	L3	69	21.2	69	21.2	0.107	19.1	LOS B	1.3	11.1	0.59	0.72	0.59	45.6
8	T1	1111	19.3	1111	19.3	0.800	34.2	LOS C	27.7	225.9	0.95	0.89	1.00	45.7
9a	R1	29	14.3	29	14.3	0.207	59.5	LOS E	1.5	12.2	0.97	0.72	0.97	32.5
Appro	ach	1209	19.3	1209	19.3	0.800	33.9	LOS C	27.7	225.9	0.93	0.87	0.98	45.3
South	West: /	Adams R	oad											
30a	L1	48	15.2	48	15.2	0.119	42.6	LOS D	2.0	16.2	0.82	0.72	0.82	36.5
2	T1	1	0.0	1	0.0	0.005	48.0	LOS D	0.1	0.4	0.92	0.54	0.92	23.6
32b	R3	48	15.2	48	15.2	0.600	67.2	LOS E	2.8	22.2	1.00	0.78	1.10	28.7
Appro	ach	98	15.1	98	15.1	0.600	54.8	LOS D	2.8	22.2	0.91	0.75	0.96	32.1
All Ve	hicles	3539	15.3	3539	15.3	0.861	32.2	LOS C	42.4	332.9	0.91	0.87	0.97	45.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perform	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: The North	ern Road	ł								
P11 Stage 1	53	49.3	LOS E	0.2	0.2	0.95	0.95	75.6	34.2	0.45
P12 Stage 2	53	23.0	LOS C	0.1	0.1	0.89	0.89	46.7	30.9	0.66
P1B ^{Slip/} Bypass	53	49.3	LOS E	0.2	0.2	0.95	0.95	68.0	24.3	0.36
NorthEast: Adam	is Road									
P3 Full	53	49.3	LOS E	0.2	0.2	0.95	0.95	81.2	41.5	0.51

North: The Norther	n Road									
P31 Stage 1	53	49.3	LOS E	0.2	0.2	0.95	0.95	75.6	34.2	0.45
P32 Stage 2	53	49.3	LOS E	0.2	0.2	0.95	0.95	73.0	30.9	0.42
P3B Slip/ Bypass	53	23.0	LOS C	0.1	0.1	0.89	0.89	41.7	24.3	0.58
SouthWest: Adams	s Road									
P1 Full	53	49.3	LOS E	0.2	0.2	0.95	0.95	80.4	40.5	0.50
All Pedestrians	421	42.7	LOS E	0.2	0.2	0.93	0.93	67.8	32.6	0.48

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:50 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 baseline Elizabeth Dr/ Adams Rd AM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmano	e:									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>F</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
21	L2	6	0.0	6	0.0	0.003	6.9	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	102	15.5	102	15.5	0.056	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	80.0
Appro	bach	108	14.6	108	14.6	0.056	0.4	NA	0.0	0.0	0.00	0.04	0.00	78.6
North	West: E	Elizabeth	Drive											
28	T1	769	12.0	769	12.0	0.456	0.1	LOS A	0.7	5.7	0.07	0.06	0.07	77.7
29	R2	73	2.9	73	2.9	0.456	7.6	LOS A	0.7	5.7	0.07	0.06	0.07	73.4
Appro	bach	842	11.3	842	11.3	0.456	0.7	NA	0.7	5.7	0.07	0.06	0.07	77.6
South	West: /	Adams R	oad											
30	L2	346	0.0	346	0.0	0.178	6.6	LOS A	0.8	5.9	0.20	0.57	0.20	55.1
32	R2	121	0.0	121	0.0	0.233	12.3	LOS A	0.7	4.9	0.70	0.90	0.76	56.6
Appro	bach	467	0.0	467	0.0	0.233	8.1	LOS A	0.8	5.9	0.33	0.66	0.34	55.7
All Ve	hicles	1418	7.8	1418	7.8	0.456	3.1	NA	0.8	5.9	0.15	0.25	0.15	69.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:50 PM

Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 baseline Elizabeth Dr/ Luddenham Rd AM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmance	;								
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRIV FLOW [Total H veh/h	/AL De /S Sa HV] % N	g. Aver. tn Delay /c sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>l</i> Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive										
22	T1	282	19.8	282 1	19.8 0.1	59 0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
23	R2	165	0.6	165	0.6 0.1	00 10.4	LOS A	0.8	5.8	0.61	0.83	0.61	56.7
Appro	bach	447	12.7	447 1	2.7 0.1	90 3.8	NA	0.8	5.8	0.23	0.31	0.23	69.4
North	East: L	uddenha	m Roa	d									
24	L2	380	5.5	380	5.5 0.3	10.2	LOS A	2.2	16.1	0.58	0.86	0.72	55.7
26	R2	158	1.3	158	1.3 0.3	85 16.5	LOS B	1.5	10.7	0.77	0.97	1.01	55.6
Appro	bach	538	4.3	538 4	4.3 0.3	91 12.1	LOS A	2.2	16.1	0.64	0.89	0.80	55.6
North	West: E	Elizabeth	Drive										
27	L2	220	0.0	220	0.0 0.1	4 7.0	LOS A	0.0	0.0	0.00	0.63	0.00	65.4
28	T1	462	10.5	462 1	0.5 0.2	4 0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
Appro	bach	682	7.1	682	7.1 0.2	4 2.3	NA	0.0	0.0	0.00	0.20	0.00	72.1
All Ve	hicles	1667	7.7	1667	7.7 0.3	91 5.9	NA	2.2	16.1	0.27	0.45	0.32	65.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:50 PM

Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

Site: 101 [2029 baseline The Northern Rd/ Adams Rd PM scenario 2 (Site Folder: General)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Vehic	cle Mo	vement	Perfo	rmano	e:									
Mov	Turn		AND MS		VAL	Deg. Sata	Aver.	Level of	95% E		Prop.	Effective A	ver. No.	Aver.
		[Total	HV]	[Total	HV]	Jaur	Delay	OEIVICE	[Veh.	Dist]	Que	Rate	Cycles	Opeeu
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: The N	orthern I	Road											
1b	L3	47	11.1	47	11.1	0.050	16.0	LOS B	0.9	7.1	0.37	0.69	0.37	53.1
2	T1	1360	8.0	1360	8.0	0.672	19.1	LOS B	25.9	193.7	0.78	0.70	0.78	56.4
3a	R1	140	1.5	140	1.5	*0.509	32.8	LOS C	4.7	33.3	0.97	0.78	0.97	33.5
Appro	ach	1547	7.6	1547	7.6	0.672	20.2	LOS B	25.9	193.7	0.78	0.71	0.78	54.5
North	East: A	dams Ro	ad											
24a	L1	461	3.7	461	3.7	*0.824	49.0	LOS D	18.8	135.6	0.99	1.03	1.10	37.1
8	T1	1	0.0	1	0.0	0.005	49.1	LOS D	0.1	0.4	0.92	0.56	0.92	34.7
26b	R3	65	6.5	65	6.5	*0.767	70.5	LOS E	3.9	28.8	1.00	0.85	1.31	29.6
Appro	ach	527	4.0	527	4.0	0.824	51.6	LOS D	18.8	135.6	0.99	1.01	1.13	36.0
North	The N	lorthern F	Road											
7b	L3	34	28.1	34	28.1	0.052	18.0	LOS B	0.6	5.6	0.54	0.69	0.54	46.9
8	T1	1433	6.2	1433	6.2	*0.902	44.9	LOS D	43.4	319.9	1.00	1.04	1.19	40.3
9a	R1	48	10.9	48	10.9	0.333	60.2	LOS E	2.6	19.7	0.98	0.74	0.98	32.3
Appro	ach	1515	6.9	1515	6.9	0.902	44.8	LOS D	43.4	319.9	0.99	1.02	1.16	40.1
South	West: /	Adams R	oad											
30a	L1	34	9.4	34	9.4	0.079	41.2	LOS C	1.4	10.6	0.81	0.70	0.81	37.3
2	T1	1	0.0	1	0.0	0.005	48.0	LOS D	0.1	0.4	0.92	0.54	0.92	23.6
32b	R3	33	9.7	33	9.7	0.391	65.4	LOS E	1.8	13.9	1.00	0.73	1.00	29.5
Appro	ach	67	9.4	67	9.4	0.391	53.0	LOS D	1.8	13.9	0.90	0.71	0.90	32.9
All Ve	hicles	3657	6.8	3657	6.8	0.902	35.5	LOS C	43.4	319.9	0.90	0.88	0.99	44.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Mo	Pedestrian Movement Performance													
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.				
	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	lime	Dist.	Speed				
	ped/h	sec		ped	m			sec	m	m/sec				
South: The North	nern Road	ł												
P11 Stage 1	53	49.3	LOS E	0.2	0.2	0.95	0.95	75.6	34.2	0.45				
P12 Stage 2	53	23.0	LOS C	0.1	0.1	0.89	0.89	46.7	30.9	0.66				
P1B Slip/	53	49.3	LOS E	0.2	0.2	0.95	0.95	68.0	24.3	0.36				
Bypass														
NorthEast: Adam	ns Road													
P3 Full	53	49.3	LOS E	0.2	0.2	0.95	0.95	81.2	41.5	0.51				

North: The Norther	n Road									
P31 Stage 1	53	49.3	LOS E	0.2	0.2	0.95	0.95	75.6	34.2	0.45
P32 Stage 2	53	49.3	LOS E	0.2	0.2	0.95	0.95	73.0	30.9	0.42
P3B Slip/ Bypass	53	23.0	LOS C	0.1	0.1	0.89	0.89	41.7	24.3	0.58
SouthWest: Adams	s Road									
P1 Full	53	49.3	LOS E	0.2	0.2	0.95	0.95	80.4	40.5	0.50
All Pedestrians	421	42.7	LOS E	0.2	0.2	0.93	0.93	67.8	32.6	0.48

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:34:02 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 baseline Elizabeth Dr/ Adams Rd PM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmano	e:									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	Elizabeth	Drive											
21	L2	9	11.1	9	11.1	0.005	7.1	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	187	5.6	187	5.6	0.096	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	197	5.9	197	5.9	0.096	0.4	NA	0.0	0.0	0.00	0.03	0.00	78.8
North	West: E	Elizabeth	Drive											
28	T1	563	2.8	563	2.8	0.386	0.3	LOS A	1.4	10.1	0.20	0.14	0.20	74.6
29	R2	152	0.0	152	0.0	0.386	7.9	LOS A	1.4	10.1	0.20	0.14	0.20	65.5
Appro	bach	715	2.2	715	2.2	0.386	1.9	NA	1.4	10.1	0.20	0.14	0.20	73.8
South	West: /	Adams R	oad											
30	L2	307	0.0	307	0.0	0.169	6.9	LOS A	0.8	5.6	0.28	0.59	0.28	54.5
32	R2	123	0.0	123	0.0	0.206	11.0	LOS A	0.6	4.5	0.64	0.86	0.66	57.7
Appro	bach	431	0.0	431	0.0	0.206	8.1	LOS A	0.8	5.6	0.38	0.67	0.39	55.9
All Ve	hicles	1342	2.0	1342	2.0	0.386	3.7	NA	1.4	10.1	0.23	0.29	0.23	67.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:34:02 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 baseline Elizabeth Dr/ Luddenham Rd PM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
22	T1	409	6.4	409	6.4	0.213	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
23	R2	84	1.3	84	1.3	0.062	8.0	LOS A	0.3	2.0	0.39	0.62	0.39	58.7
Appro	bach	494	5.5	494	5.5	0.213	1.4	NA	0.3	2.0	0.07	0.11	0.07	75.2
North	East: L	uddenha	m Roa	d										
24	L2	483	0.0	483	0.0	0.364	8.0	LOS A	1.9	13.1	0.41	0.66	0.41	58.4
26	R2	361	0.0	361	0.0	0.607	15.1	LOS B	3.6	25.4	0.75	1.04	1.31	57.1
Appro	bach	844	0.0	844	0.0	0.607	11.1	LOS A	3.6	25.4	0.55	0.82	0.79	57.6
North	West: E	Elizabeth	Drive											
27	L2	68	1.5	68	1.5	0.036	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	64.9
28	T1	232	5.0	232	5.0	0.118	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	300	4.2	300	4.2	0.118	1.6	NA	0.0	0.0	0.00	0.14	0.00	73.6
All Ve	hicles	1638	2.4	1638	2.4	0.607	6.4	NA	3.6	25.4	0.30	0.48	0.43	64.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:34:02 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

Site: 101 [2024 dev The Northern Rd/ Adams Rd AM scenario 2 In Network: N201 [2024 dev AM (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Practical Cycle Time)

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	IVAL WS I HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% E Ql [Veh. veh	BACK OF JEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: The N	orthern	Road											
1b 2 3a Appro	L3 T1 R1 pach	18 1380 228 1626	17.6 14.3 6.9 13.3	18 1380 228 1626	17.6 14.3 6.9	0.022 0.809 * 0.626 0.809	16.6 24.8 25.3 24.8	LOS B LOS B LOS B	0.3 27.8 5.3 27.8	2.8 218.4 39.2 218.4	0.42 0.92 0.96 0.92	0.67 0.87 0.81 0.86	0.42 0.98 0.97	52.8 51.8 38.7 50.5
North	Fact. D	dams Ro	ad											
240		076	0 F	276	0.5	* 0 420	20 5		6.6	50.1	0.70	0.77	0.70	40.9
24a 8	LI T1	270	9.5	270	9.5	* 0.420 0.005	20.5		0.0	03	0.79	0.77	0.79	49.0 37.7
26b	R3	40	57.9	40	57.9	*0.508	57.2	LOSE	1.9	19.9	1 00	0.50	1.05	29.3
Appro	bach	317	15.6	317	15.6	0.508	25.2	LOS B	6.6	50.1	0.82	0.77	0.82	45.7
North	: The N	lorthern F	Road											
7b	L3	97	23.9	97	23.9	0.185	20.4	LOS B	1.8	15.1	0.70	0.75	0.70	44.3
8	T1	941	19.4	941	19.4	*0.904	48.0	LOS D	25.1	204.5	1.00	1.07	1.34	39.0
9a	R1	18	17.6	18	17.6	0.118	49.0	LOS D	0.8	6.1	0.95	0.70	0.95	35.8
Appro	bach	1056	19.7	1056	19.7	0.904	45.5	LOS D	25.1	204.5	0.97	1.04	1.28	39.2
South	West: /	Adams R	load											
30a	L1	24	17.4	24	17.4	0.056	33.5	LOS C	0.8	6.5	0.78	0.68	0.78	39.6
2	T1	1	0.0	1	0.0	0.005	39.6	LOS C	0.0	0.3	0.92	0.54	0.92	26.4
32b	R3	24	17.4	24	17.4	0.249	53.3	LOS D	1.1	8.8	0.98	0.71	0.98	32.1
Appro	bach	49	17.0	49	17.0	0.249	43.4	LOS D	1.1	8.8	0.88	0.69	0.88	35.3
All Ve	hicles	3048	15.8	3048	15.8	0.904	32.3	LOS C	27.8	218.4	0.93	0.91	1.06	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance													
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.			
ID Crossing	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed			
	ped/h	sec		ped	m			sec	m	m/sec			
South: The North	ern Road	l											
P11 Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.6	34.2	0.52			
P12 Stage 2	53	17.1	LOS B	0.1	0.1	0.87	0.87	40.9	30.9	0.76			
P1B ^{Slip/} Bypass	53	39.3	LOS D	0.1	0.1	0.94	0.94	58.0	24.3	0.42			
NorthEast: Adam	s Road												
P3 Full	53	39.3	LOS D	0.1	0.1	0.94	0.94	71.2	41.5	0.58			
North: The Norther	n Road												
---------------------	--------	------	-------	-----	-----	------	------	------	------	------			
P31 Stage 1	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.6	34.2	0.52			
P32 Stage 2	53	39.3	LOS D	0.1	0.1	0.94	0.94	63.1	30.9	0.49			
P3B Slip/ Bypass	53	17.1	LOS B	0.1	0.1	0.87	0.87	35.8	24.3	0.68			
SouthWest: Adams	s Road												
P1 Full	53	39.3	LOS D	0.1	0.1	0.94	0.94	70.4	40.5	0.57			
All Pedestrians	421	33.7	LOS D	0.1	0.1	0.92	0.92	58.8	32.6	0.55			

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:32 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 dev Elizabeth Dr/ Adams Rd AM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	е									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRI FLO\ [Total veh/h	VAL NS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
21	L2	32	33.3	32	33.3	0.020	7.6	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	182	15.6	182	15.6	0.099	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	214	18.2	214	18.2	0.099	1.1	NA	0.0	0.0	0.00	0.09	0.00	76.6
North	West: E	Elizabeth	Drive											
28	T1	803	12.1	803	12.1	0.483	0.2	LOS A	1.1	8.5	0.11	0.06	0.12	77.2
29	R2	78	4.1	78	4.1	0.483	8.5	LOS A	1.1	8.5	0.11	0.06	0.12	72.1
Appro	bach	881	11.4	881	11.4	0.483	1.0	NA	1.1	8.5	0.11	0.06	0.12	77.1
South	West: /	Adams R	oad											
30	L2	262	2.4	262	2.4	0.147	6.9	LOS A	0.6	4.5	0.25	0.59	0.25	54.7
32	R2	100	9.5	100	9.5	0.257	15.2	LOS B	0.7	5.6	0.77	0.93	0.86	52.1
Appro	bach	362	4.4	362	4.4	0.257	9.2	LOS A	0.7	5.6	0.40	0.68	0.42	53.6
All Ve	hicles	1457	10.6	1457	10.6	0.483	3.0	NA	1.1	8.5	0.17	0.22	0.18	69.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:32 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 dev Elizabeth Dr/ Luddenham Rd AM scenario ■ Network: N201 [2024 dev AM 2 (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total	AND WS HV]	ARRI FLO [Total	VAL NS HV]	Deg. Satn	Aver. Delay	Level of Service	95% Q [Veh.	BACK OF UEUE Dist]	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed
South	East: E	Elizabeth	Drive	VCII/II	70	V/C	360	_	Ven				_	N111/11
22	T1	280	21.4	280	21.4	0.159	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
23	R2	171	0.6	171	0.6	0.226	11.3	LOS A	1.0	6.8	0.65	0.87	0.66	55.6
Appro	bach	451	13.6	451	13.6	0.226	4.3	NA	1.0	6.8	0.25	0.33	0.25	68.5
North	East: L	uddenha	m Road	b										
24	L2	359	5.6	359	5.6	0.404	10.9	LOS A	2.2	16.5	0.61	0.91	0.80	54.5
26	R2	149	1.4	149	1.4	0.421	18.7	LOS B	1.6	11.7	0.82	0.99	1.10	53.8
Appro	bach	508	4.3	508	4.3	0.421	13.2	LOS A	2.2	16.5	0.67	0.93	0.89	54.2
North	West: I	Elizabeth	Drive											
27	L2	260	0.0	260	0.0	0.135	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	65.4
28	T1	528	10.6	528	10.6	0.279	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
Appro	bach	788	7.1	788	7.1	0.279	2.3	NA	0.0	0.0	0.00	0.21	0.00	72.0
All Ve	hicles	1747	8.0	1747	8.0	0.421	6.0	NA	2.2	16.5	0.26	0.45	0.32	65.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:32 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

Site: 101 [2024 dev The Northern Rd/ Adams Rd PM scenario 2 International Network: N201 [2024 dev PM (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Practical Cycle Time)

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEMA FLOV [Total	AND WS HV] %	ARRI FLO [Total	VAL WS HV]	Deg. Satn	Aver. Delay	Level of Service	95% E Ql [Veh.	BACK OF JEUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed
South	n: The N	Northern I	Road	VCH/H	/0	V/C	300		VCII				_	NIII/II
1b	L3	22	9.5	22	9.5	0.025	16.5	LOS B	0.4	3.3	0.40	0.67	0.40	52.9
2	T1	1243	8.0	1243	8.0	0.657	19.3	LOS B	22.2	166.0	0.79	0.71	0.79	56.2
3a	R1	129	3.3	129	3.3	*0.407	28.1	LOS B	3.6	25.6	0.93	0.77	0.93	36.6
Appro	bach	1395	7.6	1395	7.6	0.657	20.1	LOS B	22.2	166.0	0.80	0.72	0.80	54.7
North	East: A	dams Ro	ad											
24a	L1	374	4.2	374	4.2	*0.610	31.4	LOS C	11.3	81.8	0.89	0.88	0.89	44.5
8	T1	1	0.0	1	0.0	0.005	44.9	LOS D	0.0	0.3	0.92	0.56	0.92	36.1
26b	R3	55	9.6	55	9.6	*0.596	62.0	LOS E	2.9	21.8	1.00	0.78	1.10	31.5
Appro	bach	429	4.9	429	4.9	0.610	35.4	LOS C	11.3	81.8	0.90	0.87	0.92	42.3
North	: The N	Iorthern F	Road											
7b	L3	34	37.5	34	37.5	0.061	19.0	LOS B	0.6	5.9	0.60	0.70	0.60	46.0
8	T1	1272	6.2	1272	6.2	*0.916	49.1	LOS D	37.2	274.4	1.00	1.07	1.28	38.5
9a	R1	23	9.1	23	9.1	0.143	53.3	LOS D	1.1	8.2	0.95	0.71	0.95	34.4
Appro	bach	1328	7.1	1328	7.1	0.916	48.4	LOS D	37.2	274.4	0.99	1.06	1.25	38.5
South	West:	Adams R	oad											
30a	L1	19	11.1	19	11.1	0.043	36.3	LOS C	0.7	5.4	0.79	0.67	0.79	38.9
2	T1	1	0.0	1	0.0	0.005	43.8	LOS D	0.0	0.3	0.92	0.54	0.92	24.9
32b	R3	19	11.1	19	11.1	0.208	58.6	LOS E	1.0	7.3	0.98	0.70	0.98	31.1
Appro	bach	39	10.8	39	10.8	0.208	47.4	LOS D	1.0	7.3	0.88	0.68	0.88	34.4
All Ve	hicles	3192	7.1	3192	7.1	0.916	34.3	LOS C	37.2	274.4	0.89	0.88	1.01	44.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perforr	nance							
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
South: The North	ern Road	l								
P11 Stage 1	53	44.3	LOS E	0.1	0.1	0.94	0.94	70.6	34.2	0.48
P12 Stage 2	53	19.9	LOS B	0.1	0.1	0.88	0.88	43.7	30.9	0.71
P1B ^{Slip/} Bypass	53	44.3	LOS E	0.1	0.1	0.94	0.94	63.0	24.3	0.39
NorthEast: Adam	is Road									
P3 Full	53	44.3	LOS E	0.1	0.1	0.94	0.94	76.2	41.5	0.54

North: The Norther	n Road									
P31 Stage 1	53	44.3	LOS E	0.1	0.1	0.94	0.94	70.6	34.2	0.48
P32 Stage 2	53	44.3	LOS E	0.1	0.1	0.94	0.94	68.0	30.9	0.45
P3B Slip/ Bypass	53	19.9	LOS B	0.1	0.1	0.88	0.88	38.6	24.3	0.63
SouthWest: Adams	s Road									
P1 Full	53	44.3	LOS E	0.1	0.1	0.94	0.94	75.4	40.5	0.54
All Pedestrians	421	38.2	LOS D	0.1	0.1	0.93	0.93	63.3	32.6	0.52

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:44 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 dev Elizabeth Dr/ Adams Rd PM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmano	ce									
Mov ID	Turn	DEM/ FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	IVAL WS I HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% [Ql [Veh. veh	BACK OF JEUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	Elizabeth	Drive											
21	L2	25	29.2	25	29.2	0.016	7.5	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	373	5.9	373	5.9	0.191	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	398	7.4	398	7.4	0.191	0.5	NA	0.0	0.0	0.00	0.04	0.00	78.4
North	West: E	Elizabeth	Drive											
28	T1	647	2.8	647	2.8	0.473	1.3	LOS A	3.0	21.1	0.33	0.16	0.43	73.1
29	R2	176	0.0	176	0.0	0.473	9.8	LOS A	3.0	21.1	0.33	0.16	0.43	62.1
Appro	bach	823	2.2	823	2.2	0.473	3.1	NA	3.0	21.1	0.33	0.16	0.43	72.0
South	West: /	Adams R	oad											
30	L2	200	1.6	200	1.6	0.132	7.5	LOS A	0.6	4.0	0.39	0.64	0.39	53.9
32	R2	85	6.2	85	6.2	0.227	15.3	LOS B	0.7	4.9	0.78	0.93	0.84	52.7
Appro	bach	285	3.0	285	3.0	0.227	9.8	LOS A	0.7	4.9	0.51	0.73	0.52	53.3
All Ve	hicles	1506	3.7	1506	3.7	0.473	3.7	NA	3.0	21.1	0.28	0.24	0.33	68.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:44 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2024 dev Elizabeth Dr/ Luddenham Rd PM scenario III Network: N201 [2024 dev PM 2 (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	vement	Perfo	rmanc	e									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND VS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	East: E	Elizabeth	Drive											
22	T1	471	7.2	471	7.2	0.245	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
23	R2	99	1.1	99	1.1	0.080	8.4	LOS A	0.4	2.5	0.45	0.66	0.45	58.5
Appro	ach	569	6.1	569	6.1	0.245	1.5	NA	0.4	2.5	0.08	0.11	0.08	75.1
North	East: L	uddenhai	m Roa	d										
24	L2	516	0.0	516	0.0	0.415	8.7	LOS A	2.5	17.7	0.48	0.72	0.53	57.8
26	R2	385	0.0	385	0.0	0.785	21.7	LOS B	5.9	41.2	0.88	1.24	2.16	51.8
Appro	ach	901	0.0	901	0.0	0.785	14.3	LOS A	5.9	41.2	0.65	0.94	1.23	54.1
North	West: I	Elizabeth	Drive											
27	L2	89	1.2	89	1.2	0.047	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	65.0
28	T1	297	5.0	297	5.0	0.152	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	ach	386	4.1	386	4.1	0.152	1.6	NA	0.0	0.0	0.00	0.15	0.00	73.6
All Ve	hicles	1857	2.7	1857	2.7	0.785	7.7	NA	5.9	41.2	0.34	0.52	0.62	62.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:44 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

Site: 101 [2029 dev The Northern Rd/ Adams Rd AM scenario 2 In Network: N201 [2029 dev AM (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Vehi	cle Mo	vement	Perfo	rmano	e:									
Mov ID	Turn	DEMA FLO [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>F</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: The N	Northern I	Road											
1b 2 3a Appro	L3 T1 R1 bach	29 1599 257 1885	14.3 14.4 8.6 13.6	29 1599 257 1885	14.3 14.4 8.6 13.6	0.032 * 0.866 * 0.746 0.866	16.3 29.5 33.2 29.8	LOS B LOS C LOS C LOS C	0.6 43.2 8.8 43.2	4.7 339.5 65.8 339.5	0.38 0.90 1.00 0.90	0.68 0.89 0.86 0.89	0.38 0.99 1.08 0.99	52.9 48.6 33.3 47.0
North	East: A	dams Ro	bad											
24a 8 26b	L1 T1 B3	341 1 55	10.8 0.0 61.5	341 1 55	10.8 0.0 61.5	0.555 0.005 * 0.865	28.6 49.1 77 7	LOS C LOS D	11.6 0.1 3.5	88.9 0.4 37.4	0.86 0.92 1.00	0.82 0.56 0.95	0.86 0.92 1.60	45.0 34.7 25 1
Appro	bach	397	17.8	397	17.8	0.865	35.5	LOS C	11.6	88.9	0.88	0.84	0.96	40.5
North	: The N	Iorthern F	Road											
7b 8 9a	L3 T1 R1	114 1111 29	33.3 19.3 14.3	114 1111 29	33.3 19.3 14.3	0.194 0.838 0.207	20.4 39.2 59.5	LOS B LOS C LOS E	2.3 29.9 1.5	20.5 243.6 12.2	0.64 0.98 0.97	0.74 0.95 0.72	0.64 1.08 0.97	44.5 43.0 32.5
Appro	bach	1254	20.5	1254	20.5	0.838	38.0	LOS C	29.9	243.6	0.95	0.92	1.04	42.7
South	West:	Adams R	load											
30a 2 32b	L1 T1 R3	48 1 48	15.2 0.0 15.2	48 1 48	15.2 0.0 15.2	0.119 0.005 0.600	42.6 48.0 67.2	LOS D LOS D LOS E	2.0 0.1 2.8	16.2 0.4 22.2	0.82 0.92 1.00	0.72 0.54 0.78	0.82 0.92 1.10	36.5 23.6 28.7
Appro	hicles	98 3634	15.1 16.5	98 3634	15.1 16.5	0.600	54.8 33.9	LOS D	2.8 43.2	22.2 339.5	0.91	0.75	0.96	32.1 44.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Ped	estrian Mov	/ement	Perform	nance							
Mov	Oracian	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID	Crossing	Flow	Delay	Service	QUE [Ped	UE Dist]	Que	Stop Rate	Time	Dist.	Speed
		ped/h	sec		ped	m			sec	m	m/sec
Sout	h: The North	ern Road	l								
P11	Stage 1	53	49.3	LOS E	0.2	0.2	0.95	0.95	75.6	34.2	0.45
P12	Stage 2	53	23.0	LOS C	0.1	0.1	0.89	0.89	46.7	30.9	0.66
P1B	Slip/ Bypass	53	49.3	LOS E	0.2	0.2	0.95	0.95	68.0	24.3	0.36
Nort	hEast: Adams	s Road									
P3	Full	53	49.3	LOS E	0.2	0.2	0.95	0.95	81.2	41.5	0.51

North: The Norther	n Road									
P31 Stage 1	53	49.3	LOS E	0.2	0.2	0.95	0.95	75.6	34.2	0.45
P32 Stage 2	53	49.3	LOS E	0.2	0.2	0.95	0.95	73.0	30.9	0.42
P3B Slip/ Bypass	53	23.0	LOS C	0.1	0.1	0.89	0.89	41.7	24.3	0.58
SouthWest: Adams	s Road									
P1 Full	53	49.3	LOS E	0.2	0.2	0.95	0.95	80.4	40.5	0.50
All Pedestrians	421	42.7	LOS E	0.2	0.2	0.93	0.93	67.8	32.6	0.48

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:56 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 dev Elizabeth Dr/ Adams Rd AM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	e:									
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% I Ql [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
21	L2	21	40.0	21	40.0	0.014	7.7	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	102	15.5	102	15.5	0.056	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	80.0
Appro	bach	123	19.7	123	19.7	0.056	1.3	NA	0.0	0.0	0.00	0.11	0.00	76.1
North	West: E	Elizabeth	Drive											
28	T1	769	12.0	769	12.0	0.456	0.1	LOS A	0.8	5.8	0.07	0.06	0.07	77.7
29	R2	73	2.9	73	2.9	0.456	7.7	LOS A	0.8	5.8	0.07	0.06	0.07	73.2
Appro	bach	842	11.3	842	11.3	0.456	0.7	NA	0.8	5.8	0.07	0.06	0.07	77.5
South	West: A	Adams R	oad											
30	L2	358	3.2	358	3.2	0.187	6.7	LOS A	0.9	6.3	0.19	0.57	0.19	55.1
32	R2	132	7.2	132	7.2	0.276	13.3	LOS A	0.8	6.3	0.73	0.92	0.82	54.0
Appro	bach	489	4.3	489	4.3	0.276	8.5	LOS A	0.9	6.3	0.34	0.67	0.36	54.7
All Ve	hicles	1455	9.6	1455	9.6	0.456	3.4	NA	0.9	6.3	0.16	0.27	0.17	68.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:56 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 dev Elizabeth Dr/ Luddenham Rd AM scenario III Network: N201 [2029 dev AM 2 (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None) Give-Way (Two-Way)

Vehio	Vehicle Movement Performance													
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND WS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	East: E	Elizabeth	Drive											
22	T1	294	22.9	294	22.9	0.168	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
23	R2	165	0.6	165	0.6	0.190	10.4	LOS A	0.8	5.8	0.61	0.83	0.61	56.7
Appro	bach	459	14.9	459	14.9	0.190	3.7	NA	0.8	5.8	0.22	0.30	0.22	69.6
North	East: L	uddenha	m Road	b										
24	L2	380	5.5	380	5.5	0.391	10.2	LOS A	2.2	16.1	0.58	0.86	0.72	55.7
26	R2	158	1.3	158	1.3	0.393	16.8	LOS B	1.6	11.0	0.78	0.97	1.03	55.3
Appro	bach	538	4.3	538	4.3	0.393	12.2	LOS A	2.2	16.1	0.64	0.89	0.81	55.5
North	West: I	Elizabeth	Drive											
27	L2	220	0.0	220	0.0	0.114	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	65.4
28	T1	462	10.5	462	10.5	0.244	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
Appro	bach	682	7.1	682	7.1	0.244	2.3	NA	0.0	0.0	0.00	0.20	0.00	72.1
All Ve	hicles	1679	8.3	1679	8.3	0.393	5.8	NA	2.2	16.1	0.26	0.45	0.32	65.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:33:56 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

Site: 101 [2029 dev The Northern Rd/ Adams Rd PM scenario 2 International Network: N201 [2029 dev PM (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Practical Cycle Time)

Vehicle Movement Performance														
Mov ID	Turn	DEMA FLO\ [Total veh/h	AND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% E Ql [Veh. veh	BACK OF JEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: The N	Northern I	Road											
1b	L3	47	11.1	47	11.1	0.049	16.1	LOS B	1.0	7.4	0.36	0.69	0.36	53.0
2	T1	1360	8.0	1360	8.0	0.647	18.9	LOS B	26.8	200.7	0.74	0.67	0.74	56.6
3a	R1	143	3.7	143	3.7	0.512	35.4	LOS C	5.3	38.6	0.97	0.79	0.97	32.0
Appro	bach	1551	7.7	1551	7.7	0.647	20.3	LOS B	26.8	200.7	0.75	0.68	0.75	54.4
NorthEast: Adams Road														
24a	L1	464	4.3	464	4.3	*0.834	53.1	LOS D	20.5	148.4	1.00	1.05	1.11	35.6
8	T1	1	0.0	1	0.0	0.005	53.3	LOS D	0.1	0.4	0.92	0.56	0.92	33.3
26b	R3	69	12.1	69	12.1	*0.922	86.7	LOS F	4.9	38.0	1.00	0.97	1.67	25.9
Appro	bach	535	5.3	535	5.3	0.922	57.4	LOS E	20.5	148.4	1.00	1.04	1.18	33.9
North	: The N	Iorthern F	Road											
7b	L3	42	42.5	42	42.5	0.067	18.5	LOS B	0.8	8.1	0.53	0.70	0.53	46.6
8	T1	1433	6.2	1433	6.2	*0.862	37.8	LOS C	41.5	305.8	0.96	0.94	1.05	43.7
9a	R1	48	10.9	48	10.9	*0.327	64.6	LOS E	2.8	21.4	0.98	0.74	0.98	31.1
Appro	bach	1523	7.4	1523	7.4	0.862	38.1	LOS C	41.5	305.8	0.95	0.92	1.03	43.2
South	West:	Adams R	oad											
30a	L1	34	9.4	34	9.4	0.080	44.6	LOS D	1.5	11.6	0.81	0.70	0.81	36.0
2	T1	1	0.0	1	0.0	0.005	52.2	LOS D	0.1	0.4	0.92	0.55	0.92	22.4
32b	R3	33	9.7	33	9.7	0.427	71.4	LOS F	2.0	15.3	1.00	0.73	1.00	28.2
Appro	bach	67	9.4	67	9.4	0.427	57.7	LOS E	2.0	15.3	0.91	0.71	0.91	31.6
All Ve	hicles	3676	7.3	3676	7.3	0.922	33.8	LOS C	41.5	305.8	0.87	0.84	0.93	44.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance												
Mov	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.		
ID Crossing	Flow	Delay	Service	e QUEUE [Ped Dist]		Que	Stop Rate	Time	Dist.	Speed		
	ped/h	sec		ped	m			sec	m	m/sec		
South: The Northern Road												
P11 Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.6	34.2	0.42		
P12 Stage 2	53	26.0	LOS C	0.1	0.1	0.90	0.90	49.8	30.9	0.62		
P1B ^{Slip/} Bypass	53	54.3	LOS E	0.2	0.2	0.95	0.95	73.0	24.3	0.33		
NorthEast: Ada	ms Road											
P3 Full	53	54.3	LOS E	0.2	0.2	0.95	0.95	86.2	41.5	0.48		

North: The Northern Road												
P31 Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95	80.6	34.2	0.42		
P32 Stage 2	53	54.3	LOS E	0.2	0.2	0.95	0.95	78.0	30.9	0.40		
P3B Slip/ Bypass	53	26.0	LOS C	0.1	0.1	0.90	0.90	44.7	24.3	0.54		
SouthWest: Adams Road												
P1 Full	53	54.3	LOS E	0.2	0.2	0.95	0.95	85.4	40.5	0.47		
All Pedestrians	421	47.2	LOS E	0.2	0.2	0.94	0.94	72.3	32.6	0.45		

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:34:08 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 dev Elizabeth Dr/ Adams Rd PM scenario 2 (Site Folder: General)]

Site Category: (None) Give-Way (Two-Way)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	DEMA FLOV [Total veh/h	AND WS HV] %	ARR FLO [Tota veh/h	IVAL WS I HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ql [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	nEast: E	lizabeth	Drive											
21	L2	15	35.7	15	35.7	0.010	7.6	LOS A	0.0	0.0	0.00	0.63	0.00	61.6
22	T1	187	5.6	187	5.6	0.096	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	202	7.8	202	7.8	0.096	0.6	NA	0.0	0.0	0.00	0.05	0.00	78.2
North	West: E	Elizabeth	Drive											
28	T1	563	2.8	563	2.8	0.387	0.3	LOS A	1.4	10.2	0.20	0.14	0.20	74.6
29	R2	152	0.0	152	0.0	0.387	7.9	LOS A	1.4	10.2	0.20	0.14	0.20	65.4
Appro	bach	715	2.2	715	2.2	0.387	2.0	NA	1.4	10.2	0.20	0.14	0.20	73.7
South	nWest: /	Adams R	oad											
30	L2	312	1.4	312	1.4	0.173	6.9	LOS A	0.8	5.8	0.28	0.59	0.28	54.5
32	R2	128	3.3	128	3.3	0.223	11.4	LOS A	0.7	5.1	0.65	0.87	0.69	56.5
Appro	bach	440	1.9	440	1.9	0.223	8.2	LOS A	0.8	5.8	0.39	0.67	0.40	55.4
All Ve	hicles	1357	2.9	1357	2.9	0.387	3.8	NA	1.4	10.2	0.23	0.30	0.24	66.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:34:08 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

V Site: 101 [2029 dev Elizabeth Dr/ Luddenham Rd PM scenario III Network: N201 [2029 dev PM 2 (Site Folder: General)] (Network Folder: Scenario 2)]

Site Category: (None) Give-Way (Two-Way)

Vehio	Vehicle Movement Performance													
Mov ID	Turn	DEMA FLOV [Total veh/h	ND NS HV] %	ARRI FLO [Total veh/h	VAL WS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh. veh	BACK OF UEUE Dist] m	Prop. Que	Effective <i>A</i> Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	East: E	lizabeth	Drive											
22	T1	414	7.4	414	7.4	0.216	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
23	R2	84	1.3	84	1.3	0.062	8.0	LOS A	0.3	2.0	0.39	0.62	0.39	58.7
Appro	bach	498	6.3	498	6.3	0.216	1.4	NA	0.3	2.0	0.07	0.11	0.07	75.3
NorthEast: Luddenham Road														
24	L2	483	0.0	483	0.0	0.364	8.0	LOS A	1.9	13.1	0.41	0.66	0.41	58.4
26	R2	361	0.0	361	0.0	0.612	15.3	LOS B	3.7	25.7	0.75	1.05	1.33	57.0
Appro	bach	844	0.0	844	0.0	0.612	11.1	LOS A	3.7	25.7	0.55	0.82	0.80	57.5
North	West: I	Elizabeth	Drive											
27	L2	68	1.5	68	1.5	0.036	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	64.9
28	T1	232	5.0	232	5.0	0.118	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach	300	4.2	300	4.2	0.118	1.6	NA	0.0	0.0	0.00	0.14	0.00	73.6
All Ve	hicles	1642	2.7	1642	2.7	0.612	6.4	NA	3.7	25.7	0.30	0.48	0.43	64.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, March 31, 2021 4:34:08 PM Project: T:\Jobs\2019\J190749 - CPG Luddenham Quarry\Technical studies\Transport\SIDRA\210331 Addendum TIA.sip9

www.emmconsulting.com.au

www.emmconsulting.com.au