

Report on Detailed Site Investigation (Contamination)

New High School in Bungendore Majara Street, Bungendore

Prepared for Hindmarsh Construction Pty Ltd

> Project 202107.04 July 2022

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	202107.04	Document No.	R.002.Rev2	
Document title	Report on Detailed Site Investigation (Contamination)			
	New High School in Bungendore			
Site address	Majara Street, Bungendore			
Report prepared for	Hindmarsh Construction Pty Ltd			
File name	202107.04.R.002.Rev2.DSI.docx			

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Shannon Goodsell	Dean Woods	26 October 2021	
Revision 1	Peter Storey	Dean Woods	19 May 2022	
Revision 2	Peter Storey	Glyn Eade	14 July 2022	

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Dean Argiropoulos, Hindmarsh Construction Pty Ltd
Revision 1	1	0	Dean Argiropoulos, Hindmarsh Construction Pty Ltd
Revision 2	1	0	Dean Argiropoulos, Hindmarsh Construction Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature		Date	
Author A	Peter Storey	14 July 2022	
Reviewer frode	Glyn Eade	14 July 2022	

bsi, ISO 9001 Quality Management FS 604853 Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788

Executive Summary

The objective of the Detailed Site Investigation (Contamination) (DSI) was to assess the suitability of the site, from a contamination perspective. for the new high school development and whether further investigation and/or management is required. Results from the DSI were also used to assist in providing preliminary in-situ waste classification advice.

The DSI included the following scope of works:

- Conducting a subsurface investigation including the drilling of 52 boreholes with sampling and laboratory testing for the identified contaminants of potential concern as outlined in Sections 7 and 8;
- Revision of a preliminary conceptual site model (CSM) based on the results of the subsurface investigation and laboratory testing; and
- Preparation of this report presenting the findings of the DSI, preliminary in-situ waste classification advice, identification of potential sources of contamination, and an assessment of the need for further investigations and/or management.

Potential sources and areas of contamination were identified on the basis of the available desktop site information, a site walkover, intrusive investigation and laboratory analysis results of selected samples. Based on the findings of the assessment, the potential for gross chemical contamination to be present across the site is considered to be low.

All soil results for TRH, BTEX, PAH, OCP, OPP, PCB and phenols, were below the laboratory's practical quantitation limit (PQL). All soil results for metals were above the PQL but below the SAC with the exception of cadmium, mercury and arsenic in samples discussed in Section 11, which were below the PQL.

The results of the soil contaminant testing were also compared to NSW waste classification criteria in order to provide a preliminary in-situ waste classification for the material that is understood to be excavated and disposed off-site during construction. Concentrations of metals (including the nickel in Bore 112/1.0 m and Bore 131/0.1 m with TCLP testing), TRH, BTEX, PAH, OCP, OPP, PCB and phenols were below the CT1 criteria for General Solid Waste (non-putrescible). Therefore, the material will likely be classified as General Solid Waste (non-putrescible).

Based on the natural material observed from the boreholes and chemical analysis of select samples, the natural material underlying the fill could also be classified as VENM. It should be noted that a VENM classification would be no longer be acceptable should the VENM be mixed with any fill or other potential contaminants.

Based on the results of the investigation, it is considered that the site is suitable, from a contamination perspective, for the proposed development at the site. It is also considered that the fill material is suitable for reuse (from a contamination perspective) at the site with reference to the following recommendations before and during any future development works:

• A Construction Environment Management Plan (CEMP) should also be prepared before future development works including an 'unexpected finds protocol' and asbestos finds protocol (including underground services that may contain ACM) and implemented during the works (i.e.

hydrocarbon staining and/odours observed during works, suspected ACM fragments of asbestos fibres);

- Where practicable, anthropogenic materials should be removed from the fill material and disposed off-site during the construction phase at the site;
- A detailed hazardous building materials (HAZMAT) survey will need to be undertaken for existing structures before any demolition or refurbishment works can occur. The buildings will have to be vacated completely before any detailed HAZMAT surveys can be undertaken and it is understood that this can only happen once the Department of Education receive ownership of the site. Future site works (including civil works) should only be undertaken once a detailed HAZMAT survey has been completed. It is also recommended that if HBM are found to be present in the structures, a validation assessment within the soils of the structure footprints should be undertaken once demolition works have been completed;
- Should suspected asbestos be encountered at the site, the affected area should be fenced off and assessed by an NSW licensed asbestos assessor; and
- Should any fill material be required to be disposed off-site, the material must be stockpiled, assessed in accordance with NSW EPA Waste Classification Guidelines Part 1 Classifying Waste (2014) and assigned a formal waste classification prior to off-site disposal.

Table of Contents

Page

1. Introduction			1		
	1.1	Background	1		
	1.2	Objectives	1		
2.	Proposed Development				
3.	Scop	e of Work	2		
4.	Site I	nformation	3		
	4.1	Site Description	4		
5.	Envir	onmental Setting	5		
	5.1	Topography	5		
	5.2	Site Geology	6		
	5.3	Soil Landscapes	6		
	5.4	Acid Sulfate Soils	6		
	5.5	Surface Water and Groundwater	6		
6.	Previ	ous Reports	7		
	6.1	Preliminary Site Investigation for Contamination, Proposed Supported Housing, 4 – 6 Majara Street, Bungendore (DP, 2019)	8		
	6.2	Targeted Detailed Site Investigation for Contamination, Proposed Supported Housing, 4 – 6 Majara Street, Bungendore (DP, 2020)	8		
	6.3	Preliminary Site Investigation with Limited Sampling (Contamination), New High School in Bungendore, Majara Street, Bungendore (DP, 2021)	n 8		
	6.4	Sampling, Analysis and Quality Plan (DP, 2021a)1	0		
	6.5	Preliminary Site Investigation, Bungendore Rail Corridor (ERM, 2022)1	1		
	6.6	Preliminary Site Investigation, Bungendore Station (ERM, 2022a)1	2		
7.	Prelin	ninary Conceptual Site Model1	2		
8.	Samp	bling and Analysis Quality Plan1	6		
	8.1	Data Quality Objectives1	6		
	8.2	Soil Sampling Rationale1	6		
9.	Site A	Assessment Criteria1	7		
10.	Results17				
	10.1	Field Work Methods1	7		
	10.2	Field Work Results1	8		
	10.3	Laboratory Analytical Results1	9		

11.	Discussion	.19		
	11.1 Soils 19			
	11.2 Preliminary In-Situ Waste Classification	.19		
	11.3 Data Quality Assurance and Quality Control	.22		
12.	Revised Conceptual Site Model	.22		
13.	Conclusions and Recommendations	.25		
14.	References			
15.	Limitations	.27		

Appendix A:	Drawings 1 to 3
Appendix B:	About this Report
Appendix C:	Data Quality Objectives (DQO)
Appendix D:	Field Work Methodology
Appendix E:	Site Assessment Criteria
Appendix F:	Explanation Notes and Borehole Logs (Bores 101 – 152)
Appendix G:	Summary of Laboratory Results (Tables G1 – G4 and QA1 – QA5)
Appendix H:	Laboratory Chain of Custody, Sample Receipt Analysis and Laboratory Certificates
Appendix I:	Quality Assurance and Quality Control

Report on Detailed Site Investigation (Contamination) New High School in Bungendore Majara Street, Bungendore

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by Hindmarsh Construction Pty Ltd (Hindmarsh) to complete this detailed site investigation (contamination) (DSI) and preliminary in-situ waste classification for the new high school at Majara Street, Bungendore (the site). The site is shown on Drawing 1, Appendix A. The DSI was undertaken in accordance with DP's proposal 202107.04.P001.Rev2 dated 23 September 2021.

1.1 Background

NSW Department of Education -School Infrastructure is investing in school infrastructure and is committed to delivering new and upgraded schools for communities across NSW. The new high school in Bungendore is part of this program. The project is a state significant development (SSD) and a SSD application has been lodged with the NSW Department of Planning and Environment. As part of the planning process, an assessment of the suitability of the site, from a contamination perspective, is required.

DP has previously conducted a preliminary site investigation (contamination) (PSI) for the site, which identified potential sources and areas of contamination. The PSI is discussed further in Section 6.1. The PSI recommended that intrusive investigation, in the form of a DSI, be conducted to further investigate the potential for contamination to be present at the site.

The DSI has been revised to incorporate comments in submissions made during the exhibition period for the SSD application and to include information within third party reports (commissioned by Transport for NSW) on potential off-site sources of contamination.

1.2 Objectives

The objective of the DSI is to assess the suitability of the site, from a contamination perspective, for the proposed development and whether further investigation and/or management is required. Results from the DSI will also assist in providing preliminary in-situ waste classification advice.

This report must be read in conjunction with the notes entitled 'About This Report' in Appendix B and other explanatory notes, and the report should be kept in its entirety without separation of individual pages or sections.

The following key guidelines were consulted in the preparation of this report:

 NEPC (1999), National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the "NEPM"] (NEPC, 2013);

• NSW EPA (2020), 'Guidelines for Consultants Reporting on Contaminated Land', (NSW EPA, 2020).

2. Proposed Development

The proposed development is for the construction of a new high school in Bungendore. The proposed development will include the demolition of the Bungendore Swimming Pool and the Bungendore Community Centre; repurposing of existing council buildings; and the construction of new school buildings. New facilities for the high school will comprise of numerous learning areas, a gymnasium; library; canteen; outdoor learning and play areas that include two games courts.

A new agricultural plot is also proposed to the north of the main school site including a new agricultural building and scout storage shed, adjacent to the existing scout hall.

Upgrades to nearby road intersections and infrastructure, crossings, footpaths and will also be included in the proposed development.

3. Scope of Work

The DSI included the following scope of works:

- Review of previous investigations undertaken at the site;
- Review of service plans, completion of a Dial-Before-You Dig (DBYD) underground services record search, scanning of test locations for buried services and surveying of test locations using a GPS;
- Intrusive sampling from 52 boreholes drilled using a mini-excavator fitted with a 200 mm diameter auger or a hand-held electric post hole digger fitted with a 75 mm diameter auger;
- Collection of soil samples from all test locations at regular depth intervals based on field observations, upon signs of contamination and at changes in strata;
- Logging of encountered soil material and pertinent field information;
- Backfilling of boreholes;
- Laboratory analysis of collected soil samples at a National Association of Testing Authorities (NATA) accredited laboratory for one or all of the following analytes:
 - o Total recoverable hydrocarbons (TRH);
 - o Benzene, toluene, ethyl benzene and total xylenes (BTEX compounds);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o Organochlorine Pesticides and Organophosphate Pesticides (OCP/OPP)
 - o Polychlorinated biphenyls (PCBs)

- o Phenols;
- o Metals (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn); and
- o Asbestos.
- Where results of the laboratory analysis indicated it may be required, selected samples were also analysed for toxicity characteristic leachability procedure (TCLP) testing for metals and PAH for preliminary in-situ waste classification purposes; and
- Preparation of this DSI report, including a Data Quality Assessment, an updated conceptual site model (CSM), a discussion of the methods and results of the investigation, an assessment of the risk to the proposed development from contamination, advice on the type and potential extent of contamination and a statement on the site suitability and/or need for further assessment / remediation.

It should be noted that DP's proposal included investigation work within the Bungendore railway station/railway forecourt area. DP was requested not to undertake investigation work within this area as the project will not be undertaking works in the railway station, railway forecourt area.

Site Address	6-14 Butmaroo Street;	
	2 Majara Street;	
	4-6 Majara Street;	
	10 Majara Street; and	
	Butmaroo Street	
Legal Description	Part of Lot 701 deposited plan (DP) 1027107;	
	Lot 12 DP1139067;	
	Lot 13 DP1139067;	
	Lot 14 DP1139067;	
	Lot 3 DP830878; and	
	Part of Lot 701 DP96240	
Approximate Area	2.53 hectares	
Zoning	Queanbeyan-Palerang Regional Council (QPRC)	
	Vacant land (RE1 and SP2);	
	Swimming Pool (RE1);	
	Community Centre (SP2);	
	Council Building (SP2); and	
	Sports Oval (RE1)	

4. Site Information

	North – Residential and recreational ovals East – Railway line South – Railway forecourt and Bungendore Public School West – Recreational	
Local Council Area	Queanbeyan-Palerang Regional Council (QPRC)	
Current Use	Vacant land; Swimming Pool; Community Centre; Council Building; Train Station; and School and Sports Ovals	
Surrounding Uses	North – Residential and recreational East – Railway line South – Primary school, residential and train station West – Residential and recreational	

4.1 Site Description

The proposed development is located within the Bungendore Town Centre within the local government area of Queanbeyan-Palerang Regional Council. The proposal involves the use of land bounded by Bungendore Park, Gibraltar Street, Majara Street, Turallo Terrace and Butmaroo Street, the existing former Palerang Council site at 10 Majara Street, the Majara Street road reserve bounded by Turallo Terrace and Gibraltar Streets and Nos. 2, 4 and 6 Majara Street.

The site is legally described as per the existing Lots and DPs listed in the table above. The school site comprises land which has recently been transferred to the ownership of the Department of Education, being Lots 12 to14 of DP1139067, Lot 3 of DP830878, part of Lot 701 of DP1027107, part of lot 701 of DP96240, and part of the Majara Street Road Reserve. The proposed Lots and DPs are detailed within Table 1 above and are not yet registered at the time of writing of this Amendment Report.

The site is approximately 25,350m2 in area and consists of a relatively flat topography. It contains existing Council buildings. The land is mostly cleared of vegetation with some mature trees intersperse throughout subject lots.

The surrounding area generally comprises low density residential developments to the north and west, an existing rail line to the east and Bungendore Public School and the Bungendore train station to the south and south west respectively.

The site boundary is shown on Figure 1.

Figure 1: Site Location

5. Environmental Setting

5.1 Topography

The regional topography comprises flat to gently sloped plains with some low foot slopes of alluvium and colluvium. The region typically slopes gently towards Lake George.

The site gently slopes from 698 m in the south-east/east to 694 m in the north-west/west, towards Halfway Creek. The northern portion of the site slopes down in a northerly direction from Turallo Terrace towards Turallo Creek from 696 m to 691 m. All elevations are in reference to levels relative to Australian Height Datum (AHD).

5.2 Site Geology

Reference to the Canberra 1:100 000 Geological Sheet 8727 indicates that most of the site (to the west of Majara Street and north of Turallo Terrace) is underlain by Quaternary aged alluvium and part of the eastern side (between Majara Street and the existing railway) is underlain by colluvium, overlying middle to late Ordovician aged Birkenburn beds, which comprises interbedded sandstone, siltstone and shale. It is expected that the Birkenburn beds would underly the alluvium.

5.3 Soil Landscapes

The site is underlain by various soil landscape groups. Published mapping indicates it is underlain by the Millpost soil group (mapped across the northernmost portion of the site) and the Hoskinstown soil group (mapped across most of the eastern portion of the site and Mick Sherd Oval).

The Millpost soil group landscape is characterised by flat to very gently inclined plains on Quaternary alluvium of gravel, sand, silty clay and black organic clay. Limitations associated with the Millpost soil group include localised imperfect drainage, localised permanently high-water tables, localised run-on, and seasonal water logging. The soil group is also subject to experiencing localised salinity, infertile dispersible soils and acidic topsoils, localised flooding hazards and engineering hazards.

Hoskinstown soil group landscape is characterised by undulating low hills on Silurian volcanics and sedimentary units of proximal quartz tubidites of sandstone, shale and siltstone, acid and basic volcanics and tuffs. The landscape contains isolated patches of rock outcrop. Limitations associated with the Hoskinstown soil group include localised saline scalds, minor sheet erosion and seasonal water logging. The soil group is also subject to experiencing run-ons and engineering hazards.

5.4 Acid Sulfate Soils

Reference to the CSIRO's Atlas of Australian Acid Sulfate Soils online mapping portal, (<u>A S R I S - Atlas</u> of <u>Australian Acid Sulfate Soils (csiro.au</u>)) indicates that the site has a low probability of acid sulfate soils to be present.

5.5 Surface Water and Groundwater

On-site stormwater drainage infrastructure is present across the site and expected to flow towards Turallo Creek and Halfway Creek, located approximately 100 m north and 650 m west of the site, respectively. Turrallo Creek flows into Halfway Creek and then into Lake George which is located approximately 7.5 km to the north west of the site. Two unnamed water bodies are located adjacent to Turallo Creek approximately 160 m to the north of the site. Review of the topographic map and the site inspection indicates that the likely direction of surface water drainage would generally be towards the north-west/north.

A search of the publicly available registered groundwater bore database indicated that there were no registered groundwater bores present on the site and six registered groundwater bores within 500 m of the site. The groundwater bores from within 500 m of the site are summarised in Table 1.

•	•	•	
Bore ID Authorised Purpose Completion Year Status	Location Relative to Site	Final Depth (m)	Standing Water Level (m bgl)
GW020916 - Domestic- 1952	496 m W	21.9	N/A
GW402023 - Domestic - 2002	273 m SE	22.0	10.0
GW403783 - Domestic - 2003	226 m SE	50.0	28.0
GW403817 - Domestic - 2007	490 m W	39.0	6.0
GW404164 - Domestic - 2004	455 m NW	42.0	2.0
GW416600 – Monitoring - 2004	150 m E	5.1	4.35

Table 1: Summary of Available Information from Nearby Registered Groundwater Bores

Based on the regional topography and the inferred flow direction of nearby water courses, the anticipated flow direction of groundwater beneath the site is to the north-west/west, towards Lake George, the likely receiving surface water body for the groundwater flow path. Given the local geology (i.e. Birkenburn beds), the groundwater in the fractured rock beneath the site is anticipated to be relatively fresh. Accordingly, potential beneficial uses could include irrigation or drinking water.

6. Previous Reports

From Douglas Partners' (DP) records, several environmental investigations have been completed by DP for the site or within part of the site which includes:

- Preliminary Site Investigation for a proposed Supported Housing project (report ref: 94328.00.R.001.Rev0) (DP, 2019);
- Targeted Detailed Site Investigation for Contamination for a proposed Supported Housing project, with five test pits excavated within the proposed housing site (report ref: 94328.01.R.001.Rev0) (DP, 2020);
- Preliminary Site Investigation with Limited Sampling (Contamination) for a new high school in Bungendore (report ref: 202107.03.R.001.Rev2) (DP, 2021); and
- Sampling, Analysis and Quality Plan for a new high school in Bungendore (report ref: 202107.04.R.001.Rev0) (DP, 2021a).

In addition, Environmental Resources Management Australia Pty Ltd (ERM) was engaged by Country Regional Network John Holland Rail Pty Ltd (JHR) on behalf of Transport for New South Wales (TfNSW) to complete a PSI for the rail corridor land through Bungendore and a PSI for Bungendore Station, reported in the following:

- Preliminary Site Investigation, Bungendore Rail Corridor (report ref: 0608750.Rev03, dated 2 March 2022); and
- Preliminary Site Investigation, Bungendore Station (report ref: 0608750.Rev02, dated 3 May 2022).

A brief summary of the findings of the investigations and subsurface conditions encountered during the intrusive investigation are provided below.

6.1 Preliminary Site Investigation for Contamination, Proposed Supported Housing, 4 – 6 Majara Street, Bungendore (DP, 2019)

A Preliminary Site Investigation (PSI) was completed by DP in October 2019 (DP, 2019). The work was commissioned by Abbeyfield Australia Limited.

The site history review and site inspection indicated that the site has not previously been developed and was most likely used for agricultural uses in the past. The Southern NSW Train Line was located immediately adjacent to the eastern boundary of the site. The site inspection identified the potential presence of fill material at the site as an embankment was noted in the eastern part of the site and disturbed ground was present in the southern part of the site.

The main sources of potential contamination were considered to be potential impacts from fill associated with the embankment and the disturbed ground.

The results of the PSI indicated that it was considered that the likelihood for gross chemical contamination to be present on the site was low with possible localised areas of chemical contamination. It was recommended that an intrusive subsurface investigation should be undertaken to determine the extent of the potential contamination at the site, targeting the fill material.

6.2 Targeted Detailed Site Investigation for Contamination, Proposed Supported Housing, 4 – 6 Majara Street, Bungendore (DP, 2020)

The investigation comprised the excavation of five test pits using a ~5 tonne excavator within the site of the proposed supported housing. These pits generally encountered gravelly sandy clay fill and gravelly clayey sand with trace amounts of anthropogenic material (plastic and concrete) to depths between 0.3 m and 0.4 m below ground level (bgl), underlain by hard silty clay with varying gravel content to depths of 0.6 m bgl, then siltstone bedrock to depths of 0.6 m to 0.7 m bgl.

The results of the laboratory analysis of soil samples indicated that reported concentrations of contaminants of potential concern (COPC) were below the Site Assessment Criteria (SAC) adopted for the site.

Based on the results of the investigation, it was considered that the site was suitable for proposed development at the site, which includes the development of assisted independent living for vulnerable adults.

6.3 Preliminary Site Investigation with Limited Sampling (Contamination), New High School in Bungendore, Majara Street, Bungendore (DP, 2021)

The investigation comprised a review of available local topographic, soil, geological, salinity and acid sulfate soils mapping, a review of available historical and government provided information and

subsurface investigation (boreholes BH01-T, BH02-T and BH01 – BH10) across the proposed high school area. Additional land was included as part of the site boundary (proposed agricultural plot for the new high school) after intrusive works were undertaken.

The site historical title information suggests that the site was used for recreational and railway purposes from at least 1884. The aerial photographs from between 1961 and 1985 indicates that the site was mostly vacant with some ground disturbance noted across the site at times. The aerial photographs from 1985 and 1992 indicates that placement of fill had occurred within the tributary of Turallo Creek, located in the northern portion of the site. The aerial photograph from 1992 suggests that sometime between 1985 and 1992, the swimming pool and community centre were also constructed. The satellite image from 2007 indicates ground disturbance and placement of fill had occurred north of the council offices, where construction for those offices had commenced sometime before 2007. Planning searches indicated no known sources of contamination across the site. The EPA database searches also indicated that no contaminated sites are located within the current site of investigation.

The site comprised mostly developed lots of land. The northern portion (north of Turallo Terrace) of the site comprised vacant land and was moderately grassed. Between Turallo Terrace and Gibraltar Street, a public swimming pool and associated structures, a community hall, the Queanbeyan-Palerang Regional Council offices and the Mick Sherd Oval were present. Some areas of vacant land were located between the infrastructure on site and comprised of grass coverage and some sporadic tree coverage. The northern portion of the site appeared to have been built up along the northern side of Turallo Terrace and sloped down towards a near flat area, towards Turallo Creek. Along the western boundary of the swimming pool, a mound of fill was present and surface fill/topsoil fill was noted across most areas of the site.

Analytical results of soil samples were generally within the adopted health-based (i.e. HIL-A/HSL-A), ecological (i.e. EIL/ESL) criteria, and management limits for low-density residential with garden access with the exception of:

- Nickel in samples BH05/3.0 m at 10 mg/kg, BH06/3.0 m and BH10/5.0 m at 9 mg/kg and BH10/0.5 m at 8 mg/kg exceeded the EIL of 7 mg/kg. Samples BH05/3.0 m, BH06/3.0 m and BH10/5.0 m are below the top 2 m of soil where likely root zones and animal habitation zones are likely to be located and are considered not to be of concern. Furthermore, there was no sign of stressed flora and fauna within the site;
- A calculation of the 95%UCL_{average} using ProUCL software was undertaken for nickel samples within the upper 2.0 m of the soil and where concentrations above the laboratory Practical Quantification Limit (PQL) were reported. The 95%UCL_{average} was then compared to the assessment criteria. The 95%UCL_{average} for nickel at the site was calculated below the assessment criteria. The outputs from the ProUCL software are presented in Appendix L; and
- Soil results for all cadmium and mercury and a number of arsenic results were less than PQL.

Reported concentrations of metals, TRH, BTEX, PAH, OCP, OPP, PCB and phenols were below the CT1 criteria for General Solid Waste (non-putrescible).

DP concluded that it was considered that the site can be made suitable for the proposed school development subject to recommended further investigation (detailed site investigation for the additional northern portion and site characterisation), subsequent further data analysis and subsequent remediation or management (remedial action plan) if considered necessary based on the findings of the further investigation.

DP also recommended that the following measures should be undertaken at the site before and during any future development works:

- A detailed hazardous building materials (HAZMAT) survey will need to be undertaken for existing structures before any demolition works can occur. The buildings will have to be vacated completely before any detailed HAZMAT surveys can be undertaken and it is understood that this can only happen once the Department of Education receive ownership of the site. Future site works (including civil works) should only be undertaken once a detailed HAZMAT survey has been completed. It is also recommended that if hazardous building materials (HBM) are found to be present in the structures, a validation assessment within the soils of the structure footprints should be undertaken once demolition works have been completed;
- A Construction Environment Management Plan (CEMP) should also be prepared before future development works including an 'unexpected finds protocol' and asbestos finds protocol and implemented during the works (i.e. hydrocarbon staining and/odours observed during works, suspected ACM fragments of asbestos fibres);
- Should suspected asbestos be encountered at the site, the affected area should be fenced off and assessed by an NSW licensed asbestos assessor; and
- Should any fill material be required to be disposed off-site, the material must be assessed in accordance with NSW EPA Waste Classification Guidelines Part 1 Classifying Waste (2014) and assigned a formal waste classification prior to off-site disposal.

Groundwater wells were installed in Boreholes BH02, BH08 and BH09. Groundwater wells were installed for any possible future groundwater monitoring. It should be noted that groundwater monitoring was not part of the scope for the PSI.

The groundwater levels in the monitoring wells were measured on 4 May 2021 and observations summarised in Table 2.

Bore No.	Depth (m)	RL (m)*
BH02	5.39	691.11
BH08	5.84	691.16
BH09	No Groundwater Observed	-

 Table 2: Summary of Groundwater Level Measurements on 4 May 2021

• *Surface levels given in Table 2 are based on the survey data provided by Project Surveyors Pty Ltd

6.4 Sampling, Analysis and Quality Plan (DP, 2021a)

DP were engaged to prepare a Sampling, Analysis and Quality Plan (SAQP) to inform a DSI for the site. The purposes of the SAQP were to document the data quality objectives for sampling at the site, present methods for determining sampling and to define the number, type and locations of soil sampling to ensure the collection of representative, reproducible data to allow conclusions to be drawn on the suitability of the site for the proposed development.

The SAQP presented Data Quality Objectives (presented in Appendix C) and proposed sampling locations, field screening and the laboratory analysis program.

6.5 Preliminary Site Investigation, Bungendore Rail Corridor (ERM, 2022)

ERM was engaged by JHR on behalf of TfNSW to complete a PSI of the railway corridor land as it passes through Bungendore. It is understood that the PSI was commissioned to assess possible lead impacts associated with the transport of ores from mining operations in Captains Flat located to the south of Bungendore.

The objectives of the work included collecting information to assess potential sources of contamination and assess the nature and extent of identified contaminants in surface soils. The scope of works for the PSI included a desk top review of historical information for the site and its environmental setting, a site inspection walkover and collection of 119 primary shallow soil samples, in order to develop a conceptual site model.

The review of desktop information indicated that the rail corridor, as it passes through Bungendore, is approximately 2.5 km long and 40 m to 50 wide and three sidings are present. The review of the site history and information obtained from JHR indicated that the line was historically used to transport lead ore from mining operations at the Lake George Mine located in Captains Flat. It was further identified that the lead ore was transferred to larger railway wagons in one of the three sidings, located south of the Bungendore Railway Station buildings (to the south of Malbon Street and east of Majara Street). The ERM conceptual site model for the rail corridor site identified the historical handling and transport of lead ore as a primary potential source of contamination.

A total of 119 primary soil samples were collected during the PSI. The sampling design rationale for the investigation was systematic and judgemental sampling. Systematic sampling was undertaken as transects across the rail corridor at approximately 200 m intervals, and where space allowed, three samples were collected each side of the rail tracks. Judgemental sampling was undertaken across the three siding areas, targeting areas where transfer of ore was understood to have occurred. Soil samples were collected from shallow surface soils to a maximum depth of 0.2 m bgl with deeper soils and groundwater excluded from the investigation.

The results of the soil sampling indicated that reported concentration of lead were generally elevated immediately adjacent to or within rail ballast. The reported lead concentrations generally increased in areas where trains may have been required to slow down or stop (e.g. Bungendore Station area and sidings where ore is understood to have been transferred between railway wagons).

Based on the reported lead concentrations present in surface soils and potentially complete sourcepathway-receptor linkages, ER considered that a duty to notify NSW Environment Protection Authority under Section 60 of the Contaminated Land Management Act (1997) had been triggered.

Review of the locations of the soil sampling undertaken by ERM (2022) indicates that several samples were taken within the rail corridor adjacent to the New High School site. Reported concentrations of lead obtained from these areas were above the health investigation level A (HIL-A) applied for the land use setting 'residential with garden / accessible soil'.

6.6 Preliminary Site Investigation, Bungendore Station (ERM, 2022a)

ERM was engaged by JHR on behalf of TfNSW to complete a PSI of Bungendore Station. It is noted that Bungendore Station is located to the south of the new high school site.

The objectives of the work included collecting information to assess for the presence of potential contamination sources and assess the nature and extent of identified contaminants in surface soils, if any. The scope of works for the PSI included a desk top review of historical information for the site and its environmental setting, a site inspection walkover and collection of 15 surface soil samples across the site, in order to develop a conceptual site model. It is noted that the site covers an area of approximately 1.5 hectares and the sampling undertaken by ERM does not meet the minimum sampling density requirements for a detailed site investigation (NSW EPA, 1995).

As for the PSI of the rail corridor (ERM, 2022), the review of desktop information indicated that the transport of lead ore along the rail corridor from the Lake George Mine in Captains Flat was the primary area of environmental concern. The railway station is located immediately adjacent to the rail corridor and to the north of a siding area where ERM (2022) noted that the transfer of lead ore to larger rail wagons occurred.

A total of 15 soil samples (samples SS-STN-01 to SS-STN-15) were collected in an irregular grid pattern across the site. Soil samples were collected from shallow surface soils to a maximum depth of 0.1 m bgl and were submitted for analysis for a range of metals (including lead). The results of the laboratory analysis reported that concentrations of lead in three samples (SS-STN-01, SS-STN-02 and SS-STN-13 were above the adopted HIL-A, applied for the land use setting 'residential with garden / accessible soil'. Two of the samples (SS-STN-01 and SS-STN-02) were located in the southern portion of the site adjacent to Malbon Street and located just to the north of the railway siding where the transfer of lead ore between rail wagons was noted to occur (ERM, 2022). One of the samples (SS-STN-13) was located in the north-eastern portion of the site.

It is noted that the closest sample to the new high school site (sample SS-STN-15) reported a lead concentration of 14 mg/kg, which is considered to represent background levels.

7. Preliminary Conceptual Site Model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e. it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Potential Sources (S)

Based on the current investigation, the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified.

On-site sources

- S1: Fill: Associated with past construction of the swimming pool, ovals, community centre, QPRC building and car parks/roads and ground disturbance/possible fill placement in a tributary in the northern portion of the site.
 - Various COPC and may include metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), organophosphate pesticides (OPP), phenols and asbestos.
- S2: Existing buildings and the hazardous building materials (HBM) that may be associated with those structures.
 - o COPC include asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB.

Off-site sources

- S3: Railway corridor land.
 - o CoPC include metals, TRH, BTEX, PAH, PCB, OCP, OPP, phenols and asbestos.

Potential Receptors (R)

The following potential human receptors have been identified:

- R1: Current users [general public, community workers and council workers];
- R2: Construction and maintenance workers;
- R3: End users [students, teachers and other associated workers on a school site]; and
- R4: Adjacent site users [residential, recreational and students, teachers and other associated workers on a school site (Bungendore Primary School)].

The following potential environmental receptors have been identified:

- R5: Surface water [on-site stormwater drainage lines flowing into Turallo Creek (fresh water)];
- R6: Groundwater; and
- R7: Terrestrial ecology.

Potential Pathways (P)

The following potential pathways have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of dust and/or vapours;
- P3: Surface water run-off;
- P4: Lateral migration of groundwater providing base flow to water bodies;
- P5: Leaching of contaminants and vertical migration into groundwater; and
- P6: Contact with terrestrial ecology.

Summary of Potentially Complete Exposure Pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S2) and receptors (R1 to R7) are provided in below Table 3.

So	ource and COPC	Transport Pathway	Receptor	Risk Management Action
		P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	 R1: Current users [general public, community workers and council workers] R2: Construction and maintenance workers R3: End users [students, teachers and other associated workers on a school site] 	Fill was identified during the intrusive work (DP, 2021) historical aerial review of the northern portion of the site.
S1:	Fill, Metals, TRH, BTEX, PAH, OCP, OPP, PCB, Phenols and asbestos	P2: Inhalation of dust and/or vapours	R4: Adjacent site users [students, teachers and other associated workers on a school site, recreational, students, school workers and residents].	Further testing within the additional northern portion of the site is recommended to assess possible contamination including testing of the soils and groundwater, if required. Further testing across the remaining portion of the site is also recommended for further site characterisation.
		P3: Surface water run-off P5: Lateral migration of groundwater providing base flow to water bodies	R5: Surface Water	A groundwater investigation is not recommended at this stage based on the historical assessment. A groundwater investigation may be recommended at a later stage depending on the results of the soil sample assessment.
		P4: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	

Table 3: Summary of Potentially Complete Exposure Pathways
--

So	ource and COPC	Transport Pathway Receptor		Risk Management Action
		P6: Contact with terrestrial ecology	R7: terrestrial ecology	
		P1: Ingestion and dermal contact P2: Inhalation of dust	 R1: Current users [general public, community workers and council workers] R2: Construction and maintenance workers R3: End users [students, teachers and other associated workers on a school site] 	The results of the laboratory analysis indicated that reported concentrations of contaminants of concern were below the adopted assessment criteria or not detected (asbestos) (DP, 2021). Further testing across the site is also recommended for further site characterisation. A groundwater investigation is not recommended at this stage based on the historical assessment. A groundwater investigation may be recommended at a later
S2: Current and former buildings, asbestos, SMF, lead (in paint) and PCB S2: Current and former run-off* P5: Leaching of contaminants and vertical migration		R5: Surface Water.	stage depending on the results of the so sample assessment. A HAZMAT survey was recommended in D (2021). However, DP has not been engage to undertake a HAZMAT survey within th buildings across the site.	
		P4: Lateral migration of groundwater providing base flow to water bodies* P5: Leaching of contaminants and vertical migration into groundwater*	R4: Adjacent site users [students, teachers and other associated workers on a school site, recreational, students, school workers and residents] R6: Groundwater	
		P6: Contact with terrestrial ecology*	R7: Terrestrial ecology	
S3:	Railway corridor land, Metals, TRH, BTEX, PAH, OCP, OPP, PCB, Phenols and asbestos	P1: Ingestion and dermal contact P2: Inhalation of dust	R1:Current users[general public, community workersand council workers]R2:Construction and maintenance workersR3:End users [students, teachers	The results of the laboratory analysis undertaken in DP (2021) indicated that reported concentrations of lead within the current development boundary were below the adopted assessment criteria. Further testing across the site is also recommended for further site characterisation, particularly targeting areas adjacent to the rail

Source and COPC	Transport Pathway	Receptor	Risk Management Action	
		workers on a school site]	corridor, e.g. the proposed agricultural plot.	
	P3: Surface water run-off* P5: Leaching of contaminants and vertical migration into groundwater*	R5: Surface Water.	A groundwater investigation is no recommended at this stage based on the historical assessment. A groundwate investigation may be recommended at a late stage depending on the results of the so sample assessment.	
	P4: Lateral migration of groundwater providing base flow to water bodies* P5: Leaching of contaminants and vertical migration into groundwater*	R4: Adjacent site users [students, teachers and other associated workers on a school site, recreational, students, school workers and residents] R6: Groundwater		
	P6: Contact with terrestrial ecology*	R7: Terrestrial ecology		

Note: *Pathway only refers to lead and PCB for S2.

8. Sampling and Analysis Quality Plan

8.1 Data Quality Objectives

The DSI was devised with reference to the SAQP (DP, 2021a) and the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The DQO process presented in the SAQP (DP, 2021a) is outlined in Appendix C.

8.2 Soil Sampling Rationale

Based on the CSM and data quality objectives (DQO) the following sampling rationale was adopted.

A systematic sampling strategy based on the NSW EPA *Contaminated Sites, Sampling Design Guidelines* (NSW EPA, 1995) to determine borehole locations which was adapted based on areas of access. Borehole locations are shown on Drawings 2 and 3, in Appendix A.

Due to the exclusion of the railway forecourt area, the site area was reduced to approximately 2.92 ha. NSW EPA (1995) recommends a minimum of 40 sampling points for a site of 2.92 ha for site characterisation. DP had already completed 12 boreholes (BH01-T, BH02-T and BH01 – BH10) as part of the PSI and 52 boreholes (Bores 101 – 152) during this DSI which equates to 64 boreholes in total

across the site. Therefore, DP considers that this sampling density is appropriate to investigate the presence of gross contamination at the site, based on site accessibility.

It should be noted that Bores 101 – 152 could not be drilled in the building footprints of the Bungendore Community Centre and QPRC building or within the Bungendore Swimming Pool area due to access constraints.

Soil samples were collected from each borehole at depths of approximately 0.1 m, 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination.

The general sampling methods are described in the field work methodology, included in Appendix D.

9. Site Assessment Criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 7) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic low-density residential space with **garden/soil access** (including primary schools/childcare centres) land use scenario. A conservative approach has been adopted due to the proposed agricultural plot of land that is planned to be located within the northern portion of the site (**garden/soil access**). NSW waste classification criteria (WCC) has also been included. The derivation of the SAC and WCC are included in Appendix E and the adopted SAC and WCC are listed on the summary analytical results tables in Appendix G.

10.Results

10.1 Field Work Methods

The field work comprised the drilling of 52 boreholes (Bores 101 to 152) using either a CAT 304C CR or Kubota KX033-4 mini-excavator and a Ryobi hand-held power auger at the locations shown on Drawings 2 and 3, Appendix A. The boreholes were drilled through overburden soils and upper weathered rock (where encountered) or to refusal with 200 mm diameter solid flight augers (on the excavator) or 75 mm diameter solid flight augers (hand-held power auger). Bores 101 - 109, 111 - 123, 125 - 141, 143, 149 and 150 were drilled to the limit of investigation depths of 1.0 - 2.0 m. Bore 110 was terminated at 0.6 m due to slow progress in weathered siltstone rock and Bores 124, 142, 144 - 148, 151 and 152 were drilled to refusal depths of 0.5 m to 0.9 m.

The approximate test location coordinates provided on each borehole log were determined on site using a hand-held GPS which is accurate only to approximately 3 - 5 m. The surface levels shown on the borehole logs to Australian Height Datum (AHD) and coordinates to Map Grid of Australia (MGA, Zone 55) were interpolated determined using the provided survey drawings and as such, are approximate only and not to be relied on.

10.2 Field Work Results

The boreholes were logged on-site by two environmental scientists. Subsurface conditions encountered are given in the borehole logs in Appendix I, which should be read in conjunction with the notes defining classification methods and descriptive terms.

The succession of strata is broadly summarised below:

- **TOPSOIL FILL:** generally low to medium plasticity silty and sandy clay with a various mixture of rootlets and gravel in all boreholes except for Bore 101, 114, 116 and 131 to depths of between 0.15 m to 0.4 m;
- FILL: generally low to high plasticity clayey soils with varying amounts of silt, sand, gravel and trace cobbles and medium dense gravelly/sandy soils in Bores 101 109, 115, 118, 126 and 131 from the ground surface to depths of 1.3 m and 0.15 to 1.8 m;
- NATURAL TOPSOIL: low plasticity silty clay with rootlets and trace sand in Bore 114 to a depth of 0.2 m;
- NATURAL CLAY: generally low to high plasticity clayey residual, extremely weathered siltstone, alluvial and colluvial soils with varying amounts of silt, sand and gravel in all bores from depths of 0.15 m to 1.8 m, refusal depths of 0.5 m to 0.9 m (hand-held power auger) and to the limit of investigation depths of 1.0 m to 2.0 m; and
- **BEDROCK:** variably very low to medium strength, highly to moderately weathered siltstone in Bores 110, 111, 113, 116, 121, 122, 125, 129, 133 135 from depths of 0.3 m to the limit of investigation or slow progress depths of 0.6 m to 1.2 m. Very low strength and highly weathered sandstone was observed in Bore 123 at a depth of 0.8 m to the limit of investigation depth of 1.2 m.

There were no other apparent observations of visual or olfactory evidence (e.g. staining, odours, free phase product) to suggest the presence of contamination within the soils or groundwater encountered during this investigation.

There were no other apparent observations of anthropogenic material (e.g. glass, bricks, concrete, asphalt, metal, tiles etc.) to suggest the presence of aesthetic issues or risk for individuals to be injured encountered during this investigation.

No asbestos was observed during the course of the investigation. However, it should be noted that the small footprint of borehole drilling limits the ability to observe potential asbestos in soils and it **cannot** be assumed that there is no asbestos present at the site.

The PID screening indicated that the sub-surface conditions were generally absent of VOC with all recorded values of less than 1 ppm.

No free groundwater was encountered during the drilling and coring of the boreholes. Boreholes were backfilled immediately to avoid trip and fall hazards. DP also notes that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction. It must be noted that due to the topography, sandy nature of the site soils in parts and fractured weathered rock, groundwater seepages must be expected following periods of rainfall.

10.3 Laboratory Analytical Results

The results of laboratory analysis are summarised in the following tables in Appendix G:

- Table G1: Summary of Results of Soil Analysis (Metals, TRH, BTEX and PAH);
- Table G2: Summary of Results of Water Analysis (OPP/OCP, phenols, PCB and asbestos);
- Table G3: Summary of Waste Classification Assessment;
- Table G4: Summary of TCLP Results; and
- Tables QA1 QA5: QA/QC Results.

The laboratory certificates of analysis together with the chain of custody and sample receipt information are provided in Appendix H.

11.Discussion

11.1 Soils

Analytical results of soil samples were all within the adopted health-based (i.e. HIL-A/HSL-A/B) and ecological (i.e. EIL/ESL) criteria, and management limits for low-density residential space with **garden/soil access** land use scenario.

All soil results for TRH, BTEX, PAH, OCP, OPP and PCB were below the laboratory's practical quantitation limit (PQL). All soil results for metals were above the PQL with the exception of cadmium, mercury and a number of arsenic results (see Table G1), but below the adopted screening criteria.

11.2 Preliminary In-Situ Waste Classification

The following Table 4 presents the results of the six-step procedure outlined in NSW EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill (including topsoil fill (surface soils)) at the site, which do not meet the definition of VENM. It should be noted that the preliminary in-situ waste classification can only applied to the site boundary shown in Drawing 1 and depth of the sampling in this DSI.

Step	Comments	Rationale
1. Is the waste special waste?	No	No asbestos-containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes. Asbestos was not detected by the analytical laboratory.
2. Is the waste liquid waste?	No	The fill comprised a soil matrix.

Table 4: Six Step Classification Procedure

Step	Comments	Rationale
3. Is the waste "pre-classified"?	No	The fill is not pre-classified with reference to NSW EPA (2014).
		The natural material, if classified as VENM, is pre-classified as General Solid Waste (non-putrescible).
4. Does the waste possess hazardous waste characteristics?	No	The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.
5. Determining a wastes classification using chemical assessment	Conducted	Refer to Tables G3 and G4 (Appendix G).
6. Is the waste putrescible or non-putrescible?	Non- putrescible	The fill does not contain materials considered to be putrescible ^a .

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (NSW EPA, 2014).

As shown in the attached Tables G3 and G4 (Appendix G), reported concentrations of metals, TRH, BTEX, PAH, OCP, OPP, PCB and phenols were below the CT1 criteria for General Solid Waste (non-putrescible) except for nickel in samples Bore 112/1.0 m at 43 mg/kg and Bore 131/0.1 m at 42 mg/kg. As a result, the two samples were submitted for leachability (TCLP) testing for nickel. The results of the TCLP analysis indicated that the reported concentration of nickel in leachate resulting from TCLP was below the general solid waste criteria (non-putrescible) as defined in NSW EPA (2014).

Table 5: Preliminary In-Situ Waste Classification Summary

Item	Description
Based on the observations at the time of sampling and the reported analytical results, the fill described as:	Predominantly sandy and silty CLAY TOPSOIL FILL and sandy and silty CLAY FILL and some clayey SAND FILL and sandy GRAVEL FILL
Within the area subject to classification as shown on Drawings 1 – 3, is classified as:	General Solid Waste

The following Table 6 presents the results of the assessment of natural soils and bedrock at the site with reference to the VENM definition in the POEO Act and the EPA¹ website.

¹ <u>https://www.epa.nsw.gov.au/your-environment/waste/classifying-waste/virgin-excavated-natural-material</u>

Table 6: VENM Classification Procedure

Item	Comments	Rationale
	Yes	Natural materials logged in the bore holes as silty clay, sandy clay, siltstone and sandstone. These materials underlie the fill at the site.
1. Is the material natural?		Depth of fill in the northern portion of the site (Bores $101 - 115$) ranges from 0.15 m to 1.8 m with an average fill depth of 0.9 m.
		Depth of fill for the reaming parts of the site (Bores 116 – 152) ranges from 0.15 m to 1.2 m with an average fill depth of 0.25 m.
 Is the material impacted by manufactured chemicals or 	-	There were no visual or olfactory indicators of chemical contamination of the materials in the boreholes.
process residues?		Concentrations of contaminants were considered to be typical of background concentrations (Table G1, Appendix G).
3. Are the materials acid sulfate soils?	No	Refer to Section 5.4
4. Are there current or previous land uses that have (or may have) contaminated the materials?	No	Previous land uses may have impacted on surface soils overlying the materials. Low chemical concentrations indicate no likely impact on the natural materials.

Based on the natural material observed from the boreholes and chemical analysis of select samples, the material underlying the fill could also be classified as VENM. It should be noted that a VENM classification would be voided should the natural material be mixed with any fill or potential contaminants

Table 7: VENM Classification Summary

Item	Description
Based on the outcomes presented in Table 6, the natural soils and bedrock that underlie the fill are described as:	Silty CLAY, sandy CLAY, gravelly CLAY , minor clayey GRAVEL, SILTSTONE and minor SANDSTONE
Within the area subject to classification as shown on Drawings 1 – 3, is classified as:	VENM

If any materials are encountered that are different to those sampled and tested or exhibit signs of potential contamination (e.g.: anthropogenic inclusions, staining or odours) this preliminary in-situ waste classification does not apply and the advice of a qualified environmental consultant should be sought.

If during excavation the natural in-situ soil is found to contain possible signs of contamination or is crosscontaminated with any non-VENM materials the excavated natural soil cannot be classified as VENM. In this regard, it is also recommended that care should be taken during the bulk excavation of the VENM to prevent cross contamination between the VENM and non-VENM materials.

Fill material that is proposed to be disposed off-site should be stockpiled first, have the volume measured by a qualified surveyor and a suitably qualified environmental consultant should assess the stockpile to evaluate that the material is consistent with the material that was observed within this investigation. It should be noted that further testing may be warranted once material is excavated and stockpiled. VENM should not be stockpiled or processed in anyway. A site for the use of the VENM should be identified prior to commencement of site excavations and once commenced, the excavated VENM should be transported directly to the reuse site.

Both the receiving site and the site disposing of the material should satisfy the requirements of the licence before disposal of the material is undertaken. Note that appropriate prior arrangement with the receiving site/relevant authorities should be obtained prior to the disposal of any material off site. The receiving site should check to ensure that the material received matches the description provided in this report and contains no cross contamination. The handling, transport and disposal of the materials should be conducted in accordance with regulatory and statutory requirements. DP does not accept liability for the unlawful disposal of waste materials from any site. DP accepts no responsibility for the material tracking, loading, management, transport or disposal of waste from the site.

11.3 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA/QC) results are included in Appendix I. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

12. Revised Conceptual Site Model

The data collected for this DSI has generally confirmed that certain potential contaminant sources outlined in the CSM outlined in Section 7 pose a potentially complete pathway to the identified receptor(s) whilst others do not. No other sources of contamination have been identified as a result of the testing results. This is summarised in Table 8.

Source and COPC	Transport Pathway	Receptor	Risk Management Action
S1: Fill, Metals, TRH, BTEX, PAH, OCP, OPP, PCB, Phenols and asbestos	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	 R1: Current users [general public, community workers and council workers] R2: Future construction and maintenance workers 	The results of the laboratory analysis indicated that reported concentrations of contaminants of concern were below the adopted assessment criteria or not detected (asbestos). Groundwater testing has not been undertaken as part of this DSI, however, the results of the subsurface
		R3: End users [students, teachers	investigation and laboratory analysis indicate an absence of gross contamination within the soil

Table 8: Updated Summary of Potentially Complete Exposure Pathways

Source and COPC	Transport Pathway	Receptor	Risk Management Action
		and other associated workers on a school site]	encountered. Therefore, the risk to groundwater and surface water is considered to be low.
	P2: Inhalation of dust and/or vapours	R4: Adjacent site users [students, teachers and other associated workers on a school site, recreational, students, school workers and residents].	From a contamination perspective, it is considered that the fill material would be suitable for reuse at the site. A construction environmental management plan (CEMP) is recommended to be prepared and implemented during potential future site works, including an unexpected finds protocol (UFP) and asbestos finds protocol if contamination is suspected (i.e. staining of soil and odours, suspected asbestos
	P3: Surface water run-off P5: Lateral migration of groundwater providing base flow to water bodies	R5: Surface Water	In addition, should fill material require disposal off-site further assessment would be required.
	P4: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	
	P6: Contact with terrestrial ecology	R7: terrestrial ecology	
		R1: Current users [general public, community workers and council workers]	The results of the laboratory analysis indicated that reported concentrations of contaminants of concern were below the adopted assessment criteria or not detected (asbestos).
S2: Current and former buildings, asbestos, SMF, lead (in paint) and PCB	P1: Ingestion and dermal contact P2: Inhalation of dust	R2: Construction and maintenance workers R3: End users [students, teachers and other associated workers on a school site]	DP recommends a HAZMAT survey is conducted for the existing structures that are proposed to be demolished (swimming pool structures and community centre). Potential residual HBM may also be present across the site where structures have been demolished and/or off-cuts may be present from historical construction.
	P3: Surface water run-off*	R5: Surface Water.	Should HBM be present in structures that are planned to be demolished, a validation assessment is also

Source and COPC	Transport Pathway	Receptor	Risk Management Action
	P5: Leaching of contaminants and vertical migration into groundwater*		recommended within the soil of the building footprints once a current structure has been demolished. The recommended CEMP for future works should
	P4: Lateral migration of groundwater providing base flow to water bodies* P5: Leaching of contaminants and vertical migration into groundwater*	R4: Adjacent site users [students, teachers and other associated workers on a school site, recreational, students, school workers and residents] R6: Groundwater	include an asbestos/HBM finds protocol to address an potential contaminants of concern associated with hazardous building materials (including underground services). In addition, should fill material impacted by HBM require off-site disposal, further assessment would be required.
	P6: Contact with terrestrial ecology*	R7: Terrestrial ecology	
S3: Railway corridor land, Metals, TRH, BTEX, PAH, OCP, OPP, PCB, Phenols and asbestos	P1: Ingestion and dermal contact P2: Inhalation of dust	 R1: Current users [general public, community workers and council workers] R2: Construction and maintenance workers R3: End users [students, teachers and other associated workers on a school site] 	Whilst reported concentrations of lead above the HIL were reported within the rail corridor and Bungendore Rail Station adjacent to the east and south of the site, respectively (ERM 2022, and 2022a), the results of the laboratory analysis indicated that reported concentrations of lead were below the adopted assessment criteria within the proposed agricultural plot and areas of the site immediately adjacent to the rail corridor (e.g. boreholes BH131 to BH139). DP therefore considers that on the basis of the current investigation, lead contamination identified in the railway corridor (ERM, 2022 and 2022a), is not impacting the site. DP considers that the sampling density undertaken in the areas adjacent to the rail corridor meets the minimum sampling density requirements of the Sampling Design Guidelines (NSW EPA, 1995) From a contamination perspective, DP considers the site
	P3: Surface water run-off* P5: Leaching of contaminants and vertical migration into groundwater*	R5: Surface Water.	A construction environmental management plan (CEMP) is recommended to be prepared and implemented during potential future site works, including an unexpected finds protocol (UFP) and asbestos finds protocol if contamination is suspected

Source and COPC	Transport Pathway	Receptor	Risk Management Action
	P4: Lateral migration of groundwater providing base flow to water bodies* P5: Leaching of contaminants and vertical migration into groundwater* P6: Contact with terrestrial ecology*	R4: Adjacent site users [students, teachers and other associated workers on a school site, recreational, students, school workers and residents] R6: Groundwater R7: Terrestrial ecology	(i.e. staining of soil and odours, suspected asbestos containing material (ACM) fragments etc.).

Note: *Pathway only refers to lead and PCB for S2.

13. Conclusions and Recommendations

Areas that may be impacted by potential contamination were identified based on the available desktop site information, a site walkover, intrusive investigation and laboratory analysis results of selected samples. Based on the findings of the assessment, the potential for gross chemical contamination to be present within the site is considered to be low.

All soil results for TRH, BTEX, PAH, OCP, OPP, PCB and phenols, were below the laboratory's practical quantitation limit (PQL). All soil results for metals were above the PQL but below the SAC with the exception of cadmium, mercury and arsenic in samples discussed in Section 11, were below the PQL.

The results of the soil contaminant testing were also compared to NSW waste classification criteria in order to provide a preliminary in-situ waste classification for the material that is understood to be excavated and disposed off-site during construction. Concentrations of metals (including the nickel in Bore 112/1.0 m and Bore 131/0.1 m with TCLP testing), TRH, BTEX, PAH, OCP, OPP, PCB and phenols were below the CT1 criteria for General Solid Waste (non-putrescible). Therefore, the material will likely be classified as General Solid Waste (non-putrescible).

Based on the natural material observed from the boreholes and chemical analysis of select samples, the natural material underlying the fill could also be classified as VENM. It should be noted that a VENM classification would be no longer be acceptable should the VENM be mixed with any fill or other potential contaminants.

Based on the results of the investigation, it is considered that the site is suitable, from a contamination perspective, for the proposed development at the site. It is also considered that the fill material is suitable for reuse (from a contamination perspective) at the site with reference to the following recommendations before and during any future development works:

 A Construction Environment Management Plan (CEMP) should also be prepared before future development works including an 'unexpected finds protocol' and asbestos finds protocol

(including underground services that may contain ACM) and implemented during the works (i.e. hydrocarbon staining and/odours observed during works, suspected ACM fragments of asbestos fibres);

- Where practicable, anthropogenic materials should be removed from the fill material and disposed off-site during the construction phase at the site;
- A detailed HAZMAT survey will need to be undertaken for existing structures before any demolition or refurbishment works can occur. The buildings will have to be vacated completely before any detailed HAZMAT surveys can be undertaken and it is understood that this can only happen once the Department of Education receive ownership of the site. Future site works (including civil works) should only be undertaken once a detailed HAZMAT survey has been completed. It is also recommended that if HBM are found to be present in the structures, a validation assessment within the soils of the structure footprints should be undertaken once demolition works have been completed;
- Should suspected asbestos be encountered at the site, the affected area should be fenced off and assessed by an NSW licensed asbestos assessor; and
- Should any fill material be required to be disposed off-site, the material must be stockpiled, assessed in accordance with NSW EPA Waste Classification Guidelines Part 1 Classifying Waste (2014) and assigned a formal waste classification prior to off-site disposal.

14. References

- Bureau of Mineral Resources (1992), 'Geology of Canberra Geological Series Sheet 8727, 1:100 000 scale map', dated 1992.
- Douglas Partners Pty Ltd (2019), Preliminary Site Investigation (Contamination), Proposed Supported Housing, 4 6 Majara Street, Bungendore, dated October 2019.
- Douglas Partners Pty Ltd (2020), *Targeted Detailed Site Investigation (Contamination), Proposed Supported Housing, 4 6 Majara Street, Bungendore,* dated June 2020.
- Douglas Partners Pty Ltd (2021), Preliminary Site Investigation with Limited Sampling (Contamination), New High School in Bungendore, Majara Street, Bungendore, dated September 2021.
- Douglas Partners Pty Ltd (2021a), Sampling Analysis Quality Plan, New High School in Bungendore, Majara Street, Bungendore, dated October 2021.
- Environmental Resource Management Australia Pty Ltd (2022), *Preliminary Site Investigation, Bungendore Rail Corridor*, dated March 2022.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.
- NSW EPA (1995), 'Contaminated Sites Sampling Design Guidelines', dated September 1995.
- NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

15. Limitations

Douglas Partners (DP) has prepared this report for this project at Majara Street, Bungendore in accordance with DP's proposal 202107.04.P.001.Rev2 dated 23 September 2021 and acceptance received from Dean Argiropoulos Ltd dated 29 September 2021. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Hindmarsh Construction Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

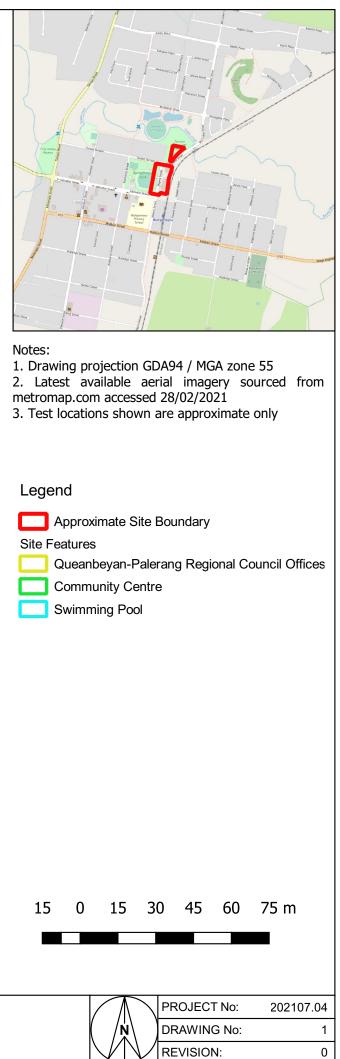
DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

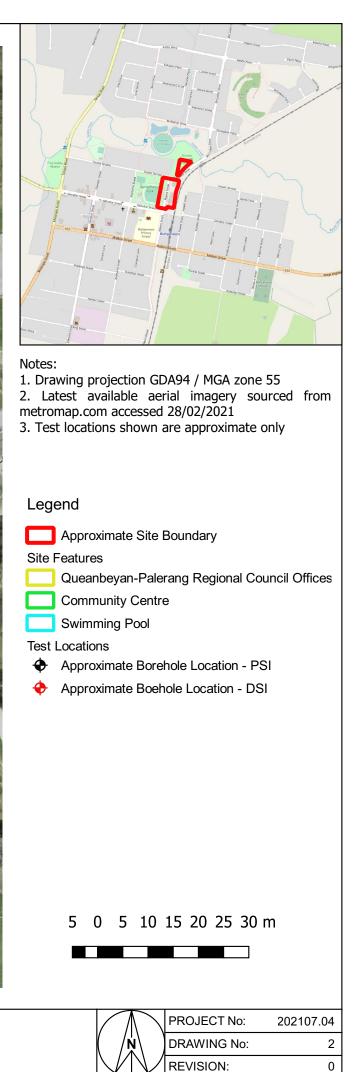
This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

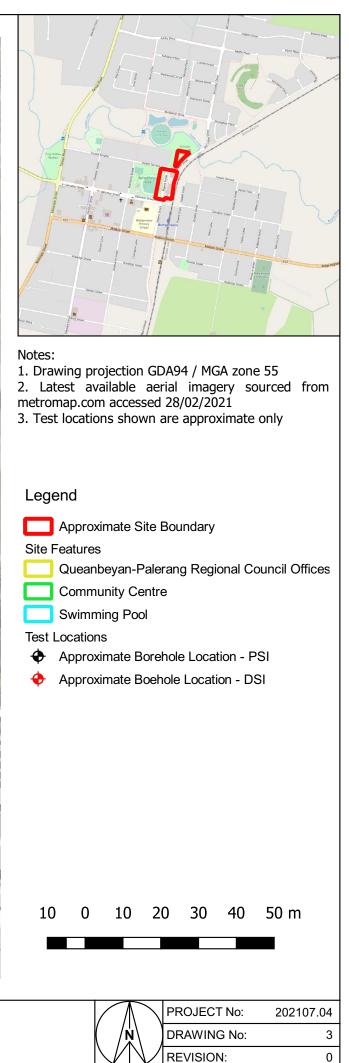
Douglas Partners Pty Ltd


Appendix A

Drawings 1 to 3

(D	Doug	7	as Pa		rtners Groundwater
	Geotechnics	1	Environment	I	Groundwater


CLIENT: Hindmarsh Constru	uctions Pty Ltd	TITLE:	Site Location and Site Layout Plan
OFFICE: Canberra	DRAWN BY: PJS		New High School
SCALE: 1:1500 @ A3	DATE: 12.07.2022		Majara Street, Bungendore


	- Deutreeue
	s Partners
Geotechnics I En	vironment <mark>I</mark> Groundwater

	CLIENT: Hindmarsh Constructions Pty Ltd			Test Location and Site Features Pan - North
5	OFFICE: Canberra	DRAWN BY: PJS		New High School
	SCALE: 1:750 @ A3	DATE: 12.07.2022		Majara Street, Bungendore

Douglas Partners	CLIENT: Hindmarsh Constructions Pty Ltd		TITLE:	Test Location and Site Features Pan - South
	OFFICE: Canberra	DRAWN BY: PJS		New High School
Geotechnics Environment Groundwater	SCALE: 1:1000 @ A3	DATE: 12.07.2022		Majara Street, Bungendore

Appendix B

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix C

Data Quality Objectives

Appendix C Data Quality Objectives (DQO) Majara Street, Bungendore

C1.0 Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the 'NEPM'] (NEPC, 2013).

Step	Summary
1: State the problem	The objective of the investigation is to investigate the contamination status of the site with respect to the proposed land use. The investigation is being undertaken as there will be a change in land use. The site will be developed from a mixture of recreational, transport and special infrastructure land uses to an educational campus (secondary) land use. The report is being conducted as the land is to be redeveloped. The requirements of the regulator, Queanbeyan-Palerang Regional Council, will also be considered by consulting their Development Control Plan (DCP), Local Environment Plan (LEP), Secretary's Environmental Assessment Requirements (SEARs) and any other requirements based on our recent experience with Council on similar sites.
	A preliminary conceptual site model (CSM) was prepared as part of DP (2021). This has been revised to reflect the findings of the limited intrusive investigation.
	The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager and Field Staff.
2: Identify the decisions / goal of the	The site history has identified possible contaminating previous uses which are described in the preliminary CSM (Section 7). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Section 9. The decision is to establish whether or not the results fall below the SAC or whether or not
study	the 95% upper confidence limit of the sample population falls below the SAC of whether of hot an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and/or remediation will be derived.
3: Identify the information inputs	Inputs to the investigation will be the results of analysis of samples to measure the concentration of COPC identified in the preliminary CSM (Section 7) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the COPC are detailed in Section 9. A photoionization detector (PID) will be used on-site to screen soils for VOC. PID readings
	will be used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site

Step	Summary
	history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken.
	The decision rule is to compare all analytical results with SAC (Section 9, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.
5. Develop the	Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).
5: Develop the analytical approach (or decision rule)	Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (Standards Australia 2005, NEPC 2013). A field and laboratory quality assurance assessment will be included in the DSI report.
	Baseline condition: Contaminants at the site and/or statistical analysis of data (in line with NEPC (2013)) exceed human health and environmental SAC and poses a potentially unacceptable risk to receptors (null hypothesis).
	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.
6: Specify the performance	Uncertainty that may exist due to the above potential decision errors shall be mitigated as follows:
or acceptance criteria	• As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) may be applied, i.e.: 95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95% UCL shall subsequently be screened against the corresponding SAC.
	• The statistical assessment will only be able to be applied to certain data sets, such as those obtained via systematic sampling. Identification of areas for targeted sampling will be via professional judgement and errors will not be able to have a probability assigned to them.
7: Optimise the design for obtaining data	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.
0.1.1	Further details regarding the proposed sampling plan are presented in Section 8.

Page 3 of 3

C2.0 References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix D

Field Work Methodology

Appendix D Field Work Methodology Majara Street, Bungendore

D1.0 Guidelines

The following key guidelines were consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the 'NEPM'] (NEPC, 2013).

D2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the solid flight auger of the mini excavator or electric post hole digger;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID screening;
- Collect ~40 g to 50 g samples in zip-lock bags for asbestos (presence / absence) analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Collect 10% replicate samples for quality control (QC) purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

D2.1 Field Testing

Field testing is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

PID Field Test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and

• Screen using the PID.

D3.0 References

ASTM D7663-12. (2018). *Standard Practice for Active Soil Gas Sampling in the Vadose Zone for Vapour Intrusion Evaluations*. 2018 e1 (editorial change to 2012 revision): American Society for Testing and Materials.

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2020). Assessment and Management of Hazardous Ground Gases. NSW Environment Protection Authority.

USEPA. (1999a). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition: United States Environment Protection Agency.

USEPA. (1999b). Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) In Air Collected in Specially-Prepared Canisters and Analysed By Gas Chromatography Mass Spectrometry (GC/MS). United States Environment Protection Agency.

Douglas Partners Pty Ltd

Appendix E

Site Assessment Criteria

Appendix E Site Assessment Criteria Majara Street, Bungendore

E1.0 Introduction

E1.1 Guidelines

The following key guidelines were consulted in deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the 'NEPM'] (NEPC, 2013); and
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).

E1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: High School with garden access (agricultural plot).
 - Corresponding to land use category 'A', residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry)), also includes children's day care centres, preschools and primary schools; and
 - o It should be noted that even though a high school and associated car parking comprise the proposed development, the most conservative land use criteria HIL-A has been adopted for the entire site.
- Soil type: clay.

E2.0 Soils

E2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are presented in Table 1 and Table 2.

Table 1: Health Investigation Levels (mg/kg)

Contaminant	HIL-A	
Metals		
Arsenic	100	
Cadmium	20	
Chromium (VI)	100	
Copper	6000	
Lead	300	
Mercury (inorganic)	40	
Nickel	400	
Zinc	7400	
РАН		
B(a)P TEQ	3	
Total PAH	300	
Phenols		
Phenol	3000	
OCP		
DDT+DDE+DDD	240	
Aldrin and dieldrin	6	
Chlordane	50	
Endosulfan	270	
Endrin	10	
Heptachlor	6	
НСВ	10	
Methoxychlor	300	
OPP		
Chlorpyrifos	160	
РСВ		
PCB	1	

Table 2: Health Screening Levels (mg/kg)

Contaminant	HSL-A&B	HSL-A&B	HSL-A&B	HSL-A&B
CLAY	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+

Contaminant	HSL-A&B	HSL-A&B	HSL-A&B	HSL-A&B
Benzene	0.7	1	2	3
Toluene	480	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	110	310	NL	NL
Naphthalene	5	NL	NL	NL
TRH F1	50	90	150	290
TRH F2	280	NL	NL	NL

Notes: TRH F1 is TRH C6-C10 minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are presented in Table 3.

Contaminant	DC HSL-A	DC HSL-IMW
Benzene	100	1100
Toluene	14 000	120 000
Ethylbenzene	4500	85 000
Xylenes	12 000	130 000
Naphthalene	1400	29 000
TRH F1	4400	82 000
TRH F2	3300	62 000
TRH F3	4500	85 000
TRH F4	6300	12 000

Table 3: Health Screening Levels for Direct Contact (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C₁₀-C₁₆ minus naphthalene IMW intrusive maintenance worker

E2.2 Asbestos in Soil

Based on the CSM and/or current site access limitations, a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore,

the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS:4964) has been adopted for this investigation / assessment as an initial screen. It is noted that this corresponds to the health screening level for residential with garden land use setting (HSL-A) for bonded ACM of 0.01% provided in the NEPM.

E2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet in the NEPM toolbox website are shown in Table 5, with inputs into their derivation shown in Table 4.

Rationale Variable Input Age of contaminants "Aged" (>2 years) Site has been subject to urban development since 1884 pН 6.9 Laboratory Analysis CEC 6.7 cmolc/kg Laboratory Analysis **Clay Content** 27.5 Laboratory Analysis Traffic volumes Town established in the 1800's, urban High environment including road pavements State / Territory NSW Site is within NSW

 Table 4: Inputs to the Derivation of the Ecological Investigation Levels

Table 5:	Ecological	Investigation	Levels (mg/kg)
----------	------------	---------------	----------------

Contaminant	EIL-A-B-C
Metals	
Arsenic	100
Copper	150
Nickel	70
Chromium III	670
Lead	1100
Zinc	410
РАН	
Naphthalene	170
ОСР	
DDT	180

E2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 6.

Contaminant	Soil Type	EIL-A-B-C
Benzene	Fine	10
Toluene	Fine	65
Ethylbenzene	Fine	40
Xylenes	Fine	1.6
TRH F1	Coarse/ Fine	125*
TRH F2	Coarse/ Fine	25*
TRH F3	Fine	-
TRH F4	Fine	-
B(a)P	Fine	0.7

Table 6: Ecological Screening Levels (mg/kg)

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

E2.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g.: penetration of, or damage to, in-ground services.

The adopted management limits are in Table 7.

Contaminant	Soil Type	ML-A-B-C
TRH F1	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	3500
TRH F4	Fine	10 000

Table 7: Management Limits (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ including BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

E2.6 Preliminary Waste Classification Criteria

It is understood that during construction, it is likely that there will be material that will be in surplus and potentially be required to be removed off-site.

For disposal of the material to a suitably licensed waste disposal facility in NSW, classification of the soils should be undertaken with reference to the reference to the NSW EPA *Waste Classification Guidelines, Part 1: Classifying Waste* (NSW EPA, 2014). The waste classification criteria for general waste are shown in Table 8.

Analyte	Maximum values of specific contamination concentration (SCC) for classification without TCLP	Maximum values for leachable concentration (TCLP) and total concentration (SCC) when used together		
	General Solid Waste CT1 (mg/kg)	Leachable concentration (TCLP1) (mg/L)	Total concentration (SCC1) (mg/kg)	
Arsenic	100	5.0	500	
Cadmium	20	1.0	100	
Chromium	Chromium 100		1900	
Lead	Lead 100		1500	
Mercury	Mercury 4		50	
Nickel	Nickel 40		1050	
Benzene	Benzene 10		18	
Toluene	288	1.44	518	
Ethylbenzene	600	14.4	1080	

Table 8: Waste Classification of General Solid Waste

Analyte	Maximum values of specific contamination concentration (SCC) for classification without TCLP	Maximum values for leachable concentra (TCLP) and total concentration (SCC) wi	
	General Solid Waste CT1 (mg/kg)	Leachable concentration (TCLP1) (mg/L)	Total concentration (SCC1) (mg/kg)
Xylene	1000	50	1800
TRH (C6-C9)	650	NA	650
TRH (C ₁₀ -C ₃₆)	10000	NA	10000
Benzo(a)pyrene	0.8	0.004	10
Total PAHs	200	NC	200
Phenol	288	14.4	518
Total PCBs	<50	NC	<50
Scheduled Chemicals	<50	NA	<50

E3.0 References

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater*. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2014). Waste Classification Guidelines, Part 1: Classifying Waste. NSW Environment Protection Authority.

Douglas Partners Pty Ltd

Appendix F

Explanatory Notes and Borehole Logs

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)		
Boulder	>200		
Cobble	63 - 200		
Gravel	2.36 - 63		
Sand	0.075 - 2.36		
Silt	0.002 - 0.075		
Clay	<0.002		

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

Term	Proportion of fines	Example		
And	Specify	Sand (70%) and Clay (30%)		
Adjective	>12%	Clayey Sand		
With	5 - 12%	Sand with clay		
Trace	0 - 5%	Sand with trace		
		clay		

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example	
	of coarser		
	fraction		
And	Specify	Sand (60%) and	
		Gravel (40%)	
Adjective	>30%	Gravelly Sand	
With	15 - 30%	Sand with gravel	
Trace	0 - 15%	Sand with trace	
		gravel	

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test
- V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

Bedding plane
Clay seam
Cleavage
Crushed zone
Decomposed seam
Fault
Joint
Lamination
Parting
Sheared Zone
Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

ari

sv sub-vertical

Coating or Infilling Term

clean
coating
healed
infilled
stained
tight
veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

A. A. A. Z	

Asphalt Road base

Concrete

Filling

Soils

Topsoil Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: 692.50 AHD BORE No: 101 **EASTING:** 722628 **NORTHING:** 6096276 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

								H. 90 /		
	~		Description	ic _		Sam		& In Situ Testing	<u>۲</u>	Well
RL	Dep (m	oth ו)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	-	0.3	FILL/Sandy CLAY (CL/CI): low to medium plasticity, brown, fine to coarse grained sand, with rootlets, trace fine gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.1</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.1		PID < 1ppm		-
	-	0.3	FILL/Silty CLAY (CL/CI): low to medium plasticity, dark brown, with fine to coarse grained sand, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff, FILL</pl,>		E	0.5		PID < 1ppm		-
	- - 1 -	0.8	FILL/Silty CLAY (CI/CH): medium to high plasticity, brown/dark brown, with fine to coarse grained sand, fine to coarse angular gravel, moist to dry, estimated very stiff, FILL		E	1.0		PID < 1ppm		- 1
691	-	1.3 -	Silty CLAY (CL): low plasticity, dark brown, with fine grained sand, moist to dry, w <pl, estimated="" stiff,<br="" very="">alluvial</pl,>		Е	1.6		PID < 1ppm		-
-	-	1.8 -	Silty CLAY (CL/CI): low to medium plasticity, yellow-brown, with fine grained sand, moist, w~PL, estimated stiff, alluvial							
	- 2	2.0	Bore discontinued at 2.0m -limit of investigation							-

RIG: CAT 304C CR

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

DRILLER: BE

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)		Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dougiuo i ui tiioio
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Or start date I Frederic and I Oregon deside
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
						-	

SURFACE LEVEL: 692.50 AHD BORE No: 102 **EASTING:** 722650 **NORTHING:** 6096273 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

							1: 90°/		SHEET 1 OF 1	
	Denth	Description	hic		Sam		In Situ Testing	٣	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	0.15 -	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff, TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-	
692		FILL/Silty CLAY (CL/CI): low to medium plasticity, yellow-brown, with fine to coarse grained sand, trace fine to coarse angular gravel, moist, w~PL, estimated stiff to very stiff, FILL		E	0.5		PID < 1ppm			
	- 0.8 - - - 1	FILL/Silty CLAY (CL): low plasticity, brown mottled orange, with fine grained sand, trace fine to coarse angular gravel, wet, w>PL, estimated firm, FILL		E	1.0		PID < 1ppm		-1	
	1.2 -	Silty CLAY (CL): low plasticity, brown, with fine grained sand, moist to dry, w <pl, alluvial<="" estimated="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-	
	1.5 -	Bore discontinued at 1.5m -limit of investigation		—Е—	-1.5-		PID < 1ppm		-	
	-2								-2	

RIG: CAT 304C CR

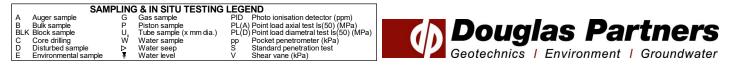
CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore


Proposed New High School In Bungendore

DRILLER: BE 200mm auger

LOGGED: SDG

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 692.00 AHD BORE No: 103 **EASTING:** 722674 **NORTHING:** 6096270 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

	Dent	Description	L		Sam		& In Situ Testing	۲.	Well
R	Depth (m)	of	Graphic Log	e	oth	Sample	Results &	Water	Construction
	()	Strata	Ū	Type	Depth	Sam	Results & Comments	>	Details
	- 0.1	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-
-	- 0.1	FILL/Sandy CLAY (CL/CI): low to medium plasticity, brown, fine to coarse grained sand, with fine to coarse gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" th="" very=""><th></th><th>E</th><th>0.5</th><th></th><th>PID < 1ppm</th><th></th><th>-</th></pl,>		E	0.5		PID < 1ppm		-
691	-	Silty CLAY (CL): low plasticity, dark brown, with fine grained sand, moist to dry, w <pl, estimated="" stiff,<br="" very="">alluvial</pl,>	$ \frac{1}{1} $	E	1.0		PID < 1ppm		-1
	- 1. - - 1.	Silty CLAY (CL): low plasticity, yellow-brown, trace sub-rounded gravel, moist to dry, w <pl, estimated="" very<br="">stiff, alluvial</pl,>							-
	-	Bore discontinued at 1.3m -limit of investigation							
690	-2								-2
								I	I

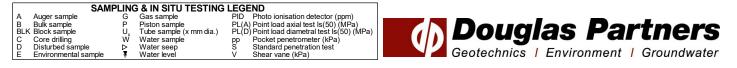
RIG: CAT 304C CR

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 692.75 AHD BORE No: 104 **EASTING:** 722634 **NORTHING:** 6096261 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

				<u> </u>				H. 90 /		
	Donth	<u>٦</u>	Description	hic				& In Situ Testing	2	Well
RL	Depth (m)	n	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0. <i>*</i>	15-	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff, TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-
	-	0.7 —	FILL/Silty CLAY (CL/CI): low to medium plasticity, brown, with fine to coarse grained sand and fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm</td><td></td><td></td></pl,>		E	0.5		PID < 1ppm		
692	- 0 - -1	0.7 –	FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, trace fine angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" very=""><td></td><td>E</td><td>1.0</td><td></td><td>PID < 1ppm</td><td></td><td>-1</td></pl,>		E	1.0		PID < 1ppm		-1
-	- - - 1	1.5 –	Silty CLAY (CI): medium plasticity, dark brown, trace fine							-
691			grained sand, moist, w~PL, stiff, álluvial		E	1.6		PID < 1ppm		
-	- 1 -2 -	1.8 –	Bore discontinued at 1.8m -limit of investigation							-2
-	-									-

RIG: CAT 304C CR

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

DRILLER: BE

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas	Douteono
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environ	nment Groundwater

SURFACE LEVEL: 692.50 AHD BORE No: 105 **EASTING:** 722659 **NORTHING:** 6096256 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

				DIF						
	Donth	Description	hic				& In Situ Testing	эr	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-	- 0.15	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff, TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-	
692	- 0.8	FILL/Silty CLAY (CL/CI): low to medium plasticity, brown, with fine to coarse grained sand, trace fine angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm R101 and RR101</td><td></td><td></td></pl,>		E	0.5		PID < 1ppm R101 and RR101			
	- 0.8 - - -	FILL/Sandy CLAY (CL/CI): low to medium plasticity, brown, fine to coarse grained sand, with fine to coarse sub-rounded to angular gravel, moist to dry, w <pl, estimated very stiff, FILL</pl, 		E	1.0		PID < 1ppm		-1	
691	- 1.5 ⁻ -	Silty CLAY (CI): medium plasticity, dark brown, trace fine grained sand, moist, w~PL, stiff, alluvial		E	1.6		PID < 1ppm		-	
	- 1.8	Bore discontinued at 1.8m -limit of investigation								
	-2								-2	

RIG: CAT 304C CR

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

DRILLER: BE

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas	Douteono
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environ	nment Groundwater

SURFACE LEVEL: 693.00 AHD BORE No: 106 **EASTING:** 722620 **NORTHING:** 6096248 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

Description Sampling & In Situ Testing W 0 of 0 <t< th=""><th>ruction</th></t<>	ruction
Output Description 0.15 TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" topsoil="" very=""> 0.15 FILL/Sandy CLAY (CL/CI): low to medium plasticity, brown, fine to coarse grained sand, trace fine to coarse angular gravel, moist to dry, w<pl, estimated="" fill<="" stiff,="" td="" very=""></pl,></pl,>	
Construction Construction 0 1 0 1 0.15 FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" topsoil="" very=""> 0.15 FILL/Sandy CLAY (CL/CI): low to medium plasticity, brown, fine to coarse grained sand, trace fine to coarse angular gravel, moist to dry, w<pl, estimated="" fill<="" stiff,="" td="" very=""></pl,></pl,>	
 FILL/Sandy CLAY (CL/CI): low to medium plasticity, brown, fine to coarse grained sand, trace fine to coarse angular gravel, moist to dry, w<pl, estimated="" stiff,<br="" very="">FILL</pl,> 	
E 1.0 PID < 1ppm -1	
1.8 Silty CLAY (CL): low plasticity, dark grey, with fine grained sand, moist, w-PL, estimated stiff, alluvial 1.8 Silty CLAY (CL): low plasticity, dark grey, with fine grained sand, moist, w-PL, estimated stiff, alluvial 1.8 Silty CLAY (CL): low plasticity, dark grey, with fine grained sand, moist, w-PL, estimated stiff, alluvial 1.8 Silty CLAY (CL): low plasticity, dark grey, with fine grained sand, moist, w-PL, estimated stiff, alluvial 1.8 Bore discontinued at 2.0m -limit of investigation -	

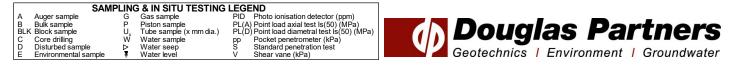
RIG: CAT 304C CR TYPE OF BORING:

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 692.75 AHD BORE No: 107 **EASTING:** 722644 **NORTHING:** 6096244 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

							H. 90 /		SHEET I OF I
	Denth	Description	ji Li		Sam		& In Situ Testing	2	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.15 -	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets and fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff, TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-
	-	FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with fine angular gravel, moist, w~PL, stiff, FILL		E	0.5		PID < 1ppm		
-	- 1 - - - 1.4-	-from 1.0m, fine grained sand		E	1.0		PID < 1ppm		-1
-	- 1.6 -	Silty CLAY (CI): medium plasticity, dark brown, trace fine grained sand, moist, w~PL, stiff, alluvial		E	1.5		PID < 1ppm		-
. 691	-	Bore discontinued at 1.6m -limit of investigation							-
-	-2								-2
-									

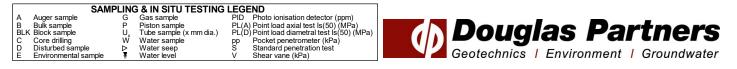
RIG: CAT 304C CR

DRILLER: BE

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 693.00 AHD BORE No: 108 **EASTING:** 722628 **NORTHING:** 6096235 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

								n. 90 /	-	
	D -		Description	- Jic		Sam		& In Situ Testing	2	Well
3 RL	Dep (m	otn 1)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	-	0.2 -	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff, TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-
	-	0.2	FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with silt, trace fine to coarse angular gravel, moist, w~PL, estimated stiff, FILL		E	0.5		PID < 1ppm		-
	-	0.6	FILL/Silty CLAY (CI): medium plasticity, yellow-brown mottled grey, with fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
692	- 1	1.3			E	1.0		PID < 1ppm		-1
	_		Silty CLAY (CL): low plasticity, orange-brown, trace fine grained sand, moist, w~PL, estimated stiff to very stiff, alluvial							-
	- - 2	1.5 -	Bore discontinued at 1.5m -limit of investigation		E	—1.5—		PID < 1ppm		-2
	-									-

RIG: CAT 304C CR

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

DRILLER: BE

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

SA	MPLIN	G & IN SITU TESTIN	G LEG	END]			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_	
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)				Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1			Partners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			19140	
D Disturbed sample	⊳	Water seep	S	Standard penetration test				
E Environmental sample	• ¥	Water level	V	Shear vane (kPa)		deotechr	ncs I Envir	ronment Groundwater
•					-			

SURFACE LEVEL: 692.75 AHD BORE No: 109 **EASTING:** 722655 **NORTHING:** 6096229 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

				1					
	Dent	Description	jų –				& In Situ Testing	ž	Well
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
	` /	Strata	G	Ту	Del	San	Comments	-	Details
-	0.15 -	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets and fine angular gravel, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" topsoil="" very=""><td></td><td>E</td><td>0.1</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.1		PID < 1ppm		-
	-1 -1 -1.1-	FILL/Sandy CLAY (CL/CI): low to medium plasticity, brown, fine to coarse grained sand, with fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" very=""> Silty CLAY (CL): low plasticity, pale brown, with fine grained sand, moist, w~PL, estimated stiff, alluvial</pl,>		E	0.5		PID < 1ppm PID < 1ppm		- 1
	-2	Silty CLAY (CI): medium plasticity, yellow-brown, with fine grained sand, moist to dry, w <pl, estimated="" stiff,<br="" very="">alluvial Bore discontinued at 1.5m -limit of investigation</pl,>		-E	-1.5-		PID < 1ppm		-2
-									-

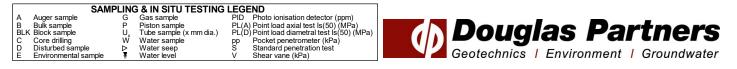
RIG: CAT 304C CR

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 694.50 AHD BORE No: 110 **EASTING:** 722613 **NORTHING:** 6096217 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

							1. 50 /	1			
		Description	. <u>c</u>		Sam		& In Situ Testing		Well		
RL	Depth (m)	of	Graphic Log	e	ţ	ple	Poculte &	Water	Construction		
	(11)	Strata	5	Type	Depth	Sample	Results & Comments	5	Details		
-	- 0.15	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets and fine angular gravel, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<br="" stiff,="" topsoil="" very="">Silty CLAY (CI): medium plasticity, yellow-brown, moist to dry, w<pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.1</td><td><u></u></td><td>PID < 1ppm R103 and RR103</td><td></td><td>-</td></pl,></pl,>		E	0.1	<u></u>	PID < 1ppm R103 and RR103		-		
	- 0.3	dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
-	- 0.3	SILTSTONE: fine grained, red-brown, dry, low to medium strength, highly to moderately weathered, estimated fractured to slightly fractured	· - · · ·						-		
694	-		· _ · ·	Е	0.5		PID < 1ppm		-		
ł	- 0.6	Bore discontinued at 0.6m									
-	-	-slow progress							-		
-	-								-		
-	-								-		
-	-1								-1		
	_								-		
-	-								-		
693	-								-		
	-								-		
-	-								-		
-	-										
-	-										
-	-2								-2		
-	-										
-	-										
-	-										
-	-										
<u> </u>							í		I		

RIG: CAT 304C CR

DRILLER: BE

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: PROJECT:

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

	;	SAMPLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Phot
В	Bulk sample	Р	Piston sample	PL(A)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point
	Core drilling	Ŵ	Water sample	pp	Pock
D E	Disturbed sample	⊳	Water seep	S	Stan
F	Environmental san	nple 📱	Water level	V	Shea

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

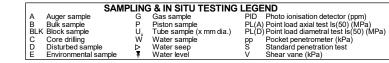
Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 694.25 AHD BORE No: 111 **EASTING:** 722627 **NORTHING:** 6096214 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1


	Dept	h	Description	Graphic Log				& In Situ Testing	e	Well		
RL	(m)		of	Loç	Type	Depth	uple	Results & Comments	Water	Construction		
	. ,		Strata	G	Τy	ð	Sample	Comments	[Details		
-	-	0.2 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand and rootlets, moist to dry, w <pl, estimated very stiff, TOPSOIL FILL</pl, 		E	0.1		PID < 1ppm		-		
694	-	0.2 -	Silty CLAY (CH): high plasticity, pale red-brown, dry to moist, w <pl, estimated="" extremely<br="" hard,="" stiff="" to="" very="">weathered siltstone</pl,>		E	0.5		PID < 1ppm		-		
-	-		SILTSTONE: fine grained, red-brown, dry, low strength, highly weathered, estimated fractured to slightly fractured							-		
	-1 1	1.0	Bore discontinued at 1.0m		E-E-	-1.0-		PID < 1ppm	-	1		
693	-		-limit of investigation							-		
-	-									-		
-	-									-		
-	-2									-2		
692	-									-		

RIG: CAT 304C CR TYPE OF BORING: DRILLER: BE

LOGGED: SDG

CASING: NA

200mm auger WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 695.75 AHD BORE No: 112 **EASTING:** 722609 **NORTHING:** 6096201 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

			DIF			H: 90°/		SHEET 1 OF 1
	Description	jc _		Sam		& In Situ Testing	- .	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
- 0.2 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, dark brown, with rootlets, trace fine grained sand, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
- 0.4 -	Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist, w~PL, estimated stiff, possible alluvial							-
	Silty CLAY (CH): high plasticity, red-brown mottled orange, dry to moist, w <pl, estimated="" hard,="" residual<="" td=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.5		PID < 1ppm		-
- 0.8- - - 1 -	Silty CLAY (CL): low plasticity, pale red-brown, dry to moist, w <pl, estimated="" extremely<br="" hard,="" stiff="" to="" very="">weathered siltstone</pl,>		E	1.0		PID < 1ppm		-1
- 1.2-	Bore discontinued at 1.2m -limit of investigation	<u> </u>						-
694								-
-2								-2
								-

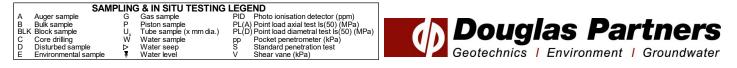
RIG: CAT 304C CR

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 695.25 AHD BORE No: 113 **EASTING:** 722623 **NORTHING:** 6096200 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

						H. 90 /		SHEET 1 OF 1
Dest	Description	jr –		Sam		& In Situ Testing	ř	Well
(m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
0.2			E	0.1		PID < 1ppm		-
	hard, residual							-
	Silty CLAY (CL): low plasticity, pale red-brown, dry to moist, w <pl, estimated="" extremely<br="" hard,="" stiff="" to="" very="">weathered siltstone</pl,>		E	0.5		PID < 1ppm		-
0.7 -	SILTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered, estimated fractured							-
-1 1.0-	Bore discontinued at 1.0m -limit of investigation	<u> </u>	E	-1.0-		————PID < 1ppm———		-
								-
								-
								-
·2								-2
								-
	0.2 - 0.4 - 0.7 - 1.1.0 -	Depth (m) of Strata TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand and rootlets, moist to dry, w <pl, estimated very stiff, TOPSOIL FILL 0.2 Silty CLAY (CI/CH): medium to high plasticity, red-brown motiled grey, dry to moist, w<pl, estimated="" stiff="" to<br="" very="">hard, residual 0.4 Silty CLAY (CL): low plasticity, pale red-brown, dry to moist, w<pl, estimated="" extremely<br="" hard,="" stiff="" to="" very="">weathered siltstone 0.7 SILTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered, estimated fractured 1 1.0 Bore discontinued at 1.0m -limit of investigation</pl,></pl,></pl, 	Depth (m) of Strata TOPSOL FILL/Silty CLAY (CL): low plasticity, brown, with fire grained sand and rootlets, moist to dry, w <pl, estimated very stiff, TOPSOL FILL 0.2 Silty CLAY (CL/H): medium to high plasticity, red-brown motiled grey, dry to moist, w<pl, estimated="" stiff="" to<br="" very="">hard, residual 0.4 Silty CLAY (CL): low plasticity, pale red-brown, dry to moist, w<pl, estimated="" extremely<br="" hard,="" stiff="" to="" very="">weathered siltstone 0.7 SILTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered, estimated fractured 1 1.1</pl,></pl,></pl, 	Depth (m) Description of Strata g g g g g g g g g g g g g g g g g g g	Depth (m) Description of Strata and generation of Strata and generation of generation and generation and generatio	Depth (m) Description of Strata Sampling / g / g / g / g / g / g / g / g / g /	TOPSOIL FILL/Sity CLAY (CL): low plasticity, brown, with fine grained sand and rootlets, moist to dry, w <pl, estimated very stiff, TOPSOIL FILL E 0.1 PID < 1ppm 02 Sity CLAY (CL): medium to high plasticity, red-brown motiled grey, dry to moist, w<pl, estimated="" stiff="" to<br="" very="">hard, residual E 0.1 PID < 1ppm</pl,></pl, 	Depth (m) Description of Strata Strata Sampling & In Situ Testing Second Processor Second Processor

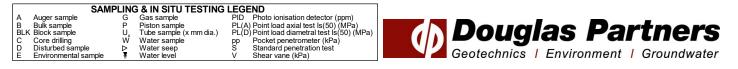
RIG: CAT 304C CR TYPE OF BORING:

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

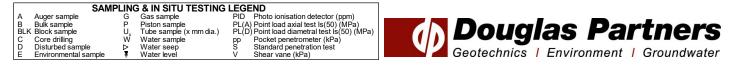
CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 696.00 AHD BORE No: 114 **EASTING:** 722609 **NORTHING:** 6096191 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

Γ			Description	0		Sam	iplina 8	& In Situ Testing		Well
R	Depth	n	Description of	Graphic Log	~				Water	Construction
ľ	(m)		Strata	Gra	Type	Depth	Sample	Results & Comments	Ň	Details
. 696	-		TOPSOIL/Silty CLAY (CL): low plasticity, dark brown, with rootlets, trace fine grained sand, moist, w~PL, estimated stiff, TOPSOIL		E	0.1	Š	PID < 1ppm		
-	6	0.2 -	Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist, w~PL, estimated stiff, possible alluvial							-
-	-		Silty CLAY (CI/CH): medium to high plasticity, yellow-brown, trace fine to coarse grained quartz sand, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.5		PID < 1ppm		-
695	-	9.8 —	Silty CLAY (CL): low plasticity, yellow-brown, moist to dry, w <pl, estimated="" extremely="" siltstone<="" stiff,="" td="" very="" weathered=""><td></td><td>E</td><td>1.0</td><td></td><td>PID < 1ppm</td><td></td><td>-1</td></pl,>		E	1.0		PID < 1ppm		-1
-	- 1. - -	.1-	Bore discontinued at 1.1m -limit of investigation							-
	- - 2									-2
-	-									-


RIG: CAT 304C CR

DRILLER: BE

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 696.00 AHD BORE No: 115 **EASTING:** 722606 **NORTHING:** 6096182 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

Γ			Decemintian			Sam	nplina	& In Situ Testing		\M/all
RL	Dept	h	Description of	Graphic Log	ø				Water	Well Construction
ľ	(m)		Strata	D G G	Type	Depth	Sample	Results & Comments	Š	Details
- 696	-	.15 -	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, fine to coarse grained sand, with rootlets, trace fine to coarse angular gravel, moist to dry, w <pl, estimated="" very<br="">stiff, TOPSOIL FILL FILL/Sandy CLAY (CL): low plasticity, brown, fine to</pl,>		E	0.1		PID < 1ppm		-
-	- 0	0.3 -	coarse grained sand, with silt, trace fine to coarse angular gravel, moist, w~PL, estimated stiff, FILL Silty CLAY (CI): medium plasticity, red-brown mottled							-
-	-	0.8 –	yellow, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.5		PID < 1ppm		-
695	-1	5.0	Gravelly CLAY (CI/CH): medium to high plasticity, red-brown, fine to coarse angular quartz gravel, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td>E</td><td>1.0</td><td></td><td>PID < 1ppm R105 and RR105</td><td></td><td>-1</td></pl,>		E	1.0		PID < 1ppm R105 and RR105		-1
	- 1	1.1 -	Bore discontinued at 1.1m -limit of investigation							-
	- 2									-2

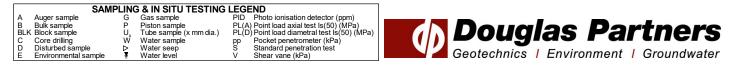
RIG: CAT 304C CR TYPE OF BORING:

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 696.00 AHD BORE No: 116 **EASTING:** 722549 **NORTHING:** 6096190 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

Γ			Description	. <u>u</u>		Sam	npling &	& In Situ Testing		Well
Ч	Dept (m)	th	of	Graphic Log	ec	oth	ald	Results &	Water	Construction
9	()	_	Strata	Ō	Type	Depth	Sample	Results & Comments	>	Details
969	-		Silty CLAY (CL): low plasticity, red-brown, trace fine grained sand, dry to moist, w <pl, estimated="" hard,<br="">possible alluvial</pl,>		E	0.1		PID < 1ppm		-
-	-	0.3 -	Silty CLAY (CL): low plasticity, pale yellow-brown, dry to moist, w <pl, estimated="" extremely="" hard,="" weathered<br="">siltstone</pl,>		E	0.5		PID < 1ppm		
. 695	-	0.0	SILTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered		E	1.0		PID < 1ppm		-1
-		1.2 -	Bore discontinued at 1.2m -limit of investigation	<u> </u>						-
	- 2 - 2 -									-2

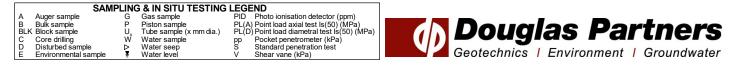
RIG: CAT 304C CR

DRILLER: BE

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 696.00 AHD BORE No: 117 **EASTING:** 722533 **NORTHING:** 6096170 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

		D			Sam	nolina	& In Situ Testing		\A/ !!
	Depth	Description	phic 2g					Water	Well
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Wa	Construction Details
. 696	-	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with rootlets, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1	S	PID < 1ppm		-
-	- 0.2 -	Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist, w>PL, estimated firm to stiff, possible alluvial							-
-	- 0.4 - -	Gravelly CLAY (CI/CH): medium to high plasticity, red-brown, fine to coarse angular quartz gravel, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.5		PID < 1ppm		-
	- 0.7 -	Silty CLAY (CL): low plasticity, yellow-brown, dry to moist, w <pl, estimated="" extremely="" hard,="" siltstone<="" stiff="" td="" to="" very="" weathered=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
695				E	1.0		PID < 1ppm		-1
	- 1.1- - - -	Bore discontinued at 1.1m -limit of investigation							-
, , , 694	-2								-2

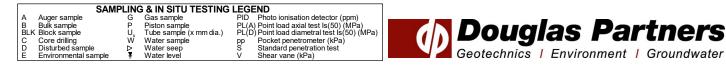
RIG: CAT 304C CR TYPE OF BORING:

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 695.25 AHD BORE No: 118 **EASTING:** 722503 **NORTHING:** 6096177 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

_							H: 90°/		SHEET TOF T
	D. (1	Description	. <u>.</u>		Sam		& In Situ Testing	يد ا	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.2	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with rootlets, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		Ш	0.1		PID < 1ppm		-
	-	FILL/Silty CLAY (CI/CH): medium to high plasticity, yellow-brown and red-brown, with fine to coarse angular gravel, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
-	- 0.6			E	0.5		PID < 1ppm		-
-	-	Silty CLAY (CI): medium plasticity, pale yellow-grey, trace siltstone gravel, moist to dry, w <pl, estimated="" stiff,<br="" very="">extremely weathered siltstone</pl,>							
-	- 1			E	1.0		PID < 1ppm		-1
694	- 1.2	Bore discontinued at 1.2m -limit of investigation							-
-	-								
-	-								-
-	-								-
-	-								
-	-2								-2
	-								
693	-								
-	-								

RIG: CAT 304C CR

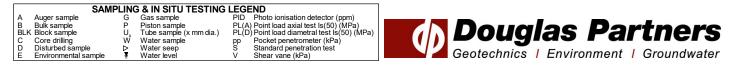
CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore


Proposed New High School In Bungendore

DRILLER: BE 200mm auger

LOGGED: SDG

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 694.50 AHD BORE No: 119 **EASTING:** 722468 **NORTHING:** 6096184 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

							H. 90 /			
	Donth	Description	hic		Sam		& In Situ Testing	۲.	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-	-	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, with fine to medium sub-angular gravel and rootlets, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" topsoil="" very=""><td></td><td>E</td><td>0.1</td><td></td><td>PID < 1ppm</td><td></td><td></td></pl,>		E	0.1		PID < 1ppm			
	- 0.3	Silty CLAY (CI/CH): medium to high plasticity, pale grey-brown, fry to moist, w <pl, estimated="" hard,="" residual<br="">-from 0.5m, yellow-brown</pl,>		E	0.5		PID < 1ppm		-	
-	- 0.8 - -1 1.0	Silty CLAY (CL/CI): low to medium plasticity, pale yellow-brown, dry to moist, w <pl, estimated="" hard,<br="">extremely weathered siltstone Bore discontinued at 1.0m</pl,>		—E—	—1.0—				-	
· · · · · · · · · · · · · · · · · · ·		-limit of investigation								
-	-2								-2	

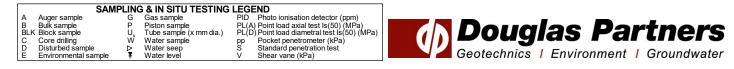
RIG: CAT 304C CR

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 694.25 AHD BORE No: 120 **EASTING:** 722447 **NORTHING:** 6096187 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

_							n. 90 /		
	Dopth	Description	hic		Sam		& In Situ Testing	Ъ.	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.2 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand and rootlets, trace fine gravel, moist, w~PL, very stiff to stiff, TOPSOIL FILL		E	0.1		PID < 1ppm R107 and RR107		-
	-	Silty CLAY (CL): low plasticity, pale orange-brown, with fine grained sand, moist, w~PL, estimated stiff to very stiff, possible alluvial		E	0.5		PID < 1ppm		-
-	- 0.7 - - - 1	Silty CLAY (CH): high plasticity, yellow-brown, dry to moist, estimated hard, residual		E	1.0		PID < 1ppm		- 1
ľ	- 1.1 -	Bore discontinued at 1.1m							
	-	-limit of investigation							
-	-2								-2
692	-								

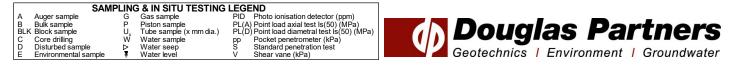
RIG: CAT 304C CR

DRILLER: BE

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 694.75 AHD BORE No: 121 **EASTING:** 722470 **NORTHING:** 6096170 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

Dep	a tha	Description						-		
		Description	- <u>i</u>		San	Sampling & In Situ Testing			5 Well	
(1)	n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-	0.2-	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with rootlets, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-	
-		Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist to dry, w <pl, estimated="" stiff,<br="" very="">possible alluvial</pl,>		E	0.5		PID < 1ppm		-	
-	0.6	Silty CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, dry to moist, w <pl, estimated="" hard,<br="">residual/extremely weathered siltstone</pl,>							-	
- 1	0.8	SILTSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered		E	1.0		PID < 1ppm		-1	
-	1.2 -	Bore discontinued at 1.2m -limit of investigation	 						-	
-									-	
- 2 -									-2	
-									-	
	2	- 0.8 - 1 - 1 - 1.2 	FILL 0.2 Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist to dry, w <pl, alluvial<="" estimated="" possible="" stiff,="" td="" very=""> 0.6 Silty CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, dry to moist, w<pl, estimated="" extremely="" hard,="" residual="" siltstone<="" td="" weathered=""> 0.8 SILTSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered 1.2 Bore discontinued at 1.2m -1 1.2 Bore discontinued at 1.2m -1mit of investigation</pl,></pl,>	FILL 0.2 Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist to dry, w <pl, alluvia<="" estimated="" possible="" stiff,="" td="" very=""> 0.6 Silty CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, dry to moist, w<pl, estimated="" extremely="" hard,="" residual="" siltstone<="" td="" weathered=""> 0.8 SILTSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered 1 1 2 Bore discontinued at 1.2m </pl,></pl,>	FILL FIL Sity CLAY (CL): low plasticity, pale brown, trace fine prossible alluvia Sity CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, moist b dry, w <pl, (ch):="" alluvia="" clay="" dry="" dry,="" estimated="" extremely="" fine="" grained="" grained,="" grey-brown,="" hard,="" high="" highly="" invest<="" investigation="" low="" medium="" moderately="" moist,="" of="" pale="" plasticity,="" possible="" residual="" sand,="" sit="" sittstone="" sity="" stiff,="" strength,="" td="" to="" trace="" tstone:="" very="" w<pl,="" weathered="" yellow-brown,=""><td>FILL E C.1 Sitty CLAY (CL): low plasticity, pale brown, trace fine possible alluvial E C.3 Sitty CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, dry to moist, wePL, estimated hard, residual/extremely weathered sittstone E C.3 SILTSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered E C.3 SILTSTONE: fine grained at 1.2m </td><td>FILL E 0.1 Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist to dry, w<pl, alluvia<="" estimated="" possible="" stiff,="" td="" very=""> E 0.5 0.6 Silty CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, dry to moist, w<pl, estimated="" extremely="" hard,="" residual="" siltstone<="" td="" weathered=""> E 0.5 0.8 Silt TSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered Image: strength of the strengt of the strength of the strengt of the strengt of the st</pl,></pl,></td><td>FIL FIL FIL FIL FIL FID < tppm</td> 02 Sity CLAY (CL): tow plasticity, pale brown, trace fine grained sand, most to dry, w<pl, alluvial<="" estimated="" possible="" stiff,="" td="" very=""> FID < tppm</pl,></pl,>	FILL E C.1 Sitty CLAY (CL): low plasticity, pale brown, trace fine possible alluvial E C.3 Sitty CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, dry to moist, wePL, estimated hard, residual/extremely weathered sittstone E C.3 SILTSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered E C.3 SILTSTONE: fine grained at 1.2m 	FILL E 0.1 Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist to dry, w <pl, alluvia<="" estimated="" possible="" stiff,="" td="" very=""> E 0.5 0.6 Silty CLAY (CH): high plasticity, pale grey-brown, trace fine grained sand, dry to moist, w<pl, estimated="" extremely="" hard,="" residual="" siltstone<="" td="" weathered=""> E 0.5 0.8 Silt TSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered Image: strength of the strengt of the strength of the strengt of the strengt of the st</pl,></pl,>	FIL FIL FIL FIL FIL FID < tppm	FILL E 0.1 PID < 1ppm FILL E 0.1 PID < 1ppm Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist to dry, w <pl, estimated="" stift,<br="" very="">possible alluvia Silty CLAY (CH): high plasticity, pale gray-brown, trace fine grained sand, dry to moist, w<pl, estimated="" hard,<br="">residual/extremely weathered IIIstone Silty CLAY (CH): high plasticity, pale gray-brown, trace fine grained sand, dry to moist, w<pl, estimated="" hard,<br="">residual/extremely weathered IIIstone Silty CLAY (CH): high plasticity, pale gray-brown, dry, low to medium strength, highly to moderately weathered </pl,></pl,></pl,>	

RIG: CAT 304C CR

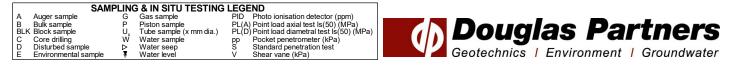
CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore


Proposed New High School In Bungendore

DRILLER: BE

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 695.00 AHD BORE No: 122 **EASTING:** 722487 **NORTHING:** 6096167 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

							1. 90 /		
	Denti	Description	ji ji		Sam		& In Situ Testing	ř	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
695	0.2 -	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, brown, with fine to medium sub-angular gravel and rootlets, moist to dry, w <pl, estimated="" fill<="" stiff,="" td="" topsoil="" very=""><td></td><td>E</td><td>0.1</td><td>σ</td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.1	σ	PID < 1ppm		-
		Silty CLAY (CL): low plasticity, brown, with fine grained sand, moist to wet, w>PL, estimated firm to stiff, possible alluvial		E	0.5		PID < 1ppm		-
	0.6 -	Silty CLAY (CI/CH): medium to high plasticity, yellow-brown, dry to moist, w <pl, estimated="" hard,="" residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
694	- 1	SILTSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered	·	Е	1.0		PID < 1ppm		-1
	. 1.1-	Bore discontinued at 1.1m -limit of investigation							-
	-2								-2
							CASIN		-

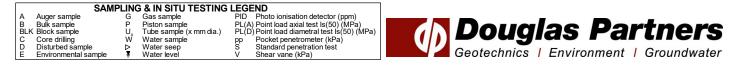
RIG: CAT 304C CR TYPE OF BORING:

DRILLER: BE 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore


CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 695.50 AHD BORE No: 123 EASTING: 722501 **NORTHING:** 6096169 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

<u> </u>							1. 90 /	1	
	Denth	Description	hic				& In Situ Testing	er	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.2 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with rootlets, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
	0.4 -	Silty CLAY (CL): low plasticity, pale brown, with fine grained sand, moist, w~PL, estimated stiff to very stiff, possible alluvial							-
		Silty CLAY (CI/CH): medium to high plasticity, brown, moist to dry, w <pl, alluvial="" estimated="" or<br="" possible="" stiff,="" very="">residual</pl,>		E	0.5		PID < 1ppm		-
	0.8 - · 1	SANDSTONE: fine grained, red-brown, dry, very low strength, highly weathered, estimated fractured		E	1.0		PID < 1ppm		-1
	1.2 -	Bore discontinued at 1.2m -limit of investigation	1::::::						-
694									-
	·2								-2

RIG: CAT 304C CR

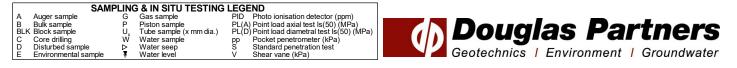
CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore


Proposed New High School In Bungendore

DRILLER: BE

LOGGED: SDG

CASING: NA

TYPE OF BORING: 200mm auger WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 696.25 AHD BORE No: 124 **EASTING:** 722535 **NORTHING:** 6096156 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

_							1. 90 /				
	Dauth	Description	jc T		Sam		& In Situ Testing	5	Well		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
696		TOPSOIL FILL/Clayey SAND (SC): fine to medium grained sand, brown, low plasticity clay, with rootlets, trace gravel, moist to wet, medium dense, TOPSOIL FILL		E	0.1		PID < 1ppm		-		
-	- 0.3 - -	Silty CLAY (CL): low plasticity, pale brown, trace fine to coarse grained sand, trace fine gravel up to 10mm in size, moist to dry, w <pl, colluvial<="" possible="" stiff,="" td=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.5		PID < 1ppm		-		
-	- 0.6	Bore discontinued at 0.6m -refusal	177								
-	-								-		
-	-								-		
-	- 1								-1		
-	-								-		
-	-								-		
695	-								-		
ŀ	-								-		
	-								-		
	-								-		
-	-								-		
	-								-		
-	-2								-2		
-	- 2								-2		
-	-								-		
694	-								-		
ŀ	-								-		
-											

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

SAN	MPLIN	G & IN SITU TESTING	G LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test	Contrating 1 Environment 1 One and write	
E Environmental sample	¥	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater	
					—	

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 694.75 AHD BORE No: 125 **EASTING:** 722466 **NORTHING:** 6096147 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

_							H: 90 /		SHEET I OF I
	Derth	Description	hic		Sam		& In Situ Testing	3r	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	0.15	TOPSOIL FILL/Silty CLAY (CL): low plasticity, pale brown, with rootlets, trace fine grained sand, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
	0.15 -	Silty CLAY (CI): low plasticity, pale brown, trace fine grained sand, moist, w~PL, estimated very stiff, possible alluvial Silty CLAY (CI): medium plasticity, red-brown, trace fine to		E	0.5		PID < 1ppm		
694	0.9 -	Silty CLAY (C). Inedutin plasticity, red-brown, trace line to coarse quartz gravel, moist, w~PL, estimated very stiff, residual SILTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered, estimated fractured		_					
	-1		· · ·	E	1.0		PID < 1ppm		-1
	. 1.1-	Bore discontinued at 1.1m -limit of investigation							-
- 69									
-	-2								-2

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 696.00 AHD BORE No: 126 **EASTING:** 722481 **NORTHING:** 6096147 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

					<u> </u>		9 In City Teating		
	Depth	Description	g				& In Situ Testing	ter	Well
6 RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
- · ·		FILL/Clayey SAND (SC): fine to coarse grained sand, orange-brown, low plasticity clay, with fine to coarse gravel, dry to moist, estimated medium dense, FILL		E	0.1		PID < 1ppm		-
	- 0.3 - - -	FILL/Sandy CLAY (CL/CI): low to medium plasticity, orange-brown, fine to coarse grained sand, with fine to coarse gravel, moist to dry, w <pl, estimated="" stiff,<br="" very="">FILL</pl,>		E	0.5		PID < 1ppm		-
695	- - 1 - 1.2 -	Silty CLAY (CL): low plasticity, brown with rootlate moist		E	1.0		PID < 1ppm		-1
	- 1.4 -	Silty CLAY (CL): low plasticity, brown, with rootlets, moist, w~PL, stiff to very stiff, remnant TOPSOIL Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist, w~PL, estimated stiff, possible alluvial		_					-
		anuvia		E	1.5		PID < 1ppm		-
694	- 1.6 - - 2	Bore discontinued at 1.6m -limit of investigation							-2

RIG: CAT 304C CR

DRILLER: BE 200mm auger

LOGGED: SDG

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W **Douglas Partners** (Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 695.25 AHD BORE No: 127 **EASTING:** 722476 **NORTHING:** 6096133 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

							1. 90 /		
	Dert	Description	ji L		Sam		& In Situ Testing	5	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.15 -	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, orange-brown, fine to coarse grained sand, with fine gravel and rootlets, moist to dry, w <pl, estimated="" very<br="">stiff, TOPSOIL FILL</pl,>		E	0.1	<u></u>	PID < 1ppm		-
692	- - - 0.6 -	Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist, w~PL, estimated very stiff, possible alluvial		E	0.5		PID < 1ppm		-
-	- - - 1	Gravelly CLAY (CI): medium plasticity, yellow-brown, fine siltstone gravel, moist, w~PL, estimated stiff to very stiff, residual		E	1.0		PID < 1ppm		1
694	- - 1.2 -	Bore discontinued at 1.2m -limit of investigation							
-	-								-
-	-								-
693	-2								-2
-	-								-

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W (Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 696.50 AHD BORE No: 128 **EASTING:** 722531 **NORTHING:** 6096120 DIP/AZIMUTH: 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

	Depth	Description	d J				& In Situ Testing	e -	Well
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	-	TOPSOIL FILL/Silty CLAY (CL/CI): low to medium plasticity, pale brown, trace fine grained sand and rootlets, moist to dry, w <pl, fill<="" stiff,="" td="" topsoil=""><td></td><td>E</td><td>0.1</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.1		PID < 1ppm		-
-	- 0.4 -	-from 0.2m, moist, w=PL, stiff							-
696	- 0.6 -	Sandy CLAY (CL): low plasticity, pale brown, fine to coarse grained sand, trace fine gravel up to 5mm in size and cobbles, moist to dry, w=PL, stiff, colluvial		E	0.5		PID < 1ppm		-
		Silty CLAY (CI): medium plasticity, pale yellow-brown, with fine to coarse grained sand, trace fine gravel up to 20mm in size and cobbles, moist to dry, w <pl, colluvial<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
	- 1 1.0 -	Bore discontinued at 1.0m -limit of investigation							-
692	- - -								-
	-2								-2
-	-								

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

	SAN	IPLIN	G & IN SITU TESTING	G LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners	
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)		í
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	🛛 🗖 📶 Geotechnics Environment Groundwater	
-						—	

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.25 AHD BORE No: 129 **EASTING:** 722569 **NORTHING:** 6096145 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

						MUTH			
		Description	Jic		Sam		& In Situ Testing	-	Well
Deptr (m)	'n	of Strata	Grapt Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
-		TOPSOIL FILL/Clayey SAND (SC): fine to medium grained sand, brown, low plasticity clay, with rootlets, trace gravel, moist to wet, medium dense, TOPSOIL FILL		E	0.1		PID < 1ppm		-
- 0	0.2	Gravelly CLAY (CL): low plasticity, orange-brown, coarse siltstone gravel, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>							
-				Е	0.5		PID < 1ppm		-
- 0	0.0	SILTSTONE: fine grained, yellow-brown/grey, dry, very low to low strength, highly weathered, some medium to high strength, moderately weathered seams, estimated	· · _						-
_		Tractured							-
-									-
-1 1	1.0-	Bore discontinued at 1.0m -limit of investigation	<u> </u>	—E—	—1.0—		PID < 1ppm		1
-									-
-									-
-									-
-									-
-									-
-									-
-									-
-2									-2
_									
-									
_									
	(m)		Depth (m) of Strata TOPSOL FILL/Clayey SAND (SC): fine to medium grained sand, brown, low plasticity clay, with rootlets, trace gravel, moist to wet, medium dense, TOPSOL FILL 0.2 Gravelly CLAY (CL): low plasticity, orange-brown, coarse siltstone gravel, moist to dry, w <pl, estimated="" stiff,<br="" very="">residual 0.6 SILTSTONE: fine grained, yellow-brown/grey, dry, very low to low strength, highly weathered, some medium to high strength, moderately weathered seams, estimated fractured .1 1.0 Bore discontinued at 1.0m -limit of investigation</pl,>	Depth (m) of Strata TOPSOIL FILL/Clayey SAND (SC): fine to medium grained sand, brown, low plasticity clay, with rootlets, trace gravel, moist to wet, medium dense, TOPSOIL FILL 0.2 Gravelly CLAY (CL): low plasticity, orange-brown, coarse siltstone gravel, moist to dry, w <pl, estimated="" stiff,<br="" very="">residual 0.6 SILTSTONE: fine grained, yellow-brown/grey, dry, very low to low strength, highly weathered, some medium to high strength, moderately weathered seams, estimated fractured .1 1.0 Bore discontinued at 1.0m -limit of investigation</pl,>	1 TOPSOL FILL/Clayey SAND (SC): fine to medium grained sand, brown, low plasticity clay, with rootlets, trace gravel, moist to wet, medium dense, TOPSOL FILL E 0.2 Gravely CLAY (CL): low plasticity, orange-brown, coarse sitistone gravel, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""> E 0.6 SILTSTONE: fine grained, yellow-brown/grey, dry, very low to low strength, highly weathered, some medium to high strength, moderately weathered seams, estimated fractured E 1 1.0 Bore discontinued at 1.0m E</pl,>	Depth (m) of Image: Complexity of the strength of t	Depth (m) of End of Strata TOPSOIL FILL/Clayey SAND (SC): fine to medium grained sand, brown, low plasticity clay, with rootlets, trace gravel, moist to wet, medium dense, TOPSOIL FILL E 0.1 0.2 Gravelly CLAY (CL): low plasticity, orange-brown, coarse sitistone gravel, moist to dry, w <pl, estimated="" stiff,<br="" very="">residual E 0.1 0.6 SILTSTONE: fine grained, yellow-brown/grey, dry, very low to low strength, highly weathered, some medium to high strength, moderately weathered seams, estimated Image: Comparison of the seams, estimated 1 1.0 Bore discontinued at 1.0m Image: Comparison of the seams, estimated Image: Comparison of the seams, estimated 1 1.0 Image: Comparison of the seams, estimated Image: Comparison of the seams, estimated</pl,>	Depth (m) of Strata TOPSOIL FILLClayey SAND (SC): fine to medium grained sand, brown, low plasticity day, with rootest, trace gravel, moist to wet, medium dense, TOPSOIL FILL 02 Gravelly CLAY (CL): low plasticity, orange-brown, coarse silistone gravel, moist to dry, wcPL, estimated very stiff, residual 04 5ILTSTONE: fine grained, yellow-brown/grey, dry, very low to low strength, highly weathered, some medium to high strength, moderately weathered seams, estimated fractured 1 10 Bore discontinued at 1.0m -limit of investigation	Depth (m) Documents Strata Bow Strata TOPSOIL FILLCIayey SAND (SC): fine to medium gravel, moist to wet, medium dense, TOPSOIL FILL gravel, moist to wet, medium dense, TOPSOIL FILL gravel, moist to wet, medium dense, TOPSOIL FILL cravely CLAY (CL): low plasticity, orange-brown, coarse sitistione gravel, moist to dry, w <pl, estimated="" stiff,<br="" very="">residual E 0.1 PID < tppm</pl,>

RIG: KUBOTA KX033-4 TYPE OF BORING: 200mm auger

DRILLER: Terrain Projects

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturk SAMPLING & IN SITU TESTING LEGEND G P U_x W Core drilling Disturbed sample Environmental sample ₽

,	& IN SITU LESTING L	.EGE	ND
	Gas sample	PID	Photo ionisation detector (ppm)
	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
	Water sample	pp	Pocket penetrometer (kPa)
	Water seep	pp S	Standard penetration test
	Water level	V	Shear vane (kPa)
_			

SURFACE LEVEL: 697.25 AHD BORE No: 130 **EASTING:** 722567 **NORTHING:** 6096125 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

_								H: 90 /		
	D	"T	Description	hic -		Sam		& In Situ Testing	зr	Well
RL	Dept (m)	tn)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	-	0.2 -	TOPSOIL FILL/Clayey SAND (SC): fine to medium grained sand, brown, low plasticity clay, with rootlets, trace gravel, moist to wet, medium dense, TOPSOIL FILL		E	0.1		PID < 1ppm		-
169	-		Gravelly CLAY (CL): low plasticity, yellow-brown mottled grey and orange, moist to dry, w <pl, estimated="" fill<="" possible="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
-	-	0.6 -	Gravelly CLAY (CL): low plasticity orange-brown coarse		E	0.5		PID < 1ppm R108 and RR108		-
-	-		Gravelly CLAY (CL): low plasticity, orange-brown, coarse siltstone gravel, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
	- 1				E	1.0		PID < 1ppm		-1
-	_	1.1	Bore discontinued at 1.1m -limit of investigation	<u>lo/</u> 0/						
6969	-									-
	-									-
-	-									-
-	-									-
-	-									-
-	-2									-2
-	-									
695	-									
-	-									
Ŀ										

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.00 AHD BORE No: 131 **EASTING:** 722562 **NORTHING:** 6096109 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

							h. 90 /				
	Derth	Description			Sam		& In Situ Testing	۳.	Well		
7 RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
169	0.2 -	FILL/Sandy GRAVEL (GP): poorly graded, gravel up to 30mm in size, grey, fine to coarse grained sand, trace low plasticity clay, moist, medium dense, FILL		E	0.1		PID < 1ppm		-		
	0.4	Silty CLAY (CL): low plasticity, pale grey-brown, trace fine grained sand, moist, w~PL, estimated stiff to very stiff, possible alluvial									
		Silty CLAY (Cl): medium plasticity, grey-brown mottled orange, moist, w~PL, estimated very stiff, residual		E	0.5		PID < 1ppm		-		
	0.7 -	Silty CLAY (CL/CI): low to medium plasticity, yellow-brown mottled red, moist, w~PL, estimated stiff, extremely weathered siltstone							-		
696				E	1.0		PID < 1ppm		-1		
	1.2-	Bore discontinued at 1.2m -limit of investigation							-		
	-2								-2		

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W (Core drilling Disturbed sample Environmental sample CDE ₽

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.25 AHD BORE No: 132 **EASTING:** 722576 **NORTHING:** 6096102 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

							H. 90 /	1	
	Donth	Description	hic		Sam		& In Situ Testing	∋r	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
697	-	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, trace fine grained sand and fine gravel, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
-	- 0.3	Silty CLAY (CL): low plasticity, pale grey-brown, trace fine grained sand, moist to wet, w>PL, estimated firm to stiff, possible alluvial		E	0.5		PID < 1ppm		-
-	- 0.6	Silty CLAY (CL/CI): low to medium plasticity, yellow-brown mottled red, moist, w~PL, estimated stiff, extremely weathered siltstone							-
-	-1			E	1.0		PID < 1ppm		-1
696	- 1.1	Bore discontinued at 1.1m -limit of investigation							-
9	-								-
-	-								-
-	-								-
-	-								-
-	-2								-2
5	-								
. 695	-								
-									

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

SURFACE LEVEL: 697.50 AHD BORE No: 133 **EASTING:** 722594 **NORTHING:** 6096104 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

							H. 90 /		
	Denth	Description	hic				& In Situ Testing	5	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	· 0.3 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand, trace course gravel, moist to wet, w>PL, estimated firm to stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		
697	- 0.3 - . 0.7 -	Silty CLAY (Cl): medium plasticity, yellow-brown, mottled grey and orange, moist, w~PL, estimated very stiff, residual		E	0.5		PID < 1ppm		-
	- 0.7-	SILTSTONE: fine grained, yellow-brown, dry, low to medium strength, highly to moderately weathered, estimated fractured		E	1.0		PID < 1ppm		-1
	· 1.2 -	Bore discontinued at 1.2m -limit of investigation							-
696									-
	-2								-2
-									-

RIG: KUBOTA KX033-4

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.75 AHD BORE No: 134 **EASTING:** 722592 **NORTHING:** 6096093 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

Image: construct bit is the state of the	
TOPSOL FILL/Sity CLAY (CL): low plasticity, brown, with fine grained sand, trace course gravel, moist to wet, w>PL, estimated firm to stiff, TOPSOIL FILL E 0.1 PID < 1ppm 0.25 Sitty CLAY (Cl): medium plasticity, yellow-brown, trace sittstone gravel, dry to moist, w <pl, estimated="" hard,<br="">extremely weathered sittstone E 0.1 PID < 1ppm</pl,>	
1 TOPSOL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand, trace course gravel, moist to wet, w>PL, estimated firm to stiff, TOPSOL FILL E 0.1 PID < 1ppm	
0.6 Silty CLAY (CI): medium plasticity, yellow-brown, trace siltstone gravel, dry to moist, w <pl, estimated="" extremely="" hard,="" siltstone<="" td="" weathered=""> 1 0.6 SiltTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered 1 -10 </pl,>	
-1 SILTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered	
$\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$	
1.1 Bore discontinued at 1.1m	
Bore discontinued at 1.1m	

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturk SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sam Tube samp Water sam Water see Water leve G P U_x W Core drilling Disturbed sample Environmental sample ₽

UTESTING	LEGE	ND
e	PID	Photo ionisation detector (ppm)
nple	PL(A)	Point load axial test Is(50) (MPa)
ole (xmmdia.)	PL(D)	Point load diametral test ls(50) (MPa)
nple	pp S	Pocket penetrometer (kPa)
p		Standard penetration test
	V	Shear vane (kPa)

SURFACE LEVEL: 697.25 AHD BORE No: 135 **EASTING:** 722575 **NORTHING:** 6096093 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

							H: 90 /			
Ţ	Darth	Description	ji L		Sampling & In Situ Testing					
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	0.05	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand, trace course gravel, moist to wet, w>PL, estimated firm to stiff, TOPSOIL FILL		E	0.1		PID < 1ppm R106 and RR106		-	
691	0.25 - 0.4 -	Silty CLAY (CL): low plasticity, pale grey-brown, trace fine grained sand, moist to wet, w>PL, estimated firm to stiff, possible alluvial								
		Silty CLAY (CI): medium plasticity, orange-brown, trace siltstone gravel, moist, w~PL, estimated stiff to very stiff, residual	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	E	0.5		PID < 1ppm		-	
	0.7 -	SILTSTONE: fine grained, yellow-brown, dry, low strength, highly weathered, estimated fractured	· _ · · · · · · · · · · · · · · · · · ·						-	
	- 1		· · · · · _	E	1.0		PID < 1ppm		-1	
6	1.1 -	Bore discontinued at 1.1m -limit of investigation	1						-	
969									-	
-									-	
-									-	
-									-	
-									-	
-	-2								-2	
695										
-										

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.00 AHD BORE No: 136 **EASTING:** 722559 **NORTHING:** 6096098 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

_	-			· · · ·				1. 90 /	1		
	D-	nth	Description	hic			ampling & In Situ Testing			Well	
	De (r	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
169	-	0.2 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand, moist to wet, w>PL, estimated firm to stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-	
-	-		Silty CLAY (CL): low plasticity, brown mottled orange, trace fine grained sand, moist to wet, w>PL, estimated firm to stiff, possible alluvial		Е	0.5		PID < 1ppm		-	
	-	0.6 -	Silty CLAY (CL/CI): low to medium plasticity, yellow-brown, trace siltstone gravel, moist to dry, w <pl, estimated very stiff, residual</pl, 		F						
	- 1	1.0 -	Bore discontinued at 1.0m -limit of investigation		<u> </u>	-1.0-		PID < 1ppm		-	
	- 2									-2	

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturk SAMPLING & IN SITU TESTING LEGEND G P U_x W Core drilling Disturbed sample Environmental sample ₽

7	& IN SILU LESTING L	.EGE	ND
	Gas sample	PID	Photo ionisation detector (ppm)
	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
	Water sample	pp	Pocket penetrometer (kPa)
	Water seep	S	Standard penetration test
	Water level	V	Shear vane (kPa)
-			

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.25 AHD BORE No: 137 **EASTING:** 722561 **NORTHING:** 6096084 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

				DIF			H: 90°/		SHEET 1 OF 1
		Description	j		Sam		& In Situ Testing	<u> </u>	Well
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	. 0.2 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with fine grained sand, moist to wet, w>PL, estimated firm to stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
697		Silty CLAY (CL): low plasticity, pale grey-brown, trace fine grained sand, moist, w~PL, estimated stiff, possible alluvial		E	0.5		PID < 1ppm		-
	· 0.6 -	Silty CLAY (CI): medium plasticity, yellow-brown, with quartz and siltstone gravel, moist to dry, w <pl, estimated<br="">very stiff, extremely weathered siltstone</pl,>							-
	-1			E	1.0		PID < 1ppm		-1
	· 1.1 -	Bore discontinued at 1.1m -limit of investigation							-
696									-
									-
	-2								-2
695									

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sam E Environmental Gas sample Piston sample Tube sample (x Water sample Water seep Water level G P U, W Core drilling Disturbed sample Environmental sample ₽

ESTINGL	_EGE	ND
	PID	Photo ionisation detector (ppm)
	PL(A)	Point load axial test Is(50) (MPa)
mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
	pp	Pocket penetrometer (kPa)
	S	Standard penetration test
	V	Shear vane (kPa)

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.25 AHD BORE No: 138 **EASTING:** 722572 **NORTHING:** 6096082 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

							h. 90 /		
[Donth	Description	hic 1		Sam		& In Situ Testing	2	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	. 0.2	TOPSOIL FILL/Sandy CLAY (CL): low plasticity, dark brown, fine to coarse grained sand, with silt and rootlets, trace gravel, moist, w~PL, estimated very stiff, TOPSOIL FILL	\bigotimes	E	0.1		PID < 1ppm		-
697	0.4	Silty CLAY (CL): low plasticity, pale grey-brown, trace fine grained sand, moist, w~PL, estimated stiff, possible alluvial							
		Silty CLAY (CI): medium plasticity, yellow-brown mottled grey and orange, moist to dry, w <pl, estimated="" stiff,<br="" very="">residual</pl,>		E	0.5		PID < 1ppm		
	0.7	Silty CLAY (CL): low plasticity, grey yellow-brown, moist to dry, w <pl, estimated="" extremely="" stiff,="" very="" weathered<br="">siltstone</pl,>							
-	-1 1.0	Bore discontinued at 1.0m -limit of investigation	<u> </u>	E	—1.0—		PID < 1ppm		-
969									-
-									-
-									
-									-
-	-2								-2
-									
695									
-	-								

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturk SAMPLING & IN SITU TESTING LEGEND G P U_x W Core drilling Disturbed sample Environmental sample ₽

7	& IN SITU LESTING L	.EGE	ND
	Gas sample	PID	Photo ionisation detector (ppm)
	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
	Water sample	pp	Pocket penetrometer (kPa)
	Water seep	pp S	Standard penetration test
	Water level	V	Shear vane (kPa)
_			

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 697.50 AHD BORE No: 139 **EASTING:** 722586 **NORTHING:** 6096083 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

_							1. 90 /	-	
	Donth	Description	hic		Sam		& In Situ Testing	2	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.2	TOPSOIL FILL/Silty CLAY (CL): low plasticity, dark brown mottled red, with rootlets, trace fine grained sand, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1	0,	PID < 1ppm		
	- 0.4	Sandy CLAY (CL): low plasticity, yellow-brown mottled red, fine to coarse grained sand, trace quartz gravel, moist to dry, w <pl, estimated="" residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
697		Silty CLAY (CL): low plasticity, yellow-brown, with quartz gravel, moist to dry, w <pl, estimated="" extremely<br="" stiff,="" very="">weathered siltstone</pl,>		Е	0.5		PID < 1ppm		-
	- 0.8	SILTSTONE: fine grained, red-brown, dry, low strength, highly weathered, estimated fractured		E	1.0		PID < 1ppm		- 1
	- 1.2		· · · ·						-
		Bore discontinued at 1.2m -limit of investigation							-
696									-
	-								-
	-2								-2
-	-								
						SDG			

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

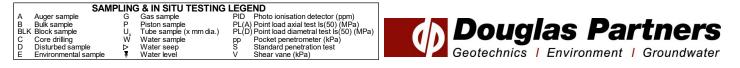
Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 696.00 AHD BORE No: 140 **EASTING:** 722505 **NORTHING:** 6096103 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1


Image: Bill Description of an information of a stand and readers in studies and and readers in studies and and readers in studies and and readers. TOPSOL FLLSHIV CLAY (CL): Inettum plasticity, grey data the formation of the coarse grained sand and readers. Indicating the coarse grained sand and readers in the coarse grained sand and readers. The studies are fire gravel, most, w-PL, stift, possible colluval Image: Billy CLAY (CL): Iow plasticity, pale brown, trace fire to coarse grained sand and readers. Indicating gravel up to 10mm in size, most, w-PL, stift, possible colluval Image: Billy CLAY (CL): Iow plasticity, pale brown, trace fire to coarse grained sand and readers. Indicating gravel up to 10mm in size, most, w-PL, stift, possible colluval Image: Billy CLAY (CL): Iow plasticity, pale brown, trace fire to coarse grained sand and fire gravel, most, w-PL, stift, possible colluval Image: Billy CLAY (CL): Iow plasticity, pale brown, trace fire to coarse grained sand and fire gravel, most, w-PL, stift, possible colluval Image: Billy CLAY (CL): Iow plasticity, pale brown, trace fire to coarse grained sand and fire gravel, most, w-PL, very stiff, residual Image: Billy CLAY (CL): Iow to medium plasticity, pale brown, trace fire to coarse grained sand and fire gravel up to 10mm in size, most, w-PL, very stiff, residual Image: Billy CLAY (CL): Iow to medium plasticity, pale brown, trace fire to coarse grained sand and fire gravel up to 10mm in size, most, w-PL, very stiff, residual Image: Billy CLAY (CL): Iow to medium plasticity, pale brown, trace fire to coarse grained sand and fire gravel. Image: Billy CLAY (CL): Iow to medium plasticity, pale brown, trace fire to coarse grained sand and fire gravel. Image: Billy CLAY (CL): Iow to medium plasticity, pale brown, trace fire to coarse grained sand and fire gravel. Image: Billy CLAY (CL): Billy							Som	nling	R In Situ Testing		
B TOPSOIL FILL/Sity CLAY (CI): medium plasticity, grey dark brown, trace fine to coarse grained sand and rootlets, moist to dry, wsPL, TOPSOIL FILL E 0.1 PID < 1ppm 0.3 Sity CLAY (CL): tow plasticity, pale brown, trace fine to coarse grained sand, trace fine gravel, moist, wsPL, stiff, possible colluvial E 0.1 PID < 1ppm			Depth		phic				-	ter	
Image: Second			(m)		Gra	Type	Depth	ampl	Results & Comments	Wa	
Silly CLAY (CL/CI): low plasticity, pale brown, trace fine to coarse grained sand, trace fine gravel, moist, w-PL, stiff, possible colluvial E 0.5 PID < 1ppm a consecutive provided and the gravel up to 10mm in size, moist, w-PL, very stiff, residual Bore discontinued at 1.0m -limit of investigation F 1 10 Bore discontinued at 1.0m -limit of investigation C 1 10 C	- 696	-				E		0	PID < 1ppm		-
Silty CLAY (CL/C): low to medium plasticity, yellow-brown, trace fine to coarse grained sand and fine gravel up to 10mm in size, moist, w-PL, very stiff, residual Bore discontinued at 1.0m -limit of investigation -limit of investigation	-	-	0.3 -	Silty CLAY (CL): low plasticity, pale brown, trace fine to coarse grained sand, trace fine gravel, moist, w <pl, stiff,<br="">possible colluvial</pl,>		E	0.5		PID < 1ppm		-
-limit of investigation		-		Silty CLAY (CL/CI): low to medium plasticity, yellow-brown, trace fine to coarse grained sand and fine gravel up to 10mm in size, moist, w~PL, very stiff, residual		F					
	-					—E.—	-1.0-		PID < 1ppm		2 2 2

DRILLER: EAGL/TBO RIG: Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 696.50 AHD BORE No: 141 **EASTING:** 722529 **NORTHING:** 6096099 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

_						_	H. 90 /		
	Dent	Description	hic –		Sam		& In Situ Testing	۲	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.15·	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, trace fine grained sand and fine gravel, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
	0.13	Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist, w~PL, estimated very stiff, possible alluvial							-
969	0.8	Silty CLAY (CI): medium plasticity, yellow-brown, moist, w~PL, estimated stiff to very stiff, residual		E	0.5		PID < 1ppm		-
	-1	Silty CLAY (CL): low plasticity, yellow grey-brown, trace fine siltstone gravel, moist, w~PL, estimated stiff to very stiff, extremely weathered siltstone		E	1.0		PID < 1ppm		-1
	1.1	Bore discontinued at 1.1m -limit of investigation							-
695									-
									-
	-2								-2

RIG: KUBOTA KX033-4

DRILLER: Terrain Projects TYPE OF BORING: 200mm auger

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 696.00 AHD BORE No: 142 **EASTING:** 722502 **NORTHING:** 6096082 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

					// _		n. 90 /		SHEET I OF I
		Description	io		Sam	pling a	& In Situ Testing		Well
° RL	Depth (m)	th of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
9 6 9	-	TOPSOIL FILL/Silty CLAY (CI): medium plasticity, grey dark brown, trace fine to coarse grained sand and rootlets, moist to dry, w <pl, fill<="" td="" topsoil=""><td></td><td>E</td><td>0.1</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.1		PID < 1ppm		-
-	-	0.2 Silty CLAY (Cl): medium plasticity, pale yellow-brown, trace fine to coarse grained sand and fine gravel up to 10mm in size, moist to dry, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
-	- 0	0.5 Bore discontinued at 0.5m -refusal		—E—	-0.5-		PID < 1ppm-		-
	-								
-	-								-
695	- 1								-1
-	-								-
-	-								-
-	-								-
-	-								-
-	-								-
-	-								-
- 694	-2								-2
-	-								
	-								

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

	SAN	IPLIN	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partners
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)			Douolas Parners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
•						-		

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 696.50 AHD BORE No: 143 **EASTING:** 722523 **NORTHING: 6096078 DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

				Dir			H: 90°/		SHEET 1 OF 1
Γ	Dest	Description	jr _		Sam		& In Situ Testing	ř	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	-	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with rootlets, trace fine grained sand and fine quartz gravel, moist to wet, w>PL, estimated firm to stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
696	0.25 - - -	Silty CLAY (CL): low plasticity, pale brown, trace fine grained sand, moist, w~PL, estimated stiff, possible alluvial		Е	0.5		PID < 1ppm		-
-	- 0.6 - - -	Silty CLAY (CL/CI): low to medium plasticity, yellow-brown mottled red, moist, w~PL, estimated stiff, extremely weathered siltstone							-
-	- 1			Е	1.0		PID < 1ppm		-1
-	- 1.2 - - -	Bore discontinued at 1.2m -limit of investigation	<u>v 1/ 1/</u>						-
	-								-
-	-2								-2
-	-								

RIG: KUBOTA KX033-4 TYPE OF BORING: 200mm auger

DRILLER: Terrain Projects

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston samp Tube samp Water samp Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U,x W Core drilling Disturbed sample Environmental sample CDE ₽

e	PID	Photo ionisation detector (ppm)
ple	PL(A)	Point load axial test Is(50) (MPa)
e (xmmdia.)	PL(D)	Point load diametral test ls(50) (MPa)
ple	pp	Pocket penetrometer (kPa)
)	S	Standard penetration test
	V	Shear vane (kPa)

SURFACE LEVEL: 696.00 AHD BORE No: 144 **EASTING:** 722496 **NORTHING:** 6096059 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

									1
Ι.	Depth	Description	g				& In Situ Testing	er	Well
6 RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.2 -	TOPSOIL FILL/Silty CLAY (CI): medium plasticity, grey dark brown, trace fine to coarse grained sand and rootlets, dry to moist, w <pl, fill<="" td="" topsoil=""><td></td><td>E</td><td>0.1</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.1		PID < 1ppm		-
-	-	Silty CLAY (CL): low plasticity, pale yellow-brown, trace fine to coarse grained sand and fine gravel up to 5mm in size, dry to moist, w=PL, stiff, residual							-
-	- 0.5 -	Bore discontinued at 0.5m -refusal	<u>{ / / /</u>	<u> </u>	-0.5-		-PID < 1ppm R102 and − RR102		-
695	- 1								-1
-	-								
-	-								-
-	-								
694	- 2								-2
-	-								-

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

	SAM	IPLING	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLł	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		Douolas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-							

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 696.75 AHD BORE No: 145 **EASTING:** 722521 **NORTHING:** 6096057 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

				0	//		H: 90°/		SHEET 1 OF 1
		Description	lic		Sam		& In Situ Testing	-	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.1	TOPSOIL FILL/Silty CLAY (CL): low plasticity, grey-brown, trace fine to coarse grained sand, fine gravel up to 5mm in size, and rootlets, dry to moist, w <pl, very<br="">stiff, TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-
-	- - 0.4	Clayey GRAVEL (GC): fine to coarse sub-angular to rounded gravel, grey-brown, medium plasticity clay, with fine to coarse grained sand, moist, medium dense, alluvial		E	0.3		PID < 1ppm		
-	-	Silty CLAY (CI/CH): medium to high plasticity, yellow mottled grey, with fine to medium sub-angular to rounded gravel, trace fine to coarse grained sand, moist to dry, w~PL, very stiff, residual		E	0.5		PID < 1ppm		-
	- 0."	, Bore discontinued at 0.7m	1/1/						
6969	-	-auger refusal possible cobble							-
ł									
ł	aa								
	-1								-1
	-								-
	-								
	-								-
ł									
-									
	-								-
	-								-
	-								-
695	-								-
-									
-	-								-
	-2								-2
	-								
ţ	-								
ł									
ł									
	-								

RIG: CAT 304C CR

DRILLER: BE 200mm auger

LOGGED: TBO

CASING: NA

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed

SURFACE LEVEL: 696.00 AHD BORE No: 146 **EASTING:** 722493 **NORTHING:** 6096041 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

Ι.	Depth	Description	ohic g				& In Situ Testing	er	Well	
R	(m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction	
96		Strata		Ĥ	ă	Sa	Commenta		Details	
-	- 0.2	TOPSOIL FILL/Silty CLAY (CI): medium plasticity, grey dark brown, trace fine to coarse grained sand and rootlets, dry to moist, w <pl, fill<="" th="" topsoil=""><th>\bigotimes</th><th>E</th><th>0.1</th><th></th><th>PID < 1ppm</th><th></th><th>-</th></pl,>	\bigotimes	E	0.1		PID < 1ppm		-	
-	-	Silty CLAY (CL): low plasticity, pale yellow-brown, trace fine to coarse grained sand and fine gravel up to 5mm in size, dry to moist, w=PL, stiff, possible colluvial	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $						-	
	- 0.5 - - - 1	Bore discontinued at 0.5m -refusal		<u> </u>	0.5		PID < 1ppm			
	- 2								-2	

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

	SAN	IPLIN	3 & IN SITU TESTIN	G LEGE	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)			Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
•						-		

SURFACE LEVEL: 696.75 AHD BORE No: 147 **EASTING:** 722517 **NORTHING:** 6096044 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

							H: 90°/		SHEET 1 OF 1
		Description	ic		Sam	pling 8	& In Situ Testing	_	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.1 -	stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
-	- 0.4 -	Silty CLAY (CL/CI): low to medium plasticity, grey-brown, with fine to medium sub-angular to rounded gravel, trace fine to coarse grained sand, moist to dry, w <pl, stiff,<br="">alluvial</pl,>		E	0.3		PID < 1ppm		-
-	-	Clayey GRAVEL (GC): fine to coarse sub-angular to rounded gravel, grey-brown, medium plasticity clay, with fine to coarse grained sand, moist, dense to very dense, alluvial		E	0.5		PID < 1ppm		-
ŀ	- 0.7 -		22						
696	-	Bore discontinued at 0.7m -auger refusal possible cobble							-
-	-1								-1
-	-								-
-	-								-
-	-								-
695	-								-
-	-								-
-	-2								-2
-	-								-
-	-								-

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

	SAM	PLIN	G & IN SITU TESTING	LEG		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	Constanting 1 Environment 1 One method
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater
•						—

SURFACE LEVEL: 697.00 AHD BORE No: 148 **EASTING:** 722512 **NORTHING:** 6096021 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

_							1. 90 /			
		Description	. <u>.</u>		Sam		& In Situ Testing	5	Well	
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction	
26	. ,	Strata	G	Τy	De	San	Comments	-	Details	
	0.15 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, grey-brown, trace fine to coarse grained sand, fine gravel up to 5mm in size, and rootlets, dry to moist, w <pl, hard,<br="">TOPSOIL FILL</pl,>		E	0.1		PID < 1ppm		-	
		Clayey GRAVEL (GC): fine to coarse sub-angular to rounded gravel, grey-brown, medium plasticity clay, with fine to coarse grained sand, moist, dense to very dense, alluvial							-	
				E	0.5		PID < 1ppm		-	
	0.6									
	0.0	Silty CLAY (CL): low plasticity, yellow mottled grey, with fine to coarse grained sand, moist to dry, w <pl, stiff,<br="" very="">residual</pl,>							-	
-				E	0.8		PID < 1ppm		-	
	0.9	Bore discontinued at 0.9m -refusal								
696	- 1	-I CIUSAI							-1	
									-	
									-	
-									-	
									-	
									-	
695	-2								-2	
	.									
								<u> </u>		

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

SAN	IPLIN	G & IN SITU TESTING	LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1	1.	Douglas Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test		Ľ.	On the share of English many the Organization
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 696.25 AHD BORE No: 149 **EASTING:** 722489 **NORTHING:** 6096008 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 11/10/2021 SHEET 1 OF 1

							1. 90 /		
	Donth	Description	hic				& In Situ Testing	er	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	0.2	TOPSOIL FILL/Silty CLAY (CL): low plasticity, brown, with rootlets, trace fine grained sand and fine gravel, moist, w~PL, estimated stiff to very stiff, TOPSOIL FILL		E	0.1		PID < 1ppm		-
	0.2	Gravelly Silty CLAY (CL): low plasticity, brown, fine to coarse quartz gravel, moist, w~PL, estimated stiff to very stiff, possible colluvial		E	0.5		PID < 1ppm		-
	0.9	Silty CLAY (CI): medium plasticity, red-brown, trace fine to coarse quartz gravel, moist, w~PL, estimated very stiff, residual							-
-	·1	Silty CLAY (CL/CI): low to medium plasticity, yellow-brown mottled red, moist, w~PL, estimated stiff, extremely weathered siltstone		E	1.0		PID < 1ppm		-1
, 695 ,	1.2	Bore discontinued at 1.2m -limit of investigation							-
-									
-									-
	-2								-2
694									-

RIG: KUBOTA KX033-4 TYPE OF BORING: 200mm auger

DRILLER: Terrain Projects

LOGGED: SDG

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 55. Surface levels and coordinates are approximate only and must not be relied upon

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

SURFACE LEVEL: 697.00 AHD BORE No: 150 **EASTING:** 722509 **NORTHING:** 6096006 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

										1
	D	epth	Description	d g				& In Situ Testing	Well	
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	-	0.1 -	TOPSOIL FILL/Silty CLAY (CL): low plasticity, grey-brown, trace fine to coarse grained sand, fine gravel up to 5mm in size, and rootlets, dry to moist, w <pl, hard,<br="">TOPSOIL FILL Silty CLAY (CL): low plasticity, pale brown, dry to moist, w<pl, alluvial="" hard,="" or="" possible="" residual<="" stiff="" td="" to="" very=""><td></td><td>E</td><td>0.1</td><td>S</td><td>PID < 1ppm</td><td></td><td>-</td></pl,></pl,>		E	0.1	S	PID < 1ppm		-
	-	0.3 -	Silty CLAY (CL/CI): low to medium plasticity, pale brown, with fine to coarse grained sand, dry to moist, w <pl, hard,<br="">residual Silty CLAY (CI): medium plasticity, yellow orange and</pl,>		E	0.5		PID < 1ppm		-
	1	1.0 -	brown, trace fine to coarse grained sand, dry to moist, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>—E</td><td>-1.0-</td><td></td><td>-PID < 1ppm R104 and −</td><td></td><td>-</td></pl,>		—E	-1.0-		-PID < 1ppm R104 and −		-
-69	-	1.0 -	Bore discontinued at 1.0m -limit of investigation		<u> </u>	-1.0-		RR104 and –		
	-2									-2

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

	SAM	PLIN	G & IN SITU TESTING	E LEG					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		
В	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Partner	
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)			Partner	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	O to . to . to .	I Farming		1
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotecnnics	I Enviro	onment Groundwa	ter

SURFACE LEVEL: 696.50 AHD BORE No: 151 **EASTING:** 722507 **NORTHING:** 6095987 **DIP/AZIMUTH:** 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

				0	//		1: 90°/		SHEET 1 OF 1
		Description	lic		Sam		k In Situ Testing	r	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	-	TOPSOIL FILL/Silty CLAY (CL): low plasticity, grey pale brown, trace rootlets, dry to moist, w <pl, stiff,="" topsoil<br="">FILL -from 0.2m, trace gravel</pl,>		E	0.1		PID < 1ppm		-
-	- 0.3	Silty CLAY (CI/CH): medium to high plasticity, yellow orange-brown, dry to moist, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
696	-			E	0.5		PID < 1ppm		-
-	- 0.7	Bore discontinued at 0.7m -refusal		—E—	-0.7-		————PID < 1ppm———		
-	-								-
-	- 1								-1
-	-								-
-	-								-
695	-								-
-	-								-
-	-								-
-	-								-
-	-2								-2
-	-								
-	-								

DRILLER: EAGL/TBO **RIG:** Ryobi Power Hand-Held Auger TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

	SAM	PLIN	G & IN SITU TESTING	LEG		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	Constanting 1 Environment 1 One method
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater
•						—

SURFACE LEVEL: 697.25 AHD BORE No: 152 **EASTING:** 722483 **NORTHING:** 6095990 DIP/AZIMUTH: 90°/--

PROJECT No: 202107.04 DATE: 8/10/2021 SHEET 1 OF 1

				DIF	'AZII		H: 90°/		SHEET 1 OF 1
	_	Description	Jic		Sam		& In Situ Testing	ř	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	- 0.1 -	\FILL		E	0.1		PID < 1ppm		-
169		Silty CLAY (CL): low plasticity, pale brown, with fine to coarse grained sand and fine to medium gravel up to 40mm in size, dry to moist, w <pl, colluvial<br="" possible="" stiff,="">or residual</pl,>							-
-	- 0.5 · -	Silty CLAY (CI): medium plasticity, yellow/orange-brown, trace fine to coarse grained sand and fine gravel, dry to moist, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>E</td><td>0.5</td><td></td><td>PID < 1ppm</td><td></td><td>-</td></pl,>		E	0.5		PID < 1ppm		-
-	-			Е	0.8		PID < 1ppm		-
-	- 0.9 · - 1 -	Bore discontinued at 0.9m -refusal	<u>v 1/ 1/</u>						-1
696									-
-									-
-	-2								-2
, 695 ⁻									
-	-								

RIG: Ryobi Power Hand-Held Auger DRILLER: EAGL/TBO TYPE OF BORING: 200mm auger

LOGGED: EAGL/TBO

CASING: NA

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

LOCATION:

Hindmarsh Construction Pty Ltd

Majara Street, Bungendore

Proposed New High School In Bungendore

SAI	MPLIN	G & IN SITU TESTIN	G LEG						
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			-	_	-
B Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)			00		tners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)					Thers
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S	Standard penetration test		- to - to - to - 1	F actor		0
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geo	otecnnics	Enviro	onment I	Groundwater
					-				

Appendix G

Summarised Laboratory Results (Tables G1 – G4 and QA1 – QA5)

Table G1: Summary of Laboratory Results – Metals, TRH, BTEX, PAH

						Me	tals						TF	RH				BT	EX			PA	Н	
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05
Sample ID	Depth	Sample Date	mg/kg 6	mg/kg <0.4	mg/kg 16	mg/kg 15	mg/kg 23	mg/kg <0.1	mg/kg 14	mg/kg 31	mg/kg <25	mg/kg <50	mg/kg <25	mg/kg <50	mg/kg <100	mg/kg <100	mg/kg <0.2	mg/kg <0.5	mg/kg <1	mg/kg <1	mg/kg <1	mg/kg <0.05	mg/kg <0.5	mg/kg <0.05
Bore 101	1 m	08/10/2021	100 100 <4	20 -	100 570 20	6000 150 14	300 1100 16	40 - <0.1	400 70 12	7400 410 26	<25	- 120 <50	90 180 <25	NL - <50	- 1300 <100	- 5600 <100	1 65 <0.2	NL 105 <0.5	NL 125 <1	310 45 <1	NL 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 102	0.5 m	08/10/2021	100 100 5	20 -	100 570 25	6000 150 16	300 1100 33	40 - <0.1	400 70 15	7400 410 180	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125	<pre>110 45 </pre>	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 103	0.1 m	08/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 104	0.1 m	08/10/2021	5 100 100	<0.4	30 100 570	12 6000 150	14 300 1100	<0.1 40 -	10 400 70	34 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5	<0.05 300 -
Bore 105	0.5 m	08/10/2021	5 100 100	<0.4	27 100 570	11 6000 150	22 300 1100	<0.1 40 -	10 400 70	25 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
R101	0.5 m	08/10/2021	5 100 100	<0.4	32 100 570	9 6000 150	18 300 1100	<0.1 40 -	9 400 70	20 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 106	0.5 m	08/10/2021	5 100 100	<0.4 20 -	20 100 570	13 6000 150	24 300 1100	<0.1 40 -	10 400 70	24 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 107	1 m	08/10/2021	<4 100 100	<0.4 20 -	13 100 570	11 6000 150	22 300 1100	<0.1 40 -	9 400 70	36 7400 410	<25	<50 - 120	<25 90 180	<50 NL -	<100 - 1300	<100 - 5600	<0.2 1 65	<0.5 NL 105	<1 NL 125	<1 310 45	<1 NL 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 108	0.1 m	08/10/2021	<4 100 100	<0.4 20 -	18 100 570	11 6000 150	16 300 1100	<0.1 40 -	10 400 70	37 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 109	0.5 m	08/10/2021	5 100 100	<0.4	28 100 570	10 6000 150	29 300 1100	<0.1 40 -	10 400 70	20 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5 3 -	<0.05 300 -
Bore 110	0.1 m	08/10/2021	<4 100 100	<0.4	15 100 570	10 6000 150	25 300 1100	<0.1 40 -	6 400 70	26 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5	<0.05 300 -
R102	0.1 m	08/10/2021	<4 100 100	<0.4	22 100 570	15 6000 150	7 300 1100	<0.1 40 -	16 400 70	16 7400 410	<25	<50	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5	<0.05 300 -
Bore 111	0.1 m	08/10/2021	<4 100 100	<0.4	15 100 570	9 6000 150	17 300 1100	<0.1	6 400 70	19 7400 410	<25	<50 - 120	<25 50 180	<50	<100	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5	<0.05
Bore 112	1 m	08/10/2021	9 100 100	<0.4	32 100 570	28 6000 150	6 300 1100	<0.1	43 400 70	25 7400 410	<25	<50	<25 90 180	<50	<100	<100	<0.2	<0.5 NL 105	<1 NL 125	<1 310 45	<1 NL 170	<0.05	<0.5	<0.05
Bore 113	0.5 m	08/10/2021	8	<0.4	23	32	55	<0.1	18	14	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Bore 114	0.1 m	08/10/2021	100 100 <4	<0.4	100 570 11	6000 150 6	<u>300</u> 1100 20	40 - <0.1	400 70 3	7400 410 21	<25	- 120 <50	50 180 <25	<50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	<0.5	<0.05
Bore 115	0.5 m	08/10/2021	100 100 <4	20 - <0.4	100 570 20	6000 150 15	300 1100 22	40 - <0.1	400 70 10	7400 410 14	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 116	0.1 m	08/10/2021	100 100 <4	20 - <0.4	100 570 9	6000 150 3	<u>300</u> 1100 9	40 - <0.1	400 70 2	7400 410 9	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 117	0.5 m	08/10/2021	100 100 <4	20 - <0.4	100 570 18	6000 150 12	<u>300</u> 1100 6	40 - <0.1	400 70 9	7400 410 14	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 118	0.5 m	08/10/2021	100 100 <4	20 - <0.4	100 570 20	6000 150 11	300 1100 6	40 - <0.1	400 70 10	7400 410 19	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
			100 100 5	20 - <0.4	100 570 11	6000 150 16	300 1100 22	40 - <0.1	400 70 20	7400 410 57		- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 119	0.1 m	08/10/2021	100 100 <4	20 - <0.4	100 570 9	6000 150 5	300 1100 11	40 - <0.1	400 70 3	7400 410 12	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 120	0.1 m	08/10/2021	100 100 <4	20 - <0.4	_		300 1100 4		400 70 11			- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1			- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 121	1 m	08/10/2021	100 100 5	20 - <0.4	100 570 6	6000 150 10	300 1100 11	40 - <0.1		7400 410 18	<25	- 120 <50	90 180 <25	NL - <50	- 1300 <100	- 5600 <100	1 65	NL 105 <0.5	NL 125		NL 170	- 0.7	3 - <0.5	300 - <0.05
Bore 122	0.1 m	08/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	<1 5 170	- 0.7	3 -	300 -
Bore 123	0.5 m	08/10/2021	<4 100 100	<0.4	12 100 570		7 300 1100	<0.1 40 -	2 400 70	5 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5	<0.05 300 -
Bore 124	0.1 m	08/10/2021	<4 100 100	<0.4 20 -	16 100 570		14 300 1100	<0.1 40 -		26 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125		<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 125	0.1 m	11/10/2021	<4 100 100	<0.4 20 -	11 100 570	4 6000 150	10 300 1100	<0.1 40 -	3 400 70	13 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 126	0.5 m	08/10/2021	<4 100 100	<0.4 20 -	18 100 570	23 6000 150	8 300 1100	<0.1 40 -	8 400 70	19 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 127	0.5 m	11/10/2021	<4 100 100	<0.4 20 -	12 100 570	3 6000 150	8 300 1100	<0.1 40 -	2 400 70	5 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
Bore 128	0.1 m	08/10/2021	<4 100 100	<0.4 20 -	13 100 570	6 6000 150	11 300 1100	<0.1 40 -	3	14 7400 410	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1	<1 5 170	<0.05	<0.5 3 -	<0.05 300 -
Bore 129	1 m	11/10/2021	<pre> 100 100 </pre>	<0.4	4 100 570	3	6 300 1100	<0.1	2	13 7400 410	<25	<50	<25 90 180	<50	<100	<100	<0.2 1 65	<0.5 NL 105	<1 NL 125	<1	<1	<0.05	<0.5	<0.05 300 -
Bore 130	0.5 m	11/10/2021	4	<0.4	17	17	20	<0.1	8	37	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Bore 131	0.1 m	11/10/2021	100 100 <4	20 - <0.4	22	24	300 1100 12	40 - <0.1	400 70 42	46	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	<1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
Bore 132	1 m	11/10/2021	100 100 <4	<u>- 20</u> <0.4	100 570 22	6000 150 24	300 1100 10	40 - 0.2	10	7400 410 9	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
			100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	90 180	NL -	- 1300	- 5600	1 65	NL 105	NL 125	310 45	NL 170	- 0.7	3 -	300 -

						1			-															
Bore 133	0.1 m	11/10/2021	<4	<0.4	16	11	17	<0.1	5	20	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570		300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 134	0.1 m	11/10/2021	<4	<0.4	14	7	17	<0.1	4	19	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570			40 -		7400 410		- 120		280 -		- 5600		480 105	NL 125		5 170	- 0.7	3 -	300 -
Bore 135	0.1 m	11/10/2021	<4	<0.4	14	6	13	<0.1	3	14	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 136	0.1 m	11/10/2021	<4	<0.4	15	9	13	<0.1	4	17	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570		300 1100	40 -	400 70	7400 410		- 120		280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 137	0.5 m	11/10/2021	<4	<0.4	18	4	11	<0.1	3	7	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 138	0.5 m	11/10/2021	<4	<0.4	18	14	9	<0.1	8	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	<mark>5</mark> 170	- 0.7	3 -	300 -
Bore 139	0.1 m	11/10/2021	<4	<0.4	12	8	18	<0.1	4	14	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	<mark>5</mark> 170	- 0.7	3 -	300 -
Bore 140	1 m	08/10/2021	<4	<0.4	27	9	5	<0.1	8	8	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Doic 140		00/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	90 180	NL -	- 1300	- 5600	1 65	NL 105	NL 125	310 45	NL 170	- 0.7	3 -	300 -
Bore 141	0.1 m	11/10/2021	<4	<0.4	11	5	10	<0.1	3	12	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Doic 141	0.1111	11/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 142	0.5 m	08/10/2021	4	<0.4	25	16	7	<0.1	14	17	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
D010 142	0.5 11	00/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 143	1 m	11/10/2021	4	<0.4	28	48	12	<0.1	16	19	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Doic 140		11/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	90 180	NL -	- 1300	- 5600	1 65	NL 105	NL 125	310 45	NL 170	- 0.7	3 -	300 -
Bore 144	0.1 m	08/10/2021	<4	<0.4	10	5	10	<0.1	4	16	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
D010 144	0.1111	06/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
R103	0.1 m	08/10/2021	5	<0.4	16	11	17	<0.1	7	38	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
11100	0.1111	00/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 145	0.3 m	08/10/2021	<4	<0.4	16	7	20	<0.1	4	10	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 146	0.5 m	08/10/2021	<4	<0.4	13	7	5	<0.1	9	10	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Bolo Tio	0.0 11	00/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	<mark>5</mark> 170	- 0.7	3 -	300 -
Bore 147	0.1 m	08/10/2021	<4	<0.4	13	8	14	<0.1	4	17	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	<mark>5</mark> 170	- 0.7	3 -	300 -
Bore 148	0.8 m	08/10/2021	5	<0.4	27	31	7	<0.1	14	14	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Bolo Tio	0.0 11	00/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	<mark>5</mark> 170	- 0.7	3 -	300 -
Bore 149	0.1 m	11/10/2021	<4	<0.4	16	4	16	<0.1	3	12	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
5010 145	0.1111	. 1/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 150	0.1 m	08/10/2021	<4	<0.4	13	11	19	<0.1	5	36	<25	<50	<25	<50	150	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
DOIC 100	0.1111	30/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Bore 151	0.1 m	08/10/2021	<4	<0.4	11	4	10	<0.1	2	11	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
DUIE 131	0.1111	00/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
Pore 152	0.1 m	08/10/2021	<4	<0.4	13	4	14	<0.1	2	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
Bore 152	0.1 m	08/10/2021	100 100	20 -	100 570	6000 150	300 1100	40 -	400 70	7400 410		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -
				-				-				,20							20				21 A	

Lab result HIL/HSL value EIL/ESL value

– HIL/HSL exceedance 📕 EIL/ESL exceedance – HIL/HSL and EIL/ESL exceedance 🔲 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance 🗌 HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes:

- а QA/QC replicate of sample listed directly below the primary sample
- b Reported naphthalene laboratory result obtained from BTEXN suite
- с Criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

- SAC based on generic land use thresholds for Residential A with garden/accessible soil
- HIL A Residential / Low High Density (NEPC, 2013)

 HSL A/B
 Residential / Low - High Density (vapour intrusion) (NEPC, 2013)

 DC HSL A
 Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)

EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)

ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Table G2: Summary of Laboratory Results - Phenol, OCP, OPP, PCB, Asbestos

			Phenol						OCP						OPP				P	СВ					Asbestos	
					° Q			Ē	e		an		zene	5	\$	9		2	N	Ŋ	œ	4		soil	<u></u>	6
			henol	QQQ	DE+DD	BD	DDT	& Dield	Chlorda	ndrin	Endosul	ptachlor	loropen:	hoxychic	rpy ripho	ther 101	tal PCB	hlor 122	thor 123	thor 124	:hlor 124	hlor 125	clor 1260	tos ID in •0.1g/kg	e Analys	stos (50
					DDT+L			Aldrin	Total		Total	Ŧ	Hexact	Met	Chic	Aroc	P P	Aroc	Aroc	Aroc	Aroc	Aroc	Aro	Asbest >(Trao	Asbe
		PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
Sample ID	Depth	Sample Date	mg/kg <5	mg/kg <0.1	<0.1	mg/kg <0.1	mg/kg <0.1	<0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg <0.1	mg/kg <0.1	<0.1	<0.1	mg/kg <0.1	-	-	-
Bore 101	1 m	08/10/2021	100 - <5		240 180 <0.1		- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1		1 -		<0.1			<0.1	<0.1	NAD	NAD	NAD
Bore 102	0.5 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 103	0.1 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	<u>6</u> - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 104	0.1 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	<0.1 50 - <0.1	<0.1 <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	<0.1 160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 105	0.5 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	<0.1 <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	<0.1 160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
R101	0 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	<0.1 <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	<0.1 160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	AD	AD	AD
Bore 106	0.5 m	08/10/2021	100 -	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1		<0.1	<0.1	· ·		NAD	NAD	NAD
Bore 107	1 m	08/10/2021	<5 100 -		240 180		- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -		1 -		<0.1			<0.1	<0.1	NAD	NAD	NAD
Bore 108	0.1 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 109	0.5 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 110	0.1 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
R103	0 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 111	0.1 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 112	1 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 113	0.5 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 114	0.1 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 115	0.5 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1	<0.1	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 116	0.1 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 117	0.5 m	08/10/2021	<5 100 -	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 118	0.5 m	08/10/2021	<5	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 119	0.1 m	08/10/2021	<5	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 120	0.1 m	08/10/2021	<5	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 121	1 m	08/10/2021	<5	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1	<0.1 300 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 122	0.1 m	08/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<pre></pre>	<0.1	<0.1	<0.1	<0.1	<0.1 300 - 300 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 123	0.5 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	<0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	<0.1	160 - <0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 124	0.1 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	<0.1	6 - <0.1	<u>50</u> - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	<0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 125	0.1 m	11/10/2021	100 - <5	<0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	<u></u> <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 126	0.5 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 127	0.5 m	11/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 128	0.1 m	08/10/2021	100 - <5	<0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	<u>50</u> - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 129	1 m	11/10/2021	100 - <5	<0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	 <0.1	1 - <0.1	 <0.1	 <0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 130	0.5 m	11/10/2021	100 - <5	<0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	 <0.1	1 - <0.1	<0.1	<0.1	<0.1		<0.1	<0.1	NAD	NAD	NAD
			100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 131	0.1 m	11/10/2021	100 - <5	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	 <0.1	<0.1	<0.1	<0.1	<0.1		NAD	
Bore 132	1 m	11/10/2021	100 - <5	<0.1	240 180 <0.1		- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1		1 - <0.1						<0.1	NAD		NAD
Bore 133	0.1 m	11/10/2021	100 -					6 -	50 -		270 -	6 -	10 -											NAD	NAD	NAD

			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 134	0.1 m	11/10/2021						-										×0.1				NAD	NAD	NAD
			100 -		240 180		- 180 <0.1	6 -		270 -	6 - <0.1	10 -	<u> </u>	160 - <0.1				<0.1						
Bore 135	0.1 m	11/10/2021	<5	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1			<0.1 <0		<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
			100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -		160 -										
Bore 136	0.1 m	11/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	-	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
			100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -										
Bore 137	0.5 m	11/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
			100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1									
Bore 138	0.5 m	11/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
			100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1									
Bore 139	0.1 m	11/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
2010 100	0.111	11/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							1010	100	10.0
Bore 140	1 m	08/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
5010 140		00/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD.	NAD .	N/LD
Doro 1.44	0.1 m	11/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
Bore 141	0.1 m	11/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD	INAD	INAD
5 1 10			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 142	0.5 m	08/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 143	1 m	11/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	· · 1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0		<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 144	0.1 m	08/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
R102	0.1 m	08/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 145	0.3 m	08/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 146	0.5 m	08/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 147	0.1 m	08/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 148	0.8 m	08/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10	300 -	160 -	1							NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0		<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 149	0.1 m	11/10/2021	100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -								NAD	NAD	NAD
			<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0		<0.1	<0.1	<0.1	<0.1	<0.1			
Bore 150	0.1 m	08/10/2021		~0.1		50.1			50 - 10 -									40.1	50.1	~0.1	NO.1	NAD	NAD	NAD
			100 -		240 180		- 180	6 - <0.1		270 - <0.1	6 -	10 - <0.1	300 -	160 -										
Bore 151	0.1 m	08/10/2021	<5	<0.1	<0.1	<0.1	<0.1	-		-	<0.1	-	<0.1	<0.1	<0.1 <0		<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
			100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -										
Bore 152	0.1 m	08/10/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0		<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
			100 -		240 180		- 180	6 -	50 - 10 -	270 -	6 -	10 -	300 -	160 -	1									

Lab result

HIL/HSL value EIL/ESL value

🗧 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes:

a QA/QC replicate of sample listed directly below the primary sample

- b Reported naphthalene laboratory result obtained from BTEXN suite
- Criteria applies to DDT only с

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Residential A with garden/accessible soil

- HIL A
 Residential / Low High Density (NEPC, 2013)

 HSL A/B
 Residential / Low High Density (vapour intrusion) (NEPC, 2013)
- DC HSL A Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)

EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013) ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Geotechnics | Environment | Groundwater

Table G3: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos (Waste Classification)

				Metals						TRH					BTEX										PAH							Phenol		DCP	OPP				PCB					Asbestos	
	Asserie	Cadmium	Total Chomium	Capter	Load	Meroury (nargarici)	Nideal	ana van co. co.	TT94 C6 - C9 TT94 C10 - C14	TPH C15-C28	TI91 C29 - C39	C 10-C36 recoverate hydrocarbons	Benzane	Tokene	Ethytberzana	m p.Xylana o.Xylana	Xyten es (rotal)	Berzoz (xip yven e (Badr)	Aconspirition o	Acaraph fry Arma	Anthracene	B en zoji jan ti raoi na	Benzo (u) + Kifl unsun fr 8 m	0 en zolg h J (persylene	Chrysane Chrysane	ne Flarentiene	Fluzere	inden of 2.3- 0.0pyren e	tis philid an e	Phonarch an o	Pyrene Total PAHs	Phond	Total Endoud tan	Total Analysed OCP	Total Analysis of OPP	Woch or 1018	Another 1221	Andra 12.22	Nother 1242	Anothor 1248	And or 12.03	To al POB	Addresses ID in soll >0.1993	Tra on An aly sis	Total Asbestos
PQL	4	0.4	1	1		0.1	1		25 50		100	50	0.2	0.5	1	2 1	3	0.05	0.1	0.1	0.1	0.1	0.2	0.1	0.1		0.1	0.1	1	0.1	0.1 0.05	-	0.1	0.1	0.1	0.1	0.1	0.1		0.1 0	.1 0.1	0.1		\rightarrow	
Sample ID Depth Sample Date		mg/kg		mgikg			mg.kg n		g/kg mg/kg		mgikg	mg/kg				aka maka	mpikg	mgkg	mgkg	mgikg	mpikg	maika	maka	mgikg		ikg mg/kg			mgikg	ngkg	maka maka			maka	mgikg			mgikg		mg/kg mg		mg/kg		· · · ·	
Bore 101 1 m 08/10/2021 Bore 102 0.5 m 08/10/2021	6	<0.4 <0.4	1.0	15	23		14		25 <50 25 <50			- d0				a a	- 3	<0.05	-0.1		40.1	-4.1	<0.2	<0.1		11 40.1			4	<0.1	d.1 <0.05 d.1 <0.05		<0.1	<0.1	<0.1			<0.1			1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 102 0.5 m 08/10/2021 Bore 103 0.1 m 08/10/2021 Bore 104 0.1 m 08/10/2021	5	40.4	25	14	33	<0.1	12		25 -50	<100	<100		40.2	45	<1 C	a a	3	<0.05	<0.1	40.1	di.1	4.1	<0.2	40.1	d1 d	1 40.1	40.1	-0.1	<1 <1	40.1	40.1 40.05		<0.1	40.1	40.1	40.1	<0.1	<0.1	<0.1	di.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 104 0.1 m 08/10/2021	5	-0.4	30	12	14	<0.1	10		25 <50	-		-60	-0.2	<0.5	<1	a d	-3	<0.05	<0.1	<0.1	<0.1	d0.1	<0.2	<0.1	dl.1 d	1.1 dl.1	<0.1	<0.1	<1	-40.1	<0.1 <0.05		<0.1	<0.1	-40.1	-40.1	<0.1	<0.1	<0.1	d0.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 105 0.5 m 08/10/2021	5	-0.4	27	11		<0.1	10		25 -60					<0.5	<1	d d	4	<0.05	<0.1		dì.1	d.1	<0.2	<0.1		41.1	_		<1		40.1 <0.05		_		<0.1						1.1 <0.1		NAD	NAD	NAD
Bore 106 0.5 m 08/10/2021	5		20	13	24	<0.1	10		25 <50			-60	<0.2	<0.5	<1	d d	- 3	<0.05	<0.1	<0.1	dì.1	d1.1	<0.2	<0.1		1.1 <0.1	<0.1	<0.1	<1	<0.1	<0.1 <0.05		<0.1	<0.1	-40.1			<0.1	<0.1		.1 <0.1	<0.1	NAD	NAD	NAD
Bore 107 1 m 08/10/2021 Bore 108 0.1 m 08/10/2021	<4	<0.4	13	11	22	<0.1	9		25 <50 25 <50		<100	- 40	40.2	<0.5	<1	a a		<0.05	<0.1	<0.1	-0.1	4.1	<0.2	<0.1	d1 d	4.1	<0.1	<0.1	4	-0.1	d.1 <0.05		<0.1	-0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1		d0.1 d	.1 <0.1	<0.1	NAD	NAD	NAD NAD
Bore 109 0.5 m 08/10/2021	5	40.4	28	10	29	<0.1	10		25 - 60		<100		40.2	40.5	<1 C	a a	3	<0.05	<0.1	40.1	di.1	4.1	<0.2	40.1	d1 d	1 40.1	40.1	-0.1	<1	40.1	4.1 40.05	_	<0.1	40.1	40.1			<0.1			1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 110 0.1 m 08/10/2021	<4	-0.4	15	10	25	<0.1	6	26 <	25 <50	<100	<100	-40	-0.2	<0.5	<1	d2 d1	-3	<0.05	<0.1	<0.1	dl.1	-d.1	<0.2	<0.1	d11 d	1.1 40.1	-0.1	<0.1	<1	-0.1	<0.1 <0.05	6	<0.1	-0.1	-40.1	40.1	<0.1	<0.1	<0.1	d0.1 d	.1 <0.1	<0.1	NAD	NAD	NAD
Bore 111 0.1 m 08/10/2021	<4	<0.4	15	9	17	<0.1	6		25 <50	<100		යා	d2	<0.5	<1	d d	0	<0.05	<0.1	<0.1	<0.1	d.1	<0.2	<0.1	d1 d	11 40.1	-0.1	<0.1	4	40.1	<0.1 <0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	d0.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 112 1 m 08/10/2021	9	<0.4	32	28	8	<0.1	43	25 <	25 <50	<100	<100	-50	<0.2	<0.5	<1	a a	4	<0.05	<0.1	<0.1	<0.1	4.1	<0.2	<0.1	d0.1 d	4.1	<0.1	<0.1	4	-0.1	<0.1 <0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 d	<0.1	<0.1	NAD	NAD	NAD
Bore 113 0.5 m 08/10/2021	8	<0.4		32			18	14 <	-25 -50			-50		<0.5	<1	a a		<0.05	<0.1	<0.1	d.1	4.1	<0.2	<0.1	d1 d		<0.1	<0.1	4	-0.1	40.1 40.05		<0.1	<0.1	<0.1	<0.1		<0.1			.1 <0.1	<0.1	NAD	NAD	NAD
Bore 114 0.1 m 08/10/2021 Bore 115 0.5 m 08/10/2021		<0.4	20				3		25 -50 25 -50			- d0 - d0			<1	a a	a a		<0.1	<0.1	<0.1 <0.1		<0.2			11 d.1					<0.1 <0.05 <0.1 <0.05			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1			<0.1			<0.1		NAD	NAD NAD
Bore 116 0.1 m 08/10/2021		-0.4	9	3	2	<0.1	2		25 -50	<100	<100			-0.5	<1	a a	3	<0.05	<0.1		d.1	-0.1	<0.2	<0.1	d1 d	1.1 40.1	-0.1	<0.1	-		<0.1 <0.05	6	<0.1	<0.1	40.1		<0.1	<0.1			1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 117 0.5 m 08/10/2021	-04	<0.4	18	12	8	<0.1	9		25 <50			-60		<0.5	<1	d2 d1	3	<0.05	<0.1		d0.1	<0.1	<0.2		d1.1 d	a.1	-40.1	<0.1	d	d0.1	40.1 <0.05		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1		1.1 <0.1	<0.1	NAD	NAD	NAD NAD
Bore 118 0.5 m 08/10/2021	<4	<0.4		11				19 <	-50			-50				d2 d1	-		<0.1	<0.1	dl.1		<0.2			a.1			d		<0.1 <0.05				d0.1			<0.1	<0.1		0.1 <0.1			NAD	NAD
Bore 119 0.1 m 08/10/2021			11				20		-25 <50						4					<0.1			<0.2			40.1			4		<0.1 <0.05		<0.1		<0.1	<0.1			<0.1			<0.1			
Bore 120 0.1 m 08/10/2021 Bore 121 1 m 08/10/2021	<4	<0.4	2	5	11	<0.1	3	12 <	25 <50	<100	<100	-60	-0.2	<0.5	<1	4 4	-3	<0.05	<0.1	40.1	-40.1	-0.1	-0.2	<0.1	<0.1 d	4.1	-0.1	<0.1	<1	40.1	d.1 d.05		<0.1	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 d	.1 <0.1	<0.1	NAD	NAD	NAD
Bore 122 0.1 m 08/10/2021		<0.4 <0.4	25 6	10	11	<0.1	4	13 4	ය යා ය යා	<100	<100		40.2	45	<1			<0.05	<0.1	40.1	40.1	411	<0.2 c0.2	40.1	d1 d	1 401	40.1	- 40.1 - c0.1	<1 	40.1	40.1 40.05		<0.1	40.1	d0.1	40.1	<0.1 c0.1	<0.1	<0.1	dl.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 123 0.5 m 08/10/2021	4	-0.4		3	7	<0.1	2		25 <50					-0.5	d	4 4	3	<0.05	<0.1	-0.1	40.1	4.1	<0.2	-0.1		1.1 <0.1	40.1	<0.1	d		<0.1 <0.05		<0.1	<0.1	<0.1						1.1 <0.1			NAD	NAD
Bore 124 0.1 m 08/10/2021	<4	-0.4	16	10	14	<0.1	4		25 <50	<100		-60	-0.2	<0.5	<1	a d	a	<0.05	<0.1	<0.1	dl.1	d.1	<0.2	<0.1		11 d2.1	<0.1	<0.1	<1	-40.1	<0.1 <0.05		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 125 0.1 m 11/10/2021	<4	<0.4	11	4	10	<0.1	3	13 <	-25 <50	<100	<100	<50	<0.2	<0.5	<1	d d	- 3	<0.05	<0.1	<0.1	<0.1	d.1	<0.2	<0.1	<0.1 <	40.1	-40.1	<0.1	<1	<0.1	<0.1 <0.05	6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 d	.1 <0.1	<0.1	NAD	NAD	NAD
Bore 126 0.5 m 08/10/2021 Bore 127 0.5 m 11/10/2021	<4	<0.4	18	23	8	<0.1	8	19 <	25 <50	<100	<100	-00	-0.2	<0.5	<1	d d		<0.05	<0.1	<0.1	<0.1	4.1	<0.2	<0.1	<0.1 d	11 40.1	<0.1	<0.1	<1	<0.1	<0.1 <0.05	6	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	d0.1 d	1.1 <0.1	<0.1	NAD	NAD NAD	NAD NAD
Bore 127 0.5 m 11/10/2021 Bore 128 0.1 m 08/10/2021	4	<0.4	12	6	8	<0.1	2	5 4	25 -50 25 -50	<100	<100		<0.2	<0.5	4			<0.05	<0.1	-0.1	-41	4.1	<0.2	-0.1	41 4	11 41	- 40.1	- 40.1	4	40.1	d.1 <0.05		-40.1	40.1	dl.1 dl.1	<0.1	<0.1	<0.1	<0.1		1.1 <0.1	<0.1		NAD	NAD
Bore 129 1 m 11/10/2021		-0.4		3	6	<0.1	2		25 -60				40.2	-0.5	d	a a	3	<0.05	<0.1	40.1	dl.1	4.1	<0.2	<0.1	d1 d	11 41	40.1	40.1	4	-0.1	4.1 4.05		-0.1	d0.1	<0.1			<0.1	<0.1	d.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 130 0.5 m 11/10/2021	4	<0.4	17	17	20	<0.1	8	37 4	25 <50	<100	<100	-60	<0.2	<0.5	<1	d2 d1	d	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1 d	1.1 dl.1	<0.1	<0.1	<1	<0.1	<0.1 <0.05	6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 131 0.1 m 11/10/2021	<4	-0.4		24	12	<0.1	42		25 <50	_		- 60		<0.5	<1	d2 d1	d	<0.05	<0.1	<0.1	d0.1	d.1	<0.2	<0.1	d1 d		d0.1	<0.1	<1		<0.1 <0.05		<0.1	-d0.1	<0.1	40.1		<0.1		d0.1 d		<0.1	NAD	NAD	NAD
Bore 132 1 m 11/10/2021		-0.4					10		25 -50						<1	4 4	-3		<0.1		dl.1		<0.2			11 40.1	<0.1	<0.1	<1		<0.1 <0.05		<0.1		<0.1				<0.1		1.1 <0.1			NAD	NAD
Bore 133 0.1 m 11/10/2021 Bore 134 0.1 m 11/10/2021	~4	<0.4	16	11	17	<0.1	5		25 -50 25 -50			- 60	-0.2	-0.5	<1	d d		<0.05	-0.1	<0.1	40.1	4.1	<0.2 <0.2	<0.1	d1 d	4.1	<0.1	<0.1	4	40.1	d.1 d.05		<0.1	-0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	d0.1 d	.1 <0.1	<0.1	NAD	NAD	NAD NAD
Bore 134 0.1 m 11/102021		40.4	14	8	17	<0.1		19 4	25 (3)		<100		<0.2	du5	<1 /		0	<0.05	<0.1	40.1	40.1	411	<0.2 c0.2	40.1	du1 d	1 41	40.1	<0.1 c0.1	د د	40.1	40.1 40.05	0	- c0.1	40.1	40.1		<0.1 c0.1	<0.1 c0.1	<0.1	di.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 136 0.1 m 11/10/2021		<0.4	15	2	13	<0.1	4	17 <	25 <50		<100	-40		<0.5	<1	a a	a			<0.1	<0.1	d.1	<0.2		<0.1 d	1.1 <0.1	<0.1	<0.1	<1	<0.1	<0.1 <0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	NAD	NAD	NAD
	<4		18		11	<0.1	3	7 4	25 <50	<100	<100	ත	<0.2		<1		-3	<0.05	<0.1	<0.1	dl.1	d.1	<0.2			40.1		<0.1	<1		<0.1 <0.05		<0.1						<0.1			<0.1		NAD	NAD
	<4		18		9	<0.1	8		25 <50					<0.5		d d	- 3	<0.05	<0.1	<0.1	<0.1	4.1	<0.2	<0.1		1.1 <0.1		<0.1	<1		<0.1 <0.05		<0.1					<0.1				<0.1	NAD	NAD	NAD
Bore 139 0.1 m 11/10/2021	<4	-0.4		8	18	<0.1	4	14 <	25 -50		<100	- 40			<1	d d		<0.05	<0.1	<0.1	d0.1	4.1	<0.2	<0.1		11 d0.1	_	<0.1	<1		<0.1 <0.05		<0.1	<0.1	<0.1	⊲0.1		<0.1		d0.1 d		<0.1	NAD	NAD	NAD
Bore 140 1 m 08/10/2021 Bore 141 0.1 m 11//0/2021		<0.4 <0.4	11	9	5	<0.1	3		25 -50 25 -50			- d0 - d0		-0.5	<1	a a	0	<0.05	<0.1 <0.1	<0.1 <0.1	d1.1 d1.1	d.1 d.1	<0.2	<0.1		11 dl.1		<0.1 <0.1	ব		d.1 <0.05		<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1		<0.1	<0.1		1.1 <0.1	<0.1	NAD	NAD	NAD NAD
Bore 142 0.5 m 08/10/2021	4	<0.4	25	16	7	<0.1	14		25 -50	<100	<100	d0	-0.2	<0.5	<1	d d	4	<0.05	-0.1	<0.1	d2.1	-4.1	<0.2	<0.1	d1.1 d	1.1 42.1	<0.1	<0.1	<1	<0.1	<0.1 <0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	d0.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 143 1 m 11/10/2021	4	<0.4	28	48	12	<0.1	16	19 <	25 <50	<100	<100	-60	-0.2	<0.5	<1	d2 d1	d	<0.05	<0.1	<0.1	d0.1	d.1	<0.2	<0.1	d0.1 d	11 dl.1	<0.1	<0.1	<1	<0.1	<0.1 <0.05	đ	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	d0.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 144 0.1 m 08/10/2021	<4	<0.4	10	5	10	<0.1	4	16 4	25 <50	<100	<100	-60	<0.2	-0.5	<1	a d	4	<0.05	<0.1	<0.1	d2.1	-40.1	<0.2	<0.1	d1.1 d	41.1	<0.1	<0.1	<1	<0.1	<0.1 <0.05		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	d0.1 d	0.1 <0.1	<0.1	NAD	NAD	NAD
Bore 145 0.3 m 08/10/2021 Bore 146 0.5 m 08/10/2021	<4	<0.4 <0.4	19	7	20	<0.1	4		25 -60	<100		-d0 -d0	<0.2 <0.2	<0.5	<1	4 4		<0.05	<0.1 <0.1	<0.1	<0.1 <0.1	40.1	<0.2	<0.1	d1 d	41	<0.1	<0.1	4		-d0.1 <0.05		<0.1	<0.1 <0.1	<0.1 <0.1			<0.1	<0.1	d0.1 d	1.1 <0.1	<0.1	NAD	NAD NAD	NAD NAD
Bore 147 0.1 m 08/10/2021		<0.4 <0.4	1.0	7 8	14	<0.1	4	17 4	25 <50 25 <50	<100		- d0 - d0		-0.5	<1	a a		<0.05	-0.1	40.1	di.1	-00.1 -0.1	<0.2	-cu.1 -c0.1		1.1 d.1	-0.1	- 40.1	د د	41	40.1 <0.05		-0.1	40.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	d.1 d	<0.1	<0.1	NAD	NAD	NAD
Bore 148 0.8 m 08/10/2021	5	<0.4		31	7	<0.1	14		25 -50		<100	- 30		-0.5	<1	a a	3	<0.05	<0.1	<0.1	di.1	d.1	<0.2	<0.1		1.1 40.1	-0.1	<0.1	4	d1.1	<0.1 <0.05		<0.1	40.1	40.1	40.1	<0.1	<0.1	<0.1	d.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 149 0.1 m 11/10/2021	-04	<0.4	16	4	16	<0.1	3		25 <50	<100	<100	-60	<0.2	<0.5	<1	d2 d1	3	<0.05	<0.1	<0.1	d0.1	<0.1	<0.2	<0.1	d11 d	a.1	-40.1	<0.1	d	<0.1	40.1 <0.05	6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	d0.1 d	1.1 <0.1	<0.1	NAD	NAD	NAD
Bore 150 0.1 m 08/10/2021		<0.4	13	11	19	<0.1	5	36 <	25 <50	<100	110		<0.2	<0.5	<1	d2 <1	4	<0.05	<0.1	<0.1	dl.1		<0.2		<0.1 d	41 41		<0.1	d	40.1	<0.1 <0.05	ð	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	d).1 d	0.1 <0.1	<0.1	NAD	NAD	NAD
Bore 151 0.1 m 08/10/2021 Bore 152 0.1 m 08/10/2021		<0.4 <0.4	11	4	10	<0.1	2		25 -50 25 -50			-d0 -d0		<0.5	4	a a		<0.05	<0.1	<0.1	<0.1 <0.1	d.1	<0.2			1.1 d.1		<0.1	4		d.1 d.05			<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	d.1 d	.1 <0.1	<0.1	NAD	NAD	NAD
Bore 152 0.1 m 08/10/2021	- 64	<0.4	13	4	14	<0.1	2	13 4	25 <50	<100	<100	-30	<0.2	<0.5	<1	a d	4	<0.05	<0.1	<0.1	40.1	d.1	<0.2	<0.1	d11 d	41	<0.1	<0.1	4	40.1	40.1 <0.05	6	<0.1	<0.1	d0.1	<0.1	<0.1	<0.1	<0.1	d0.1 d	.1 <0.1	<0.1	NAD	NAD	NAD
CT1	100	20	100	NC	100	4	40	NC 65	150 NC	NC	NC	10000	10	288	600	NC NC	1000	0.8	NC	NC	NC NC	NC NC	NC	NC	NC N	C NC	NC	NC	NC	NC	NC 200	288	60	-50	4	NC	NC	NC	NC	NC P	C NC	<50	NC	NC	NC
SCC1	500	100	100	NC	1500	50	1050	NC 65	150 NC	NC	NC	10000	10	518	1080	NC NC	1800	10	NC	NC	NC	NC	NC	NC	NC N	IC NC	NC	NC NC NC	NC	NC	NC 200 NC 200 NC NA	518	108	-50	4	NC	NC	NC	NC NC	NC P	C NC	<50	NC	NC	NC NC
TCLP1	NA	NA	NA	NC	N/A	NIA	NA	NC N	NA NC	NC NC	NC	NA	NA	NA	NA	NC NC	NA	NA	NC	NC	NC NC NC	NC	NC	NC	NC N	IC NC	NC	NC	NC	NC						NC	NC	NC	NC	NC F	C NC	NA	NC	NC	NC
CT2 SCC2	400		400		400	16	160	NC 28	500 NC	NC	NC	40000	40				4000	32	NC	NC	NC	NC	NC			IC NC		NC	NC	NC	NC 800			ත				NC			C NC			NC	NC
SCC2 TCLP2	2000		7600 NA		6000 NA			NC 26	800 NC	NC NC	NC	40000 NA		2073 NA		NC NC	7200		NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC N	C NC	NC		NC NC		NC 800 NC NA			<50	30		NC NC		NC NC			<50 NA		NC NC	NC NC
10074	NIA	NA	46	18.	185	100	1910	m N	NC NC	NC	NL.	NA	-64	nes	100	~ NC	nuk.	N/A	NL.	NL.	NL.	NL.	NL.	NL	~ *	~ NC	NC NC	N.	NL.	NL.	~ NA	AWA	NIK	NA	NA	NL.	AL.	NL.	16.	~ 1	~ NC	88	Nu	NL	Nu

🗮 CT1 exceedances 📑 TCLP1 and/or SOC2 exceedances 📕 CT2 exceedances 📕 TCLP2 and/or SOC2 exceedances 📕 Ablestion distortion NT = Not twated NL = Not Initiary NC = No criteria NL = Not applicable

Table G4: Summary of Laboratory Test Results - TCLP (mg/L)

Sample ID	Sample Date	Nickel
Bore 112/1.0 m	8/10/2021	<0.02
Bore 131/0.1 m	11/10/2021	0.02
PQL		0.02
Leachable Concentration - N	Nickel	2

Notes:

PQL - Practical Quantitation Limit

Leachable Concentration for Nickel- General Solid Waste Classification Value

Douglas Partners Geotechnics | Environment | Groundwater

Table QA1: Relative Percentage Difference Results – Intra-laboratory Replicates

			1																																										
						M	etals						т	TRH				B	EX			PA	н		Phenol						OCP						OPP				PCI	в			
			Arsenic	Cadmium	T dal Chomium	Capper	Load	Mercury (norgario)	Nickel	200	TRH C6 - C10	TRH >CIO.C16	F1 ((C6 C10-BTEX)	P2 (»C10 C16 (esa Naphthallene)	F3 (>C16 C34)	F4 (xC34 C40)	Bezano	Tokuene	Bhybenzere	Total Xylenes	Naphrithadene ^b	Benzo(a) pyrene (Ball)	Berzokityrene TE O	Total PAH4s	Phenod	000	007+00E+000 ⁶	BOG	DOT	Aldin & Diektin	T dal Chlordane	Endén	Total Endoaufan	Heplachlor	Head I onchergene	Metrosychor	Chlorp/riphos	Arochior 1016	Total PCB	Arochior 1221	Arochior 1232	Arcehior 1242	Arochior 1248	Arrochlor 1254	Anoclor 1260
Sample ID	Depth	Sample Date	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mgkg	mgikg	mgikg	maka	mgikg	mgikg	malka	maka	mgikg	malka	mg/kg	mgikg	mgikg	mgikg	malka	mgikg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mgikg	mgikg	mg/kg	mg%g	mgikg	mg/kg	mg/kg
									•		•				•																														
R101	0 m	08/10/2021	5	<0.4	32	9	18	<0.1	9	20	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bore 105	0.5 m	08/10/2021	5	<0.4	27	11	22	<0.1	10	25	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	4	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	0	0	5	2	4	0	1	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	0%	0%	17%	20%	20%	0%	11%	22%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
R102	0 m	08/10/2021	<4	<0.4	22	15	7	<0.1	16	16	<25	<50	<25	<50	<100	<100	<0.2	<0.5	4	d	4	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bore 144	0.1 m	08/10/2021	<4	<0.4	10	5	10	<0.1	4	16	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	0	0	12	10	3	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	0%	0%	75%	100%	35%	0%	120%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
R103		08/10/2021	5	<0.4	16	11	17	<0.1	7	38	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bore 110	0.1 m	08/10/2021	<4	<0.4	15	10	25	<0.1	6	26	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	1	0	1	1	8	0	1	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	22%	0%	6%	10%	38%	0%	15%	38%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Douglas Partners Geotechnics | Environment | Groundwater

Table QA2: Relative Percentage Difference Results – Inter-laboratory Replicates

			-																																										
						м	etals						т	RH				В	TEX			Pi	н		Phenol						OCP						OPP				PCI	в			
			Arsonic	Cadmium	T dal Chomium	Capper	Load	Mercury (norgario)	Nickel	200	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	P2 (>C10-C16 less Naphrhallene)	F3 (+C16/C34)	F4 (5C34 C40)	Benzane	Tokuene	Bhybenzene	Total Xylenes	Naphthalanna b	Berzol aj pyrene (Ball)	Benaojajoyrene TE Q	Total PAH4s	Phenod	000	007+00E+000 ⁶	BOD	DOT	Aldin & Diektin	T cail Chaodane	Endin	Total Endoaufan	Heptachlor	Hexad I oroberz ene	Methooychtor	Chlorpyriphos	Arochior 1016	Total PCB	Arochior 1221	Arochior 1232	Arochior 1242	Arochior 1248	Arrochlor 1254	Anoclor 1260
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mgikg	mgikg	mgikg	mgikg	mg/kg	mgikg	mgikg	maka	mgikg	malka	mg/kg	mg/kg	mgikg	mgikg	mg/kg	mgikg	mgikg	mgikg	mgikg	mg/kg	mg/kg	mg/kg	mgikg	mgikg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg
RR101	0 m	08/10/2021	6	<1	23	11	22	<0.1	12	27	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bore 105	0.5 m	08/10/2021	5	<1	27	11	22	<0.1	10	25	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	1	0	4	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	18%	0%	16%	0%	0%	0%	18%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RR102	0 m	08/10/2021	4	<1	18	9	6	<0.1	11	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-6	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bore 144	0.1 m	08/10/2021	-6	<1	10	5	10	<0.1	4	16	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	0	0	8	4	4	0	7	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	0%	0%	57%	57%	50%	0%	93%	21%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RR103		08/10/2021	-6	<1	14	10	16	<0.1	7	34	<25	<50	<25	<50	<100	<100	<0.2	<0.5	4	<1	<1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bore 110	0.1 m	08/10/2021	-6	<1	15	10	25	<0.1	6	26	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	-5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	1	0	1	0	9	0	1	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD	22%	0%	7%	10%	44%	0%	15%	27%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table QA3: Trip Spike Results – Soils (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS1 - 8 Oct 21	94	94	96	96	96
TS2 - 11 Oct 21	82	82	84	84	84

Table QA4: Trip Blank Results - Soils (mg/kg)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TB1 - 8 Oct 21	ND	ND	ND	ND	ND
TB2 - 11 Oct 21	ND	ND	ND	ND	ND

Table QA5: Rinsate - Water (µg/l)

			TRH C6 - C10	F1 ((C6-C10)-BTEX)	Benzene	Toluene	Ethylbenzene	Naphthalene ^b
		PQL	10	10	1	1	1	1
Sample ID	Depth	Sample Date	µg/l	µg/l	µg/l	µg/l	µg/l	μg/l
Rinsate 1	NA	08/10/2021	<10	<10	<1	<1	<1	<1
Rinsate 2	NA	11/10/2021	<10	<10	<1	<1	<1	<1

Appendix H

Laboratory Sample Receipt, Chain of Custody, Laboratory Certificate

CHAIN OF CUSTODY DESPATCH SHEET

:

57

۰.

															To: Envirolab Service	s
	ect No:	202107.0			Suburb		Bungen	aore		<u> </u>	Samp	or				tswood NSW 2067
	ot manager	Shannon				Number:		<u> </u>			Samp	<u>er.</u>			Attn: Sample Receipt	
Ema				l@douglasp	barners.α	24 ho		Same da								amplereceipt@envirolab.com.au
Turr	around time:	Standa		72 hour		ples cor				12		Yes		then ha	ndle, transport and store in acc	ordance with FPM HAZID)
Prio	r Storage: 🗹 Fr	idge 📋	Freezer	Shelf			ntain p	otentia								
	Sar	nple ID		pled	Sample Type	Container Type				-		Analyte	s 			N. (
Lat ID	Location / Other ID	Depth From	. Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ткн	втех	Hd	Clay Content	CEC	ploH		Notes/ Preservation/ Additional Requirements
. 1	Bore 101	0.1	0.1	8/10/21	S	G								✓		
l	Bore 101	[°] 0.5	0.5	8/10/21	S	G								✓		
3	Bore 101	1.0	1.0	8/10/21	S	G	~									
Ý	Bore 101						•							 ✓ 		
5	Bore 102	0.1	0.1	8/10/21	S	G∘										12 Ashley St
6	Bore 102	0.5	0.5	8/10/21	S	G,	•	- ✓								Cistango od NSW 2067
		1.0	1.0	<u>~8/10/21</u>	S	G								✓	┟───┤───┦───┦	<u>b 3-3:</u>
8	Bore 102	1.5	1.5	8/10/21	S.	G										
0	Bore 103	0.1	0.1	8/10/21	s	G	✓ 		 							Tatashey St
(0	Bore 103	, 0.5	0.5	8/10/21	s	G	ļ	<u> </u>		ļ				✓		2014shley St Chat. And NSW 2067
. []]	Bore 103	1.0	1.0	8/10/21	S	G							· ·	✓ 	Jobr	280063
2	Bore 104	0.1	0.1	8/10/21	s	G	~		ļ	 		ļ		 		Kanand: 12/10/21
1		0.5	0.5	8/10/21	S	G	ļ				ļ		·		Receiv	
ſ	Bore 104	1.0	1.0	8/10/21	s	G								✓	Genetic Sector	Good million g. 100/herrack ty: Intecourceken/None
Me	als to analyse:			•												
	nber of sample		tainer:			Transp	orted to	o labor	atory t	by:		_			Lab Ref. No:	
	d results to:	Douglas	Partners	Pty Ltd											Received by: Christ	
	Iress:	Unit 2, 73	3 Sheppard	Street, Hum	ne ACT 26	Phone:	(02) 62	260 2788	3						Date & Time: 12/10	121 10:40
	inquished by:		n Goodse	ell		Date:				Signe	ed:				Signed:	<u> </u>

1

:

1 1

·2....

	Geotechnics I													1	To:	Envirola	ab Servi	ces
Projec	st No:	202107.0			Suburb): Number:	Bungen		Dispat	ch dat	e:					12 Ashi	ey St, C	hatswood NSW 2067
roje	t Manager:	Shannon	Goodsell															
	Sa	mple ID		oled	Sample Type	Container Type				····	r — —	Analyte	S			ı	·	Notes/ Preservation/ Additional
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	TRH	BTEX	뇞	Clay Content	CEC	Hold	,			Requirements
15	Bore 104	1.6	1.6	8/10/21	S	G					`			✓	<u>·</u>			· · · · · · · · · · · · · · · · · · ·
(6	Bore 105	0.ľ	0.1	8/10/21	S.	. G				· · ·	_	 		✓				
17	Bore 105	0.5	0.5	8/10/21	S	G			ļ	<u> </u>	<u> </u>					<u> </u>	<u> </u>	
18	Bore 105	1.0	1.0	8/10/21	S	. Ģ				<u> </u>								
19	Bore 105	1.6	1.6	8/10/21	S	G		L			<u> </u>			✓ 				
Zej	Bore 106	, 0.1	0.1	8/10/21、	S	G.		<u> </u>	ļ	<u> </u>	<u> </u>			✓				
21	Bore 106	0.5 ՝	0.5	8/10/21	s	G	~				<u> </u>	ļ	 					
22	Bore 106	1.0	1.0	8/10/21	s	G							<u> </u>	↓ ✓				
23	Bore 106	2.0	2:0	8/10/21	S	G							<u> </u>					
7.4	Bore 107	0.1	0.1	8/10/21	S	G								✓				
25	Bore 107	0.5	0.5	8/10/21	S	G						<u> </u>	<u> </u>	<u> </u>	<u> </u>			
26	Bore 107	1.0	1.0	8/10/21	S	G	~				_		<u> </u>	<u> </u>	· · · ·		<u></u>	
27	Bore 107	1.5	1.5	8/10/21	S	G							<u> </u>					· · · · · · · · · · · · · · · · · · ·
28	Bore 108		0.1	8/10/21	S.	G	~											
29		0.5	0.5	8/10/21	I S	G								✓ 				
30	Poro 108	1.0	1.0	8/10/21	1 S	G												
31	¹ Bore 108	1.5	1.5	8/10/21	1 S	G												
32	• Bore 109	0.1	0.1	8/10/2	1 S	G								1				H , 80063

H 2 80063 CH 12/10

<u>`</u>

••••

14

CHAIN OF CUSTODY DESPATCH SHEET

					Ownersdurate
N 1	1 ° 4	Centechnics	Environm	ent i	Groundwald

. سر

	Geotechnics I				0.1		Dungan	dore							To:	Envirol	ab Servi	ces
rojec	ct No:	202107.0			Suburb		Bungen								Dispa	tch date		
rojec	t Manager:	Shannon	Goodsell		Sample	Container						Analyte						
	Sa	mple ID		pled	Туре	Туре								<u> </u>			T	Notes/ Preservation/ Additional
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	TRH	втех	Hd.	Clay Content	CEC	PloH		. 		Requirements
33	Bore 109	0.5	0.5	8/10/21	S	G	~		 									
3Ψ	Bore 109	1.0	1.0	8/10/21	S	G			 	ļ				✓ 			+	
34 35	Bore 109	1.5	1.5	8/10/21	s	G				5.4				✓				
<u></u> <u>7</u> 6	Bore 110	[°] 0.1	0.1	8/10/21	s	G		ļ		<u> </u>	<u> .</u>	<u> </u>		<u> </u>				· · · · · · · · · · · · · · · · · · ·
<u>-7</u> 37	Bore 110	0.5	0.5	8/10/21	S	G		 										
38	Bore 111	. 0.1	0.1	8/10/21	S	G	~	<u> </u>	ļ	<u> </u>	<u> </u>							
	Bore 111	0.5	0,5	8/10/21	S	G						<u> </u>		<u> </u>			+	
40	Bore 111	1.0	1.0	8/10/21	S	G				<u> </u>					+			
भ	Bore 112	0.1	Ö.1	8/10/21	s	G				·	<u> </u>		<u> </u>					
42	Bore 112	0.5	0.5	8/10/21	S	G					×	<u> </u>	✓					
ΨJ		1.0	1.0	8/10/21	S	G	~										+	
44	Bore 113	0.1	0.1	8/10/21	S	G	<u> </u>		<u> </u>			<u> </u>						
45	Bore 113	0.5	0.5	8/10/21	S	G	 ✓ 											
46		1.0	1.0	8/10/21	S	G												
47	Boro 114	0.1	0.1	8/10/21	S	G	. ✓							+				
- Y	Bore 114	0.5	0.5	8/10/21	s	G				4								\$\$ 2.89063
4	Bore 114	.1.0	1.0	8/10/21	I S	G												
51	Dara 115	0.1	0.1	8/10/21	1 S	G												CH 12/10
-5	Bore 115	0.5	0.5	8/10/21	1 S	G	✓											
Dere	ject Managel		on Goods	ell				_							Dis	batch da	ite:	PRev5/Februa

• .

CHAIN OF CUSTODY DESPATCH SHEET

	Geotechnics - I E	202107.0			Suburb		Bungen	dore		<u> </u>					To:	Envirola	ab Servic	ces
Projec					Sample	Container						Analyte	s					
Lab		ple ID		ample	Type	Type stic stic	ga	s in DI D	· · · ·									Notes/ Preservation/ Additional Requirements
ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ТКН	BTEX	Hd	Clay Content	CEC	pioH				
52	Bore 115	1.0	1.0	8/10/21	S	G								 ✓ 				
53	Bore 116	0.1	0.1	8/10/21	S	G	~											
54	Bore 116	0.5	0.5	8/10/21	.S	G						ļ		✓	┣			
35	Bore 116	1.0	1.0	8/10/21	S	G			ļ					_ ✓			┼──	
56	Bore 117	0.1	0.1	8/10/21	S	G								✓		_	<u> </u>	
57	Bore 117	0.5	0.5	8/10/21	S	Ģ				<u> </u>	<u> </u>			<u> </u>				
58	Bore 117	1.0	1.0	8/10/21	S	G	 											
59	Bore 118	° 0.1	, 0.1	8/10/21	S	G		ļ	<u> </u>		<u> </u>			✓			 	
60	Bore 118	0.5	0.5	8/10/21	s	G	✓ 		<u> </u>									
61	Bore 118	1.0	1.0	8/10/21	s	G		<u> </u>										
62	Bore 119	0.1	0.1	8/10/21	S	G	✓	<u> </u>										
63	Bore 119	0.5	0.5	8/10/21	S	G		<u> </u>						✓ 				<u> </u>
64	Bore 119	1.0	1.0	8/10/21	S	G					+	+		↓ <i>✓</i>				
65	Bore 120	0.1	0.1	8/10/21	[`] S	G	_ ✓		<u> .</u>									
66	Bore 120	0.5	0.5	8/10/21	s	G ·											_	
67	Bore 120	1.0	1.0	8/10/21	S	G												H 20167
-68	Bore 121	0.1	-0.1	8/10/21	S	G							+					# 280063 CH 12/10
69	Bore 121	0.5	0.5	8/10/21	S	G							+					CIT 12/10
70	Bore 121	1.0	1.0	8/10/21	S	G	✓											
Proj	ect Manager:	Shanno	on Goodse	ell											Disp	atch da	te:	

-,

· · ·

Projec	t No:	202107.0	04		Suburb):	Bungen	dore							To:		ab Servio	
		ample ID		led	Sample Type	Container Type						Analyte	s					N. (
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ткн	втех	Hd	Clay Content	CEC	ploH				Notes/ Preservation/ Additiona Requirements
ור	Bore 122	0.1	0.1	8/10/21	s	G	✓											
72	Bore 122	0.5	0.5	8/10/21	S	G					↓ <i>✓</i> –	· · · · ·	✓ 					
73	Bore 122	1.0	1.0	8/10/21	S	G								×				
7ψ	Bore 123	0.1	0.1	8/10/21	S	G								✓ 		<u> </u>		
75	Bore 123	0.5	0.5	8/10/21	S	G			 		ļ	<u> </u>						
76	Bore 123	1.0	1.0	8/10/21	s	G				<u> </u>		<u> </u>		✓ 	·			
וד	Bore 124	0.1	0.1	8/10/21	s	G	✓ 		ļ									
78	Bore 124	0.5	0.5	8/10/21	s	G			<u> </u>	<u> </u>				✓				
79	Bore 126	0.1	0.1	8/10/21	S	G								↓ <u> </u>			_	
80	Bore 126	0.5	0.5	8/10/21	S	G	√			·					┨────			
8.1	Bore 126	1.0	1.0	8/10/21	S	G	ļ	<u> </u>					<u> </u>	✓			<u>+</u>	
82	Bore 126	1.5	1.5	8/10/21	S	G		<u> </u>				· 		✓		+		
83	Bore 128	0.1	0.1	8/10/21	s	G	✓ 							<u> </u>				
84		0.5	0.5	8/10/21	s	G			<u> </u>					✓			+	· · · · · · · · · · · · · · · · · · ·
85		0.1	0.1	8/10/21	s	G			<u> </u>	<u> </u>							+	
86	Bore 140	0.5	0.5	8/10/21	S	G		<u> </u>						✓				1 > 67101. 3
87	Bore 140	1.0	1.0	8/10/21	s	G											<u> </u>	# 280063 CH 12/410
\$8		<u>, 0.1</u>	0,1	8/10/21	S	G	<u> </u>											CH 12/410
89	Bore 142	0.5	0.5	8/10/21	S	G	✓											

•

•

CHAIN OF CUSTODY DESPATCH SHEET

N.

Projec	st No:	202107.0)4		Suburb):	Bunger	dore							To:	Envirol	ab Servic	ces
		nple ID		eq	Sample	Container						Analyte	S					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water adA	G - glass P - plastic ^{adA}	Comb. 8a	Asbestos in material ID	ткн	втех	Hd	Clay Content	CEC	ploH				Notes/ Preservation/ Additional Requirements
90	Bore 144	0.1	0.1	8/10/21	S	G	✓									<u> </u>		
	Bore 144	0.5	0.5	8/10/21	S	G								✓ 	 			
92	Bore 146	0.1	0.1	8/10/21	S	G					✓	~	1					
	Bore 146	0.5	0.5	8/10/21	S	G	~											
94	Bore 145	0.1	0.1	8/10/21	S	G								×				
95	Bore 145	0.3	0.3	8/10/21	S	G	 ✓ 							<u> </u>				
96	Bore 145	0.5	0.5	8/10/21	S	G				<u> </u>		ļ			ļ		ļ	· · · · · · · · · · · · · · · · · · ·
017	Bore 147	0.1	0.1	8/10/21	S	G	~				L				<u> </u>		ļ	· · · ·
98	Bore 147	0.3	0.3	8/10/21	S	G						ļ						
99	Bore 147	0.5	0.5	8/10/21	S	G								✓	<u> </u>		<u> </u>	
(00)	Bore 148 * .	0.1	0.1	8/10/21	S	G		1										
101	Bore 148	0.5	0.5	8/10/21	S	G								 ✓ 				
102	Bore 148	0.8	0.8	8/10/21	S	G	~											
103	Bore 150	0.1	0.1	8/10/21	S	G	~											
104	Bore 150	0.5	0.5	8/10/21	S	G								✓		_		
105	Bore 150	1.0	1.0	8/10/21	S	G								✓	<u> </u>		<u> </u>	#280063 CH 12/10
106		0.1	0.1	8/10/21	S	G	~											CH 12/10
107	Bore 151	0.5	0.5	8/10/21	S	G								~				
108	Bore 151	0.7	0.7	8/10/21	S	G								✓				
	ect Manager:	Shanno	n Goodse												Dispa	tch dat	e:	

.

	Geotechnics E							<u> </u>							To:	Envirol	ab Servic	ces
Projec	t No:	202107.0)4		Suburb		Bungen	dore										
	Sam	ple ID		led	Sample Type	Container						Analyte	s 					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ТКН	втех	Hd	Clay Content	CEC	PIOH				Notes/ Preservation/ Additional Requirements
109	Bore 152	0.1	0.1	8/10/21	S	G	~											
110	Bore 152	0.5	0.5	8/10/21	S	G								✓ 				
m	Bore 152	0.8	0.8	8/10/21	S	G								√				
112	R1	NA	NA	8/10/21	S	G	✓ 											
113	R2	NA	NA	8/10/21	S	G								 ✓ 				
114	R3	NA	NA	8/10/21	S	G	<u>√</u> .		 						<u> </u>			
115	• R4	NA	NA	8/10/21	s	G	·							✓ ✓ ✓				
116	R5	NA	NA	8/10/21	S	G					<u> </u>					_	+	
117	R7	NA	NA	8/10/21	S	G												
118	TS1	NA	NA	8/10/21	s	G			✓									
119	TB1	NA	NA	8/10/21	s	G			✓	✓							+	
/20	Rinsate 1	NA	NA	8/10/21	W	G			✓	✓						_		
12/	BH128	1.0		 								<u> </u>						· · · · · · · · · · · · · · · · · · ·
-122	84400-	0-1										 	┼──					
				<u> </u>							+					_{		++ 7.87%)[-7
											<u> </u>							14 60 00 65
											<u> </u>		<u> </u>			_		4 280063 СН 12/10 -
										ļ		+	<u> </u>					· · · · · · · · · · · · · · · · · · ·
															_			

-. . - ----

Ming To

Subject:

FW: Results for Registration 280063 202107.04, Bungendore

pof=280063-A. 7A71-1 day. iSne:15/10/2021

280063-A

From: Shannon Goodsell < Shannon.Goodsell@douglaspartners.com.au>

Sent: Thursday, 14 October 2021 9:14 AM

To: Greta Petzold <<u>GPetzold@envirolab.com.au</u>>

Cc: Aileen Hie <<u>AHie@envirolab.com.au</u>>; SydneyMailbox <<u>Sydney@envirolab.com.au</u>>

Subject: RE: Results for Registration 280063 202107.04, Bungendore

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Greta,

Could we also have some TCLP tests conducted on samples Bore 112/1.0 (280063-43) and Bore 131/0.1 (280174-13) for nickel?

If possible could we please have a same day TAT on the TCLP testing? Otherwise 24 TAT should be okay.

Thank you

Shannon Goodsell | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au Unit 2 73 Sheppard Street Hume ACT 2620 | PO Box 1487 Fyshwick ACT 2609 P: 02 6260 2788 | M: 0407 636 645 | E: Shannon.Goodsell@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited.

From: Shannon Goodsell Sent: Thursday, 14 October 2021 8:16 AM To: Greta Petzold <<u>GPetzold@envirolab.com.au</u>> Cc: Aileen Hie <<u>AHie@envirolab.com.au</u>>; SydneyMailbox <<u>Sydney@envirolab.com.au</u>> Subject: RE: Results for Registration 280063 202107.04, Bungendore

Hi Greta,

Could we please also analyse R2 for Comb8a? I will have to ask for a 24hr TAT on this one too, if that is okay

Subject:	FW: Results for Registration 280063 202107.04, Bungendore
an in standard and a band and and and and and and and and and	an on the 1 start, when when when when when a start is the balance and the start when you we are a normal the start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start when you we have a start to be a start to be a start when you we have a start to be a start when you we have a start to be a
	annon.Goodsell@douglaspartners.com.au>
Sent: Thursday, 14 October 2 To: Greta Petzold < <u>GPetzold</u>	
	<u>lab.com.au</u> >; SydneyMailbox < <u>Sydney@envirolab.com.au</u> >
	stration 280063 202107.04, Bungendore
	l from outside of the organisation. Do not act on instructions, click links or open attachments unless now the content is authentic and safe.
Hi Greta,	(13)
Could we please also analyse	R2 for Comb8a? I will have to ask for a 24hr TAT on this one too, if that is okay
	samples amended to say: R101, R102, R103, R104, R105, R106, R107 and R108 (this doesn't way, it can be completed after R2 (now R102) is analysed).
Thank you,	

Shannon Goodsell | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au Unit 2 73 Sheppard Street Hume ACT 2620 | PO Box 1487 Fyshwick ACT 2609 P: 02 6260 2788 | M: 0407 636 645 | E: Shannon.Goodsell@douglaspartners.com.au

Ming To

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited.

CLIENT CHOICE AWARDS

DOOVIDED TO

CLIENT CHOICE

202

From: Greta Petzold <<u>GPetzold@envirolab.com.au</u>> Sent: Wednesday, 13 October 2021 5:13 PM To: Shannon Goodsell <<u>Shannon.Goodsell@douglaspartners.com.au</u>> Subject: Results for Registration 280063 202107.04, Bungendore

Hi Shannon,

Please find a prelim report attached. Clay results will follow.

Thanks

Douglas Partners Geotechnics | Environment | Groundwater

÷

. . '

7.1

CHAIN OF CUSTODY DESPATCH SHEET

12 Ashley St 12 Ashley St Chatswood NSW 2007 Ph: (02) 9910 6200

Proje	ct No:	202107.	04		Subur	b:	Bungendo	re	<i>.</i>	-					To:	Ènviro	lab Servi	- i.			
	ct Manager:	Shanno	n Goodse	0	Order	Number:					Samp	ler:	SDG				nley St, C	-			•
Emai				ll@douglas					ç					-	Attn:		e Receip				
	round time:		ard	72 hour			our 🔄 Sar		_						Contact	(02) 99	910 6200	<u>j</u>		*	
Prior	Storage: 🗹 F	ridge 🗋	Freezer	Shelf			ntain 'pot	ential'	HBM?		No [Yes (If YES, th	en han	ile, transpo	ort and ste	ore in acc				
		mple ID		pled	Sample Type	Type			~.		A	nalytes		-					•		
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	TRH	втех	Hđ	Clay Content	CEC	ploH							
Ì	Bore 125	0.1	0.1	11/10/21	S	G	~														
2	Bore 125	0.5	0.5	11/10/21	S	Ġ	-							~							
3	Bore 125	1.0	1.0	11/10/21	S	G	Š	040 -						√].			
4	Bore 127	0.1	0.1	11/10/21	S	G	*						÷	× .]		÷	Servic
5	Bore 127	0.5 -	0.5	11/10/21	S	G	× ·]	ET	nJ ⊂ Chataw	12 Astricy : and NSIGRAM
6	Bore 127	1.0	1.0	11/10/21	S	G		ų						1					Job No	Ph:	(02) 9910 62:
7	Bore 129	0.1	0.1	11/10/21	S ·	G	~												- Wale Rer	80174 ceived: 12	10/21
8	Bore 129	0.5	0.5	11/10/21	S.	. G								~					Received	Ceived: 10	30
9:	Bore 129	1.0	1.0	11/10/21	S	G	÷	۶ ^۰ .						✓							
10	Borë 130	0.1	0.1	11/10/21	S	G		_						~					8 m	in Vio pack	n/None
11	Bore 130	0.5	0.5	11/10/21	S	G	1														
12	Bore 130	1.0	1.0	11/10/21	S	G								~							
13	Bore 131	0.1	0.1	11/10/21	S∽	G	1	_	-												
14	Bore 131	0.5	0.5	11/10/21	S	G								~							
Metal	s to analyse:														LAB R	ECEIF	 РТ	•			
	per of sample		tainer:			Transpo	orted to la	borato	ry by:								2801	74			
	results to:		Partners	Pty Ltd	•	·											THA	an			
Addre							(02) 6260 2								Date &				10.30	-	
Relin	quished by:	Shanno	n Goodse		1	Date:	12/10/2021	1		Signe	d:				Signed	: Æ	10	2			
		A	Ξ,	*.*										1			COC (@ 1i	Z.00K	m	

~

FPM - ENVID/Form COC 02

3

ંંત્

Page 1 of 8

(oc @ 12.00pm 12/10/21 Rev5/February 2021

Proje		202107.0			Subur		Bungendo	re							To:	Envirol	ab Servi
Proje	ct Manager:	Shannor	i Goodsel	1	Order	Number:	155170		Dispa	tch dat	te:	12/10/2	021			12 Ash	ley St, C
	Sa	mple ID		pled	Sample Type	Container Type				-	A	nalytes					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ТКН	втех	Hď	Clay Content	CEC	Plod			
15	Bore 131	1.0	1.0	11/10/21	S	G								~			
16	Bore 132	0.1	0.1	11/10/21	S	G								~			
17	Bore 132	0.5	0.5	11/10/21	S	G								~			
18	Bore 132	1.0	1.0	11/10/21	S	G	√										
19	Bore 133	0.1	0.1	11/10/21	s	G	~				-						
20	Bore 133	0.5	0.5	11/10/21	S	G								~			
21	Bore 133	1.0	1.0	11/10/21	S	G								~			
22	Bore 134	0.1	0.1	11/10/21	S	G	~										
23.	Bore 134	0.5	0.5	11/10/21	S	G								~			
-24	Bore 134	1.0	1.0	11/10/21	S	G		~						~			
25	Bore 135	0.1	0.1	11/10/21	S	G	~										
16	Bore 135	0.5	0.5	11/10/21	S	G								~			
127	Bore 135	1.0	1.0	11/10/21	S	G					~	~	~				
28	Bore 136	0.1	0.1	11/10/21	S	G	1										
29	Bore 136	0.5	0.5	11/10/21	S	G								~			
30	Bore 136	1.0	1.0	11/10/21	S	G								~			
31	Bore 137	0.1	0.1	11/10/21	S	G								~			
32	Bore 137	0.5	0.5	11/10/21	S	G	✓										

#280174

Ac

بم م

1.

1.

Project No:		202107.			Suburb: Bungendore							To: Envirolab Ser					
Project Manager: Shannon G			n Goodsei	ll											Dispa	tch dat	e:
	Sample ID				Sample Type	Container Type	Analytes										
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ТКН	втех	Hq	Clay Content	CEC	Hold			
33 Bore	137	1.0	1.0	11/10/21	S	G								~			
Bore	138	0.1	0.1	11/10/21	s	G	-							~			
35 Bore	138	0.5	0.5	11/10/21	s	G	√								1		
36 Bore	138	1.0	1.0	11/10/21	S	G								~	1		
37 Bore	139	0.1	0.1	11/10/21	s	G	~										
3 g Bore	139	0.5	0.5	11/10/21	s	G								~			1
39 Bore	139	1.0	1.0	11/10/21	s	G								~	1		
40 Bore	141	0.1	0.1	11/10/21	S	G	~							1			
fl Bore	141	0.5	0.5	11/10/21	S	G		1						~			
42 Bore	141	1.0	1.0	11/10/21	s	G								~			-
43 Bore	143	0.1	0.1	11/10/21	s	G								~			
14 Bore	143	0.5	0.5	11/10/21	s	G								~			
45 Bore	143	1.0	1.0	11/10/21	s	G	~										1
NE	149	- 0.1	0.1	11/10/21	s	G	~								-		
46 Bore	149	0.5	0.5	11/10/21	S	G									1	-	1
47 Bore		1.0	1.0	11/10/21	S	G									<u> </u>		1
NR	144/0.5	+		8/10/21	s	G	1										
4 9 R6		NA	NA	11/10/21	s	G								~	1		
RR6	w	NA	NA	11/10/21	s	G								~	1	1	1
Project Ma	anager:	Shannor	n Goodsel	<u> </u>								· · · ·	L	L	Dispa	tch dat	

#280179

,

.

.

Proje	Project No: 202107.04				Subur	Suburb: Bungendore								To: Envirolab Servi			
	Sample ID				Sample Type	Analytes											
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ткн	втех	Hq	Clay Content	CEC	Hold			
1	RR8			11/10/21	S	G								~			
NR	R2			8/10/21	s	G	~									-	
₿∕R	TB2			11/10/21	S	G			~	~							
	TS1			11/10/21	s	G			~	~							
NR	Rinsate 2			11/10/21	w	G			~	~					1	1	
NR Yg	R.8	(ext	w)	11/10/21	W	G			~					[

RRB } ALS

÷

۰,

280174

٦.

ces
hatswood NSW 2067
t
samplereceipt@envirolab.com.au
ordance with FPM HAZID)
· · · - · · · · · · · · · · · · · · · ·
Notes/ Preservation/ Additional
Requirements
l i
·

.

280174

ces	
hatswood NSW 2067	

Notes/ Preservation/ Additional Requirements

#280174

.

ces
Notes/ Preservation/ Additional Requirements
· · · · · · · · · · · · · · · · · · ·
Sent in 8th Oct. batch - not to be on Hold
Please send to ALS Sydney

FPM - ENVID/Form COC 02

280179

.

ces
Notes/ Preservation/ Additional Requirements
Please send to ALS Sydney
Sent in 8th Oct. batch - not to be on Hold

CHAIN OF CUSTODY DESPATCH SHEET

١

Ming To

Subject:

FW: Results for Registration 280063 202107.04, Bungendore

Pef: 280174-A. 7A7: 1 day. Due: 15/10/2021

280174-A

From: Shannon Goodsell < Shannon.Goodsell@douglaspartners.com.au >

Sent: Thursday, 14 October 2021 9:14 AM

To: Greta Petzold <<u>GPetzold@envirolab.com.au</u>>

Cc: Aileen Hie <<u>AHie@envirolab.com.au</u>>; SydneyMailbox <<u>Sydney@envirolab.com.au</u>> Subject: RE: Results for Registration 280063 202107.04, Bungendore

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Greta,

Could we also have some TCLP tests conducted on samples Bore 112/1.0 (280063-43) and Bore 131/0.1 (280174-13) for nickel?

If possible could we please have a same day TAT on the TCLP testing? Otherwise 24 TAT should be okay.

Thank you

Shannon Goodsell | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au Unit 2 73 Sheppard Street Hume ACT 2620 | PO Box 1487 Fyshwick ACT 2609 P: 02 6260 2788 | M: 0407 636 645 | E: Shannon.Goodsell@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited.

From: Shannon Goodsell
Sent: Thursday, 14 October 2021 8:16 AM
To: Greta Petzold <<u>GPetzold@envirolab.com.au</u>>
Cc: Aileen Hie <<u>AHie@envirolab.com.au</u>>; SydneyMailbox <<u>Sydney@envirolab.com.au</u>>
Subject: RE: Results for Registration 280063 202107.04, Bungendore

Hi Greta,

Douglas Partners

.

٠.

70

.

CHAIN OF CUSTODY DESPATCH SHEET

-	ct No:	202107.	04	<u> </u>	Subur	b:	Bungendor	e		-					To:	Enviro	lab Serv	i.		
	ct Manager:			1		Number:					Samp	ler:	SDG		1		nley St, (-		
Email	;	Shanno	n.Goodsel	l@douglas					¢					,	Attn:		e Receir			
	around time:			72 hour	48 hour										Contact	(02) 9	910 620	5	÷.	
Prior	Storage: 🔽 F	ridge 🗌	Freezer	Shelf			ntain 'pote	ential'	HBM?		No [_ Yes (If YES, the	en hand	lle, transpo	ort and st	ore in acc	x		
	Sai	mple ID		pled	Туре	Container Type			·	,	A	nalytes]	<u>.</u>	
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	TRH	BTEX	Hď	Clay Content	CEC	Hold			1			
ì	Bore 125	0.1	0,1	11/10/21	S	G	*							-						•
2	Bore 125	0.5	0.5	11/10/21	S	Ġ								~						
3	Bore 125	1.0	1.0	11/10/21	S	G	14	مو در به از				·		√].		
4	Bore 127	0.1	0.1	11/10/21	S.	G								~]		ترميد آ
5	Bore 127	0.5 -	0.5	11/10/21	S	G	× ·											1	ET	Sitiey Net 94
6	Bore 127	1.0	1.0	11/10/21	S	G								1					Job No:	10 62
7	Bore 129	0.1	0.1	11/10/21	S ·	G	~											1	280 174 Date Received: 12/10/	21
8	Bore 129	0.5	0.5	11/10/21	S.	G						* ·		~		1		1	Received By	
9:	Bore 129	1.0	1.0	11/10/21	S	G	: <u> </u>	۰.	÷					1						
10	Bore 130	0.1	0.1	11/10/21	S	G								1				1	in the part of the	3
11	Bore 130	0.5	0.5	11/10/21	S	G	1		•	:								1		
12	Bore 130	1.0-	1.0	11/10/21	s	G								1	1		1	1		
13	Bore 131	0.1	_ 0.1	11/10/21	S∽	G	✓											1		
14	Bore 131	0.5	0.5	11/10/21	S ,	G								1			1	1		
Metal	s to analyse:				•										LAB R	ECEIF	<u>ייי</u> די	3		
Numb	per of sample					Transpo	rted to lat	orato	ry by:					<u>.</u>			2801	74		
	results to:		Partners			•											TH			
Addre							(02) 6260 2	788									12/10		10.30	
Reline	quished by:	Shannor	I Goodsel		_	Date:	12/10/2021			Signe	d:				Signed					
	•	67	5.	•.•						`			1				COC 1	ଜ	12.00 pm	

FPM - ENVID/Form COC 02 3

્ર

Page 1 of 8

(oc @ 12.00pm 12/10/21

Rev5/February 2021

12 Astrioy St 12 Astrioy St Chatswood NSW 2037 Ph: (02) 9910 6200

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell

Sample Login Details	
Your reference	202107.04, Bungendore
Envirolab Reference	280063-A
Date Sample Received	12/10/2021
Date Instructions Received	14/10/2021
Date Results Expected to be Reported	15/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	additional analysis
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	3
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
Bore 101-0.1															\checkmark
Bore 101-0.5															\checkmark
Bore 101-1.0															\checkmark
Bore 101-1.6															\checkmark
Bore 102-0.1															\checkmark
Bore 102-0.5															✓
Bore 102-1.0															\checkmark
Bore 102-1.5															\checkmark
Bore 103-0.1															\checkmark
Bore 103-0.5															\checkmark
Bore 103-1.0															\checkmark
Bore 104-0.1															✓
Bore 104-0.5															✓
Bore 104-1.0															✓
Bore 104 -1.6															✓
Bore 105-0.1															✓
Bore 105-0.5															✓
Bore 105-1.0															✓
Bore 105-1.6															✓
Bore 106-0.1															✓

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
Bore 106-0.5															✓
Bore 106-1.0															✓
Bore 106-2.0															✓
Bore 107-0.1															✓
Bore 107-0.5															✓
Bore 107-1.0															✓
Bore 107-1.5															✓
Bore 108-0.1															✓
Bore 108-0.5															✓
Bore 108-1.0															✓
Bore 108-1.5															✓
Bore 109-0.1															✓
Bore 109-0.5															✓
Bore 109-1.0															✓
Bore 109-1.5															✓
Bore 110-0.1															✓
Bore 110-0.5															✓
Bore 111-0.1															\checkmark
Bore 111-0.5															\checkmark
Bore 111-1.0															\checkmark

VTRH(G6-C10)/BTEXN in Soil VTRH(C6-C10)/BTEXN in Soil SVTRH (C10-C40) in Soil SVTRH (C10-C40) in Soil Statistical Statistical	✓ ✓
Bore 112-0.1	
Bore 112-0.5	
Bore 112-1.0	✓
Bore 113-0.1	✓
Bore 113-0.5	✓
Bore 113-1.0	√
Bore 114-0.1	✓
Bore 114-0.5	✓
Bore 114-1.0	✓
Bore 115-0.1	✓
Bore 115-0.5	✓
Bore 115-1.0	√
Bore 116-0.1	✓
Bore 116-0.5	✓
Bore 116-1.0	✓
Bore 117-0.1	✓
Bore 117-0.5	✓
Bore 117-1.0	✓
Bore 118-0.1	✓
Bore 118-0.5	✓

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
Bore 118-1.0															✓
Bore 119-0.1															✓
Bore 119-0.5															✓
Bore 119-1.0															✓
Bore 120-0.1															✓
Bore 120-0.5															✓
Bore 120-1.0															\checkmark
Bore 121-0.1															✓
Bore 121-0.5															✓
Bore 121-1.0															✓
Bore 122-0.1															✓
Bore 122-0.5															✓
Bore 122-1.0															✓
Bore 123-0.1															\checkmark
Bore 123-0.5															\checkmark
Bore 123-1.0															\checkmark
Bore 124-0.1															\checkmark
Bore 124-0.5															✓
Bore 126-0.1															✓
Bore 126-0.5															✓

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
Bore 126-1.0															✓
Bore 126-1.5															✓
Bore 128-0.1															✓
Bore 128-0.5															✓
Bore 140-0.1															\checkmark
Bore 140-0.5															✓
Bore 140-1.0															\checkmark
Bore 142-0.1															\checkmark
Bore 142-0.5															✓
Bore 144-0.1															✓
Bore 144-0.5															✓
Bore 146-0.1															\checkmark
Bore 146-0.5															\checkmark
Bore 145-0.1															\checkmark
Bore 145-0.3															\checkmark
Bore 145-0.5															✓
Bore 147-0.1															✓
Bore 147-0.3															✓
Bore 147-0.5															✓
Bore 148-0.1															✓

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
Bore 148-0.5															✓
Bore 148-0.8															✓
Bore 150-0.1															✓
Bore 150-0.5															\checkmark
Bore 150-1.0															✓
Bore 151-0.1															✓
Bore 151-0.5															✓
Bore 151-0.7															✓
Bore 152-0.1															✓
Bore 152-0.5															✓
Bore 152-0.8															✓
R101															\checkmark
R102	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
R103															\checkmark
R104															\checkmark
R105															\checkmark
R107															✓
TS1															✓
TB1															✓
Rinsate 1															\checkmark

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
BH128-1.0															\checkmark
Bore 147 - [TRIPLICATE]-0.1															\checkmark

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CHAIN OF CUSTODY DESPATCH SHEET

Proje		202107.			Suburt		Bungendo								To:	Enviro	lab Servi
Proje	ct Manager:	Shannor	Goodsel	1	Order	Number:	155170		Dispa	tch dat	e:	12/10/2	021			12 Asl	iley St, C
		mple ID		pled	Sample Type	Container Type					A	nalytes					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ТКН	втех	Hď	Clay Content	CEC	Hold			
15	Bore 131	1.0	1.0	11/10/21	S	G								~			
16	Bore 132	0.1	0.1	11/10/21	S	G								~			
17	Bore 132	0.5	0.5	11/10/21	S	G								~			
18	Bore 132	1.0	1.0	11/10/21	S	G	√										
114	Bore 133	0.1	0.1	11/10/21	S	G	~										
20	Bore 133	0.5	0.5	11/10/21	S	G								~			
21	Bore 133	1.0	1.0	11/10/21	S	G								~			
.22	Bore 134	0.1	0.1	11/10/21	S	G	~										
23.	Bore 134	0.5	0.5	11/10/21	S	G					_			~			
	Bore 134	1.0	1.0	11/10/21	S	G								~			
25	Bore 135	0.1	0.1	11/10/21	S	G	✓										
16	Bore 135	0.5	0.5	11/10/21	S	G		Ì						~			
	Bore 135	1.0	1.0	11/10/21	S	G					~	~	~				
27 28	Bore 136	0.1	0.1	11/10/21	S	G	1										
29	Bore 136	0.5	0.5	11/10/21	S	G								~		- <u> </u>	
	Bore 136	1.0	1.0	11/10/21	S	G								~		1	
31	Bore 137	0.1	0.1	11/10/21	S	G								~	<u> </u>	+	
	Bore 137	0.5	0.5	11/10/21	S	G	~				_						

#280174

م بر

11

3.

CHAIN OF CUSTODY DESPATCH SHEET

Lab ID 33 Bore 34 Bore 35 Bore 36 Bore 36 Bore 37 Bore 40 Bore 40 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 Bore 42 Bore 41 80 41 80 80 80 80 80 80 80 80 80 80 80 80 80	No:	202107.			Suburt):	Bungendo	re							To:	Envirola	b Servi
ID 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 4 Bore 5 Bore 4 Bore 5 Bore	Manager:	Shannor	n Goodsel	1		L					<u></u>				Dispate	ch date:	.
ID 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 3 Bore 4 Bore 5 Bore 4 Bore 5 Bore	Sa	mple ID		oled	Sample Type	Container Type		-			A	nalytes		-			
3 Bore 4 Bore	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	TRH	втех	Ηq	Clay Content	CEC	рјон			
4 Bore 3 Bore 4 Bore 4 Bore 4 Bore 4 Bore 5 Bore 1 Bore 4 Bore	ore 137	1.0	1.0	11/10/21	S	G		_						>			
S Bore 36 Bore 39 Bore 39 Bore 39 Bore 40 Bore 41 Bore 42 Bore 43 Bore 44 Bore 45 Bore 46 Bore 47 Bore	ore 138	0.1	0.1	11/10/21	S	G								~			
36 Bore 37 Bore 39 Bore 39 Bore 40 Bore 41 Bore 42 Bore 43 Bore 43 Bore 43 Bore 43 Bore 45 Bore 47 Bore	ore 138	0.5	0.5	11/10/21	S	G	1										
9 Bore 39 Bore 40 Bore 1 Bore	ore 138	1.0	1.0	11/10/21	S	G								1			
39 Bore 39 Bore 40 Bore 41 Bore 42 Bore 43 Bore 43 Bore 44 Bore 5 Bore 74 Bore 75 Bore	ore 139	0.1	0.1	11/10/21	S	G	1										
39 Bore 40 Bore 41 Bore 42 Bore 43 Bore 43 Bore 43 Bore 44 Bore 5 Bore 74 Bore 75 Bore 74 Bore 75 Bore 74 Bore 75 Bore 76 Bore 77 Bore 78 Bore	ore 139	0.5	0.5	11/10/21	S	G								1			
1 Bore 42 Bore 13 Bore 13 Bore 14 Bore 15 Bore 16 Bore 17 Bore	ore 139	1.0	1.0	11/10/21	s	G								1			
42 Bore 43 Bore 43 Bore 43 Bore 45 Bore 17 Bore 47 Bore 17 Bore 17 Bore 17 Bore 17 Bore	ore 141 `	0.1	0.1	11/10/21	S	G	~						_				
42 13 Bore 14 Bore 15 Bore NL Bore 17 Bore 17 Bore VR Bore	ore 141	0.5	0.5	11/10/21	S	G								~			
HS Bore NE Bore HS Bore HF Bore NR Bore	ore 141	1.0	1.0	11/10/21	S	G								~			
HS Bore NE Bore HS Bore HF Bore NR Bore	ore 143	0.1	0.1	11/10/21	S	G								1			
15 NE Bore 16 17 Bore VR	ore 143	0.5	0.5	11/10/21	S	G								1			
NE Bore A Bore NR Bore	ore 143	1.0	1.0	11/10/21	S	G	~		- *								
46 Bore 47 Bore VR Bore	ore 149	- 0.1	0.1	11/10/21	S	G	✓										
NR Bore	ore 149	0.5	0.5	11/10/21	S	G								~		1	
NR Bore	ore 149	1.0	1.0	11/10/21	S	G								~			
	ore 144/0.5	+		8/10/21	Ŝ	G	1										
9 R6	6	NA	NA	11/10/21	S	G							_	~		<u> </u>	
RR6	R6 🔍	NA	NA	11/10/21	S	G								~			
Project M	Manager:	Shannor	Goodsel	 											Dispate	ch date:	

7280179

CHAIN OF CUSTODY DESPATCH SHEET

Pr	rojec	st No:	202107.	04		Suburi		Bungendo	re							To:	Envirola	ab Ser
		Sa	mple ID	-	oled	Sample Type	Container Type					A	nalytes					
	.ab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Comb. 8a	Asbestos in material ID	ткн	втех	Hd	Clay Content	CEC	Hold			
-	-	RR8			11/10/21	S	G								~			
N T	In_	R2			8/10/21	s	G	1										
. \$	R	TB2			11/10/21	s	G			√	~					<u> </u>	+	
S N	R	TS1			11/10/21	S	G			~	~					<u> </u>		
N	R	Rinsate 2			11/10/21	w	G			1	~					<u> </u>		

.

RRB JALS

۰,

280174

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell

Sample Login Details	
Your reference	202107.04, Bungendore
Envirolab Reference	280063
Date Sample Received	12/10/2021
Date Instructions Received	12/10/2021
Date Results Expected to be Reported	13/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	120 Soil, 1 Water
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	3
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Clay unable to be tested in 1 day

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	Misc Inorg - Soil	Clay 50-120g	CEC	vTRH(C6-C10)/BTEXN in Water	On Hold
Bore 101-0.1														\checkmark
Bore 101-0.5														\checkmark
Bore 101-1.0	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓					
Bore 101-1.6														\checkmark
Bore 102-0.1														\checkmark
Bore 102-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 102-1.0														\checkmark
Bore 102-1.5														\checkmark
Bore 103-0.1	\checkmark	✓	✓	\checkmark	✓	✓	✓	✓	✓					
Bore 103-0.5														✓
Bore 103-1.0														✓
Bore 104-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 104-0.5														✓
Bore 104-1.0														✓
Bore 104 -1.6														✓
Bore 105-0.1														✓
Bore 105-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 105-1.0														✓
Bore 105-1.6														✓
Bore 106-0.1														✓
Bore 106-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 106-1.0														✓
Bore 106-2.0														✓
Bore 107-0.1														✓
Bore 107-0.5														✓
Bore 107-1.0	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 107-1.5														✓
Bore 108-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 108-0.5														✓
Bore 108-1.0														✓
Bore 108-1.5														✓
Bore 109-0.1														\checkmark

Envirolab Services Pty Ltd

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	Misc Inorg - Soil	Clay 50-120g	CEC	vTRH(C6-C10)/BTEXN in Water	On Hold
Bore 109-0.5	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark					
Bore 109-1.0														\checkmark
Bore 109-1.5														\checkmark
Bore 110-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark					
Bore 110-0.5														\checkmark
Bore 111-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 111-0.5														\checkmark
Bore 111-1.0														\checkmark
Bore 112-0.1														✓
Bore 112-0.5										\checkmark	✓	✓		
Bore 112-1.0	✓	✓	\checkmark	✓	\checkmark	✓	✓	✓	\checkmark					
Bore 113-0.1														✓
Bore 113-0.5	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓					
Bore 113-1.0														✓
Bore 114-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 114-0.5														\checkmark
Bore 114-1.0														✓
Bore 115-0.1														✓
Bore 115-0.5	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓					
Bore 115-1.0														\checkmark
Bore 116-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 116-0.5														\checkmark
Bore 116-1.0														✓
Bore 117-0.1														\checkmark
Bore 117-0.5	✓	\checkmark	✓	✓	\checkmark	✓	✓	✓	✓					
Bore 117-1.0														✓
Bore 118-0.1														✓
Bore 118-0.5	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓					
Bore 118-1.0														✓
Bore 119-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 119-0.5														✓
Bore 119-1.0														✓

Envirolab Services Pty Ltd

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	Misc Inorg - Soil	Clay 50-120g	CEC	vTRH(C6-C10)/BTEXN in Water	On Hold
Bore 120-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 120-0.5														\checkmark
Bore 120-1.0														\checkmark
Bore 121-0.1														\checkmark
Bore 121-0.5														\checkmark
Bore 121-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 122-0.1	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark					
Bore 122-0.5										\checkmark	✓	✓		
Bore 122-1.0														✓
Bore 123-0.1														\checkmark
Bore 123-0.5	\checkmark	\checkmark	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark					
Bore 123-1.0														✓
Bore 124-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 124-0.5														✓
Bore 126-0.1														✓
Bore 126-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 126-1.0														✓
Bore 126-1.5														✓
Bore 128-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 128-0.5														✓
Bore 140-0.1														✓
Bore 140-0.5														✓
Bore 140-1.0	✓	✓	✓	✓	✓	\checkmark	✓	✓	\checkmark					
Bore 142-0.1														✓
Bore 142-0.5	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark					
Bore 144-0.1	✓	✓	✓	✓	✓	\checkmark	✓	✓	\checkmark					
Bore 144-0.5														✓
Bore 146-0.1										✓	✓	✓		
Bore 146-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 145-0.1														✓
Bore 145-0.3	✓	✓	✓	✓	✓	✓	✓	✓	✓					
Bore 145-0.5														✓

Envirolab Services Pty Ltd

TB1-.

Rinsate 1-.

BH128-1.0

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils	Misc Inorg - Soil	Clay 50-120g	CEC	vTRH(C6-C10)/BTEXN in Water	On Hold
Bore 147-0.1	\checkmark	✓	✓	√	✓	✓	✓	✓	\checkmark					
Bore 147-0.3														✓
Bore 147-0.5														✓
Bore 148-0.1														\checkmark
Bore 148-0.5														\checkmark
Bore 148-0.8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 150-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 150-0.5														\checkmark
Bore 150-1.0														\checkmark
Bore 151-0.1	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 151-0.5														\checkmark
Bore 151-0.7														\checkmark
Bore 152-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Bore 152-0.5														\checkmark
Bore 152-0.8														\checkmark
R1	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	✓	✓	\checkmark					
R2														✓
R3	\checkmark	\checkmark	\checkmark	✓	✓	✓	✓	✓	\checkmark					
R4														\checkmark
R5														\checkmark
R7														✓
TS1	\checkmark													

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

 \checkmark

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

 \checkmark

 \checkmark

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell

Sample Login Details	
Your reference	202107.04, Bungendore
Envirolab Reference	280174
Date Sample Received	12/10/2021
Date Instructions Received	12/10/2021
Date Results Expected to be Reported	13/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	50 Soil
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	7
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Clay results may be delayed

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Misc Inorg - Soil	CEC	Clay 50-120g	On Hold
Bore 125-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Bore 125-0.5													✓
Bore 125-1.0													✓
Bore 127-0.1													✓
Bore 127-0.5	✓	✓	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark				
Bore 127-1.0													✓
Bore 129-01	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark				
Bore 129-0.5													✓
Bore 129-1.0													✓
Bore 130-0.1													✓
Bore 130-0.5	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	✓	✓	✓				
Bore 130-1.0													✓
Bore 131-0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark				
Bore 131-0.5													✓
Bore 131-1.0													✓
Bore 132-0.1													✓
Bore 132-0.5													✓
Bore 132-1.0	\checkmark	✓	✓	\checkmark	✓	\checkmark	✓	✓	✓				
Bore 133-0.1	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Bore 133-0.5													\checkmark
Bore 133-1.0													\checkmark
Bore 134-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Bore 134-0.5													\checkmark
Bore 134-1.0													✓
Bore 135-0.1	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark				
Bore 135-0.5													✓
Bore 135-1.0										\checkmark	\checkmark	\checkmark	
Bore 136-0.1	✓	✓	✓	✓	✓	✓	✓	✓	✓				
Bore 136-0.5													✓
Bore 136-1.0													✓
Bore 137-0.1													✓
Bore 137-0.5	✓	✓	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark				

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Misc Inorg - Soil	CEC	Clay 50-120g	On Hold
Bore 137-1.0													✓
Bore 138-0.1													✓
Bore 138-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark				
Bore 138-1.0													\checkmark
Bore 139-0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Bore 139-0.5													✓
Bore 139-1.0													✓
Bore 141-0.1	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark				
Bore 141-0.5													✓
Bore 141-1.0													\checkmark
Bore 143-0.1													\checkmark
Bore 143-0.5													✓
Bore 143-1.0	✓	✓	✓	✓	✓	✓	✓	✓	✓				
Bore 149-0.5													✓
Bore 149-1.0													✓
R6													✓
R8													\checkmark
Bore 149-0.1	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓				

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell

Sample Login Details	
Your reference	202107.04, Bungendore
Envirolab Reference	280174-A
Date Sample Received	12/10/2021
Date Instructions Received	14/10/2021
Date Results Expected to be Reported	15/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	additional analysis
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	7
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab	Services	Pty Ltd
-----------	----------	---------

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
Bore 125-0.1						✓
Bore 125-0.5						\checkmark
Bore 125-1.0						\checkmark
Bore 127-0.1						\checkmark
Bore 127-0.5						✓
Bore 127-1.0						✓
Bore 129-01						\checkmark
Bore 129-0.5						✓
Bore 129-1.0						✓
Bore 130-0.1						✓
Bore 130-0.5						✓
Bore 130-1.0						✓
Bore 131-0.1	✓	✓	✓	✓	✓	
Bore 131-0.5						✓
Bore 131-1.0						✓
Bore 132-0.1						✓
Bore 132-0.5						✓
Bore 132-1.0						✓
Bore 133-0.1						✓
Bore 133-0.5						✓
Bore 133-1.0						✓
Bore 134-0.1	_					✓ ✓
Bore 134-0.5	_					√
Bore 134-1.0						 ✓
Bore 135-0.1	_					✓ ✓
Bore 135-0.5	_					✓ ✓
Bore 135-1.0						✓ ✓
Bore 136-0.1	_					✓ ✓
Bore 136-0.5	_					✓ ✓
Bore 136-1.0						✓ √
Bore 137-0.1						✓ ✓
Bore 137-0.5						¥

Envirolab Services Pty Ltd					
ABN 37 112 535 645					
12 Ashley St Chatswood NSW 2067					
ph 02 9910 6200 fax 02 9910 6201					
customerservice@envirolab.com.au					
www.envirolab.com.au					

	Sample ID	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
Bore 137-1.0							\checkmark
Bore 138-0.1							\checkmark
Bore 138-0.5							\checkmark
Bore 138-1.0							✓
Bore 139-0.1							✓
Bore 139-0.5							\checkmark
Bore 139-1.0							✓
Bore 141-0.1							\checkmark
Bore 141-0.5							\checkmark
Bore 141-1.0							\checkmark
Bore 143-0.1							\checkmark
Bore 143-0.5							✓
Bore 143-1.0							\checkmark
Bore 149-0.5							\checkmark
Bore 149-1.0							✓
R6							\checkmark
R8							\checkmark
Bore 149-0.1							✓
Bore 137 - [TR	IPLICATE]-0.5						✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell

Sample Login Details	
Your reference	202107.04, Bungendore
Envirolab Reference	280174-B
Date Sample Received	13/10/2021
Date Instructions Received	13/10/2021
Date Results Expected to be Reported	15/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	52 Soil, 1 Water
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	7
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
#52 labelled as TB Soil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

	Sample ID	vTRH(C6-C10)/BTEXN in Soil	vTRH(C6-C10)/BTEXN in Water	On Hold
Bore 125-0.1				✓
Bore 125-0.5				✓
Bore 125-1.0				✓
Bore 127-0.1				✓
Bore 127-0.5				✓
Bore 127-1.0				✓
Bore 129-01				✓
Bore 129-0.5				\checkmark
Bore 129-1.0				✓
Bore 130-0.1				\checkmark
Bore 130-0.5				\checkmark
Bore 130-1.0				✓
Bore 131-0.1				\checkmark
Bore 131-0.5				\checkmark
Bore 131-1.0				✓ ✓
Bore 132-0.1				\checkmark
Bore 132-0.5				✓
Bore 132-1.0				\checkmark
Bore 133-0.1				\checkmark
Bore 133-0.5				\checkmark
Bore 133-1.0				\checkmark
Bore 134-0.1				✓
Bore 134-0.5				\checkmark
Bore 134-1.0				\checkmark
Bore 135-0.1				✓
Bore 135-0.5				\checkmark
Bore 135-1.0				\checkmark
Bore 136-0.1				✓
Bore 136-0.5				\checkmark
Bore 136-1.0				✓
Bore 137-0.1				\checkmark
Bore 137-0.5				\checkmark

Envirolab	Services	Pty	Ltd
-----------	----------	-----	-----

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soi	vTRH(C6-C10)/BTEXN in Wate	On Hold
Bore 137-1.0			✓
Bore 138-0.1			✓
Bore 138-0.5			✓
Bore 138-1.0			✓
Bore 139-0.1			✓
Bore 139-0.5			✓
Bore 139-1.0			✓
Bore 141-0.1			✓
Bore 141-0.5			✓
Bore 141-1.0			✓
Bore 143-0.1			✓
Bore 143-0.5			✓
Bore 143-1.0			✓
Bore 149-0.5			✓
Bore 149-1.0			✓
R6			✓
R8			✓
Bore 149-0.1			✓
Bore 137 - [TRIPLICATE]-0.5			✓
ТВ2	✓		
TS1	✓		
Rinsate 2		\checkmark	

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280063

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	<u>202107.04, Bungendore</u>
Number of Samples	120 Soil, 1 Water
Date samples received	12/10/2021
Date completed instructions received	12/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by15/10/2021Date of Issue15/10/2021NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Jaimie Loa-Kum-Cheung, Senior Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	83	94	83	90	74
-						
vTRH(C6-C10)/BTEXN in Soil						
		280063-21	280063-26	280063-28	280063-33	280063-36
vTRH(C6-C10)/BTEXN in Soil	UNITS			280063-28 Bore 108	280063-33 Bore 109	280063-36 Bore 110
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS	280063-21	280063-26			
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	280063-21 Bore 106	280063-26 Bore 107	Bore 108	Bore 109	Bore 110
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	280063-21 Bore 106 0.5	280063-26 Bore 107 1.0	Bore 108 0.1	Bore 109 0.5	Bore 110 0.1
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample	UNITS -	280063-21 Bore 106 0.5 Soil	280063-26 Bore 107 1.0 Soil	Bore 108 0.1 Soil	Bore 109 0.5 Soil	Bore 110 0.1 Soil
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample Date Sampled	UNITS - -	280063-21 Bore 106 0.5 Soil 08/10/2021	280063-26 Bore 107 1.0 Soil 08/10/2021	Bore 108 0.1 Soil 08/10/2021	Bore 109 0.5 Soil 08/10/2021	Bore 110 0.1 Soil 08/10/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample Date Sampled Date extracted	UNITS - - mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021	Bore 108 0.1 Soil 08/10/2021 12/10/2021	Bore 109 0.5 Soil 08/10/2021 12/10/2021	Bore 110 0.1 Soil 08/10/2021 12/10/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed	-	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C6 - C9	- - mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthType of sampleDate SampledDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthType of sampleDate SampledDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthType of sampleDate SampledDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.5 <1 <2	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthType of sampleDate SampledDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	280063-21 Bore 106 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	280063-26 Bore 107 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	Bore 108 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Bore 109 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	Bore 110 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	98	94	95	92	97
L						
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
	UNITS	280063-53 Bore 116	280063-57 Bore 117	280063-60 Bore 118	280063-62 Bore 119	280063-65 Bore 120
Our Reference	UNITS					
Our Reference Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Our Reference Your Reference Depth	UNITS	Bore 116 0.1	Bore 117 0.5	Bore 118 0.5	Bore 119 0.1	Bore 120 0.1
Our Reference Your Reference Depth Type of sample	UNITS -	Bore 116 0.1 Soil	Bore 117 0.5 Soil	Bore 118 0.5 Soil	Bore 119 0.1 Soil	Bore 120 0.1 Soil
Our Reference Your Reference Depth Type of sample Date Sampled	UNITS - -	Bore 116 0.1 Soil 08/10/2021	Bore 117 0.5 Soil 08/10/2021	Bore 118 0.5 Soil 08/10/2021	Bore 119 0.1 Soil 08/10/2021	Bore 120 0.1 Soil 08/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted	UNITS - - mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021	Bore 117 0.5 Soil 08/10/2021 12/10/2021	Bore 118 0.5 Soil 08/10/2021 12/10/2021	Bore 119 0.1 Soil 08/10/2021 12/10/2021	Bore 120 0.1 Soil 08/10/2021 12/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed	-	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ vTPH C $_6$ - C $_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.5 <1 <2	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthType of sampleDate SampledDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 116 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	Bore 117 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	Bore 118 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	Bore 119 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	Bore 120 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	90	102	92	87	84
		1				1
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
	UNITS	280063-83 Bore 128	280063-87 Bore 140	280063-89 Bore 142	280063-90 Bore 144	280063-93 Bore 146
Our Reference	UNITS					
Our Reference Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Our Reference Your Reference Depth	UNITS	Bore 128 0.1	Bore 140 1.0	Bore 142 0.5	Bore 144 0.1	Bore 146 0.5
Our Reference Your Reference Depth Type of sample	UNITS -	Bore 128 0.1 Soil	Bore 140 1.0 Soil	Bore 142 0.5 Soil	Bore 144 0.1 Soil	Bore 146 0.5 Soil
Our Reference Your Reference Depth Type of sample Date Sampled	UNITS - -	Bore 128 0.1 Soil 08/10/2021	Bore 140 1.0 Soil 08/10/2021	Bore 142 0.5 Soil 08/10/2021	Bore 144 0.1 Soil 08/10/2021	Bore 146 0.5 Soil 08/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted	UNITS - mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021	Bore 140 1.0 Soil 08/10/2021 12/10/2021	Bore 142 0.5 Soil 08/10/2021 12/10/2021	Bore 144 0.1 Soil 08/10/2021 12/10/2021	Bore 146 0.5 Soil 08/10/2021 12/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed	-	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ vTPH C $_6$ - C $_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5 <1	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5 <1
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.5 <1 <1	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthType of sampleDate SampledDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 128 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	Bore 140 1.0 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	Bore 142 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	Bore 144 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	Bore 146 0.5 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	93	90	96	77	90
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		280063-109	280063-112	280063-114	280063-118	280063-119
	UNITS	280063-109 Bore 152	280063-112 R101	280063-114 R103	280063-118 TS1	280063-119 TB1
Our Reference	UNITS					
Our Reference Your Reference	UNITS	Bore 152			TS1	
Our Reference Your Reference Depth	UNITS	Bore 152 0.1	R101	R103	TS1	TB1
Our Reference Your Reference Depth Type of sample	UNITS -	Bore 152 0.1 Soil	R101 Soil	R103 Soil	TS1 Soil	TB1 Soil
Our Reference Your Reference Depth Type of sample Date Sampled	UNITS - -	Bore 152 0.1 Soil 08/10/2021	R101 Soil 08/10/2021	R103 Soil 08/10/2021	TS1 Soil 08/10/2021	TB1 Soil 08/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted	UNITS - - mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021	R101 Soil 08/10/2021 12/10/2021	R103 Soil 08/10/2021 12/10/2021	TS1 Soil 08/10/2021 12/10/2021	TB1 Soil 08/10/2021 12/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed	-	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021	R101 Soil 08/10/2021 12/10/2021 13/10/2021	R103 Soil 08/10/2021 12/10/2021 13/10/2021	TS1 Soil 08/10/2021 12/10/2021 13/10/2021	TB1 Soil 08/10/2021 12/10/2021 13/10/2021
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25	R101 Soil 08/10/2021 12/10/2021 13/10/2021 <25	R103 Soil 08/10/2021 12/10/2021 13/10/2021 <25	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 [NA]	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	R101 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	R103 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 [NA] [NA]	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ vTPH C $_6$ - C $_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	R101 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	R103 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 [NA] [NA]	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	R101 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	R103 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 [NA] [NA] [NA] 94%	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ vTPH C $_6$ - C $_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	R101 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	R103 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 [NA] [NA] [NA] 94% 94%	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	R101 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	R103 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 [NA] [NA] [NA] 94% 94% 96%	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our Reference Your Reference Depth Type of sample Date Sampled Date extracted Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	R101 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	R103 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 [NA] [NA] [NA] 94% 94% 96% 96%	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthType of sampleDate SampledDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 152 0.1 Soil 08/10/2021 12/10/2021 13/10/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	R101 Soil 08/10/2021 12/10/2021 13/10/2021 225 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	R103 Soil 08/10/2021 12/10/2021 13/10/2021 225 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	TS1 Soil 08/10/2021 12/10/2021 13/10/2021 (NA) (NA) (NA) (NA) 94% 94% 94% 96% 96%	TB1 Soil 08/10/2021 12/10/2021 13/10/2021 225 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1

svTRH (C10-C40) in Soil						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	91	97	94	92

svTRH (C10-C40) in Soil						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	89	90	93	91	90

Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	91	90	93	91

svTRH (C10-C40) in Soil						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	12/10/2021	12/10/2021	13/10/2021	12/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	92	88	85	84	85

svTRH (C10-C40) in Soil						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	85	85	83	88	84

svTRH (C10-C40) in Soil						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	84	86	88	85

svTRH (C10-C40) in Soil						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	110	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	150	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	150	<50
Surrogate o-Terphenyl	%	83	85	86	88	90

svTRH (C10-C40) in Soil				
Our Reference		280063-109	280063-112	280063-114
Your Reference	UNITS	Bore 152	R101	R103
Depth		0.1		
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C29 - C36	mg/kg	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	90	90	92

PAHs in Soil						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	119	125	125	125	115

PAHs in Soil						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	130	120	126	113	120

PAHs in Soil						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	123	121	126	126	117

PAHs in Soil						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	13/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	123	125	114	107	120

PAHs in Soil						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	121	99	102	115	127

PAHs in Soil						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	126	121	108	100	107

PAHs in Soil						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	105	105	125	98	103

PAHs in Soil				
Our Reference		280063-109	280063-112	280063-114
Your Reference	UNITS	Bore 152	R101	R103
Depth		0.1		
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	104	93	119

Organochlorine Pesticides in soil						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	102	109	112	103

Organochlorine Pesticides in soil						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	105	116	98	111

Organochlorine Pesticides in soil						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	105	112	120	102

Organochlorine Pesticides in soil						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	13/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	99	121	102	109

Organochlorine Pesticides in soil						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	103	106	113	107

Organochlorine Pesticides in soil						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	110	104	114	110

Organochlorine Pesticides in soil						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	115	106	102	100

Organochlorine Pesticides in soil				
Our Reference		280063-109	280063-112	280063-114
Your Reference	UNITS	Bore 152	R101	R103
Depth		0.1		
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	127	103	110

Organophosphorus Pesticides in Soil						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	102	109	112	103

Organophosphorus Pesticides in Soil						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	105	116	98	111

Organophosphorus Pesticides in Soil						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	105	112	120	102

Organophosphorus Pesticides in Soil						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	13/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	99	121	102	109

Organophosphorus Pesticides in Soil						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	103	106	113	107

Organophosphorus Pesticides in Soil						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	110	104	114	110

Organophosphorus Pesticides in Soil						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	115	106	102	100

Organophosphorus Pesticides in Soil				
Our Reference		280063-109	280063-112	280063-114
Your Reference	UNITS	Bore 152	R101	R103
Depth		0.1		
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	127	103	110

PCBs in Soil						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	102	109	112	103

PCBs in Soil						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	105	116	98	111

PCBs in Soil						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	105	112	120	102

PCBs in Soil						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	13/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	99	121	102	109

PCBs in Soil						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	112	103	106	113	107

PCBs in Soil						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	122	110	104	114	110

PCBs in Soil						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	115	106	102	100

PCBs in Soil				
Our Reference		280063-109	280063-112	280063-114
Your Reference	UNITS	Bore 152	R101	R103
Depth		0.1	•	
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date extracted	-	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	127	103	110

Misc Soil - Inorg		000000 0	000000.0	000000.0	000000 40	000000 47
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg					_	
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg					_	
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared			40/40/0004	12/10/2021	12/10/2021	12/10/2021
	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
	- - mg/kg					

Misc Soil - Inorg						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg								
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106		
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151		
Depth		0.3	0.1	0.8	0.1	0.1		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021		
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021		
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021		
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5		

Misc Soil - Inorg				
Our Reference		280063-109	280063-112	280063-114
Your Reference	UNITS	Bore 152	R101	R103
Depth		0.1		
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5

Acid Extractable metals in soil						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	6	<4	5	5	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	20	25	30	27
Copper	mg/kg	15	14	16	12	11
Lead	mg/kg	23	16	33	14	22
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	14	12	15	10	10
Zinc	mg/kg	31	26	180	34	25

Acid Extractable metals in soil						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	5	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	20	13	18	28	15
Copper	mg/kg	13	11	11	10	10
Lead	mg/kg	24	22	16	29	25
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	9	10	10	6
Zinc	mg/kg	24	36	37	20	26

Acid Extractable metals in soil						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	9	8	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	32	23	11	20
Copper	mg/kg	9	28	32	6	15
Lead	mg/kg	17	6	55	20	22
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	43	18	3	10
Zinc	mg/kg	19	25	14	21	14

Acid Extractable metals in soil						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	18	20	11	9
Copper	mg/kg	3	12	11	16	5
Lead	mg/kg	9	6	6	22	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	9	10	20	3
Zinc	mg/kg	9	14	19	57	12

Acid Extractable metals in soil						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	5	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	25	6	12	16	18
Copper	mg/kg	21	10	3	10	23
Lead	mg/kg	4	11	7	14	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	4	2	4	8
Zinc	mg/kg	13	18	5	26	19

Acid Extractable metals in soil						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	<4	4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	27	25	10	13
Copper	mg/kg	6	9	16	5	7
Lead	mg/kg	11	5	7	10	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	8	14	4	9
Zinc	mg/kg	14	8	17	16	10

Acid Extractable metals in soil						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	<4	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	13	27	13	11
Copper	mg/kg	7	8	31	11	4
Lead	mg/kg	20	14	7	19	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	4	14	5	2
Zinc	mg/kg	10	17	14	36	11

Acid Extractable metals in soil					
Our Reference		280063-109	280063-112	280063-114	280063-122
Your Reference	UNITS	Bore 152	R101	R103	Bore 147 - [TRIPLICATE]
Depth		0.1			0.1
Type of sample		Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	5	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	32	16	13
Copper	mg/kg	4	9	11	7
Lead	mg/kg	14	18	17	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	9	7	3
Zinc	mg/kg	13	20	38	19

Moisture						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	12	12	21	16	13
Moisture						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	13	12	17	12	14
Moisture						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	12	18	13	18	14
Moisture		'	·			
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Type of sample Date Sampled		Soil 08/10/2021	Soil 08/10/2021	Soil 08/10/2021	Soil 08/10/2021	Soil 08/10/2021
	-					
Date Sampled	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021

Moisture						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	12	11	10	18	14

	280063-83	280063-87	280063-89	280063-90	280063-93
UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
	0.1	1.0	0.5	0.1	0.5
	Soil	Soil	Soil	Soil	Soil
	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
%	20	14	17	21	15
	-	UNITS Bore 128 0.1 Soil 08/10/2021 - 12/10/2021 - 13/10/2021	UNITS Bore 128 Bore 140 0.1 1.0 Soil Soil 08/10/2021 08/10/2021 - 12/10/2021 12/10/2021 - 13/10/2021 13/10/2021	UNITS Bore 128 Bore 140 Bore 142 0.1 1.0 0.5 Soil Soil Soil 08/10/2021 08/10/2021 08/10/2021 - 12/10/2021 12/10/2021 12/10/2021 - 13/10/2021 13/10/2021 13/10/2021	UNITS Bore 128 Bore 140 Bore 142 Bore 144 0.1 1.0 0.5 0.1 Soil Soil Soil Soil 08/10/2021 08/10/2021 08/10/2021 08/10/2021 - 12/10/2021 12/10/2021 12/10/2021 12/10/2021 - 13/10/2021 13/10/2021 13/10/2021 13/10/2021

Moisture						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	10	16	15	19	16

	280063-109	280063-112	280063-114
UNITS	Bore 152	R101	R103
	0.1		
	Soil	Soil	Soil
	08/10/2021	08/10/2021	08/10/2021
-	12/10/2021	12/10/2021	12/10/2021
-	13/10/2021	13/10/2021	13/10/2021
%	8.6	14	16
	-	UNITS Bore 152 0.1 Soil 08/10/2021 - 12/10/2021 - 13/10/2021	UNITS Bore 152 R101 0.1 . Soil Soil 08/10/2021 08/10/2021 - 12/10/2021 12/10/2021 - 13/10/2021 13/10/2021

84-1-4-

Asbestos ID - soils						
Our Reference		280063-3	280063-6	280063-9	280063-12	280063-17
Your Reference	UNITS	Bore 101	Bore 102	Bore 103	Bore 104	Bore 105
Depth		1.0	0.5	0.1	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 45g	Approx. 45g	Approx. 40g	Approx. 45g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		280063-21	280063-26	280063-28	280063-33	280063-36
Your Reference	UNITS	Bore 106	Bore 107	Bore 108	Bore 109	Bore 110
Depth		0.5	1.0	0.1	0.5	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 45g	Approx. 45g	Approx. 40g	Approx. 45g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference		280063-38	280063-43	280063-45	280063-47	280063-51
Your Reference	UNITS	Bore 111	Bore 112	Bore 113	Bore 114	Bore 115
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 45g	Approx. 45g	Approx. 45g	Approx. 40g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		280063-53	280063-57	280063-60	280063-62	280063-65
Your Reference	UNITS	Bore 116	Bore 117	Bore 118	Bore 119	Bore 120
Depth		0.1	0.5	0.5	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 45g	Approx. 40g	Approx. 45g	Approx. 50g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference		280063-70	280063-71	280063-75	280063-77	280063-80
Your Reference	UNITS	Bore 121	Bore 122	Bore 123	Bore 124	Bore 126
Depth		1.0	0.1	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 45g	Approx. 45g	Approx. 45g	Approx. 40g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		280063-83	280063-87	280063-89	280063-90	280063-93
Your Reference	UNITS	Bore 128	Bore 140	Bore 142	Bore 144	Bore 146
Depth		0.1	1.0	0.5	0.1	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 40g	Approx. 45g	Approx. 40g	Approx. 40g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Asbestos comments	-	detected NO	detected NO	detected NO	detected NO	detected NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference		280063-95	280063-97	280063-102	280063-103	280063-106
Your Reference	UNITS	Bore 145	Bore 147	Bore 148	Bore 150	Bore 151
Depth		0.3	0.1	0.8	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 45g	Approx. 40g	Approx. 45g	Approx. 40g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse grained soil 8 rocks			
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit o 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Our Reference		280063-109	280063-112	280063-114
Your Reference	UNITS	Bore 152	R101	R103
Depth		0.1		
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 45g	Approx. 50g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Misc Inorg - Soil				
Our Reference		280063-42	280063-72	280063-92
Your Reference	UNITS	Bore 112	Bore 122	Bore 146
Depth		0.5	0.5	0.1
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
pH 1:5 soil:water	pH Units	6.8	5.9	6.5

Clay 50-120g				
Our Reference		280063-42	280063-72	280063-92
Your Reference	UNITS	Bore 112	Bore 122	Bore 146
Depth		0.5	0.5	0.1
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	14/10/2021	14/10/2021	14/10/2021
Clay in soils <2µm	% (w/w)	51	16	14

CEC				
Our Reference		280063-42	280063-72	280063-92
Your Reference	UNITS	Bore 112	Bore 122	Bore 146
Depth		0.5	0.5	0.1
Type of sample		Soil	Soil	Soil
Date Sampled		08/10/2021	08/10/2021	08/10/2021
Date prepared	-	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021
Exchangeable Ca	meq/100g	4.0	1.1	6.3
Exchangeable K	meq/100g	0.4	0.1	0.4
Exchangeable Mg	meq/100g	4.2	0.5	3.4
Exchangeable Na	meq/100g	0.2	<0.1	<0.1
Cation Exchange Capacity	meq/100g	8.8	1.8	10

vTRH(C6-C10)/BTEXN in Water		
Our Reference		280063-120
Your Reference	UNITS	Rinsate 1
Depth		
Type of sample		Water
Date Sampled		08/10/2021
Date extracted	-	12/10/2021
Date analysed	-	13/10/2021
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	109
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	89

AS1289.3.6.3 Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at 2µm reported. ASB-001 Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004. Inorg-001 pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times. Inorg-008 Moisture content determined by heating at 105+/.5 °C for a minimum of 12 hours. Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (<c10-c16)-naphthalene (3,="" (hsls="" 1a="" 4)).="" analysis.<="" and="" as="" b1="" determined="" for="" from="" groundwater="" guideline="" investigation="" is="" levels="" naphthalene="" nepm="" note="" on="" per="" soil="" tables="" td="" the="" voc=""> Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (<<10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysi</c10-c16)-naphthalene>	Method ID	Methodology Summary
Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004. Inorg-001 pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times. Inorg-008 Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-021 Determination of Acchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-	AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at
water analyses are indicative only, as analysis outside of the APHA storage times. Inorg-008 Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-020 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-020 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with	ASB-001	
Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-021 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual PCBs. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. N	Inorg-001	
Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-020 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve	Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.	Inorg-031	
ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichlorome	Metals-020	Determination of various metals by ICP-AES.
Org-020Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Org-020Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Org-020F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).Org-021Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.Org-022Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.Org-022/025Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Metals-020	
F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Org-020Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).Org-021Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PCBs" is simply a sum of the positive individual PCBs.Org-022Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.Org-022/025Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Metals-021	Determination of Mercury by Cold Vapour AAS.
 F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC- 	Org-020	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A
 (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC- 	Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
org-021 positive individual TRH fractions (>C10-C40). Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-		
Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-		
Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Org-021	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of
	Org-022	
	Org-022/025	

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-9
Date extracted	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			13/10/2021	3	13/10/2021	13/10/2021		13/10/2021	13/10/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	3	<25	<25	0	80	82
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	3	<25	<25	0	80	82
Benzene	mg/kg	0.2	Org-023	<0.2	3	<0.2	<0.2	0	103	107
Toluene	mg/kg	0.5	Org-023	<0.5	3	<0.5	<0.5	0	91	95
Ethylbenzene	mg/kg	1	Org-023	<1	3	<1	<1	0	68	70
m+p-xylene	mg/kg	2	Org-023	<2	3	<2	<2	0	68	70
o-Xylene	mg/kg	1	Org-023	<1	3	<1	<1	0	71	74
naphthalene	mg/kg	1	Org-023	<1	3	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	90	3	83	89	7	83	89

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	280063-75
Date extracted	-			[NT]	43	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			[NT]	43	13/10/2021	13/10/2021		13/10/2021	13/10/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	43	<25	<25	0	99	90
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	43	<25	<25	0	99	90
Benzene	mg/kg	0.2	Org-023	[NT]	43	<0.2	<0.2	0	129	115
Toluene	mg/kg	0.5	Org-023	[NT]	43	<0.5	<0.5	0	116	105
Ethylbenzene	mg/kg	1	Org-023	[NT]	43	<1	<1	0	83	77
m+p-xylene	mg/kg	2	Org-023	[NT]	43	<2	<2	0	83	77
o-Xylene	mg/kg	1	Org-023	[NT]	43	<1	<1	0	89	81
naphthalene	mg/kg	1	Org-023	[NT]	43	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	43	94	90	4	104	96

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	71	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	71	13/10/2021	13/10/2021			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	71	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	71	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	71	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	71	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	71	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	71	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	71	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-023	[NT]	71	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	71	102	84	19		[NT]

QUALITY CON	TROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	97	12/10/2021	12/10/2021			[NT]	
Date analysed	-			[NT]	97	13/10/2021	13/10/2021			[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	97	<25	<25	0		[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	97	<25	<25	0		[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	97	<0.2	<0.2	0		[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	97	<0.5	<0.5	0		[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	97	<1	<1	0		[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	97	<2	<2	0		[NT]	
o-Xylene	mg/kg	1	Org-023	[NT]	97	<1	<1	0		[NT]	
naphthalene	mg/kg	1	Org-023	[NT]	97	<1	<1	0		[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	97	90	99	10		[NT]	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-9
Date extracted	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	3	<50	<50	0	114	103
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	3	<100	<100	0	101	93
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	3	<100	<100	0	65	88
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	3	<50	<50	0	114	103
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	3	<100	<100	0	101	93
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	3	<100	<100	0	65	88
Surrogate o-Terphenyl	%		Org-020	92	3	91	91	0	111	97

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	280063-75	
Date extracted	-			[NT]	43	12/10/2021	12/10/2021		12/10/2021	12/10/2021	
Date analysed	-			[NT]	43	13/10/2021	13/10/2021		12/10/2021	13/10/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	43	<50	<50	0	93	86	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	43	<100	<100	0	95	90	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	43	<100	<100	0	109	106	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	43	<50	<50	0	93	86	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	43	<100	<100	0	95	90	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	43	<100	<100	0	109	106	
Surrogate o-Terphenyl	%		Org-020	[NT]	43	91	91	0	106	83	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	71	12/10/2021	12/10/2021		[NT]	
Date analysed	-			[NT]	71	12/10/2021	12/10/2021		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	71	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	71	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	71	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	71	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	71	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	71	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	71	85	83	2	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	97	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	97	13/10/2021	13/10/2021			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	97	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	97	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	97	<100	<100	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	97	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	97	<100	<100	0		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	97	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	97	85	87	2		[NT]

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-9
Date extracted	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			13/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	105	111
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	113	109
Fluorene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	109	114
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	128	130
Anthracene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	123	125
Pyrene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	125	127
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	85	85
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	3	<0.05	<0.05	0	124	124
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	110	3	119	124	4	95	95

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	280063-75
Date extracted	-			[NT]	43	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			[NT]	43	12/10/2021	12/10/2021		13/10/2021	13/10/2021
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	114	105
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	109	99
Fluorene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	107	111
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	112	102
Anthracene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	118	102
Pyrene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	109	99
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	77	75
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	43	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	43	<0.05	<0.05	0	124	130
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	43	121	122	1	102	129

QUAL	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	71	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	71	13/10/2021	13/10/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	71	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	71	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	71	99	122	21		[NT]

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	97	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	97	13/10/2021	13/10/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	97	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	97	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	97	105	124	17		[NT]

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-9
Date extracted	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			13/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	120	112
НСВ	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	114	114
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	111	109
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	122	124
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	126	123
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	117	123
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	122	126
Endrin	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	82	130
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	110	120
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	106	118
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	116	3	100	103	3	92	88

QUALITY CON	ITROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	280063-75
Date extracted	-			[NT]	43	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			[NT]	43	12/10/2021	12/10/2021		13/10/2021	13/10/2021
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	126	106
НСВ	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	128	92
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	99	87
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	120	103
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	106	110
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	109	96
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	94	94
Endrin	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	107	102
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	108	98
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	96	88
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	43	105	106	1	94	126

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	71	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	71	13/10/2021	13/10/2021			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	71	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	71	103	116	12		[NT]

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	97	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	97	13/10/2021	13/10/2021			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	97	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	97	115	116	1		[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-9
Date extracted	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			13/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	120	91
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	118	120
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	85	93
Malathion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	124	132
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	126	128
Parathion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	95	101
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	100	117
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	116	3	100	103	3	92	88

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	280063-75
Date extracted	-				43	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-				43	12/10/2021	12/10/2021		13/10/2021	13/10/2021
Dichlorvos	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	95	74
Dimethoate	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	110	93
Fenitrothion	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	101	87
Malathion	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	114	120
Chlorpyriphos	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	120	110
Parathion	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	91	80
Bromophos-ethyl	mg/kg	0.1	Org-022		43	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	84	80
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		43	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		43	105	106	1	94	126

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				71	12/10/2021	12/10/2021			
Date analysed	-				71	13/10/2021	13/10/2021			
Dichlorvos	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Dimethoate	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Diazinon	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Ronnel	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Fenitrothion	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Malathion	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Chlorpyriphos	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Parathion	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Bromophos-ethyl	mg/kg	0.1	Org-022		71	<0.1	<0.1	0		
Ethion	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		71	<0.1	<0.1	0		
Surrogate TCMX	%		Org-022/025		71	103	116	12		

QUALITY CONTRO	L: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				97	12/10/2021	12/10/2021			[NT]
Date analysed	-				97	13/10/2021	13/10/2021			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		97	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		97	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		97	115	116	1		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-9
Date extracted	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			13/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	120	120
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	116	3	100	103	3	92	88

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	280063-75
Date extracted	-			[NT]	43	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			[NT]	43	12/10/2021	12/10/2021		13/10/2021	13/10/2021
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	43	<0.1	<0.1	0	120	100
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	43	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	43	105	106	1	94	126

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	71	12/10/2021	12/10/2021			
Date analysed	-			[NT]	71	13/10/2021	13/10/2021			
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	71	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	71	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	71	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	71	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	71	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	71	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	71	<0.1	<0.1	0		
Surrogate TCMX	%		Org-021	[NT]	71	103	116	12		

QUALIT	Y CONTRC	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	97	12/10/2021	12/10/2021			
Date analysed	-			[NT]	97	13/10/2021	13/10/2021			
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	97	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	97	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	97	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	97	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	97	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	97	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	97	<0.1	<0.1	0		
Surrogate TCMX	%		Org-021	[NT]	97	115	116	1		

QUALITY	CONTROL	: Misc So	il - Inorg			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280063-9
Date prepared	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			12/10/2021	3	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	3	<5	<5	0	99	103
	CONTROL	· Misc So	il - Inora			Du	plicate		Snike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-75
Date prepared	-			[NT]	43	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			[NT]	43	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	[NT]	43	<5	<5	0	99	95
QUALITY	CONTROL	: Misc So	il - Inorg			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	71	12/10/2021	12/10/2021		[NT]	[NT]
Date analysed	-			[NT]	71	12/10/2021	12/10/2021		[NT]	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	[NT]	71	<5	<5	0	[NT]	[NT]
QUALITY	CONTROL	: Misc So	il - Inorg			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	97	12/10/2021	12/10/2021		[NT]	[NT]

97

<5

<5

0

Inorg-031

mg/kg

5

Total Phenolics (as Phenol)

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	280063-9
Date prepared	-			13/10/2021	3	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Date analysed	-			13/10/2021	3	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Arsenic	mg/kg	4	Metals-020	<4	3	6	6	0	108	94
Cadmium	mg/kg	0.4	Metals-020	<0.4	3	<0.4	<0.4	0	106	90
Chromium	mg/kg	1	Metals-020	<1	3	16	18	12	107	100
Copper	mg/kg	1	Metals-020	<1	3	15	16	6	107	105
Lead	mg/kg	1	Metals-020	<1	3	23	25	8	110	92
Mercury	mg/kg	0.1	Metals-021	<0.1	3	<0.1	<0.1	0	100	88
Nickel	mg/kg	1	Metals-020	<1	3	14	13	7	109	93
Zinc	mg/kg	1	Metals-020	<1	3	31	33	6	108	#

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	280063-75
Date prepared	-			[NT]	43	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Date analysed	-			[NT]	43	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Arsenic	mg/kg	4	Metals-020	[NT]	43	9	7	25	100	91
Cadmium	mg/kg	0.4	Metals-020	[NT]	43	<0.4	<0.4	0	100	92
Chromium	mg/kg	1	Metals-020	[NT]	43	32	27	17	102	104
Copper	mg/kg	1	Metals-020	[NT]	43	28	24	15	102	106
Lead	mg/kg	1	Metals-020	[NT]	43	6	9	40	103	96
Mercury	mg/kg	0.1	Metals-021	[NT]	43	<0.1	<0.1	0	97	93
Nickel	mg/kg	1	Metals-020	[NT]	43	43	30	36	103	100
Zinc	mg/kg	1	Metals-020	[NT]	43	25	20	22	102	97

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				71	13/10/2021	13/10/2021		[NT]	
Date analysed	-				71	13/10/2021	13/10/2021		[NT]	
Arsenic	mg/kg	4	Metals-020		71	5	5	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020		71	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020		71	6	7	15	[NT]	
Copper	mg/kg	1	Metals-020		71	10	11	10	[NT]	
Lead	mg/kg	1	Metals-020		71	11	11	0	[NT]	
Mercury	mg/kg	0.1	Metals-021		71	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020		71	4	5	22	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	71	18	19	5	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	97	13/10/2021	13/10/2021			
Date analysed	-			[NT]	97	13/10/2021	13/10/2021			
Arsenic	mg/kg	4	Metals-020	[NT]	97	<4	<4	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	97	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	97	13	11	17		
Copper	mg/kg	1	Metals-020	[NT]	97	8	7	13		
Lead	mg/kg	1	Metals-020	[NT]	97	14	10	33		
Mercury	mg/kg	0.1	Metals-021	[NT]	97	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	97	4	4	0		
Zinc	mg/kg	1	Metals-020	[NT]	97	17	11	43		

QUALITY	CONTROL	Misc Ino	rg - Soil			Duj	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/10/2021	72	13/10/2021	13/10/2021		13/10/2021	[NT]
Date analysed	-			13/10/2021	72	13/10/2021	13/10/2021		13/10/2021	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	72	5.9	5.9	0	102	[NT]

QU	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280063-72
Date prepared	-			13/10/2021	42	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Date analysed	-			13/10/2021	42	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	42	4.0	4.3	7	113	88
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	42	0.4	0.4	0	112	95
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	42	4.2	4.6	9	109	96
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	42	0.2	0.2	0	122	111

QUALITY CONT	ROL: vTRH((C6-C10)/E	3TEXN in Water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			12/10/2021	[NT]		[NT]	[NT]	12/10/2021	
Date analysed	-			13/10/2021	[NT]		[NT]	[NT]	13/10/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	88	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	88	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	91	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	84	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	85	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	90	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	110	[NT]		[NT]	[NT]	109	
Surrogate toluene-d8	%		Org-023	96	[NT]		[NT]	[NT]	98	
Surrogate 4-BFB	%		Org-023	89	[NT]		[NT]	[NT]	102	

Result Definitions		
NT	Not tested	
NA	Test not required	
INS	Insufficient sample for this test	
PQL	Practical Quantitation Limit	
<	Less than	
>	Greater than	
RPD	Relative Percent Difference	
LCS	Laboratory Control Sample	
NS	Not specified	
NEPM	National Environmental Protection Measure	
NR	Not Reported	

Quality Control Definitions		
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.	
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.	
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.	
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.	
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.	

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 280063-97 for Zn. Therefore a triplicate result has been issued as laboratory sample number 280063-122.

- # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280063-A

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details			
Your Reference	<u>202107.04, Bungendore</u>		
Number of Samples	additional analysis		
Date samples received	12/10/2021		
Date completed instructions received	14/10/2021		

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 15/10/2021

 Date of Issue
 15/10/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Lucy Zhu, Asbestos Supervisor

Analysed by Asbestos Approved Analyst: Ridwan Wijaya Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Josh Williams, LC Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date extracted	-	14/10/2021
Date analysed	-	15/10/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	99

svTRH (C10-C40) in Soil		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date extracted	-	14/10/2021
Date analysed	-	15/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10-C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	80

PAHs in Soil		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date extracted	-	14/10/2021
Date analysed	-	15/10/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	84

Organochlorine Pesticides in soil		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date extracted	-	14/10/2021
Date analysed	-	15/10/2021
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	83

Organophosphorus Pesticides in Soil		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date extracted	-	14/10/2021
Date analysed	-	15/10/2021
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	83

PCBs in Soil		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date extracted	-	14/10/2021
Date analysed	-	15/10/2021
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	83

Misc Soil - Inorg		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date prepared	-	14/10/2021
Date analysed	-	14/10/2021
Total Phenolics (as Phenol)	mg/kg	<5

Acid Extractable metals in soil		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date prepared	-	14/10/2021
Date analysed	-	15/10/2021
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	22
Copper	mg/kg	15
Lead	mg/kg	7
Mercury	mg/kg	<0.1
Nickel	mg/kg	16
Zinc	mg/kg	16

Moisture		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date prepared	-	14/10/2021
Date analysed	-	15/10/2021
Moisture	%	19

Asbestos ID - soils		
Our Reference		280063-A-113
Your Reference	UNITS	R102
Depth		
Type of sample		Soil
Date Sampled		08/10/2021
Date analysed	-	15/10/2021
Sample mass tested	g	Approx. 40g
Sample Description	-	Beige fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO
Trace Analysis	-	No asbestos detected

Metals from Leaching Fluid pH 2.9 or 5		
Our Reference		280063-A-43
Your Reference	UNITS	Bore 112
Depth		1.0
Type of sample		Soil
Date Sampled		08/10/2021
Date extracted	-	15/10/2021
Date analysed	-	15/10/2021
pH of soil for fluid# determ.	pH units	8.5
pH of soil TCLP (after HCl)	pH units	1.8
Extraction fluid used	-	1
pH of final Leachate	pH units	5.0
Nickel	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil	Duplicate					Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	280063-A- 113
Date extracted	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	14/10/2021
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	15/10/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	94	84
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	94	84
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	118	105
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	107	95
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	82	73
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	82	73
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	86	78
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	109	[NT]		[NT]	[NT]	104	90

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	280063-A- 113
Date extracted	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	14/10/2021
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	15/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	107	93
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	114	102
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	109	103
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	107	93
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	114	102
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	109	103
Surrogate o-Terphenyl	%		Org-020	78	[NT]	[NT]	[NT]	[NT]	103	80

QUALI	TY CONTRO	L: PAHs	in Soil		Duplicate Spike I					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	280063-A- 113
Date extracted	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	14/10/2021
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	15/10/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	103
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	93
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	93
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	114
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	110
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109	109
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81	77
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	120	112
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	93	[NT]		[NT]	[NT]	90	89

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	280063-A- 113
Date extracted	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	14/10/2021
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	15/10/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	94
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	96
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87	99
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109	109
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	116
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	98
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	130	116
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84	100
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112	106
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	90
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]		[NT]
Surrogate TCMX	%		Org-022/025	91	[NT]		[NT]	[NT]	84	80

QUALITY CONTRO	QUALITY CONTROL: Organophosphorus Pesticides in S						plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	280063-A- 113
Date extracted	-			14/10/2021	[NT]	[NT]		[NT]	14/10/2021	14/10/2021
Date analysed	-			15/10/2021	[NT]	[NT]		[NT]	15/10/2021	15/10/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	72	68
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	114	108
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	117	99
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	128	124
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	118	120
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	119	93
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	119	113
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	91	[NT]	[NT]		[NT]	84	80

QUALIT	Y CONTRO	L: PCBs i	in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	280063-A- 113
Date extracted	-			14/10/2021	[NT]	[NT]	[NT]	[NT]	14/10/2021	14/10/2021
Date analysed	-			15/10/2021	[NT]	[NT]	[NT]	[NT]	15/10/2021	15/10/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]	[NT]	[NT]	[NT]		[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]	[NT]	[NT]	[NT]		[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]	[NT]	[NT]	[NT]		[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]	[NT]	[NT]	[NT]		[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]	[NT]	[NT]	[NT]		[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]	[NT]	[NT]	[NT]	120	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]	[NT]	[NT]	[NT]		[NT]
Surrogate TCMX	%		Org-021	91	[NT]	[NT]	[NT]	[NT]	84	80

QUALITY	QUALITY CONTROL: Misc Soil - Inorg								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	[NT]
Date analysed	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	100	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	280063-A- 113
Date prepared	-			14/10/2021	[NT]	[NT]	[NT]	[NT]	14/10/2021	14/10/2021
Date analysed	-			15/10/2021	[NT]	[NT]	[NT]	[NT]	15/10/2021	15/10/2021
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	[NT]	[NT]	111	85
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	[NT]	[NT]	104	81
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	110	75
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	107	83
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	110	87
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	[NT]	[NT]	101	93
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	112	77
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	112	79

QUALITY CONTROL	QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	[NT]
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	[NT]
Nickel	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]	[NT]	[NT]	96	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 280063-A-113 was sub-sampled from a jar provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280174

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	<u>202107.04, Bungendore</u>
Number of Samples	50 Soil
Date samples received	12/10/2021
Date completed instructions received	12/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 15/10/2021

 Date of Issue
 15/10/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Jaimie Loa-Kum-Cheung, Senior Chemist Josh Williams, LC Supervisor Lucy Zhu, Asbestos Supervisor

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	100	89	90	94	97
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)						
	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg mg/kg	<25 <0.2	<25 <0.2	<25 <0.2	<25 <0.2	<25 <0.2
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzene Toluene	mg/kg mg/kg	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5
Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg	<0.2 <0.5 <1	<0.2 <0.5 <1	<0.2 <0.5 <1	<0.2 <0.5 <1	<0.2 <0.5 <1
Benzene Toluene Ethylbenzene m+p-xylene	mg/kg mg/kg mg/kg mg/kg	<0.2 <0.5 <1 <2	<0.2 <0.5 <1 <2	<0.2 <0.5 <1 <2	<0.2 <0.5 <1 <2	<0.2 <0.5 <1 <2
Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.5 <1 <2 <1	<0.2 <0.5 <1 <2 <1	<0.2 <0.5 <1 <2 <1	<0.2 <0.5 <1 <2 <1	<0.2 <0.5 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	95	104	91	90	88

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date extracted	-	12/10/2021
Date analysed	-	13/10/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	96

svTRH (C10-C40) in Soil							
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13	
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131	
Depth		0.1	0.5	01	0.5	0.1	
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50	
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100	
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100	
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100	
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100	
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50	
Surrogate o-Terphenyl	%	96	104	96	95	95	
svTRH (C10-C40) in Soil							
svTRH (C10-C40) in Soil Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28	
	UNITS	280174-18 Bore 132	280174-19 Bore 133	280174-22 Bore 134	280174-25 Bore 135	280174-28 Bore 136	
Our Reference	UNITS						
Our Reference Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136	
Our Reference Your Reference Depth	UNITS	Bore 132 1.0	Bore 133 0.1	Bore 134 0.1	Bore 135 0.1	Bore 136 0.1	
Our Reference Your Reference Depth Date Sampled	UNITS	Bore 132 1.0 11/10/2021	Bore 133 0.1 11/10/2021	Bore 134 0.1 11/10/2021	Bore 135 0.1 11/10/2021	Bore 136 0.1 11/10/2021	
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	Bore 132 1.0 11/10/2021 Soil	Bore 133 0.1 11/10/2021 Soil	Bore 134 0.1 11/10/2021 Soil	Bore 135 0.1 11/10/2021 Soil	Bore 136 0.1 11/10/2021 Soil	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021	Bore 133 0.1 11/10/2021 Soil 12/10/2021	Bore 134 0.1 11/10/2021 Soil 12/10/2021	Bore 135 0.1 11/10/2021 Soil 12/10/2021	Bore 136 0.1 11/10/2021 Soil 12/10/2021	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021 <50	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50	
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 -C16	- - mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <50 <50 <50	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50	
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 -C16TRH >C10 - C16 less Naphthalene (F2)	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50 <50 <50	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50 <50 <50	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50 <50 <50	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50 <50 <50	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <100 <50 <50 <50 <50	
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} - C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)TRH >C_{16} - C_{34}	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Bore 132 1.0 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <50 <50 <50 <50 <50 <100	Bore 133 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <50 <50 <50 <50 <100	Bore 134 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <50 <50 <50 <50 <100	Bore 135 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <50 <50 <50 <50 <50 <100	Bore 136 0.1 11/10/2021 Soil 12/10/2021 12/10/2021 <50 <100 <50 <50 <50 <50 <50 <100	

svTRH (C10-C40) in Soil						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	96	96	96	92

svTRH (C10-C40) in Soil		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date extracted	-	12/10/2021
Date analysed	-	13/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C15 - C28	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C16 -C34	mg/kg	<100
TRH >C34 -C40	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	91

PAHs in Soil						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	97	107	98	106

PAHs in Soil						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	108	111	105	98	117

PAHs in Soil						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	107	104	109	115

PAHs in Soil		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date extracted	-	12/10/2021
Date analysed	-	12/10/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	102

Organochlorine Pesticides in soil						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	95	107	102	107

Organochlorine Pesticides in soil						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	103	102	97	108

Organochlorine Pesticides in soil						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	104	106	106	102

Organochlorine Pesticides in soil		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date extracted	-	12/10/2021
Date analysed	-	12/10/2021
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	100

Organophosphorus Pesticides in Soil						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	95	107	102	107

Organophosphorus Pesticides in Soil						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	103	102	97	108

Organophosphorus Pesticides in Soil						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	104	106	106	102

Organophosphorus Pesticides in Soil		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date extracted	-	12/10/2021
Date analysed	-	12/10/2021
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	100

PCBs in Soil						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	95	107	102	107

PCBs in Soil						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	103	102	97	108

PCBs in Soil						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	104	106	106	102

PCBs in Soil		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date extracted	-	12/10/2021
Date analysed	-	12/10/2021
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	100

Acid Extractable metals in soil						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	<4	<4	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	12	4	17	22
Copper	mg/kg	4	3	3	17	24
Lead	mg/kg	10	8	6	20	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	2	2	8	42
Zinc	mg/kg	13	5	13	37	46

Acid Extractable metals in soil						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	22	16	14	14	15
Copper	mg/kg	24	11	7	6	9
Lead	mg/kg	10	17	17	13	13
Mercury	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	5	4	3	4
Zinc	mg/kg	9	20	19	14	17

Acid Extractable metals in soil						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	<4	<4	<4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	18	18	12	11	28
Copper	mg/kg	4	14	8	5	48
Lead	mg/kg	11	9	18	10	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	8	4	3	16
Zinc	mg/kg	7	13	14	12	19

Acid Extractable metals in soil			
Our Reference		280174-50	280174-51
Your Reference	UNITS	Bore 149	Bore 137 - [TRIPLICATE]
Depth		0.1	0.5
Date Sampled		11/10/2021	11/10/2021
Type of sample		Soil	Soil
Date prepared	-	13/10/2021	13/10/2021
Date analysed	-	13/10/2021	13/10/2021
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	16	18
Copper	mg/kg	4	3
Lead	mg/kg	16	9
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	3	3
Zinc	mg/kg	12	6

Misc Soil - Inorg						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/202
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
/our Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/202
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/202
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/202
otal Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
/lisc Soil - Inorg						
Dur Reference		280174-32	280174-35	280174-37	280174-40	280174-45
our Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/202
ype of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/202
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2022
otal Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

mice een merg		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date prepared	-	12/10/2021
Date analysed	-	12/10/2021
Total Phenolics (as Phenol)	mg/kg	<5

Moisture						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	17	12	11	12	7.2
Moisture						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	18	19	18	17	18
Moisture						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Moisture	%	12	19	13	17	20
Moisture						
Our Reference		280174-50				
Your Reference	UNITS	Bore 149				

		200174-00
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date prepared	-	12/10/2021
Date analysed	-	13/10/2021
Moisture	%	12

Asbestos ID - soils						
Our Reference		280174-1	280174-5	280174-7	280174-11	280174-13
Your Reference	UNITS	Bore 125	Bore 127	Bore 129	Bore 130	Bore 131
Depth		0.1	0.5	01	0.5	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 30g	Approx. 35g	Approx. 20g	Approx. 40g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		280174-18	280174-19	280174-22	280174-25	280174-28
Your Reference	UNITS	Bore 132	Bore 133	Bore 134	Bore 135	Bore 136
Depth		1.0	0.1	0.1	0.1	0.1
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 20g	Approx. 20g	Approx. 30g	Approx. 35g	Approx. 30g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Asbestos comments	_	detected NO	detected NO	detected NO	detected NO	detected NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference		280174-32	280174-35	280174-37	280174-40	280174-45
Your Reference	UNITS	Bore 137	Bore 138	Bore 139	Bore 141	Bore 143
Depth		0.5	0.5	0.1	0.1	1.0
Date Sampled		11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 40g	Approx. 30g	Approx. 25g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils		
Our Reference		280174-50
Your Reference	UNITS	Bore 149
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date analysed	-	13/10/2021
Sample mass tested	g	Approx. 20g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO
Trace Analysis	-	No asbestos detected

Misc Inorg - Soil		
Our Reference		280174-27
Your Reference	UNITS	Bore 135
Depth		1.0
Date Sampled		11/10/2021
Type of sample		Soil
Date prepared	-	13/10/2021
Date analysed	-	13/10/2021
pH 1:5 soil:water	pH Units	8.4

CEC		
Our Reference		280174-27
Your Reference	UNITS	Bore 135
Depth		1.0
Date Sampled		11/10/2021
Type of sample		Soil
Date prepared	-	13/10/2021
Date analysed	-	13/10/2021
Exchangeable Ca	meq/100g	3.6
Exchangeable K	meq/100g	<0.1
Exchangeable Mg	meq/100g	2.4
Exchangeable Na	meq/100g	0.1
Cation Exchange Capacity	meq/100g	6.2

Clay 50-120g		
Our Reference		280174-27
Your Reference	UNITS	Bore 135
Depth		1.0
Date Sampled		11/10/2021
Type of sample		Soil
Date prepared	-	13/10/2021
Date analysed	-	14/10/2021
Clay in soils <2µm	% (w/w)	29

AS1289.3.6.3 Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at 2µm reported. ASB-001 Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004. Inorg-001 pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times. Inorg-008 Moisture content determined by heating at 105+/.5 °C for a minimum of 12 hours. Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (<c10-c16)-naphthalene (3,="" (hsls="" 1a="" 4)).="" analysis.<="" and="" as="" b1="" determined="" for="" from="" groundwater="" guideline="" investigation="" is="" levels="" naphthalene="" nepm="" note="" on="" per="" soil="" tables="" td="" the="" voc=""> Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (<<10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysi</c10-c16)-naphthalene>	Method ID	Methodology Summary
Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004. Inorg-001 pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times. Inorg-008 Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-021 Determination of Acchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-	AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at
water analyses are indicative only, as analysis outside of the APHA storage times. Inorg-008 Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-020 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-020 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with	ASB-001	
Inorg-031 Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-021 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual PCBs. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. N	Inorg-001	
Solids are extracted in a caustic media prior to analysis. Metals-020 Determination of various metals by ICP-AES. Metals-020 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve	Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020 Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.	Inorg-031	
ICP-AES analytical finish. Metals-021 Determination of Mercury by Cold Vapour AAS. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Org-020 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichlorome	Metals-020	Determination of various metals by ICP-AES.
Org-020Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Org-020Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Org-020F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).Org-021Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.Org-022Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.Org-022/025Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Metals-020	
F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Org-020Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).Org-021Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PCBs" is simply a sum of the positive individual PCBs.Org-022Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.Org-022/025Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Metals-021	Determination of Mercury by Cold Vapour AAS.
 F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC- 	Org-020	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A
 (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40). Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC- 	Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
org-021 positive individual TRH fractions (>C10-C40). Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-		
Org-021 Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-		
Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs. Org-022 Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS. Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-	Org-021	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of
	Org-022	
	Org-022/025	

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	280174-5
Date extracted	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			13/10/2021	1	13/10/2021	13/10/2021		13/10/2021	13/10/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	94	92
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	94	92
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	90	87
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	85	82
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	98	97
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	98	97
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	95	94
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	111	1	100	91	9	96	97

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	32	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	32	13/10/2021	13/10/2021			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	32	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	32	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	32	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	32	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	32	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	32	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	32	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-023	[NT]	32	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	32	95	93	2		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	280174-5
Date extracted	-			14/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			14/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	107	104
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	96	100
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	92	81
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	107	104
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	96	100
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	92	81
Surrogate o-Terphenyl	%		Org-020	88	1	96	95	1	88	104

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	32	12/10/2021	12/10/2021			
Date analysed	-			[NT]	32	12/10/2021	13/10/2021			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	32	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	32	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	32	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	32	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	32	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	32	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	32	94	96	2		

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	280174-5
Date extracted	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	107
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	105
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	105
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	110
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	104
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	105
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	81
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	120	116
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	106	1	97	95	2	119	122

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	32	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	32	12/10/2021	12/10/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	32	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	32	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	32	114	113	1		[NT]

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	280174-5
Date extracted	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	114
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	117
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	95
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	105
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	106
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	105
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	112
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	121
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	104
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	100
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	99	1	98	94	4	130	118

QUALITY CC	NTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	32	12/10/2021	12/10/2021			[NT]
Date analysed	-			[NT]	32	12/10/2021	12/10/2021			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	32	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	32	107	104	3		[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	280174-5
Date extracted	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	71
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	106
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	75	79
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	99
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	106
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	74	74
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	86
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	99	1	98	94	4	130	118

QUALITY CONTRO	L: Organopł	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				32	12/10/2021	12/10/2021			[NT]
Date analysed	-				32	12/10/2021	12/10/2021			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		32	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		32	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		32	107	104	3		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	280174-5
Date extracted	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Date analysed	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	118	112
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	99	1	98	94	4	130	118

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	32	12/10/2021	12/10/2021		[NT]	
Date analysed	-			[NT]	32	12/10/2021	12/10/2021		[NT]	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	32	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	32	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	32	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	32	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	32	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	32	<0.1	<0.1	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	32	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	32	107	104	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	280174-5
Date prepared	-			13/10/2021	1	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Date analysed	-			13/10/2021	1	13/10/2021	13/10/2021		13/10/2021	13/10/2021
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	106	95
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	105	94
Chromium	mg/kg	1	Metals-020	<1	1	11	11	0	105	96
Copper	mg/kg	1	Metals-020	<1	1	4	4	0	105	99
Lead	mg/kg	1	Metals-020	<1	1	10	11	10	107	93
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	94	91
Nickel	mg/kg	1	Metals-020	<1	1	3	3	0	109	99
Zinc	mg/kg	1	Metals-020	<1	1	13	15	14	106	94

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	32	13/10/2021	13/10/2021			
Date analysed	-			[NT]	32	13/10/2021	13/10/2021			
Arsenic	mg/kg	4	Metals-020	[NT]	32	<4	<4	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	32	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	32	18	17	6		
Copper	mg/kg	1	Metals-020	[NT]	32	4	3	29		
Lead	mg/kg	1	Metals-020	[NT]	32	11	8	32		
Mercury	mg/kg	0.1	Metals-021	[NT]	32	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	32	3	3	0		
Zinc	mg/kg	1	Metals-020	[NT]	32	7	4	55	[NT]	[NT]

QUALITY	QUALITY CONTROL: Misc Soil - Inorg							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280174-5	
Date prepared	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021	
Date analysed	-			12/10/2021	1	12/10/2021	12/10/2021		12/10/2021	12/10/2021	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	99	95	
			1								
										~ .	
QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %	
QUALITY Test Description	CONTROL: Units	Misc Soi	il - Inorg Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	covery % [NT]	
				Blank [NT]	# 32			RPD	·		
Test Description	Units					Base	Dup.	RPD	[NT]	[NT]	

QUALITY CONTROL: Misc Inorg - Soil						Duj	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/10/2021	[NT]			[NT]	13/10/2021	
Date analysed	-			13/10/2021	[NT]			[NT]	13/10/2021	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	[NT]

QU/	QUALITY CONTROL: CEC						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			13/10/2021	[NT]		[NT]	[NT]	13/10/2021		
Date analysed	-			13/10/2021	[NT]		[NT]	[NT]	13/10/2021		
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	113		
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	112		
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	109		
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	122		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 280174-32 for Zn. Therefore a triplicate result has been issued as laboratory sample number 28017-51.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280174-A

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	<u>202107.04, Bungendore</u>
Number of Samples	additional analysis
Date samples received	12/10/2021
Date completed instructions received	14/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	15/10/2021					
Date of Issue	15/10/2021					
NATA Accreditation Number 29	NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Giovanni Agosti, Group Technical Manager Authorised By

Nancy Zhang, Laboratory Manager

Metals from Leaching Fluid pH 2.9 or 5		
Our Reference		280174-A-13
Your Reference	UNITS	Bore 131
Depth		0.1
Date Sampled		11/10/2021
Type of sample		Soil
Date extracted	-	15/10/2021
Date analysed	-	15/10/2021
pH of soil for fluid# determ.	pH units	8.6
pH of soil TCLP (after HCl)	pH units	1.9
Extraction fluid used	-	1
pH of final Leachate	pH units	5.0
Nickel	mg/L	0.02

Method ID	Methodology Summary	
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.	
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.	
	Please note that the mass used may be scaled down from default based on sample mass available.	
	Samples are stored at 2-6oC before and after leachate preparation.	
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.	

QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	[NT]
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	[NT]
Nickel	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]	[NT]	[NT]	96	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280174-B

Client Details	
Client	Douglas Partners Canberra
Attention	Shannon Goodsell
Address	Unit 2, 73 Sheppard St,, HUME, ACT, 2620

Sample Details	
Your Reference	<u>202107.04, Bungendore</u>
Number of Samples	52 Soil, 1 Water
Date samples received	13/10/2021
Date completed instructions received	13/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	15/10/2021				
Date of Issue	15/10/2021				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Dragana Tomas, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 280174-B Revision No: R00

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		280174-B-52	280174-B-53
Your Reference	UNITS	TB2	TS1
Depth		•	•
Date Sampled		11/10/2021	11/10/2021
Type of sample		Soil	Soil
Date extracted	-	14/10/2021	14/10/2021
Date analysed	-	15/10/2021	15/10/2021
TRH C ₆ - C ₉	mg/kg	<25	[NA]
TRH C6 - C10	mg/kg	<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	[NA]
Benzene	mg/kg	<0.2	82%
Toluene	mg/kg	<0.5	82%
Ethylbenzene	mg/kg	<1	84%
m+p-xylene	mg/kg	<2	84%
o-Xylene	mg/kg	<1	84%
naphthalene	mg/kg	<1	[NT]
Total +ve Xylenes	mg/kg	<3	[NT]
Surrogate aaa-Trifluorotoluene	%	92	82

vTRH(C6-C10)/BTEXN in Water		
Our Reference		280174-B-54
Your Reference	UNITS	Rinsate 2
Depth		
Date Sampled		11/10/2021
Type of sample		Water
Date extracted	-	14/10/2021
Date analysed	-	15/10/2021
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C_6 - C_{10} less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	98
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	105

Method ID	Methodology Summary
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate Spike Rec				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	92	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	92	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	104	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	96	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	87	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	86	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	86	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	103	[NT]		[NT]	[NT]	99	

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water					Duplicate				Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			14/10/2021	[NT]		[NT]	[NT]	14/10/2021	
Date analysed	-			15/10/2021	[NT]		[NT]	[NT]	15/10/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	97	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	97	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	97	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	95	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	97	[NT]		[NT]	[NT]	120	
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	117	
Surrogate 4-BFB	%		Org-023	105	[NT]		[NT]	[NT]	105	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2136811							
Client Contact Address	 DOUGLAS PARTNERS PTY LTD SHANNON GOODSELL UNIT 5/50 TOPHAN ROAD SMEATON GRANGE NSW 2567 	Laboratory Contact Address	: Sepan Mah : 277-289 W	nental Division Sydney ahamad Woodpark Road Smithfield stralia 2164				
E-mail Telephone Facsimile	 shannon.goodsell@douglaspartners .com.au +61 02 9809 0666 +61 02 9809 4095 	E-mail Telephone Facsimile	: Sepan.Mah : +61 2 8784 : +61-2-8784					
Project Order number C-O-C number Site Sampler	oject : 202107.04 Bungendore der number : 155171 O-C number : Bugendore			1 of 2 EM2017DOUPAR0002 (EN/222) NEPM 2013 B3 & ALS QC Standard				
Dates Date Samples Rece Client Requested Du Date		Issue Date Scheduled Reportir	ng Date	: 14-Oct-2021 2 20-Oct-2021				
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	: Carrier	Security Seal Temperature No. of samples rece	eived / analysed	 Not Available 10.7'C - Ice Bricks present 6 / 3 				

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

component Matrix: SOIL			Hold) SOIL analysis request	EA055-103 e Content	OIL - S-19 RH/BTEXN/PAH/F
Laboratory sample ID	Sampling date / time	Sample ID	(On Hold) No analys	SOIL - E. Moisture	SOIL - (TRH/B1
ES2136811-001	08-Oct-2021 00:00	RR1		1	✓
ES2136811-002	08-Oct-2021 00:00	RR2		✓	✓
ES2136811-003	08-Oct-2021 00:00	RR3		✓	✓
ES2136811-004	08-Oct-2021 00:00	RR4	✓		
ES2136811-005	08-Oct-2021 00:00	RR5	✓		
ES2136811-006	08-Oct-2021 00:00	RR7	✓		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE INVOICES		
- A4 - AU Tax Invoice (INV)	Email	apinvoices@douglaspartners.com.a u
SHANNON GOODSELL		
- *AU Certificate of Analysis - NATA (COA)	Email	shannon.goodsell@douglaspartner s.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	shannon.goodsell@douglaspartner s.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	shannon.goodsell@douglaspartner s.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	shannon.goodsell@douglaspartner s.com.au
- Chain of Custody (CoC) (COC)	Email	shannon.goodsell@douglaspartner s.com.au
- EDI Format - ESDAT (ESDAT)	Email	shannon.goodsell@douglaspartner s.com.au
- EDI Format - XTab (XTAB)	Email	shannon.goodsell@douglaspartner s.com.au

N/PAH/Ph/OC/OP/PCB/8 metals

is requested

ਹ
õ
÷.
U
\sim
п
æ
σ
Ē.
_
ω.
. "
~
N
õ
N
-

	Relinguished by:	Address:	Send results to:	Number of samples in container:	Metals to analyse:	-		1	_				6		5 S	4	ω	2	-	D ab		Prior Storage: Fridge	Turnaround time:	Email:	Project No: Project Manager:
				f samples								RR8	RR7	RR6	RR5	RR4	RR3	RR2	RR1	Location / Other ID	Sar	age: 🗆 Fri			o: anager:
	••	Unit 2, 73	Douglas Partners Pty Ltd	in cont	HM8 (As, Cd, Cr,							NA	NA	NA	NA	NA	NA	NA	NA	Depth From	Sample ID	1 1	✓ Standard	Shannon	202107.04 Shannon G
	Shannon Goodsell	Sheppard :	Partners F		~ '							NA	NA	NA	NA	NA	NA	NA	NA	Depth To		Freezer	d 🗆 7;	.Goodsell	202107.04 Shannon Goodsell
	Goodsell	73 Sheppard Street, Hume	⁰ty Ltd	•	Cu, Pb, Hg, Ni,							11/10/21	8/10/21	11/10/21	8/10/21	8/10/21	8/10/21	8/10/21	8/10/21	Date Sam	pled] Shelf	72 hour	Shannon.Goodsell@douglaspartners.com.au	
					Ni, Zn)							S	N	S	s	° S	s	s	s	S - soil W - water	Sample Type	Do sam	48 hour	partners.c	Suburb: Order N
		ACT 26 Phone:		Transpo								G	G	۵	G	G	G	G	G	G - glass P - plastic	Container Type	ples cor	🗆 24 hour	om.au	Suburb: Order Number:
	12/10/2021	(02) 6260 2788		Transported to laboratory by:								×					<	\sim	×	Metals		Do samples contain 'potential' HBM?	ır 🛛 Same day		Bungendore 155171
		88		pratory I								¥					×	<	×.	- PAH		ntial' HB	day	ļ	
	S			oy:			 		-			1. Ma					<	5	<	TRH/ÊTEX		SW5			
(Signed:			TNT			 					X					<	5	۲.	OCP/GPP) PCB		⊡ No			ŝ
				T					$\left \right $			5	<u></u>	~	<u>ح</u>		<u>ح</u>	۲ ه	< 	Phenois Hold	Analytes	□ Ye		1	Sampler:
																					es	If YES, then h			SDG
	Signed:	Date a	Recei	Lab R	LAB																	andle, transpo	Conta	Attn:	<u>.</u>
1	d.	Date & Time:	Received by:	Lab Ref. No:	AB RECEIPT																	rt and store	H		ALS Er 277-28
	.	/8)	Shipe																			in accorda		5	ALS Environmental
(10/21 12:00	-1								to be sent s		To be sent serviced	Telephone : + 61-2-8764 8555				ES213	Work Order Reference	Notes/ Preservation/ Additional Requirements Environmental Division		☐ YetIf YES, then handle, transport and store in accordance with FPM HAZID)	ALSEnviro.Sydney@ALSGlobal.com		ALS Environmental 277-289 Woodpark Rd. Smithfield NSW 2164
		۲ ۱								-	scantely	L	encered	8555				6811	ference	iion/ Additional ments Division	i		ALSGlobal.com		SW 2164

us.moo.annhaqaalguob.www 711 086 630 37 NBA Douglas Partners Pty Ltd

Γ

Т

ОКDER	PURCHASE

PO No.	TZISSI
Date	12/10/21

Requisitioner: Shannon Goodsell
0235 TOA 9muH
2/73 Sheppard Street
Deliver To:

lstnemnorivn3 21A : emst tost	100
:	
tor/Subcontractor;	ouə

This order covers the supply of goods, materials or services shown here, subject to the terms and conditions of this purchase order. PO number or Project number and Requisitioner should always be quoted in your invoice.

This PO should be attached to your invoice and emailed to apinvoices@douglaspartners.com.au in PDF format.

	TOTAL						
	OTHER				1		
	SHIPPING/						
					į		
	XAT\T29					or Special Instructions	comments
	JATOTAUS						
							1
							i
							i
						· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·					
							ļ
40.701202						Soil Sampling as per COC	×Ţ
Project No. & G/L Code	lstoT	t Price	iuŲ	Quantity		Description	mətl

Brisbane (07) 32737 8900 • Caims (07) 4055 1550 • Canberra (02) 6260 2788 • Central Coast (02) 4551 1422 • Coffs Harbour (02) 6560 3200 Darwin (08) 8946 6800 • Gelong (03) 5221 0711 • Gold Coast (07) 5568 8900 • Macarihur (02) 4647 0075 • Melbourne (03) 9673 3500 Newcastle (02) 4960 9600 • North West Sydney (02) 4666 0450 • Perth (08) 9204 3511 • Port Macquarie (02) 6581 5992 Sunshine Coast (07) 5351 0400 • Sydney (02) 9809 0666 • Townsville (07) 4779 9866 • Wollongong (02) 4271 1836

Head Office: 96 Hermitage Road, West Ryde NSW 2114 • PO Box 472, West Ryde NSW 1685

TERMS & CONDITIONS

The vendor is required to mail his invoices to <u>apinyoices@douglaspartners.com.au</u> on the day following despatch to the Purchaser of the goods ordered.

No deviation may be made by the Vendor in any respect from any drawings or specifications furnished by the Purchaser without the Purchaser's consent thereto in writing. If any drawings or specifications do not fully cover any materials or manufacturing process necessary to execute the order, the Vendor must obtain the Purchaser's instructions in writing before purchasing any such materials or applying any process.

The order will be deemed to have been accepted unless the Vendor notifies the Purchaser to the contrary in writing within seven days after the order is received by the Seller.

The Purchaser reserves the right to negotiate, as necessary, to amend its delivery schedules at any time.

All goods covered by the order whether paid or not, shall be subject to inspection by the Purchaser within a reasonable time after delivery and if such goods/materials/services do not conform to the requirements of the order the Purchaser may either reject the goods or any of them or retain the whole or any of them, reserving his right to compensation for the Vendor's breach. All goods not rejected shall be deemed to have been warranted by the Vendor to be in accordance in all respect with any drawings and or specification and/or instructions furnished by the Purchaser to the Vendor.

The order may be cancelled by the Purchaser in the event of the Vendor at any time failing or being unable to comply with any of the terms, conditions or warranties contained therein. Insovency on the part of either party gives the other party the right of cancellation.

In the case of unforeseen contingency causing stoppage or delay in production the Purchaser reserves the right at its option to suspend, modify or cancel the order.

On the cancellation of the order all goods/materials/ser/vices comprised or mentioned thereon, whether wholly or partly manufactured, then in the possession of the Vendor, shall be delivered by and at the cost of the Vendor to such person or persons as the Purchaser shall direct.

All tools, jigs, gauges and other equipment and all the drawings, blue prints and specifications and other papers supplied without charge. by the Vendor to the Purchaser and all and any such items as above which has been purchased or manufactured by the Vendor and for which the Purchaser has paid or is liable to pay the full value thereof, shall be the property of the Purchaser and shall not be used otherwise than for the manufacture of goods for the Purchaser.

The Vendor shall have no rights or claim to the drawings, data, designs or ideas furnished to it from the Purchaser. The vendor shall preserve the drawings and data in good order and condition, will not copy or reproduce them or any substantial portion thereof without authority in writing from the Purchaser and will return the Purchaser when requested.

All tools, jigs, gauges and other equipment, whether supplied by the Purchaser to the Vendor or manufactured by the Vendor and paid for by the Purchaser to the Vendor must be replaced free of charge to the Purchaser to the Purchaser and to the entire satisfaction of the Purchaser.

Should the Purchaser supply materials to the Vendor it will be the Vendor's responsibility to replace any material that is lost, partly damaged, or destroyed whilst in his possession.

It will be the responsibility of the Vendor to ensure that all tooling supplied by the Purchaser will produce parts strictly in accordance with the drawings of such components.

Waiver by the Purchaser of any specific default by the Vendor or failure by the Purchaser to cancel the order or any part thereof when right of cancellation arises shall not constitute waiver by the Purchaser or any rights of the Purchaser under any terms and conditions of the order arising through any further or subsequent default by the Vendor whether giving rise to a right of cancellation or a claim for damages.

This order is not assignable by the Vendor.

CERTIFICATE OF ANALYSIS

Work Order	ES2136811	Page	: 1 of 8	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydr	ney
Contact	: SHANNON GOODSELL	Contact	: Sepan Mahamad	
Address	: UNIT 5/50 TOPHAN ROAD SMEATON GRANGE NSW 2567	Address	277-289 Woodpark Road Sr	nithfield NSW Australia 2164
Telephone	: +61 02 9809 0666	Telephone	: +61 2 8784 8555	
Project	: 202107.04 Bungendore	Date Samples Received	: 13-Oct-2021 12:00	awijin.
Order number	: 155171	Date Analysis Commenced	: 14-Oct-2021	
C-O-C number	:	Issue Date	: 20-Oct-2021 14:52	
Sampler	: SDG			Hac-MRA NATA
Site	: Bugendore			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 6			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page: 3 of 8Work Order: ES2136811Client: DOUGLAS PARTNERS PTY LTDProject: 202107.04 Bungendore

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	RR1	RR2	RR3	
		Sampli	ng date / time	08-Oct-2021 00:00	08-Oct-2021 00:00	08-Oct-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2136811-001	ES2136811-002	ES2136811-003	
	CAS Number	2011		Result	Result	Result	
EA055: Moisture Content (Dried @	105 110°C)			Result	rtcouit	1 Court	
Moisture Content		1.0	%	12.8	16.3	14.2	
EG005(ED093)T: Total Metals by IC			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Arsenic	7440-38-2	5	mg/kg	6	<5	<5	
Cadmium	7440-38-2	1	mg/kg	<1	<1	<1	
Chromium	7440-43-3	2	mg/kg	23	18	14	
Copper	7440-47-3	5	mg/kg	11	9	10	
Lead	7439-92-1	5	mg/kg	22	6	16	
Nickel	7439-92-1	2	mg/kg	12	11	7	
Zinc	7440-62-0	5	mg/kg	27	13	34	
EG035T: Total Recoverable Mercu		-					1
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	
-		0.1	mg/kg	-0.1	-0.1	-0.1	
EP066: Polychlorinated Biphenyls		0.1	malka	<0.1	<0.1	<0.1	
Total Polychlorinated biphenyls		0.1	mg/kg	NO.1	~0.1	\U.1	
EP068A: Organochlorine Pesticide		0.05		-0.05	10.05	10.05	
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	

Page: 4 of 8Work Order: ES2136811Client: DOUGLAS PARTNERS PTY LTDProject: 202107.04 Bungendore

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	RR1	RR2	RR3	
		Samplii	ng date / time	08-Oct-2021 00:00	08-Oct-2021 00:00	08-Oct-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2136811-001	ES2136811-002	ES2136811-003	
			-	Result	Result	Result	
EP068A: Organochlorine Pestici	des (OC) - Continued						
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	
[^] Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05	<0.05	<0.05	
EP068B: Organophosphorus Pes	sticides (OP)						
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	
EP075(SIM)A: Phenolic Compour	nds						
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5	
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	<0.5	
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	<0.5	
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	<1	
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	<0.5	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	<0.5	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	<0.5	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	<0.5	

Page : 5 of 8 Work Order : ES2136811 Client : DOUGLAS PARTNERS PTY LTD Project : 202107.04 Bungendore

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	RR1	RR2	RR3	
		Samplii	ng date / time	08-Oct-2021 00:00	08-Oct-2021 00:00	08-Oct-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2136811-001	ES2136811-002	ES2136811-003	
				Result	Result	Result	
EP075(SIM)A: Phenolic Compounds - 0	Continued						
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	<0.5	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	<0.5	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	<0.5	
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	<2	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	
^ Sum of polycyclic aromatic hydrocarbon	S	0.5	mg/kg	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	
EP080/071: Total Petroleum Hydrocarb	oons						
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	າຣ				
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	

Page: 6 of 8Work Order: ES2136811Client: DOUGLAS PARTNERS PTY LTDProject: 202107.04 Bungendore

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	RR1	RR2	RR3	
		Sampli	ng date / time	08-Oct-2021 00:00	08-Oct-2021 00:00	08-Oct-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2136811-001	ES2136811-002	ES2136811-003	
				Result	Result	Result	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued				
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	
(F1)							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	
EP066S: PCB Surrogate	31-20-3	-		·	·	· ·	
Decachlorobiphenyl	2051-24-3	0.1	%	79.0	96.7	86.1	
		0.1	70	73.0	50.7	00.1	
EP068S: Organochlorine Pesticide Su		0.05	0/		00.4	07.0	
Dibromo-DDE	21655-73-2	0.05	%	76.9	86.1	87.9	
EP068T: Organophosphorus Pesticide							
DEF	78-48-8	0.05	%	83.1	103	96.8	
EP075(SIM)S: Phenolic Compound Su	rrogates						
Phenol-d6	13127-88-3	0.5	%	88.2	86.4	82.2	
2-Chlorophenol-D4	93951-73-6	0.5	%	84.1	86.6	82.5	
2.4.6-Tribromophenol	118-79-6	0.5	%	72.8	89.1	66.0	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	98.8	100	87.4	
Anthracene-d10	1719-06-8	0.5	%	93.1	88.8	80.8	
4-Terphenyl-d14	1718-51-0	0.5	%	85.4	83.0	86.6	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	87.2	92.6	97.5	
Toluene-D8	2037-26-5	0.2	%	88.6	93.8	96.5	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	RR1	RR2	RR3				
		Samplin	ng date / time	08-Oct-2021 00:00	08-Oct-2021 00:00	08-Oct-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2136811-001	ES2136811-002	ES2136811-003				
				Result	Result	Result				
EP080S: TPH(V)/BTEX Surrogates - Co	EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	82.4	87.7	91.1				

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surr	ogate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide	Surrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surr	ogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order	: ES2136811	Page	: 1 of 10	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division	Sydney
Contact	: SHANNON GOODSELL	Contact	: Sepan Mahamad	
Address	: UNIT 5/50 TOPHAN ROAD SMEATON GRANGE NSW 2567	Address	: 277-289 Woodpark Ro	ad Smithfield NSW Australia 2164
Telephone	: +61 02 9809 0666	Telephone	: +61 2 8784 8555	
Project	: 202107.04 Bungendore	Date Samples Received	: 13-Oct-2021	
Order number	: 155171	Date Analysis Commenced	: 14-Oct-2021	
C-O-C number	:	Issue Date	: 20-Oct-2021	
Sampler	: SDG			Hac-MRA NAIA
Site	: Bugendore			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 6			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	tal Metals by ICP-AE	S (QC Lot: 3959849)							
ES2136459-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	3	3	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
	EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.0	No Limit	
	EG005T: Lead	7439-92-1	5	mg/kg	5	5	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	12	10	10.7	No Limit
A055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 3959852)							
ES2136770-001	Anonymous	EA055: Moisture Content		0.1	%	15.6	15.5	0.0	0% - 50%
ES2136811-003	RR3	EA055: Moisture Content		0.1	%	14.2	13.5	4.9	0% - 50%
G035T: Total Reco	overable Mercury by	FIMS (QC Lot: 3959850)							
ES2136459-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
P066: Polychlorina	ated Biphenyls (PCB)) (QC Lot: 3955243)							
ES2136811-001	RR1	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
P068A: Organochl	orine Pesticides (OC	;) (QC Lot: 3955244)							
ES2136811-001	RR1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page	: 3 of 10
Work Order	: ES2136811
Client	: DOUGLAS PARTNERS PTY LTD
Project	202107.04 Bungendore

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochl	orine Pesticides (OC)(C	QC Lot: 3955244) - continued							
ES2136811-001	RR1	EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068B: Organopho	osphorus Pesticides (OP	P) (QC Lot: 3955244)							
ES2136811-001	RR1	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)A: Phene	olic Compounds (QC Lo	ot: 3955245)							
ES2136811-001	RR1	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 4 of 10
Work Order	: ES2136811
Client	: DOUGLAS PARTNERS PTY LTD
Project	202107.04 Bungendore

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)A: Phenc	lic Compounds (QC Lot: 39	955245) - continued							
ES2136811-001	RR1	EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydrocarbo	ns (QC Lot: 3955245)							
ES2136811-001	RR1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 3955246)							
ES2136811-001	RR1	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 3955444)							
ES2134309-007	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2136811-002	RR2	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hyd <u>rocarbons - N</u>	EPM 2013 Fractions (QC Lot: 3955246)							
ES2136811-001	RR1	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
						1			

EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 3955444)

Page	5 of 10
Work Order	: ES2136811
Client	: DOUGLAS PARTNERS PTY LTD
Project	202107.04 Bungendore

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 3955444) - continued							
ES2134309-007	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2136811-002	RR2	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC	Lot: 3955444)								
ES2134309-007	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2136811-002	RR2	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl
EG005(ED093)T: Total Metals by ICP-AES(QCL	ot: 3959849)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	98.5	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	93.0	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	113	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	106	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	94.2	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	99.9	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	88.2	66.0	133
EG035T: Total Recoverable Mercury by FIMS (QCLot: 3959850)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	120	70.0	125
EP066: Polychlorinated Biphenyls (PCB) (QCLc	ot: 3955243)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	97.8	62.0	126
EP068A: Organochlorine Pesticides (OC)(QCL	of: 3955244)							I
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	85.1	69.0	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	79.5	65.0	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	92.9	67.0	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	87.8	68.0	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.4	65.0	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.5	67.0	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	89.5	69.0	115
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	94.5	62.0	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	63.0	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	66.0	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.8	64.0	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	94.4	66.0	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.8	67.0	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.2	67.0	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	97.3	69.0	115
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.3	69.0	121
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	78.3	56.0	120
P068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	81.0	62.0	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	86.0	66.0	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	79.5	64.0	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	89.0	54.0	130

Page	: 7 of 10
Work Order	: ES2136811
Client	: DOUGLAS PARTNERS PTY LTD
Project	202107.04 Bungendore

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP)(Q	CLot: 3955244) - continued							
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	89.8	59.0	119
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	107	62.0	128
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	104	54.0	126
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	104	67.0	119
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	101	70.0	120
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	92.6	72.0	120
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	95.1	68.0	120
P068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	104	68.0	122
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	94.3	69.0	117
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	93.7	76.0	118
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	96.0	64.0	122
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	93.9	70.0	116
P068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	85.4	69.0	121
P068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	87.3	66.0	118
P068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	104	68.0	124
P068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	62.0	112
P068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	95.7	68.0	120
P068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	83.8	65.0	127
P068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	107	41.0	123
P075(SIM)A: Phenolic Compounds (QCLot: 39	55245)							
P075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	6 mg/kg	93.7	71.0	125
P075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	6 mg/kg	96.6	72.0	124
P075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	6 mg/kg	88.5	71.0	123
P075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	12 mg/kg	89.3	67.0	127
P075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	6 mg/kg	89.1	54.0	114
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	6 mg/kg	98.8	68.0	126
P075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	6 mg/kg	97.0	66.0	120
P075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	6 mg/kg	102	70.0	120
P075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	6 mg/kg	91.6	70.0	116
P075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	6 mg/kg	89.7	54.0	114
P075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	6 mg/kg	98.2	60.0	114
P075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	12 mg/kg	45.6	10.0	57.0
P075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 3 <u>955245)</u>							
P075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	96.2	77.0	125
P075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	103	72.0	124
P075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	102	73.0	127
P075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	98.3	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	108	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	93.6	77.0	127

Page	: 8 of 10
Work Order	: ES2136811
Client	: DOUGLAS PARTNERS PTY LTD
Project	202107.04 Bungendore

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons((QCLot: 3955245) - cor	ntinued						
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	89.3	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	90.5	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	97.5	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	101	75.0	127
P075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	97.7	68.0	116
P075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	100	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	99.7	70.0	126
P075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	97.0	61.0	121
P075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	101	62.0	118
P075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	94.0	63.0	121
P080/071: Total Petroleum Hydrocarbons (QCLot: :	3955246)							
P071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	93.5	75.0	129
P071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	89.4	77.0	131
P071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	91.7	71.0	129
P080/071: Total Petroleum Hydrocarbons (QCLot:	3955444)							
P080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	89.7	68.4	128
P080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 3955246)						
P071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	95.2	77.0	125
P071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	91.2	74.0	138
P071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	76.6	63.0	131
P080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCLo	ot: 3955444)						
P080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	101	68.4	128
P080: BTEXN (QCLot: 3955444)	_							
P080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	89.9	62.0	116
P080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	95.0	67.0	121
P080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	92.5	65.0	117
P080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	95.2	66.0	118
P080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	94.6	68.0	120
P080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	76.0	63.0	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Matrix Spike (MS) Report		
Spike	SpikeRecovery(%)	Acceptable Limits (%)

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3959849)						
ES2136459-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	99.1	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	100	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	100	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	96.0	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	94.5	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	101	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	96.7	66.0	133
G035T: Total Red	coverable Mercury by FIMS (QCLot: 3959850)						
ES2136459-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	105	70.0	130
EP066: Polychlorir	nated Biphenyls (PCB) (QCLot: 3955243)						
ES2136811-001	RR1	EP066: Total Polychlorinated biphenyls		1 mg/kg	106	70.0	130
EP068A: Organoch	nlorine Pesticides (OC) (QCLot: 3955244)						
ES2136811-001	RR1	EP068: gamma-BHC	58-89-9	0.5 mg/kg	95.2	70.0	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	93.5	70.0	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	98.2	70.0	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	96.6	70.0	130
	EP068: Endrin	72-20-8	2 mg/kg	106	70.0	130	
	EP068: 4.4`-DDT	50-29-3	2 mg/kg	86.7	70.0	130	
EP068B: Organopl	nosphorus Pesticides (OP) (QCLot: 3955244)						
ES2136811-001	RR1	EP068: Diazinon	333-41-5	0.5 mg/kg	107	70.0	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	94.4	70.0	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	96.5	70.0	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	88.3	70.0	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	80.0	70.0	130
EP075(SIM)A: Phe	nolic Compounds (QCLot: 3955245)						1
ES2136811-001	RR1	EP075(SIM): Phenol	108-95-2	10 mg/kg	91.3	70.0	130
		EP075(SIM): 2-Chlorophenol	95-57-8	10 mg/kg	83.2	70.0	130
		EP075(SIM): 2-Nitrophenol	88-75-5	10 mg/kg	76.8	60.0	130
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	10 mg/kg	86.8	70.0	130
		EP075(SIM): Pentachlorophenol	87-86-5	10 mg/kg	52.4	20.0	130
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 395524				· · · · ·		1
ES2136811-001	RR1	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	84.8	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	81.0	70.0	130
EP080/07 <u>1: Total P</u>	etroleum Hydrocarbons (QCLot: 3955246)						1
ES2136811-001	RR1	EP071: C10 - C14 Fraction		480 mg/kg	117	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	105	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	102	52.0	132

Page	: 10 of 10
Work Order	: ES2136811
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 202107.04 Bungendore

Sub-Matrix: SOIL	o-Matrix: SOIL					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)		
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 3955444)								
ES2134309-007	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	107	70.0	130		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3955246)							
ES2136811-001	RR1	EP071: >C10 - C16 Fraction		860 mg/kg	111	73.0	137		
		EP071: >C16 - C34 Fraction		4320 mg/kg	106	53.0	131		
		EP071: >C34 - C40 Fraction		890 mg/kg	90.2	52.0	132		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3955444)							
ES2134309-007	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	119	70.0	130		
EP080: BTEXN (Q	CLot: 3955444)								
ES2134309-007	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	95.2	70.0	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	94.6	70.0	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	94.6	70.0	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	96.2	70.0	130		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	96.3	70.0	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	87.6	70.0	130		

QA/QC Compliance Assessment to assist with Quality Review							
Work Order	: ES2136811	Page	: 1 of 5				
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney				
Contact	: SHANNON GOODSELL	Telephone	: +61 2 8784 8555				
Project	: 202107.04 Bungendore	Date Samples Received	: 13-Oct-2021				
Site	: Bugendore	Issue Date	: 20-Oct-2021				
Sampler	: SDG	No. of samples received	: 6				
Order number	: 155171	No. of samples analysed	: 3				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055) RR1, RR3	RR2,	08-Oct-2021				18-Oct-2021	22-Oct-2021	~
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T) RR1, RR3	RR2,	08-Oct-2021	18-Oct-2021	06-Apr-2022	1	18-Oct-2021	06-Apr-2022	1
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T) RR1, RR3	RR2,	08-Oct-2021	18-Oct-2021	05-Nov-2021	~	19-Oct-2021	05-Nov-2021	~
EP066: Polychlorinated Biphenyls (PCB)								
Soil Glass Jar - Unpreserved (EP066) RR1, RR3	RR2,	08-Oct-2021	18-Oct-2021	22-Oct-2021	~	18-Oct-2021	27-Nov-2021	~
EP068A: Organochlorine Pesticides (OC)							1	
Soil Glass Jar - Unpreserved (EP068) RR1, RR3	RR2,	08-Oct-2021	18-Oct-2021	22-Oct-2021	~	18-Oct-2021	27-Nov-2021	~
EP068B: Organophosphorus Pesticides (OP)							•	
Soil Glass Jar - Unpreserved (EP068) RR1, RR3	RR2,	08-Oct-2021	18-Oct-2021	22-Oct-2021	~	18-Oct-2021	27-Nov-2021	~
EP075(SIM)A: Phenolic Compounds								
Soil Glass Jar - Unpreserved (EP075(SIM)) RR1, RR3	RR2,	08-Oct-2021	18-Oct-2021	22-Oct-2021	~	18-Oct-2021	27-Nov-2021	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM)) RR1, RR3	RR2,	08-Oct-2021	18-Oct-2021	22-Oct-2021	~	18-Oct-2021	27-Nov-2021	~

Page	: 3 of 5
Work Order	: ES2136811
Client	: DOUGLAS PARTNERS PTY LTD
Project	202107.04 Bungendore

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080)								
RR1,	RR2,	08-Oct-2021	14-Oct-2021	22-Oct-2021	~	15-Oct-2021	22-Oct-2021	✓
RR3								
Soil Glass Jar - Unpreserved (EP071)								
RR1,	RR2,	08-Oct-2021	18-Oct-2021	22-Oct-2021	1	18-Oct-2021	27-Nov-2021	✓
RR3								
EP080/071: Total Recoverable Hydrocarbons - N	EPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080)								
RR1,	RR2,	08-Oct-2021	14-Oct-2021	22-Oct-2021	1	15-Oct-2021	22-Oct-2021	✓
RR3								
Soil Glass Jar - Unpreserved (EP071)								
RR1,	RR2,	08-Oct-2021	18-Oct-2021	22-Oct-2021	✓	18-Oct-2021	27-Nov-2021	✓
RR3								
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
RR1,	RR2,	08-Oct-2021	14-Oct-2021	22-Oct-2021	1	15-Oct-2021	22-Oct-2021	✓
RR3								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatior	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Appendix I

Quality Assurance and Quality Control

Appendix I Data Quality Assurance and Quality Control Majara Street, Bungendore

I1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included in the summary results tables.

ltem	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% of primary samples; <30% RPD	PC
Inter-laboratory replicates	5% of primary samples; <30% RPD	PC
Trip Spikes	One per sampling event; 60-140% recovery	С
Trip Blanks	One per sampling event; <pql< td=""><td>С</td></pql<>	С
Rinsates	One per sampling event; <pql< td=""><td>С</td></pql<>	С
Laboratory / Reagent Blanks	One per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	One per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	One per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, except for those indicated in Tables QA1 and QA2 (Appendix G). The exceedances are not, however, considered to be of concern given that:

- The replicate pairs being collected from fill soils which were heterogeneous in nature;
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the PQL and small actual differences in recorded concentrations will lead to high RPD values;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

I2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement
Completeness	Systematic and selected target locations sampled.
	Preparation of borehole logs, sample location plan and chain of custody records.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced sampler(s) used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Generally acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Table 2: Data Quality Indicators

Based on the above, it is considered that the DQIs have been generally complied with.

I3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

I4.0 References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd