

Centennial Coal Company Limited Coxs River Ecotoxicology Assessment

September 2014

Executive summary

GHD Pty Ltd was commissioned by Centennial Coal Company Limited to conduct an ecotoxicological study to determine toxicity and chemical constituents of mine water discharge from LDP001 at Angus Place Colliery (AP LDP001) and LDP009 at Springvale Mine (SV LDP009) as well as several locations within the upper Coxs River catchment to assess the impact of mine water discharge on the surrounding receiving environment. This ecotoxicology assessment will be used to support the response to submissions for the Environmental Impact Statements for both the mine extension projects.

Direct toxicity assessment was undertaken for the mine water discharge samples from AP LDP001 and SV LDP009. Toxicity testing at all other locations was conducted using screening tests with the freshwater cladoceran, which has been found to be the most sensitive test species in previous toxicity testing conducted by Centennial in the region. Toxicity testing of sampled water was performed using the ANZECC and ARMCANZ (2000) protocol with species endemic to, or representative of, the receiving environment. Water quality analysis was also undertaken for the samples from each location.

The results of this study show that the discharge at SV LDP009 is having an acute impact on cladoceran species at the Sawyers Swamp Creek site downstream of discharges; however this acute toxicity is ameliorated as the discharge enters the Coxs River. Impacts on cladoceran reproduction show a decreasing trend in the Coxs River with distance downstream of the SV LDP009 discharge point until no toxic impacts are detected in the upper portion of Lake Wallace.

The results of the toxicity testing were used to determine the concentration of SV LDP009 discharge of 2.7% to provide protection to 95% of the species in the downstream ecosystem. An estimate of the runoff contributing to the Coxs River was obtained from the water balance model developed by RPS (2014a). The estimated catchment runoff to the Coxs River at each location was compared to the predicted maximum daily discharge volume from AP LDP001 and SV LDP009 to determine the expected dilution of discharge within the river. The target dilution of SV LDP009 discharge was not found to be met under median rainfall conditions.

Aquatic ecology monitoring results provide supporting evidence that the discharges from AP LDP001 and SV LDP009 are not adversely impacting the aquatic health of the Coxs River. The sites downstream of discharges from AP LDP001 were found to have more pollution sensitive taxa present in the macroinvertebrate assemblages than the upstream Coxs River site.

The water quality results for SV LDP009 do not indicate any parameters that are present in concentrations that could cause the significant toxicity observed in the ecotoxicology results. Furthermore, the chemistry of discharge from AP LDP001, which did not show any toxicity to the cladoceran species, was found to be very similar to that of SV LDP009. Further investigations are required to determine the source of the toxicity at SV LDP009.

Table of contents

1.	1. Introduction		
	1.1	Background1	
	1.2	Coxs River Catchment1	
	1.3	Discharge Locations8	
	1.4	Water Management Strategies9	
	1.5	Scope of Work9	
2.	Meth	odology10	
	2.1	Sample Collection	
	2.2	Ecotoxicology Assessment	
	2.3	Water Quality Assessment14	
	2.4	Catchment Dilution Assessment17	
3.	Resu	Its and Discussion21	
	3.1	Ecotoxicology Assessment	
	3.1	Water Quality Assessment	
	3.2	Catchment Dilution Assessment	
	3.3	Discussion	
4.	Conc	lusions	
	4.1	Ecotoxicology Assessment	
	4.2	Integrated Catchment Assessment	
	4.3	Coxs River Restoration Program	
	4.4	Assessment Review	
5.	Refer	ences	

Table index

Table 1-1	NSW Office of Water Flow Gauge Details	3
Table 1-2	Coxs River Flow Gauge Statistics	6
Table 1-3	Licensed Discharge Points	8
Table 2-1	Recorded Discharges during Site Visit	12
Table 2-2	Water Quality Parameters	14
Table 2-3	Trigger Values and EPL Limits for Assessment of Water Quality	15
Table 2-4	Predicted Maximum Daily Discharge through AP LDP001 and SV LDP009	
	(RPS, 2014a)	18
Table 3-1	Summary of AP LDP001 and SV LDP009 Ecotoxicology Results	21
Table 3-2	Summary of Screening Ecotoxicology Results	22
Table 3-3	Summary of Water Quality Assessment Results	24

Table 3-4	Dilution Factor Determined from Ecotoxicology Results	30
Table 3-5	Modelled Catchment Runoff	32
Table 3-6	Electrical Conductivity Recorded at Aquatic Ecology Monitoring Points (Cardno, 2014a; 2014b)	36
Table 3-7	Aquatic Ecology SIGNAL 2 Score (Cardno, 2014a; 2014b)	36
Table 3-8	Aquatic Ecology AUSRIVAS Bands (Cardno, 2014a; 2014b)	37

Figure index

Figure 1-1	Locality Plan	2
Figure 1-2	Watercourses	4
Figure 1-3	NSW Office of Water Flow Gauge Locations	5
Figure 1-4	Site Locations	7
Figure 2-1	Sample Locations	11
Figure 2-2	Recorded Rainfall Prior To and During Site Visit	12
Figure 2-3	Catchments within Water Balance Model (RPS, 2014a)	19
Figure 2-4	Catchment Runoff Locations	20
Figure 3-1	Stiff diagrams	31
Figure 3-2	Reproduction Toxicity and Electrical Conductivity Results	33
Figure 3-3	Reproduction Toxicity and Bicarbonate Alkalinity Results	34
Figure 3-4	Aquatic Ecology Monitoring Points (Cardno 2014a; 2014b)	35

Appendices

- Appendix A Flow Gauge Figures
- Appendix B Ecotoxicology Report
- Appendix C Water Quality Report
- Appendix D Catchment Runoff Results

Glossary

Acute toxicity	The ability of a substance to cause severe biological harm or death from a single exposure.
Alkalinity	A measure of the ability of an aqueous solution to neutralise acids. Alkalinity of natural waters is due primarily to the presence of hydroxides, bicarbonates and carbonates. It is expressed in units of calcium carbonate (CaCO3).
Analyte	A substance or chemical constituent that is undergoing analysis.
Anion	A negatively charged ion.
Bioassay	An experimental test used to evaluate the relative potency of a chemical by measuring its effect on a living organism relative to a control.
Bioavailability	The fraction of the total of a chemical in the surrounding environment that is available to be taken up by an organism. The environment may include water, sediment, soil, suspended particles and food.
Catchment	The land area draining through the main stream and tributary streams to a particular location.
Cation	A positively charged ion.
Chronic toxicity	The ability of a substance to cause severe biological harm or death from prolonged exposure.
Community	An assemblage of organisms occupying a specified location and time, usually interacting with one another.
Control	The part of an experimental procedure which is like the treated part in every respect except it is not subjected to the test conditions. The control is used as a standard of comparison, to check that the outcome of the experiment is a reflection of the test conditions and not of some unknown factor.
Direct toxicity assessment	The use of toxicity tests to determine the acute and/or chronic toxicity of mixtures of compounds in ambient waters.
Discharge	The quantity of water per unit time, for example cubic metres per second or megalitres per day.
Ecotoxicology	Scientific study of the effects of toxic substances on living organisms.
Effect concentration	The concentration of a substance in water where a certain percent of test organisms exhibit a certain response or effect after a specified exposure period. For example, EC10 is the concentration where 10 percent of the test organisms exhibit a response.

Electrical conductivity	A measure of the concentration of dissolved salts or ions in water.
Guidelines	Numerical concentration or narrative statement that provides appropriate guidance for a designated water use or impact.
Hardness	The concentration of multivalent cations present in water. Generally, hardness is a measure of the concentration of calcium and magnesium ions in water and is expressed in units of calcium carbonate (CaCO3) equivalent. Hardness may influence the toxicity and bioavailability of substances in water.
lon	An electrically charged atom.
Index	Composite value that can give a quick ranking to an ecosystem feature (e.g. a water body), derived via a formula that combines measurements of important ecosystem characteristics; typically used to rank 'health' or naturalness.
Licensed discharge point	A location where the premises discharge water in accordance with conditions stipulated with the site's Environment Protection Licence.
Longwall mining	Underground coal mining where a block of coal is mined using a longwall shearer, supported by roadway development that is created using a continuous miner unit.
Macroinvertebrate	An animal species that does not develop a vertebral column and is large enough to be seen without the use of a microscope. These animals generally include insects, crustaceans, molluscs, arachnids and annelids.
Median	The middle value, such that there is an equal number of higher and lower values. Also referred to as the 50th percentile.
Meteorology	The science concerned with the processes and phenomena of the atmosphere, especially as a means of forecasting the weather.
No observed effects concentration (NOEC)	The highest tested concentration of a substance in water at which no effect is observable in test organisms in a given population (compared to the control sample).
Percentile	The value of a variable below which a certain per cent of observations fall. For example, the 80th percentile is the value below which 80 per cent of values are found.
рН	The value taken to represent the acidity or alkalinity of an aqueous solution. It is defined as the negative logarithm of the hydrogen ion concentration of the solution.
Physicochemical	Refers to the physical (e.g. temperature, electrical conductivity) and chemical (e.g. concentrations of nitrate, mercury) characteristics of water.
Riparian	Pertaining to, or situated on, the bank of a river or other water body.

Runoff	Amount of rainfall that ends up as streamflow.
Total dissolved solids	A measure of the inorganic and organic substances dissolved in water.
Total Kjeldahl nitrogen	The sum of the concentrations of organic nitrogen, ammonia (NH4) and ammonium (NH4+) in water.
Total nitrogen	A measure of organic and inorganic nitrogen forms in water. The sum of concentrations of total Kjeldahl nitrogen, nitrite and nitrate.
Total phosphorus	A measure of the organic and inorganic phosphorus in particulate and soluble forms.
Total suspended solids	A measure of the filterable matter suspended in water.
Toxicity	The inherent potential or capacity of a substance to cause adverse effects in a living organism.
Trigger value	The concentration or load of physicochemical characteristic of an aquatic ecosystem, below which there exists a low risk that adverse ecological effects will occur. they indicate a risk of impact if exceeded and should 'trigger' action to conduct further investigations or to implement management or remedial processes.
Turbidity	A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Abbreviations

AUSRIVAS	Australian Rivers Assessment System
AWBM	Australian Water Balance Model
BOM	Bureau of Meteorology
DO	Dissolved oxygen
DOC	Dissolved organic carbon
DTA	Direct toxicity assessment
EC	Effect concentration
EPA	Environment Protection Authority
EPL	Environment Protection Licence
ESA	Ecotox Services Australasia
GHD	GHD Pty Ltd
km	Kilometre
km2	Square kilometre
L	Litre
LDP	Licensed discharge point
m	Metre
mg/L	Milligram per litre
ML/day	Megalitre per day
mV	Millivolt
ΝΑΤΑ	National Association of Testing Authorities
NOEC	No observable effect concentration
NOW	NSW Office of Water
NTU	Nephelometric turbidity unit
SSTV	Site-specific trigger value
TDS	Total dissolved solids
TSS	Total suspended solids
°C	Degrees Celsius
µS/cm	Microsiemens per centimetre

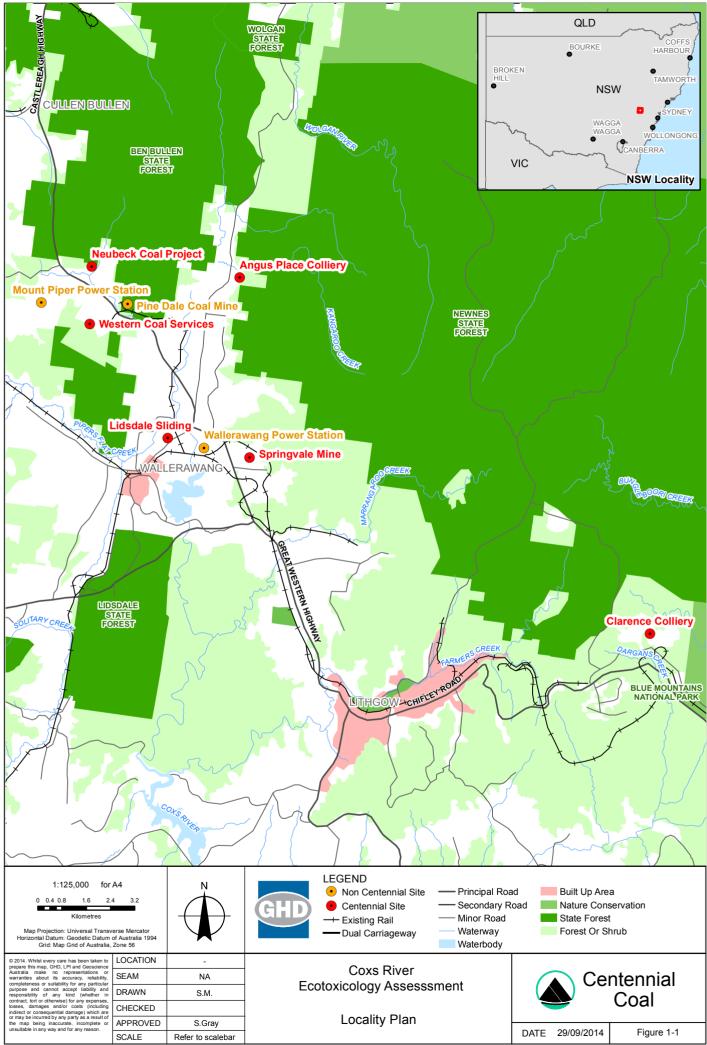
1. Introduction

1.1 Background

Angus Place Colliery is an underground coal mine located approximately 5 km north of Lidsdale and approximately 15 km north-west of Lithgow. Springvale Mine is also an underground coal mine located approximately 6 km south of Angus Place Colliery. A locality figure is provided in Figure 1-1. Both mines are currently seeking approval to extend mining operations using longwall mining methods as part of the Angus Place Mine Extension Project and Springvale Mine Extension Project respectively.

Groundwater inflows into the underground workings at both Angus Place Colliery and Springvale Mine are transferred to a subterranean pipeline network prior to discharge at licensed discharge point (LDP) LDP009 at Springvale Mine. Mine water from Springvale Mine is taken as a priority, with the remaining capacity supplied by mine water from Angus Place Colliery.

GHD Pty Ltd (GHD) was commissioned by Centennial Coal Company Limited (Centennial) to conduct an ecotoxicological study to determine toxicity and chemical constituents of mine water discharge from LDP001 at Angus Place Colliery (AP LDP001) and LDP009 at Springvale Mine (SV LDP009) as well as several locations within the upper Coxs River catchment to assess the impact of mine water discharge on the surrounding receiving environment. This ecotoxicology assessment will be used to support the response to submissions for the Environmental Impact Statements for both the mine extension projects.


The NSW Environment Protection Authority (EPA) conducted water quality and toxicity testing on discharge from SV LDP009 and the receiving environment on 8 May 2014. GHD was engaged by Centennial to review and interpret the results of the testing provided by the NSW EPA and to determine the impacts on the receiving environment. The outcomes of this assessment are provided in *Springvale EPA Water Quality and Toxicity Assessment: Interpretive Report* (GHD, 2014). The objectives of the work detailed in this report as well as the above mentioned report are to develop a weight of evidence approach to the outcomes of the two mine extension projects.

1.2 Coxs River Catchment

1.2.1 Topography and Land Use

The Western Coalfield lies on the western slopes of the north-south oriented sandstone ridgeline of the Great Dividing Range, to the west of the Wollemi National Park and the Blue Mountains National Park. The area consists primarily of undulating hills and mountain tops, with some low-lying areas.

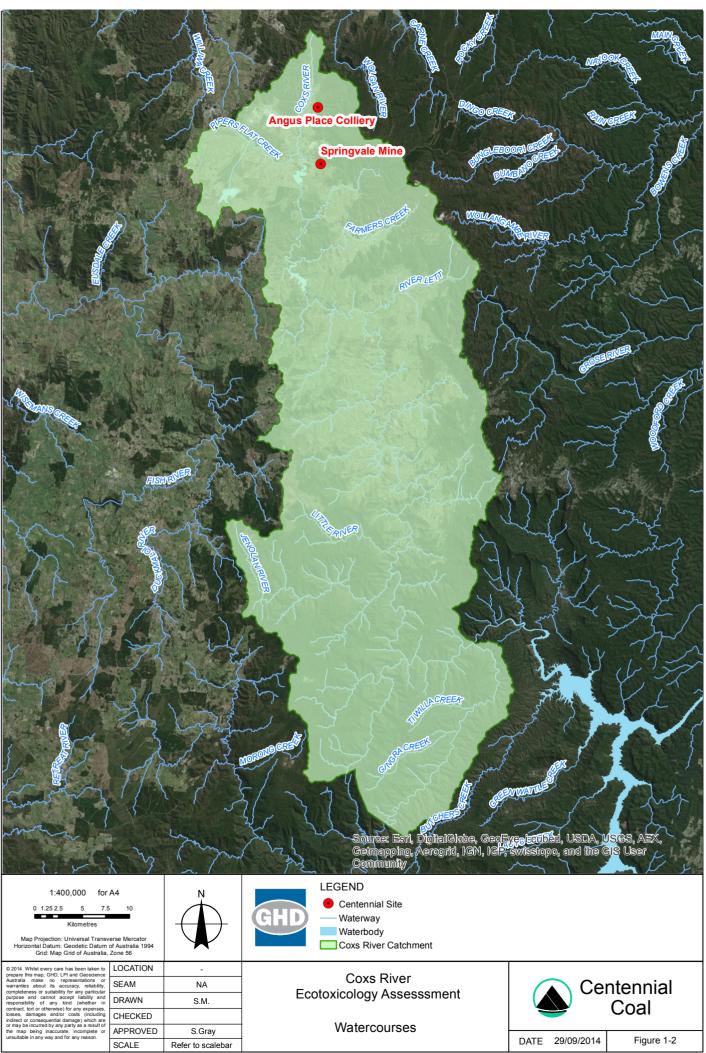
The region is surrounded by state recognised forests and reserves, including the Turon State Forest and Winburndale Nature Reserve in the west and the Wolgan State Forest, Ben Bullen State Forest and Newnes State Forest to the east. Low-lying areas have been cleared of vegetation for agricultural, commercial and industrial purposes, including coal mining, forestry and power generation. Nearby residential areas include Lithgow and Wallerawang to the south and Portland and Cullen Bullen to the west.

GIS Filename: G:l22l0105001\GIS\Maps\Deliverables\Western\Angus Place/2217471\2217471_001_Locality_A.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006: LPI: DTDB 2012

Sommonwealth of Australia (Geoscience Australia). 2004 Topographic Data Series 3 2000; LPI: DTDB 2012

1.2.1 Hydrology

The Coxs River is a perennial river that drains a catchment area of approximately 1,700 km² as shown in Figure 1-2 and is part of the greater Hawkesbury/Nepean catchment. The river rises within the Ben Bullen State Forest east of Cullen Bullen and flows generally in a south-east direction into Lake Burragorang (impounded by Warragamba Dam), which is the primary reservoir for drinking water supply to Sydney. The flow in Coxs River is regulated by three reservoirs, Lake Wallace, Thompsons Reservoir and Lake Lyell, which are used to supply power generation activities.


Flows within the Coxs River are monitored at several locations by NSW Office of Water (NOW) gauges. The locations of the four gauges assessed are presented in Figure 1-3 and details are provided in Table 1-1.

A partial series analysis was undertaken on the data available from the NOW gauges on the Coxs River. As the quality of data as provided by the NOW was found to vary, data with a large uncertainty was not included in the analysis. The proportion of the data record used in the analysis is included in Table 1-1 for each flow gauge.

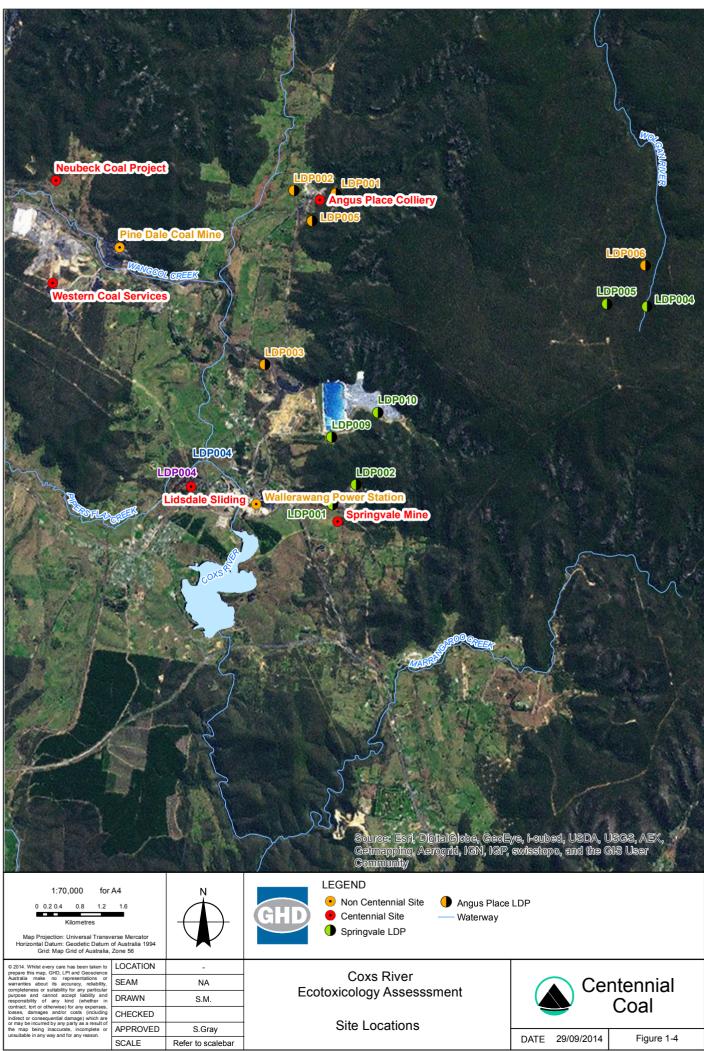
	Coxs River at Wallerawang Power Station	Coxs River at Bathurst Road	Coxs River at Upstream Lake Lyell	Coxs River at Lithgow	Coxs River at Island Hill
Station number	212054	212008	212058	212011	212045
Record	January 1992 to September 2014	January 1951 to September 2014	December 2000 to September 2014	May 1960 to September 2014	August 1981 to September 2014
Latitude	-33.3971	-33.4277	-33.4757	-33.5343	-33.7573
Longitude	150.0839	150.0825	150.0762	150.0951	150.1970
Elevation	875 m	858 m	857 m	744 m	264
Catchment area	178 km ²	199 km ²	250 km ²	404 km ²	970 km ²
Proportion of record used	97%	97%	95%	97%	99%

Table 1-1 NSW Office of Water Flow Gauge Details

Hydrographs and daily percentiles for each flow gauge assessed are presented in Appendix A with selected flow statistics provided in Table 1-2. The median flow within the Coxs River increases from 13.3 ML/day at Wallerawang Power Station downstream to 50 ML/day in the lower Coxs River catchment at Island Hill. The flow statistics presented in Table 1-2 indicate that the average values for the gauges on the Coxs River at Bathurst Road, Lithgow and Island Hill have been skewed by flood events in 1986 and 1990, which were not recorded by the gauges at Wallerawang Power Station or upstream of Lake Lyell.

GIS Filename: G:\22\0105001\GIS\Maps\Deliverables\Western\angus Place\2217471\2217471_005_Watercourses_A.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006; LPI: DTDB 2012

GIS Filename: G:\22\0105001\GIS\Maps\Deliverables\Western\Angus Place\2217471\2217471_004_NOWGauges_A.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006; LPI: DTDB 2012


Table 1-2	Coxs River Flow Gauge Statistics
-----------	---

Statistic	Coxs River at Wallerawang Power Station (ML/day)	Coxs River at Bathurst Road (ML/day)	Coxs River at Upstream Lake Lyell (ML/day)	Coxs River at Lithgow (ML/day)	Coxs River at Island Hill (ML/day)
Average	25.5	61.6	29.4	119.7	216.2
Minimum	0.3	0.0	4.9	0.0	0.0
10th percentile	4.5	3.4	12.2	3.3	6.0
50th percentile	13.3	13.9	20.3	30.6	50.0
90th percentile	44.7	94.4	54.1	217.8	425.7
Maximum	4,315	33,729	267	29,319	77,439

1.2.2 Site Overviews

The following coal mining and power generation operations that have been considered in this ecotoxicology assessment, as presented in Figure 1-4:

- Angus Place Colliery Underground coal mine currently seeking approval to extend mining operations. Mine water is primarily transferred to a pipeline and discharged via SV LDP009.
- Clarence Colliery Underground coal mine operated by Centennial located in the Wollangambe River catchment, adjacent to the Coxs River catchment. Water transferred from Clarence Colliery to Lithgow City Council to supplement the town water supply may contribute to Farmers Creek, which is a tributary of Coxs River.
- Lidsdale Siding Coal storage and rail loading facility operated by Centennial that receives coal from Western Coal Services for transport by rail to Port Kembla or Port of Newcastle for export.
- Mount Piper Power Station Coal-fired power station owned by Energy Australia.
- Neubeck Coal Project Proposed open cut coal mine currently seeking approval.
- Pine Dale Coal Mine Open cut coal mine owned by Energy Australia that is currently under care and maintenance while seeking approval to continue mining operations.
- Springvale Mine Underground coal mine currently seeking approval to extend mining operations. Mine water is transferred to a pipeline and discharged via SV LDP009.
- Wallerawang Power Station Coal-fired power station owned by Energy Australia that is currently under care and maintenance.
- Western Coal Services Coal processing facility operated by Centennial that provides coal storage, handling and processing functions. Coal is transported by overland conveyor to Mount Piper Power Station or Lidsdale Siding.

GIS Filename: G:\22\0105001\GIS\Maps\Deliverables\Western\Angus Place\2217471\2217471_007_SiteLocationandLDPs_A.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006; LPI: DTDB 2012

1.3 Discharge Locations

Environment Protection Licences (EPLs) are issued by the NSW EPA under the *Protection of the Environment Operations Act 1997.* Licence conditions relate to pollution prevention and monitoring and can control the air, noise, water and waste impacts of an activity. Each site operates under an EPL which specifies conditions under which water is to be discharged via LDPs. Table 1-3 summarises the licence conditions for Centennial's operations. Pine Dale Coal Mine and Wallerawang Power Station are both currently under care and maintenance and are understood to have ceased discharging to the Coxs River catchment.

Table 1-3 Licensed Discharge Points

Environment Protection Licence	Discharge point	Discharge limit	Description		
Angus Place Colliery					
	LDP001	2 ML/day	Discharge of mine water and runoff to Kangaroo Creek through wetlands.		
467	LDP002	No limit	Discharge of surface water from facilities area into the Coxs River through settling ponds.		
	LDP003	No limit	Discharge of surface water from the old Kerosene Vale Colliery site into the Coxs River through a settling pond.		
Clarence Colliery					
	LDP001	No limit	Discharge from ventilation fan into Wollangambe River.		
726	LDP002	25 ML/day	Discharge of treated mine water into Wollangambe River.		
720	LDP003	No limit	Overflow from leachate dam into another dam that is part of the water management system.		
	LDP004	No limit	Overflow from leachate dam into adjacent bushland and Wollangambe River.		
Lidsdale Siding					
5129	LDP004	No limit	Discharge of surface water from facilities area into Pipers Flat Creek through settling ponds.		
Springvale Mine					
3607	LDP001	10 ML/day	Discharge of mine water, surface water from facilities area and runoff into Springvale Creek through settling ponds.		
3007	LDP009	30 ML/day	Discharge of mine water from Angus Place Colliery and Springvale Mine into Sawyers Swamp Creek.		

Environment Protection Licence	Discharge point	Discharge limit	Description						
Western Coal Services									
3607	LDP006	No limit	Discharge of surface water from facilities area into Wangcol Creek through settling ponds.						

1.4 Water Management Strategies

The following three strategies are proposed for the management of mine water as part of the mine extension projects for Angus Place Colliery and Springvale Mine (RPS, 2014a):

- Water strategy WS1 All mine water from Angus Place Colliery (up to 30.8 ML/day) is discharged via AP LDP001 and all mine water from Springvale Mine (up to 18.8 ML/day) is discharged via SV LDP009.
- Water strategy WS2a Up to 30 ML/day of mine water from Angus Place Colliery and Springvale Mine is discharged via SV LDP009, consisting of all mine water from Springvale Mine and the remaining volume from Angus Place Colliery. Excess mine water from Angus Place Colliery is discharged via AP LDP001.
- Water strategy WS2b 2 ML/day of mine water from Angus Place Colliery is discharged via AP LDP001 with the remaining mine water from Angus Place Colliery and Springvale Mine discharged via SV LDP009 (up to 43.4 ML/day).

It should be noted that WS2a is the current water strategy employed by Centennial at the time of water sampling.

1.5 Scope of Work

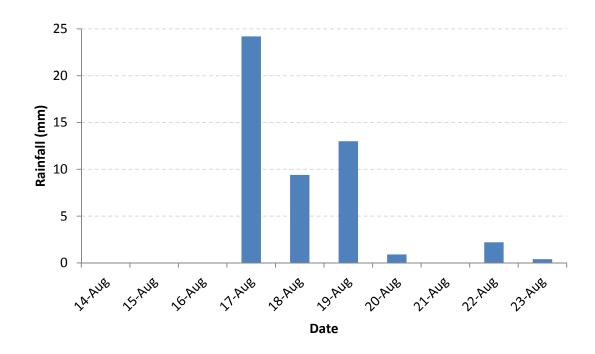
This report details the ecotoxicology assessment and provides the results for water quality testing at 12 locations within the Coxs River catchment, including mine water discharge from LDPs at Angus Place Colliery and Springvale Mine. The scope of work included the following:

- Provide details of sample collection at 12 sites in the Coxs River catchment and toxicity and water quality testing conducted.
- Interpret toxicity and water quality testing results for the 12 samples of water collected.
- Compare results with current and historical monitoring conducted by Centennial and with site-specific trigger values and EPL limits specified for licensed discharge points.
- Compare results with modelled catchment runoff within the Coxs River catchment, estimated from water balance modelling provided by RPS (2014a), to determine the dilution of mine water discharge downstream of AP LDP001 and SV LDP009.

2. Methodology

2.1 Sample Collection

Samples were collected on the 21 and 22 August 2014 at the following locations, as shown in Figure 2-1:


- Coxs River upstream Coxs River upstream of Angus Place Colliery and Springvale Mine (at the same location tested by the NSW EPA).
- AP LDP001 Mine water discharge from AP LDP001, which receives underground mine water and catchment runoff.
- Kangaroo Creek Kangaroo Creek downstream of AP LDP001.
- Wangcol Creek Wangcol Creek upstream of the confluence with Coxs River.
- SV LDP009 Mine water discharge from SV LDP009, which receives underground mine water from both Angus Place Colliery and Springvale Mine.
- Sawyers Swamp Creek Sawyers Swamp Creek downstream of discharges from SV LDP009 and upstream of confluence with Coxs River.
- Coxs River confluence Coxs River downstream of the confluence with Sawyers Swamp Creek and discharges from Angus Place Colliery and Springvale Mine.
- Wallerawang Power Station Coxs River downstream of discharges from Wallerawang Power Station.
- Lake Wallace Upper portion of Lake Wallace.
- Lake Lyell upstream Coxs River downstream of Lake Wallace and upstream of Lake Lyell.
- Lake Lyell Upper portion of Lake Lyell.
- Lake Lyell downstream Coxs River downstream of Lake Lyell.

A total of 45 L of water was collected at SV LDP009, 10 L at AP LDP001 and 1 L at all other sites with samples put on ice and immediately transferred to the Ecotox Services Australasia (ESA) laboratory in Sydney for toxicity testing. Samples from each location were also sent to the ALS Environmental Division laboratory in Sydney for water quality analysis.

Approximately 47.5 mm of rainfall was recorded at the Lithgow (Cooerwull) Bureau of Meteorology (BOM) station in the five days prior to sampling, as shown in Figure 2-2. The LDP discharges recorded at each Centennial site on the 21 and 22 August 2014 are presented in Table 2-1. Approximately 1 ML/day was discharged through AP LDP001 and 23 ML/day was discharged through SV LDP009.

GIS Filename: G:\22\0105001\GIS\Maps\Deliverables\Western\Angus Place\2217471\2217471_002_SamplingSites_A.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006; LPI: DTDB 2012

Table 2-1 Recorded Discharges during Site Visit

Location	Discharge	e (ML/day)
Location	21 August 2014	22 August 2014
Angus Place Colliery		
LDP001	1.017	1.184
LDP002	0.008	0.009
LDP003	No discharge	No discharge
Lidsdale Siding		
LDP004	No discharge	No discharge
Springvale Mine		
LDP001	1.183	1.232
LDP009	22.507	22.794
Western Coal Services		
LDP006	0.105	0.063

2.2 Ecotoxicology Assessment

2.2.1 Direct Toxicity Assessment

Direct toxicity assessment (DTA) is a common method used to determine the toxicity of mixtures of compounds in ambient waters. The method provides an integrated measure of effects and accounts for interactions (synergistic, additive and ameliorative) within a mixture, therefore closely simulating the effects in the receiving waterway. To ensure a close simulation of the toxic effects of the discharge, site-specific testing was undertaken using species indigenous to, or representative of, the receiving ecosystem.

DTA was undertaken for the mine water discharge samples from AP LDP001 and SV LDP009. Toxicity testing at all other locations was conducted using screening tests with the freshwater cladoceran, which has been found to be the most sensitive test species in previous toxicity testing conducted by Centennial in the region.

Toxicity testing involves exposing laboratory test species to a range of concentrations of sampled water for a specified exposure period. At the end of the exposure period, specific end points are assessed, such as species survival, reproduction or growth. Statistical analysis of the results provide the effect concentration (EC) of the sample where 10% (EC₁₀) and 50% (EC₅₀) of test organisms exhibit the specific end point and the no observable effect concentration (NOEC), which represents the highest concentration that has no effect upon the test species.

2.2.2 Species Tested

Toxicity testing of sampled water was performed using the ANZECC and ARMCANZ (2000) protocol with species endemic to, or representative of, the receiving environment. Where possible, chronic bioassays were performed using National Association of Testing Authorities (NATA) accredited tests.

The following freshwater species and test protocols were used to test the sample collected from SV LDP009 at Springvale Mine:

- Seven day partial life-cycle (chronic) test using the freshwater cladoceran *Ceriodaphnia cf. dubia*, based on the USEPA (2002) and Bailey *et al.* (2000) protocols.
- 72 hour microalgal growth inhibition (chronic) test using the green alga *Selanastrum capricornutum*, based on the USEPA (2002) protocol.
- 96 hour growth inhibition (chronic) test using the freshwater aquatic duckweed *Lemna disperma*, based on the OECD (2006) protocol.
- 96 hour population growth (acute) test using the freshwater hydra *Hydra viridissima*, based on Riethmuller *et al.* (2003).
- 96 hour imbalance (acute) test using the freshwater eastern rainbowfish *Melanotaenia splendida splendida*, based on USEPA (2002).

For the remaining 11 samples, the seven day partial life-cycle (chronic) toxicity test using the freshwater cladoceran *Ceriodaphnia cf. dubia* based on the protocol specified by USEPA (2002) was conducted. The cladoceran bioassay was selected as it has been found to be the most sensitive test species in previous toxicity testing conducted by Centennial in the region.

2.2.3 Concentrations Tested

ESA recommended the use of laboratory dilution water to provide a more accurate indication of the toxicity of the samples. ESA used in-house diluents for all dilutions and controls to ensure the toxicity observed can be attributed directly to the sample tested. All samples were serially diluted with the appropriate diluent to achieve the test concentration. This is important as toxicity tests conducted by the NSW EPA indicated that upstream samples may have a similar toxicity to the SV LDP009 discharge in some bioassays (NSW EPA, 2014).

For the samples of water collected at AP LDP001 at Angus Place Colliery and at SV LDP009 at Springvale Mine, the concentrations used in the toxicity testing were 0%, 6.3%, 12.5%, 25%, 50%, and 100%.

For the remaining 10 samples, screening tests with the cladoceran bioassay were conducted at 100% concentration (i.e. no dilution of samples).

2.3 Water Quality Assessment

Water samples were tested for the parameters listed in Table 2-2 at the NATA accredited facilities at the ALS Environmental Division Laboratory. This suite of analysis includes the parameters recently specified by the NSW EPA in Springvale Mine's EPL 3607. In addition, the dissolved oxygen (DO), electrical conductivity, pH, redox potential and turbidity were measured in the field prior to sample collection.

Category	Parameter
Physicochemical parameters	Electrical conductivity, pH, total dissolved solids (TDS), total suspended solids (TSS).
Nutrients	Ammonia, dissolved organic carbon (DOC), nitrate and nitrite, total Kjeldahl nitrogen, total nitrogen, total phosphorus.
Anions	Alkalinity, chloride, sulfate.
Cations	Calcium, magnesium, potassium, sodium.
Metals (total and dissolved)	Aluminium, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, strontium, vanadium and zinc.
Other	Bromide, cyanide (total and free), fluoride, oil and grease, silica.

Table 2-2 Water Quality Parameters

The results were compared to site-specific trigger values (SSTVs) derived for discharge from AP LDP001 and SV LDP009 and limits specified by EPL 467 for AP LDP001 and EPL 3607 for SV LDP009, as shown in Table 2-3. The SSTVs adopted were based on a review of the water quality observed at a monitoring site on Kangaroo Creek upstream of Angus Place Colliery as presented by RPS (2014b; 2014c) and default trigger values recommended by ANZECC and ARMCANZ (2000). The numbers indicated in bold are those selected as the adopted trigger value for each parameter. SSTVs have been taken as the largest of the default trigger values (which have been hardness corrected where appropriate) and the 80th percentile upstream concentrations, in accordance with the methodology recommended by ANZECC and ARMCANZ (2000).

Table 2-3	Trigger Values and EPL Limits for Assessment of Water Quality
-----------	---

.

Parameter	Unit	80th percentile upstream value	Default trigger value	Adopted trigger value	AP LDP001 EPL limits	SV LDP009 EPL limits
Physicochemic	cal parar	neters				
рН	pH units	5.9^(a)– 6.8	6.5– 8.0	5.9–8.0	6.5–9.0	6.5–9.0
Electrical conductivity	µS/cm	89	350	350	-	1,200
TSS	mg/L	10	25	25	30	50
Turbidity	NTU	19.2	25	25	-	50
Nutrients						
Ammonia	mg/L	0.03	0.9	0.9	-	-
Nitrogen (total)	mg/L	0.6	0.25	0.6	-	-
Phosphorus (total)	mg/L	0.06	0.02	0.6	-	-
Anions						
Bicarbonate alkalinity	mg/L	20.8	-	225 ^(b)	-	-
Sulfate	mg/L	6	-	644 ^(c)	-	-
Filtered metals						
Aluminium	mg/L	0.204	0.055	0.204	-	0.45
Arsenic	mg/L	0.001 ^(d)	0.024	0.024	-	0.024
Barium	mg/L	0.0368	-	0.0368	-	-
Boron	mg/L	0.05 ^(d)	-	0.05	-	_
Cadmium	mg/L	0.0001 ^(d)	0.0005 ^(e)	0.0005	-	-
Chromium	mg/L	0.001 ^(d)	-	0.001	-	-
Cobalt	mg/L	0.005	-	0.005	-	-
Copper	mg/L	0.004	0.003 ^(e)	0.004	-	0.007
Iron	mg/L	4.002	0.3	4.002	-	0.4
Lead	mg/L	0.001 ^(d)	0.011 ^(e)	0.011	-	-

Parameter	Unit	80th percentile upstream value	Default trigger value	Adopted trigger value	AP LDP001 EPL limits	SV LDP009 EPL limits
Manganese	mg/L	0.4526	1.9	1.9	-	1.7
Mercury	mg/L	-	0.0006	0.0006	-	-
Nickel	mg/L	0.002	0.025 ^(e)	0.025	-	0.047
Selenium	mg/L	0.01 ^(d)	0.11	0.11	-	-
Zinc	mg/L	0.019	0.018 ^(e)	0.019	-	0.05
Other parameter	rs					
Cyanide (total)	mg/L	0.004 ^(d)	0.007	0.007	-	-
Fluoride	mg/L	0.1 ^(d)	-	0.1	-	1.8
Oil and grease	mg/L	5 ^(d)	-	5	10	10
(a) 20th perc	centile value					

(a) 20th percentile value

(b) NSW OEH (2012)

(c) Elphick *et al.* (2011)

(d) Limit of reporting

(e) Hardness correction applied

The NSW OEH (2012) reports that bicarbonate is one of the more potentially toxic major ions to aquatic organisms. Bicarbonate has been found to be about two to 2.5 times more acutely toxic to cladoceran than chloride. There remains uncertainty regarding the most appropriate trigger value for bicarbonate in freshwater. A 95% species protection trigger value for bicarbonate of 225 mg/L was calculated by NSW OEH (2012) based on NOEC data generated from North American species described by Farag and Harper (2012).

A 95% species protection trigger value for sulfate of 644 mg/L was calculated using results from a suite of freshwater species bioassays for temperate freshwater systems with various hardness concentrations (Elphick *et al.* 2011). Elphick *et al.* (2011) used the EC₁₀ results from a suite of nine species, many of them used in routine bioassays for DTA by Australian laboratories for temperate freshwater ecosystems. As shown by Elphick *et al.* (2011), increasing hardness reduces the toxicity of sulfate to freshwater temperate organisms similar to those living in the Coxs River and its tributaries.

2.4 Catchment Dilution Assessment

2.4.1 Statistical Analysis of Ecotoxicology Results

The BurrliOZ statistical analytical program (Campbell *et al.*, 2000) used the EC₁₀ results from the sample collected at SV LDP009 to calculate the concentration of mine water discharge to protect 99%, 95%, 90% and 90% of species in the receiving environment from a 10% reduction in growth or reproduction. Dilution factors were then calculated for each species protection level, which can be used to assist in deriving site-specific concentrations of contaminants that will not adversely impact organisms within the receiving ecosystem. Concentrations of individual contaminants cannot be extrapolated from toxicity testing results for use as trigger values. However, concentrations can be used for monitoring purposes to ensure that the dilution factors are met at the appropriate monitoring site.

2.4.2 Catchment Runoff

An estimate of the runoff contributing to the Coxs River was obtained from the water balance model developed by RPS (2014a). The model represented all catchments contributing to Lake Burragorang, as shown in Figure 2-3, using the Australian Water Balance Model (AWBM) within the GoldSim Version 10.50 software modelling package. The AWBM is a catchment water balance model that calculates runoff from rainfall after allowing for relevant losses and storage. The AWBM is widely used throughout Australia and has been verified through comparison with large amounts of recorded streamflow data.

The catchments within the water balance model were categorised into the following land use types, each modelled with different AWBM parameters (RPS, 2014a):

- Natural.
- Pasture.
- Urban.
- Disturbed.
- Channel.

The AWBM parameters for each land use type were calibrated using historical rainfall data from the BOM and flow data from gauges on the Coxs River over the period from 1 January 1979 to 30 June 2014. Further details on the model methodology, calibration, parameters and data used are provided by RPS (2014a).

The daily catchment runoff volume were determined for 16 locations extending downstream of SV LDP009 at Springvale Mine to Lake Burragorang shown in Figure 2-4 using the median rainfall dataset applied within the water balance model by RPS (2014a). Catchment runoff was obtained from the water balance model without the contribution of other operations (Mount Piper Power Station, proposed Neubecks Coal Project and Pine Dale Coal Mine).

2.4.3 Dilution Factor

The estimated catchment runoff to the Coxs River at each location was compared to the predicted maximum daily discharge volume from AP LDP001 and SV LDP009 to determine the expected dilution of discharge within the river. The dilution factor was assessed for the three water management strategies discussed in Section 1.4.

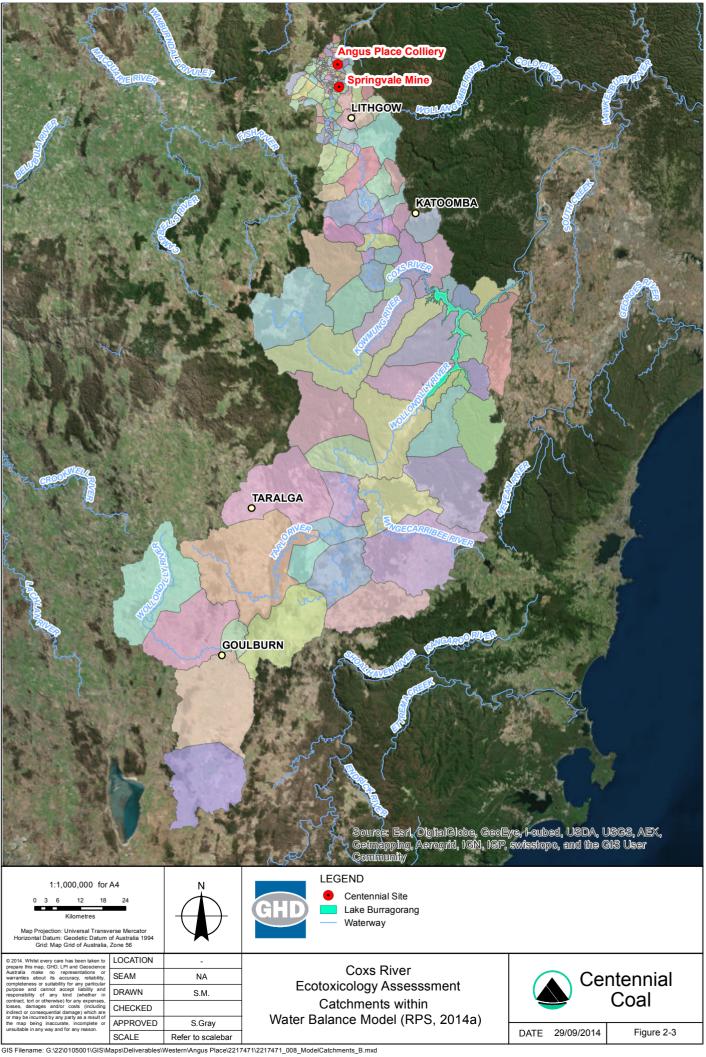
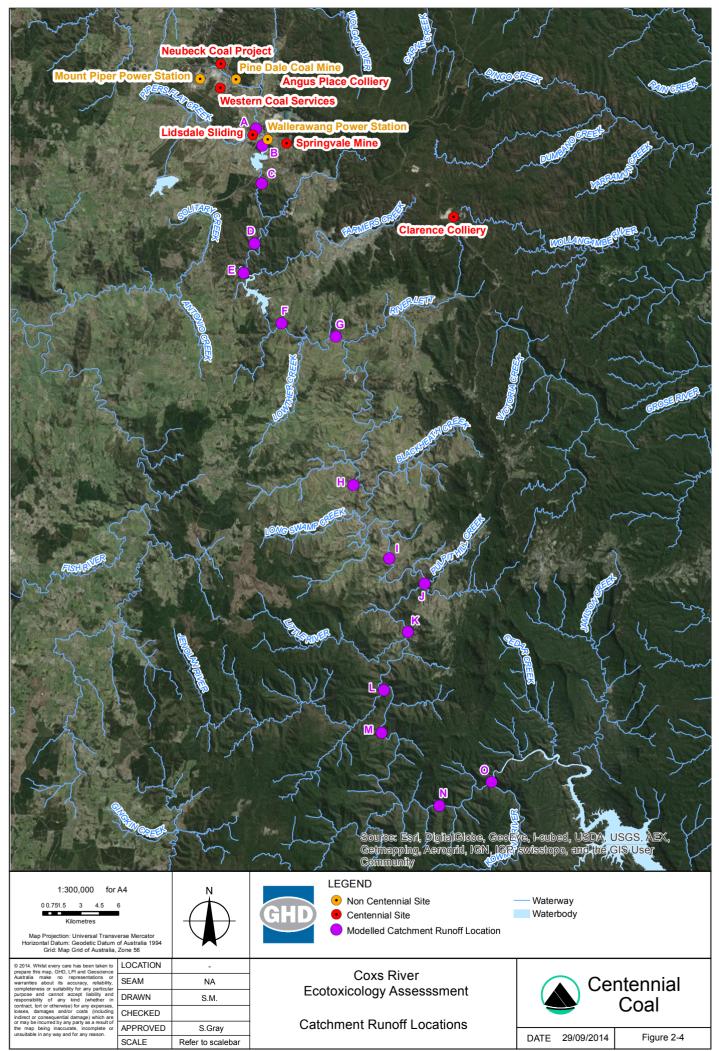

The predicted maximum daily discharge volumes from AP LDP001 and SV LDP009 over the life of each mine for the three water management strategies are presented in Table 2-4. These values were obtained from the water balance model provided by RPS (2014a).

Table 2-4Predicted Maximum Daily Discharge through AP LDP001 and
SV LDP009 (RPS, 2014a)


Water strategy	AP LDP001 discharge (ML/day)	SV LDP009 discharge (ML/day)	Total discharge (ML/day)
WS1	30.8	18.8	45.4*
WS2a	15.4	30	45.4
WS2b	2	43.4	45.4

* Peak daily discharges from AP LDP001 and SV LDP009 occur at different points in time, so the maximum total discharge does not equal the sum of the maximum discharge from the individual LDPs.

The predicted dilution within the Coxs River was compared to the dilution factor determined by the results of toxicity testing using the BurrliOZ statistical analytical program (Campbell *et al.*, 2000).

GIS Filename: G:\22\0105001\GIS\Maps\Deliverables\Western\Angus Place\2217471\2217471_008_ModelCatchments_B.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006; LPI: DTDB 2012

GIS Filename: G:0220105001/GIS/Maps/Deliverables/Western/Angus Place/2217471/2217471_006_CatchmentRunoff_A.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006; LPI: DTDB 2012

3.1 Ecotoxicology Assessment

The toxicity testing conducted by ESA fulfilled the criteria for NATA accredited tests with all quality assurance/quality control parameters being met. A copy of the toxicity report is provided in Appendix B and a summary of the results is presented in Table 3-1 for the samples collected at AP LDP001 and SV LDP009 and

Table 3-2 for the screening tests with the cladoceran bioassay. Screening bioassay results are considered to show toxicity if the results are <80% of the controls. This is based on the quality control parameter used by the testing laboratory.

As discussed in Section 2.2.1, statistical analysis of the toxicity testing results provide the concentration of the sample where 10% (EC_{10}) and 50% (EC_{50}) of test organisms exhibit the specific end point of the bioassay.

Table 3-1 Summary of AP LDP001 and SV LDP009 Ecotoxicology Results

Bioassay	Concentration (95% confidence limits)					
	EC ₁₀	EC ₅₀				
SV LDP009 discharge						
Eight day cladoceran reproduction	9.3% (5.2%–16.0%)	29.1% (16.3%–50.3%)				
72 hour microalgal growth inhibition	3.7% (2.3%–3.8%)	6.0% (5.5%–6.7%)				
96 hour duckweed growth inhibition	>100%	>100%				
96 hour hydra population growth	5.1% (2.4%–7.3%)	18.0% (13.9%–24.8%)				
96 hour eastern rainbowfish imbalance	25% (0.0%–34.2%)	50% (41.7%–59.2%)				
AP LDP001 discharge						
Eight day cladoceran reproduction	>100%	>100%				

The results of toxicity testing of SV LDP009 discharge presented in Table 3-1 indicate that the discharge is toxic to the test species, with the alga, cladoceran and hydra species showing significant toxicity to the discharge. The alga was observed to have the most sensitivity to the discharge from SV LDP009. The duckweed test showed no toxicity to the discharge and the fish bioassay showed only slight sensitivity.

The results of testing of the sample collected at AP LDP001 indicate that the discharge of mine water from Angus Place Colliery is not toxic to the test species with the reproduction showing no difference to the control organisms at 100% concentration.

Table 3-2	Summary of Screening Ecotoxicology Results
-----------	--

Site	Location description	Reproduction (% of control)	Survival (%)	EC (µS/cm)
Laboratory control		100	90	187
Coxs River upstream	Coxs River upstream of Angus Place Colliery and Springvale Mine	1	40	42
AP LDP001	Mine water discharge from AP LDP001	140	90	1,038
Kangaroo Creek*	Kangaroo Creek downstream of AP LDP001	No data	No data	558
Wangcol Creek	Wangcol Creek upstream of the confluence with Coxs River	70	100	806
SV LDP009	Mine water discharge from SV LDP009	0	0	1,180
Sawyers Swamp Creek	Sawyers Swamp Creek downstream of discharges from SV LDP009 and upstream of confluence with Coxs River	4	80	1,089
Coxs River confluence	Coxs River downstream of the confluence with Sawyers Swamp Creek and discharges from Angus Place Colliery and Springvale Mine	29	100	1,007
Wallerawang Power Station	Coxs River downstream of discharges from Wallerawang Power Station	66	100	949
Lake Wallace	Upper portion of Lake Wallace	116	100	986
Lake Lyell upstream	Coxs River downstream of Lake Wallace and upstream of Lake Lyell	106	100	1,049
Lake Lyell	Upper portion of Lake Lyell	107	90	547
Lake Lyell downstream	Coxs River downstream of Lake Lyell	113	100	506

* Ecotoxicology testing was not possible during this round of testing and will be repeated as part of following rounds.

3.1 Water Quality Assessment

The water quality testing conducted by ALS fulfilled the criteria for NATA accredited tests with all quality assurance/quality control parameters being met, with the exception of pH and nitrite due to testing not being conducted within the appropriate holding times. A copy of the full report is provided in Appendix C and a summary of the results is presented in Table 3-3. The results are compared to SSTVs derived for discharge from AP LDP001 and SV LDP009 and limits specified by EPL 467 for AP LDP001 and EPL 3607 for SV LDP009, as shown in Table 2-3. Exceedances of the adopted trigger values have been shown in bold.

Parameter	Unit	Coxs River upstream	AP LDP001	Kangaroo Creek	Wangcol Creek	SV LDP009	Sawyers Swamp Creek	Coxs River confluence	Wallerawang Power Station	Lake Wallace	Lake Lyell upstream	Lake Lyell	Lake Lyell downstream
Physicochemi	Physicochemical parameters												
pH (field)	pН	6.47	7.84	8.33	7.82	8.04	9.00	8.50	9.04	9.55	9.53	9.50	9.40
pH (lab)	units	5.69	8.01	8.28	6.98	8.21	8.73	8.47	8.4	8.41	8.65	8.42	8.28
50	%	72	3.7	80	85	94.7	88.9	88.4	62.7	76.5	83.7	93.3	96.6
DO	mg/L	8.22	0.4	9	9.72	8.1	8.32	8.83	6.64	8.57	9.45	10.62	11.15
Electrical conductivity (field)	24	44.8	1,000	558	554	1,148	1,055	799	931	1,033	1,029	534	493
Electrical conductivity (lab)	μS/cm	39	1,050	591	823	1,200	1,100	1,030	973	1,010	1,080	557	516
Redox potential	mV	162	63	75	49	9.6	-22.8	51.3	-4.4	-11.9	-17.1	-13.7	-19.2
TDS	mg/L	25	682	384	535	780	715	670	632	656	702	362	335
Temperature	°C	9.4	9.4	6.9	9.5	22.9	18.5	15.2	12	10	9.8	9.4	9.3
Total hardness	mg/L	<1	116	64	244	2	7	76	101	96	82	50	65
TSS	mg/L	22	<5	13	5	19	10	10	<5	<5	<5	<5	<5

Table 3-3 Summary of Water Quality Assessment Results

Parameter	Unit	Coxs River upstream	AP LDP001	Kangaroo Creek	Wangcol Creek	SV LDP009	Sawyers Swamp Creek	Coxs River confluence	Wallerawang Power Station	Lake Wallace	Lake Lyell upstream	Lake Lyell	Lake Lyell downstream
Turbidity	NTU	0.0	0.0	0.0	-	13.5	10.5	-	0.1	0.0	0.0	0.0	0.0
Nutrients													
Ammonia	mg/L	<0.01	<0.01	<0.01	0.02	0.44	0.09	0.06	0.04	0.03	<0.01	<0.01	<0.01
DOC	mg/L	48	17	14	7	55	66	6	5	6	42	20	24
Nitrite + nitrate	mg/L	0.24	0.34	0.02	<0.01	0.21	0.45	0.42	0.32	0.13	<0.01	0.14	0.04
Total Kjeldahl nitrogen	mg/L	<0.1	<0.1	<0.1	<0.1	0.6	0.1	0.2	0.2	0.3	0.2	0.3	0.2
Nitrogen (total)	mg/L	0.2	0.3	<0.1	<0.1	0.8	0.6	0.6	0.5	0.4	0.2	0.4	0.2
Phosphorus (total)	mg/L	<0.01	<0.01	<0.01	<0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.02
Anions													
Bicarbonate alkalinity	mg/L	1	538	291	16	625	512	392	359	336	348	111	128
Total alkalinity	mg/L	1	538	291	16	625	572	414	375	352	388	113	128
Chloride	mg/L	8	10	10	34	6	6	15	16	20	18	16	16

Parameter	Unit	Coxs River upstream	AP LDP001	Kangaroo Creek	Wangcol Creek	SV LDP009	Sawyers Swamp Creek	Coxs River confluence	Wallerawang Power Station	Lake Wallace	Lake Lyell upstream	Lake Lyell	Lake Lyell downstream
Sulfate	mg/L	3	25	17	341	34	34	142	126	160	164	117	107
Cations													
Calcium	mg/L	<1	20	11	45	1	1	14	19	17	13	10	13
Magnesium	mg/L	<1	16	9	32	<1	1	10	13	13	12	6	8
Potassium	mg/L	<1	32	19	7	9	10	10	11	12	13	7	8
Sodium	mg/L	4	182	98	59	291	280	208	202	192	209	75	73
Dissolved me	Dissolved metals												
Aluminium	mg/L	0.03	<0.01	0.02	0.02	0.01	0.03	0.02	0.02	0.01	<0.01	<0.01	<0.01
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	0.024	0.021	0.014	0.01	0.006	0.004	<0.001	<0.001
Barium	mg/L	0.016	0.178	0.092	0.014	0.028	0.021	0.02	0.023	0.026	0.025	0.026	0.023
Beryllium	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	mg/L	<0.05	0.06	<0.05	0.14	0.07	0.07	0.1	0.08	0.12	0.18	0.09	0.08
Cadmium	mg/L	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	mg/L	<0.001	<0.001	<0.001	0.006	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	<0.001	0.001	0.002	0.003	<0.001	<0.001	<0.001	0.002	0.002	0.002	0.002	0.001

Parameter	Unit	Coxs River upstream	AP LDP001	Kangaroo Creek	Wangcol Creek	SV LDP009	Sawyers Swamp Creek	Coxs River confluence	Wallerawang Power Station	Lake Wallace	Lake Lyell upstream	Lake Lyell	Lake Lyell downstream
Iron	mg/L	0.09	<0.05	0.06	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	mg/L	0.057	0.003	0.01	0.812	0.008	0.013	0.113	0.077	0.04	0.011	0.002	0.008
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L	<0.001	0.012	0.006	<0.001	0.038	0.034	0.022	0.018	0.015	0.016	0.005	0.004
Nickel	mg/L	0.004	0.003	0.002	0.021	0.004	0.003	0.01	0.007	0.007	0.004	0.002	0.002
Selenium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	mg/L	0.009	0.117	0.079	0.188	0.03	0.028	0.083	0.088	0.117	0.139	0.12	0.109
Vanadium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	mg/L	0.011	0.016	0.012	0.037	0.007	0.005	0.012	0.016	0.047	0.005	<0.005	0.005
Total metals	Total metals												
Aluminium	mg/L	0.05	0.02	0.05	0.11	0.19	0.19	0.14	0.1	0.07	0.06	0.02	0.04
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	0.023	0.022	0.014	0.01	0.006	0.004	<0.001	<0.001
Barium	mg/L	0.016	0.194	0.089	0.011	0.027	0.024	0.023	0.022	0.025	0.025	0.023	0.02
Beryllium	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	mg/L	<0.05	0.07	<0.05	0.16	0.06	0.08	0.1	0.09	0.12	0.19	0.11	0.09

Parameter	Unit	Coxs River upstream	AP LDP001	Kangaroo Creek	Wangcol Creek	SV LDP009	Sawyers Swamp Creek	Coxs River confluence	Wallerawang Power Station	Lake Wallace	Lake Lyell upstream	Lake Lyell	Lake Lyell downstream
Cadmium	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	mg/L	<0.001	<0.001	<0.001	0.005	<0.001	0.002	0.002	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	0.002	<0.001	0.002	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	0.001	0.001	<0.001
Iron	mg/L	0.61	<0.05	0.23	0.3	0.3	0.24	0.31	0.2	0.1	0.05	<0.05	0.1
Lead	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	mg/L	0.058	0.006	0.012	0.859	0.014	0.059	0.154	0.09	0.059	0.031	0.006	0.013
Mercury	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L	<0.001	0.014	0.005	<0.001	0.036	0.039	0.026	0.021	0.017	0.018	0.005	0.005
Nickel	mg/L	<0.001	0.002	0.001	0.02	0.003	0.004	0.011	0.007	0.006	0.004	0.002	0.002
Selenium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	mg/L	0.007	0.117	0.066	0.18	0.015	0.025	0.081	0.087	0.116	0.131	0.106	0.097
Vanadium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	mg/L	0.009	0.01	0.014	0.027	0.017	0.009	0.014	0.008	<0.005	<0.005	<0.005	<0.005
Other parameters													
Bromide	mg/L	<0.010	0.067	0.035	0.092	0.046	0.057	0.082	0.082	0.074	0.065	0.076	0.063

Parameter	Unit	Coxs River upstream	AP LDP001	Kangaroo Creek	Wangcol Creek	SV LDP009	Sawyers Swamp Creek	Coxs River confluence	Wallerawang Power Station	Lake Wallace	Lake Lyell upstream	Lake Lyell	Lake Lyell downstream
Cyanide (free)	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Cyanide (total)	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Fluoride	mg/L	<0.1	1	0.7	0.2	1.5	1.8	1.3	1.1	1.1	1.1	0.6	0.6
Oil and grease	mg/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Silica	mg/L	9.4	8.6	9.7	7.5	8.6	8.5	7.8	7.8	3.9	1	0.2	1.8

As seen in Table 3-3, water quality results show that the majority of sites exceed the adopted trigger values for pH, electrical conductivity, total nitrogen, total phosphorus, bicarbonate alkalinity and bromide. AP LDP001 exceeded the adopted trigger value for barium and the value for dissolved zinc was exceeded at Lake Wallace and Wangcol Creek.

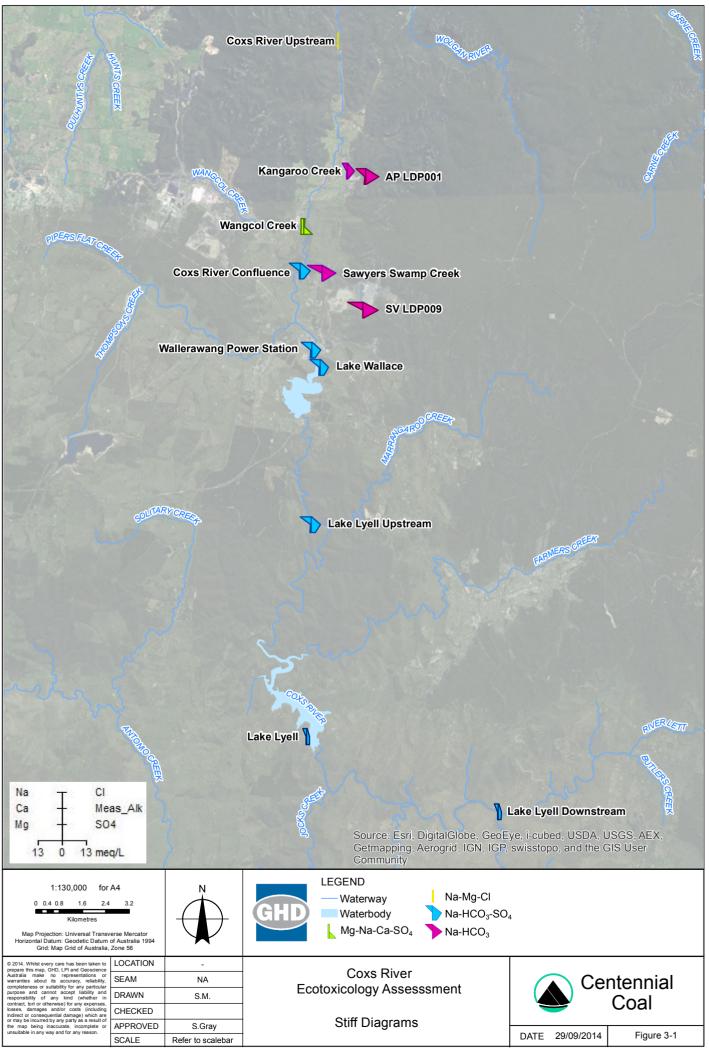
The underground water discharges from Angus Place Colliery and Springvale Mine via AP LDP001 and SV LDP009 were found to be slightly alkaline and fresh to slightly brackish, with a sodium bicarbonate (Na-HCO₃) type.

The change in water type throughout the catchment is shown by the Stiff diagrams in Figure 3-1. A Stiff diagram is a graphical representation of major ion concentrations in water. The greater the area of the polygon presented in the Stiff diagram, the higher the ionic concentration (or electrical conductivity) of the water.

As shown in Figure 3-1, the upper Coxs River catchment is sodium magnesium chloride (Na-Mg-Cl) type water. Mixing of inputs from Wangcol Creek (Mg-Na-Ca-SO₄ water type) and discharges from Angus Place Colliery and Springvale Mine result in a sodium bicarbonate sulfate (Na-HCO₃-SO₄) water type. This is the dominant water type from the confluence of Sawyers Swamp Creek with Coxs River to downstream of Lake Lyell, with the electrical conductivity reducing with distance downstream.

3.2 Catchment Dilution Assessment

3.2.1 Statistical Analysis of Ecotoxicology Results


The EC₁₀ values presented in Table 3-1 for SV LDP009 discharge were analysed in the BurrliOZ software package (Campbell *et al.*, 2000) and the concentration for varying species protection levels were calculated, as shown in Table 3-4. A concentration of SV LDP009 discharge of 2.7% was determined to provide protection to 95% of species in the downstream ecosystem. To reach a concentration of 2.7%, a dilution factor of 1:37 is required.

Species protection (%)	Concentration of SV LDP009 (%)	Dilution factor
80	5.1	1:20
90	3.6	1:28
95	2.7	1:37
99	1.7	1:59

Table 3-4 Dilution Factor Determined from Ecotoxicology Results

3.2.1 Catchment Runoff

The daily catchment runoff determined at locations A to O presented in Figure 2-4 are provided in Table 3-5. Median results are presented along with 10th percentile and 90th percentile values to provide an indication of the possible range of values expected. The median, or 50th percentile, represents the value at which half of the modelled outputs were less than this value. Similarly, the 10th and 90th percentile results represent the values at which 10% and 90% of the modelled outputs were less than these values respectively. The 10th percentile and 90th percentile results have been used (rather than absolute minimum and maximum values) to remove the impact of skewing by infrequent to extreme wet and dry conditions.

GIS Filename: G:\22\0105001\GIS\Maps\Deliverables\Western\Angus Place\2217471\2217471_003_StiffDiagrams_A.mxd © Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3 2006; LPI: DTDB 2012

	Catchment runoff volume (ML/day)					
Location	10th percentile	50th percentile	90th percentile			
A	0.63	2.33	23.58			
В	1.18	3.19	40.29			
С	0.70	0.70	39.76			
D	1.54	4.14	67.03			
E	1.83	5.07	72.84			
F	2.29	7.67	39.68			
G	2.32	8.31	67.03			
н	2.42	10.36	181.12			
1	2.44	11.56	243.86			
J	2.46	13.16	310.72			
к	3.83	24.33	399.82			
L	5.45	30.68	471.66			
М	10.84	51.90	594.91			
Ν	15.20	68.74	692.29			
0	16.07	71.70	717.06			

Table 3-5 Modelled Catchment Runoff

3.2.2 Dilution Factor

The predicted dilution of SV LDP009 discharges by catchment runoff for each location is presented in Table D-1, Table D-2 and Table D-3 of Appendix D for water strategy WS1, WS2a and WS2b respectively. The predicted dilution of total discharges from AP LDP001 and SV LDP009 is presented in Table D-4 of Appendix D. The results presented in Table D-4 apply to all three water strategies, as the predicted total maximum daily discharge of 45.4 ML/day is the same for each strategy.

3.3 Discussion

3.3.1 Ecotoxicology Assessment

The water quality results for SV LDP009 shown in Table 3-3 do not indicate any parameters that are present in concentrations that could cause the significant toxicity observed in the ecotoxicology results presented in Table 3-1. Furthermore, the chemistry of discharge from AP LDP001, which did not show any toxicity in the cladoceran bioassay, was found to be very similar to that of SV LDP009. The cause of the toxicity of SV LDP009 discharge observed may be related to treatment with flocculants prior to discharge. This potential cause of toxicity is recommended to be investigated, as the treatment is the only difference between AP LDP001 discharges (no toxicity) and SV LDP009 discharges (significant toxicity).

The screening bioassay results show that the Coxs River upstream site exhibits significant toxicity to cladoceran reproduction and survival tests. This site had low electrical conductivity and the associated ionic imbalance may be responsible for the observed toxicity, as it places the organisms under osmotic stress.

AP LDP001 discharges showed no significant difference in cladoceran survival and an increased reproduction when compared to the control. The Kangaroo Creek site was not tested for toxicity in this study; however the sampling conducted by the NSW EPA in May 2014 did not show any toxicity at this site with an electrical conductivity of 820 μ S/cm.

The Wangcol Creek sample showed that there was a slight toxic impact on the cladoceran with a 37% decrease in reproduction. It is unlikely that the slightly elevated zinc detected at this site would be contributing to all of the observed toxicity.

The sample taken at Sawyers Swamp Creek showed an improvement in cladoceran survival when compared to the SV LDP009 discharge with an 80% survival rate; however reproduction was still significantly decreased. Further downstream in the Coxs River, the cladoceran survival rate improved and was not significantly different from control test at this and all the other downstream sampling locations. The cladoceran reproduction rate was still significantly impacted at the sites on the Coxs River downstream of Sawyers Swamp Creek confluence and downstream of Wallerawang Power Station. The rate of cladoceran reproduction was above the control rate from the upper portion of Lake Wallace and at all other sites downstream of this location.

The electrical conductivity results for each site and the associated cladoceran reproduction toxicity results are shown in Figure 3-2. A linear regression has been conducted on the results, which shows an R² value of 0.0018, indicating that there is no correlation between toxicity and electrical conductivity.

Bicarbonate alkalinity has also been suggested by the NSW OEH (2012) as a potential toxicant in coal mine discharge water. The bicarbonate alkalinity results for each site and the associated cladoceran reproduction toxicity results are shown in Figure 3-3. A linear regression has been conducted on the results, which shows an R² value of 0.0099, indicating that there is no correlation between toxicity and bicarbonate alkalinity.

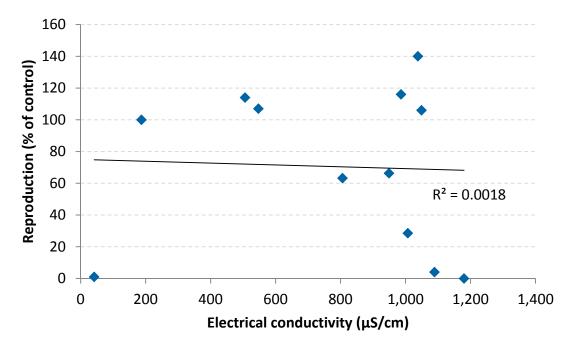
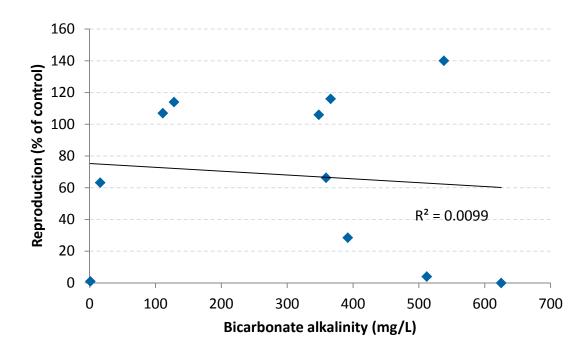
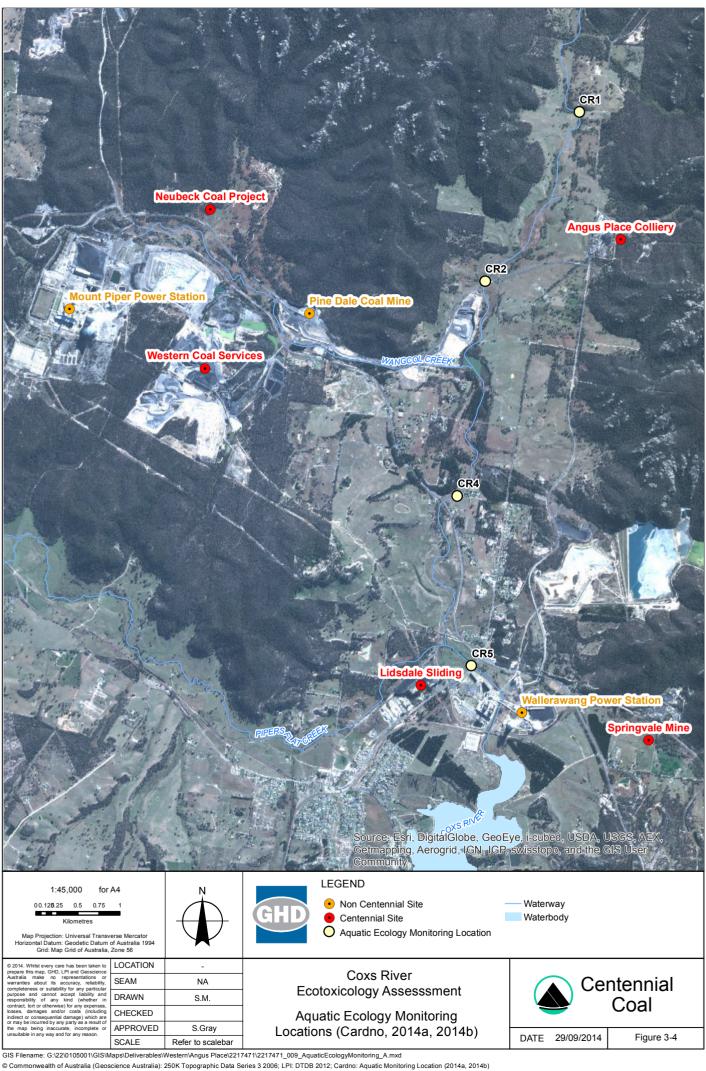



Figure 3-2 Reproduction Toxicity and Electrical Conductivity Results

Figure 3-3 Reproduction Toxicity and Bicarbonate Alkalinity Results

3.3.2 Dilution Factor


The target dilution of SV LDP009 discharge to 2.7% (refer Section 3.2.1) is not met under median rainfall conditions. Under 90th percentile rainfall conditions, the target dilution is achieved for water strategy WS1 from Location N, which is situated approximately 5 km upstream of Lake Burragorang. The results indicate that the target dilution of SV LDP009 discharge is not met for water strategies WS2a or WS2b or for the total maximum discharge (AP LDP001 plus SV LDP009 discharges) under any rainfall conditions.

3.3.3 Integrated Catchment Assessment

The aquatic ecological health of the Coxs River has been reported by Cardno (2014a; 2014b), based on monitoring conducted in accordance with the Australian Rivers Assessment System (AUSRIVAS) protocols (Turak *et al.*, 2004). Monitoring of the following four sites on the Coxs River, as shown in Figure 3-4 has been conducted from 2010 to 2012:

- CR1 Located 700 m upstream of AP LDP001.
- CR2 Located at the Mount Piper Haul Road crossing, approximately 1 km downstream of AP LDP001.
- CR4 Located at the Maddox Lane road crossing downstream of AP LDP001, SV LDP009 and discharges from Western Coal Services.
- CR5 Located at the Main Street road crossing downstream of AP LDP001, SV LDP009 and discharges from Wallerawang Power Station.

Table 3-6 presents the electrical conductivity at each sampling site during aquatic ecology monitoring. Electrical conductivity was found to increase at CR2 downstream of AP LDP001 discharges. However, there were no significant spatial or temporal trends in electrical conductivity during the sampling period between CR2, CR4 and CR5.

Table 3-6Electrical Conductivity Recorded at Aquatic Ecology
Monitoring Points (Cardno, 2014a; 2014b)

Monitoring round	Electrical conductivity (µS/cm)						
Monitoring round	CR1	CR2	CR4	CR5			
Autumn 2010	-	944	-	829			
Spring 2010	186	560	666	558			
Autumn 2011	141	749	930	860			
Spring 2011	182	939	853	764			
Autumn 2012	92	542	640	704			
Spring 2012	99	891	837	817			

The assessment of aquatic ecology by Cardno (2014a; 2014b) used a number of indices to assess the condition of each monitoring site, including the following:

- SIGNAL 2 biotic index.
- NSW AUSRIVAS model results.

The SIGNAL2 score (Stream Invertebrate Grade Number Average Level) is a biotic index based on pollution sensitivity values (grade numbers) assigned to aquatic macroinvertebrate families. Each taxon is assigned a grade from 1 (tolerant) to 10 (sensitive) based on ecotoxicity assessment data. A score of less than 4 indicates severe degradation. The average SIGNAL 2 scores for each of the aquatic ecology monitoring sites is presented in Table 3-7. The results show there is a general trend for macroinvertebrate community assemblage improvement at CR2 and a slight decrease at CR5. However, all sites fit in the moderately degraded category and there are no significant differences between the aquatic ecology community health at all sites.

Monitoring round	CR1	CR2	CR4	CR5
Autumn 2010	-	3.6	-	4.0
Spring 2010	4.0	4.0	4.1	4.3
Autumn 2011	4.1	4.7	4.1	4.0
Spring 2011	4.2	4.4	4.6	3.9
Autumn 2012	4.4	4.3	4.6	3.9
Spring 2012	3.9	4.6	3.9	3.7

Table 3-7 Aquatic Ecology SIGNAL 2 Score (Cardno, 2014a; 2014b)

The NSW AUSRIVAS model provides a river health assessment based on predictive models of macroinvertebrate distribution. Physical and chemical data at each site was used to determine the predicted composition of the macroinvertebrate fauna. The AUSRIVAS morel compares the macroinvertebrate collected at a site (i.e. observed) to those predicted to occur (i.e. expected) at undisturbed reference sites with similar environmental characteristics. An OE50 score was generated, which is a probability score based on predicted occurrence of macroinvertebrate species which ranges from 0 to 1. A score close to 0 indicates an impoverished assemblage and a score close to 1 indicates similarity to the reference site. The following bands are derived from OE50 scores which indicate the level of impact at a site:

- Band A equivalent to reference condition.
- Band B below reference condition (significantly impaired).
- Band C well below reference condition (severely impaired).
- Band D impoverished (i.e. extremely impaired).
- Band X richer macroinvertebrate assemblage than reference condition.

Table 3-8 presents the AUSRIVAS bands for each of the aquatic ecology monitoring sites reported by Cardno (2014a; 2014b). The results indicate that prior to spring 2012, the upstream Coxs River site CR1 was below the reference condition that was expected for an uncontaminated site. The results also show an improvement within macroinvertebrate communities during the sampling periods upstream of CR5.

Monitoring round	CR1	CR2	CR4	CR5
Autumn 2011	В	В	В	А
Spring 2011	В	В	В	А
Autumn 2012	В	А	В	В
Spring 2012	А	А	А	В

Table 3-8 Aquatic Ecology AUSRIVAS Bands (Cardno, 2014a; 2014b)

4. Conclusions

4.1 Ecotoxicology Assessment

The spatial distribution of the sample locations and the toxicity and water quality testing methodologies are considered sufficient to provide information on impacts of mine water discharge from Angus Place Colliery and Springvale Mine on the receiving environment. The results show that the discharge at SV LDP009 is having an acute impact on cladoceran at the Sawyers Swamp Creek site; however this acute toxicity is ameliorated as the discharge enters the Coxs River. Impacts on cladoceran reproduction show a decreasing trend in the Coxs River with distance downstream of the SV LDP009 discharge point until no toxic impacts are detected in the upper portion of Lake Wallace.

The toxicity of the SV LDP009 discharge cannot be attributed to any of the water quality parameters tested. The water quality results indicate that the chemistry of the non-toxic AP LDP001 discharge is not significantly different from the toxic SV LDP009 discharge. The toxicity observed is not able to be attributed to electrical conductivity or to bicarbonate alkalinity. Further investigations are required to determine the source of the toxicity. Once the source of the toxicity has been identified, management actions can be applied to ensure that the toxicity of the discharge is reduced, thus reducing the impact on the Coxs River.

4.2 Integrated Catchment Assessment

The aquatic ecology monitoring results provide supporting evidence that the discharges from AP LDP001 and SV LDP009 are not adversely impacting the aquatic health of the Coxs River. This information supports the findings of the ecotoxicological assessment showing that the electrical conductivity of the Coxs River is not adversely impacting the health of the aquatic ecosystem. Further, the sites downstream of discharges from AP LDP001 were found to have more pollution sensitive taxa present in the macroinvertebrate assemblages (CR2 = 9; CR4 = 6; CR5 = 6) than the upstream CR1 site, which had five pollution sensitive taxa present.

4.3 Coxs River Restoration Program

Centennial has developed the Coxs River Restoration Program as part of a regional biodiversity strategy (RPS, 2014d) that is aimed at further enhancing the biodiversity values of the Coxs River catchment and ameliorating the cumulative impacts associated with Centennial projects and non-Centennial operations in the catchment. Works to improve the terrestrial and aquatic biodiversity value of the Coxs River include the following:

- Watercourse stabilisation activities.
- Removal of grazing pressures.
- Weed removal/control (including blackberry and willow).
- Restoration of riparian areas.
- Revegetation activities with native species.

Further information on the Coxs River Restoration Program is provided by RPS (2014d).

4.4 Assessment Review

It is proposed that Centennial repeat the sampling for this ecotoxicology assessment on a three yearly basis dependent upon water quality results from the assessment locations.

5. References

ANZECC and ARMCANZ (2000), *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*, Australian and New Zealand Environment and Conservation Council and Agricultural and Resource Management Council of Australia and New Zealand.

Campbell, E., Palmer, M. J., Shao, Q., Warne, M. and Wilson D. (2000), *BurrliOZ: A computer* program for calculating toxicant trigger values for the ANZECC and ARMCANZ water quality guidelines, Perth, Western Australia.

Cardno (2014a), Aquatic Ecology and Stygofauna Assessment: Angus Place Mine Extension *Project*, prepared by Cardno Pty Ltd for Centennial Angus Place Pty Limited.

Cardno (2014b), Aquatic Ecology and Stygofauna Assessment: Springvale Mine Extension *Project*, prepared by Cardno Pty Ltd for Springvale Coal Pty Limited.

Elphick, R. R., Davies, M., Gilron, G., Canaria, E. C., Lo, B. and Bailey, H. C. (2011), *An aquatic ecotoxicological evaluation of sulfate: The case for considering hardness as a modifying factor in setting water quality guidelines*, Environmental Toxicology and Chemistry, 30(1):247-253.

Farag, A.M. and Harper, D.D., eds. (2012), *The potential effects of sodium bicarbonate, a major constituent from coalbed natural gas production, on aquatic life*, US Geological Survey, Scientific Investigations Report 2012–5008.

GHD (2014), *Springvale EPA Water Quality and Toxicity Assessment: Interpretive Report*, prepared by GHD Pty Ltd for Springvale Coal Pty Ltd.

NSW EPA (2014), Ecotox Test Report No. 201400181, NSW Environment Protection Authority.

NSW OEH (2012), Chemical and Ecotoxicological Assessment of Discharge Waters from West *Cliff Mine: Report to the NSW Environment Protection Authority*, NSW Government Office of Environment and Heritage.

RPS (2014a), *Regional Water Quality Impact Assessment: Angus Place and Springvale Mine Extension Projects*, prepared by RPS Aquaterra Pty Ltd for Centennial Coal Company Limited.

RPS (2014b), *Angus Place Colliery LDP001 SSTV Assessment*, prepared by RPS Aquaterra Pty Ltd for Centennial Coal Company Limited.

RPS (2014c), *Springvale Mine LDP009 SSTV Assessment*, prepared by RPS Aquaterra Pty Ltd for Centennial Coal Company Limited.

RPS (2014d), *Regional Biodiversity Strategy: Western Projects*, prepared by RPS Australia Pty Ltd for Centennial Coal Pty Ltd.

Turak, E., Waddell, N. and Jahnstone, G. (2004), *New South Wales (NSW) Australian River Assessment System (AUSRIVAS): Sampling and Processing Manual 2004*, Department of Environment and Conservation.

Appendices

Appendix A – Flow Gauge Figures

Coxs River at Wallerawang Power Station Gauge

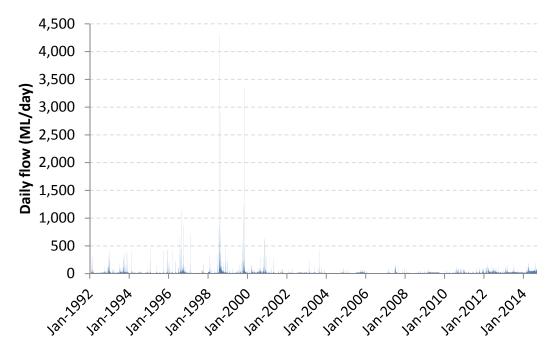


Figure A-1 Observed Flows for Coxs River at Wallerawang Power Station Gauge

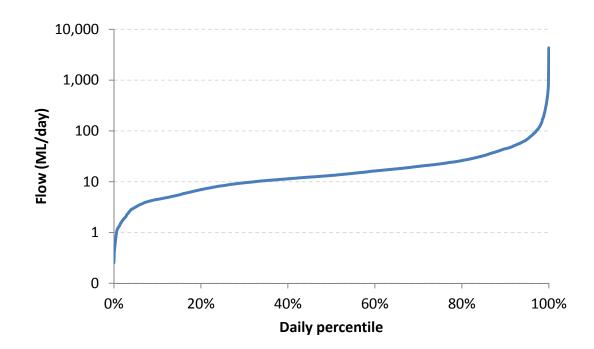
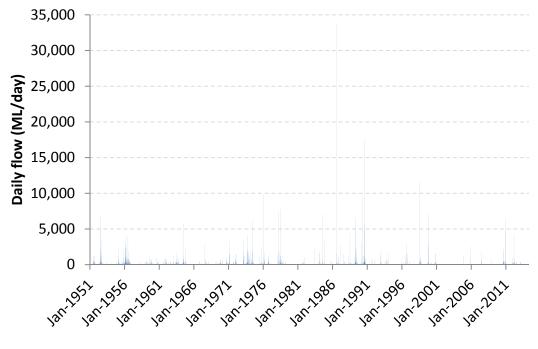



Figure A-2 Daily Flow Percentiles for Coxs River at Wallerawang Power Station Gauge

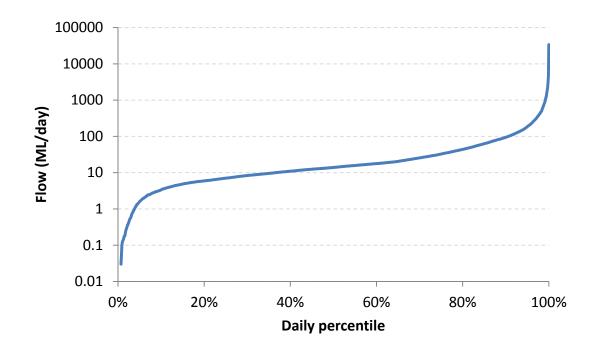
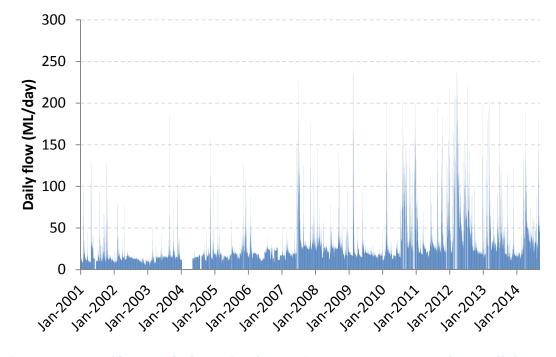



Figure A-4 Daily Flow Percentiles for Coxs River at Bathurst Road Gauge

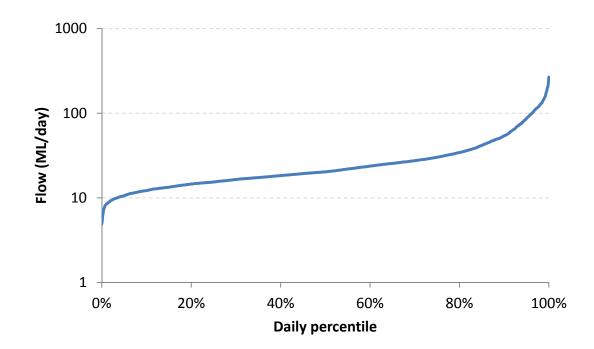
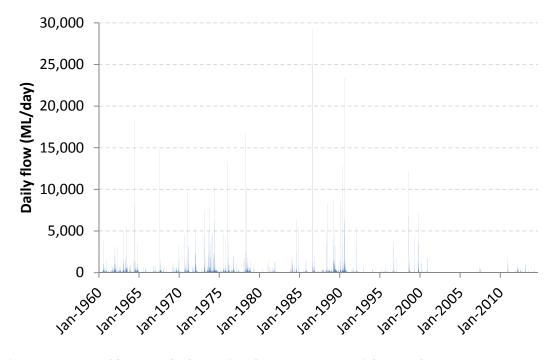



Figure A-6 Daily Flow Percentiles for Coxs River at Upstream Lake Lyell Gauge

Coxs River at Lithgow Gauge

Observed Flows for Coxs River at Lithgow Gauge

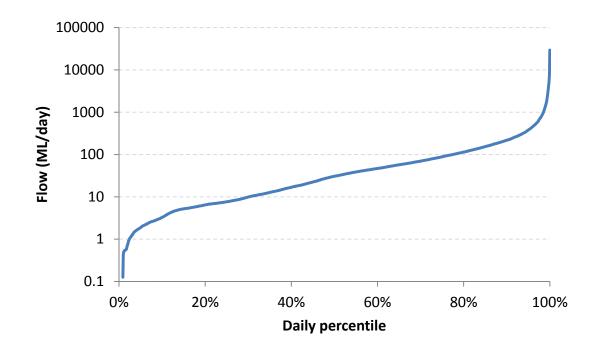
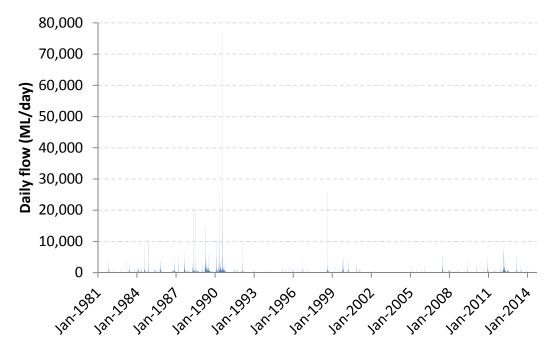



Figure A-8 Daily Flow Percentiles for Coxs River at Lithgow Gauge

Coxs River at Island Hill

Observed Flows for Coxs River at Island Hill Gauge

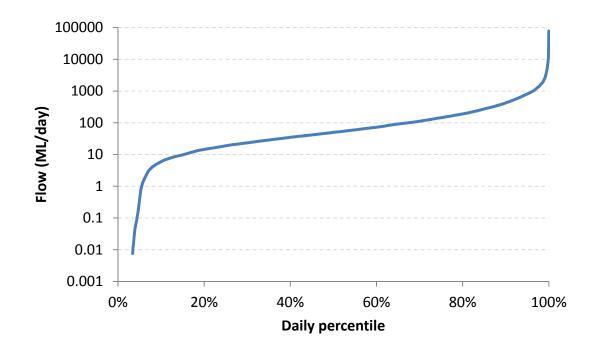
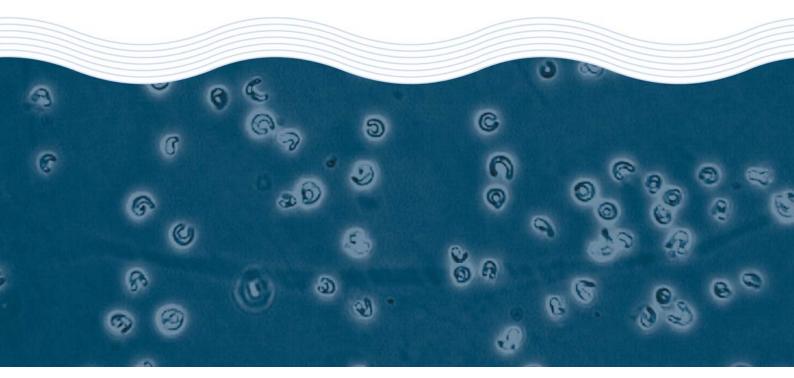


Figure A-10 Daily Flow Percentiles for Coxs River at Island Hill Gauge

Appendix B – Ecotoxicology Report



Toxicity Assessment of Freshwater Samples

GHD Pty Ltd

Test Report

September 2014

Toxicity Assessment of Freshwater Samples

GHD Pty Ltd

Test Report

September 2014

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

6-0

F>61 2 9420 9484 W>www.ecotox.com.au

C

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client: Attention: Client Ref:	GHD Pty Ltd GHD Tower, 24 Ho Newcastle NSW 23 Stuart Gray Not supplied		ESA Job #: Date Sampled: Date Received: Sampled By: ESA Quote #:	PR1223 21 August 2014 25 August 2014 Client PL1223_q01
Lab ID No.: 6808	Sample Name: SVLDP009			175µS/cm*, total ammonia parent good condition.
*NATA accreditation	on does not cover the pe	rformance of this servi	ce	
Test Performe Test Protocol Test Tempera Deviations fro Comments or Preparation: Source of Test Test Initiated:	: ture: om Protocol: a Solution at Organisms:	capricornutum ESA SOP 103 (ES The test was perfo Nil The sample was fi media. A USEPA	GA 2013), based on USEP ormed at 25±1°C. Itered to 0.45 μm and then control was tested concur culture, originally source AS	serially diluted with USEPA
Sample 6808: Concentration (%) USEPA Contro 3.1	n Cell Yield x10 ⁴ cells/mL (Mean ± SD)			

72-hr IC10 = 3.7 72-hr IC50 = 6.0 NOEC = 3.1% LOEC = 6.3%		7)%	
100			1.6 *
50	7.9	±	0.4 *
25	7.5	±	1.3 *
12.5	9.9	±	0.7 *
6.3	17.5	±	2.4 *
3.1	38.8	±	2.8
USEPA Control	38.2	±	5.8

*Significantly lower cell yield compared with the USEPA Control (Wilcoxon Rank Sum Test, 1-tailed, P=0.05) **95% confidence limits are not reliable

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

9420 9484 W>www.ecotox.com.au

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean cell density	≥16.0x10 ⁴ cells/mL	39.2x10 ⁴ cells/mL	Yes
Control coefficient of variation	<20%	15.2%	Yes
Reference Toxicant within cusum chart limits	1.5-6.2g KCI/L	2.4g KCI/L	Yes

K fa Vamo

Test Report Authorised by:

Dr Rick Krassoi, Director on 25 September 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document shall not be reproduced except in full.

Citations:

ESA (2013) ESA SOP 103 – Green Alga, Selenastrum capricornutum, Growth Test. Issue No 10. Ecotox Services Australasia, Sydney, NSW.

USEPA (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Fourth Edition. EPA-821-R-02-013. United States Environmental Protection Agency, Office of Research and Development, Washington DC, USA,

ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

1 2 9420 9484 W>www.ecotox.com.au

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client:	GHD Pty Ltd		ESA Job #:	PR1223		
	GHD Tower, 24 Ho					
	Newcastle NSW 23			25 August 2014		
Attention:	Stuart Gray		Sampled By:	Client		
Client Ref:	Not supplied		ESA Quote #:	PL1223_q01		
Lab ID No.:	Sample Name:	Sample Description	on:			
6808	SVLDP009	Aqueous sample,	pH 8.3*, conductivity '	1175µS/cm*, total ammonia		
		<2.0mg/L*. Sample	e received at 16°C* in ap	parent good condition.		
*NATA accreditatio	n does not cover the pe	erformance of this servic	e	·		
Test Performe	d:	7-day Growth inhi	bition of the freshwate	r aquatic duckweed Lemna		
		disperma				
Test Protocol:		ESA SOP 112 (ES	A 2012), based on OEC	D method 221 (2006)		
Test Temperat	ure:	The test was perfo		· · ·		
Deviations from	m Protocol:	Nil				
Comments on	Solution	The sample was se	The sample was serially diluted with Swedish standard medium (SIS) to			
Preparation:		achieve the test concentrations. A SIS control was tested concurrently				
		with the sample.				
Source of Test	Organisms:	ESA Laboratory cu	lture			
Test Initiated:		27 August 2014 at	1100h			
Sample 6808: S	SVLDP009	Vacant	Vacan	t		
Concentration						
(%)	Growth Rate					
()	(Mean ± SD)					
SIS Control	0.29 ± 0.04					
3.1	0.21 ± 0.02 *					
6.1	0.21 ± 0.02 0.24 ± 0.03					
12.1	0.24 ± 0.00 0.27 ± 0.01					
24.2	0.27 ± 0.01 0.22 ± 0.04 *					
48.4	0.22 ± 0.04 0.26 ± 0.01					
96.8						
90.0	$0.29 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$					
7 day IC10 = <	2 10/					
7 day $IC10 = < 7$ day $IC50 = > 7$						
NOEC = 96.8%						
LOEC = >96.8%	0	magned with the CIC Ca	ntrol (Donforroni t Toot, 1 to			

*Significantly lower specific growth rate compared with the SIS Control (Bonferroni t Test, 1-tailed, P=0.05) **95% confidence limits are not available

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control specific growth rate	>0.275	0.287	Yes
Reference Toxicant within cusum chart limits	2.3-6.0g KCI/L	3.3g KCI/L	Yes

F fa Vamoi

Test Report Authorised by:

Dr Rick Krassoi, Director on 25 September 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document shall not be reproduced except in full.

Citations:

ESA (2012) SOP 112 – Duckweed Growth Inhibition Test. Issue No. 5. Ecotox Services Australasia, Sydney NSW

OECD (2006) *Lemna sp.* Growth Inhibition Test. Method 221. OECD Guideline for the Testing of Chemicals. Organisation for Economic Cooperation and Development, Paris

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 094
 714
 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

1 2 9420 9484 W>www.ecotox.com.au

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client:	GHD Pty Ltd	ESA Job #:	PR1223
	GHD Tower, 24 Honeysuckle Drive	Date Sampled:	21 August 2014
	Newcastle NSW 2300	Date Received:	25 August 2014
Attention:	Stuart Gray	Sampled By:	Client
Client Ref:	Not supplied	ESA Quote #:	PL1223 q01

Lab ID No.:	Sample Name:	Sample Description:		
6808	SVLDP009	Aqueous sample, pH 8.3*, conductivity 1175µS/cm*, total ammonia		
		<2.0mg/L*. Sample received at 16°C* in apparent good condition.		
The second s				

*NATA accreditation does not cover the performance of this service

Test Performed:	96-hr fish imbalance toxicity test using the eastern rainbowfish Melanotaenia splendida splendida
Test Protocol:	ESA SOP 117 (ESA 2013), based on USEPA (2002)
Test Temperature:	The test was performed at $25\pm1^{\circ}$ C.
Deviations from Protocol:	Nil
Comments on Solution	The sample was serially diluted with dilute mineral water (DMW) to
Preparation:	achieve the test concentrations. A DMW control was tested concurrently with the sample.
Source of Test Organisms:	In-house cultures
Test Initiated:	9 September 2014 at 1300h

Sample 6808: S	VLDP009	Vacant	Vacant
Concentration	% Unaffected		
(%)	(Mean ± SD)		
DMW Control	100 ± 0.0		
3.1	95.0 ± 10.0		
6.3	95.0 ± 10.0		
12.5	95.0 ± 10.0		
25	90.0 ± 11.6		
50	50.0 \pm 11.6 *		
100	10.0 \pm 11.6 *		
96-hr IC10 = 25. 96-hr EC50 = 50 NOEC = 25% LOEC = 50%			

*Significantly lower percentage of unaffected larval fish compared with the DMW Control (Steel's Many-One Rank Test, 1-tailed, P=0.05)

**95% confidence limits are not reliable

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % unaffected	<u>></u> 80.0%	100%	Yes
Reference Toxicant within cusum chart limits	5.7-79.3µg Cu/L	47.4µg Cu/L	Yes

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 094
 714
 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

1 2 9420 9484 W>www.ecotox.com.au

(Page 2 of 2)

1/ 1/amo

Dr Rick Krassoi, Director on 25 September 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

Test Report Authorised by:

This document shall not be reproduced except in full.

Citations:

- ESA (2013) SOP 117 Freshwater and Marine Fish Imbalance Test. Issue No 10. Ecotox Services Australasia, Sydney, NSW
- USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth edition EPA-821-R-02-012. United States Environmental Protection Agency, Office of Research and Development, Washington FC, USA

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client:	GHD Pty Ltd		ESA Job #:	PR1223	
	GHD Tower, 24 H	onevsuckle Drive	Date Sampled:	21 August 2014	
	Newcastle NSW 2		Date Received:	25 August 2014	
Attention:	Stuart Gray		Sampled By:	Client	
Client Ref:	Not supplied		ESA Quote #:	PL1223 q01	
Lab ID No.:	Sample Name:	Sample Descript	ion:		
6808	SVLDP009			175µS/cm*, total ammonia	
			e received at 16°C* in app		
*NATA accredita	ation does not cover the				
		•			
Test Performe	ed:	96-hr acute toxicit	96-hr acute toxicity test using the freshwater hydra hydra viridissima		
Test Protocol	:	ESA SOP 125 (2013), based on Riethmuller et al. (2003)			
Test Tempera	iture:	The test was performed at 27±1°C.			
Deviations fro	om Protocol:	Nil			
Comments or	n Solution	The sample was serially diluted with Laboratory Water to achieve the			
Preparation:		test concentrations. A Laboratory Water control was tested			
-		concurrently with t	the sample.		
Source of Tes	st Organisms:	ESA Laboratory culture			
Test Initiated:		26 August 2014 at 1330h			
Sample 6808:	SVLDP009	Vacant	Vacant		
Concentratio	n Population				
(%)	Growth Rate				
	(Mean ± SD)				
Lab Control	0.37 ± 0.0				
3.1	0.25 ± 0.02				

Lab Control	$0.37 \hspace{0.2cm} \pm \hspace{0.2cm} 0.0$
3.1	$0.35 \pm 0.02 $
6.3	$0.33 \pm 0.02 *$
12.5	$0.25 \pm 0.04 *$
25	0.11 ± 0.06 *
50	$0.03 \pm 0.03 *$
100	$0.00 \hspace{0.2cm} \pm \hspace{0.2cm} 0.00 \hspace{0.2cm}$
96-hr EC10 = 5 96-hr EC50 = 1 NOEC = 3.1% LOEC = 6.3%	.1%** 8.0 (14.0-24.8)%

*Significantly lower population growth rate compared with the Lab Control (Steel's Many-One Rank Test, 1-tailed, P=0.05) **95% confidence limits are not reliable

ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

2

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean population growth rate	≥0.25	0.374	Yes
Reference Toxicant within cusum chart limits	0.9-12.6µg Cu/L	5.8µg Cu/L	Yes

Test Report Authorised by:

Dr Rick Krassoi, Director on 25 September 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document shall not be reproduced except in full.

Citations:

ESA (2013) SOP 125 -Hydra Population Growth Test. Issue No 3. Ecotox Services Australasia, Sydney, NSW

Riethmuller N, Camilleri C, Franklin N, Hogan A, King A, Koch A, Markich SJ, Turley C and van Dam R (2003). Green Hydra Population Growth Test. In: *Ecotoxicological testing protocols for Australian tropical freshwater ecosystems.* Supervising Scientist Report 173, Supervising Scientist, Darwin NT.

ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client: Attention: Client Ref:	GHD Pty Ltd GHD Tower, 24 Ho Newcastle NSW 23 Stuart Gray		ESA Job #: Date Sampled: Date Received: Sampled By: ESA Quote #:	PR1223 21 August 2014 25 August 2014 Client Pl 1222 c01	
Client Ref.	Not supplied		ESA QUOLE #.	PL1223_q01	
Lab ID No.: 6808	Sample Name: SVLDP009			175µS/cm*, total ammonia parent good condition.	
*NATA accredita	tion does not cover the	performance of this serv	vice		
Test Performed:		Partial life-cycle toxicity test using the freshwater cladoceran Ceriodaphnia cf dubia			
Test Protocol	:	(ESA SOP 102 (ESA 2013), based on USEPA (2002) and Bailey <i>et al.</i> (2000)		
Test Temperature:ThDeviations from Protocol:ThComments on SolutionThPreparation:acComments on SolutionTh		The test was performed The test was exter The sample was achieve the tes concurrently with t	nded to 8 days serially diluted with Dilut t concentrations. A D he sample.	e Mineral Water (DMW) to MW control was tested	
Test Initiated:		ESA Laboratory cu 28 August 2014 at			

Sample 6808: SVLDP009 Concentration (%)	% Survival at 8 days (Mean ± SD)	Sample 6808: SVLDP009 Concentration (%)) Number of Young (Mean ± SD)
DMW Control	90.0 ± 31.6	DMW Control	15.3 ± 6.2
3.1	80.0 ± 42.2	3.1	18.1 ± 5.5
6.3	100 ± 0.0	6.3	18.3 ± 4.5
12.5	100 ± 0.0	12.5	13.7 ± 8.3
25	90.0 ± 31.6	25	9.2 ± 5.2
50	70.0 ± 48.3	50	5.6 ± 5.4 **
100	0.0 ± 0.0	100	0.0 ± 0.0
8 day IC10 (survival) = 3 8 day EC50 (survival) = 9 NOEC = 50% LOEC = 100%		8 day IC10 (reproduction 8 day IC50 (reproduction NOEC = 25% LOEC = 50%	

*95% confidence limits are not reliable **Significantly lower young compared with the DMW Control (Dunnett's Test, 1-tailed, P=0.05)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % survival	≥80.0%	90.0%	Yes
Control mean number of young	≥15.0	16.6	Yes
Reference Toxicant within cusum chart limits	138.8-478.6KCI/L	219.6mg KCI/L	Yes

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

9420 9484 W>www.ecotox.com.au

(Page 2 of 2)

Ellamo

Dr Rick Krassoi, Director on 25 September 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

Test Report Authorised by:

This document shall not be reproduced except in full.

Citations:

- Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology* and Chemistry 19:88-93.
- ESA (2013) ESA SOP 102 Acute Toxicity Test Using Ceriodaphnia dubia. Issue No 9. Ecotox Services Australasia, Sydney, NSW.
- USEPA (2002) Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms.4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client: Attention: Client Ref:	GHD Pty Ltd GHD Tower, 24 Ho Newcastle NSW 23 Stuart Gray Not supplied		ESA Job #: Date Sampled: Date Received: Sampled By: ESA Quote #:	PR1223 21 August 2014 25 August 2014 Client PL1223_q01
Lab ID No.: 6807	Sample Name: APLDP001			38µS/cm. Sample received
*NATA accreditat	tion does not cover the	performance of this ser	vice	
Test Performe	d:	,	toxicity test using th	e freshwater cladoceran
Test Protocol:		<i>Ceriodaphnia cf dubia</i> ESA SOP 102 (ESA 2013), based on USEPA (2002) and Bailey <i>et al.</i> (2000)		
Test Temperature:The test was performed at 25±1°CDeviations from Protocol:The test was extended to 8 daysComments on SolutionThe sample was serially diluted achieve the test concentration		nded to 8 days serially diluted with Dilut t concentrations. A D	()	
Source of Test Test Initiated:	t Organisms:	concurrently with t ESA Laboratory c 4 September 2014	ulture	

Sample 6807: APLDP001		Sample 6807: APLDP001	1
Concentration (%)	% Survival at 8 days (Mean ± SD)	Concentration (%)	Number of Young (Mean ± SD)
DMW Control	90.0 ± 31.6	DMW Control	13.6 ± 6.0
3.1	90.0 ± 31.6	3.1	16.1 ± 7.3
6.3	100 ± 0.0	6.3	15.2 ± 5.3
12.5	100 ± 0.0	12.5	20.1 ± 5.8
25	90.0 ± 31.6	25	17.4 ± 7.6
50	100 ± 0.0	50	25.2 ± 4.2
100	90.0 ± 31.6	100	19.1 ± 9.1
8 day EC10 (survival) = : 8 day EC50 (survival) = : NOEC = 100% LOEC = >100%		8 day IC10 (reproduction 8 day IC50 (reproduction NOEC = 100% LOEC = >100%	

95% confidence limits not reliable

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % survival	≥80.0%	90.0%	Yes
Control mean number of young	≥15.0	15.1	Yes
Reference Toxicant within cusum chart limits	137.8-480.2mg KCI/L	238.0mg KCI/L	Yes

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

6

9420 9484 W>www.ecotox.com.au

(Page 2 of 2)

Ellamo

Dr Rick Krassoi, Director on 25 September 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

Test Report Authorised by:

This document shall not be reproduced except in full.

Citations:

- Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology* and Chemistry 19:88-93.
- ESA (2013) ESA SOP 102 Acute Toxicity Test Using Ceriodaphnia dubia. Issue No 9. Ecotox Services Australasia, Sydney, NSW.
- USEPA (2002) Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms.4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client:	GHD Pty Ltd		ESA Job #:	PR1223
	GHD Tower, 24 Hon	eysuckle Drive	Date Sampled:	21 & 22 August 2014
	Newcastle NSW 230	00	Date Received:	25 August 2014
Attention:	Stuart Gray		Sampled By:	Client
Client Ref:	Not supplied		ESA Quote #:	PL1223_q01
Lab ID No.:	Sample Name:	Sample Descript	ion:	
6809	SVLDP009 DS	Aqueous sample,	pH 8.8*, conductivity 10)89µS/cm*. Sample
		received at 16°C*	in apparent good condition	tion.
6810	MADDOX	Aqueous sample,	pH 8.6*, conductivity 10	07µS/cm*. Sample
			in apparent good condition	
6811	LAKE WALLACE			86µS/cm*. Sample received
			ent good condition.	
6812	WANGOL			06µS/cm*. Sample received
			ent good condition.	
6813	COXS DS LYELL			06µS/cm*. Sample received
			ent good condition.	
6814	COXS US LYELL		pH 8.7*, conductivity 10	
			in apparent good condition	
6815	LAKE LYELL			7µS/cm*. Sample received
			ent good condition.	
6816	WPS			9µS/cm*. Sample received
			ent good condition.	
6817	COXS US		pH 6.6*, conductivity 41	
		received at 16°C*	in apparent good condition	tion.

*NATA accreditation does not cover the performance of this service

Test Performed:	Partial life-cycle toxicity test using the freshwater cladoceran		
Test Protocol:	<i>Ceriodaphnia cf dubia</i> ESA SOP 102 (ESA 2013), based on USEPA (2002) and Bailey <i>et al.</i> (2000)		
Test Temperature:	The test was performed at 25±1°C.		
Deviations from Protocol:	The test was extended to 8 days		
Comments on Solution	The samples were tested without dilution (i.e. 100% only). A DMW		
Preparation:	control was tested concurrently with the samples.		
Source of Test Organisms:	ESA Laboratory culture		
Test Initiated:	11 September 2014 at 1415h		

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 094
 714
 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(Page 2 of 2)

Sample 6809-6817: Various		Sample 6809-6817: Various		
Sample ID	% Survival at 8 days	Sample ID	ple ID Number of Young	
	(Mean \pm SD)		(Mean ± SD)	
DMW Control	90.0 ± 31.6	DMW Control	19.3 ± 7.2	
SVLDP009 DS	80.0 ± 42.2	SVLDP009 DS	0.8 ± 1.7 **	
MADDOX	100 ± 0.0	MADDOX	5.5 ± 5.2 **	
LAKE WALLACE	100 ± 0.0	LAKE WALLACE	22.3 ± 6.2	
WANGOL	100 ± 0.0	WANGOL	13.6 ± 4.8	
COXS DS LYELL	100 ± 0.0	COXS DS LYELL	21.9 ± 4.6	
COXS UD LYELL	100 ± 0.0	COXS UD LYELL	20.5 ± 8.2	
LAKE LYELL	90.0 ± 31.6	LAKE LYELL	20.6 ± 7.7	
WPS	100 ± 0.0	WPS	12.8 ± 6.7	
COXS US	40.0 ± 51.6 *	COXS US	0.2 ± 0.6 **	

*Significantly lower percentage survival compared with the DMW Control (Bonferroni adjusted t Test, 1-tailed, P=0.05) **Significantly lower young compared with the DMW Control (Bonferroni adjusted t Test, 1-tailed, P=0.05)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % survival	≥80.0%	90.0%	Yes
Control mean number of young	≥15.0	21.3	Yes
Reference Toxicant within cusum chart limits	137.8-479.6mg KCl/L	274.3mg KCI/L	Yes

El Vamo

Dr Rick Krassoi, Director on 25 September 2014

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

Test Report Authorised by:

This document shall not be reproduced except in full.

Citations:

Bailey, H.C., Krassoi, R., Elphick, J.R., Mulhall, A., Hunt, P., Tedmanson, L. and Lovell, A. (2000) Application of *Ceriodaphnia cf. dubia* for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: method development and validation. *Environmental Toxicology* and Chemistry 19:88-93.

ESA (2013) ESA SOP 102 – Acute Toxicity Test Using Ceriodaphnia dubia. Issue No 9. Ecotox Services Australasia, Sydney, NSW.

USEPA (2002) Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms.4th Ed. United States Environmental Protection Agency, Office of Water, Washington DC.

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

1 2 9420 9484 W>www.ecotox.com.au

Chain-of-Custody Documentation

Sample Receipt Notification

Attention	: Tess Davies			
Client	: GHD Pty Ltd GHD Tower, Level 3, 2 Newcastle NSW 2300	•		
Email Telephone Facsimile	: tess.davies@ghd.com : 02 49799993 :			
Date	: 25/08/2014			
Re	: Receipt of Samples		Pages :	3
ESA Project	: PR1223	✓ For Review	Additional Documen	tation Required - Please Respond

Sample Delivery Details

Completed Chain of Custody accompanied samples:	YES
Samples received in apparent good condition and correctly bottled:	YES
Security seals on sample bottles and esky intact:	YES

Date samples received	: 25/08/2014
Time samples received	: 9:50
No. of samples received	: 12
Sample matrix	: Aqueous
Sample temperature	: 16°C

Comments : Includes 2x5L APLDP001 (ESA ID# 6801, 9x5L SVLDP009 (ESA ID# 6808), 1x1L SV LDP009 DS (ESA ID# 6809), 1x1L MADDOX (ESA ID# 6810) 1x1L LAKE WALLACE (ESA ID# 6811), 1x1L WANGOL (ESA ID# 6812) 1x1L COXS DS LYELL (ESA ID# 6813), 1x1L COXS US LYELL (ESA ID# 6814) 1x1L LAKE LYELL (ESA ID# 6815), 1x1L WPS (ESA ID# 6816) 1x1L COXS US (ESA iD# 6817)

Contact Details

Customer Services Officer :Tina MicevskaTelephone:61 2 9420 9481Facsimile:61 2 9420 9484Email:tmicevska@ecotox.com.au

Please contact customer services officer for all queries or issues regarding samples

Note that the chain-of-custody provides definitive information on the tests to be performed

6807 6812 3100 630 630 30 Ecotox Services Australasia . Unit 27, 2 Chaplin Drive, Lane Cove NSW 2066 AUSTRALIA Sampled by: Phone: Contact Name: Customer: Datasheet ID: 601.1 Last Revised: 15 July 2014 Q 1) Released By: N (day/month /year) Sample Date 00 00 0 00 00 A 0401416936 Email: Stuart Liray Sample Time Stuart Lirau Date Note that the chain-of-custody documentation will provide definitive information on the tests to be performed. Ime UHD WANCICOL MADDOX LAKE WALLACE COXS US SV LDPOOD DS Chain-of-Custody / Service Request Form AD (exactly as written on the sample Sample Name LDPOOP -DPOO vessel Q 2) Received By Tina ESA Stuart. gray@gind (please provide an email address for sample receipt notification) (eg. Grab, composite etc.) urab Date Sample Method I ime: 25/8114 9:50 12 5L 0 Number and Containers Volume of IXIL 1×5L (eg 2 x 1L) Attention Ship To 3) Released By 9 × × X Chronic Cerio growth Sc × S (See reverse for guidance Algal Tests Requested × そくへ Duckweed Ld Date: Time × hronic fish × Hydra All dilutions (3.125 All dilutions Qf 4) Received By 100%, conc only ESA Project Number: PR incomplete chain of custody is received Note that testing will be delayed if an Page___ Note: An MSDS must be attached if Available Sample used for litigation (if applicable) Sample holding time restriction (if applicable) down to 6.25%) Dilutions required (if different than 100% analyses) Sub-contracted services Additional treatment of samples (i.e. spiking) Comments / Instructions SERVICES AUSTRALASIA ecotox of Date I ime: (3.125" (i.e. chemica alsi als.

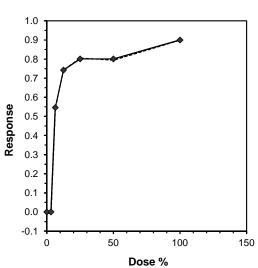
Phone: 61 2 9420-9481 Fax 61 2 9420-9484 info@ecotox.com.au

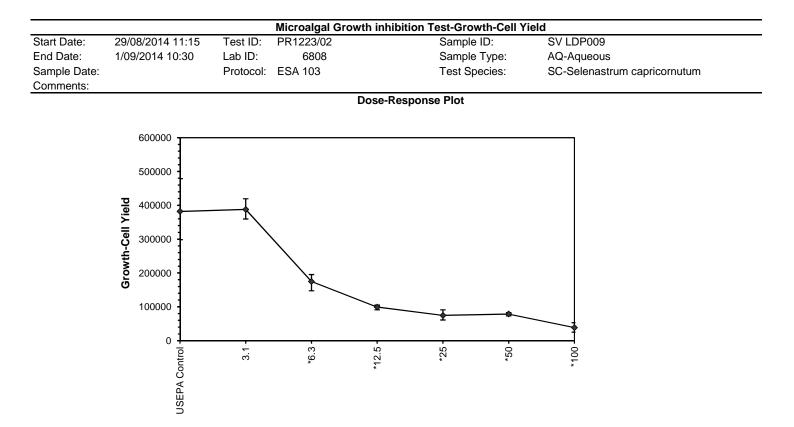
Customer: Contact Name:	Stuart	CHD + Crau		Ship To: Attention		
-	0401416936		Cond.con	n please provide an	Email: Short . gray Oghd . Corplease provide an email address for sample receipt notification)	
		C			the star	
Sample Date	Sample Time	Sample Name	Sample Method	Number and Volume of Containers	Tests Requested (See reverse for guidance)	Comments / Instructions Note that testing will be delayed if an incomplete chain of custody is received
(day/month /year)		(exactly as written on the sample vessel)	(eg. Grab, composite etc.)	(eg 2 x 1L)	ronic cerio	 Additional treatment of samples (i.e. spiking) Sub-contracted services (i.e. chemical analyses) Dilutions required (if different than 100% down to 6.25%) Sample holding time restriction (if applicable) Sample used for litigation (if applicable) Note: An MSDS must be attached if
-			3		С	ESA Project Number: PR
5 22 8 4 77 18		COXS DS LYELL	Circib	1×1C	- *	100°1° Conc only
22/8		LYE				
16 22/8	8.8.	WPS	-	1		
1) Released By:	Date:	2) Received By:	Date	3) Re	3) Released By: Date:	4) Received By: Date:
Of:	Time:	Of:	Time:	Of:	Time:	Of: Time:

6

6813 6814 6814

Statistical Printouts for the Selenastrum Growth Inhibition Tests


	Microalgal Growth inhibition Test-Growth-Cell Yield										
Start Date:	29/08/2014	11:15	Test ID:	PR1223/02		Sample ID:			SV LDP009		
End Date:	1/09/2014	10:30	Lab ID:	6808			Sample Type:		AQ-Aqueous		
Sample Date:			Protocol:	ESA 103			Test Species:		SC-Selenastrum capricornutum		
Comments:							•				
Conc-%	1	2	3	4	5	6	7	8			
USEPA Control	479157.1	387157.1	349157.1	333157.1	391157.1	377157.1	443157.1	299157.1			
3.1	369157.1	403157.1	419157.1	359157.1							
6.3	163157.1	193157.1	195157.1	147157.1							
12.5	105157.1	95157.1	91157.1	105157.1							
25	91157.1	77157.1	69157.1	61157.1							
50	77157.1	73157.1	81157.1	83157.1							
100	25157.1	25157.1	51157.1	53157.1							

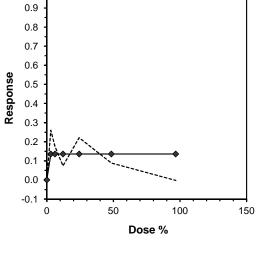

				Transfor	m: Untrans	formed		Rank	1-Tailed	Isote	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
USEPA Control	382407.1	1.0000	382407.1	299157.1	479157.1	15.197	8			385032.1	1.0000
3.1	387657.1	1.0137	387657.1	359157.1	419157.1	7.276	4	28.00	12.00	385032.1	1.0000
*6.3	174657.1	0.4567	174657.1	147157.1	195157.1	13.432	4	10.00	12.00	174657.1	0.4536
*12.5	99157.1	0.2593	99157.1	91157.1	105157.1	7.179	4	10.00	12.00	99157.1	0.2575
*25	74657.1	0.1952	74657.1	61157.1	91157.1	17.136	4	10.00	12.00	76657.1	0.1991
*50	78657.1	0.2057	78657.1	73157.1	83157.1	5.638	4	10.00	12.00	76657.1	0.1991
*100	38657.1	0.1011	38657.1	25157.1	53157.1	40.380	4	10.00	12.00	38657.1	0.1004

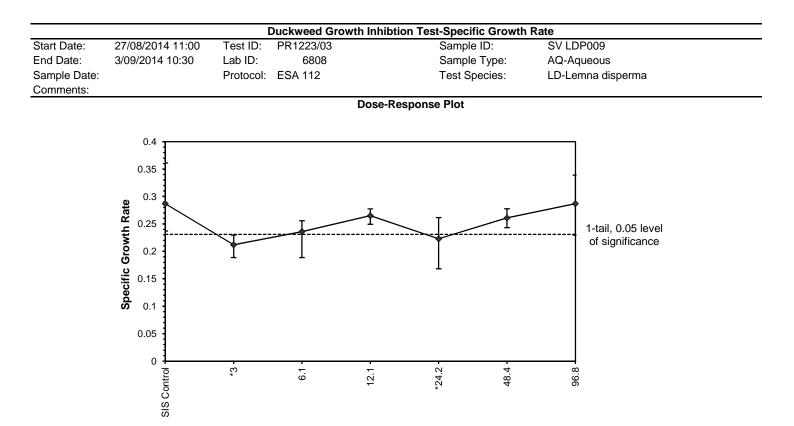
Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-nor	mal distribut	on (p <= 0).05)		0.917041	0.93	0.474902	3.761286
Bartlett's Test indicates unequal varia	nces (p = 3. ⁻	11E-04)			25.21748	16.81189		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Wilcovon Pank Sum Tost	2.1	63	1 110276	32 25806				

Wilcoxon Rank Sum Test3.16.34.41927632.25806Treatments vs USEPA Control

				Line	ear Interpolation	(200 Resamples)
Point	%	SD	95% CL	(Exp)	Skew	
IC05	3.3928	0.5185	0.2409	3.4425	-2.4593	
IC10	3.6857	0.2528	2.3418	3.7851	-3.6327	
IC15	3.9785	0.1891	3.0268	4.1276	-2.1668	1.0 1
IC20	4.2713	0.1764	3.4243	4.4702	-1.6081	0.9
IC25	4.5642	0.1722	3.7908	4.8127	-1.3398	
IC40	5.4427	0.1737	4.8650	5.8404	-0.4644	0.8
IC50	6.0283	0.2106	5.4512	6.7251	0.7568	0.7

			Microalgal	Growth inh	nibition Te	st-Growth-	Cell Yield		
Start Date:	29/08/2014 11:15	Test ID:	PR1223/02		S	Sample ID:		SV LDP009	
End Date:	1/09/2014 10:30	Lab ID:	6808		5	Sample Typ	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 103		٦	Fest Specie	s:	SC-Selenastrum capr	icornutum
Comments:									
				Au	xiliary Dat	a Summary	/		
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
USEPA Control	Cell Yield		38.24	29.92	47.92	5.81	6.30	8	
3.1			38.77	35.92	41.92	2.82	4.33	4	
6.3			17.47	14.72	19.52	2.35	8.77	4	
12.5			9.92	9.12	10.52	0.71	8.51	4	
25			7.47	6.12	9.12	1.28	15.15	4	
50			7.87	7.32	8.32	0.44	8.47	4	
100			3.87	2.52	5.32	1.56	32.32	4	
USEPA Control	pН		7.60	7.60	7.60	0.00	0.00	1	
3.1			7.70	7.70	7.70	0.00	0.00	1	
6.3			7.80	7.80	7.80	0.00	0.00	1	
12.5			8.00	8.00	8.00	0.00	0.00	1	
25			8.20	8.20	8.20	0.00	0.00	1	
50			8.20	8.20	8.20	0.00	0.00	1	
100			8.20	8.20	8.20	0.00	0.00	1	
USEPA Control	Conductivity uS/cr	m	93.70	93.70	93.70	0.00	0.00	1	
3.1			131.50	131.50	131.50	0.00	0.00	1	
6.3			167.50	167.50	167.50	0.00	0.00	1	
12.5			243.00	243.00	243.00	0.00	0.00	1	
25			389.00	389.00	389.00	0.00	0.00	1	
50			673.00	673.00	673.00	0.00	0.00	1	
100			1231.00	1231.00	1231.00	0.00	0.00	1	


Statistical Printouts for the Duckweed Growth Inhibition Tests


	Duckweed Growth Inhibtion Test-Specific Growth Rate										
Start Date:	27/08/2014	11:00	Test ID:	PR1223/03		ç	Sample ID:	SV LDP009			
End Date:	3/09/2014 1	0:30	Lab ID:	6808		Sample Type:		AQ-Aqueous			
Sample Date:			Protocol:	ESA 112		Test Species:		LD-Lemna disperma			
Comments:						·					
Conc-%	1	2	3	4	5	6	7				
SIS Control	0.2728	0.2369	0.2830	0.2780	0.3253	0.3608	0.2499				
3	0.1888	0.2299	0.2149	0.2149							
6.1	0.2499	0.2499	0.2560	0.1888							
12.1	0.2780	0.2780	0.2499	0.2560							
24.2	0.2618	0.1684	0.2067	0.2560							
48.4	0.2618	0.2780	0.2435	0.2618							
96.8	0.2925	0.3393	0.2878	0.2299							

		_		Transform	n: Untrans	formed			1-Tailed		Isotonic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
SIS Control	0.2867	1.0000	0.2867	0.2369	0.3608	15.007	7				0.2867	1.0000
*3	0.2121	0.7399	0.2121	0.1888	0.2299	8.050	4	3.477	2.574	0.0552	0.2476	0.8637
6.1	0.2361	0.8237	0.2361	0.1888	0.2560	13.414	4	2.356	2.574	0.0552	0.2476	0.8637
12.1	0.2655	0.9260	0.2655	0.2499	0.2780	5.530	4	0.989	2.574	0.0552	0.2476	0.8637
*24.2	0.2232	0.7786	0.2232	0.1684	0.2618	19.768	4	2.959	2.574	0.0552	0.2476	0.8637
48.4	0.2613	0.9114	0.2613	0.2435	0.2780	5.388	4	1.184	2.574	0.0552	0.2476	0.8637
96.8	0.2874	1.0025	0.2874	0.2299	0.3393	15.589	4	-0.034	2.574	0.0552	0.2476	0.8637

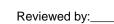
Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	I distribution (p > 0.05)			0.972848		0.929		0.075285	0.252535
Bartlett's Test indicates equal variar		8.178167		16.81189						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	96.8	>96.8		1.033058	0.055189	0.192518	0.004095	0.001171	0.012518	6, 24
Treatments vs SIS Control										

		Li	near Interpolati	on (200 Resamples)	
%	SD	95% CL(Exp)	Skew		
1.1006					
2.2011					
>96.8				1.0	
>96.8					
>96.8				• •	
>96.8				0.8	
>96.8				0.7 -	
estimate less th	nan the lo	west concentration		0.6	
	1.1006 2.2011 >96.8 >96.8 >96.8 >96.8 >96.8	1.1006 2.2011 >96.8 >96.8 >96.8 >96.8 >96.8 >96.8	% SD 95% CL(Exp) 1.1006 2.2011 96.8 96.8 >96.8 96.8 96.8 96.8	% SD 95% CL(Exp) Skew 1.1006 2.2011 - <td>1.1006 2.2011 >96.8 >96.8 >96.8 >96.8 >96.8 0.9 >96.8 0.7</td>	1.1006 2.2011 >96.8 >96.8 >96.8 >96.8 >96.8 0.9 >96.8 0.7

			Duckweed G	rowth Inhil	btion Test-	Specific G	rowth Ra	te	
Start Date:	27/08/2014 11:00	Test ID:	PR1223/03		Ş	Sample ID:		SV LDP009	
End Date:	3/09/2014 10:30	Lab ID:	6808		5	Sample Typ	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 112		٦	Fest Species	s:	LD-Lemna disperma	
Comments:									
				Au	xiliary Dat	a Summary	/		
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
SIS Control	I Specific growth r	rate	0.29	0.24	0.36	0.04	72.35	7	
3	}		0.21	0.19	0.23	0.02	61.60	4	
6.1			0.24	0.19	0.26	0.03	75.37	4	
12.1			0.27	0.25	0.28	0.01	45.64	4	
24.2	<u>)</u>		0.22	0.17	0.26	0.04	94.11	4	
48.4	ŀ		0.26	0.24	0.28	0.01	45.41	4	
96.8	3		0.29	0.23	0.34	0.04	73.65	4	
SIS Contro	l pH		6.40	6.40	6.40	0.00	0.00	1	
3	3		6.70	6.70	6.70	0.00	0.00	1	
6.1			6.90	6.90	6.90	0.00	0.00	1	
12.1			7.20	7.20	7.20	0.00	0.00	1	
24.2	2		7.60	7.60	7.60	0.00	0.00	1	
48.4	ŀ		7.90	7.90	7.90	0.00	0.00	1	
96.8	3		8.30	8.30	8.30	0.00	0.00	1	
SIS Contro	I Cond uS/cm		309.00	309.00	309.00	0.00	0.00	1	
3	3		331.00	331.00	331.00	0.00	0.00	1	
6.1			362.00	362.00	362.00	0.00	0.00	1	
12.1			427.00	427.00	427.00	0.00	0.00	1	
24.2	2		563.00	563.00	563.00	0.00	0.00	1	
48.4	Ļ		829.00	829.00	829.00	0.00	0.00	1	
96.8	3		1380.00	1380.00	1380.00	0.00	0.00	1	

Statistical Printouts for the Larval Fish Imbalance Tests

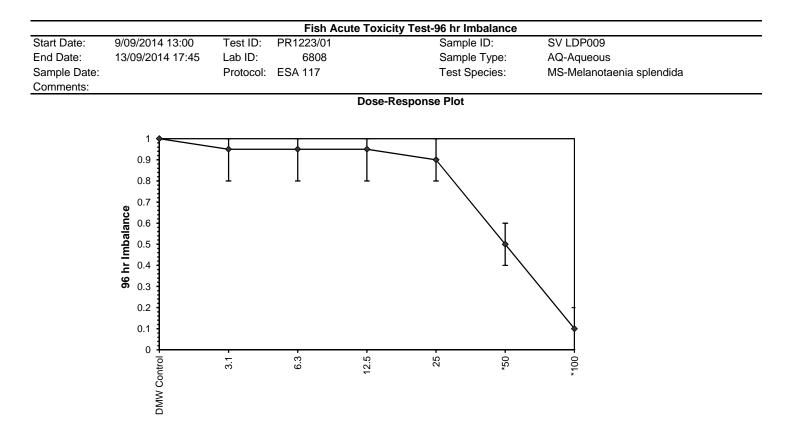
				Fish Acute	e Toxicity Test-96 hr Imbalance	
Start Date:	9/09/2014 1	3:00	Test ID:	PR1223/01	Sample ID:	SV LDP009
End Date:	13/09/2014	17:45	Lab ID:	6808	Sample Type:	AQ-Aqueous
Sample Date:			Protocol:	ESA 117	Test Species:	MS-Melanotaenia splendida
Comments:						
Conc-%	1	2	3	4		
DMW Control	1.0000	1.0000	1.0000	1.0000		
3.1	1.0000	0.8000	1.0000	1.0000		
6.3	1.0000	1.0000	1.0000	0.8000		
12.5	1.0000	1.0000	1.0000	0.8000		
25	0.8000	1.0000	0.8000	1.0000		
50	0.4000	0.6000	0.6000	0.4000		
100	0.0000	0.2000	0.0000	0.2000		


	Moon		Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Isote	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
DMW Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4			1.0000	1.0000
3.1	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4	16.00	10.00	0.9500	0.9500
6.3	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4	16.00	10.00	0.9500	0.9500
12.5	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4	16.00	10.00	0.9500	0.9500
25	0.9000	0.9000	1.2262	1.1071	1.3453	11.212	4	14.00	10.00	0.9000	0.9000
*50	0.5000	0.5000	0.7854	0.6847	0.8861	14.802	4	10.00	10.00	0.5000	0.5000
*100	0.1000	0.1000	0.3446	0.2255	0.4636	39.900	4	10.00	10.00	0.1000	0.1000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-no	ormal distribut	ion (p <= ().05)		0.854934	0.924	-0.56904	-1.15873
Equality of variance cannot be confir	med							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	25	50	35.35534	4				

				Log-	Logit Interp	plation (200 Resamples)	
Point	%	SD	95% CL	(Exp)	Skew		
IC05	12.500	7.862	0.000	34.882	0.6985		
IC10	25.000	6.597	0.000	34.148	-0.7220		
IC15	28.963	3.832	15.611	37.652	-0.3499	1.0	
IC20	32.340	3.259	20.596	39.986	0.0255	0.9	
IC25	35.414	2.902	24.994	42.605	0.0239	0.9	Л
IC40	44.038	2.603	37.982	53.577	0.1901	0.8 -	//
IC50	50.000	2.893	41.870	59.165	0.1542	0.7	/
						0 .6	
						98.0.6 0.5 98.0.4	<i>•</i>
						Se 0.4	

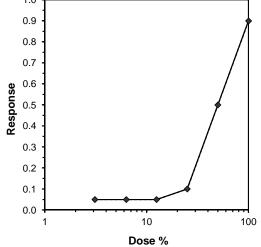
0.3 0.2 0.1 0.0

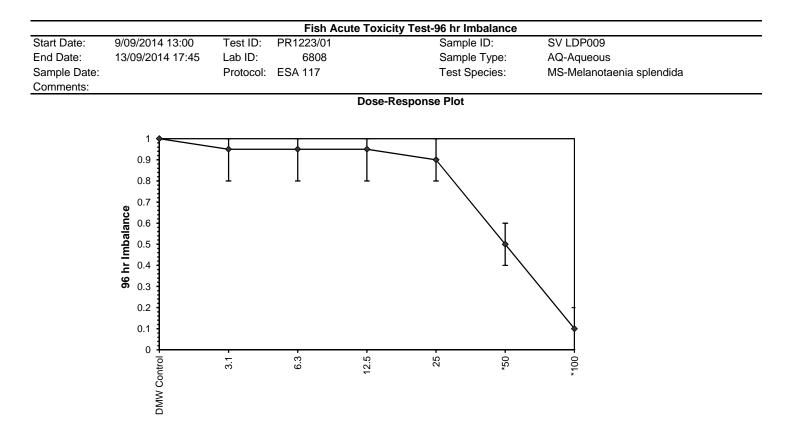

1

100

10

Dose %


			Fish A	Acute Toxic	city Test-9	6 hr Imbalar	nce		
Start Date:	9/09/2014 13:00	Test ID:	PR1223/01			Sample ID:		SV LDP009	
End Date:	13/09/2014 17:45	Lab ID:	6808			Sample Type	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 117			Test Species	s:	MS-Melanotaeni	a splendida
Comments:									
				Au	xiliary Da	ta Summary			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
DMW Contro	I % Unaffected		100.00	100.00	100.00	0.00	0.00	4	
3.1	1		95.00	80.00	100.00	10.00	3.33	4	
6.3	3		95.00	80.00	100.00	10.00	3.33	4	
12.5	5		95.00	80.00	100.00	10.00	3.33	4	
25	5		90.00	80.00	100.00	11.55	3.78	4	
50)		50.00	40.00	60.00	11.55	6.80	4	
100			10.00	0.00	20.00	11.55	33.98	4	
DMW Contro	l pH		8.20	8.20	8.20	0.00	0.00	1	
3.1			7.80	7.80	7.80	0.00	0.00	1	
6.3	3		7.90	7.90	7.90	0.00	0.00	1	
12.5	5		8.10	8.10	8.10	0.00	0.00	1	
25	5		8.20	8.20	8.20	0.00	0.00	1	
50)		8.20	8.20	8.20	0.00	0.00	1	
100)		8.10	8.10	8.10	0.00	0.00	1	
DMW Contro	I DO %		101.20	101.20	101.20	0.00	0.00	1	
3.1	1		100.30	100.30	100.30	0.00	0.00	1	
6.3	3		100.10	100.10	100.10	0.00	0.00	1	
12.5	5		100.50	100.50	100.50	0.00	0.00	1	
25	5		100.90	100.90	100.90	0.00	0.00	1	
50)		102.50	102.50	102.50	0.00	0.00	1	
100)		108.10	108.10	108.10	0.00	0.00	1	
DMW Contro	I Conductivity uS/cr	n	173.60	173.60	173.60	0.00	0.00	1	
3.1	1		213.00	213.00	213.00	0.00	0.00	1	
6.3	3		246.00	246.00	246.00	0.00	0.00	1	
12.5	5		313.00	313.00	313.00	0.00	0.00	1	
25	5		440.00	440.00	440.00	0.00	0.00	1	
50)		671.00	671.00	671.00	0.00	0.00	1	
100)		1154.00	1154.00	1154.00	0.00	0.00	1	


				Fish Acute	Toxicity Test-96 hr Imbalance	
Start Date:	9/09/2014 1	3:00	Test ID:	PR1223/01	Sample ID:	SV LDP009
End Date:	13/09/2014	17:45	Lab ID:	6808	Sample Type:	AQ-Aqueous
Sample Date:			Protocol:	ESA 117	Test Species:	MS-Melanotaenia splendida
Comments:						
Conc-%	1	2	3	4		
DMW Control	1.0000	1.0000	1.0000	1.0000		
3.1	1.0000	0.8000	1.0000	1.0000		
6.3	1.0000	1.0000	1.0000	0.8000		
12.5	1.0000	1.0000	1.0000	0.8000		
25	0.8000	1.0000	0.8000	1.0000		
50	0.4000	0.6000	0.6000	0.4000		
100	0.0000	0.2000	0.0000	0.2000		

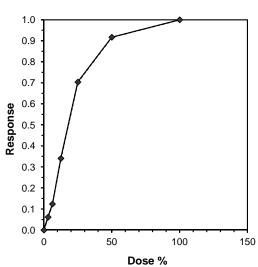
			Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
DMW Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4			0	20
3.1	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4	16.00	10.00	1	20
6.3	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4	16.00	10.00	1	20
12.5	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4	16.00	10.00	1	20
25	0.9000	0.9000	1.2262	1.1071	1.3453	11.212	4	14.00	10.00	2	20
*50	0.5000	0.5000	0.7854	0.6847	0.8861	14.802	4	10.00	10.00	10	20
*100	0.1000	0.1000	0.3446	0.2255	0.4636	39.900	4	10.00	10.00	18	20

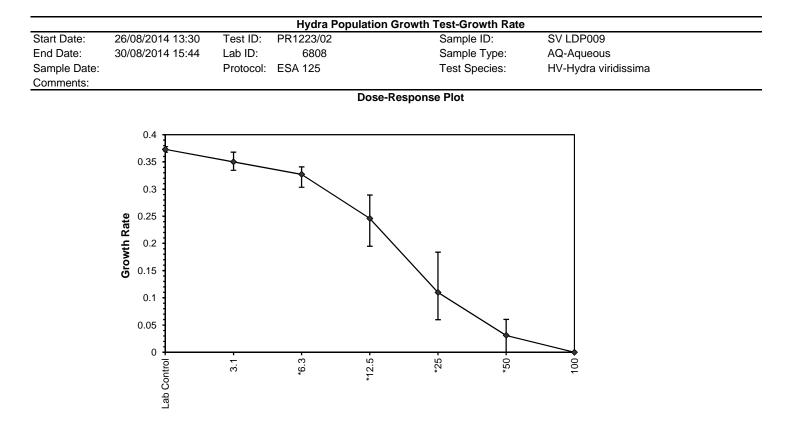
Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-no	rmal distribut	ion (p <= 0).05)		0.854934	0.924	-0.56904	-1.15873
Equality of variance cannot be confir	med							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	25	50	35.35534	4				
Treatments vs DMW Control								

				Trimmed Spearman-Karber	
Trim Level	EC50	95%	CL		
0.0%					
5.0%					
10.0%	50.000	40.511	61.712	1.0	
20.0%	50.000	38.338	65.209	·	
Auto-10.0%	50.000	40.511	61.712	0.9	<i>T</i>
				0.8 -	/
				•	/

			Fish A	Acute Toxic	city Test-9	6 hr Imbalar	nce		
Start Date:	9/09/2014 13:00	Test ID:	PR1223/01			Sample ID:		SV LDP009	
End Date:	13/09/2014 17:45	Lab ID:	6808			Sample Type	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 117			Test Species	s:	MS-Melanotaeni	a splendida
Comments:									
				Au	xiliary Da	ta Summary			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
DMW Contro	I % Unaffected		100.00	100.00	100.00	0.00	0.00	4	
3.1	1		95.00	80.00	100.00	10.00	3.33	4	
6.3	3		95.00	80.00	100.00	10.00	3.33	4	
12.5	5		95.00	80.00	100.00	10.00	3.33	4	
25	5		90.00	80.00	100.00	11.55	3.78	4	
50)		50.00	40.00	60.00	11.55	6.80	4	
100			10.00	0.00	20.00	11.55	33.98	4	
DMW Contro	l pH		8.20	8.20	8.20	0.00	0.00	1	
3.1			7.80	7.80	7.80	0.00	0.00	1	
6.3	3		7.90	7.90	7.90	0.00	0.00	1	
12.5	5		8.10	8.10	8.10	0.00	0.00	1	
25	5		8.20	8.20	8.20	0.00	0.00	1	
50)		8.20	8.20	8.20	0.00	0.00	1	
100)		8.10	8.10	8.10	0.00	0.00	1	
DMW Contro	I DO %		101.20	101.20	101.20	0.00	0.00	1	
3.1	1		100.30	100.30	100.30	0.00	0.00	1	
6.3	3		100.10	100.10	100.10	0.00	0.00	1	
12.5	5		100.50	100.50	100.50	0.00	0.00	1	
25	5		100.90	100.90	100.90	0.00	0.00	1	
50)		102.50	102.50	102.50	0.00	0.00	1	
100)		108.10	108.10	108.10	0.00	0.00	1	
DMW Contro	I Conductivity uS/cr	n	173.60	173.60	173.60	0.00	0.00	1	
3.1	1		213.00	213.00	213.00	0.00	0.00	1	
6.3	3		246.00	246.00	246.00	0.00	0.00	1	
12.5	5		313.00	313.00	313.00	0.00	0.00	1	
25	5		440.00	440.00	440.00	0.00	0.00	1	
50)		671.00	671.00	671.00	0.00	0.00	1	
100)		1154.00	1154.00	1154.00	0.00	0.00	1	

Statistical Printouts for *Hydra* Population Growth Tests


				Hydra Populatio	n Growth Test-Growth Rate		
Start Date:	26/08/2014	13:30	Test ID:	PR1223/02	Sample ID:	SV LDP009	
End Date:	30/08/2014	15:44	Lab ID:	6808	Sample Type:	AQ-Aqueous	
Sample Date:			Protocol:	ESA 125	Test Species:	HV-Hydra viridissima	
Comments:							
Conc-%	1	2	3	4			
Lab Control	0.3735	0.3735	0.3785	0.3683			
3.1	0.3683	0.3408	0.3349	0.3577			
6.3	0.3349	0.3033	0.3408	0.3289			
12.5	0.2336	0.1950	0.2670	0.2894			
25	0.1844	0.1366	0.0603	0.0603			
50	0.0603	0.0000	0.0418	0.0218			
100	0.0000	0.0000	0.0000	0.0000			

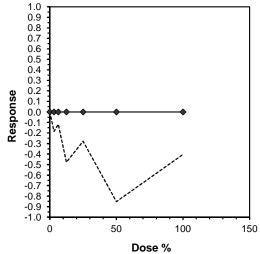

				Transform	n: Untrans	formed		Rank	1-Tailed	Isote	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
Lab Control	0.3735	1.0000	0.3735	0.3683	0.3785	1.116	4			0.3735	1.0000
3.1	0.3504	0.9384	0.3504	0.3349	0.3683	4.374	4	10.50	10.00	0.3504	0.9384
*6.3	0.3270	0.8756	0.3270	0.3033	0.3408	5.061	4	10.00	10.00	0.3270	0.8756
*12.5	0.2462	0.6593	0.2462	0.1950	0.2894	16.697	4	10.00	10.00	0.2462	0.6593
*25	0.1104	0.2956	0.1104	0.0603	0.1844	55.309	4	10.00	10.00	0.1104	0.2956
*50	0.0310	0.0829	0.0310	0.0000	0.0603	83.842	4	10.00	10.00	0.0310	0.0829
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	4			0.0000	0.0000

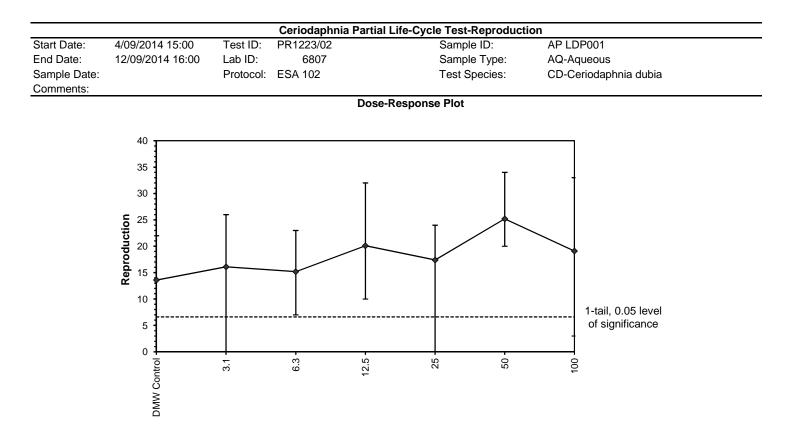
Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates norma	al distribution (p > 0.05)			0.962848	0.916	0.208991	0.793682
Bartlett's Test indicates unequal vai	riances (p = 7.	52E-03)			15.77501	15.08627		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	3.1	6.3	4.419276	32.25806				
Treatments vs Lab Control								

				Line	ear Interpolation	n (200 Resamples)
Point	%	SD	95% CL	(Exp)	Skew	
IC05*	2.516	0.648	1.094	4.743	0.5183	
IC10	5.056	0.810	2.373	7.276	-0.3033	
IC15	7.033	0.585	4.993	9.004	-0.1030	1.0
IC20	8.467	0.702	6.785	11.378	0.8354	
IC25	9.901	0.989	7.936	13.861	0.7298	0.9
IC40	14.539	1.485	10.347	18.967	-0.0769	0.8
IC50	17.976	1.666	13.979	24.777	0.7715	0.7

IC5017.9761.66613.97924.7* indicates IC estimate less than the lowest concentration

			Hydra F	Population	Growth T	est-Growth	Rate		_
Start Date:	26/08/2014 13:30	Test ID:	PR1223/02			Sample ID:		SV LDP009	
End Date:	30/08/2014 15:44	Lab ID:	6808			Sample Type	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 125			Test Species	5:	HV-Hydra viridis	sim
Comments:									
				Au	xiliary Da	ta Summary			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
Lab Contro	I Growth Rate		0.37	0.37	0.38	0.00	17.28	4	
3.1			0.35	0.33	0.37	0.02	35.33	4	
6.3	}		0.33	0.30	0.34	0.02	39.34	4	
12.5	5		0.25	0.20	0.29	0.04	82.35	4	
25			0.11	0.06	0.18	0.06	223.82	4	
50)		0.03	0.00	0.06	0.03	520.46	4	
100)		0.00	0.00	0.00	0.00		4	
Lab Contro	I Conductivity		26.50	26.50	26.50	0.00	0.00	1	
3.1			65.00	65.00	65.00	0.00	0.00	1	
6.3	3		104.80	104.80	104.80	0.00	0.00	1	
12.5	5		181.70	181.70	181.70	0.00	0.00	1	
25	5		332.00	332.00	332.00	0.00	0.00	1	
50)		619.00	619.00	619.00	0.00	0.00	1	
100)		1175.00	1175.00	1175.00	0.00	0.00	1	
Lab Contro	I pH		7.00	7.00	7.00	0.00	0.00	1	
3.1			7.10	7.10	7.10	0.00	0.00	1	
6.3	3		7.30	7.30	7.30	0.00	0.00	1	
12.5	5		7.50	7.50	7.50	0.00	0.00	1	
25	5		7.90	7.90	7.90	0.00	0.00	1	
50)		8.20	8.20	8.20	0.00	0.00	1	
100)		8.30	8.30	8.30	0.00	0.00	1	
Lab Contro	I DO, % sat		96.80	96.80	96.80	0.00	0.00	1	
3.1			98.50	98.50	98.50	0.00	0.00	1	
6.3	3		99.10	99.10	99.10	0.00	0.00	1	
12.5	5		99.10	99.10	99.10	0.00	0.00	1	
25	5		99.70	99.70	99.70	0.00	0.00	1	
50)		100.70	100.70	100.70	0.00	0.00	1	
100)		102.60	102.60	102.60	0.00	0.00	1	

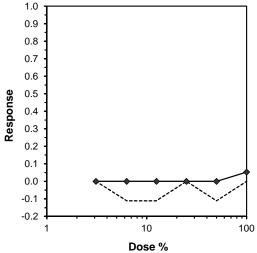

Statistical Printouts for the 7-d Chronic Test with *Ceriodaphnia dubia*

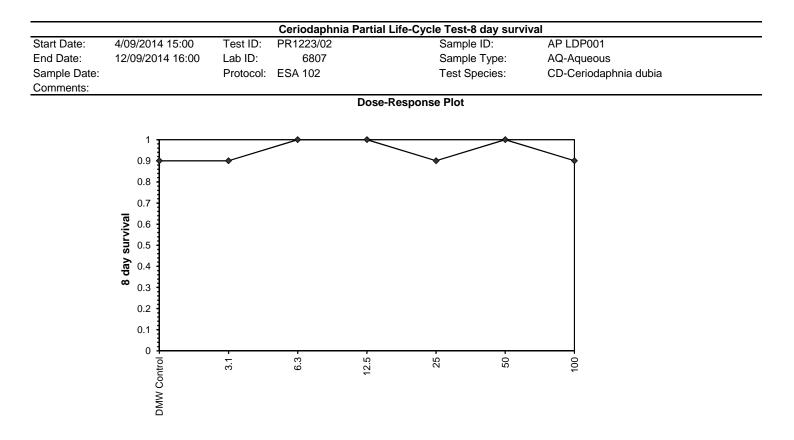

				Ceriodaphr	nia Partial	Life-Cycle	Test-Repr	oduction		
Start Date:	4/09/2014 1	5:00	Test ID:	PR1223/02		S	Sample ID:		AP LDP001	
End Date:	12/09/2014	16:00	Lab ID:	6807		S	Sample Typ	e:	AQ-Aqueou	s
Sample Date:			Protocol:	ESA 102		Т	est Specie	s:	CD-Cerioda	phnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
DMW Control	22.000	17.000	19.000	12.000	15.000	0.000	11.000	12.000	17.000	11.000
3.1	21.000	26.000	17.000	23.000	14.000	10.000	18.000	17.000	0.000	15.000
6.3	13.000	21.000	23.000	13.000	17.000	7.000	20.000	17.000	9.000	12.000
12.5	18.000	22.000	22.000	22.000	32.000	19.000	20.000	22.000	14.000	10.000
25	0.000	23.000	18.000	23.000	21.000	21.000	21.000	10.000	13.000	24.000
50	22.000	26.000	25.000	34.000	25.000	28.000	20.000	28.000	20.000	24.000
100	33.000	24.000	3.000	22.000	21.000	26.000	12.000	11.000	26.000	13.000

			Transform: Untransformed				1-Tailed		Isotonic			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
DMW Control	13.600	1.0000	13.600	0.000	22.000	44.416	10				18.100	1.0000
3.1	16.100	1.1838	16.100	0.000	26.000	45.213	10	-0.842	2.347	6.966	18.100	1.0000
6.3	15.200	1.1176	15.200	7.000	23.000	34.646	10	-0.539	2.347	6.966	18.100	1.0000
12.5	20.100	1.4779	20.100	10.000	32.000	28.767	10	-2.190	2.347	6.966	18.100	1.0000
25	17.400	1.2794	17.400	0.000	24.000	43.786	10	-1.280	2.347	6.966	18.100	1.0000
50	25.200	1.8529	25.200	20.000	34.000	16.711	10	-3.908	2.347	6.966	18.100	1.0000
100	19.100	1.4044	19.100	3.000	33.000	47.375	10	-1.853	2.347	6.966	18.100	1.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Kolmogorov D Test indicates norma	al distribution (p	o > 0.05)			0.708442		0.895		-0.62529	0.677564
Bartlett's Test indicates equal variar	nces (p = 0.37)				6.518898		16.81189			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	6.966141	0.512216	147.6	44.04286	0.006266	6, 63
Treatments vs DMW Control										

				Linear Interpolatio	n (200 Resamples)	
Point	%	SD	95% CL	Skew		
IC05	>100					
IC10	>100					
IC15	>100				1.0 	
IC20	>100				0.9 0.8	
IC25	>100				0.8	
IC40	>100				0.6	
IC50	>100				0.5 - 0.4 -	
					0.3	
					0.2	

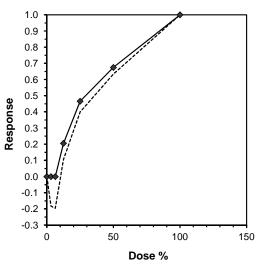

			Ceriodaph	nia Partial	Life-Cycle	Test-Repro	oduction		
Start Date:	4/09/2014 15:00	Test ID:	PR1223/02		-	Sample ID:		AP LDP001	
End Date:	12/09/2014 16:00	Lab ID:	6807			Sample Type	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 102			Test Species	S:	CD-Ceriodap	hnia dubia
Comments:									
				Au	xiliary Da	a Summary			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
DMW Control	No of Young		13.60	0.00	22.00	6.04	18.07	10	
3.1			16.10	0.00	26.00	7.28	16.76	10	
6.3			15.20	7.00	23.00	5.27	15.10	10	
12.5			20.10	10.00	32.00	5.78	11.96	10	
25			17.40	0.00	24.00	7.62	15.86	10	
50)		25.20	20.00	34.00	4.21	8.14	10	
100			19.10	3.00	33.00	9.05	15.75	10	
DMW Control	% survival		90.00	0.00	100.00	31.62	6.25	10	
3.1			90.00	0.00	100.00	31.62	6.25	10	
6.3	1		100.00	100.00	100.00	0.00	0.00	10	
12.5	i		100.00	100.00	100.00	0.00	0.00	10	
25			90.00	0.00	100.00	31.62	6.25	10	
50)		100.00	100.00	100.00	0.00	0.00	10	
100)		90.00	0.00	100.00	31.62	6.25	10	
DMW Control	pН		8.10	8.10	8.10	0.00	0.00	1	
3.1	•		8.10	8.10	8.10	0.00	0.00	1	
6.3			8.10	8.10	8.10	0.00	0.00	1	
12.5			8.10	8.10	8.10	0.00	0.00	1	
25			8.10	8.10	8.10	0.00	0.00	1	
50	1		8.10	8.10	8.10	0.00	0.00	1	
100			8.00	8.00	8.00	0.00	0.00	1	
DMW Control	DO %		101.00	101.00	101.00	0.00	0.00	1	
3.1			100.60	100.60	100.60	0.00	0.00	1	
6.3			100.40	100.40	100.40	0.00	0.00	1	
12.5			100.60	100.60	100.60	0.00	0.00	1	
25			104.30	104.30	104.30	0.00	0.00	1	
50			104.30	104.30	104.30	0.00	0.00	1	
100			106.00	106.00	106.00	0.00	0.00	1	
DMW Control			185.50	185.50	185.50	0.00	0.00		
3.1			213.00	213.00	213.00	0.00	0.00	1	
6.3			242.00	242.00	242.00	0.00	0.00	1	
12.5			298.00	298.00	298.00	0.00	0.00	1	
25			409.00	409.00	409.00	0.00	0.00	1	
50			625.00	625.00	625.00	0.00	0.00	1	
100			1038.00	1038.00	1038.00	0.00	0.00	1	

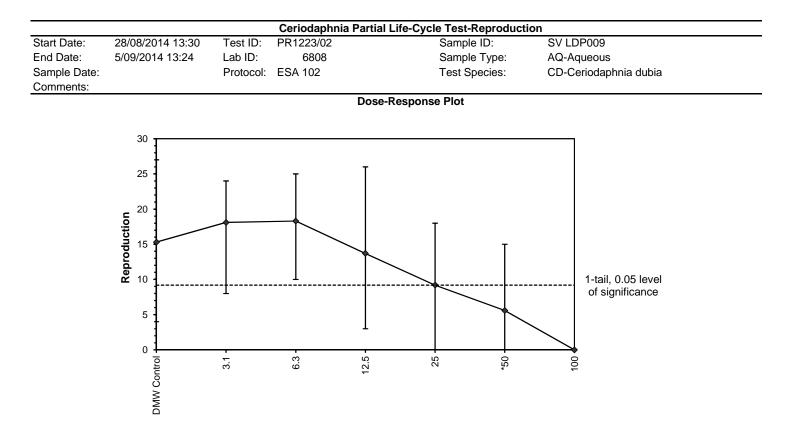

				Ceriodaphn	ia Partial	Life-Cycle	Test-8 day	survival		
Start Date:	4/09/2014 1	5:00	Test ID:	PR1223/02		S	Sample ID:		AP LDP001	
End Date:	12/09/2014	16:00	Lab ID:	6807		S	Sample Typ	e:	AQ-Aqueou	s
Sample Date:			Protocol:	ESA 102		Т	est Specie	s:	CD-Cerioda	phnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
DMW Control	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
3.1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000
6.3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

				Not		Fisher's 1-Tailed			Isoto	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
DMW Control	0.9000	1.0000	1	9	10	10			0.9500	1.0000
3.1	0.9000	1.0000	1	9	10	10	0.7632	0.0500	0.9500	1.0000
6.3	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0.9500	1.0000
12.5	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0.9500	1.0000
25	0.9000	1.0000	1	9	10	10	0.7632	0.0500	0.9500	1.0000
50	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0.9500	1.0000
100	0.9000	1.0000	1	9	10	10	0.7632	0.0500	0.9000	0.9474

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	
Treatments vs DMW Control					
		Log-	Logit Inter	polation (200 Re	esamples)

Point	%	SD	95% CL	Skew		
IC05	97.438					
IC10	>100					
IC15	>100				1.0	
IC20	>100				0.9	
IC25	>100				0.8	
IC40	>100				-	
IC50	>100				0.7	
					0.6	


			Ceriodaphi	nia Partial	Life-Cycle	Test-8 day	survival		
Start Date:	4/09/2014 15:00	Test ID:	PR1223/02			Sample ID:		AP LDP001	
End Date:	12/09/2014 16:00	Lab ID:	6807			Sample Typ	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 102			Test Specie	s:	CD-Ceriodap	hnia dubia
Comments:									
					xiliary Dat	a Summary			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
DMW Control	No of Young		13.60	0.00	22.00	6.04	18.07		
3.1			16.10	0.00	26.00	7.28	16.76		
6.3			15.20	7.00	23.00	5.27	15.10	10	
12.5			20.10	10.00	32.00	5.78	11.96		
25			17.40	0.00	24.00	7.62	15.86		
50			25.20	20.00	34.00	4.21	8.14	10	
100			19.10	3.00	33.00	9.05	15.75	10	
DMW Control	% survival		90.00	0.00	100.00	31.62	6.25	10	
3.1			90.00	0.00	100.00	31.62	6.25	10	
6.3			100.00	100.00	100.00	0.00	0.00	10	
12.5			100.00	100.00	100.00	0.00	0.00	10	
25			90.00	0.00	100.00	31.62	6.25	10	
50			100.00	100.00	100.00	0.00	0.00	10	
100	1		90.00	0.00	100.00	31.62	6.25	10	
DMW Control	рН		8.10	8.10	8.10	0.00	0.00	1	
3.1			8.10	8.10	8.10	0.00	0.00	1	
6.3			8.10	8.10	8.10	0.00	0.00	1	
12.5			8.10	8.10	8.10	0.00	0.00	1	
25			8.10	8.10	8.10	0.00	0.00	1	
50			8.10	8.10	8.10	0.00	0.00	1	
100	1		8.00	8.00	8.00	0.00	0.00	1	
DMW Control	DO %		101.00	101.00	101.00	0.00	0.00	1	
3.1			100.60	100.60	100.60	0.00	0.00	1	
6.3			100.40	100.40	100.40	0.00	0.00	1	
12.5			100.60	100.60	100.60	0.00	0.00	1	
25			104.30	104.30	104.30	0.00	0.00	1	
50			104.30	104.30	104.30	0.00	0.00	1	
100			106.00	106.00	106.00	0.00	0.00	1	
DMW Control	Cond uS/cm		185.50	185.50	185.50	0.00	0.00	1	
3.1			213.00	213.00	213.00	0.00	0.00	1	
6.3			242.00	242.00	242.00	0.00	0.00	1	
12.5			298.00	298.00	298.00	0.00	0.00	1	
25			409.00	409.00	409.00	0.00	0.00	1	
50			625.00	625.00	625.00	0.00	0.00	1	
100			1038.00	1038.00	1038.00	0.00	0.00	1	


				Ceriodaphr	nia Partial	Life-Cycle	Test-Repr	oduction		
Start Date:	28/08/2014	13:30	Test ID:	PR1223/02		5	Sample ID:		SV LDP009	
End Date:	5/09/2014 1	3:24	Lab ID:	6808		5	Sample Typ	e:	AQ-Aqueou	S
Sample Date:			Protocol:	ESA 102		Т	est Specie	s:	CD-Cerioda	phnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
DMW Control	18.000	22.000	27.000	13.000	13.000	14.000	4.000	12.000	17.000	13.000
3.1	22.000	21.000	8.000	12.000	20.000	22.000	18.000	12.000	24.000	22.000
6.3	17.000	22.000	21.000	22.000	20.000	10.000	16.000	16.000	14.000	25.000
12.5	19.000	21.000	3.000	16.000	11.000	26.000	23.000	5.000	6.000	7.000
25	0.000	12.000	8.000	6.000	10.000	14.000	18.000	8.000	12.000	4.000
50	6.000	0.000	15.000	4.000	11.000	0.000	5.000	3.000	0.000	12.000
100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		_		Transform	n: Untrans	formed			1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean	
DMW Control	15.300	1.0000	15.300	4.000	27.000	40.648	10				17.233	1.0000	
3.1	18.100	1.1830	18.100	8.000	24.000	30.199	10	-1.047	2.287	6.112	17.233	1.0000	
6.3	18.300	1.1961	18.300	10.000	25.000	24.580	10	-1.122	2.287	6.112	17.233	1.0000	
12.5	13.700	0.8954	13.700	3.000	26.000	60.881	10	0.599	2.287	6.112	13.700	0.7950	
25	9.200	0.6013	9.200	0.000	18.000	56.317	10	2.282	2.287	6.112	9.200	0.5338	
*50	5.600	0.3660	5.600	0.000	15.000	96.421	10	3.629	2.287	6.112	5.600	0.3250	
100	0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Kolmogorov D Test indicates norma	l distribution (o > 0.05)			0.524712		0.895		0.021178	-0.58724
Bartlett's Test indicates equal variar	ices $(p = 0.52)$)			4.232154		15.08627			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	25	50	35.35534	4	6.112369	0.399501	256.5467	35.72593	3.2E-05	5, 54
Treatments vs DMW Control										

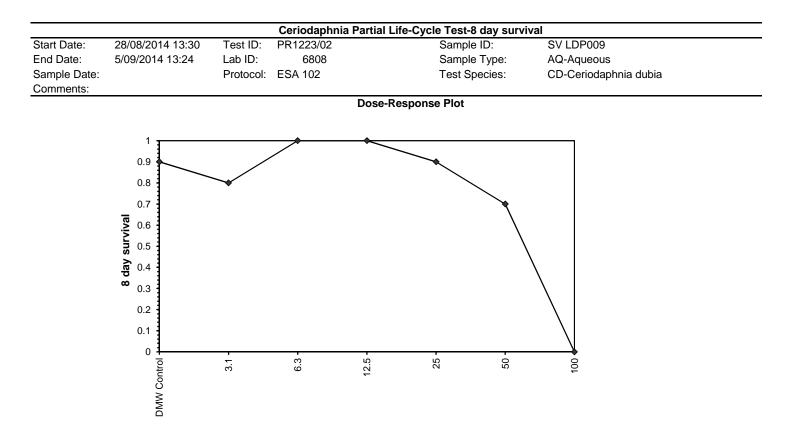
				Line	ear Interpolatio	n (200 Res	samples	s)
Point	%	SD	95%	CL	Skew			
IC05	7.812	2.842	2.615	14.253	0.5186			
C10	9.324	2.974	5.246	16.006	0.4828			
IC15	10.836	3.134	7.143	17.759	0.5046		1.0	/
IC20	12.348	3.410	7.953	19.842	0.3988		0.9	and the second se
IC25	14.653	3.786	9.147	21.824	0.2875		0.8	and the second se
IC40	21.833	5.661	11.396	32.891	0.2519		0.7	1.
IC50	29.051	7.848	16.305	50.346	0.5915		-	<u>M</u>
							0.6	
						0	0.5 -	

				nia Partiai		Test-Repro	Dauction		
Start Date:	28/08/2014 13:30	Test ID:	PR1223/02			Sample ID:		SV LDP009	
End Date:	5/09/2014 13:24	Lab ID:	6808			Sample Type		AQ-Aqueous	
Sample Date:		Protocol:	ESA 102		-	Fest Species	S:	CD-Ceriodaph	nia dubia
Comments:									
					xiliary Dat	a Summary			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
DMW Contro	No of Young		15.30	4.00	27.00	6.22	16.30	10	
3.1			18.10	8.00	24.00	5.47	12.92	10	
6.3	}		18.30	10.00	25.00	4.50	11.59	10	
12.5	i		13.70	3.00	26.00	8.34	21.08	10	
25	i		9.20	0.00	18.00	5.18	24.74	10	
50)		5.60	0.00	15.00	5.40	41.49	10	
100)		0.00	0.00	0.00	0.00		10	
DMW Contro	l % survival		90.00	0.00	100.00	31.62	6.25	10	
3.1			80.00	0.00	100.00	42.16	8.12	10	
6.3	}		100.00	100.00	100.00	0.00	0.00	10	
12.5	;		100.00	100.00	100.00	0.00	0.00	10	
25	i		90.00	0.00	100.00	31.62	6.25	10	
50			70.00	0.00	100.00	48.30	9.93	10	
100)		0.00	0.00	0.00	0.00		10	
DMW Control	l pH		8.10	8.10	8.10	0.00	0.00	1	
3.1			8.20	8.20	8.20	0.00	0.00	1	
6.3	6		8.20	8.20	8.20	0.00	0.00	1	
12.5	i		8.30	8.30	8.30	0.00	0.00	1	
25	i		8.30	8.30	8.30	0.00	0.00	1	
50)		8.40	8.40	8.40	0.00	0.00	1	
100)		8.40	8.40	8.40	0.00	0.00	1	
DMW Control			100.70	100.70	100.70	0.00	0.00	1	
3.1			100.60	100.60	100.60	0.00	0.00	1	
6.3	6		101.10	101.10	101.10	0.00	0.00	1	
12.5			100.70	100.70	100.70	0.00	0.00	1	
25	;		100.80	100.80	100.80	0.00	0.00	1	
50)		101.70	101.70	101.70	0.00	0.00	1	
100			104.70	104.70	104.70	0.00	0.00	1	
DMW Control	Cond uS/cm		185.10	185.10	185.10	0.00	0.00	1	
3.1			222.00	222.00	222.00	0.00	0.00	1	
6.3			252.00	252.00	252.00	0.00	0.00	1	
12.5			318.00	318.00	318.00	0.00	0.00	1	
25			445.00	445.00	445.00	0.00	0.00	1	
50			691.00	691.00	691.00	0.00	0.00	1	
100			1180.00	1180.00	1180.00	0.00	0.00	1	

				Ceriodaphn	ia Partial	Life-Cycle	Test-8 day	survival		
Start Date:	28/08/2014	13:30	Test ID:	PR1223/02		5	Sample ID:		SV LDP009	
End Date:	5/09/2014 1	3:24	Lab ID:	6808		5	Sample Typ	e:	AQ-Aqueou	S
Sample Date:			Protocol:	ESA 102		Т	est Specie	s:	CD-Cerioda	phnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
DMW Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000
3.1	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000
6.3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50	1.0000	0.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

				Not			Fisher's	1-Tailed	Isote	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
DMW Control	0.9000	1.0000	1	9	10	10			0.9250	1.0000
3.1	0.8000	0.8889	2	8	10	10	0.5000	0.0500	0.9250	1.0000
6.3	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0.9250	1.0000
12.5	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0.9250	1.0000
25	0.9000	1.0000	1	9	10	10	0.7632	0.0500	0.9000	0.9730
50	0.7000	0.7778	3	7	10	10	0.2910	0.0500	0.7000	0.7568
100	0.0000	0.0000	10	0	10	10			0.0000	0.0000

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU
Fisher's Exact Test	50	100	70.71068	2
Treatments vs DMW Control				

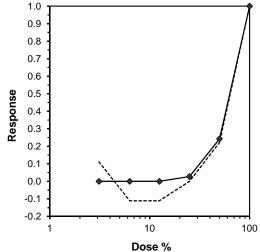

				Log-L	.ogit Interpola	tion (200 Resa	amples)	
Point	%	SD	95%	CL	Skew			
IC05	27.968	12.978	2.377	51.172	-0.0598			
IC10	33.968	11.803	2.905	52.123	-0.1779			
IC15	39.636	10.425	18.668	52.946	-0.3769	1.	.0 0.	
IC20	45.186	8.842	23.041	53.715	-0.7060	0.	.9	Λ
IC25	50.103	7.084	27.970	54.457	-1.0713	0.	4	/
IC40	52.217	3.440	43.267	56.455	-1.5101		4	/
IC50	53.576	2.635	47.360	57.739	-0.9084	0.	.7	/
						0.	.6 •	/
						0. USE	.5	/
						UOC 0.	.4	
						.0 Kesbor	.3	
						Ĕ O	2	A

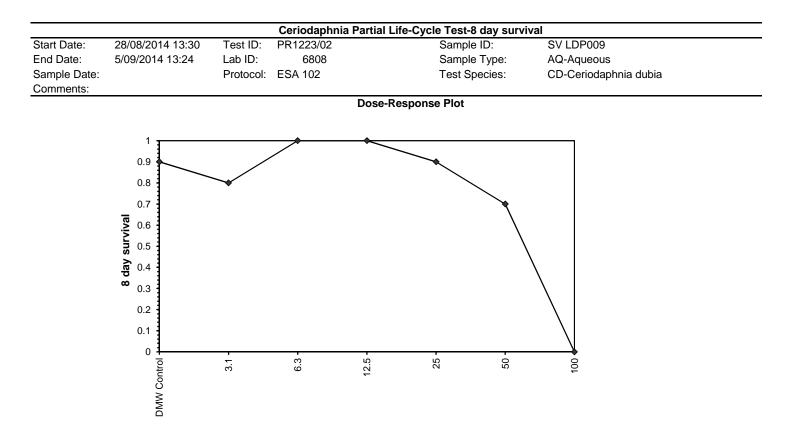
0.3 0.2 0.1 0.0 -0.1 -0.2

100

10

Dose %

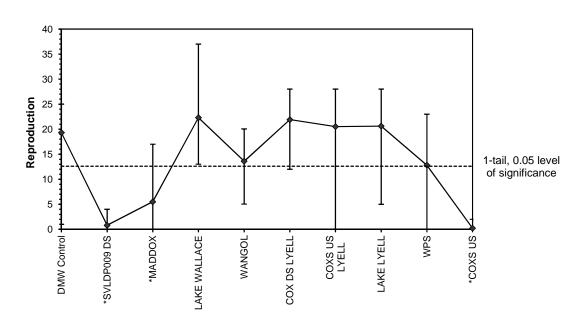

				nia Partial		Test-8 day	survival			
tart Date:	28/08/2014 13:30	Test ID:	•					SV LDP009		
nd Date:	5/09/2014 13:24	Lab ID:	6808 Sample Type:				e:	AQ-Aqueous		
Sample Date:		Protocol:	ESA 102			Test Species	8:	CD-Ceriodapl	nnia dubia	
comments:										
			Auxiliary Data Summary							
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N		
DMW Control	0		15.30	4.00	27.00	6.22	16.30			
3.1			18.10	8.00	24.00	5.47	12.92			
6.3			18.30	10.00	25.00	4.50	11.59	10		
12.5			13.70	3.00	26.00	8.34	21.08	10		
25			9.20	0.00	18.00	5.18	24.74			
50			5.60	0.00	15.00	5.40	41.49	10		
100			0.00	0.00	0.00	0.00		10		
DMW Control	% survival		90.00	0.00	100.00	31.62	6.25	10		
3.1			80.00	0.00	100.00	42.16	8.12	10		
6.3	5		100.00	100.00	100.00	0.00	0.00	10		
12.5	i		100.00	100.00	100.00	0.00	0.00	10		
25	j		90.00	0.00	100.00	31.62	6.25	10		
50)		70.00	0.00	100.00	48.30	9.93	10		
100			0.00	0.00	0.00	0.00		10		
DMW Control	IрН		8.10	8.10	8.10	0.00	0.00	1		
3.1			8.20	8.20	8.20	0.00	0.00	1		
6.3	5		8.20	8.20	8.20	0.00	0.00	1		
12.5	i		8.30	8.30	8.30	0.00	0.00	1		
25	j.		8.30	8.30	8.30	0.00	0.00	1		
50)		8.40	8.40	8.40	0.00	0.00	1		
100			8.40	8.40	8.40	0.00	0.00	1		
DMW Control	DO %		100.70	100.70	100.70	0.00	0.00	1		
3.1			100.60	100.60	100.60	0.00	0.00	1		
6.3	5		101.10	101.10	101.10	0.00	0.00	1		
12.5			100.70	100.70	100.70	0.00	0.00	1		
25			100.80	100.80	100.80	0.00	0.00	1		
50			101.70	101.70	101.70	0.00	0.00	1		
100			104.70	104.70	104.70	0.00	0.00	1		
DMW Control			185.10	185.10	185.10	0.00	0.00	1		
3.1			222.00	222.00	222.00	0.00	0.00	1		
6.3			252.00	252.00	252.00	0.00	0.00	1		
12.5			318.00	318.00	318.00	0.00	0.00	1		
25			445.00	445.00	445.00	0.00	0.00	1		
50			691.00	691.00	691.00	0.00	0.00			
100)		1180.00	1180.00	1180.00	0.00	0.00	1		


Ceriodaphnia Partial Life-Cycle Test-8 day survival										
Start Date:	28/08/2014 13:30		Test ID:	PR1223/02	Sample ID:			SV LDP009		
End Date:	5/09/2014 13:24		Lab ID:	6808	Sample Type:		e:	AQ-Aqueous		
Sample Date:	ple Date:		Protocol:	ESA 102	Test Species:		s:	CD-Ceriodaphnia dubia		
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
DMW Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000
3.1	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000
6.3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50	1.0000	0.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

				Not			Fisher's	1-Tailed	Number	Total
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Resp	Number
DMW Control	0.9000	1.0000	1	9	10	10			1	10
3.1	0.8000	0.8889	2	8	10	10	0.5000	0.0500	2	10
6.3	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0	10
12.5	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0	10
25	0.9000	1.0000	1	9	10	10	0.7632	0.0500	1	10
50	0.7000	0.7778	3	7	10	10	0.2910	0.0500	3	10
100	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU
Fisher's Exact Test	50	100	70.71068	2
Treatments vs DMW Control				

				Trimmed Spearman-Karber	
Trim Level	EC50	95%	CL		
0.0%	58.631	47.951	71.689		
5.0%	60.322	48.795	74.572		
10.0%	61.426	47.972	78.653	1.0	†
20.0%	63.031	42.131	94.299	0.9	Λ
Auto-0.0%	58.631	47.951	71.689	0.8	/
				0.7	
				0.6	/



				nia Partial		Test-8 day	survival		
tart Date:	28/08/2014 13:30	Test ID:	PR1223/02			Sample ID:		SV LDP009	
nd Date:	5/09/2014 13:24	Lab ID:	6808			Sample Type	e:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 102			Test Species	S:	CD-Ceriodaph	nnia dubia
comments:									
					xiliary Dat	a Summary			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
DMW Control	0		15.30	4.00	27.00	6.22	16.30	10	
3.1			18.10	8.00	24.00	5.47	12.92	10	
6.3			18.30	10.00	25.00	4.50	11.59	10	
12.5			13.70	3.00	26.00	8.34	21.08	10	
25			9.20	0.00	18.00	5.18	24.74	10	
50			5.60	0.00	15.00	5.40	41.49	10	
100			0.00	0.00	0.00	0.00		10	
DMW Control	% survival		90.00	0.00	100.00	31.62	6.25	10	
3.1			80.00	0.00	100.00	42.16	8.12	10	
6.3	•		100.00	100.00	100.00	0.00	0.00	10	
12.5			100.00	100.00	100.00	0.00	0.00	10	
25			90.00	0.00	100.00	31.62	6.25	10	
50)		70.00	0.00	100.00	48.30	9.93	10	
100			0.00	0.00	0.00	0.00		10	
DMW Control	рН		8.10	8.10	8.10	0.00	0.00	1	
3.1			8.20	8.20	8.20	0.00	0.00	1	
6.3			8.20	8.20	8.20	0.00	0.00	1	
12.5			8.30	8.30	8.30	0.00	0.00	1	
25			8.30	8.30	8.30	0.00	0.00	1	
50	1		8.40	8.40	8.40	0.00	0.00	1	
100	1		8.40	8.40	8.40	0.00	0.00	1	
DMW Control	DO %		100.70	100.70	100.70	0.00	0.00	1	
3.1			100.60	100.60	100.60	0.00	0.00	1	
6.3	•		101.10	101.10	101.10	0.00	0.00	1	
12.5			100.70	100.70	100.70	0.00	0.00	1	
25			100.80	100.80	100.80	0.00	0.00	1	
50)		101.70	101.70	101.70	0.00	0.00	1	
100	1		104.70	104.70	104.70	0.00	0.00	1	
DMW Control	Cond uS/cm		185.10	185.10	185.10	0.00	0.00	1	
3.1			222.00	222.00	222.00	0.00	0.00	1	
6.3			252.00	252.00	252.00	0.00	0.00	1	
12.5			318.00	318.00	318.00	0.00	0.00	1	
25			445.00	445.00	445.00	0.00	0.00	1	
50			691.00	691.00	691.00	0.00	0.00	1	
100)		1180.00	1180.00	1180.00	0.00	0.00	1	

				Ceriodaphr	nia Partial	Life-Cycle	e Test-Rep	roduction				
Start Date:	11/09/2014	14:15	Test ID:	PR1223/21			Sample ID:		Various			
End Date:	19/09/2014	14:00	Lab ID:	Various			Sample Ty	pe:	AQ-Aqueo	us		
Sample Date:			Protocol:	ESA 102			Test Speci	es:	CD-Ceriod	aphnia dubi	а	
Comments:												
Conc-	1	2	3	4	5	6	7	8	9	10		
DMW Control	24.000	23.000	18.000	24.000	20.000	19.000	1.000	24.000	15.000	25.000		
SVLDP009 DS	0.000	4.000	0.000	0.000	0.000	0.000	0.000	0.000	4.000	0.000		
MADDOX	4.000	7.000	17.000	0.000	4.000	2.000	4.000	2.000	12.000	3.000		
AKE WALLACE	22.000	21.000	13.000	24.000	20.000	22.000	23.000	24.000	37.000	17.000		
WANGOL	13.000	18.000	13.000	10.000	15.000	10.000	20.000	18.000	5.000			
COX DS LYELL	19.000	28.000	26.000	22.000	22.000	18.000	25.000	24.000	23.000	12.000		
OXS US LYELL	25.000	28.000	24.000	20.000	23.000	27.000	22.000	14.000	0.000	22.000		
LAKE LYELL	28.000	17.000	5.000	18.000	26.000	26.000	28.000	27.000	17.000	14.000		
WPS	17.000	23.000	18.000	11.000	0.000	12.000	16.000	10.000	16.000	5.000		
COXS US	0.000	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
				Transform	n: Untrans	formed			1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD		
DMW Control	19.300	1.0000	19.300	1.000	25.000	37.367	10					
*SVLDP009 DS	0.800	0.0415	0.800	0.000	4.000	210.819	10	7.128	2.593	6.731		
*MADDOX	5.500	0.2850	5.500	0.000	17.000	94.767	10	5.317	2.593	6.731		
AKE WALLACE	22.300	1.1554	22.300	13.000	37.000	~ ~		4 4 5 6				
					57.000	27.728	10	-1.156	2.593	6.731		
WANGOL	13.556	0.7024	13.556	5.000	20.000	27.728 35.208	10 9	-1.156 2.154	2.593 2.593	6.731 6.915		
WANGOL COX DS LYELL	13.556 21.900					-						
COX DS LYELL		0.7024	13.556	5.000	20.000	35.208	9	2.154	2.593	6.915		
COX DS LYELL	21.900	0.7024 1.1347	13.556 21.900	5.000 12.000	20.000 28.000	35.208 21.030	9 10	2.154 -1.002	2.593 2.593	6.915 6.731		
COX DS LYELL OXS US LYELL	21.900 20.500 20.600	0.7024 1.1347 1.0622	13.556 21.900 20.500	5.000 12.000 0.000	20.000 28.000 28.000	35.208 21.030 39.978	9 10 10	2.154 -1.002 -0.462	2.593 2.593 2.593	6.915 6.731 6.731		
COX DS LYELL OXS US LYELL LAKE LYELL	21.900 20.500 20.600 12.800	0.7024 1.1347 1.0622 1.0674	13.556 21.900 20.500 20.600	5.000 12.000 0.000 5.000	20.000 28.000 28.000 28.000	35.208 21.030 39.978 37.196	9 10 10 10	2.154 -1.002 -0.462 -0.501	2.593 2.593 2.593 2.593	6.915 6.731 6.731 6.731		
COX DS LYELL OXS US LYELL LAKE LYELL WPS *COXS US Auxiliary Tests	21.900 20.500 20.600 12.800 0.200	0.7024 1.1347 1.0622 1.0674 0.6632 0.0104	13.556 21.900 20.500 20.600 12.800 0.200	5.000 12.000 0.000 5.000 0.000 0.000	20.000 28.000 28.000 28.000 23.000 2.000	35.208 21.030 39.978 37.196 52.447	9 10 10 10 10	2.154 -1.002 -0.462 -0.501 2.504	2.593 2.593 2.593 2.593 2.593	6.915 6.731 6.731 6.731 6.731	Skew	Kurt
COX DS LYELL OXS US LYELL LAKE LYELL WPS *COXS US	21.900 20.500 20.600 12.800 0.200	0.7024 1.1347 1.0622 1.0674 0.6632 0.0104	13.556 21.900 20.500 20.600 12.800 0.200	5.000 12.000 0.000 5.000 0.000 0.000	20.000 28.000 28.000 28.000 23.000 2.000	35.208 21.030 39.978 37.196 52.447	9 10 10 10 10 10	2.154 -1.002 -0.462 -0.501 2.504	2.593 2.593 2.593 2.593 2.593 2.593 2.593	6.915 6.731 6.731 6.731 6.731		Kurt 2.801025
COX DS LYELL OXS US LYELL LAKE LYELL WPS *COXS US Auxiliary Tests	21.900 20.500 20.600 12.800 0.200 est indicates	0.7024 1.1347 1.0622 1.0674 0.6632 0.0104	13.556 21.900 20.500 20.600 12.800 0.200	5.000 12.000 0.000 5.000 0.000 0.000 on (p <= 0.03	20.000 28.000 28.000 28.000 23.000 2.000	35.208 21.030 39.978 37.196 52.447	9 10 10 10 10 10 Statistic	2.154 -1.002 -0.462 -0.501 2.504	2.593 2.593 2.593 2.593 2.593 2.593 Critical	6.915 6.731 6.731 6.731 6.731		2.801025
COX DS LYELL OXS US LYELL LAKE LYELL WPS *COXS US Auxiliary Tests Kolmogorov D T Bartlett's Test in Hypothesis Test	21.900 20.500 20.600 12.800 0.200 est indicates dicates une st (1-tail, 0.0	0.7024 1.1347 1.0622 1.0674 0.6632 0.0104 s non-norm qual varian 5	13.556 21.900 20.500 20.600 12.800 0.200 nal distributi ces (p = 9.0	5.000 12.000 0.000 5.000 0.000 0.000 on (p <= 0.03	20.000 28.000 28.000 28.000 23.000 2.000	35.208 21.030 39.978 37.196 52.447	9 10 10 10 10 10 Statistic 1.308145	2.154 -1.002 -0.462 -0.501 2.504	2.593 2.593 2.593 2.593 2.593 2.593 Critical 0.895	6.915 6.731 6.731 6.731 6.731		
COX DS LYELL OXS US LYELL LAKE LYELL WPS *COXS US Auxiliary Tests Kolmogorov D T Bartlett's Test in	21.900 20.500 20.600 12.800 0.200 est indicates dicates une st (1-tail, 0.0	0.7024 1.1347 1.0622 1.0674 0.6632 0.0104 s non-norm qual varian 5	13.556 21.900 20.500 20.600 12.800 0.200 nal distributi ces (p = 9.0	5.000 12.000 0.000 5.000 0.000 0.000 on (p <= 0.03	20.000 28.000 28.000 28.000 23.000 2.000	35.208 21.030 39.978 37.196 52.447	9 10 10 10 10 Statistic 1.308145 50.40083	2.154 -1.002 -0.462 -0.501 2.504 7.359	2.593 2.593 2.593 2.593 2.593 2.593 Critical 0.895 21.66599 MSB	6.915 6.731 6.731 6.731 6.731 6.731 6.731	-0.92016	2.801025

			Ceriodaph	nia Partial	Life-Cycl	e Test-Repro	duction		
Start Date:	11/09/2014 14:15	Test ID:	PR1223/21			Sample ID:		Various	
End Date:	19/09/2014 14:00	Lab ID:	Various			Sample Type		AQ-Aqueous	
Sample Date:		Protocol:	ESA 102			Test Species	3:	CD-Ceriodap	ohnia dubia
Comments:									
0	Descurrentes					ta Summary	01/0/		
Conc-	Parameter		Mean	Min	Max	SD 7.04	CV%	N 10	
DMW Control	0		19.30	1.00	25.00		13.91		
SVLDP009 DS			0.80	0.00	4.00		162.33		
MADDOX			5.50	0.00	17.00		41.51		
AKE WALLACE			22.30	13.00	37.00		11.15		
WANGOL			13.56	5.00	20.00		16.12		
COX DS LYELL			21.90	12.00	28.00		9.80		
OXS US LYELL			20.50	0.00	28.00		13.96		
LAKE LYELL			20.60	5.00	28.00		13.44		
WPS			12.80	0.00	23.00	6.71	20.24	10	
COXS US			0.20	0.00	2.00		397.64		
DMW Control	l % survival		90.00	0.00	100.00	31.62	6.25	10	
SVLDP009 DS	;		80.00	0.00	100.00	42.16	8.12	10	
MADDOX	,		100.00	100.00	100.00	0.00	0.00	10	
AKE WALLACE			100.00	100.00	100.00	0.00	0.00	10	
WANGOL			100.00	100.00	100.00	0.00	0.00	9	
COX DS LYELL			100.00	100.00	100.00		0.00		
OXS US LYELL			100.00	100.00	100.00		0.00		
LAKE LYELL			90.00	0.00	100.00		6.25		
WPS			100.00	100.00	100.00		0.00		
COXS US			40.00	0.00	100.00		17.97		
DMW Control			8.10	8.10	8.10		0.00		
SVLDP009 DS			8.80	8.80	8.80		0.00		
MADDOX			8.60	8.60	8.60		0.00		
AKE WALLACE			8.50	8.50	8.50		0.00		
WANGOL			8.70	8.70	8.70		0.00		
COX DS LYELL			8.30	8.30	8.30		0.00		
OXS US LYELL			8.70	8.70	8.70		0.00		
LAKE LYELL			8.40	8.40	8.40		0.00		
WPS			8.40	8.40	8.40		0.00		
COXSUS			6.60	6.60	6.60	0.00	0.00		
DMW Control			100.90	100.90	100.90		0.00		
SVLDP009 DS			89.00	89.00	89.00		0.00		
MADDOX			94.80	94.80	94.80		0.00		
AKE WALLACE									
			99.10 109.00	99.10 109.00	99.10		0.00		
			109.00	109.00	109.00		0.00		
COX DS LYELL			109.10	109.10	109.10		0.00		
OXS US LYELL			104.50	104.50	104.50	0.00	0.00		
			106.40	106.40	106.40	0.00	0.00		
WPS			90.30	90.30	90.30	0.00	0.00		
COXS US			102.80	102.80	102.80	0.00	0.00		
DMW Control			187.20	187.20	187.20		0.00		
SVLDP009 DS			1089.00	1089.00	1089.00	0.00	0.00		
MADDOX			1007.00	1007.00	1007.00	0.00	0.00		
AKE WALLACE			986.00	986.00	986.00	0.00	0.00		
WANGOL			806.00	806.00	806.00	0.00	0.00		
COX DS LYELL			506.00	506.00	506.00	0.00	0.00	1	
OXS US LYELL			1049.00	1049.00	1049.00	0.00	0.00	1	
LAKE LYELL			547.00	547.00	547.00	0.00	0.00	1	
WPS	;		949.00	949.00	949.00	0.00	0.00	1	
COXS US	;		41.50	41.50	41.50	0.00	0.00	1	

		Ceriodaphr	nia Partial	Life-Cycle	Test-8 da	y survival				
Start Date: 11/09/2014 14:15 T	Test ID:	PR1223/21		-	Sample ID:		Various			
End Date: 19/09/2014 14:00 L	_ab ID:	Various			Sample Typ	be:	AQ-Aqueo	us		
Sample Date: F	Protocol:	ESA 102			Test Specie	es:	CD-Ceriod	aphnia dubia	a	
Comments:								•		
Conc- 1 2	3	4	5	6	7	8	9	10		
DMW Control 1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000		
SVLDP009 DS 0.0000 1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
MADDOX 1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
AKE WALLACE 1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
WANGOL 1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
COX DS LYELL 1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
OXS US LYELL 1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
LAKE LYELL 1.0000 1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
WPS 1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
COXS US 1.0000 1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000		
		Transform:					1-Tailed			
Conc- Mean N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
DMW Control 0.9000 1.0000	0.9948	0.5236	1.0472	16.644	10					
SVLDP009 DS 0.8000 0.8889	0.9425	0.5236	1.0472	23.424	10	0.881	2.593	0.1541		
MADDOX 1.0000 1.1111	1.0472	1.0472	1.0472	0.000	10	-0.881	2.593	0.1541		
AKE WALLACE 1.0000 1.1111	1.0472	1.0472	1.0472	0.000	10	-0.881	2.593	0.1541		
WANGOL 1.0000 1.1111	1.0472	1.0472	1.0472	0.000	10	-0.881	2.593	0.1541		
COX DS LYELL 1.0000 1.1111	1.0472	1.0472	1.0472	0.000	10	-0.881	2.593	0.1541		
OXS US LYELL 1.0000 1.1111	1.0472	1.0472	1.0472	0.000	10	-0.881	2.593	0.1541		
LAKE LYELL 0.9000 1.0000	0.9948	0.5236	1.0472	16.644	10	0.000	2.593	0.1541		
WPS 1.0000 1.1111	1.0472	1.0472	1.0472	0.000	10	-0.881	2.593	0.1541		
*COXS US 0.4000 0.4444	0.7330	0.5236	1.0472	36.886	10	4.404	2.593	0.1541		
00/0000 0.1000 0.1111	0.1000	0.0200	1.0472	00.000		4.404	2.000	0.1041		
							Critical		Skew	Kurt
Auxiliary Tests	al distributi	on (p <= 0.0	5)		Statistic		Critical 0.895		Skew -1.39557	Kurt 5.718277
Auxiliary Tests Kolmogorov D Test indicates non-norma		on (p <= 0.0	5)				Critical 0.895		Skew -1.39557	
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed		on (p <= 0.0	5)		Statistic 4.03	MSDp	0.895		-1.39557	5.718277
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05)	d	on (p <= 0.0	5)		Statistic 4.03 MSDu	MSDp 0.21065	0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif	d	on (p <= 0.0	5)		Statistic 4.03	MSDp 0.21065	0.895	MSE	-1.39557	5.718277
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05)	d	on (p <= 0.0		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif	d	on (p <= 0.0		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.0		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB	MSE	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.0		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.4 0.5 0.4	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.4 0.3	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.4 0.5 0.4	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.4 0.3	d	on (p <= 0.09		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.4 0.3 0.2 0.1	d	on (p <= 0.0		Response	Statistic 4.03 MSDu 0.148165		0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	d fferences		Dose-		Statistic 4.03 MSDu 0.148165 Plot	0.21065	0.895 MSB 0.097478 1-tai of s	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	d fferences		Dose-		Statistic 4.03 MSDu 0.148165 Plot		0.895 MSB 0.097478 1-tai of s	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	d fferences		Dose-		Statistic 4.03 MSDu 0.148165 Plot	0.21065	0.895 MSB 0.097478 1-tai of s	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	d		Dose-		Statistic 4.03 MSDu 0.148165 Plot	0.21065	0.895 MSB 0.097478	MSE 0.017668	-1.39557 F-Prob	5.718277 df
Auxiliary Tests Kolmogorov D Test indicates non-norma Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) Bonferroni t Test indicates significant dif Treatments vs DMW Control 1 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.4 0.3 0.2 0.1	d fferences		Dose-		Statistic 4.03 MSDu 0.148165 Plot	0.21065	0.895 MSB 0.097478 1-tai of s	MSE 0.017668	-1.39557 F-Prob	5.718277 df

			Ceriodaph	nia Partial	Life-Cycl	e Test-8 day	survival		
Start Date:	11/09/2014 14:15	Test ID:	PR1223/21			Sample ID:		Various	
End Date:	19/09/2014 14:00	Lab ID:	Various			Sample Type	:	AQ-Aqueous	
Sample Date:		Protocol:	ESA 102			Test Species	:	CD-Ceriodapl	nnia dubia
Comments:									
						ata Summary			
Conc-	Parameter		Mean	Min	Max	SD	CV%	N	
DMW Control	0		19.30	1.00	25.00		13.91	10	
SVLDP009 DS			0.80	0.00	4.00		162.33	10	
MADDOX			5.50	0.00	17.00		41.51	10	
AKE WALLACE			22.30	13.00	37.00		11.15		
WANGOL			12.20	0.00	20.00		20.43	10	
COX DS LYELL			21.90	12.00	28.00		9.80	10	
OXS US LYELL			20.50	0.00	28.00		13.96	10	
LAKE LYELL			20.60	5.00	28.00		13.44	10	
WPS			12.80	0.00	23.00		20.24		
COXS US			0.20	0.00	2.00		397.64	10	
DMW Control			90.00	0.00	100.00		6.25	10	
SVLDP009 DS			80.00	0.00	100.00		8.12		
MADDOX			100.00	100.00	100.00		0.00	10	
AKE WALLACE			100.00	100.00	100.00		0.00	10	
WANGOL			100.00	100.00	100.00		0.00		
COX DS LYELL			100.00	100.00	100.00		0.00	10	
OXS US LYELL			100.00	100.00	100.00		0.00		
LAKE LYELL			90.00	0.00	100.00		6.25	10	
WPS			100.00	100.00	100.00		0.00		
COXS US			40.00	0.00	100.00		17.97	10	
DMW Control	•		8.10	8.10	8.10		0.00		
SVLDP009 DS			8.80	8.80	8.80		0.00		
MADDOX			8.60	8.60	8.60		0.00		
AKE WALLACE			8.50	8.50	8.50		0.00	1	
WANGOL			8.70	8.70	8.70		0.00	1	
COX DS LYELL			8.30	8.30	8.30		0.00		
OXS US LYELL			8.70	8.70	8.70		0.00	1	
LAKE LYELL			8.40	8.40	8.40		0.00		
WPS			8.40	8.40	8.40		0.00		
COXS US			6.60	6.60	6.60		0.00		
DMW Control			100.90	100.90	100.90		0.00		
SVLDP009 DS			89.00	89.00	89.00		0.00		
MADDOX			94.80	94.80	94.80		0.00		
AKE WALLACE			99.10	99.10	99.10		0.00		
WANGOL			109.00	109.00	109.00		0.00	1	
COX DS LYELL			109.10	109.10	109.10		0.00		
OXS US LYELL			104.50	104.50	104.50		0.00		
LAKE LYELL			106.40	106.40	106.40		0.00	1	
WPS			90.30	90.30	90.30		0.00		
COXS US			102.80	102.80	102.80		0.00		
DMW Control			187.20	187.20	187.20		0.00		
SVLDP009 DS			1089.00	1089.00	1089.00		0.00		
			1007.00	1007.00	1007.00		0.00		
			986.00	986.00	986.00		0.00	1	
			806.00	806.00	806.00		0.00	1	
COX DS LYELL			506.00	506.00	506.00		0.00		
OXS US LYELL			1049.00	1049.00	1049.00		0.00		
			547.00	547.00	547.00		0.00	1	
WPS			949.00	949.00	949.00		0.00	1	
COXS US			41.50	41.50	41.50	0.00	0.00	1	

Appendix C – Water Quality Report

	CE	CERTIFICATE OF ANALYSIS							
Work Order	ES1418822	Page	: 1 of 11						
Client	: GHD PTY LTD	Laboratory	: Environmental Division Sydney						
Contact	: MR STUART GRAY	Contact	: Barbara Hanna						
Address	: PO BOX 5403	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164						
	NEWCASTLE WEST NSW, AUSTRALIA 2302								
E-mail	: stuart.c.gray@ghd.com	E-mail	: Barbara.Hanna@alsglobal.com						
Felephone	:	Telephone	: +61 2 8784 8555						
acsimile	:	Facsimile	: +61 2 8784 8555						
Project	: 2217471	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement						
Order number	:								
C-O-C number	: 161034	Date Samples Received	: 25-AUG-2014						
Sampler	: LH	Issue Date	: 01-SEP-2014						
Site	:								
		No. of samples received	: 12						
Quote number	: EN/005/14	No. of samples analysed	: 12						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically carried out in compliance with procedures sp		indicated below. Electronic signing has been
NAIA	ISO/IEC 17025.	Signatories	Position	Accreditation Category
		Ankit Joshi	Inorganic Chemist	Sydney Inorganics
WORLD RECOGNISED		Ashesh Patel	Inorganic Chemist	Sydney Inorganics
ACCREDITATION		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
		Dian Dao		Sydney Inorganics
		Shobhna Chandra	Metals Coordinator	Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 11
Work Order	ES1418822
Client	:GHD PTY LTD
Project	2217471

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- ED093F: Sodium Adsorption ratio could not be calculated as Calcium and Magnesium results are below the detection limit for sample ES1418822 #006.
- EG020: It has been confirmed by re-digestion and re-analysis that total Strontium concentration is less than dissolved for sample ES1418822 # 001. For all other samples and analytes where dissolved is greater than total, the difference is within experimental variation of the methods.
- Ionic Balance out of acceptable limits due to analytes not quantified in this report.

Page	: 3 of 11
Work Order	: ES1418822
Client	:GHD PTY LTD
Project	2217471

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	SV LDP009	MADOOX	AP DS LDP001	AP LDP001	SV LDP009 DS
	Cl	ient sampli	ng date / time	21-AUG-2014 15:00				
Compound	CAS Number	LOR	Unit	ES1418822-001	ES1418822-002	ES1418822-003	ES1418822-004	ES1418822-005
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.21	8.47	8.28	8.01	8.73
EA006: Sodium Adsorption Ratio (SAR))							
Sodium Adsorption Ratio		0.01	-	80.1	10.4	5.31	7.36	47.4
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1200	1030	591	1050	1100
EA016: Non Marine - Estimated TDS Sa	linity							
Total Dissolved Solids (Calc.)		1	mg/L	780	670	384	682	715
EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L	19	10	13	<5	10
EA065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L	2	76	64	116	7
ED009: Anions								
Bromide	24959-67-9	0.010	mg/L	0.046	0.082	0.035	0.067	0.057
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	22	<1	<1	60
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	625	392	291	538	512
Total Alkalinity as CaCO3		1	mg/L	625	414	291	538	572
ED041G: Sulfate (Turbidimetric) as SO4	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	34	142	17	25	34
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	6	15	10	10	6
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	1	14	11	20	1
Magnesium	7439-95-4	1	mg/L	<1	10	9	16	1
Sodium	7440-23-5	1	mg/L	291	208	98	182	280
Potassium	7440-09-7	1	mg/L	9	10	19	32	10
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.01	0.02	0.02	<0.01	0.03
Arsenic	7440-38-2	0.001	mg/L	0.024	0.014	<0.001	<0.001	0.021
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	7440-39-3	0.001	mg/L	0.028	0.020	0.092	0.178	0.021
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

Page : 4 of 11 Work Order : ES1418822 Client : GHD PTY LTD Project : 2217471

Sub-Matrix: WATER (Matrix: WATER)		Client	sample ID	SV LDP009	MADOOX	AP DS LDP001	AP LDP001	SV LDP009 DS
	Clie	nt sampling o	date / time	21-AUG-2014 15:00				
Compound	CAS Number	LOR	Unit	ES1418822-001	ES1418822-002	ES1418822-003	ES1418822-004	ES1418822-005
EG020F: Dissolved Metals by ICP-MS	- Continued							
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	7440-48-4	0.001	mg/L	<0.001	0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.002	0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	0.008	0.113	0.010	0.003	0.013
Molybdenum	7439-98-7	0.001	mg/L	0.038	0.022	0.006	0.012	0.034
Nickel	7440-02-0	0.001	mg/L	0.004	0.010	0.002	0.003	0.003
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	0.030	0.083	0.079	0.117	0.028
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.007	0.012	0.012	0.016	0.005
Boron	7440-42-8	0.05	mg/L	0.07	0.10	<0.05	0.06	0.07
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.06	<0.05	<0.05
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.19	0.14	0.05	0.02	0.19
Arsenic	7440-38-2	0.001	mg/L	0.023	0.014	<0.001	<0.001	0.022
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	7440-39-3	0.001	mg/L	0.027	0.023	0.089	0.194	0.024
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	7440-48-4	0.001	mg/L	<0.001	0.002	<0.001	<0.001	0.002
Copper	7440-50-8	0.001	mg/L	0.003	<0.001	0.002	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	0.014	0.154	0.012	0.006	0.059
Molybdenum	7439-98-7	0.001	mg/L	0.036	0.026	0.005	0.014	0.039
Nickel	7440-02-0	0.001	mg/L	0.003	0.011	0.001	0.002	0.004
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	0.015	0.081	0.066	0.117	0.025
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.017	0.014	0.014	0.010	0.009
Boron	7440-42-8	0.05	mg/L	0.06	0.10	<0.05	0.07	0.08
Iron	7439-89-6	0.05	mg/L	0.30	0.31	0.23	<0.05	0.24
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

Page : 5 of 11 Work Order : ES1418822 Client : GHD PTY LTD Project : 2217471

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	SV LDP009	MADOOX	AP DS LDP001	AP LDP001	SV LDP009 DS
	Cli	ient sampli	ng date / time	21-AUG-2014 15:00				
Compound	CAS Number	LOR	Unit	ES1418822-001	ES1418822-002	ES1418822-003	ES1418822-004	ES1418822-005
EG035F: Dissolved Mercury by FIMS - 0	Continued							
EG035T: Total Recoverable Mercury by	y FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG052F: Dissolved Silica by ICPAES								
Silicon as SiO2	14464-46-1	0.1	mg/L	8.6	7.8	9.7	8.6	8.5
EK025SF: Free CN by Segmented Flow	_			0.004	0.001		0.001	0.001
Free Cyanide		0.004	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
EK026SF: Total CN by Segmented Flow		0.004	ma/l	<0.004	<0.004	<0.004	<0.004	<0.004
Total Cyanide	57-12-5	0.004	mg/L	<u>~0.004</u>	~0.004	~0.004	~0.004	~0.004
EK040P: Fluoride by PC Titrator Fluoride	16984-48-8	0.1	mg/L	1.5	1.3	0.7	1.0	1.8
EK055G: Ammonia as N by Discrete Ar		0.1	<u>9</u> . =			•		
Ammonia as N	7664-41-7	0.01	mg/L	0.44	0.06	<0.01	<0.01	0.09
EK057G: Nitrite as N by Discrete Analy	/ser							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	0.01
EK058G: Nitrate as N by Discrete Anal	yser							
Nitrate as N	14797-55-8	0.01	mg/L	0.21	0.42	0.02	0.34	0.44
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana							
Nitrite + Nitrate as N		0.01	mg/L	0.21	0.42	0.02	0.34	0.45
EK061G: Total Kjeldahl Nitrogen By Dis	screte Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.2	<0.1	<0.1	0.1
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	nalyser 0.1	mg/L	0.8	0.6	<0.1	0.3	0.6
^A Total Nitrogen as N		0.1	mg/∟	0.8	0.6	~ 0.1	0.3	0.0
EK067G: Total Phosphorus as P by Dis Total Phosphorus as P	crete Analyser	0.01	mg/L	0.02	0.01	<0.01	<0.01	0.01
EN055: Ionic Balance		0.01						
Total Anions		0.01	meq/L	13.4	11.6	6.45	11.6	12.3
Total Cations		0.01	meq/L	12.9	10.8	6.04	11.0	12.6
Ionic Balance		0.01	%	1.69	3.73	3.34	2.27	0.98
EP002: Dissolved Organic Carbon (DO	C)							
Dissolved Organic Carbon		1	mg/L	55	6	14	17	66
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<5	<5	<5	<5	<5

Page	: 6 of 11
Work Order	: ES1418822
Client	: GHD PTY LTD
Project	2217471

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	COXS US	WANGCOL	WALLACE	US LYELL	LYELL
	Cl	ient sampli	ng date / time	21-AUG-2014 15:00	21-AUG-2014 15:00	22-AUG-2014 15:00	22-AUG-2014 15:00	22-AUG-2014 15:00
Compound	CAS Number	LOR	Unit	ES1418822-006	ES1418822-007	ES1418822-008	ES1418822-009	ES1418822-010
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.69	6.98	8.41	8.65	8.42
EA006: Sodium Adsorption Ratio (SAR	:)							
Sodium Adsorption Ratio		0.01	-		1.64	8.52	10.0	4.63
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	39	823	1010	1080	557
EA016: Non Marine - Estimated TDS Sa	alinity							
Total Dissolved Solids (Calc.)		1	mg/L	25	535	656	702	362
EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L	22	5	<5	<5	<5
EA065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L	<1	244	96	82	50
ED009: Anions								
Bromide	24959-67-9	0.010	mg/L	<0.010	0.092	0.074	0.065	0.076
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	16	40	2
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1	16	336	348	111
Total Alkalinity as CaCO3		1	mg/L	1	16	352	388	113
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	3	341	160	164	117
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	8	34	20	18	16
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	<1	45	17	13	10
Magnesium	7439-95-4	1	mg/L	<1	32	13	12	6
Sodium	7440-23-5	1	mg/L	4	59	192	209	75
Potassium	7440-09-7	1	mg/L	<1	7	12	13	7
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.03	0.02	0.01	<0.01	<0.01
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.006	0.004	<0.001
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	7440-39-3	0.001	mg/L	0.016	0.014	0.026	0.025	0.026
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0001	<0.0001	<0.0001	<0.0001

Page : 7 of 11 Work Order : ES1418822 Client : GHD PTY LTD Project : 2217471

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	COXS US	WANGCOL	WALLACE	US LYELL	LYELL
	Cl	ient sampliı	ng date / time	21-AUG-2014 15:00	21-AUG-2014 15:00	22-AUG-2014 15:00	22-AUG-2014 15:00	22-AUG-2014 15:00
Compound	CAS Number	LOR	Unit	ES1418822-006	ES1418822-007	ES1418822-008	ES1418822-009	ES1418822-010
EG020F: Dissolved Metals by ICP-MS	- Continued							
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	7440-48-4	0.001	mg/L	<0.001	0.006	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	0.003	0.002	0.002	0.002
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	0.057	0.812	0.040	0.011	0.002
Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.015	0.016	0.005
Nickel	7440-02-0	0.001	mg/L	0.004	0.021	0.007	0.004	0.002
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	0.009	0.188	0.117	0.139	0.120
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.011	0.037	0.047	0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	0.14	0.12	0.18	0.09
Iron	7439-89-6	0.05	mg/L	0.09	0.05	<0.05	<0.05	<0.05
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.05	0.11	0.07	0.06	0.02
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.006	0.004	<0.001
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	7440-39-3	0.001	mg/L	0.016	0.011	0.025	0.025	0.023
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	7440-48-4	0.001	mg/L	<0.001	0.005	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.002	<0.001	<0.001	0.001	0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	0.058	0.859	0.059	0.031	0.006
Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.017	0.018	0.005
Nickel	7440-02-0	0.001	mg/L	<0.001	0.020	0.006	0.004	0.002
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	0.007	0.180	0.116	0.131	0.106
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.009	0.027	<0.005	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	0.16	0.12	0.19	0.11
Iron	7439-89-6	0.05	mg/L	0.61	0.30	0.10	0.05	<0.05
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

Page : 8 of 11 Work Order : ES1418822 Client : GHD PTY LTD Project : 2217471

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	COXS US	WANGCOL	WALLACE	US LYELL	LYELL
	Cl	ient sampli	ng date / time	21-AUG-2014 15:00	21-AUG-2014 15:00	22-AUG-2014 15:00	22-AUG-2014 15:00	22-AUG-2014 15:00
Compound	CAS Number	LOR	Unit	ES1418822-006	ES1418822-007	ES1418822-008	ES1418822-009	ES1418822-010
EG035F: Dissolved Mercury by FIMS - C	ontinued							
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG052F: Dissolved Silica by ICPAES								
Silicon as SiO2	14464-46-1	0.1	mg/L	9.4	7.5	3.9	1.0	0.2
EK025SF: Free CN by Segmented Flow	-			0.00/	0.001		0.001	0.001
Free Cyanide		0.004	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
EK026SF: Total CN by Segmented Flow		0.004	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Total Cyanide	57-12-5	0.004	my/∟	<u>\0.004</u>	<u>\0.004</u>	<u>\0.004</u>	<u>\0.004</u>	<u>\0.004</u>
EK040P: Fluoride by PC Titrator	16984-48-8	0.1	mg/L	<0.1	0.2	1.1	1.1	0.6
EK055G: Ammonia as N by Discrete An								
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.02	0.03	<0.01	<0.01
EK057G: Nitrite as N by Discrete Analy	ser							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analy	/ser							
Nitrate as N	14797-55-8	0.01	mg/L	0.24	<0.01	0.13	<0.01	0.14
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana							
Nitrite + Nitrate as N		0.01	mg/L	0.24	<0.01	0.13	<0.01	0.14
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser	<u> </u>		<u>.</u>			••	••
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.3	0.2	0.3
EK062G: Total Nitrogen as N (TKN + NC	0x) by Discrete Ar	alyser 0.1	mg/L	0.2	<0.1	0.4	0.2	0.4
[^] Total Nitrogen as N		0.1	IIIg/L	0.2	-0.1	0.4	0.2	0.4
EK067G: Total Phosphorus as P by Dist Total Phosphorus as P	crete Analyser	0.01	mg/L	<0.01	<0.01	0.01	0.02	0.01
EN055: Ionic Balance			J [.] –					
Total Anions		0.01	meq/L	0.31	8.38	10.9	11.7	5.15
Total Cations		0.01	meq/L	0.17	7.62	10.6	11.1	4.43
Ionic Balance		0.01	%		4.71	1.68	2.75	7.46
EP002: Dissolved Organic Carbon (DOC	C)							
Dissolved Organic Carbon		1	mg/L	48	7	6	42	20
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<5	<5	<5	<5	<5

Page	: 9 of 11
Work Order	ES1418822
Client	: GHD PTY LTD
Project	2217471

Cleme samplary disk / Imm 22 AUG 2014 15:00 22 AUG 2014 15:00	Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	DS LYELL	WPS	 	
Conversion Convers		Cl	ient sampli	ng date / time	22-AUG-2014 15:00	22-AUG-2014 15:00	 	
EA068: Solid Adsorption Ratio (SAR) PH Value	Compound	CAS Number	LOR	Unit	ES1418822-011	ES1418822-012	 	
Adde: Sodium Adsorption Ratio (SAR) Sodium Adsorption Ratio 0.01 - 3.93 8.74	EA005P: pH by PC Titrator							
Sodium Adsorption Ratio 0.01 - 3.93 8.74 <	pH Value		0.01	pH Unit	8.28	8.40	 	
EAd10P: Conductivity by PC Titrator Implicit pStem 516 973 Implicit Eddition Eddition Eddition Eddition Stem Stem Stem Stem Stem Stem Stem Stem Implicit Stem Stem Implicit Stem Implicit Stem Implicit Implicit Implicit Stem Implicit Implic	EA006: Sodium Adsorption Ratio (SAR)							
Electrical Conductivity @ 25°C 1 μS/cm S16 973 EA015: Non Marine - Estimated TDS Salinity 1 mg/L 335 632 EA025: Suspended Solids (CaL.) 5 mg/L 335 652 EA025: Suspended Solids (SS) 5 mg/L <-5	Sodium Adsorption Ratio		0.01	-	3.93	8.74	 	
Cathles Non-Marine - Estimated TDS Salinity Image 335 632 Image	EA010P: Conductivity by PC Titrator							
Total Dissolved Solids (Calc.) 1 mg/L 335 632 -	Electrical Conductivity @ 25°C		1	µS/cm	516	973	 	
CAU25: Suspended Solids (SS)	EA016: Non Marine - Estimated TDS Sal	inity						
Suspended Solids (SS)	Total Dissolved Solids (Calc.)		1	mg/L	335	632	 	
EAA065: Total Hardness as CaCO3 Image	EA025: Suspended Solids							
Total Hardness as CaC03 1 mg/L 65 101 ED009: Anions mg/L 0.063 0.082	Suspended Solids (SS)		5	mg/L	<5	<5	 	
ED009: Anions Bromide 24959-67-9 0.010 mg/L 0.063 0.082 Image: Second	EA065: Total Hardness as CaCO3							
Bromide 24959-67-9 0.010 mg/L 0.063 0.082 ED037P: Alkalinity by PC Titrator	Total Hardness as CaCO3		1	mg/L	65	101	 	
ED037P: Alkalinity by PC Titrator Image: Construction of the second	ED009: Anions							
Hydroxide Alkalinity as CaCO3 DMO-210-001 1 mg/L <1 <1 <	Bromide	24959-67-9	0.010	mg/L	0.063	0.082	 	
Carbonate Alkalinity as CaCO3 3812-32-6 1 mg/L <1 16 Bicarbonate Alkalinity as CaCO3 71-52-3 1 mg/L 128 359	ED037P: Alkalinity by PC Titrator							
Bicarbonate Alkalinity as CaCO3 71-52-3 1 mg/L 128 359 Total Alkalinity as CaCO3 1 mg/L 128 359 Total Alkalinity as CaCO3 1 mg/L 128 359 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Total Alkalinity as CaCO3 1 mg/L 128 375 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA 1 mg/L 107 126 Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L 107 126 ED045G: Chloride Discrete analyser 1 mg/L 16 16 </td <td>Carbonate Alkalinity as CaCO3</td> <td>3812-32-6</td> <td>1</td> <td>mg/L</td> <td><1</td> <td>16</td> <td> </td> <td></td>	Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	16	 	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA Image: Constraint of the second s	Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	128	359	 	
Sulfate as SQ4 - Turbidimetric 14808-79-8 1 mg/L 107 126 ED045G: Chloride Discrete analyser Chloride 16887-00-6 1 mg/L 16 Chloride 16887-00-6 1 mg/L 16 16 ED093F: Dissolved Major Cations Calcium 7440-70-2 1 mg/L 13 19 Magnesium 7439-95-4 1 mg/L 8 13 Sodium 7440-23-5 1 mg/L 73 202 Potassium 7440-09-7 1 mg/L 8 11 EG020F: Dissolved Metals by ICP-MS L L L L L L	Total Alkalinity as CaCO3		1	mg/L	128	375	 	
ED045G: Chloride Discrete analyser Image	ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Chloride 16887-00-6 1 mg/L 16 16	Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	107	126	 	
ED093F: Dissolved Major Cations 7440-70-2 1 mg/L 13 19 <td>ED045G: Chloride Discrete analyser</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ED045G: Chloride Discrete analyser							
Calcium 7440-70-2 1 mg/L 13 19 </td <td>Chloride</td> <td>16887-00-6</td> <td>1</td> <td>mg/L</td> <td>16</td> <td>16</td> <td> </td> <td></td>	Chloride	16887-00-6	1	mg/L	16	16	 	
Magnesium 7439-95-4 1 mg/L 8 13 <	ED093F: Dissolved Major Cations							
Sodium 7440-23-5 1 mg/L 73 202 <t< td=""><td>Calcium</td><td>7440-70-2</td><td>1</td><td>mg/L</td><td>13</td><td>19</td><td> </td><td></td></t<>	Calcium	7440-70-2	1	mg/L	13	19	 	
Potassium 7440-09-7 1 mg/L 8 11 1 -	Magnesium	7439-95-4	1	mg/L	8	13	 	
EG020F: Dissolved Metals by ICP-MS	Sodium	7440-23-5	1	mg/L	73	202	 	
	Potassium	7440-09-7	1	mg/L	8	11	 	
	EG020F: Dissolved Metals by ICP-MS							
	Aluminium	7429-90-5	0.01	mg/L	<0.01	0.02	 	
Arsenic 7440-38-2 0.001 mg/L <0.001 0.010	Arsenic	7440-38-2	0.001	mg/L	<0.001	0.010	 	
Beryllium 7440-41-7 0.001 mg/L <0.001 <0.001	Beryllium			mg/L	<0.001	<0.001	 	
Barium 7440-39-3 0.001 mg/L 0.023 0.023	Barium	7440-39-3		mg/L			 	
Cadmium 7440-43-9 0.0001 mg/L <0.0001	Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	

Page : 10 of 11 Work Order : ES1418822 Client : GHD PTY LTD Project : 2217471

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	DS LYELL	WPS	 	
	CI	ient samplii	ng date / time	22-AUG-2014 15:00	22-AUG-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1418822-011	ES1418822-012	 	
EG020F: Dissolved Metals by ICP-MS - Co	ontinued						
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.001	0.002	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.008	0.077	 	
Molybdenum	7439-98-7	0.001	mg/L	0.004	0.018	 	
Nickel	7440-02-0	0.001	mg/L	0.002	0.007	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	 	
Strontium	7440-24-6	0.001	mg/L	0.109	0.088	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.005	0.016	 	
Boron	7440-42-8	0.05	mg/L	0.08	0.08	 	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	 	
EG020T: Total Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.04	0.10	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.010	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.020	0.022	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.013	0.090	 	
Molybdenum	7439-98-7	0.001	mg/L	0.005	0.021	 	
Nickel	7440-02-0	0.001	mg/L	0.002	0.007	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	 	
Strontium	7440-24-6	0.001	mg/L	0.097	0.087	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	0.008	 	
Boron	7440-42-8	0.05	mg/L	0.09	0.09	 	
Iron	7439-89-6	0.05	mg/L	0.10	0.20	 	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	

Page	: 11 of 11
Work Order	: ES1418822
Client	: GHD PTY LTD
Project	2217471

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	DS LYELL	WPS	 	
	C	lient sampli	ng date / time	22-AUG-2014 15:00	22-AUG-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1418822-011	ES1418822-012	 	
EG035F: Dissolved Mercury by FIMS - Contin	nued						
EG035T: Total Recoverable Mercury by FIN	IS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EG052F: Dissolved Silica by ICPAES							
Silicon as SiO2	14464-46-1	0.1	mg/L	1.8	7.8	 	
EK025SF: Free CN by Segmented Flow Ana							
Free Cyanide		0.004	mg/L	<0.004	<0.004	 	
EK026SF: Total CN by Segmented Flow An		0.004	ma //	<0.004	-0.001		
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	 	
EK040P: Fluoride by PC Titrator Fluoride	40004 40 0	0.1	ma/l	0.6	1.1	 	
	16984-48-8	0.1	mg/L	0.0	61	 	
EK055G: Ammonia as N by Discrete Analys Ammonia as N	er 7664-41-7	0.01	mg/L	<0.01	0.04	 	
	7004-41-7	0.01	iiig/L	-0.01	0.04	 	
EK057G: Nitrite as N by Discrete Analyser Nitrite as N		0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analyser			J. –				
Nitrate as N	14797-55-8	0.01	mg/L	0.04	0.32	 	
EK059G: Nitrite plus Nitrate as N (NOx) by	Discrete Ana	lvser					
Nitrite + Nitrate as N		0.01	mg/L	0.04	0.32	 	
EK061G: Total Kjeldahl Nitrogen By Discret	e Anal <u>yser</u>						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.2	 	
EK062G: Total Nitrogen as N (TKN + NOx) b	y Discrete A	nalyser					
[^] Total Nitrogen as N		0.1	mg/L	0.2	0.5	 	
EK067G: Total Phosphorus as P by Discrete	e Analyser						
Total Phosphorus as P		0.01	mg/L	0.02	0.02	 	
EN055: Ionic Balance							
Total Anions		0.01	meq/L	5.24	10.6	 	
Total Cations		0.01	meq/L	4.69	11.1	 	
Ionic Balance		0.01	%	5.57	2.35	 	
EP002: Dissolved Organic Carbon (DOC)		4	ma //	0.4	-		
Dissolved Organic Carbon		1	mg/L	24	5	 	
EP020: Oil and Grease (O&G)		5	ma/l	<5	<5	 	
Oil & Grease		0	mg/L	~ 0	~0	 	

Appendix D – Catchment Runoff Results

Location	Dilution (% of daily flow)								
LOCATION	10th percentile	50th percentile	90th percentile						
А	96.78	88.96	44.36						
В	94.11	85.49	31.82						
С	96.41	96.40	32.11						
D	92.43	81.97	21.90						
E	91.15	78.75	20.51						
F	89.15	71.02	32.15						
G	89.01	69.35	21.90						
н	88.61	64.48	9.40						
I.	88.52	61.92	7.16						
J	88.43	58.82	5.71						
к	83.06	43.59	4.49						
L	77.52	37.99	3.83						
М	63.43	26.59	3.06						
Ν	55.30	21.48	2.64						
0	53.91	20.77	2.55						

	ion of SV LDP009 Discharges for water Strategy wSza								
Location	Dilution (% of daily flow)								
Location	10th percentile	50th percentile	90th percentile						
А	97.96	92.78	55.99						
В	96.23	90.39	42.68						
С	97.72	97.72	43.01						
D	95.12	87.88	30.92						
E	94.26	85.53	29.17						
F	92.91	79.63	43.06						
G	92.82	78.31	30.92						
н	92.54	74.34	14.21						
I.	92.49	72.18	10.95						
J	92.42	69.51	8.80						
к	88.67	55.22	6.98						
L	84.63	49.44	5.98						
М	73.46	36.63	4.80						
Ν	66.37	30.38	4.15						
0	65.11	29.50	4.02						

Table D-2 Dilution of SV LDP009 Discharges for Water Strategy WS2a

	ation of SV LDP009 Discharges for water Strategy WS2b					
Location	Dilution (% of daily flow)					
Location	10th percentile	50th percentile	90th percentile			
А	98.58	94.90	64.79			
В	97.36	93.15	51.86			
С	98.41	98.41	52.19			
D	96.58	91.30	39.30			
E	95.96	89.53	37.34			
F	94.99	84.98	52.24			
G	94.92	83.93	39.30			
н	94.72	80.73	19.33			
I	94.68	78.97	15.11			
J	94.64	76.73	12.26			
К	91.88	64.08	9.79			
L	88.84	58.58	8.43			
Μ	80.02	45.54	6.80			
Ν	74.06	38.70	5.90			
0	72.97	37.71	5.71			

Table D-3 Dilution of SV LDP009 Discharges for Water Strategy WS2b

	_				
Location	Dilution (% of daily flow)				
	10th percentile	50th percentile	90th percentile		
А	98.64	95.11	65.81		
В	97.48	93.43	52.98		
С	98.48	98.48	53.31		
D	96.72	91.65	40.38		
E	96.13	89.95	38.40		
F	95.20	85.54	53.36		
G	95.13	84.53	40.38		
н	94.95	81.42	20.04		
I.	94.90	79.70	15.70		
J	94.86	77.53	12.75		
К	92.21	65.11	10.20		
L	89.28	59.67	8.78		
М	80.73	46.66	7.09		
Ν	74.92	39.78	6.15		
0	73.85	38.77	5.95		

Table D 4Dilution of Total Discharges (AP LDP001 and SV LDP009) for all
Water Strategies

This report: has been prepared by GHD for Centennial Coal Company Limited and may only be used and relied on by Centennial Coal Company Limited for the purpose agreed between GHD and the Centennial Coal Company Limited as set out in Section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Centennial Coal Company Limited arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Centennial Coal Company Limited and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

GHD

Level 3 GHD Tower 24 Honeysuckle Drive Newcastle NSW 2300 PO Box 5403 Hunter Region Mail Centre NSW 2310 T: (02) 4979 9999 F: (02) 4979 9988 E: ntlmail@ghd.com

© GHD 2014

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

G:\22\17471\WP\107382.docx

Document Status

Rev	Author	Reviewer		Approved for Issue		
No.		Name	Signature	Name	Signature	Date
0	J Woodworth / T Davies	S Gray	paran	S Gray	paray	29/09/14

www.ghd.com

