Appendix J: Revised Environmental Nosie Assessment ### Rye Park Wind Farm Modification **Environmental Noise Assessment** S3200C18 July 2020 Chris Turnbull Principal Phone: +61 (0) 417 845 720 Email: ct@sonus.com.au www.sonus.com.au Rye Park Wind Farm - Modification Environmental Noise Assessment S3200C18 July 2020 ### sonus. **Document Title** Rye Park Wind Farm – Modification **Environmental Noise Assessment** **Document Reference** \$3200C18 Date July 2020 Author Chris Turnbull, MAAS **Reviewer** Jason Turner, MAAS © Sonus Pty Ltd. All rights reserved. This report may not be reproduced other than in its entirety. The report is for the sole use of the client for the particular circumstances described in the report. Sonus accepts no responsibility to any other party who may rely upon or use this report without prior written consent. #### **CONTENTS** | 1 | IN ⁻ | TRODU | JCTION | 4 | |---|-----------------|--------|--------------------------------------|----| | 2 | \A/I | IND TI | JRBINE LAYOUT | - | | _ | VVI | ואט וכ | TRBINE LATOUT | | | 3 | RE | SIDEN | CES SURROUNDING THE WIND FARM | 6 | | 4 | OP | ERATI | ONAL NOISE | 8 | | | 4.1 | CRIT | ERIA | 8 | | | 4.2 | ASSE | SSMENT | 10 | | | 4.2 | .1 | Layout and Details | 10 | | | 4.2 | 2 | Noise Propagation Model – ISO 9613-2 | 10 | | | 4.2 | 3 | Predictions | 11 | | | 4.2 | .4 | Curtailment | 16 | | 5 | со | RONA | AND AEOLIAN NOISE ASSESSMENT | 18 | | 6 | WI | IND FA | RM CONSTRUCTION | 19 | | | 6.1 | CRIT | ERIA | 19 | | | 6.2 | Cons | truction Activity Assessment | 21 | | | 6.2 | .1 | WTG Installation | 21 | | | 6.2 | 2 | Access Roads | 22 | | | 6.2 | 3 | Batching Plant | 22 | | | 6.2 | .4 | Noise Mitigation | 23 | | | 6.3 | Blast | ing Assessment | 27 | | 7 | TR | AFFIC | NOISE | 28 | | | 7.1 | CRIT | ERIA | 28 | | | 7.2 | ASSE | SSMENT | 28 | | | | | | | APPENDIX A: WTG Sound Power Levels31 Rye Park Wind Farm - Modification Environmental Noise Assessment S3200C18 July 2020 sonus. #### 1 INTRODUCTION The Rye Park Wind Farm is proposed to be located 12 km north east of Yass and 42 km west of Crookwell. Development Consent was granted in May 2017 (Application Number SSD 6693) for up to 92 wind turbine generators (WTGs) with a tip height of up to 157m. An environmental noise assessment of the operation and construction stage was made and summarised in Sonus report S3200C9 dated February 2016. Modifications to the wind farm layout and tip height are proposed and a revised environmental noise assessment of the operation has been conducted. This report summarises the environmental noise assessment of the operation of the proposed 80 wind turbine layout. The assessment has been based on the GE 158 5.5MW WTGs, with a maximum tip height of 200m above ground level (AGL), being a representative wind turbine and having one of the highest noise emissions of those currently in the market. Should approval be granted, the final turbine selection and final layout will be assessed prior to construction of the wind farm. #### 2 WIND TURBINE LAYOUT The coordinates of the 80 WTG layout are provided in Table 1. Table 1: Coordinates of wind turbine layout. | Turking | Coordinates | | | | | | |---------------|-------------|-----------|--|--|--|--| | Turbine
ID | (UTM W | SS84 H44) | | | | | | טו | Easting | Northing | | | | | | 1 | 676629 | 6186672 | | | | | | 2 | 676471 | 6186291 | | | | | | 3 | 676320 | 6185897 | | | | | | 4 | 676320 | 6185509 | | | | | | 5 | 677805 | 6185279 | | | | | | 7 | 677490 | 6184967 | | | | | | 9 | 677384 | 6184591 | | | | | | 11 | 677266 | 6184203 | | | | | | 12 | 677322 | 6183750 | | | | | | 17 | 681368 | 6182678 | | | | | | 20 | 681054 | 6182312 | | | | | | 21 | 678588 | 6181965 | | | | | | 22 | 679549 | 6181989 | | | | | | 25 | 679389 | 6181591 | | | | | | 26 | 678511 | 6181575 | | | | | | 28 | 678484 | 6181184 | | | | | | 30 | 679009 | 6180754 | | | | | | 31 | 680367 | 6180463 | | | | | | 32 | 678570 | 6180428 | | | | | | 34 | 678899 | 6180032 | | | | | | 36 | 680242 | 6180109 | | | | | | 37 | 678987 | 6179642 | | | | | | 39 | 680098 | 6179394 | | | | | | 41 | 680008 | 6179119 | | | | | | 42 | 680994 | 6179015 | | | | | | 43 | 679027 | 6179114 | | | | | | 48 | 681515 | 6177825 | | | | | | Turbine | Coordinates | | | | | | |---------|-------------|-----------|--|--|--|--| | ID | (UTM W | SS84 H44) | | | | | | 10 | Easting | Northing | | | | | | 49 | 681955 | 6177678 | | | | | | 50 | 681372 | 6177446 | | | | | | 51 | 681355 | 6177078 | | | | | | 58 | 682400 | 6176161 | | | | | | 61 | 680965 | 6176347 | | | | | | 62 | 680830 | 6175999 | | | | | | 63 | 682309 | 6175645 | | | | | | 64 | 683431 | 6175508 | | | | | | 65 | 684812 | 6175374 | | | | | | 66 | 682384 | 6175319 | | | | | | 67 | 680267 | 6175231 | | | | | | 68 | 684506 | 6175044 | | | | | | 69 | 682302 | 6174979 | | | | | | 71 | 682195 | 6173075 | | | | | | 72 | 682099 | 6172655 | | | | | | 73 | 681120 | 6172346 | | | | | | 74 | 681358 | 6172003 | | | | | | 75 | 681388 | 6171634 | | | | | | 76 | 680446 | 6171508 | | | | | | 78 | 680782 | 6171250 | | | | | | 79 | 680673 | 6170767 | | | | | | 80 | 682014 | 6170267 | | | | | | 82 | 682004 | 6169806 | | | | | | 83 | 681810 | 6169398 | | | | | | 84 | 681373 | 6167591 | | | | | | 85 | 681917 | 6167300 | | | | | | 86 | 681730 | 6166773 | | | | | | Turbine Coordinates | | | | | | | | |---------------------|-----------------|----------|--|--|--|--|--| | ID | (UTM WGS84 H44) | | | | | | | | | Easting | Northing | | | | | | | 87 | 681536 | 6166404 | | | | | | | 18 | 678502 | 6182471 | | | | | | | 119 | 683654 | 6152722 | | | | | | | 120 | 684987 | 6152789 | | | | | | | 122 | 683572 | 6152343 | | | | | | | 124 | 685103 | 6152217 | | | | | | | 125 | 684396 | 6152175 | | | | | | | 127 | 684307 | 6151723 | | | | | | | 128 | 683138 | 6151393 | | | | | | | 129 | 684402 | 6151298 | | | | | | | 131 | 683001 | 6150684 | | | | | | | 135 | 679301 | 6180383 | | | | | | | 136 | 680809 | 6181821 | | | | | | | 137 | 680652 | 6181414 | | | | | | | 138 | 680607 | 6181022 | | | | | | | 139 | 680934 | 6177688 | | | | | | | 141 | 680488 | 6175710 | | | | | | | 142 | 684592 | 6152523 | | | | | | | 143 | 681415 | 6167988 | | | | | | | 130 | 683127 | 6151016 | | | | | | | 146 | 684178 | 6174388 | | | | | | | 147 | 684451 | 6173978 | | | | | | | 148 | 684474 | 6173545 | | | | | | | 150 | 682052 | 6170803 | | | | | | | 145 | 686104 | 6154215 | | | | | | | 151 | 677325 | 6185689 | | | | | | #### 3 RESIDENCES SURROUNDING THE WIND FARM Residences located in the vicinity of the wind farm are listed in Table 2. The status of the land owners (associated or non-associated) of the residences are indicated, including residence R192 which has been acquired by the wind farm. **Table 2: Residences** Coordinates | Coordinates | | | | | | | | | |-----------------------|--------------|-----------|--|--|--|--|--|--| | ID | (UTM W | GS84 H44) | | | | | | | | | Easting | Northing | | | | | | | | Asse | ociated Resi | dences | | | | | | | | R01 | 677,418 | 6,187,127 | | | | | | | | R02 | 678,095 | 6,185,733 | | | | | | | | R14 | 677,807 | 6,183,115 | | | | | | | | R16 | 677,297 | 6,181,991 | | | | | | | | R20 | 676,130 | 6,181,544 | | | | | | | | R25 | 677,075 | 6,178,323 | | | | | | | | R31 | 679,304 | 6,177,019 | | | | | | | | R34 | 681,817 | 6,174,338 | | | | | | | | R36 | 679,988 | 6,173,811 | | | | | | | | R40 | 678,605 | 6,171,136 | | | | | | | | R41 | 681,870 | 6,168,503 | | | | | | | | R42 | 683,370 | 6,168,206 | | | | | | | | R44 | 679,986 | 6,166,322 | | | | | | | | R46 | 681,835 | 6,164,679 | | | | | | | | R49 | 680,667 | 6,162,540 | | | | | | | | R51 | 680,970 | 6,161,588 | | | | | | | | R52 | 684,135 | 6,161,246 | | | | | | | | R54 | 683,514 | 6,155,819 | | | | | | | | R56 | 686,567 | 6,153,140 | | | | | | | | R59 | 684,670 | 6,149,654 | | | | | | | | R60 | 684,244 | 6,149,529 | | | | | | | | R61 | 684,489 | 6,149,335 | | | | | | | | R64 | 676,239 | 6,180,502 | | | | | | | | R66 | 683,628 | 6,159,544 | | | | | | | | R72 | 677,635 | 6,173,854 | | | | | | | | R73 | 677,725 | 6,173,856 | | | | | | | | R80 | 679,215 | 6,168,709 | | | | | | | | R113 | 684,054 | 6,179,129 | | | | | | | | R114 | 683,962 | 6,183,346 | | | | | | | | R128 | 678,848 | 6,183,498 | | | | | | | | Asso | ciated Resid | | | | | | | | | Acq | uired by wir | nd farm | | | | | | | | R192 675,172 6,179,17 | | | | | | | | | | ID | (UTM WGS84 H44) | | | | | | |-------|-----------------|-----------|--|--|--|--| | | Easting | Northing | | | | | | Non-A | ssociated R | | | | | | | R4 | 680,436 | 6,185,190 | | | | | | R06 | 681,484 | 6,184,020 | | | | | | R07 | 681,917 | 6,183,967 | | | | | | R08 | 682,339 | 6,183,864 | | | | | | R09 | 682,517 | 6,183,838 | | | | | | R10 | 682,842 | 6,183,767 | | | | | | R11 | 679,650 | 6,183,618 | | | | | | R15 | 675,095 | 6,182,805 | | | | | | R17 | 676,127 | 6,181,740 | | | | | | R18 | 676,024 | 6,181,739 | | | | | | R19 | 676,412 | 6,181,665 | | | | | | R22 | 676,095 | 6,181,037 | | | | | | R24 | 683,597 | 6,178,847 | | | | | | R26 | 676,523 | 6,178,178 | | | | | | R28 | 684,090 | 6,177,918 | | | | | | R29 | 676,434 | 6,177,903 | | | | | | R38 | 679,623 | 6,173,620 | | | | | | R45 | 682,847 | 6,165,279 | | | | | | R47 | 680,155 | 6,162,689 | | | | | | R48 | 679,834 | 6,162,662 | | | | | | R50 | 680,701 | 6,161,784 | | | | | | R53 | 680,877 | 6,160,875 | | | | | | R63 | 683,875 | 6,148,991 | | | | | | R65 | 676,668 | 6,179,644 | | | | | | R67 | 683,606 | 6,159,059 | | | | | | R68 | 684,235 | 6,160,336 | | | | | | R69 | 676,002 | 6,175,948 | | | | | | R70 | 675,919 | 6,175,950 | | | | | | R71 | 675,814 | 6,175,406 | | | | | | R74 | 677,256 | 6,172,562 | | | | | | R75 | 677,851 | 6,172,291 | | | | | | R76 | 676,803 | 6,171,944 | | | | | | R77 | 677,654 | 6,169,542 | | | | | | R78 | 676,707 | 6,169,056 | | | | | | R79 | 676,671 | 6,168,992 | | | | | | R81 | 678,216 | 6,166,375 | | | | | | R82 | 677,982 | 6,165,692 | | | | | | R83 | 678,818 | 6,162,988 | | | | | | R85 |
680,217 | 6,161,078 | | | | | | | Coordinates | | | | | | | |-------|-------------|-----------|--|--|--|--|--| | ID | (UTM W | GS84 H44) | | | | | | | | Easting | Northing | | | | | | | Non-A | ssociated R | esidences | | | | | | | R86 | 680,739 | 6,159,422 | | | | | | | R87 | 682,469 | 6,156,694 | | | | | | | R88 | 682,860 | 6,156,066 | | | | | | | R89 | 681,098 | 6,154,853 | | | | | | | R90 | 680,583 | 6,151,407 | | | | | | | R91 | 680,875 | 6,148,463 | | | | | | | R92 | 681,812 | 6,147,909 | | | | | | | R93 | 680,723 | 6,147,619 | | | | | | | R94 | 680,028 | 6,147,815 | | | | | | | R95 | 680,529 | 6,147,037 | | | | | | | R96 | 680,529 | 6,146,998 | | | | | | | R97 | 681,049 | 6,146,176 | | | | | | | R98 | 684,400 | 6,148,461 | | | | | | | R99 | 689,280 | 6,153,857 | | | | | | | R100 | 684,738 | 6,148,432 | | | | | | | R101 | 688,189 | 6,154,931 | | | | | | | R102 | 685,395 | 6,158,972 | | | | | | | R103 | 688,158 | 6,159,213 | | | | | | | R104 | 688,448 | 6,159,572 | | | | | | | R105 | 688,749 | 6,159,082 | | | | | | | R106 | 688,206 | 6,160,370 | | | | | | | R107 | 686,879 | 6,160,480 | | | | | | | R108 | 685,842 | 6,160,591 | | | | | | | R109 | 684,831 | 6,165,424 | | | | | | | R110 | 684,391 | 6,165,083 | | | | | | | R111 | 684,234 | 6,167,383 | | | | | | | R112 | 686,151 | 6,177,467 | | | | | | | R115 | 684,767 | 6,183,708 | | | | | | | R116 | 681,337 | 6,185,781 | | | | | | | R117 | 681,030 | 6,186,528 | | | | | | | R118 | 681,128 | 6,186,796 | | | | | | | R119 | 679,979 | 6,187,579 | | | | | | | R120 | 679,167 | 6,188,823 | | | | | | | R121 | 673,113 | 6,188,366 | | | | | | | R122 | 671,741 | 6,187,148 | | | | | | | R124 | 673,168 | 6,185,478 | | | | | | | R125 | 673,241 | 6,185,272 | | | | | | | R126 | 673,137 | 6,186,723 | | | | | | | R127 | 672,865 | 6,184,811 | | | | | | | | Coor | dinates | | | | | | |-------|----------------------|-----------|--|--|--|--|--| | ID | (UTM W | GS84 H44) | | | | | | | | Easting | Northing | | | | | | | Non-A | ssociated Residences | | | | | | | | R129 | 687,424 | 6,148,652 | | | | | | | R130 | 673,183 | 6,185,598 | | | | | | | R131 | 674,633 | 6,183,862 | | | | | | | R132 | 675,005 | 6,182,884 | | | | | | | R133 | 680,562 | 6,147,046 | | | | | | | R135 | 679,999 | 6,147,821 | | | | | | | R137 | 686,573 | 6,148,420 | | | | | | | R138 | 686,660 | 6,148,328 | | | | | | | R139 | 687,199 | 6,148,339 | | | | | | | R140 | 687,418 | 6,148,615 | | | | | | | R141 | 687,456 | 6,149,042 | | | | | | | R142 | 688,783 | 6,148,859 | | | | | | | R143 | 688,712 | 6,149,106 | | | | | | | R144 | 688,869 | 6,149,542 | | | | | | | R145 | 678,834 | 6,149,712 | | | | | | | R146 | 688,806 | 6,149,898 | | | | | | | R147 | 678,909 | 6,150,247 | | | | | | | R148 | 678,110 | 6,150,900 | | | | | | | R149 | 678,227 | 6,152,209 | | | | | | | R151 | 689,009 | 6,153,254 | | | | | | | R152 | 678,918 | 6,153,120 | | | | | | | R153 | 689,004 | 6,153,469 | | | | | | | R154 | 679,214 | 6,154,085 | | | | | | | R155 | 682,087 | 6,155,970 | | | | | | | R156 | 682,424 | 6,156,503 | | | | | | | R157 | 682,567 | 6,157,576 | | | | | | | R158 | 679,832 | 6,158,239 | | | | | | | R159 | 680,150 | 6,158,414 | | | | | | | R160 | 686,516 | 6,163,209 | | | | | | | R161 | 686,558 | 6,163,349 | | | | | | | R162 | 686,194 | 6,163,423 | | | | | | | R163 | 686,122 | 6,163,365 | | | | | | | R164 | 686,179 | 6,163,303 | | | | | | | R165 | 686,730 | 6,164,124 | | | | | | | R166 | 686,578 | 6,164,097 | | | | | | | R167 | 686,605 | 6,163,812 | | | | | | | R168 | 686,585 | 6,163,793 | | | | | | | R169 | 686,768 | 6,164,315 | | | | | | | R170 | 683,284 | 6,165,017 | | | | | | | R175 | 689,083 | 6,176,435 | | | | | | | R177 | 675,210 | 6,178,587 | | | | | | | R179 | 675,135 | 6,178,717 | | | | | | | R180 | 675,088 | 6,178,761 | | | | | | | R181 | 674,875 | 6,178,540 | | | | | | | R182 | 675,037 | 6,178,486 | | | | | | | R183 | 674,578 | 6,178,693 | | | | | | | R184 | 673,469 | 6,178,896 | | | | | | | R185 | 674,831 | 6,178,963 | | | | | | | 1/102 | 074,031 | 0,1/0,303 | | | | | | | Non-Associated Residences | |---| | Non-Associated Residences R186 675,142 6,178,988 R187 675,113 6,178,835 R188 675,224 6,179,170 R189 674,755 6,179,114 R190 674,929 6,179,085 R191 674,993 6,179,119 R193 675,059 6,178,927 R194 675,004 6,178,927 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R186 675,142 6,178,988 R187 675,113 6,178,835 R188 675,224 6,179,170 R189 674,755 6,179,114 R190 674,929 6,179,085 R191 674,993 6,179,119 R193 675,059 6,178,927 R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R187 675,113 6,178,835 R188 675,224 6,179,170 R189 674,755 6,179,114 R190 674,929 6,179,085 R191 674,993 6,179,119 R193 675,059 6,178,927 R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,827 R199 675,207 6,178,827 R199 675,207 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R188 675,224 6,179,170 R189 674,755 6,179,114 R190 674,929 6,179,085 R191 674,993 6,179,119 R193 675,059 6,178,927 R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R189 674,755 6,179,114 R190 674,929 6,179,085 R191 674,993 6,179,119 R193 675,059 6,178,927 R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R190 674,929 6,179,085 R191 674,993 6,179,119 R193 675,059 6,178,927 R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R191 674,993 6,179,119 R193 675,059 6,178,927 R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R193 675,059 6,178,927 R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R194 675,004 6,178,932 R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R195 674,752 6,178,927 R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R196 674,852 6,178,901 R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R197 675,003 6,178,871 R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R198 675,154 6,178,827 R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R199 675,207 6,178,841 R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R200 675,115 6,178,809 R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R202 684,519 6,179,497 R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R203 676,049 6,179,500 R204 675,863 6,179,390 R206 685,306 6,180,642 | | R204 675,863 6,179,390
R206 685,306 6,180,642 | | R206 685,306 6,180,642 | | | | R207 672 288 6 187 470 | | 11201 012,200 0,101,413 | | R209 672,542 6,188,800 | | R210 672,541 6,189,270 | | R211 687,811 6,148,549 | | R212 689,159 6,149,506 | | R213 679,947 6,154,232 | | R214 679,299 6,153,729 | | R216 690,718 6,155,201 | | R217 679,547 6,155,316 | | R218 687,614 6,160,188 | | R219 686,206 6,164,280 | | R220 686,269 6,165,266 | | R223 674,862 6,178,409 | | R226 675,069 6,178,599 | | R230 675,291 6,179,035 | | R232 674,827 6,178,687 | | R234 674,816 6,178,852 | | R243 681,627 6,156,031 | | R244 679,843 6,157,268 | | R246 678,838 6,153,796 | | R259 679,376
6,155,053 | | R262 680,441 6,154,534 | | R266 676,126 6,178,067 | | R267 675,619 6,180,141 | | R268 675,798 6,179,747 | | R269 675,542 6,178,459 | | R270 675,545 6,178,651 | | R271 675,812 6,176,676 | | R272 675,077 6,178,674 | | R274 675,072 6,178,723 | | | Coordinates | | | | | | | | |-------|-----------------|-----------|--|--|--|--|--|--| | ID | (UTM WGS84 H44) | | | | | | | | | | Easting | Northing | | | | | | | | Non-A | ssociated R | esidences | | | | | | | | R276 | 674,959 | 6,179,291 | | | | | | | | R277 | 674,797 | 6,177,072 | | | | | | | | R278 | 674,900 | 6,178,637 | | | | | | | | R279 | 674,830 | 6,177,839 | | | | | | | | R280 | 674,827 | 6,178,559 | | | | | | | | R281 | 674,896 | 6,178,572 | | | | | | | | R282 | 672,813 | 6,183,624 | | | | | | | | R283 | 674,251 | 6,179,077 | | | | | | | | R284 | 674,150 | 6,179,201 | | | | | | | | R286 | 683,162 | 6,184,437 | | | | | | | | R288 | 675,035 | 6,179,594 | | | | | | | | R289 | 672,895 | 6,185,072 | | | | | | | | R290 | 685,210 | 6,146,484 | | | | | | | | R291 | 686,571 | 6,146,903 | | | | | | | | R292 | 674,883 | 6,178,516 | | | | | | | | R294 | 681,540 | 6,148,503 | | | | | | | | R295 | 689,276 | 6,153,049 | | | | | | | | R296 | 689,334 | 6,159,068 | | | | | | | | R298 | 677,624 | 6,169,761 | | | | | | | | R303 | 675,012 | 6,174,765 | | | | | | | | R304 | 673,912 | 6,168,651 | | | | | | | | R305 | 673,040 | 6,169,296 | | | | | | | | R307 | 674,148 | 6,169,506 | | | | | | | | R308 | 685,152 | 6,146,518 | | | | | | | | R309 | 681,194 | 6,187,371 | | | | | | | | R310 | 674,929 | 6,179,121 | | | | | | | | R311 | 668,973 | 6,166,709 | | | | | | | | R313 | 690,893 | 6,155,645 | | | | | | | | R314 | 688,121 | 6,159,393 | | | | | | | | R315 | 686,718 | 6,158,805 | | | | | | | | R316 | 686,237 | 6,162,634 | | | | | | | | R317 | 686,240 | 6,165,612 | | | | | | | | R318 | 686,391 | 6,166,303 | | | | | | | | R319 | 686,200 | 6,179,899 | | | | | | | | R323 | 679,280 | 6,152,986 | | | | | | | | R324 | 680,449 | 6,161,468 | | | | | | | | R325 | 675,154 | 6,178,653 | | | | | | | | R326 | 680,497 | 6,158,049 | | | | | | | | R327 | 670,573 | 6,166,151 | | | | | | | | R328 | 674,877 | 6,183,534 | | | | | | | | R329 | 673,626 | 6,185,507 | | | | | | | | R330 | 675,185 | 6,183,010 | | | | | | | #### 4 OPERATIONAL NOISE #### 4.1 CRITERIA Criteria for the assessment of operational wind farm noise are provided in Sonus report "S3200.2C3 (the background noise report) for a hub height of 119m. The report provides noise criteria for each of the residences in the vicinity of the wind farm, as repeated below. It is noted that any change to the hub height for the final turbine selection, may result in minor changes to the criteria | Decidence Leasting | Criteria for Integer Wind Speed (m/s) at 119m | | | | | | | | | | |---|---|---------|---------|---------|----|----|----|----|----|----| | Residence Location | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | Associated Residences | | | | | | | | | | | | R01, R02, R14, R114, R16, R20, R64,
R128, R25, R192, R31, R34, R36, R72,
R73, R41, R42, R44, R46, R49, R51, R52,
R66, R54, R56, R59, R60, R61, R40, R80,
R113 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | | | Non | -Associ | ated Re | sidence | es | | | | | | | R117, R118, R119, R120, R309 | 35 | 35 | 35 | 35 | 35 | 35 | 36 | 38 | 40 | 42 | | R04, R06, R07, R08, R09, R10, R115,
R116, R286, R67, R68, R102, R103,
R104, R105, R106, R107, R108, R218,
R296, R314, R315, Blakney Creek
Township | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 36 | 37 | | R19, R22, R267, R268, R288 | 36 | 36 | 36 | 36 | 36 | 37 | 37 | 38 | 39 | 40 | | R11 | 35 | 35 | 35 | 35 | 35 | 35 | 36 | 37 | 39 | 40 | | R26, R29, R65, R69, R70, R71, R184,
R203, R204, R266, R271, R277, R279,
R283, R284, R303, Rye Park Township,
R24, R28, R112, R175, R202, R206,
R319, R38, R74, R75, R76 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | | R30 | 35 | 35 | 35 | 35 | 35 | 35 | 36 | 37 | 37 | 38 | | R32 | 35 | 35 | 35 | 35 | 35 | 36 | 36 | 37 | 38 | 39 | | R111 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 36 | | R81, R82 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 37 | | R45, R109, R110, R170, R220, R317,
R318 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 37 | 39 | | R47, R48, R83, R50, R53, R85, R86,
R158, R159, R324, R326 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 36 | 37 | 39 | | R87, R88, R89, R149, R152, R154, R155,
R156, R157, R213, R214, R217, R243,
R244, R246, R259, R262, R323 | 35 | 36 | 37 | 38 | 38 | 39 | 40 | 41 | 43 | 45 | | R99, R101, R144, R146, R151, R153,
R216, R295, R313 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 36 | 38 | 40 | | Decidence Legation | | Criteria for Integer Wind Speed (m/s) at 119m | | | | | | | | | |--|----|---|----|----|----|----|----|----|----|----| | Residence Location | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | R63, R90, R91, R92, R93, R94, R95, R96,
R97, R98, R100, R129, R133, R135,
R137, R138, R139, R140, R141, R142,
R143, R145, R147, R148, R211, R290,
R291, R294, R308 | 36 | 36 | 36 | 36 | 37 | 38 | 39 | 41 | 43 | 45 | | R17, R18 | 35 | 35 | 35 | 35 | 35 | 36 | 38 | 39 | 41 | 42 | | R77, R78, R79, R298, R304, R305, R307,
R311, R327 | 35 | 35 | 35 | 35 | 35 | 37 | 38 | 40 | 41 | 43 | | R15, R121, R122, R124, R125, R126,
R127, R130, R131, R132, R207, R209,
R210, R282, R289, R328, R329, R330 | 37 | 37 | 38 | 38 | 39 | 40 | 41 | 42 | 43 | 45 | **Table 6:** Locations Included in Township Areas | Township | Included Locations | | | |------------------------|--|--|--| | Rye Park Township | R276, R188, R189, R310, R190, R191, R230, R186,
R185, R193, R194, R195, R196, R234, R232, R197,
R187, R200, R180, R274, R272, R278, R226, R199,
R198, R179, R325, R177, R183, R270, R269, R280,
R281, R181, R292, R223, R182 | | | | Blakney Creek Township | R160, R161, R162, R163, R164, R165, R166, R168, R169, R219, R316 | | | Residence R192 has been acquired by the wind farm and therefore has no noise limit applied. #### 4.2 ASSESSMENT #### 4.2.1 Layout and Details Noise predictions have been based on GE 158 5.5MW WTGs with a hub height of 119m. One-third octave band sound power level data for the WTG has been based on *Technical Documentation* Wind Turbine Generator System 5.3-158-50Hz (Noise_Emission-NRO_5.3-158-50Hz_IEC_NRO100-105_EN_r02.docx) and the addition of 1.5 dB(A) for uncertainty. The sound power levels for the standard operating mode and noise reduced modes are summarised in Appendix A, with the uncertainty added. The one-third octave band data demonstrate that no penalty for the presence of tonal characteristics is warranted. #### 4.2.2 Noise Propagation Model – ISO 9613-2 ISO 9613-2¹ provides a methodology for predicting noise levels at sensitive land use receptors under meteorological conditions favourable to noise propagation. It is known as a downwind model, based on the conservative assumption of a receptor being downwind (resulting in the highest noise level) of all turbines simultaneously. The noise prediction model inputs are in accordance with the *May 2013 UK IOA Good Practice Guide*, including: - 10°C temperature; - 70% relative humidity; - 50% acoustically hard ground and 50% acoustically soft ground; - barrier attenuation of no greater than 2 dB(A); - 4m receiver height; and, in receiver neight, and, [•] application of a 3 dB(A) correction where a "concave" ground profile exists as defined by the *May 2013 UK IOA Good Practice Guide*. ¹ ISO 9613-2:1996 Acoustics – Attenuation of sound during propagation outdoors #### 4.2.3 Predictions The noise level at the residences has been predicted for wind speeds from cut in to rated power. Where the noise level is predicted to be 30 dB(A) or greater, Table 3 below provides the environmental noise criteria and predicted noise levels for each integer wind speed. Where the criteria are predicted to be exceeded, the values are in RED. A noise level contour is also provided, corresponding to wind speeds of 9-15m/s, being the wind speeds of the highest predicted noise level. Table 3: Comparison of GE158 5.5MW Predicted Noise Levels with Operational Noise Criteria. | | | Predicted | Noise Lev | el and Op | erational N | loise Crite | ria (dB(A) |) at Hub H | eight (m) I | nteger Wi | ind Speeds | 5 | |-----------|-------|-----------|-----------|-----------|-------------|-------------|------------|------------|-------------|-----------|------------|--------------------| | Residence | 4 r | n/s | 5 r | n/s | 6 r | n/s | 7 r | n/s | 8 r | n/s | 9-15 | m/s | | | Pred. | Crit. ² | | | | | | | Associat | ed Reside | nces | | | | | | | R01 | 29 | 45 | 30 | 45 | 33 | 45 | 36 | 45 | 39 | 45 | 40 | 45 | | R02 | 33 | 45 | 34 | 45 | 37 | 45 | 40 | 45 | 43 | 45 | 44 | 45 | | R14 | 31 | 45 | 32 | 45 | 35 | 45 | 38 | 45 | 41 | 45 | 42 | 45 | | R16 | 29 | 45 | 30 | 45 | 33 | 45 | 36 | 45 | 39 | 45 | 40 | 45 | | R20 | 24 | 45 | 26 | 45 | 29 | 45 | 31 | 45 | 34 | 45 | 35 | 45 | | R25 | 23 | 45 | 25 | 45 | 27 | 45 | 30 | 45 | 33 | 45 | 34 | 45 | | R31 | 28 | 45 | 29 | 45 | 32 | 45 | 35 | 45 | 37 | 45 | 38 | 45 | | R34 | 32 | 45 | 33 | 45 | 36 | 45 | 39 | 45 | 41 | 45 | 42 | 45 | | R36 | 27 | 45 | 28 | 45 | 31 | 45 | 34 | 45 | 37 | 45 | 38 | 45 | | R40 | 23 | 45 | 25 | 45 | 28 | 45 | 30 | 45 | 33 | 45 | 34 | 45 | | R41 | 32 | 45 | 33 |
45 | 36 | 45 | 39 | 45 | 42 | 45 | 43 | 45 | | R42 | 25 | 45 | 26 | 45 | 29 | 45 | 32 | 45 | 35 | 45 | 36 | 45 | | R44 | 24 | 45 | 25 | 45 | 28 | 45 | 31 | 45 | 34 | 45 | 35 | 45 | | R46 | 22 | 45 | 23 | 45 | 26 | 45 | 29 | 45 | 31 | 45 | 32 | 45 | | R56 | 26 | 45 | 27 | 45 | 30 | 45 | 33 | 45 | 36 | 45 | 37 | 45 | | R59 | 24 | 45 | 26 | 45 | 28 | 45 | 32 | 45 | 34 | 45 | 35 | 45 | | R60 | 25 | 45 | 26 | 45 | 29 | 45 | 32 | 45 | 34 | 45 | 35 | 45 | | R61 | 23 | 45 | 24 | 45 | 27 | 45 | 30 | 45 | 33 | 45 | 34 | 45 | | R64 | 24 | 45 | 25 | 45 | 28 | 45 | 31 | 45 | 33 | 45 | 35 | 45 | | R72 | 21 | 45 | 23 | 45 | 25 | 45 | 28 | 45 | 30 | 45 | 31 | 45 | | R73 | 21 | 45 | 23 | 45 | 26 | 45 | 28 | 45 | 31 | 45 | 32 | 45 | | R80 | 23 | 45 | 24 | 45 | 27 | 45 | 30 | 45 | 33 | 45 | 34 | 45 | | R113 | 23 | 45 | 24 | 45 | 27 | 45 | 30 | 45 | 32 | 45 | 33 | 45 | | R114 | 20 | 45 | 22 | 45 | 24 | 45 | 27 | 45 | 29 | 45 | 30 | 45 | | R128 | 29 | 45 | 31 | 45 | 34 | 45 | 37 | 45 | 39 | 45 | 40 | 45 | | | | | | • | Non-Assoc | iated Resi | dence | | | • | | | | R04 | 23 | 35 | 24 | 35 | 27 | 35 | 30 | 35 | 32 | 35 | 33 | 35 | | R06 | 25 | 35 | 27 | 35 | 29 | 35 | 33 | 35 | 35 | 35 | 36 | 35 | | R07 | 25 | 35 | 26 | 35 | 29 | 35 | 32 | 35 | 35 | 35 | 36 | 35 | | R08 | 24 | 35 | 25 | 35 | 28 | 35 | 31 | 35 | 33 | 35 | 35 | 35 | | R09 | 23 | 35 | 25 | 35 | 27 | 35 | 30 | 35 | 33 | 35 | 34 | 35 | | R10 | 23 | 35 | 24 | 35 | 27 | 35 | 30 | 35 | 32 | 35 | 33 | 35 | | R11 | 28 | 35 | 29 | 35 | 32 | 35 | 35 | 35 | 37 | 35 | 38 | 36 | | R15 | 23 | 37 | 24 | 38 | 27 | 38 | 30 | 39 | 32 | 40 | 33 | 41 | | R17 | 25 | 35 | 26 | 35 | 29 | 35 | 32 | 35 | 34 | 36 | 35 | 38 | | R18 | 24 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 34 | 36 | 35 | 38 | | R19 | 25 | 36 | 27 | 36 | 30 | 36 | 32 | 36 | 35 | 37 | 36 | 37 | | R22 | 24 | 36 | 25 | 36 | 28 | 36 | 31 | 36 | 33 | 37 | 34 | 37 | ² Criteria based on 9m/s _ | | | Predicted | Noise Leve | el and Ope | rational N | Noise Crite | ria (dB(A)) | at Hub H | eight (m) I | nteger Wi | nd Speeds | | |-----------|-------|-----------|------------|------------|------------|-------------|-------------|----------|-------------|-----------|-----------|--------------------| | Residence | 4 n | n/s | 5 n | n/s | 6 n | n/s | 7 r | n/s | 8 r | n/s | 9-15 | im/s | | | Pred. | Crit. ² | | R24 | 24 | 35 | 25 | 35 | 28 | 35 | 31 | 35 | 33 | 35 | 34 | 35 | | R26 | 23 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 32 | 35 | 33 | 35 | | R28 | 25 | 35 | 26 | 35 | 29 | 35 | 32 | 35 | 34 | 35 | 35 | 35 | | R29 | 22 | 35 | 24 | 35 | 26 | 35 | 29 | 35 | 31 | 35 | 32 | 35 | | R38 | 27 | 35 | 28 | 35 | 31 | 35 | 34 | 35 | 36 | 35 | 37 | 35 | | R45 | 23 | 35 | 24 | 35 | 27 | 35 | 30 | 35 | 32 | 35 | 33 | 35 | | R63 | 22 | 36 | 24 | 36 | 27 | 36 | 30 | 37 | 32 | 38 | 33 | 39 | | R65 | 25 | 35 | 26 | 35 | 29 | 35 | 32 | 35 | 34 | 35 | 35 | 35 | | R69 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 30 | 35 | | R70 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 30 | 35 | | R71 | 20 | 35 | 21 | 35 | 24 | 35 | 26 | 35 | 29 | 35 | 30 | 35 | | R74 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 30 | 35 | | R75 | 21 | 35 | 22 | 35 | 25 | 35 | 27 | 35 | 30 | 35 | 31 | 35 | | R76 | 20 | 35 | 21 | 35 | 24 | 35 | 26 | 35 | 28 | 35 | 30 | 35 | | R77 | 20 | 35 | 21 | 35 | 24 | 35 | 27 | 35 | 29 | 37 | 30 | 38 | | R90 | 20 | 36 | 21 | 36 | 24 | 36 | 27 | 37 | 30 | 38 | 31 | 39 | | R98 | 20 | 36 | 21 | 36 | 24 | 36 | 27 | 37 | 29 | 38 | 30 | 39 | | R111 | 21 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R112 | 22 | 35 | 23 | 35 | 26 | 35 | 29 | 35 | 31 | 35 | 32 | 35 | | R116 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 30 | 35 | 31 | 35 | | R119 | 19 | 35 | 21 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 30 | 36 | | R124 | 20 | 37 | 22 | 38 | 24 | 38 | 27 | 39 | 29 | 40 | 30 | 41 | | R125 | 20 | 37 | 22 | 38 | 24 | 38 | 27 | 39 | 29 | 40 | 31 | 41 | | R127 | 20 | 37 | 21 | 38 | 23 | 38 | 26 | 39 | 28 | 40 | 30 | 41 | | R130 | 20 | 37 | 22 | 38 | 24 | 38 | 27 | 39 | 29 | 40 | 30 | 41 | | R131 | 23 | 37 | 24 | 38 | 27 | 38 | 30 | 39 | 32 | 40 | 33 | 41 | | R132 | 23 | 37 | 24 | 38 | 27 | 38 | 30 | 39 | 32 | 40 | 33 | 41 | | R170 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 30 | 35 | 31 | 35 | | R177 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R179 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R180 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R181 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R182 | 21 | 35 | 22 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R183 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R184 | 20 | 35 | 21 | 35 | 24 | 35 | 26 | 35 | 29 | 35 | 30 | 35 | | R185 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R186 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 32 | 35 | | R187 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R188 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R189 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R190 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 30 | 35 | 32 | 35 | | R191 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R193 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R194 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R195 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R196 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R197 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R198 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R199 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R200 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R202 | 22 | 35 | 23 | 35 | 26 | 35 | 29 | 35 | 31 | 35 | 32 | 35 | | R203 | 23 | 35 | 24 | 35 | 27 | 35 | 30 | 35 | 32 | 35 | 33 | 35 | | R204 | 22 | 35 | 24 | 35 | 26 | 35 | 29 | 35 | 32 | 35 | 33 | 35 | | R206 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 30 | 35 | | R223 | 21 | 35 | 22 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | | | Predicted | Noise Leve | el and Ope | erational N | loise Crite | ria (dB(A)) | at Hub H | eight (m) I | nteger Wi | ind Speeds | ; | |-----------|-------|-----------|------------|------------|-------------|-------------|-------------|----------|-------------|-----------|------------|--------------------| | Residence | 4 n | n/s | 5 n | n/s | 6 n | n/s | 7 n | n/s | 8 n | n/s | 9-15 | im/s | | | Pred. | Crit. ² | | R226 | 21 | 35 | 22 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R230 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R232 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 30 | 35 | 32 | 35 | | R234 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R266 | 22 | 35 | 23 | 35 | 26 | 35 | 29 | 35 | 31 | 35 | 32 | 35 | | R267 | 22 | 36 | 24 | 36 | 26 | 36 | 29 | 36 | 32 | 37 | 33 | 37 | | R268 | 23 | 36 | 24 | 36 | 27 | 36 | 29 | 36 | 32 | 37 | 33 | 37 | | R269 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R270 | 22 | 35 | 23 | 35 | 26 | 35 | 28 | 35 | 31 | 35 | 32 | 35 | | R271 | 21 | 35 | 22 | 35 | 25 | 35 | 27 | 35 | 30 | 35 | 31 | 35 | | R272 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R274 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R276 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R277 | 21 | 35 | 22 | 35 | 25 | 35 | 27 | 35 | 30 | 35 | 31 | 35 | | R278 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R279 | 21 | 35 | 22 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R280 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R281 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R283 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 30 | 35 | | R284 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 30 | 35 | | R286 | 22 | 35 | 23 | 35 | 26 | 35 | 29 | 35 | 31 | 35 | 32 | 35 | | R288 | 22 | 36 | 23 | 36 | 26 | 36 | 28 | 36 | 31 | 37 | 32 | 37 | | R289 | 20 | 37 | 21 | 38 | 24 | 38 | 26 | 39 | 29 | 40 | 30 | 41 | | R292 | 21 | 35 | 22 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R298 | 20 | 35 | 21 | 35 | 24 | 35 | 27 | 35 | 29 | 37 | 30 | 38 | | R310 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R319 | 20 | 35 | 22 | 35 | 24 | 35 | 27 | 35 | 29 | 35 | 30 | 35 | | R325 | 21 | 35 | 23 | 35 | 25 | 35 | 28 | 35 | 30 | 35 | 31 | 35 | | R328 | 23 | 37 | 24 | 38 | 27 | 38 | 30 | 39 | 32 | 40 | 34 | 41 | | R329 | 21 | 37 | 22 | 38 | 25 | 38 | 28 | 39 | 30 | 40 | 31 | 41 | | R330 | 24 | 37 | 25 | 38 | 28 | 38 | 30 | 39 | 33 | 40 | 34 | 41 | Based on the predictions in Table 3, the noise from the 80 *GE 158 6.5MW* WTGs will achieve the operational noise criteria at all residences in the vicinity of the wind farm, with the exception of R06, R07, R11 and R38. #### 4.2.4 Curtailment A curtailment regime has been determined in order to ensure the noise from the wind farm achieves the criteria at all residences and under all wind speeds. The curtailment regime involves operating selected turbines in a noise reduced mode at the wind speeds where the predictions indicate that the criteria will be exceeded. Table 4 summarises the noise criteria and predicted noise level for wind speeds which require turbines to be curtailed. Predicted Noise Level and Operational Noise Criteria (dB(A)) at Hub Height (m) Integer Wind **Speeds** Residence 8 m/s 9m/s 10 m/s 11+m/s Pred. Crit. Pred. Crit. Pred. Crit. Pred. Crit. R06 35 35 **36** 35 **36** 35 36 36 R07 35 35 **36 35 36 35** 36 36 R11 **37** 35 **36** 38 38 39 R38 **36 35 37 35 37 35 37** 35 Table 4: Predicted noise level exceeds criteria. Based on the above, the curtailment strategy has been determined using the reduced noise modes of the GE 158 turbine. The sound power level for the reduced noise modes are provided in Appendix A, with the 1.5 dB(A) uncertainty added. Table 5 below provides the noise modes and
applicable turbines which are required to operate in these modes in order to ensure the criteria are achieved. Table 5: Curtailed operating strategy. | | Noise Reduced Mode Operation @ Hub Height (m) Integer Wind Speeds | | | | | | | |-----------------|---|---------|---------|---------|--|--|--| | Turbine | 8 m/s | 9m/s | 10 m/s | 11+ m/s | | | | | 12, 26 | NRO 100 | NRO104 | ı | | | | | | 137, 11 | NRO 100 | - | - | | | | | | 18, 22 | NRO 100 | NRO100 | NRO102 | | | | | | 20 | NRO 100 | NRO100 | NRO103 | | | | | | 17, 21, 25, 136 | NRO 100 | NRO102 | NRO104 | | | | | | 71 | - | NRO 105 | NRO 105 | NRO 105 | | | | | 74, 61 | - | NRO 103 | NRO 103 | NRO 103 | | | | | 76 | NRO 102 | NRO 102 | NRO 102 | NRO 102 | | | | | 62 | NRO 103 | NRO 100 | NRO 100 | NRO 100 | | | | | 67, 141, 73 | NRO 100 | NRO 100 | NRO 100 | NRO 100 | | | | The following table provides the predicted noise levels at the specific residences where the criteria were predicted to be exceeded, with the turbines operating under the curtailment strategy described above. Table6: Predicted noise level for curtailed operating strategy. | | Predicted Noise Level and Operational Noise Criteria (dB(A)) at Hub Height (m) Integer Wind Speeds | | | | | | | s | | | | |-----------|--|-------|-------|-------|-------|-------|-------|--------|-------|---------|--| | Residence | 8 r | n/s | 9r | n/s | 10 | m/s | 11 | 11 m/s | | 12+ m/s | | | | Pred. | Crit. | | | R06 | 32 | 35 | 35 | 35 | 35 | 35 | 36 | 36 | 36 | 37 | | | R07 | 32 | 35 | 35 | 35 | 35 | 35 | 36 | 36 | 36 | 37 | | | R11 | 35 | 35 | 36 | 36 | 37 | 37 | 38 | 39 | 38 | 40 | | | R38 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | | That is, with the curtailment strategy implemented for wind speeds of 8m/s and above, the noise level from the wind farm is predicted to achieve the noise criteria at all residences in the vicinity. It is noted that the addition of 1.5 dB(A) to the sound power levels for uncertainty is a conservative approach and if the sound power levels of the installed turbines have lower sound power levels than assumed, a lesser curtailment strategy would be implemented. The modelled turbine also has one of the highest noise emissions of those on the market. The need for curtailment and the final operating strategy will therefore be determined during the pre-construction noise assessment, once the final turbine selection, layout and guaranteed sound power levels are known. Rye Park Wind Farm - Modification Environmental Noise Assessment S3200C18 July 2020 sonus. #### 5 CORONA AND AEOLIAN NOISE ASSESSMENT As a part of the proposed wind farm modification, the location of an overhead electrical transmission line is proposed to be altered. Consideration has therefore been given to Corona and Aeolian noise from the transmission line, although these characteristics are infrequent and independent of the transmission line location. As noted in the Sonus report S3200C9 February 2016, Corona and Aeolian noise can be generated from transmission lines. Corona noise is electrically-induced and occurs under specific conditions when the transmission lines are operational. Aeolian noise is wind-induced and occurs under specific conditions regardless of whether the transmission lines are operational or not. Corona noise is infrequent and typically occurs in specific conditions of rain or high humidity when the air adjacent to a conductor of high voltage lines is ionised and becomes a conductor of electricity. The noise that is produced is typically at a low level that is rarely a problem at distances greater than 50 to 100m from the transmission lines. Aeolian noise is also infrequent and occurs at times when there is a specific wind speed and direction to generate the mechanism of high velocity wind passing over thin structures. As Aeolian noise generally only occurs during high wind speeds, there are also generally high background noise levels. As such, the distances of influence are often similar to that for Corona noise. Based on the above, the noise impact of transmission lines is generally dealt with by maintaining the separation distances required in the consideration of other factors related to the lines. #### **6 WIND FARM CONSTRUCTION** #### 6.1 CRITERIA The construction of a wind farm comprises activities such as road construction, civil works, excavation, foundation construction, electrical infrastructure works and turbine erection. These require processes such as heavy vehicle movements, crushing and screening, concrete batching, loaders, excavators, generators, cranes and subject to local conditions possibly blasting. The Conditions of Development Consent for the approved wind farm include the following requirements relating to construction noise; Construction & Decommissioning Noise - 7. The Applicant must: - (a) minimise the construction or decommissioning noise of the development, including any associated traffic noise; and - (b) ensure that the noise generated by any construction or decommissioning activities is managed in accordance with the best practice requirements outlined in the Interim Construction Noise Guideline(DECC, 2009), or its latest version. - 8. Unless the Secretary agrees otherwise, the Applicant must only undertake construction or decommissioning activities between: - (a) 7 am to 6 pm Monday to Friday; - (b) 8 am to 1 pm Saturdays; and - (c) at no time on Sundays and NSW public holidays. The following construction or decommissioning activities may be undertaken outside these hours without the approval of the Secretary: - activities that are inaudible at non-associated residences; - the delivery of materials requested by the NSW Police Force or other authorities for safety reasons; or - emergency work to avoid the loss of life, property and/or material harm to the environment. - Blasting - 9. The Applicant may only carry out blasting on site between 9 am and 5 pm Monday to Friday and between 8 am to 1 pm on Saturday. No blasting is allowed on Sundays or public holidays. 10. The Applicant must ensure that any blasting carried out on site does not exceed the criteria in Table 3. Table 3: Blasting criteria | Location | Airblast overpressure
(dB(Lin Peak)) | Ground vibration(mm/s) | Allowable exceedance | |------------------------|---|------------------------|---| | Any non-
associated | 120 | 10 | 0% | | residence | 115 | 5 | 5% of the total number of blasts or events over a rolling period of 12 months | In accordance with the above, construction noise criteria have been determining based on the Department of Environment & Climate Change *Interim Construction Noise Guideline 2009* (the ICN Guideline). As noted in the Sonus report S3200C9 February 2016, the ambient noise environment was monitored at 20 residences in the vicinity of the wind farm and the results were often below 30 dB(A). Therefore, in accordance with the INP, an RBL of 30 dB(A) has been considered for all residences in the assessment. The ICN Guideline provides an emphasis on implementing "feasible" and "reasonable" noise reduction measures and does not set mandatory objective criteria. However, the ICN Guideline does establish a quantitative approach, whereby "management levels" are defined based on the existing RBL. The management levels as defined by the ICN Guideline are provided in Table 7 below. Table 7: ICN Criteria. | Recommended standard hours: | Noise affected
RBL + 10 dB | The noise affected level represents the point above which there may be some community reaction to noise. | |---|--------------------------------------|---| | Monday to Friday 7 am to 6 pm Saturday 8 am to 1 pm No work on Sundays or public holidays | | Where the predicted or measured L_{Aeq (15 min)} is greater than the noise affected level, the proponent should apply all feasible and reasonable work practices to meet the noise affected level. The proponent should also inform all potentially impacted residents of the nature of works to be carried out, the expected noise levels and duration, as well as contact details. | | | Highly noise
affected
75 dB(A) | The highly noise affected level represents the point above which there may be strong community reaction to noise. Where noise is above this level, the relevant authority (consent, determining or regulatory) may require respite periods by restricting the hours that the very noisy activities can occur, taking into account: times identified by the community when they are less sensitive | | | | to noise (such as before and after school for works near schools, or mid-morning or mid-afternoon for works near residences 2. if the community is prepared to accept a longer period of construction in exchange for restrictions on construction times. | |--|------------------------------
--| | Outside
recommended
standard hours | Noise affected
RBL + 5 dB | A strong justification would typically be required for works outside the recommended standard hours. The proponent should apply all feasible and reasonable work practices to meet the noise affected level. Where all feasible and reasonable practices have been applied and noise is more than 5 dB(A) above the noise affected level, the proponent should negotiate with the community. | #### **6.2 Construction Activity Assessment** The noise from construction activities has been predicted based on measurements at a number of other similar wind farm sites. The measurements include a variety of activities including site set-up, road and hardstand construction, foundation construction, electrical works and turbine erection. #### 6.2.1 WTG Installation The separation distance of the closest non-associated dwelling to a proposed WTG is approximately 1200m. A separation distance greater than 1200m will result in lower noise levels than that presented below in the table below. The required separation distance in order to achieve the 40 dB(A) criterion, which is 10 dB(A) above the RBL, is provided in Table 8 also. Table 8: Predicted construction noise levels and distances. | Phase | Main Plant and Equipment | Predicted Noise
Level at 1200m | Separation to
Achieve 40 dB(A)
Criterion | |-----------------|-------------------------------|-----------------------------------|--| | Cito Cot Un oud | Generator | | | | Site Set-Up and | Transport truck | 44 dB(A) | 1650m | | Civil Works | Excavator | | | | | Low loader | | | | | Mobile crushing and screening | | | | | plant | | | | | Dozer | | | | Road and | Roller | | | | Hard Stand | Low loader | 50 dB(A) | 2400m | | Construction | Tipper truck | | | | | Excavator | | | | | Scraper | | | | | Transport truck | | | | Phase | Main Plant and Equipment | Predicted Noise
Level at 1200m | Separation to
Achieve 40 dB(A)
Criterion | |--|---|-----------------------------------|--| | Excavation and foundation construction | Excavator Front end loader Concrete batching plant Mobile crushing and screening plant Truck-mounted concrete pump Concrete mixer truck Mobile crane Transport truck Tipper truck | 50 dB(A) | 2400m | | Electrical
Installation | Rock trencher
Concrete mixer truck
Low loader
Tipper truck
Mobile crane | 50 dB(A) | 2400m | | Turbine Delivery
and Erection | Extendable trailer truck
Low loader
Mobile crane | 45 dB(A) | 1800m | Based on the predicted noise levels, it is expected that construction noise from the WTG installation will be greater than 40 dB(A) at a distance of 1200m. The predicted noise levels are significantly less than the 75 dB(A) upper limit provided in the ICN Guideline. Based on the above, it is possible that a dwelling located between 1200m and up to 2400m from a WTG may be defined as "noise affected" but not "highly noise affected" by the ICN Guideline. #### 6.2.2 Access Roads Access to the WTG sites will be via a specifically constructed road network. The separation distance of the closest non-associated dwelling to a designated access road is approximately 330m. The noise from typical road construction activity, such as described in Table 8 has been predicted to be 61 dB(A) at 330m. Based on the above, it is possible that a dwelling located between 330m and up to 2400m from an access road may be defined as "noise affected" but not "highly noise affected" by the ICN Guideline. #### 6.2.3 Batching Plant Three temporary batching plants have been proposed for the construction phase, at the locations in Table 9. **Table 9: Batching plant locations.** | | Coordinates
(UTM WGS84 H55) | | | | | |------------------|--------------------------------|----------|--|--|--| | | Easting | Northing | | | | | Batching Plant 1 | 679110 | 6182542 | | | | | Batching Plant 2 | 679163 | 6165826 | | | | | Batching Plant 3 | 684101 | 6150395 | | | | The closest non-associated dwelling to a proposed batching plant is approximately 1100m away. The noise from typical batching plant machinery, such as cement trucks, loaders, and delivery trucks has been predicted to be 34 dB(A) at 1100m. #### 6.2.4 Noise Mitigation Where residences are classed as "noise affected" by the ICN Guideline, the developer is required to apply all feasible and reasonable work practices, and to inform the residents of the proposed construction work. "Feasible and reasonable" noise control strategies to minimise noise during construction may include engineering measures such as the construction of temporary acoustic barriers, the use of proprietary enclosures around machines, the use of silencers, the substitution of alternative construction processes and the fitting of broadband reversing signals. It may also include administrative measures such as inspections, scheduling and providing training to establish a noise minimisation culture for the works. The following mitigation measures are recommended to be implemented for the construction works and provide the framework for the development of a Construction Management Plan by the construction team once the final construction methods, timing, locations and equipment have been determined. #### 6.2.4.1 Scheduling Construction works, including heavy vehicle movements into and out of the site, restricted to the hours between 7am and 6pm Monday to Friday, and between 8am and 1pm on Saturdays. Works carried out outside of the hours should only entail: - works that do not cause noise emissions to be audible at any nearby residences not located on the site; or - the delivery of materials as requested by Police or other authorities for safety reasons; or emergency work to avoid the loss of lives, property, and/or to prevent environmental harm. If any other works are required outside of the specified hours, they will only be carried out with the prior consent of the relevant New South Wales authority. #### 6.2.4.2 Location of Fixed Noise Sources Locate fixed noise sources such as crushing and screening plant, generators and compressors at the maximum practicable distance to the nearest dwellings, and where practicable, use existing landforms to block line of sight between the fixed noise source and the dwelling. #### 6.2.4.3 Provide Acoustic Screens around Fixed Noise Sources Provide acoustic screens or mounding for fixed crushing and screening plant, and concrete batching plant wherever these noise sources are located within 2400m of a non-associated dwelling and do not have direct line of sight blocked to that dwelling, in accordance with the following requirements: - Locate the screen as close as practicable to the noise source; - Construct from mounding using excavated soil from the site or a material with a minimum surface density of 10 kg/m², such as 1.2mm thick sheet steel or 9mm thick compressed fibre cement sheeting, or use purpose built transportable sound barriers such as the Peace "Sound Barriers"; - Construct to a minimum height that blocks direct line of sight between the noise source and any receiver within 2400m; - Construct such that there are no air gaps or openings at joints; - Extend such that the length is at least 5 times greater than its height or so that it is bent around the noise source; In addition, the site topography, and other shielding features (e.g. large stationary machines, mounds of topsoil and piles of materials) should be used for increased shielding when locating fixed noise sources within the 2400m distance. #### 6.2.4.4 Enclose Generators and Compressors Provide proprietary acoustic enclosures for site compressors and generators located within 2400m of a non-associated dwelling. #### 6.2.4.5 Alternative Processes Investigate and implement alternative processes where feasible and reasonable, such as hydraulic or chemical splitters as an alternative to impact rock breaking, or the use of broadband reversing alarms in lieu of the high pitched devices. A broadband reversing alarm emits a unique sound which addresses the annoyance from the high pitched devices. The fitting of a broadband alarm should be subject to an appropriate risk assessment, with the construction team being responsible for ensuring the alarms are installed and operated in accordance with all relevant occupational, health and safety legislative requirements. #### 6.2.4.6 Site Management - Select and locate centralised site activities and material stores as far from noise-sensitive receivers as possible; - Care should be taken not to drop materials such as rock, to cause peak noise events, including materials from a height into a truck. Site personnel should be directed as part of a training regime to place material rather than drop it; - Plant known to emit noise strongly in one direction, such as the exhaust outlet of an attenuated generator set, shall be orientated so that the noise is directed away from noise sensitive areas if practicable; - Machines that are used intermittently shall be shut down in the intervening periods between works or throttled down to a minimum; - Implement worksite induction training, educating staff. #### 6.2.4.7 Equipment and Vehicle Management - Ensure equipment has
Original Equipment Manufacturer (OEM) mufflers (or better) installed; - Ensure equipment is well maintained and fitted with adequately maintained silencers which meet the OEM design specifications. This inspection should be part of a monitoring regime; - Ensure silencers and enclosures are intact, rotating parts are balanced, loose bolts are tightened, frictional noise is reduced through lubrication and cutting noise reduced by keeping equipment sharp. These items should be part of a monitoring regime; - Use only necessary power to complete the task; - Inspect, as part of a monitoring regime, plant and equipment to determine if it is noisier than other similar machines, and replace or rectify as required. #### 6.2.4.8 Community Consultation Implement the following noise and vibration elements into the overall community consultation process. The aim of the consultation is to ensure adequate community awareness and notice of expected construction noise. The minimum elements should include: - Regular Community Information newsletters, providing details of the construction plan and duration of the construction phases; - A site notice board in a community location providing copies of the newsletters, updated construction program details, and contact details of relevant project team members; - A feedback mechanism for the community to submit questions to the construction team, and for the construction team to respond; - Regular updates on the construction activities to local authorities to assist in complaint management if necessary; - Contact details of the project manager and/or site "Environmental Representative". In addition, prior to any construction activity occurring within 2400m of a dwelling without a commercial agreement, or significant construction traffic periods or impacts on local road conditions: - Contact the local community potentially affected by the proposed works and inform them of the proposed work, the location of the work, the day(s) and date(s) of the work and the hours involved³; - This contact shall be made a reasonable time before the proposed commencement of the work; and - Contact details of the project manager and / or site "Environmental Representative" should be provided. The above measures should be incorporated and implemented through a Construction Noise Management Plan for the site. The Plan should be developed by the construction team once the actual construction activities have been determined. ³ It is preferable to overestimate the hours of work, rather than extending the work hours for longer than anticipated. Rye Park Wind Farm - Modification Environmental Noise Assessment S3200C18 July 2020 ### sonus. #### 6.3 Blasting Assessment In accordance with the Conditions of Consent, all blasting (if conducted) will be undertaken in a manner which achieves the objective noise and vibration requirements. The separation distances between any potential blasting activity and the nearest dwellings are of the order of magnitude for which ground vibration and airblast levels have been adequately controlled at other sites. Given the range of factors associated with both the generation and control of blasting, it is recommended that in the event of blasting occurring, a monitoring regime is implemented to ensure compliance with the Blasting criteria. #### 7 TRAFFIC NOISE #### 7.1 CRITERIA The conditions of consent require construction or decommissioning noise of the development, including any associated traffic noise to be minimised. To provide an objective assessment of the noise from traffic, reference is made to the NSW Road Noise Policy (DECCW, 2011, the RNP). It is noted that the comparison of the noise from a temporary source with criteria which are designed for permanent noise sources operating every day and night is a particularly conservative approach. Therefore the comparison should be used as an indication of the level of noise rather than being considered a determination of acceptability. The RNP provides two sets of assessment criteria which are based on the road category, and a relative increase to the existing traffic noise levels. For existing local roads with a potential increase in traffic activity generated by development, the RNP recommends the criteria in Table 1 to be achieved at residences. The recommended limits for the relative increase in existing traffic noise levels are also provided in the following table. Table 1: Road traffic noise criteria. | Period | Criterion based on Road
Category, dB(A) | Relative Increase Criterion,
dB(A) | |---------------------|--|--| | Day (7am to 10pm) | L _{Aeq,(1hour)} 55 | Existing traffic L _{Aeq,(15hour)} + 12 dB | | Night (10pm to 7am) | L _{Aeq,(1hour)} 50 | Existing traffic L _{Aeq,(9hour)} + 12 dB | Note: Where the existing traffic noise level is less than 30 dB(A), such as in rural areas, it is deemed to be 30 dB(A). The noise criteria above are to be achieved outside the residences, at a distance of 1m from the facade and at a height of 1.5m from the ground. #### 7.2 ASSESSMENT As noted by the existing Conditions of Consent, the main impact from road traffic noise is during construction, which will include light vehicle and heavy vehicle movements to and from the site along local roads in the vicinity of the wind farm. These vehicles will include semi-trailers, low loaders, haulage trucks, mobile cranes, water tankers, four-wheel-drive vehicles and light vehicles. The day-time criterion provided by the RNP is an equivalent noise level ($L_{Aeq, 1hour}$) of 55 dB(A) during any given hour. Rye Park Wind Farm - Modification Environmental Noise Assessment S3200C18 July 2020 sonus. It is understood that the preferred transport route for construction of the windfarm includes Rye Park Road, Grassy Creek Road, Yass Street, Gunning Road and Dalton Road. This route passes through the townships of Rye Park and Boorowa, which are likely to be the areas with the highest potential impact from road traffic. There are a number of residences within these townships which are within 10m from the road side. Outside of the township, the closest residence to the roadside is in the order of 30m. It is understood that as a result of the proposed modification, the number of heavy vehicle movements associated with construction of the wind farm will marginally decrease (0.1% reduction)⁴. In addition, the Applicant is actively pursuing ways to reduce traffic numbers, such as options of an onsite quarry and on site water sourcing, thereby reducing the number of vehicle movements on public roads. Notwithstanding these aspects, an assessment has been made against the objective criteria. It is predicted that at a distance of approximately 30m from the road side (outside of a township), the 55 dB(A) criterion will be achieved in all hours where there are no greater than 30 light vehicle movements and 9 heavy vehicle movements. Notwithstanding, the projected number of heavy vehicles within one hour as part of the construction activity will exceeded the above levels during peak periods. The vehicle numbers are estimated to average 14 heavy vehicles within one hour (spread throughout the day) and 20 light vehicles (concentrated at morning and evening peaks). For this level of traffic flow, a noise level of approximately 57 dB(A) is predicted at a residence 30m from the road side. For vehicles which are travelling at much lower speeds through a township, the noise level has been predicted at a distance of 10m. Based on the estimated number of heavy and light vehicles provided above, a noise level of 56 dB(A) is predicted at the closest residences within the township. Based on the above, the noise level from traffic during the peak construction periods may exceed the objective criteria. Notwithstanding, 2 dB(A) is not considered to be a noticeable increase, and would only occur for a limited period of time during the construction. For reference, an increase of 3 dB(A) is considered to be 'just noticeable', 5 dB(A) is 'clearly noticeable and an increase of 10 dB(A) is considered to be a perceived doubling of the noise level. ⁴ SMEC Traffic Impact Assessment Rye Park Wind Farm TIA Update, Ref. 3002666.107, 8 April 2020 In accordance with the general principles of dealing with temporary construction noise impacts (compared to permanent operational noise) the following mitigation measures should be employed as part of the Construction Noise Management Plan to reduce construction traffic noise where the RNP is temporarily exceeded: - Communicate with the affected community in accordance with the provisions above; - Incorporate information regarding the route to all drivers prior to accessing the site and the need to minimise impacts through driver operation at certain locations; - Schedule construction traffic deliveries such that it is as evenly dispersed as practicable; #### **APPENDIX A: WTG Sound Power Levels** Table 3: GE 158 5.5MW Sound Power Levels: Normal Operating Mode. | SWL (dB(A)) for each
One-third Octave Band | | Hub Height Wind Speed (m/s) | | | | | | |---|------|-----------------------------|------|-------|-------|-------|--| | Centre Frequency | 4 | 5 | 6 | 7 | 8 | 9+ | | | 12.5 Hz | 42.1 | 42.4 | 44.7 | 47.8 | 50.4 | 53.0 | | | 16 Hz | 48.8 | 49.0 | 51.2 | 54.3 | 56.9 | 59.4 | | | 20 Hz | 54.1 | 54.2 | 56.4 | 59.5 | 62.1 | 64.6 | | | 25 Hz | 58.9 | 58.8 | 61.1 | 64.2 | 66.8 | 69.3 | | | 31.5 Hz | 63.1 | 63.1 | 65.3 | 68.5 | 71.1 | 73.6 | | | 40 Hz | 66.9 | 66.9 | 69.2 | 72.3 | 75.1 | 77.5 | | | 50 Hz | 69.9 | 70.0 | 72.3 | 75.4 | 78.2 | 80.8 | | | 63 Hz | 72.7 | 73.3 | 75.4 | 78.4 | 81.0 | 83.7 | | | 80 Hz | 75.1 | 76.2 | 78.2 | 80.8 | 83.3 | 85.9 | | | 100 Hz | 77.3 | 79.0 | 80.9 | 83.1 | 85.3 | 87.7 | | | 125 Hz | 79.7 | 81.7 | 83.7 | 85.6 | 87.5 | 89.5 | | | 160 Hz | 81.3 | 83.5 | 85.8 | 87.6 | 89.4
 91.1 | | | 200 Hz | 82.7 | 84.8 | 87.5 | 89.4 | 91.2 | 92.7 | | | 250 Hz | 83.6 | 85.6 | 88.7 | 90.9 | 92.8 | 94.2 | | | 315 Hz | 84.3 | 85.8 | 89.3 | 92.0 | 94.1 | 95.5 | | | 400 Hz | 83.9 | 84.8 | 88.8 | 92.1 | 94.4 | 95.9 | | | 500 Hz | 84.0 | 84.5 | 88.5 | 92.4 | 95.1 | 96.7 | | | 630 Hz | 83.9 | 84.1 | 88.0 | 92.3 | 95.4 | 97.2 | | | 800 Hz | 83.9 | 83.6 | 87.5 | 91.9 | 95.4 | 97.5 | | | 1 kHz | 84.2 | 83.6 | 87.2 | 91.7 | 95.4 | 97.8 | | | 1.25 kHz | 84.9 | 84.1 | 87.3 | 91.8 | 95.5 | 98.2 | | | 1.6 kHz | 84.0 | 83.5 | 86.1 | 90.3 | 94.0 | 96.8 | | | 2 kHz | 83.2 | 83.3 | 85.4 | 89.0 | 92.6 | 95.5 | | | 2.5 kHz | 82.0 | 82.6 | 84.4 | 87.4 | 90.7 | 93.4 | | | 3.15 kHz | 80.1 | 81.2 | 83.0 | 85.6 | 88.4 | 90.8 | | | 4 kHz | 77.1 | 78.6 | 80.4 | 82.9 | 85.2 | 87.3 | | | 5 kHz | 73.0 | 74.7 | 76.8 | 79.4 | 81.5 | 83.3 | | | 6.3 kHz | 66.3 | 68.3 | 70.7 | 73.4 | 75.6 | 77.2 | | | 8 kHz | 55.7 | 58.1 | 60.8 | 63.7 | 66.1 | 67.7 | | | 10 kHz | 41.6 | 44.0 | 47.2 | 50.5 | 53.3 | 55.1 | | | Total SWL (dB(A)) | 95.3 | 96.0 | 99.1 | 102.5 | 105.4 | 107.5 | | Table 3: GE 158 5.5MW Sound Power Levels: NRO 105 Mode. | SWL (dB(A)) for each One-third Octave Band | Hub Height Wind Speed (m/s) | | | | | | | |--|-----------------------------|------|------|-------|-------|-------|--| | Centre Frequency | 4 | 5 | 6 | 7 | 8 | 9+ | | | 12.5 Hz | 42.1 | 42.4 | 44.4 | 47.6 | 50.2 | 52.0 | | | 16 Hz | 48.8 | 48.9 | 50.9 | 54.1 | 56.7 | 58.4 | | | 20 Hz | 54.1 | 54.1 | 56.1 | 59.3 | 61.9 | 63.6 | | | 25 Hz | 58.8 | 58.8 | 60.8 | 64.0 | 66.6 | 68.3 | | | 31.5 Hz | 63.0 | 63.1 | 65.1 | 68.3 | 70.9 | 72.6 | | | 40 Hz | 66.9 | 66.9 | 68.9 | 72.1 | 74.9 | 76.5 | | | 50 Hz | 69.9 | 70.0 | 72.1 | 75.2 | 78.0 | 79.8 | | | 63 Hz | 72.7 | 73.3 | 75.2 | 78.2 | 80.8 | 82.7 | | | 80 Hz | 75.1 | 76.2 | 78.0 | 80.6 | 83.1 | 84.9 | | | 100 Hz | 77.3 | 78.9 | 80.6 | 82.9 | 85.1 | 86.7 | | | 125 Hz | 79.6 | 81.7 | 83.5 | 85.4 | 87.3 | 88.5 | | | 160 Hz | 81.3 | 83.5 | 85.6 | 87.4 | 89.2 | 90.1 | | | 200 Hz | 82.6 | 84.8 | 87.3 | 89.2 | 91.0 | 91.7 | | | 250 Hz | 83.6 | 85.5 | 88.4 | 90.7 | 92.6 | 93.2 | | | 315 Hz | 84.2 | 85.7 | 89.1 | 91.8 | 93.9 | 94.5 | | | 400 Hz | 83.9 | 84.8 | 88.5 | 91.9 | 94.2 | 94.9 | | | 500 Hz | 84.0 | 84.5 | 88.3 | 92.2 | 94.9 | 95.7 | | | 630 Hz | 83.9 | 84.1 | 87.8 | 92.1 | 95.2 | 96.2 | | | 800 Hz | 83.9 | 83.6 | 87.3 | 91.7 | 95.2 | 96.5 | | | 1 kHz | 84.2 | 83.6 | 87.0 | 91.4 | 95.2 | 96.8 | | | 1.25 kHz | 84.8 | 84.0 | 87.1 | 91.6 | 95.3 | 97.2 | | | 1.6 kHz | 83.9 | 83.5 | 85.9 | 90.1 | 93.8 | 95.8 | | | 2 kHz | 83.2 | 83.3 | 85.1 | 88.8 | 92.4 | 94.5 | | | 2.5 kHz | 82.0 | 82.5 | 84.2 | 87.2 | 90.4 | 92.4 | | | 3.15 kHz | 80.1 | 81.2 | 82.8 | 85.4 | 88.1 | 89.8 | | | 4 kHz | 77.1 | 78.5 | 80.2 | 82.7 | 85.0 | 86.3 | | | 5 kHz | 73.0 | 74.7 | 76.6 | 79.2 | 81.3 | 82.3 | | | 6.3 kHz | 66.3 | 68.3 | 70.5 | 73.2 | 75.4 | 76.2 | | | 8 kHz | 55.7 | 58.1 | 60.6 | 63.5 | 65.9 | 66.7 | | | 10 kHz | 41.6 | 44.0 | 46.9 | 50.3 | 53.0 | 54.1 | | | Total SWL (dB(A)) | 95.3 | 96.0 | 98.9 | 102.3 | 105.2 | 106.5 | | Table 3: GE 158 5.5MW Sound Power Levels: NRO 104 Mode. | SWL (dB(A)) for each | Hub Height Wind Speed (m/s) | | | | | | | |---|-----------------------------|------|------|-------|-------|-------|--| | One-third Octave Band
Centre Frequency | 4 | 5 | 6 | 7 | 8 | 9+ | | | 12.5 Hz | 42.1 | 42.4 | 44.3 | 47.4 | 50.0 | 50.9 | | | 16 Hz | 48.8 | 48.9 | 50.8 | 53.9 | 56.4 | 57.3 | | | 20 Hz | 54.1 | 54.1 | 56.0 | 59.1 | 61.7 | 62.5 | | | 25 Hz | 58.8 | 58.8 | 60.7 | 63.8 | 66.4 | 67.2 | | | 31.5 Hz | 63.0 | 63.1 | 65.0 | 68.1 | 70.7 | 71.5 | | | 40 Hz | 66.9 | 66.9 | 68.8 | 72.0 | 74.7 | 75.5 | | | 50 Hz | 69.9 | 70.0 | 71.9 | 75.1 | 77.8 | 78.8 | | | 63 Hz | 72.7 | 73.3 | 75.0 | 78.0 | 80.6 | 81.8 | | | 80 Hz | 75.1 | 76.2 | 77.8 | 80.4 | 82.9 | 84.0 | | | 100 Hz | 77.3 | 78.9 | 80.4 | 82.7 | 84.9 | 85.9 | | | 125 Hz | 79.6 | 81.7 | 83.3 | 85.2 | 87.1 | 87.9 | | | 160 Hz | 81.3 | 83.5 | 85.4 | 87.2 | 89.0 | 89.6 | | | 200 Hz | 82.6 | 84.8 | 87.1 | 89.0 | 90.8 | 91.2 | | | 250 Hz | 83.6 | 85.5 | 88.2 | 90.5 | 92.4 | 92.7 | | | 315 Hz | 84.2 | 85.7 | 88.9 | 91.6 | 93.7 | 94.0 | | | 400 Hz | 83.9 | 84.8 | 88.4 | 91.7 | 94.0 | 94.3 | | | 500 Hz | 84.0 | 84.5 | 88.1 | 92.0 | 94.7 | 95.0 | | | 630 Hz | 83.9 | 84.1 | 87.6 | 91.9 | 95.0 | 95.4 | | | 800 Hz | 83.9 | 83.6 | 87.2 | 91.5 | 95.0 | 95.5 | | | 1 kHz | 84.2 | 83.6 | 86.8 | 91.3 | 94.9 | 95.6 | | | 1.25 kHz | 84.8 | 84.0 | 86.9 | 91.4 | 95.0 | 95.8 | | | 1.6 kHz | 83.9 | 83.5 | 85.7 | 89.9 | 93.5 | 94.3 | | | 2 kHz | 83.2 | 83.3 | 85.0 | 88.6 | 92.1 | 92.9 | | | 2.5 kHz | 82.0 | 82.5 | 84.0 | 87.0 | 90.2 | 91.0 | | | 3.15 kHz | 80.1 | 81.2 | 82.6 | 85.2 | 87.9 | 88.6 | | | 4 kHz | 77.1 | 78.5 | 80.1 | 82.6 | 84.8 | 85.3 | | | 5 kHz | 73.0 | 74.7 | 76.4 | 79.0 | 81.1 | 81.4 | | | 6.3 kHz | 66.3 | 68.3 | 70.3 | 73.0 | 75.2 | 75.5 | | | 8 kHz | 55.7 | 58.1 | 60.4 | 63.3 | 65.7 | 66.0 | | | 10 kHz | 41.6 | 44.0 | 46.8 | 50.2 | 52.8 | 53.3 | | | Total SWL (dB(A)) | 95.3 | 96.0 | 98.7 | 102.1 | 105.0 | 105.5 | | Table 3: GE 158 5.5MW Sound Power Levels: NRO 103 Mode. | SWL (dB(A)) for each | | | Hub Height | Wind Speed | d (m/s) | | | | |---|------|------|------------|------------|---------|-------|--|--| | One-third Octave Band
Centre Frequency | 4 | 5 | 6 | 7 | 8 | 9+ | | | | 12.5 Hz | 42.1 | 42.4 | 44.7 | 47.8 | 49.8 | 49.8 | | | | 16 Hz | 48.8 | 48.9 | 51.2 | 54.2 | 56.2 | 56.2 | | | | 20 Hz | 54.1 | 54.1 | 56.4 | 59.4 | 61.4 | 61.4 | | | | 25 Hz | 58.8 | 58.8 | 61.0 | 64.1 | 66.1 | 66.1 | | | | 31.5 Hz | 63.0 | 63.1 | 65.3 | 68.4 | 70.4 | 70.4 | | | | 40 Hz | 66.9 | 66.9 | 69.1 | 72.3 | 74.4 | 74.4 | | | | 50 Hz | 69.9 | 70.0 | 72.2 | 75.4 | 77.6 | 77.6 | | | | 63 Hz | 72.7 | 73.3 | 75.3 | 78.3 | 80.4 | 80.4 | | | | 80 Hz | 75.1 | 76.2 | 77.9 | 80.7 | 82.7 | 82.7 | | | | 100 Hz | 77.3 | 78.9 | 80.4 | 82.9 | 84.6 | 84.6 | | | | 125 Hz | 79.6 | 81.7 | 83.1 | 85.3 | 86.8 | 86.8 | | | | 160 Hz | 81.3 | 83.5 | 85.2 | 87.2 | 88.6 | 88.6 | | | | 200 Hz | 82.6 | 84.8 | 86.9 | 88.9 | 90.4 | 90.4 | | | | 250 Hz | 83.6 | 85.5 | 88.1 | 90.4 | 91.9 | 91.9 | | | | 315 Hz | 84.2 | 85.7 | 88.9 | 91.5 | 93.2 | 93.2 | | | | 400 Hz | 83.9 | 84.8 | 88.5 | 91.6 | 93.4 | 93.4 | | | | 500 Hz | 84.0 | 84.5 | 88.4 | 92.1 | 94.1 | 94.1 | | | | 630 Hz | 83.9 | 84.1 | 87.9 | 92.1 | 94.4 | 94.4 | | | | 800 Hz | 83.9 | 83.6 | 87.5 | 91.9 | 94.4 | 94.4 | | | | 1 kHz | 84.2 | 83.6 | 87.4 | 91.7 | 94.4 | 94.4 | | | | 1.25 kHz | 84.8 | 84.0 | 87.5 | 91.8 | 94.6 | 94.6 | | | | 1.6 kHz | 83.9 | 83.5 | 86.3 | 90.5 | 93.2 | 93.2 | | | | 2 kHz | 83.2 | 83.3 | 85.4 | 89.2 | 91.8 | 91.8 | | | | 2.5 kHz | 82.0 | 82.5 | 84.3 | 87.5 | 89.9 | 89.9 | | | | 3.15 kHz | 80.1 | 81.2 | 82.9 | 85.6 | 87.6 | 87.6 | | | | 4 kHz | 77.1 | 78.5 | 80.3 | 82.9 | 84.5 | 84.5 | | | | 5 kHz | 73.0 | 74.7 | 76.6 | 79.2 | 80.8 | 80.8 | | | | 6.3 kHz | 66.3 | 68.3 | 70.5 | 73.2 | 74.8 | 74.8 | | | | 8 kHz | 55.7 | 58.1 | 60.6 | 63.6 | 65.3 | 65.3 | | | | 10 kHz | 41.6 | 44.0 | 46.9 | 50.4 | 52.4 | 52.4 | | | | Total SWL (dB(A)) | 95.3 | 96.0 | 98.9 | 102.3 | 104.5 | 104.5 | | | Table 3: GE 158 5.5MW Sound Power Levels: NRO 102 Mode. | SWL (dB(A)) for each | Hub Height Wind Speed (m/s) | | | | | | |---|-----------------------------|------|------|-------|-------|-------| | One-third Octave Band
Centre Frequency | 4 | 5 | 6 | 7 | 8 | 9+ | | 12.5 Hz | 42.1 | 42.4 | 44.5 | 47.6 | 49.0 | 49.0 | | 16 Hz | 48.8 | 48.9 | 51.0 | 54.1 | 55.4 | 55.4 | | 20 Hz | 54.1 | 54.1 | 56.2 | 59.3 | 60.6 | 60.6 | | 25 Hz | 58.8 | 58.8 | 60.9 | 64.0 | 65.3 | 65.3 | | 31.5 Hz | 63.0 | 63.1 | 65.2 | 68.3 | 69.6 | 69.6 | | 40 Hz | 66.9 | 66.9 | 69.0 | 72.2 | 73.6 | 73.6 | | 50 Hz | 69.9 | 70.0 | 72.1 | 75.3 | 76.8 | 76.8 | | 63 Hz | 72.7 | 73.3 | 75.1 | 78.2 | 79.7 | 79.7 | | 80 Hz | 75.1 | 76.2 | 77.8 | 80.5 | 82.0 | 82.0 | | 100 Hz | 77.3 | 78.9 | 80.3 | 82.7 | 84.0 | 84.0 | | 125 Hz | 79.6 | 81.7 | 83.0 | 85.1 | 86.2 | 86.2 | | 160 Hz | 81.3 | 83.5 | 85.0 | 87.0 | 88.0 | 88.0 | | 200 Hz | 82.6 | 84.8 | 86.7 | 88.8 | 89.7 | 89.7 | | 250 Hz | 83.6 | 85.5 | 88.0 | 90.3 | 91.2 | 91.2 | | 315 Hz | 84.2 | 85.7 | 88.7 | 91.4 | 92.4 | 92.4 | | 400 Hz | 83.9 | 84.8 | 88.3 | 91.5 | 92.6 | 92.6 | | 500 Hz | 84.0 | 84.5 | 88.2 | 91.9 | 93.1 | 93.1 | | 630 Hz | 83.9 | 84.1 | 87.8 | 92.0 | 93.3 | 93.3 | | 800 Hz | 83.9 | 83.6 | 87.4 | 91.7 | 93.3 | 93.3 | | 1 kHz | 84.2 | 83.6 | 87.3 | 91.6 | 93.2 | 93.2 | | 1.25 kHz | 84.8 | 84.0 | 87.4 | 91.7 | 93.4 | 93.4 | | 1.6 kHz | 83.9 | 83.5 | 86.2 | 90.3 | 92.0 | 92.0 | | 2 kHz | 83.2 | 83.3 | 85.3 | 89.0 | 90.7 | 90.7 | | 2.5 kHz | 82.0 | 82.5 | 84.1 | 87.4 | 88.9 | 88.9 | | 3.15 kHz | 80.1 | 81.2 | 82.7 | 85.5 | 86.7 | 86.7 | | 4 kHz | 77.1 | 78.5 | 80.1 | 82.7 | 83.7 | 83.7 | | 5 kHz | 73.0 | 74.7 | 76.5 | 79.1 | 80.1 | 80.1 | | 6.3 kHz | 66.3 | 68.3 | 70.3 | 73.1 | 74.1 | 74.1 | | 8 kHz | 55.7 | 58.1 | 60.4 | 63.4 | 64.5 | 64.5 | | 10 kHz | 41.6 | 44.0 | 46.8 | 50.2 | 51.5 | 51.5 | | Total SWL (dB(A)) | 95.3 | 96.0 | 98.8 | 102.2 | 103.5 | 103.5 | Table 3: GE 158 5.5MW Sound Power Levels: NRO 101 Mode. | SWL (dB(A)) for each | Hub Height Wind Speed (m/s) | | | | | | | |---|-----------------------------|------|------|-------|-------|-------|--| | One-third Octave Band
Centre Frequency | 4 | 5 | 6 | 7 | 8 | 9+ | | | 12.5 Hz | 42.1 | 42.4 | 45.1 | 48.1 | 48.1 | 48.1 | | | 16 Hz | 48.8 | 48.9 | 51.6 | 54.5 | 54.5 | 54.5 | | | 20 Hz | 54.1 | 54.1 | 56.8 | 59.7 | 59.7 | 59.7 | | | 25 Hz | 58.8 | 58.8 | 61.5 | 64.4 | 64.4 | 64.4 | | | 31.5 Hz | 63.0 | 63.1 | 65.8 | 68.7 | 68.7 | 68.7 | | | 40 Hz | 66.9 | 66.9 | 69.6 | 72.7 | 72.7 | 72.7 | | | 50 Hz | 69.9 | 70.0 | 72.7 | 75.7 | 75.7 | 75.7 | | | 63 Hz | 72.7 | 73.3 | 75.8 | 78.6 | 78.6 | 78.6 | | | 80 Hz | 75.1 | 76.2 | 78.4 | 81.0 | 81.0 | 81.0 | | | 100 Hz | 77.3 |
78.9 | 81.0 | 83.2 | 83.2 | 83.2 | | | 125 Hz | 79.6 | 81.7 | 83.7 | 85.5 | 85.5 | 85.5 | | | 160 Hz | 81.3 | 83.5 | 85.8 | 87.4 | 87.4 | 87.4 | | | 200 Hz | 82.6 | 84.8 | 87.5 | 89.2 | 89.2 | 89.2 | | | 250 Hz | 83.6 | 85.5 | 88.7 | 90.6 | 90.6 | 90.6 | | | 315 Hz | 84.2 | 85.7 | 89.4 | 91.7 | 91.7 | 91.7 | | | 400 Hz | 83.9 | 84.8 | 89.0 | 91.8 | 91.8 | 91.8 | | | 500 Hz | 84.0 | 84.5 | 88.8 | 92.2 | 92.2 | 92.2 | | | 630 Hz | 83.9 | 84.1 | 88.4 | 92.3 | 92.3 | 92.3 | | | 800 Hz | 83.9 | 83.6 | 88.0 | 92.0 | 92.0 | 92.0 | | | 1 kHz | 84.2 | 83.6 | 87.8 | 91.9 | 91.9 | 91.9 | | | 1.25 kHz | 84.8 | 84.0 | 87.9 | 92.0 | 92.0 | 92.0 | | | 1.6 kHz | 83.9 | 83.5 | 86.7 | 90.7 | 90.7 | 90.7 | | | 2 kHz | 83.2 | 83.3 | 85.8 | 89.5 | 89.5 | 89.5 | | | 2.5 kHz | 82.0 | 82.5 | 84.8 | 87.8 | 87.8 | 87.8 | | | 3.15 kHz | 80.1 | 81.2 | 83.4 | 85.9 | 85.9 | 85.9 | | | 4 kHz | 77.1 | 78.5 | 80.8 | 83.2 | 83.2 | 83.2 | | | 5 kHz | 73.0 | 74.7 | 77.1 | 79.5 | 79.5 | 79.5 | | | 6.3 kHz | 66.3 | 68.3 | 71.0 | 73.5 | 73.5 | 73.5 | | | 8 kHz | 55.7 | 58.1 | 61.1 | 63.8 | 63.8 | 63.8 | | | 10 kHz | 41.6 | 44.0 | 47.5 | 50.6 | 50.6 | 50.6 | | | Total SWL (dB(A)) | 95.3 | 96.0 | 99.4 | 102.5 | 102.5 | 102.5 | | Table 3: GE 158 5.5MW Sound Power Levels: NRO 100 Mode. | SWL (dB(A)) for each | Hub Height Wind Speed (m/s) | | | | | | | |---|-----------------------------|------|------|-------|-------|-------|--| | One-third Octave Band
Centre Frequency | 4 | 5 | 6 | 7 | 8 | 9+ | | | 12.5 Hz | 42.1 | 42.4 | 45.3 | 47.4 | 47.4 | 47.4 | | | 16 Hz | 48.8 | 48.9 | 51.8 | 53.8 | 53.8 | 53.8 | | | 20 Hz | 54.1 | 54.1 | 57.0 | 59.0 | 59.0 | 59.0 | | | 25 Hz | 58.8 | 58.8 | 61.6 | 63.7 | 63.7 | 63.7 | | | 31.5 Hz | 63.0 | 63.1 | 65.9 | 68.0 | 68.0 | 68.0 | | | 40 Hz | 66.9 | 66.9 | 69.7 | 71.9 | 71.9 | 71.9 | | | 50 Hz | 69.9 | 70.0 | 72.8 | 75.0 | 75.0 | 75.0 | | | 63 Hz | 72.7 | 73.3 | 75.9 | 77.9 | 77.9 | 77.9 | | | 80 Hz | 75.1 | 76.2 | 78.5 | 80.4 | 80.4 | 80.4 | | | 100 Hz | 77.3 | 78.9 | 81.1 | 82.6 | 82.6 | 82.6 | | | 125 Hz | 79.6 | 81.7 | 83.8 | 85.0 | 85.0 | 85.0 | | | 160 Hz | 81.3 | 83.5 | 85.9 | 86.9 | 86.9 | 86.9 | | | 200 Hz | 82.6 | 84.8 | 87.6 | 88.5 | 88.5 | 88.5 | | | 250 Hz | 83.6 | 85.5 | 88.8 | 89.9 | 89.9 | 89.9 | | | 315 Hz | 84.2 | 85.7 | 89.5 | 90.9 | 90.9 | 90.9 | | | 400 Hz | 83.9 | 84.8 | 89.1 | 90.8 | 90.8 | 90.8 | | | 500 Hz | 84.0 | 84.5 | 89.0 | 91.1 | 91.1 | 91.1 | | | 630 Hz | 83.9 | 84.1 | 88.5 | 91.0 | 91.0 | 91.0 | | | 800 Hz | 83.9 | 83.6 | 88.1 | 90.7 | 90.7 | 90.7 | | | 1 kHz | 84.2 | 83.6 | 87.9 | 90.6 | 90.6 | 90.6 | | | 1.25 kHz | 84.8 | 84.0 | 88.0 | 90.8 | 90.8 | 90.8 | | | 1.6 kHz | 83.9 | 83.5 | 86.8 | 89.5 | 89.5 | 89.5 | | | 2 kHz | 83.2 | 83.3 | 86.0 | 88.4 | 88.4 | 88.4 | | | 2.5 kHz | 82.0 | 82.5 | 84.9 | 86.9 | 86.9 | 86.9 | | | 3.15 kHz | 80.1 | 81.2 | 83.5 | 85.2 | 85.2 | 85.2 | | | 4 kHz | 77.1 | 78.5 | 80.9 | 82.5 | 82.5 | 82.5 | | | 5 kHz | 73.0 | 74.7 | 77.2 | 78.9 | 78.9 | 78.9 | | | 6.3 kHz | 66.3 | 68.3 | 71.1 | 72.8 | 72.8 | 72.8 | | | 8 kHz | 55.7 | 58.1 | 61.2 | 63.1 | 63.1 | 63.1 | | | 10 kHz | 41.6 | 44.0 | 47.6 | 49.7 | 49.7 | 49.7 | | | Total SWL (dB(A)) | 95.3 | 96.0 | 99.5 | 101.5 | 101.5 | 101.5 | |